WorldWideScience

Sample records for single wavelength setting

  1. Student Performance in Measuring Distance with Wavelengths in Various Settings

    Science.gov (United States)

    White, Gary

    2015-04-01

    When physics students are asked to measure the distance between two fixed locations using a pre-defined wavelength as a ruler, there is a surprising failure rate, at least partially due to the fact that the ``ruler'' to be used is not fixed in length (see ``Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?,'' by and references therein). I will show some data from introductory classes (algebra- and calculus-based) that replicate this result, and also show some interesting features when comparing a setting involving slinkies with a setting involving surface waves on water.

  2. Single-photon generator for optical telecommunication wavelength

    International Nuclear Information System (INIS)

    Usuki, T; Sakuma, Y; Hirose, S; Takemoto, K; Yokoyama, N; Miyazawa, T; Takatsu, M; Arakawa, Y

    2006-01-01

    We report on the generation of single-photon pulses from a single InAs/InP quantum dot in telecommunication bands (1.3-1.55 μm: higher transmittance through an optical fiber). First we prepared InAs quantum dots on InP (0 0 1) substrates in a low-pressure MOCVD by using a so-called InP 'double-cap' procedure. The quantum dots have well-controlled photo emission wavelength in the telecommunication bands. We also developed a single-photon emitter in which quantum dots were embedded. Numerical simulation designed the emitter to realize efficient injection of the emitted photons into a single-mode optical fiber. Using a Hanbury-Brown and Twiss technique has proved that the photons through the fiber were single photons

  3. Microscopic single-crystal refractometry as a function of wavelength

    International Nuclear Information System (INIS)

    DeLoach, L.D.

    1994-01-01

    The refractive indices of crystal fragments 50--200 μm in size can be measured for light wavelengths between 365 and 1100 nm with a spindle-stage refractometer. Established methods from optical crystallograpy are used to orient a crystal on the microscope spindle stage and then to match its refractive index to an immersion fluid. The refractive index of the fluid for the wavelength of light and matching temperature is determined by comparison of a reference crystal on a second spindle axis with the fluid under the match conditions. Investigations of new nonlinear-optical crystals admirably demonstrate the advantages of measuring the refractive index to ± 0.0004 in small single crystals

  4. Construction of a single/multiple wavelength RZ optical pulse source at 40 GHz by use of wavelength conversion in a high-nonlinearity DSF-NOLM

    DEFF Research Database (Denmark)

    Yu, Jianjun; Yujun, Qian; Jeppesen, Palle

    2001-01-01

    A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber.......A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber....

  5. Narrow band wavelength selective filter using grating assisted single ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Prabhathan, P., E-mail: PPrabhathan@ntu.edu.sg; Murukeshan, V. M. [Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ∼60 nm and side band rejection ratio >15 dB.

  6. On Spectral Invariance of Single Scattering Albedo for Weakly Absorbing Wavelengths

    Science.gov (United States)

    Marshak, Alexander

    2012-01-01

    The single scattering albedo omega (sub 0 lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the total extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength A and droplet size r. In this presentation we will show that for water droplets at weakly absorbing wavelengths, the ratio omega (sub 0 lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo omega (sub 0 lambda) via one known spectrum omega (sub 0 lambda)(r(sub o)). We will provide a simple physical explanation of the discovered relationship. In addition to water droplets, similar linear relationships were found for the single scattering albedo of non-spherical ice crystals. The single scattering albedo $\\omega _ {0\\lambda }$ in atmospheric radiative transfer is the ratio of the scattering coefficient to the total extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, and thus the single scattering albedo, are functions of wavelength $\\lambda $ and droplet size $r$. We show that for water droplets at weakly absorbing wavelengths, the ratio $\\omega _ {0\\lambda } (r)$/$\\omega _ {0\\lambda } (r_{0})$ of two single scattering albedo spectra for two different droplet sizes is a linear function of $\\omega _{0\\lambda }(r)$. The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo $\\omega_{0\\lambda }(r)$ via one known spectrum $\\omega_{0\\lambda }(r_{0})$. We provide a simple physical explanation of the discovered relationship. Similar linear relationships characterize the single scattering albedo of non-spherical ice crystals.

  7. Optical transmission through a polarization preserving single mode optical fiber at two Ar(+) laser wavelengths

    Science.gov (United States)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.

    1989-01-01

    The transmission characteristics of two Ar(+) laser wavelengths through a twenty meter Panda type Polarization Preserving Single Mode Optical Fiber (PPSMOF) were measured. The measurements were done with both single and multi-longitudinal mode radiation. In the single longitudinal mode case, a degrading Stimulated Brillouin Scattering (SBS) is observed as a backward scattering loss. By choosing an optimum coupling system and manipulating the input polarization, the threshold of the SBS onset can be raised and the transmission efficiency can be increased.

  8. Speckle noise reduction in single-shot holographic two-wavelength contouring

    Science.gov (United States)

    Agour, Mostafa; Klattenhoff, Reiner; Falldorf, Claas; Bergmann, Ralf B.

    2017-05-01

    We present an experimental configuration that enables form measurement from a single-shot camera exposure. It combines two-wavelength contouring with spatial multiplexing synthetic-aperture digital holography. The synthetic-aperture in this work is formed by simultaneously illuminating the test object from two different angles. The two illumination directions and the two-wavelength contouring result in four holograms which are spatially multiplexed on a single camera target avoiding unwanted cross-interference between them by means of coherence gating. In contrast to standard holographic contouring methods, the proposed technique reduces speckle decorrelation noise and enables single shot form measurement. To demonstrate this technique, the shape of a micro cold drawing part is determined.

  9. Macromolecular X-ray structure determination using weak, single-wavelength anomalous data

    Energy Technology Data Exchange (ETDEWEB)

    Bunkóczi, Gábor; McCoy, Airlie J.; Echols, Nathaniel; Grosse-Kunstleve, Ralf W.; Adams, Paul D.; Holton, James M.; Read, Randy J.; Terwilliger, Thomas C.

    2014-12-22

    We describe a likelihood-based method for determining the substructure of anomalously scattering atoms in macromolecular crystals that allows successful structure determination by single-wavelength anomalous diffraction (SAD) X-ray analysis with weak anomalous signal. With the use of partial models and electron density maps in searches for anomalously scattering atoms, testing of alternative values of parameters and parallelized automated model-building, this method has the potential to extend the applicability of the SAD method in challenging cases.

  10. Comparison of Students' Ability to Measure Distance using Wavelength in 1D and 2D Settings

    Science.gov (United States)

    White, Gary

    2015-03-01

    When physics students are asked to measure the distance between two fixed locations using a concrete object like a pencil, virtually all respond successfully; however, in some settings, when asked to perform a similar measurement using wavelength as a ruler, there is less success, especially if the students are first asked to note that the ``ruler'' to be used is not fixed in length (see ``Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?,'' by M. Kryjevskaia, M. Stetzer, and P. Heron, The Physics Teacher 51,560, (2103) and references therein). I will show some data from introductory classes (algebra- and calculus-based) that replicate this latter result, and also show some interesting features when comparing particular 1D and 2D contexts.

  11. Comprehensive Wavelengths, Energy Levels, and Hyperfine Structure Parameters of Singly-Ionized Iron-Group Elements

    Science.gov (United States)

    Nave, Gillian

    We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy

  12. Doubly Resonant Photonic Antenna for Single Infrared Quantum Dot Imaging at Telecommunication Wavelengths.

    Science.gov (United States)

    Xie, Zhihua; Lefier, Yannick; Suarez, Miguel Angel; Mivelle, Mathieu; Salut, Roland; Merolla, Jean-Marc; Grosjean, Thierry

    2017-04-12

    Colloidal quantum dots (CQDs) have drawn strong interest in the past for their high prospects in scientific, medical, and industrial applications. However, the full characterization of these quantum emitters is currently restricted to the visible wavelengths, and it remains a key challenge to optically probe single CQDs operating in the infrared spectral domain, which is targeted by a growing number of applications. Here, we report the first experimental detection and imaging at room temperature of single infrared CQDs operating at telecommunication wavelengths. Imaging was done with a doubly resonant bowtie nanoaperture antenna (BNA) written at the end of a fiber nanoprobe, whose resonances spectrally fit the CQD absorption and emission wavelengths. Direct near-field characterization of PbS CQDs reveal individual nanocrystals with a spatial resolution of 75 nm (λ/20) together with their intrinsic 2D dipolar free-space emission properties and exciton dynamics (blinking phenomenon). Because the doubly resonant BNA is strongly transmissive at both the CQD absorption and the emission wavelengths, we are able to perform all-fiber nanoimaging with a standard 20% efficiency InGaAs avalanche photodiode (APD). The detection efficiency is predicted to be 3000 fold larger than with a conventional circular aperture tip of the same transmission area. Double resonance BNA fiber probes thus offer the possibility of exploring extreme light-matter interaction in low band gap CQDs with current plug-and-play detection techniques, opening up new avenues in the fields of infrared light-emitting devices, photodetectors, telecommunications, bioimaging, and quantum information technology.

  13. The All-wavelength Extended Groth Strip International Survey (AEGIS) Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.; Guhathakurta, P.; Konidaris, N.; Newman, J.A.; Ashby, M.L.N.; Biggs, A.D.; Barmby, P.; Bundy, K.; Chapman, S.; Coil, A.L.; Conselice, C.; Cooper, M.; Croton,; Eisenhardt, P.; Ellis, R.; Faber, S.; Fang, T.; Fazio, G.G.; Georgakakis, A.; Gerke, B.; Goss, W.M.; /UC, Berkeley, Astron. Dept. /Lick Observ. /LBL, Berkeley

    2006-07-21

    In this the first of a series of ''Letters'', we present a description of the panchromatic data sets that have been acquired in the Extended Groth Strip region of the sky. Our survey, the All-wavelength Extended Groth Strip International Survey (AEGIS), is intended to study the physical properties and evolutionary processes of galaxies at z {approx} 1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS{sup 30} X-ray (0.5-10 keV), GALEX{sup 31} ultraviolet (1200-2500 A), CFHT/MegaCam Legacy Survey{sup 32} optical (3600-9000 {angstrom}), CFHT/CFH12K optical (4500-9000 {angstrom}), Hubble Space Telescope/ACS{sup 33} optical (4400-8500 {angstrom}), Palomar/WIRC{sup 34} near-infrared (1.2-2.2 {micro}m), Spitzer/IRAC{sup 35} mid-infrared (3.6-8.0 {micro}m), Spitzer/MIPS far-infrared (24-70 {micro}m), and VLA{sup 36} radio continuum (6-20 cm). In addition, this region of the sky has been targeted for extensive spectroscopy using the DEIMOS spectrograph on the Keck II 10 m telescope{sup 37}. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage.

  14. The All-Wavelength Extended Groth Strip International Survey(AEGIS) Data Sets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.; Guhathakurta, P.; Konidaris, N.P.; Newman, J.A.; Ashby, M.L.N.; Biggs, A.D.; Barmby, P.; Bundy, K.; Chapman, S.C.; Coil,A.L.; Conselice, C.J.; Cooper, M.C.; Croton, D.J.; Eisenhardt, P.R.M.; Ellis, R.S.; Faber, S.M.; Fang, T.; Fazio, G.G.; Georgakakis, A.; Gerke,B.F.; Goss, W.M.; Gwyn, S.; Harker, J.; Hopkins, A.M.; Huang, J.-S.; Ivison, R.J.; Kassin, S.A.; Kirby, E.N.; Koekemoer, A.M.; Koo, D.C.; Laird, E.S.; Le Floc' h, E.; Lin, L.; Lotz, J.M.; Marshall, P.J.; Martin,D.C.; Metevier, A.J.; Moustakas, L.A.; Nandra, K.; Noeske, K.G.; Papovich, C.; Phillips, A.C.; Rich,R. M.; Rieke, G.H.; Rigopoulou, D.; Salim, S.; Schiminovich, D.; Simard, L.; Smail, I.; Small,T.A.; Weiner,B.J.; Willmer, C.N.A.; Willner, S.P.; Wilson, G.; Wright, E.L.; Yan, R.

    2006-10-13

    In this the first of a series of Letters, we present a description of the panchromatic data sets that have been acquired in the Extended Groth Strip region of the sky. Our survey, the All-wavelength Extended Groth Strip International Survey (AEGIS), is intended to study the physical properties and evolutionary processes of galaxies at z{approx}1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS X-ray (0.5-10 keV), GALEX ultraviolet (1200-2500 Angstroms), CFHT/MegaCam Legacy Survey optical (3600-9000 Angstroms), CFHT/CFH12K optical (4500-9000 Angstroms), Hubble Space Telescope/ACS optical (4400-8500 Angstroms), Palomar/WIRC near-infrared (1.2-2.2 {micro}m), Spitzer/IRAC mid-infrared (3.6-8.0 {micro}m), Spitzer/MIPS far-infrared (24-70 {micro}m), and VLA radio continuum (6-20 cm). In addition, this region of the sky has been targeted for extensive spectroscopy using the DEIMOS spectrograph on the Keck II 10 m telescope. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage.

  15. A novel single-cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research

    Directory of Open Access Journals (Sweden)

    C. Linke

    2016-11-01

    Full Text Available The spectral light-absorbing behavior of carbonaceous aerosols varies depending on the chemical composition and structure of the particles. A new single-cavity three-wavelength photoacoustic spectrometer was developed and characterized for measuring absorption coefficients at three wavelengths across the visible spectral range. In laboratory studies, several types of soot with different organic content were generated by a diffusion flame burner and were investigated for changes in mass-specific absorption cross section (MAC values, absorption and scattering Ångström exponents (αabs and αsca, and single scattering albedo (ω. By increasing the organic carbonaceous (OC content of the aerosol from 50 to 90 % of the total carbonaceous mass, for 660 nm nearly no change of MAC was found with increasing OC content. In contrast, for 532 nm a significant increase, and for 445 nm a strong increase of MAC was found with increasing OC content of the aerosol. Depending on the OC content, the Ångström exponents of absorption and scattering as well as the single scattering albedo increased. These laboratory results were compared to a field study at a traffic-dominated urban site, which was also influenced by residential wood combustion. For this site a daily average value of αabs(445–660 of 1.9 was found.

  16. Optical access network using centralized light source, single-mode fiber + broad wavelength window multimode fiber

    Science.gov (United States)

    Yam, Scott S.-H.; Kim, Jaedon; Gutierrez, David; Achten, Frank

    2006-08-01

    Access networks based on a single-mode fiber (SMF) using a centralized light source (CLS) have attracted much attention recently due to their wavelength management flexibility and potential for cost reduction at customers' premises. Future networks, in addition, are likely to contain segments of multimode fiber (MMF), whose core dimension is relatively large in comparison with its single-mode counterpart, substantially reducing fiber alignment constraints and the subsequent network construction and installation cost. In this study, a CLS-based passive optical network (PON) is proposed, which will use a new generation of high-performance MMF optimized for a broad wavelength transmission window spanning from 1300to1550 nm, with a bandwidth distance product (BDP) of 40 Gbit/s-km. The proposed architecture is implemented in a test bed, and its performance is verified by bit error ratio (BER) measurement. Results show that we can implement high-performance CLS-based PONs containing both an SMF and an MMF infrastructure, simultaneously.

  17. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light.

    Science.gov (United States)

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S

    2016-09-23

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture.

  18. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light

    KAUST Repository

    Ooi, Amanda Siok Lee

    2016-09-23

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture.

  19. Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements.

    Science.gov (United States)

    Khodadad, Davood; Bergström, Per; Hällstig, Emil; Sjödahl, Mikael

    2015-06-01

    The objective of this paper is to describe a fast and robust automatic single-shot dual-wavelength holographic calibration method that can be used for online shape measurement applications. We present a model of the correction in two terms for each lobe, one to compensate the systematic errors caused by off-axis angles and the other for the curvature of the reference waves, respectively. Each hologram is calibrated independently without a need for an iterative procedure or information of the experimental set-up. The calibration parameters are extracted directly from speckle displacements between different reconstruction planes. The parameters can be defined as any fraction of a pixel to avoid the effect of quantization. Using the speckle displacements, problems associated with phase wrapping is avoided. The procedure is shown to give a shape accuracy of 34 μm using a synthetic wavelength of 1.1 mm for a measurement on a cylindrical test object with a trace over a field of view of 18  mm×18  mm.

  20. Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Galili, Michael; Oxenløwe, Leif Katsuo

    2010-01-01

    We have generated a single-wavelength data signal with a data capacity of 5.1 Tbit/s. The enabling techniques to generate the data signal are optical time-division multiplexing up to a symbol rate of 1.28 Tbaud, differential quadrature phase shift keying as data format, and polarisation......-multiplexing. For the first time, error-free performance with a bit error rate less than 1e-9 is demonstrated for the 5.1 Tbit/s data signal. This is achieved in a back-to-back configuration using a direct detection receiver based on polarisation- and time-demultiplexing, delay-demodulation and balanced photo-detection....

  1. Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel.

    Science.gov (United States)

    Hansen Mulvad, Hans Christian; Galili, Michael; Oxenløwe, Leif K; Hu, Hao; Clausen, Anders T; Jensen, Jesper B; Peucheret, Christophe; Jeppesen, Palle

    2010-01-18

    We have generated a single-wavelength data signal with a data capacity of 5.1 Tbit/s. The enabling techniques to generate the data signal are optical time-division multiplexing up to a symbol rate of 1.28 Tbaud, differential quadrature phase shift keying as data format, and polarisation-multiplexing. For the first time, error-free performance with a bit error rate less than 10(-9) is demonstrated for the 5.1 Tbit/s data signal. This is achieved in a back-to-back configuration using a direct detection receiver based on polarisation- and time-demultiplexing, delay-demodulation and balanced photo-detection.

  2. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    Science.gov (United States)

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).

  3. All-optical NRZ wavelength conversion based on a single hybrid III-V/Si SOA and optical filtering.

    Science.gov (United States)

    Wu, Yingchen; Huang, Qiangsheng; Keyvaninia, Shahram; Katumba, Andrew; Zhang, Jing; Xie, Weiqiang; Morthier, Geert; He, Jian-Jun; Roelkens, Gunther

    2016-09-05

    We demonstrate all-optical wavelength conversion (AOWC) of non-return-to-zero (NRZ) signal based on cross-gain modulation in a single heterogeneously integrated III-V-on-silicon semiconductor optical amplifier (SOA) with an optical bandpass filter. The SOA is 500 μm long and consumes less than 250 mW electrical power. We experimentally demonstrate 12.5 Gb/s and 40 Gb/s AOWC for both wavelength up and down conversion.

  4. Simultaneous dual-wavelength-band common-path swept-source optical coherence tomography with single polygon mirror scanner.

    Science.gov (United States)

    Mao, Youxin; Chang, Shoude; Murdock, Erroll; Flueraru, Costel

    2011-06-01

    We report a novel (to the best of our knowledge) simultaneous 1310/1550 two-wavelength band swept laser source and dual-band common-path swept-source optical coherence tomography (SS-OCT). Synchronized dual-wavelength tuning is performed by using two laser cavities and narrowband wavelength filters with a single dual-window polygonal scanner. Measured average output powers of 60 and 27 mW have been achieved for the 1310 and 1550 nm bands, respectively, while the two wavelengths were swept simultaneously from 1227 to 1387 nm for the 1310 nm band and from 1519 to 1581 nm for the 1550 nm band at an A-scan rate of 65 kHz. Broadband wavelength-division multiplexing is used for coupling two wavelengths into a common-path single-mode GRIN-lensed fiber probe to form dual-band common-path SS-OCT. Simultaneous OCT imaging at 1310 and 1550 nm is achieved. This technique allows for in vivo high-speed OCT imaging with potential application in functional (spectroscopic) investigations. © 2011 Optical Society of America

  5. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry

    Science.gov (United States)

    Wang, Chisheng; Li, Qingquan; Liu, Yanxiong; Wu, Guofeng; Liu, Peng; Ding, Xiaoli

    2015-03-01

    Due to the low-cost and lightweight units, single-wavelength LiDAR bathymetric systems are an ideal option for shallow-water (ASDF), Gaussian decomposition (GD), quadrilateral fitting (QF), Richardson-Lucy deconvolution (RLD), and Wiener filter deconvolution (WD). To date, most of these algorithms have previously only been applied in topographic LiDAR waveforms captured over land. A simulated dataset and an Optech Aquarius dataset were used to assess the algorithms, with the focus being on their capability of extracting the depth and the bottom response. The influences of a number of water and equipment parameters were also investigated by the use of a Monte Carlo method. The results showed that the RLD method had a superior performance in terms of a high detection rate and low errors in the retrieved depth and magnitude. The attenuation coefficient, noise level, water depth, and bottom reflectance had significant influences on the measurement error of the retrieved depth, while the effects of scan angle and water surface roughness were not so obvious.

  6. Increase in data capacity utilising dimensions of wavelength, space, time, polarisation and multilevel modulation using a single laser

    DEFF Research Database (Denmark)

    Clausen, Anders; Hu, Hao; Ye, Feihong

    2015-01-01

    Increasing the capacity of optical networks while have the objective of lowering the total consumed energy per bit is challenging. By exploiting several dimensions, i.e. wavelength, space, time, polarisation and multilevel modulation simultaneously, a single laser can offer formidable capacity pe...

  7. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources

    NARCIS (Netherlands)

    Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik

    2012-01-01

    The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly

  8. Wavelength dependence of Ångström exponent and single scattering albedo observed by skyradiometer in Seoul, Korea

    Science.gov (United States)

    Koo, Ja-Ho; Kim, Jhoon; Lee, Jaehwa; Eck, Thomas F.; Lee, Yun Gon; Park, Sang Seo; Kim, Mijin; Jung, Ukkyo; Yoon, Jongmin; Mok, Jungbin; Cho, Hi-Ku

    2016-11-01

    Absorption and scattering characteristics of various aerosol events are investigated using 2-years of measurements from a skyradiometer at Yonsei University in Seoul, Korea. Both transported dust and anthropogenic aerosols are observed at distinct geo-location of Seoul, a megacity located a few thousand kilometers away from dust source regions in China. We focus on the wavelength dependence of Ångström exponent (AE) and single scattering albedo (SSA), showing the characteristics of regional aerosols. The correlation between spectral SSAs and AEs calculated using different wavelength pairs generally indicates relatively weak absorption of fine-mode aerosols (urban pollution and/or biomass burning) and strong absorption of coarse-mode aerosols (desert dust) at this location. AE ratio (AER), a ratio of AEs calculated using wavelength pair between shorter (340-675 nm) and longer wavelength pair (675-1020 nm) correlates differently with SSA according to the dominant size of local aerosols. Correlations between SSA and AER show strong absorption of aerosols for AER 2.0. Based on the seasonal pattern of wavelength dependence of AER and SSA, this correlation difference looks to reveal the separated characteristics of transported dust and anthropogenic particles from urban pollution respectively. The seasonal characteristics of AER and SSAs also show that the skyradiometer measurement with multiple wavelengths may be able to detect the water soluble brown carbon, one of the important secondary organic aerosols in the summertime atmospheric composition.

  9. Development of a high-speed single-photon pixellated detector for visible wavelengths

    CERN Document Server

    Mac Raighne, Aaron; Mathot, Serge; McPhate, Jason; Vallerga, John; Jarron, Pierre; Brownlee, Colin; O’Shea, Val

    2009-01-01

    We present the development of a high-speed, single-photon counting, Hybrid Photo Detector (HPD). The HPD consists of a vacuum tube, containing the detector assembly, sealed with a transparent optical input window. Photons incident on the photocathode eject a photoelectron into a large electric field, which accelerates the incident electron onto a silicon detector. The silicon detector is bump bonded to a Medipix readout chip. This set-up allows for the detection and readout of low incident photon intensities at rates that are otherwise unattainable with current camera technology. Reported is the fabrication of the camera that brings together a range of sophisticated design and fabrication techniques and the expected theoretical imaging performance. Applications to cellular and molecular microscopy are also described in which single-photon-counting abilities at high frame rates are crucial

  10. Spectrophotometric resonant measurement of wavelength phase dispersion on femtosecond laser cavities and single elements during their fabrication

    Science.gov (United States)

    Bukhshtab, Michael A.

    1996-02-01

    A spectrophotometric reflection technique and measurement results of wavelength phase dispersion on femtosecond laser cavities and distinct elements are reported. In contrast to novel frequency-domain and interferometric Fourier-transform methods, the proposed reflection-based measurement procedure maintains a notably high sensitivity while studying either cavities or single elements. Resolved phase spectrums are evaluated using a standard spectrophotometer with a single-beam reflection attachment.

  11. Basis set recommendations for DFT calculations of gas-phase optical rotations at different wavelengths

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Jensen, Frank; Kongsted, Jacob

    2012-01-01

    of the optical rotation to the basis set limits for nine small or medium sized molecules, using basis sets developed specifically for DFT and magnetic properties (aug-pcS-n series). We suggest that assignment of absolute configuration by comparisons between theoretical and experimental optical rotations may...

  12. Single- and multi-wavelength laser operation of a diode-pumped ND:GGG single crystal around 1.33 μm

    Science.gov (United States)

    Xu, Bin; Wang, Yi; Cheng, Yongjie; Xu, Huiying; Cai, Zhiping; Moncorgé, Richard

    2015-06-01

    We report on the first continuous-wave laser operation of a diode-pumped Nd:GGG single crystal at several emission wavelengths in the 1.33 μm spectral domain. Multi-wavelength laser operation at 1324, 1331 and 1337 nm with a maximum laser output power of 1.83 W and a laser slope efficiency of 28.9% for an output coupler transmission of 2.2% is obtained in the free-running regime. By inserting and tilting a 0.1-mm BK7 glass etalon to modulate the losses inside the laser cavity, single wavelength lasing at 1324 nm and 1347 nm are also achieved with maximum output powers of about 0.77 W and 0.41 W as well as laser slope efficiencies of 15.2% and 12.6%, respectively. Further increasing the pump power, based on the position of the etalon leading to the single laser wavelength operation at 1347 nm, stable dual-wavelength laser operation is demonstrated at 1337 and 1347 nm with a maximum output power of 0.61 W.

  13. Single- and dual-wavelength laser pulses induced modification in 10×(Al/Ti)/Si multilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Salatić, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Petrović, S., E-mail: spetro@vinca.rs [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Peruško, D. [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Čekada, M.; Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Pantelić, D.; Jelenković, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2016-01-01

    Graphical abstract: - Highlights: • Experimental and numerical study of laser-induced ablation and micro-sized crater formation. • Dual-wavelength pulses induce creation of wider and deeper craters due to synergies of two processes. • Sunflower-like structure formed by dual-wavelength pulses at low irradiance. • Numerical model of nanosecond pulsed laser ablation for complex (Al/Ti)/Si system has been developed. - Abstract: The surface morphology of the ablation craters created in the multilayer 10×(Al/Ti)/Si system by nanosecond laser pulses at single- and dual wavelength has been studied experimentally and numerically. A complex multilayer thin film including ten (Al/Ti) bilayers deposited by ion sputtering on Si(1 0 0) substrate to a total thickness of 260 nm were illuminated at different laser irradiance in the range 0.25–3.5 × 10{sup 9} W cm{sup −2}. Single pulse laser irradiation was done at normal incidence in air, with the single wavelength, either at 532 nm or 1064 nm or with both laser light simultaneously in the ratio of 1:10 for energy per pulse between second harmonic and 1064 nm. Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the sample surface. The results show an increase in surface roughness, formation of specific nanostructures, appearance of hydrodynamic features and ablation of surface material with crater formation. Applying a small fraction (10%) of the second harmonic in dual-wavelength pulses, a modification of the 10×(Al/Ti)/Si system by a single laser pulse was reflected in the formation of wider and/or deeper craters. Numerical calculations show that the main physical mechanism in ablation process is normal evaporation without phase explosion. The calculated and experimental results agree relatively well for the whole irradiance range, what makes the model applicable to complex Al/Ti multilayer systems.

  14. On Spectral Invariance of Single Scattering Albedo for Water Droplets and Ice Crystals at Weakly Absorbing Wavelengths

    Science.gov (United States)

    Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.

    2012-01-01

    The single scattering albedo omega(sub O lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda)(r)/omega(sub O lambda)(r (sub O)) of two single scattering albedo spectra is a linear function of omega(sub O lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(sub O lambda)(r) via one known spectrum omega(sub O lambda)(r (sub O)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

  15. Characterization of Plant Growth under Single-Wavelength Laser Light Using the Model Plant Arabidopsis Thaliana

    KAUST Repository

    Ooi, Amanda

    2016-12-01

    Indoor horticulture offers a promising solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available lighting is suboptimal, therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. Lasers are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Besides, laser beams can be tailored to match the absorption profiles of different plants. We have developed a prototype laser growth chamber and demonstrate that laser-grown plants can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteomic data show that the singlewavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. Furthermore, stomatal movement partly determines the plant productivity and stress management. Abscisic acid (ABA) induces stomatal closure by promoting net K+-efflux from guard cells through outwardrectifying K+ (K+ out) channels to regulate plant water homeostasis. Here, we show that the Arabidopsis thaliana guard cell outward-rectifying K+ (ATGORK) channel is a direct target for ABA in the regulation of stomatal aperture and hence gas exchange and transpiration. Addition of (±)-ABA, but not the biologically inactive (−)-isomer, increases K+ out channel activity in Vicia faba guard cell protoplast. A similar ABA

  16. Vertically integrated (Ga, In)N nanostructures for future single photon emitters operating in the telecommunication wavelength range

    International Nuclear Information System (INIS)

    Winden, A; Mikulics, M; Grützmacher, D; Hardtdegen, H

    2013-01-01

    Important technological steps are discussed and realized for future room-temperature operation of III-nitride single photon emitters. First, the growth technology of positioned single pyramidal InN nanostructures capped by Mg-doped GaN is presented. The optimization of their optical characteristics towards narrowband emission in the telecommunication wavelength range is demonstrated. In addition, a device concept and technology was developed so that the nanostructures became singularly addressable. It was found that the nanopyramids emit in the telecommunication wavelength range if their size is chosen appropriately. A p-GaN contacting layer was successfully produced as a cap to the InN pyramids and the top p-contact was achievable using an intrinsically conductive polymer PEDOT:PSS, allowing a 25% increase in light transmittance compared to standard Ni/Au contact technology. Single nanopyramids were successfully integrated into a high-frequency device layout. These decisive technology steps provide a promising route to electrically driven and room-temperature operating InN based single photon emitters in the telecommunication wavelength range. (paper)

  17. Vertically integrated (Ga, In)N nanostructures for future single photon emitters operating in the telecommunication wavelength range.

    Science.gov (United States)

    Winden, A; Mikulics, M; Grützmacher, D; Hardtdegen, H

    2013-10-11

    Important technological steps are discussed and realized for future room-temperature operation of III-nitride single photon emitters. First, the growth technology of positioned single pyramidal InN nanostructures capped by Mg-doped GaN is presented. The optimization of their optical characteristics towards narrowband emission in the telecommunication wavelength range is demonstrated. In addition, a device concept and technology was developed so that the nanostructures became singularly addressable. It was found that the nanopyramids emit in the telecommunication wavelength range if their size is chosen appropriately. A p-GaN contacting layer was successfully produced as a cap to the InN pyramids and the top p-contact was achievable using an intrinsically conductive polymer PEDOT:PSS, allowing a 25% increase in light transmittance compared to standard Ni/Au contact technology. Single nanopyramids were successfully integrated into a high-frequency device layout. These decisive technology steps provide a promising route to electrically driven and room-temperature operating InN based single photon emitters in the telecommunication wavelength range.

  18. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator.

    Science.gov (United States)

    Tang, Zhenzhou; Pan, Shilong; Yao, Jianping

    2012-03-12

    A high resolution optical vector network analyzer (OVNA) implemented based on a wideband and wavelength-tunable optical single-sideband (OSSB) modulator is proposed and experimentally demonstrated. The OSSB modulation is achieved using a phase modulator and a tunable optical filter with a passband having two steep edges and a flat top. Wideband and wavelength-tunable OSSB modulation is achieved. The incorporation of the OSSB modulator into the OVNA is experimentally evaluated. The measurement of the magnitude and phase response of an ultra-narrow-band fiber Bragg grating (FBG) and that of the stimulated Brillouin scattering (SBS) in a single-mode fiber is performed. A measurement resolution as high as 78 kHz is achieved.

  19. Characterization of single particle aerosols by elastic light scattering at multiple wavelengths

    Science.gov (United States)

    Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.

    2018-03-01

    We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.

  20. Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis

    Directory of Open Access Journals (Sweden)

    M. Collaud Coen

    2004-01-01

    Full Text Available Scattering and absorption coefficients have been measured continuously at several wavelengths since March 2001 at the high altitude site Jungfraujoch (3580ma.s.l.. From these data, the wavelength dependences of the Ångström exponent and particularly of the single scattering albedo are determined. While the exponent of the single scattering albedo usually increases with wavelength, it decreases with wavelength during Saharan dust events (SDE due to the greater size of the mineral aerosol particles and their different chemical composition. This change in the sign of the single scattering exponent turns out to be a sensitive means for detecting Saharan dust events. The occurrence of SDE detected by this new method was confirmed by visual inspection of filter colors and by studying long-range back-trajectories. An examination of SDE over a 22-month period shows that SDE are more frequent during the March-June period as well as during October and November. The trajectory analysis indicated a mean traveling time of 96.5h, with the most important source countries situated in the northern and north-western part of the Saharan desert. Most of the SDE do not lead to a detectable increase of the 48-h total suspended particulate matter (TSP concentration at the Jungfraujoch. During Saharan dust events, the average contribution of this dust to hourly TSP at the Jungfraujoch is 16µg/m3, which corresponds to an annual mean of 0.8µg/m3 or 24% of TSP.

  1. The Single Needle Lockstitch Machine. [Setting Zippers.] Module 8.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on setting zippers, one in a series on the single needle lockstitch sewing machine for student self-study, contains five sections. Each section includes the following parts: an introduction, directions, an objective, learning activities, student information, student self-check, check-out activities, and an instructor's final checklist.…

  2. Development of Visible-Wavelength MALDI Cell Mass Spectrometry for High-Efficiency Single-Cell Analysis.

    Science.gov (United States)

    Xiong, Caiqiao; Zhou, Xiaoyu; He, Qing; Huang, Xi; Wang, Jiyun; Peng, Wen-Ping; Chang, Huan-Cheng; Nie, Zongxiu

    2016-12-06

    Mass is a fundamental physical property of an individual cell, from which is revealed the cell growth, cycle, and activity. Taking advantage of cell mass spectrometry (CMS), accurate mass measurement of a charged single cell has been achieved. However, with the increasing demand for high-efficiency single-cell analysis in biology, the limited throughput and inefficient cell desorption/ionization of the CMS inevitably become important issues. To address the challenge, a state of the art visible-wavelength matrix assisted laser desorption/ionization (MALDI) CMS was developed. The employed transmission mode laser ablation and fast evaporation sample preparation enabled the visible-wavelength MALDI to be soft enough and to generate intact charged cells for mass measurement. By using resorufin as matrix, ten sorts of cells, viz., red blood cells (RBCs), Jurkat (JK), CCRF-CEM, SNU-5, BGC-803, MCF-7, L-O2, 293T, Hep G2, and A549 cells, have been successfully analyzed. It was found that the desorption/ionization efficiency of visible-wavelength MALDI was at least 3-fold higher than that of conventional laser-induced acoustic desorption (LIAD) and relevant to the suspension/adherent property of analyzed cells. Based on the measured mass, different cell types in either the individual or mixed state can be differentiated successfully.

  3. Control over the resonance wavelength of fibre Bragg gratings using resistive coatings based on single-wall carbon nanotubes

    Science.gov (United States)

    Gladush, Yu. G.; Medvedkov, O. I.; Vasil'ev, S. A.; Kopylova, D. S.; Yakovlev, V. Ya.; Nasibulin, A. G.

    2016-10-01

    We demonstrate that a thin resistive coating based on single-wall carbon nanotubes applied to the lateral surface of an optical fibre allows it to be uniformly heated up to a temperature of ∼ 400 \\circ{\\text{C}} without damage to the coating. Using a fibre Bragg grating (FBG) as an example, we assess the efficiency of resonance wavelength thermal tuning and examine frequency characteristics that can be achieved using such coating. In particular, we show that the resonance wavelength of the FBG can be tuned over 3.2 {\\text{nm}} with an efficiency of 8.7 {\\text{nm}} {\\text{W}}-1 and time constant of ∼ 0.4 {\\text{s}}.

  4. Wavelength resolved neutron transmission analysis to identify single crystal particles in historical metallurgy

    Science.gov (United States)

    Barzagli, E.; Grazzi, F.; Salvemini, F.; Scherillo, A.; Sato, H.; Shinohara, T.; Kamiyama, T.; Kiyanagi, Y.; Tremsin, A.; Zoppi, Marco

    2014-07-01

    The phase composition and the microstructure of four ferrous Japanese arrows of the Edo period (17th-19th century) has been determined through two complementary neutron techniques: Position-sensitive wavelength-resolved neutron transmission analysis (PS-WRNTA) and time-of-flight neutron diffraction (ToF-ND). Standard ToF-ND technique has been applied by using the INES diffractometer at the ISIS pulsed neutron source in the UK, while the innovative PS-WRNTA one has been performed at the J-PARC neutron source on the BL-10 NOBORU beam line using the high spatial high time resolution neutron imaging detector. With ToF-ND we were able to reach information about the quantitative distribution of the metal and non-metal phases, the texture level, the strain level and the domain size of each of the samples, which are important parameters to gain knowledge about the technological level of the Japanese weapon. Starting from this base of data, the more complex PS-WRNTA has been applied to the same samples. This experimental technique exploits the presence of the so-called Bragg edges, in the time-of-flight spectrum of neutrons transmitted through crystalline materials, to map the microstructural properties of samples. The two techniques are non-invasive and can be easily applied to archaeometry for an accurate microstructure mapping of metal and ceramic artifacts.

  5. Inexpensive Home-Made Single Wavelength Ellipsometer (λ = 633 nm) for Measuring the Optical Constant of Nanostructured Materials

    Science.gov (United States)

    Maulana, L. Z.; Megasari, K.; Suharyadi, E.; Anugraha, R.; Abraha, K.; Santoso, I.

    2017-05-01

    Inexpensive home-made Single wavelength Ellipsometry with RAE (Rotating Analyser Ellipsometer) configuration has been developed. Spectroscopic ellipsometry (SE) is an optical measurement technique which is based on the measurement of the change of the phase difference (Δ) and the amplitude ratio (ψ) between p and s linear polarized of reflected (or transmitted) light. Our RAE configuration system composed of polarizer, sample, analyzer, detector, and He-Ne laser (λ = 633 nm) that acted as the monochromatic light source. To test the reliability of our SE system, we measure the optical constant of Au bulk and Cr (30 nm thick) film. The optical constant and the thickness were extracted by employing the pseudo-dielectric function and numerical inversion which is based on the secant method, the ψ and Δ of our SE data which is modelled by Fresnel equation. From the extraction using the secant method we obtain the optical constant of the Au bulk sample with n = 0.11 to 0.22 and k = 3.26 to 3.37 which is close to that of using pseudo-dielectric method. We obtain the same result for Cr film with n = 3.66 to 3.81 and k = 5.32 to 5.38 which is close to the result from reference. These results show that our inexpensive home-made Single wavelength Ellipsometry instrument and the extraction method are reliable for determining the optical constant of nanostructured materials.

  6. Error-free 5.1 Tbit/s data generation on a single-wavelength channel using a 1.28 Tbaud symbol rate

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Galili, Michael; Oxenløwe, Leif Katsuo

    2009-01-01

    We demonstrate a record bit rate of 5.1 Tbit/s on a single wavelength using a 1.28 Tbaud OTDM symbol rate, DQPSK data-modulation, and polarisation-multiplexing. Error-free performance (BER......We demonstrate a record bit rate of 5.1 Tbit/s on a single wavelength using a 1.28 Tbaud OTDM symbol rate, DQPSK data-modulation, and polarisation-multiplexing. Error-free performance (BER...

  7. Single Pixel, Single Band Microstrip Antenna for Sub-Millimeter Wavelength Detection Using Transition Edge Superconducting Bolometric Receivers

    Science.gov (United States)

    Hunt, Cynthia; Bock, Jamie J.; Day, Peter K.; Goldin, Alexey; Lange, Andrew E.; Leduc, Henry G.; Vayonakis, Anastasios; Zmuidzinas, Jonas

    We are developing a single pixel antenna coupled bolometric detector as a precursor to the SAMBA (Superconducting Antenna-coupled Multi-frequency Bolometric Array) instrument. Our device consists of a dual slot microstrip antenna coupled to an Al/Ti/Au voltage-biased transition edge superconducting bolometer (TES). The coupling architecture involves propagating the signal along superconducting microstrip lines and terminating the lines at a normal metal resistor on a thermally isolated island. The device, which is inherently polarization sensitive, is optimized to for 100GHz band measurements, ideal for future implementation as an astronomical sub-millimeter instrument. We will present recent tests of these single pixel detectors.

  8. Wavelength-selectable and steady single-mode erbium-doped fiber multiple ring laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2017-11-01

    To achieve a stable and selectable C-band erbium-doped fiber (EDF) laser with single-longitudinal-mode output, a multiple ring architecture is proposed and demonstrated experimentally. In this work, we design a passively quadruple-ring structure in the cavity of an EDF laser to produce a Vernier effect with a mode filter for suppressing the multimode spikes significantly. In addition, the output performance and stability of the proposed EDF ring laser are discussed.

  9. Dynamics of 1.55 μm Wavelength Single-Mode Vertical-Cavity Surface-Emitting Laser Output under External Optical Injection

    Directory of Open Access Journals (Sweden)

    Kyong Hon Kim

    2012-01-01

    Full Text Available We review the temporal dynamics of the laser output spectrum and polarization state of 1.55 μm wavelength single-mode (SM vertical-cavity surface-emitting lasers (VCSELs induced by external optical beam injection. Injection of an external continuous-wave laser beam to a gain-switched SM VCSEL near the resonance wavelength corresponding to its main polarization-mode output was critical for improvement of its laser pulse generation characteristics, such as pulse timing-jitter reduction, linewidth narrowing, pulse amplitude enhancement, and pulse width shortening. Pulse injection of pulse width shorter than the cavity photon lifetime into the SM VCSEL in the orthogonal polarization direction with respect to its main polarization mode caused temporal delay of the polarization recovery after polarization switching (PS, and its delay was found to be the minimum at an optimized bias current. Polarization-mode bistability was observed even in the laser output of an SM VCSEL of a standard circularly cylindrical shape and used for all-optical flip-flop operations with set and reset injection pulses of very low pulse energy of order of the 3.5~4.5 fJ.

  10. Single-molecule spectromicroscopy: a route towards sub-wavelength refractometry.

    Science.gov (United States)

    Anikushina, T A; Gladush, M G; Gorshelev, A A; Naumov, A V

    2015-01-01

    We suggest a novel approach for spatially resolved probing of local fluctuations of the refractive index n in solids by means of single-molecule (SM) spectroscopy. It is based on the dependence T1(n) of the effective radiative lifetime T1 of dye centres in solids on n due to the local-field effects. Detection of SM zero-phonon lines at low temperatures gives the values of the SM natural spectral linewidth (which is inversely proportional to T1) and makes it possible to reveal the distribution of the local n values in solids. Here we demonstrate this possibility on the example of amorphous polyethylene and polycrystalline naphthalene doped with terrylene. In particular, we show that the obtained distributions of lifetime limited spectral linewidths of terrylene molecules embedded into these matrices are due to the spatial fluctuations of the refractive index local values.

  11. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots.

    Science.gov (United States)

    Chen, Ze-Sheng; Ma, Ben; Shang, Xiang-Jun; He, Yu; Zhang, Li-Chun; Ni, Hai-Qiao; Wang, Jin-Liang; Niu, Zhi-Chuan

    2016-12-01

    Single-photon emission in the telecommunication wavelength band is realized with self-assembled strain-coupled bilayer InAs quantum dots (QDs) embedded in a planar microcavity on GaAs substrate. Low-density large QDs in the upper layer active for ~1.3 μm emission are fabricated by precisely controlling the indium deposition amount and applying a gradient indium flux in both QD layers. Time-resolved photoluminescence (PL) intensity suggested that the radiative lifetime of their exciton emission is 1.5~1.6 ns. The second-order correlation function of g (2)(0) < 0.5 which demonstrates a pure single-photon emission.

  12. Superconducting single-photon detectors designed for operation at 1.55-μm telecommunication wavelength

    International Nuclear Information System (INIS)

    Milostnaya, I; Korneev, A; Rubtsova, I; Seleznev, V; Minaeva, O; Chulkova, G; Okunev, O; Voronov, B; Smirnov, K; Gol'tsman, G; Slysz, W; Wegrzecki, M; Guziewicz, M; Bar, J; Gorska, M; Pearlman, A; Kitaygorsky, J; Cross, A; Sobolewski, Roman

    2006-01-01

    We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ∼30-40%, which is limited by the NbN film absorption. For the infrared range (1.55μm), QE is ∼6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ∼20% for 1.55-μm photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 μm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 μm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55-μm wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ∼1% system QE for 1.55 μm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications

  13. Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method.

    Science.gov (United States)

    Feng, Ting; Ding, Dongliang; Yan, Fengping; Zhao, Ziwei; Su, Hongxin; Yao, X Steve

    2016-08-22

    High stability single- and dual-wavelength compound cavity erbium-doped fiber lasers (EDFLs) with ultra-narrow linewidth, high optical signal to noise ratio (OSNR) and widely tunable range are demonstrated. Different from using traditional cascaded Type-1/Type-2 fiber rings as secondary cavities, we nest a Type-1 ring inside a Type-2 ring to form a passive subring cavity to achieve single-longitudinal-mode (SLM) lasing with ultra-narrow linewidth for the first time. We also show that the SLM lasing stability can be further improved by inserting a length of polarization maintaining fiber in the Type-2 ring. Using a uniform fiber Bragg grating (FBG) and two superimposed FBGs as mode restricting elements, respectively, we obtain a single-wavelength EDFL with a linewidth as narrow as 715 Hz and an OSNR as high as 73 dB, and a dual-wavelength EDFL with linewidths less than 1 kHz and OSNRs higher than 68 dB for both lasing wavelengths. Finally, by employing a novel self-designed strain adjustment device capable of applying both the compression and tension forces to the FBGs for wavelength tuning, we achieve the tuning range larger than 10 nm for both of the EDFLs.

  14. Aerosol optical properties at Lampedusa (Central Mediterranean. 2. Determination of single scattering albedo at two wavelengths for different aerosol types

    Directory of Open Access Journals (Sweden)

    D. Meloni

    2006-01-01

    Full Text Available Aerosol optical properties were retrieved from direct and diffuse spectral irradiance measurements made by a multi-filter rotating shadowband radiometer (MFRSR at the island of Lampedusa (35.5° N, 12.6° E, in the Central Mediterranean, in the period July 2001–September 2003. In a companion paper (Pace et al., 2006 the aerosol optical depth (AOD and Ångström exponent were used together with airmass backward trajectories to identify and classify different aerosol types. The MFRSR diffuse-to-direct ratio (DDR at 415.6 nm and 868.7 nm for aerosol classified as 'biomass burning-urban/industrial', originating primarily from the European continent, and desert dust, originating from the Sahara, is used in this study to estimate the aerosol single scattering albedo (SSA. A detailed radiative transfer model is initialised with the measured aerosol optical depth; calculations are performed at the two wavelengths varying the SSA values until the modelled DDR matches the MFRSR observations. Sensitivity studies are performed to estimate how uncertainties on AOD, DDR, asymmetry factor (g, and surface albedo influence the retrieved SSA values. The results show that a 3% variation of AOD or DDR produce a change of about 0.02 in the retrieved SSA value at 415.6 and 868.7 nm; a ±0.06 variation of the asymmetry factor g produces a change of the estimated SSA of <0.04 at 415.6 nm, and <0.06 at 868.7 nm; finally, an increase of the assumed surface albedo of 0.05 causes very small changes (0.01–0.02 in the retrieved SSA. The calculations show that the SSA of desert dust (DD increases with wavelength, from 0.81±0.05 at 415.6 nm to 0.94±0.05 at 868.7 nm; on the contrary, the SSA of urban/industrial (UN aerosols decreases from 0.96±0.02 at 415.6 nm to 0.87±0.07 at 868.7 nm; the SSA of biomass burning (BB particles is 0.82±0.04 at 415.6 nm and 0.80±0.05 at 868.7 nm. Episodes of UN aerosols occur usually in June and July; long lasting BB aerosol episodes

  15. Single-Sex Education in Public School Settings

    Science.gov (United States)

    Crawford-Ferre, Heather Glynn; Wiest, Lynda R.

    2013-01-01

    Although researchers have studied the effectiveness of single-sex education (SSE), the findings have been mixed. This exploratory study reports the perceived goals and effectiveness of single-sex education based on interviews with a small group of educators involved with SSE in various ways. Research participants included a school principal and…

  16. Sulfur single-wavelength anomalous diffraction crystal structure of a pheromone-binding protein from the honeybee Apis mellifera L.

    Science.gov (United States)

    Lartigue, Audrey; Gruez, Arnaud; Briand, Loïc; Blon, Florence; Bézirard, Valérie; Walsh, Martin; Pernollet, Jean-Claude; Tegoni, Mariella; Cambillau, Christian

    2004-02-06

    Pheromone binding proteins (PBPs) are small helical proteins ( approximately 13-17 kDa) present in several sensory organs from moth and other insect species. They are involved in the transport of pheromones from the sensillar lymph to the olfactory receptors. We report here the crystal structure of a PBP (Amel-ASP1) originating from the honey-bee (Apis mellifera) antennae and expressed as recombinant protein in the yeast Pichia pastoris. Crystals of Amel-ASP1 were obtained at pH 5.5 using the nano-drops technique of crystallization with a novel optimization procedure, and the structure was solved initially with the single-wavelength anomalous diffraction technique using sulfur anomalous dispersion. The structure of Amel-ASP1 has been refined at 1.6-A resolution. Its fold is roughly similar to that of other PBP/odorant binding proteins, presenting six helices and three disulfide bridges. Contrary to the PBPs from Bombyx mori (Sandler, B. H., Nikonova, L., Leal, W. S., and Clardy, J. (2000) Chem. Biol. 7, 143-151) and Leucophea maderae (Lartigue, A., Gruez, A., Spinelli, S., Riviere, S., Brossut, R., Tegoni, M., and Cambillau, C. (2003) J. Biol. Chem. 278, 30213-30218), the extended C terminus folds into the protein and forms a wall of the internal hydrophobic cavity. Its backbone groups establish two hydrogen bonds with a serendipitous ligand, n-butyl-benzene-sulfonamide, an additive used in plastics. This mode of binding might, however, mimic that used by one of the pheromonal blend components and illustrates the binding versatility of PBPs.

  17. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    Science.gov (United States)

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  18. The Single Needle Lockstitch Machine. [Setting a Collar.] Module 5.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on sewing collars, one in a series on the single needle lockstitch sewing machine for student self-study, contains three sections. Each section includes the following parts: an introduction, directions, an objective, learning activities, student information, student self-check, check-out activities, and an instructor's final checklist.…

  19. Examining Multiple Variables within a Single ER Setting

    Science.gov (United States)

    Karlin, Omar; Romanko, Rick

    2010-01-01

    This study examined the gains in student affect, vocabulary, and reading fluency for 110 university students in an extensive reading program in Japan. It was important to measure all of these dimensions within a single study and teaching methodology, so gains could be appropriately compared against each other. The adopted teaching methodology was…

  20. Setting up processes and standardization of the equipment in order to optimize analyses of the wavelength dispersion X-ray fluorescence (WDXRF) system

    International Nuclear Information System (INIS)

    Phan Trong Phuc; Luu Anh Tuyen; La Ly Nguyen; Nguyen Thi Ngoc Hue; Pham Thi Hue; Do Duy Khiem

    2015-01-01

    For the purpose of operating and optimizing the analyses of the equipment: wavelength dispersion X-ray fluorescence (WDXRF)- model S8 TIGER from Enhancing Equipment Project (TCTTB) 2011-2012, we set up sampling and analytical process for different sample kinds; we constructed multi-elemental calibration curve for clay sample; we analysed elemental concentrations of 5 clay samples by XRF method and compared the results with the results given by NAA method. Equipment sensitivity was tested by analysing elemental concentrations of 2 Kaolin standard samples. The results show that S8-Tiger equipment is within good condition and is able to analyze powder clay sample exactly. (author)

  1. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography.

    Science.gov (United States)

    Lee, Sang-Won; Song, Hyun-Woo; Jung, Moon-Youn; Kim, Seung-Hwan

    2011-10-24

    In this study, we demonstrated a wide tuning range wavelength-swept laser with a single semiconductor optical amplifier (SOA) at 1020 nm for ultrahigh resolution, Fourier-domain optical coherence tomography (UHR, FD-OCT). The wavelength-swept laser was constructed with an external line-cavity based on a Littman configuration. An optical wavelength selection filter consisted of a grating, a telescope, and a polygon scanner. Before constructing the optical wavelength selection filter, we observed that the optical power, the spectrum bandwidth, and the center wavelength of the SOA were affected by the temperature of the thermoelectric (TE) cooler in the SOA mount as well as the applied current. Therefore, to obtain a wide wavelength tuning range, we adjusted the temperature of the TE cooler in the SOA mount. When the temperature in the TE cooler was 9 °C, our swept source had a tuning range of 142 nm and a full-width at half-maximum (FWHM) of 121.5 nm at 18 kHz. The measured instantaneous spectral bandwidth (δλ) is 0.085 nm, which was measured by an optical spectrum analyzer with a resolution bandwidth of 0.06 nm. This value corresponds to an imaging depth of 3.1 mm in air. Additionally, the averaged optical power of our swept source was 8.2 mW. In UHR, FD/SS-OCT using our swept laser, the measured axial resolution was 4.0 μm in air corresponding to 2.9 μm in tissue (n = 1.35). The sensitivity was measured to be 93.1 dB at a depth of 100 μm. Finally, we obtained retinal images (macular and optic disk) and a corneal image. © 2011 Optical Society of America

  2. Costs Associated With Single-Use and Conventional Sets for Distal Radius Plating.

    Science.gov (United States)

    Fugarino, Bryce; Fox, Mary Patricia; Terhoeve, Cristina; Pappas, Nicholas

    2017-11-01

    Volar plating of distal radius fractures is an increasingly common procedure. Presterilized, single-use volar plate fixation sets have been purported to increase operating room efficiency and decrease cost. The purpose of this study was to compare the actual cost of using a conventional set compared with the projected cost of using its single-use counterpart. We retrospectively analyzed 30 consecutive cases of volar plate fixation in which conventional instrument sets were used. Hardware and processing costs were calculated for the conventional sets and compared with the projected cost of using single-use sets. The mean total cost of hardware and processing for the conventional sets was $2,728, whereas the projected cost for the single-use sets was slightly higher at $2,868. Twenty-three of the 30 cases would have required additional screws not available in the single-use set. The cost of the additional screws needed to supplement the single-use set would have added an average of $282/case. Overall, the combined hardware and processing cost was lower for conventional sets in 25 of the 30 cases. Although the price of the single-use set is less than the mean charge for use of a conventional set, additional screws not available in the single-use set were required in 77% of cases and consequently rendered the conventional set cheaper in 83% of cases. Stocking the single-use sets with additional screws to reflect the most commonly used screw lengths could make these sets more cost effective in the future. Economic and decision analysis IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier.

    Science.gov (United States)

    Lin, Bo; Tjin, Swee Chuan; Zhang, Han; Tang, Dingyuan; Hao, Jianzhong; Dong, Bo; Liang, Sheng

    2010-12-20

    We present a stable and switchable dual-wavelength erbium-doped fiber laser. In the ring cavity, an inverse-Gaussian apodized fiber Bragg grating serves as an ultranarrow dual-wavelength passband filter, a semiconductor optical amplifier biased in the low-gain regime reduces the gain competition of the two wavelengths, and a feedback fiber loop acts as a mode filter to guarantee a stable single-longitudinal-mode operation. Two lasing lines with a wavelength separation of approximately 0.1 nm are obtained experimentally. A microwave signal at 12.51 GHz is demonstrated by beating the dual wavelengths at a photodetector.

  4. 34 CFR 403.82 - In what settings may the Single Parents, Displaced Homemakers, and Single Pregnant Women Program...

    Science.gov (United States)

    2010-07-01

    ... EDUCATION STATE VOCATIONAL AND APPLIED TECHNOLOGY EDUCATION PROGRAM What Kinds of Activities Does the... secondary school settings, including area vocational education schools, and community-based organizations... 34 Education 3 2010-07-01 2010-07-01 false In what settings may the Single Parents, Displaced...

  5. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  6. Toward single-material multilayer interference mid-infrared filters with sub-wavelength structures for cryogenic infrared astronomical missions

    Science.gov (United States)

    Makitsubo, Hironobu; Wada, Takehiko; Mita, Makoto

    2011-03-01

    We are trying to develop high performance mid-infrared (MIR) and far-infrared (FIR) optical filters with mechanical strength and robustness for thermal cycling toward cryogenic infrared astronomical space missions. Multilayer interference filters enable us to design a wide variety of spectral response by controlling refractive index and thickness of each layer, however, in longer MIR and FIR (30-300μm) wavelength regions, there are a few optical materials known to have both good transparency and physical robustness, which makes difficult to realize high performance filters because of limited refractive index values. It is also difficult to deposit thick layers required for MIR/FIR multilayer filters by conventional method. Furthermore, multilayer interference filters are realized by thin film coatings having different coefficients of thermal expansion (CTE), which makes filters fragile for thermal cycling. To clear these problems, we introduce sub-wavelength structures (SWS) for controlling the refractive index. Then, only one material is necessary for fabricating filters, which enables us to fabricate filters with mechanical strength and robustness for thermal cycling. In 30-300μm wavelength regions silicon is very suitable for filter material because not only silicon has little absorption and physical robustness but also SWS are easily fabricated by micro-electro mechanical systems (MEMS) technology. As a first step, we have fabricated anti-reflection SWS layer on silicon wafers to demonstrate the refractive index control by simple SWS (periodic cylindrical holes on a silicon wafer). Comparing measured transmittance with both effective medium approximation (EMA) theory and rigorous coupled wave analysis (RCWA) simulation, we confirm that the refractive control of SWS layer is verified.

  7. Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths.

    Science.gov (United States)

    Georges, Marc P; Vandenrijt, Jean-François; Thizy, Cédric; Alexeenko, Igor; Pedrini, Giancarlo; Vollheim, Birgit; Lopez, Ion; Jorge, Iagoba; Rochet, Jonathan; Osten, Wolfgang

    2014-10-20

    Holographic interferometry in the thermal wavelengths range, combining a CO(2) laser and digital hologram recording with a microbolometer array based camera, allows simultaneously capturing temperature and surface shape information about objects. This is due to the fact that the holograms are affected by the thermal background emitted by objects at room temperature. We explain the setup and the processing of data which allows decoupling the two types of information. This natural data fusion can be advantageously used in a variety of nondestructive testing applications.

  8. Approaching the Hartree-Fock Limit through the Complementary Auxiliary Basis Set Singles Correction and Auxiliary Basis Sets.

    Science.gov (United States)

    Shaw, Robert A; Hill, J Grant

    2017-04-11

    Auxiliary basis sets for use in the resolution of the identity (RI) approximation in explicitly correlated methods are presented for the elements H-Ar. These extend the cc-pVnZ-F12/OptRI (n = D-Q) auxiliary basis sets of Peterson and co-workers by the addition of a small number of s- and p-functions, optimized so as to yield the greatest complementary auxiliary basis set (CABS) singles correction to the Hartree-Fock energy. The new sets, denoted OptRI+, also lead to a reduction in errors due to the RI approximation and hence an improvement in correlation energies. The atomization energies and heats of formation for a test set of small molecules, and spectroscopic constants for 27 diatomics, calculated at the CCSD(T)-F12b level, are shown to have improved error distributions for the new auxiliary basis sets with negligible additional effort. The OptRI+ sets retain all of the desirable properties of the original OptRI, including the production of smooth potential energy surfaces, while maintaining a compact nature.

  9. Single-Step Assembly of Multi-Modal Imaging Nanocarriers: MRI and Long-Wavelength Fluorescence Imaging

    Science.gov (United States)

    Pinkerton, Nathalie M.; Gindy, Marian E.; Calero-DdelC, Victoria L.; Wolfson, Theodore; Pagels, Robert F.; Adler, Derek; Gao, Dayuan; Li, Shike; Wang, Ruobing; Zevon, Margot; Yao, Nan; Pacheco, Carlos; Therien, Michael J.; Rinaldi, Carlos; Sinko, Patrick J.

    2015-01-01

    MRI and NIR-active, multi-modal Composite NanoCarriers (CNCs) are prepared using a simple, one-step process, Flash NanoPrecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 mM-1s-1 for CNCs formulated with 4 to 16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm3 non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye PZn3 into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents. PMID:25925128

  10. Does the "Negro" "Still" Need Separate Schools? Single-Sex Educational Settings as Critical Race Counterspaces

    Science.gov (United States)

    Terry, Clarence L., Sr.; Flennaugh, Terry K.; Blackmon, Samarah M.; Howard, Tyrone C.

    2014-01-01

    This article explores whether contemporary educators should consider single-sex educational settings as viable interventions in educating African American males. Using qualitative data from a 2-year study of single-sex educational spaces in two Los Angeles County high schools, the authors argue that when all-male spaces effectively function as…

  11. A single-electron tunneling reset-set flip-flop

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Bianca M. S. M. de; Guimarães, Janaina G. [Department of Electrical Engineering, University of Brasilia, Campus Universitário Darcy Ribeiro, Asa Norte, P.O. Box 4386, Brasilia-DF, 70919-970 (Brazil)

    2014-05-15

    In this paper, a new Reset-Set flip-flop fully implemented with single-electron devices is proposed. Its topology derived from NAND gates and was validated at room temperature by simulation. Furthermore, a comparison between the proposed single-electron device and MOS devices in terms of power consumption and occupied area is presented.

  12. Single-Subject Designs and Action Research in the K-12 Setting

    Science.gov (United States)

    Forbes, Sean A.; Ross, Margaret E.; Chesser, Svetlana S.

    2011-01-01

    In as much as educational research is concerned with individual student assessment and development, it is surprising that single-subject designs are not more readily utilized in classroom-based action research. The purpose of this article is to emphasize benefits of single-subject research in the K-12 setting, given that teachers teach and assess…

  13. Single mode wavelength control of modulated AlGaAs lasers with external and internal etalon feedback

    Science.gov (United States)

    Maynard, William L.

    1989-01-01

    Single mode lasing without mode hops has been obtained for VSIS and CSP laser diodes with an external etalon attached to the laser's front facet for up to an 8 C range CW and a 4 C range pulsed, with .07 nm/C tuning. Tests of thin tapered-thickness (TTT) laser diodes show CW and pulsed single mode lasing over 10 C and 2 C ranges, respectively, with .08 nm/C tuning. An analysis of the TTT structure reveals the equivalent of an internal etalon. The time-resolved pulsed behavior for both types of lasers show single mode lasing within the proper temperature ranges with minor modes present only early in the optical pulse, if at all. The external etalon produces noticeable interference fringes in the farfield pattern, while those of the TTT lasers are smooth. Ongoing CW lifetest results indicate stability to within one longitudinal mode after a few hundred hours of operation, along with at least several thousand hours lifetime.

  14. Quantitative analysis with advanced compensated polarized light microscopy on wavelength dependence of linear birefringence of single crystals causing arthritis

    Science.gov (United States)

    Takanabe, Akifumi; Tanaka, Masahito; Taniguchi, Atsuo; Yamanaka, Hisashi; Asahi, Toru

    2014-07-01

    To improve our ability to identify single crystals causing arthritis, we have developed a practical measurement system of polarized light microscopy called advanced compensated polarized light microscopy (A-CPLM). The A-CPLM system is constructed by employing a conventional phase retardation plate, an optical fibre and a charge-coupled device spectrometer in a polarized light microscope. We applied the A-CPLM system to measure linear birefringence (LB) in the visible region, which is an optical anisotropic property, for tiny single crystals causing arthritis, i.e. monosodium urate monohydrate (MSUM) and calcium pyrophosphate dihydrate (CPPD). The A-CPLM system performance was evaluated by comparing the obtained experimental data using the A-CPLM system with (i) literature data for a standard sample, MgF2, and (ii) experimental data obtained using an established optical method, high-accuracy universal polarimeter, for the MSUM. The A-CPLM system was found to be applicable for measuring the LB spectra of the single crystals of MSUM and CPPD, which cause arthritis, in the visible regions. We quantitatively reveal the large difference in LB between MSUM and CPPD crystals. These results demonstrate the usefulness of the A-CPLM system for distinguishing the crystals causing arthritis.

  15. Single wavelength light-mediated, synergistic bimodal cancer photoablation and amplified photothermal performance by graphene/gold nanostar/photosensitizer theranostics.

    Science.gov (United States)

    Wu, Chunhui; Li, Dan; Wang, Lianhui; Guan, Xiaotian; Tian, Yuan; Yang, Hong; Li, Shun; Liu, Yiyao

    2017-04-15

    Light-triggered nanotheranostics opens a fascinating but challenging avenue to achieve simultaneous and highly efficient anticancer outcomes for multimodal therapeutic and diagnostic modalities. Herein, a multifunctional phototheranostics based on a photosensitizer-assembled graphene/gold nanostar hybrid (GO/AuNS-PEG) was developed for cancer synergistic photodynamic (PDT) and photothermal therapy (PTT) as well as effective photothermal imaging. The stable and biocompatible GO/AuNS-PEG composite displayed a high photothermal conversion efficiency due to the enhanced optical absorbance of both graphene and gold nanostars in the near-infrared (NIR) range. By tuning the absorption wavelength of GO/AuNS-PEG to that of Chlorin e6 (Ce6), GO/AuNS-PEG/Ce6 completely eliminated the EMT6 xenograft tumors by the tremendous synergistic anticancer efficiency of simultaneous PDT and PTT under a single NIR laser irradiation (660nm) in vivo. The underlying mechanism may be the enhanced cytoplasmic uptake and accumulation of GO/AuNS-PEG/Ce6 and the subsequent photodestruction of the lysosomal membrane and mitochondria. Moreover, GO/AuNS-PEG/Ce6 exhibited negligible side-effects on the body and other organs. These results demonstrate that the graphene/gold nanostar nanoconstruct provides a versatile and reliable integrated platform for the photo-controlled cancer theragnostic applications. This work demonstrated the application of graphene-Au Nanostars hybridized system (denoted as GO/AuNS-PEG) in single wavelength laser induced synergistic photodynamic (PDT) and photothermal therapy (PTT) and effective cancer photothermal/fluorescence multimode imaging. GO/AuNS-PEG showed excellent biocompatibility and high dual-enhanced photothermal efficiency under the near-infrared laser irradiation that was very promise for deep tumor imaging. By combining with the photosensitizer Chlorin e6, both in vitro and in vivo data confirmed the efficient photoablation of the EMT6 tumors through the

  16. 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues.

    Directory of Open Access Journals (Sweden)

    David Baddeley

    Full Text Available BACKGROUND: Optical super-resolution imaging of fluorescently stained biological samples is rapidly becoming an important tool to investigate protein distribution at the molecular scale. It is therefore important to develop practical super-resolution methods that allow capturing the full three-dimensional nature of biological systems and also can visualize multiple protein species in the same sample. METHODOLOGY/PRINCIPAL FINDINGS: We show that the use of a combination of conventional near-infrared dyes, such as Alexa 647, Alexa 680 and Alexa 750, all excited with a 671 nm diode laser, enables 3D multi-colour super-resolution imaging of complex biological samples. Optically thick samples, including human tissue sections, cardiac rat myocytes and densely grown neuronal cultures were imaged with lateral resolutions of ∼15 nm (std. dev. while reducing marker cross-talk to <1%. Using astigmatism an axial resolution of ∼65 nm (std. dev. was routinely achieved. The number of marker species that can be distinguished depends on the mean photon number of single molecule events. With the typical photon yields from Alexa 680 of ∼2000 up to 5 markers may in principle be resolved with <2% crosstalk. CONCLUSIONS/SIGNIFICANCE: Our approach is based entirely on the use of conventional, commercially available markers and requires only a single laser. It provides a very straightforward way to investigate biological samples at the nanometre scale and should help establish practical 4D super-resolution microscopy as a routine research tool in many laboratories.

  17. Multi-wavelength emission from a single InGaN/GaN nanorod analyzed by cathodoluminescence hyperspectral imaging

    KAUST Repository

    Kusch, Gunnar

    2018-01-23

    Multiple luminescence peaks emitted by a single InGaN/GaN quantum-well(QW) nanorod, extending from the blue to the red, were analysed by a combination of electron microscope based imaging techniques. Utilizing the capability of cathodoluminescence hyperspectral imaging it was possible to investigate spatial variations in the luminescence properties on a nanoscale. The high optical quality of a single GaN nanorod was demonstrated, evidenced by a narrow band-edge peak and the absence of any luminescence associated with the yellow defect band. Additionally two spatially confined broad luminescence bands were observed, consisting of multiple peaks ranging from 395 nm to 480 nm and 490 nm to 650 nm. The lower energy band originates from broad c-plane QWs located at the apex of the nanorod and the higher energy band from the semipolar QWs on the pyramidal nanorod tip. Comparing the experimentally observed peak positions with peak positions obtained from plane wave modelling and 3D finite difference time domain(FDTD) modelling shows modulation of the nanorod luminescence by cavity modes. By studying the influence of these modes we demonstrate that this can be exploited as an additional parameter in engineering the emission profile of LEDs.

  18. Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu

    Science.gov (United States)

    Zhou, Zhenzhen; Liu, Guanghui; Ni, Jia; Liu, Wanlu; Liu, Qian

    2018-05-01

    A kind of novel compound Ba1-x(Zr,Ti)Si3O9:xEu simultaneously activated by different-valence Eu2+ and Eu3+ ions has been successfully synthesized. The existence of Ti4+-O2- charge transfer (CT) transitions in Ba1-xZrSi3O9:xEu is proved by the photoluminescence spectra and first principle calculations, and the Ti4+ ions come from the impurities in commercial ZrO2 raw materials. Under the excitation of multi-wavelength ultraviolet radiation (λEX = 392, 260, 180 nm), Ba1-xZrSi3O9:xEu (x = 0.15) can directly emit nearly white light. The coexistence of multiple luminescent centers and the energy transfer among Zr4+-O2- CT state, Ti4+-O2- CT state, Eu2+ and Eu3+ ions play important roles in the white light emission. Ba1-xZrSi3O9:xEu (x = 0.15) has good thermal stability, in particular, the intensity of emission spectrum (λEX = 392 nm) at 150 °C is ∼96% of that at room temperature. In general, the multi-wavelength ultraviolet-excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu possesses a promise for applications in white light emitting diodes (WLEDs), agriculture, medicine and other photonic fields.

  19. A compounded rare-earth iron garnet single crystal exhibiting stable Faraday rotation against wavelength and temperature variation in the 1.55 μm band

    International Nuclear Information System (INIS)

    Xu, Z.C.; Huang, M.; Li Miao

    2006-01-01

    The Bi, Tb and Yb partially substituted iron garnet bulk single crystals of Tb 3- x - y Yb y Bi x Fe 5 O 12 were grown by using Bi 2 O 3 /B 2 O 3 as flux and accelerated crucible rotation technique for single-crystal growth. Faraday rotation (FR) spectra showed that the specific FR of the (Tb 0.91 Yb 1.38 Bi 0.71 )Fe 5 O 12 crystal under magnetic field at saturation was measured to be about -1617 o /cm at λ=1.55 μm, Faraday rotation wavelength coefficient (FWC, 0.009%/nm) in the wavelength range of 1.50-1.62 μm and Faraday rotation temperature coefficient (FTC, 3.92x10 -5 /K) at λ=1.55 μm were even smaller than that of YIG. It is proven that through combining two types of Bi-substituted rare-earth iron garnets with opposite FWC and FTC signs, the compound rare-earth iron garnets with low FWC and FTC may be obtained due to the compensation effect. The saturation magnetization of (Tb 0.91 Yb 1.38 Bi 0.71 ) Fe 5 O 12 crystal is 0.48x10 6 A/M and is also much smaller than that of YIG. We have found empirically that there is a simple relationship between the FR θ f (x) and Bi content x for Tb 3- x - y Yb y Bi x Fe 5 O 12 , which is given by θ f (x)=(-2759x+400) o /cm

  20. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2010-05-01

    Full Text Available The presence of clear coatings on atmospheric black carbon (BC particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate that the enhancement of light absorption (EAbs by atmospheric black carbon (BC when it is coated in mildly absorbing material (CBrown is reduced relative to the enhancement induced by non-absorbing coatings (CClear. This reduction, sensitive to both the CBrown coating thickness and imaginary refractive index (RI, can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of CClear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with CBrown is shown to be important to the calculated single scatter albedo only when models treat BC as large spherical cores (>50 nm. For smaller BC cores (or fractal agglomerates consideration of the BC and CBrown as an external mixture leads to relatively small errors in the particle single scatter albedo of <0.03. It has often been assumed that observation of an absorption Angström exponent (AAE>1 indicates absorption by a non-BC aerosol. Here, it is shown that BC cores coated in CClear can reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to CBrown within ambient particles. However, an AAE<1.6 does not exclude the possibility of CBrown; rather CBrown cannot be confidently assigned unless AAE>1.6. Comparison of these model

  1. Complementary Self-Biased Logics Based on Single-Electron Transistor (SET)/CMOS Hybrid Process

    Science.gov (United States)

    Song, Ki-Whan; Lee, Yong Kyu; Sim, Jae Sung; Kim, Kyung Rok; Lee, Jong Duk; Park, Byung-Gook; You, Young Sub; Park, Joo-On; Jin, You Seung; Kim, Young-Wug

    2005-04-01

    We propose a complementary self-biasing method which enables the single-electron transistor (SET)/complementary metal-oxide semiconductor (CMOS) hybrid multi-valued logics (MVLs) to operate well at high temperatures, where the peak-to-valley current ratio (PVCR) of the Coulomb oscillation markedly decreases. The new architecture is implemented with a few transistors by utilizing the phase control capability of the sidewall depletion gates in dual-gate single-electron transistors (DGSETs). The suggested scheme is evaluated by a SPICE simulation with an analytical DGSET model. Furthermore, we have developed a new process technology for the SET/CMOS hybrid systems. We have confirmed that both of the fabricated devices, namely, SET and CMOS transistors, exhibit the ideal characteristics for the complementary self-biasing scheme: the SET shows clear Coulomb oscillations with a 100 mV period and the CMOS transistors show a high voltage gain.

  2. Physical Activity Levels in Coeducational and Single-Gender High School Physical Education Settings

    Science.gov (United States)

    Hannon, James; Ratliffe, Thomas

    2005-01-01

    The purpose of this study was to investigate the effects of coeducational (coed) and single-gender game-play settings on the activity levels of Caucasian and African American high school physical education students. Students participated in flag football, ultimate Frisbee, and soccer units. Classes were as follows: there were two coed classes, two…

  3. The Single Needle Lockstitch Machine. [Constructing and Setting Sleeves.] Module 7.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on constructing and setting sleeves, one in a series on the single needle lockstitch sewing machine for student self-study, contains two sections. Each section includes the following parts: an introduction, directions, an objective, learning activities, student information, student self-check, check-out activities, and an instructor's…

  4. The Single Needle Lockstitch Machine. [Constructing and Setting Pockets.] Module 9.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on constructing and setting pockets, one in a series on the single needle lockstitch sewing machine for student self-study, contains three sections. Each section includes the following parts: an introduction, directions, an objective, learning activities, student information, student self-check, check-out activities, and an…

  5. The Single Needle Lockstitch Machine. [Making and Setting Cuffs.] Module 6.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on making and setting cuffs, one in a series on the single needle lockstitch sewing machine for student self-study, contains three sections. Each section includes the following parts: an introduction, directions, an objective, learning activities, student information, student self-check, check-out activities, and an instructor's final…

  6. Reducing twin pregnancy rates after IVF--elective single embryo transfer (eSET).

    LENUS (Irish Health Repository)

    Milne, P

    2010-01-01

    Multiple pregnancy is a major complication of IVF and is associated with increased maternal, fetal and neonatal morbidity. Elective single embryo transfer (eSET) during IVF, rather than the more standard transfer of two embryos (double embryo transfer or DET), has been shown to significantly reduce the multiple pregnancy rate associated with IVF, while maintaining acceptable pregnancy rates. Couples undergoing IVF in 2008 who met good prognostic criteria had eSET performed. Pregnancy and twinning rates were compared with those for similar couples in 2007 who had DET. Couples unsuccessful with a fresh cycle of treatment had subsequent frozen embryo transfer cycles with DET. The cumulative pregnancy rate was similar for each group. However there were no multiple pregnancies in the eSET group, compared to 4 twins of 5 pregnancies in the DET group. 96% of eligible couples agreed to eSET. ESET is successful in and acceptable to good prognosis Irish couples undergoing IVF.

  7. Extending the wavelength range of single-emitter diode lasers for medical and sensing applications: 12xx-nm quantum dots, 2000-nm wells, > 5000-nm cascade lasers

    Science.gov (United States)

    Crump, Paul; Patterson, Steve; Elim, Sandrio; Zhang, Shiguo; Bougher, Mike; Patterson, Jason; Das, Suhit; Dong, Weimin; Grimshaw, Mike; Wang, Jun; Wise, Damian; DeFranza, Mark; Bell, Jake; Farmer, Jason; DeVito, Mark; Martinsen, Rob; Kovsh, Alexey; Toor, Fatima; Gmachl, Claire F.

    2007-02-01

    Diode lasers supply high power densities at wavelengths from 635-nm to 2000-nm, with different applications enabled by providing this power at different wavelengths. As the range of available wavelengths broadens, many novel medical and atmospheric applications are enabled. Traditional quantum well lasers provide high performance in the range 635- nm to 1100-nm range for GaAs-based devices and 1280-nm to 2000-nm for InP, leaving a notable gap in the 1100 to 1280-nm range. There are many important medical and sensing applications in this range and quantum dots produced using Stranski-Krastanow self-organized MBE growth on GaAs substrates provide an alternative high performance solution. We present results confirming broad area quantum dot lasers can deliver high optical powers of 16-W per emitter and high power conversion efficiency of 35% in this wavelength range. In addition, there are growing applications for high power sources in wavelengths > 1500-nm. We present a brief review of our current performance status in this wavelength range, both with conventional quantum wells in the 1500-nm to 2500-nm range and MOCVD grown quantum cascade lasers for wavelengths > 4000-nm. At each wavelength, we review the designs that deliver this performance, prospects for increased performance and the potential for further broadening the availability of novel wavelengths for high power applications.

  8. Effects of single vs. multiple-set short-term strength training in elderly women.

    Science.gov (United States)

    Radaelli, Regis; Wilhelm, Eurico N; Botton, Cíntia E; Rech, Anderson; Bottaro, Martim; Brown, Lee E; Pinto, Ronei S

    2014-01-01

    The strength training has been shown to be effective for attenuating the age-related physiological decline. However, the adequate volume of strength training volume adequate to promote improvements, mainly during the initial period of training, still remains controversial. Thus, the purpose of this study was to compare the effects of a short-term strength training program with single or multiple sets in elderly women. Maximal dynamic (1-RM) and isometric strength, muscle activation, muscle thickness (MT), and muscle quality (MQ = 1-RM and MT quadriceps quotient) of the knee extensors were assessed. Subjects were randomly assigned into one of two groups: single set (SS; n = 14) that performed one set per exercise or multiple sets (MS; n = 13) that performed three-sets per exercise, twice weekly for 6 weeks. Following training, there were significant increases (p ≤ 0.05) in knee extension 1-RM (16.1 ± 12 % for SS group and 21.7 ± 7.7 % for MS group), in all MT (p ≤ 0.05; vastus lateralis, rectus femoris, vastus medialis, and vastus intermedius), and in MQ (p ≤ 0.05); 15.0 ± 12.2 % for SS group and 12.6 ± 7.2 % for MS group), with no differences between groups. These results suggest that during the initial stages of strength training, single- and multiple-set training demonstrate similar capacity for increasing dynamic strength, MT, and MQ of the knee extensors in elderly women.

  9. Single- and multiple-set resistance training improves skeletal and respiratory muscle strength in elderly women.

    Science.gov (United States)

    Abrahin, Odilon; Rodrigues, Rejane P; Nascimento, Vanderson C; Da Silva-Grigoletto, Marzo E; Sousa, Evitom C; Marçal, Anderson C

    2014-01-01

    Aging involves a progressive reduction of respiratory muscle strength as well as muscle strength. Compare the effects of resistance training volume on the maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP), functional performance, and muscle strength in elderly women. Thirty elderly women were randomly assigned to a group performing either single sets (1-SET) or three sets (3-SET) of exercises. The sit-to-stand test, MIP, MEP, and muscle strength were assessed before and after 24 training sessions. Progressive resistance training was performed two times per week for a total of 8-12 repetitions, using the main muscle groups of the upper and lower limbs. The main results showed that the participants significantly increased their MEP (Ptraining sessions, muscle strength also significantly increased (Ptraining programs increased MIP, MEP, muscle strength, and sit-to-stand test performance in elderly women after 24 sessions of training. In conclusion, our results suggested that elderly women who are not in the habit of physical activity may start with single-set resistance training programs as a short-term strategy for the maintenance of health.

  10. Analysis of Signal-to-Crosstalk Ratio Variations due to Four-Wave Mixing in Dense Wavelength Division Multiplexing Systems Implemented with Standard Single-Mode Fibers

    Directory of Open Access Journals (Sweden)

    Sait Eser KARLIK

    2016-10-01

    Full Text Available In this paper, variation of the signal-to-crosstalk ratio (SXR due to effects of four-wave mixing (FWM has been analyzed on center channels of 5-, 7-, 9-channel dense wavelength division multiplexing (DWDM systems implemented with G.652 standard single-mode fibers (SSMFs for 12.5 GHz, 25 GHz, 50 GHz and 100 GHz equal channel spacing values. Center channels on such systems are the most severely impacted channels by FWM. Therefore, results obtained are the worst-case values for the DWDM system performance and important for system design. Simulations have been performed for systems using three different commercially available SMFs having different design parameter values for chromatic dispersion, dispersion slope, nonlinearity coefficient and attenuation coefficient which are all in the scope of the G.652 Recommendation of Telecommunication Standardization Sector of International Telecommunication Union (ITU-T for SSMFs. In those simulations, under the impact of FWM, variation of SXR with variations in input powers, channel spacings and link lengths have been observed. Simulation results display the combined effect of the optical fiber and system design parameters on FWM performance of DWDM systems and give important clues for not only long-haul but also access network implementations of DWDM systems.

  11. Generating and executing programs for a floating point single instruction multiple data instruction set architecture

    Science.gov (United States)

    Gschwind, Michael K

    2013-04-16

    Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.

  12. What are task-sets: a single, integrated representation or a collection of multiple control representations?

    Science.gov (United States)

    Rangelov, Dragan; Töllner, Thomas; Müller, Hermann J; Zehetleitner, Michael

    2013-01-01

    Performing two randomly alternating tasks typically results in higher reaction times (RTs) following a task switch, relative to a task repetition. These task switch costs (TSC) reflect processes of switching between control settings for different tasks. The present study investigated whether task sets operate as a single, integrated representation or as an agglomeration of relatively independent components. In a cued task switch paradigm, target detection (present/absent) and discrimination (blue/green/right-/left-tilted) tasks alternated randomly across trials. The target was either a color or an orientation singleton among homogeneous distractors. Across two trials, the task and target-defining dimension repeated or changed randomly. For task switch trials, agglomerated task sets predict a difference between dimension changes and repetitions: joint task and dimension switches require full task set reconfiguration, while dimension repetitions permit re-using some control settings from the previous trial. By contrast, integrated task sets always require full switches, predicting dimension repetition effects (DREs) to be absent across task switches. RT analyses showed significant DREs across task switches as well as repetitions supporting the notion of agglomerated task sets. Additionally, two event-related potentials (ERP) were analyzed: the Posterior-Contralateral-Negativity (PCN) indexing spatial selection dynamics, and the Sustained-Posterior-Contralateral-Negativity (SPCN) indexing post-selective perceptual/semantic analysis. Significant DREs across task switches were observed for both the PCN and SPCN components. Together, DREs across task switches for RTs and two functionally distinct ERP components suggest that re-using control settings across different tasks is possible. The results thus support the "agglomerated-task-set" hypothesis, and are inconsistent with "integrated task sets."

  13. Setting Single Photon Detectors for Use with an Entangled Photon Distribution System

    Science.gov (United States)

    2017-12-01

    System by Daniel E Jones, Drew Weninger, and Michael Brodsky Approved for public release; distribution is unlimited...Laboratory Setting Single Photon Detectors for Use with an Entangled Photon Distribution System by Daniel E Jones and Michael Brodsky Computational...Use with an Entangled Photon Distribution System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Daniel E Jones

  14. Tunable All-Optical Wavelength Conversion Based on Cascaded SHG/DFG in a Ti:PPLN Waveguide Using a Single CW Control Laser

    DEFF Research Database (Denmark)

    Hu, Hao; Nouroozi, Rahman; Wang, Wenrui

    2012-01-01

    Tunable all-optical wavelength conversion (AOWC) of a 40-Gb/s RZ-OOK data signal based on cascaded second-harmonic generation (SHG) and difference-frequency generation (DFG) in a Ti:PPLN waveguide is demonstrated. Error-free performances with negligible power penalty are achieved for the wavelength...

  15. Correction for the Hematocrit Bias in Dried Blood Spot Analysis Using a Nondestructive, Single-Wavelength Reflectance-Based Hematocrit Prediction Method.

    Science.gov (United States)

    Capiau, Sara; Wilk, Leah S; De Kesel, Pieter M M; Aalders, Maurice C G; Stove, Christophe P

    2018-02-06

    The hematocrit (Hct) effect is one of the most important hurdles currently preventing more widespread implementation of quantitative dried blood spot (DBS) analysis in a routine context. Indeed, the Hct may affect both the accuracy of DBS methods as well as the interpretation of DBS-based results. We previously developed a method to determine the Hct of a DBS based on its hemoglobin content using noncontact diffuse reflectance spectroscopy. Despite the ease with which the analysis can be performed (i.e., mere scanning of the DBS) and the good results that were obtained, the method did require a complicated algorithm to derive the total hemoglobin content from the DBS's reflectance spectrum. As the total hemoglobin was calculated as the sum of oxyhemoglobin, methemoglobin, and hemichrome, the three main hemoglobin derivatives formed in DBS upon aging, the reflectance spectrum needed to be unmixed to determine the quantity of each of these derivatives. We now simplified the method by only using the reflectance at a single wavelength, located at a quasi-isosbestic point in the reflectance curve. At this wavelength, assuming 1-to-1 stoichiometry of the aging reaction, the reflectance is insensitive to the hemoglobin degradation and only scales with the total amount of hemoglobin and, hence, the Hct. This simplified method was successfully validated. At each quality control level as well as at the limits of quantitation (i.e., 0.20 and 0.67) bias, intra- and interday imprecision were within 10%. Method reproducibility was excellent based on incurred sample reanalysis and surpassed the reproducibility of the original method. Furthermore, the influence of the volume spotted, the measurement location within the spot, as well as storage time and temperature were evaluated, showing no relevant impact of these parameters. Application to 233 patient samples revealed a good correlation between the Hct determined on whole blood and the predicted Hct determined on venous DBS. The

  16. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito [Graduate School of Engineering, Tohoku University, 6-6-05 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579 (Japan)

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  17. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    International Nuclear Information System (INIS)

    Kita, Tomohiro; Tang, Rui; Yamada, Hirohito

    2015-01-01

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range

  18. What are task-sets: a single, integrated representation or a collection of multiple control representations?

    Directory of Open Access Journals (Sweden)

    Dragan eRangelov

    2013-09-01

    Full Text Available Performing two randomly alternating tasks typically results in higher reaction times (RTs following a task switch, relative to a task repetition. These task switch costs (TSC reflect processes of switching between control settings for different tasks. The present study investigated whether task sets operate as a single, integrated representation or as an agglomeration of relatively independent components. In a cued task switch paradigm, target detection (present/absent and discrimination (blue/green/right-/left-tilted tasks alternated randomly across trials. The target was either a color or an orientation singleton among homogeneous distractors. Across two trials, the task and target-defining dimension repeated or changed randomly. For task switch trials, agglomerated task sets predict a difference between dimension changes and repetitions: joint task and dimension switches require full task set reconfiguration, while dimension repetitions permit re-using some control settings from the previous trial. By contrast, integrated task sets always require full switches, predicting dimension repetition effects (DREs to be absent across task switches. RT analyses showed significant DREs across task switches as well as repetitions supporting the notion of agglomerated task sets. Additionally, two event-related potentials (ERP were analyzed: the Posterior-Contralateral-Negativity (PCN indexing spatial selection dynamics, and the Sustained-Posterior-Contralateral-Negativity (SPCN indexing post-selective perceptual/semantic analysis. Significant DREs across task switches were observed for both the PCN and SPCN components. Together, DREs across task switches for RTs and two functionally distinct ERP components suggest that re-using control settings across different tasks is possible. The results thus support the ‘agglomerated-task-set’ hypothesis, and are inconsistent with ‘integrated task sets’.

  19. A method for joint routing, wavelength dimensioning and fault tolerance for any set of simultaneous failures on dynamic WDM optical networks

    Science.gov (United States)

    Jara, Nicolás; Vallejos, Reinaldo; Rubino, Gerardo

    2017-11-01

    The design of optical networks decomposes into different tasks, where the engineers must basically organize the way the main system's resources are used, minimizing the design and operation costs and respecting critical performance constraints. More specifically, network operators face the challenge of solving routing and wavelength dimensioning problems while aiming to simultaneously minimize the network cost and to ensure that the network performance meets the level established in the Service Level Agreement (SLA). We call this the Routing and Wavelength Dimensioning (R&WD) problem. Another important problem to be solved is how to deal with failures of links when the network is operating. When at least one link fails, a high rate of data loss may occur. To avoid it, the network must be designed in such a manner that upon one or multiple failures, the affected connections can still communicate using alternative routes, a mechanism known as Fault Tolerance (FT). When the mechanism allows to deal with an arbitrary number of faults, we speak about Multiple Fault Tolerance (MFT). The different tasks before mentioned are usually solved separately, or in some cases by pairs, leading to solutions that are not necessarily close to optimal ones. This paper proposes a novel method to simultaneously solve all of them, that is, the Routing, the Wavelength Dimensioning, and the Multiple Fault Tolerance problems. The method allows to obtain: a) all the primary routes by which each connection normally transmits its information, b) the additional routes, called secondary routes, used to keep each user connected in cases where one or more simultaneous failures occur, and c) the number of wavelengths available at each link of the network, calculated such that the blocking probability of each connection is lower than a pre-determined threshold (which is a network design parameter), despite the occurrence of simultaneous link failures. The solution obtained by the new algorithm is

  20. Use of analyte-modulated modal power distribution in multimode optical fibers for simultaneous single-wavelength evanescent-wave refractometry and spectrometry.

    Science.gov (United States)

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1999-11-01

    A new method is described for the simultaneous determination of absorbance and refractive index of a sample medium. The method is based on measurement of the analyte-modulated modal power distribution (MPD) in a multimode waveguide. In turn, the MPD is quantified by the far-field spatial pattern and intensity of light, i.e., the Fraunhofer diffraction pattern (registered on a CCD camera), that emerges from a multimode optical fiber. Operationally, light that is sent down the fiber interacts with the surrounding analyte-containing medium by means of the evanescent wave at the fiber boundary. The light flux in the propagating beam and the internal reflection angles within the fiber are both affected by optical absorption connected with the analyte and by the refractive index of the analyte-containing medium. In turn, these angles are reflected in the angular divergence of the beam as it leaves the fiber. As a result, the Fraunhofer diffraction pattern of that beam yields two parameters that can, together, be used to deduce refractive index and absorbance. This MPD based detection offers important advantages over traditional evanescent-wave detection strategies which rely on recording only the total transmitted optical power or its lost fraction. First, simultaneous determination of sample refractive index and absorbance is possible at a single probe wavelength. Second, the sensitivity of refractometric and absorption measurements can be controlled simply, either by adjusting the distance between the end face of the fiber and the CCD detector or by monitoring selected modal groups at the fiber output. As a demonstration of these capabilities, several weakly absorbing solutions were examined, with refractive indices in the range from 1.3330 to 1.4553 and with absorption coefficients in the range 0-16 cm-1. The new detection strategy is likely to be important in applications in which sample coloration varies and when it is necessary to compensate for variations in the

  1. An extended set-value observer for position estimation using single range measurements

    DEFF Research Database (Denmark)

    Marcal, Jose; Jouffroy, Jerome; Fossen, Thor I.

    the observability of the system is briefly discussed and an extended set-valued observer is presented, with some discussion about the effect of the measurements noise on the final solution. This observer estimates bounds in the errors assuming that the exogenous signals are bounded, providing a safe region......The ability of estimating the position of an underwater vehicle from single range measurements is important in applications where one transducer marks an important geographical point, when there is a limitation in the size or cost of the vehicle, or when there is a failure in a system...

  2. Generation of covariance data among values from a single set of experiments

    International Nuclear Information System (INIS)

    Smith, D.L.

    1992-01-01

    Modern nuclear data evaluation methods demand detailed uncertainty information for all input results to be considered. It can be shown from basic statistical principles that provision of a covariance matrix for a set of data provides the necessary information for its proper consideration in the context of other included experimental data and/or a priori representations of the physical parameters in question. This paper examines how an experimenter should go about preparing the covariance matrix for any single experimental data set he intends to report. The process involves detailed examination of the experimental procedures, identification of all error sources (both random and systematic); and consideration of any internal discrepancies. Some specific examples are given to illustrate the methods and principles involved

  3. Single port laparoscopic colorectal surgery in debilitated patients and in the urgent setting.

    LENUS (Irish Health Repository)

    Moftah, M

    2012-09-01

    Single port laparoscopy is a relatively new niche in the expanding spectrum of minimal access surgery for colorectal disease. To date the published experience has predominantly focused on planned operations for neoplasia in the elective setting. It seems probable however that the benefits of minimal abdominal wounding will be greatest among those patients with the highest risk of impaired wound healing. Combining this with the impression of improved cosmesis suggests that (the mostly young) patients with inflammatory bowel disease needing urgent operation are the most likely to appreciate and benefit from the extraoperative effort. The extension of single port surgery to the acute setting and for debilitated individuals is therefore a likely next step advance in broadening the category of patients for whom it represents a real benefit and ultimately aid in focusing by selection the subgroups for whom this technique is best suited and most appropriate. We describe here our approach (including routine use of a surgical glove port) to patients presenting for urgent colorectal operation for benign disease. As provision of specialized approaches regardless of timing or mode of presentation is a defining component of any specialty service, this concept will soon be more fully elucidated and established.

  4. Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples

    Science.gov (United States)

    Nostell, Per; Roos, Arne; Rönnow, Daniel

    1999-05-01

    A multipurpose instrument for the measurement of reflectance and transmittance versus angle of incidence for both specular and diffuse samples in the solar wavelength range has been constructed and evaluated. The instrument operates in the single-beam mode and uses a common light source for three experimental setups. Two integrating spheres, 20 cm in diameter, are used for diffuse transmittance and reflectance measurements. The transmittance sphere can be turned around an axis through the sample to vary the angle of incidence. The reflectance sphere uses a center mounted sample and a special feature is the position of the detector, which is mounted on the sample holder at the center of the sphere. This way the detector always sees the same part of the sphere wall and no light can reach the detector directly from the sample. The third setup is an absolute instrument for specular samples. It uses a small averaging sphere as a detector. The detector is mounted on an arm which rotates around the center of the sample, and it can thus pick up both the reflected and transmitted beams including all multiply reflected components. The averaging sphere detector is insensitive to small side shifts of the detected beams and no multiple reflections between detector and optical system occur. In this report a number of calibration procedures are presented for the three experimental setups and models for the calculation of correct transmittance and reflectance values from measured data are presented. It is shown that for integrating sphere measurements, the geometry of the sphere and the diffusivity of the sample as well as the sphere wall reflectance and port losses are important factors that influence the result. For the center mounted configuration these factors are particularly important and special emphasis is given to the evaluation of the reflectance sphere model. All three instrument setups are calibrated using certified reference materials and nonscattering mirrors and

  5. Use of first-order diffraction wavelengths corresponding to dual-grating periodicities in a single fibre Bragg grating for simultaneous temperature and strain measurement

    International Nuclear Information System (INIS)

    Yam, Sui P; Brodzeli, Zourab; Rollinson, Claire M; Baxter, Greg W; Collins, Stephen F; Wade, Scott A

    2009-01-01

    A fibre Bragg grating (FBG) sensor, fabricated using a phase mask with 536 nm uniform pitch, for simultaneous temperature and strain measurement is presented. Two peaks/dips occur, at 785 and 1552 nm, due to reflection/transmission at the Bragg wavelength and at twice the Bragg wavelength, and arising primarily from FBG periodicities associated with half the phase mask periodicity and the phase mask periodicity, respectively. This grating was simple to fabricate and by having greater reflectivity at 785 nm, compared with 1552 nm, it is better suited for long-distance operation compared with similar schemes where the greater fibre attenuation at 785 nm is a significant limitation

  6. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument

    Science.gov (United States)

    Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold

    2008-01-01

    A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...

  7. Effects of single- vs. multiple-set resistance training on maximum strength and body composition in trained postmenopausal women.

    Science.gov (United States)

    Kemmler, Wolfgang K; Lauber, Dirk; Engelke, Klaus; Weineck, Juergen

    2004-11-01

    The purpose of this study was to examine the effect of a single- vs. a multiple-set resistance training protocol in well-trained early postmenopausal women. Subjects (N = 71) were randomly assigned to begin either with 12 weeks of the single-set or 12 weeks of the multiple-set protocol. After another 5 weeks of regenerational resistance training, the subgroup performing the single-set protocol during the first 12 weeks crossed over to the 12-week multiple-set protocol and vice versa. Neither exercise type nor exercise intensity, degree of fatigue, rest periods, speed of movement, training sessions per week, compliance and attendance, or periodization strategy differed between exercise protocols. Body mass, body composition, and 1 repetition maximum (1RM) values for leg press, bench press, rowing, and leg adduction were measured at baseline and after each period. Multiple-set training resulted in significant increases (3.5-5.5%) for all 4 strength measurements, whereas single-set training resulted in significant decreases (-1.1 to -2.0%). Body mass and body composition did not change during the study. The results show that, in pretrained subjects, multiple-set protocols are superior to single-set protocols in increasing maximum strength.

  8. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  9. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers....

  10. Hormonal responses of multiset versus single-set heavy-resistance exercise protocols.

    Science.gov (United States)

    Gotshalk, L A; Loebel, C C; Nindl, B C; Putukian, M; Sebastianelli, W J; Newton, R U; Häkkinen, K; Kraemer, W J

    1997-06-01

    The purpose of this study was to compare serum growth hormone (GH), testosterone (T), cortisol (C), and whole blood lactate (L) responses to single set (1S) versus multiple set (3S) heavy-resistance exercise protocols. Eight recreationally weight-trained men completed two identical resistance exercise workouts (1S vs. 3S). Blood was obtained preexercise (PRE), immediately postexercise (OP), and 5 min (5P), 15 min (15P), 30 min (30P) and 60 min (60P) postexercise and was analyzed for GH, T, C, and L levels. For 1S and 3S, GH, L, and T significantly increased from PRE to OP and remained significantly elevated to 60P, except for 1S. For GH, T, and L, 3S showed significantly greater increases compared to 1S. For C, 3S and 1S were increased significantly from resting at OP, 5P, and 15P; 3S increased compared to 1S at 5P, 15P and 30P. Higher volumes of total work produce significantly greater increases in circulating anabolic hormones during the recovery phase following exercise.

  11. A hybrid approach of gene sets and single genes for the prediction of survival risks with gene expression data.

    Science.gov (United States)

    Seok, Junhee; Davis, Ronald W; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn't been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge.

  12. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    Summary form only given. Wavelength converters will be essential devices to exploit the full potential of the wavelength dimension in wavelength-division multiplexed (WDM) networks. Based on experiments, we discuss different candidates for efficient wavelength converters with attention to expected...

  13. Single-reviewer electronic phenotyping validation in operational settings: Comparison of strategies and recommendations.

    Science.gov (United States)

    Kukhareva, Polina; Staes, Catherine; Noonan, Kevin W; Mueller, Heather L; Warner, Phillip; Shields, David E; Weeks, Howard; Kawamoto, Kensaku

    2017-02-01

    Develop evidence-based recommendations for single-reviewer validation of electronic phenotyping results in operational settings. We conducted a randomized controlled study to evaluate whether electronic phenotyping results should be used to support manual chart review during single-reviewer electronic phenotyping validation (N=3104). We evaluated the accuracy, duration and cost of manual chart review with and without the availability of electronic phenotyping results, including relevant patient-specific details. The cost of identification of an erroneous electronic phenotyping result was calculated based on the personnel time required for the initial chart review and subsequent adjudication of discrepancies between manual chart review results and electronic phenotype determinations. Providing electronic phenotyping results (vs not providing those results) was associated with improved overall accuracy of manual chart review (98.90% vs 92.46%, preview duration per test case (62.43 vs 76.78s, preview and electronic phenotyping results was higher when the phenotyping results were provided (Cohen's kappa 0.98 vs 0.88, previewer chart review of electronic phenotyping can be conducted more accurately, quickly, and at lower cost when supported by electronic phenotyping results. However, human reviewers tend to agree with electronic phenotyping results even when those results are wrong. Thus, the value of providing electronic phenotyping results depends on the accuracy of the underlying electronic phenotyping algorithm. We recommend using a mix of phenotyping validation strategies, with the balance of strategies based on the anticipated electronic phenotyping error rate, the tolerance for missed electronic phenotyping errors, as well as the expertise, cost, and availability of personnel involved in chart review and discrepancy adjudication. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. An Interactive Microcomputer Program for Teaching the Impacts of Alternative Policy Sets in the Market for a Single Commodity.

    Science.gov (United States)

    Li, Elton; Stoecker, Arthur

    1995-01-01

    Describes a computer software program where students define alternative policy sets and compare their effects on the welfare of consumers, producers, and the public sector. Policy sets may be a single tax or quota or a mix of taxes, subsidies, and/or price supports implemented in the marketing chain. (MJP)

  15. Development of laser diode pumped solid state green laser for the pumping of wavelength tunable laser. 1. Development of single-pass Nd:YAG MOPA system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yoichiro; Kato, Masaaki; Oba, Masaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-06-01

    For the pumping of wavelength tunable laser, a high repetition rate, high average power solid state laser pumped by a high duty laser diode (LD) array has been developed. The solid state laser using Nd:YAG zigzag slab crystals consists of an oscillator and an amplifier. Using this Nd:YAG MOPA system, the maximum fundamental average power of 33 W is obtained. The wavefront distortion of amplified laser beam is within 0.3 wavelength. M{sup 2} measured is about 1.5 which means the laser beam is near diffraction limited. By using nonlinear crystals, fundamental laser radiation is converted to second, third and fourth harmonics. The average power is 15.5 W at 532 nm, 1.2 W at 355 nm and 2.3 W at 266 nm. The beam quality of the second harmonic is good. With the measurement of the laser parameters, it is confirmed that the high repetition rate, high power and high quality second harmonic can be produced by the LD pumped Nd:YAG laser MOPA system. (author)

  16. Cognitive behavioral therapy for depression among adults in Japanese clinical settings: a single-group study

    Directory of Open Access Journals (Sweden)

    Kikuchi Toshiaki

    2010-06-01

    Full Text Available Abstract Background Empirical support for cognitive behavioral therapy (CBT for treating Japanese patients with major depression is lacking, therefore, a feasibility study of CBT for depression in Japanese clinical settings is urgently required. Findings A culturally adapted, 16-week manualized individual CBT program for Japanese patients with major depressive disorder was developed. A total of 27 patients with major depression were enrolled in a single-group study with the purpose of testing the feasibility of the program. Twenty six patients (96% completed the study. The mean total score on the Beck Depression Inventory-II (BDI-II for all patients (Intention-to-treat sample improved from 32.6 to 11.7, with a mean change of 20.8 (95% confidence interval: 17.0 to 24.8. Within-group effect size at the endpoint assessment was 2.64 (Cohen's d. Twenty-one patients (77.7% showed treatment response and 17 patients (63.0% achieved remission at the end of the program. Significant improvement was observed in measurement of subjective and objective depression severity (assessed by BDI-II, Quick Inventory of Depressive Symptomatology-Self Rated, and Hamilton Depression Rating Scale, dysfunctional attitude (assessed by Dysfunctional Attitude Scale, global functioning (assessed by Global Assessment of Functioning of DSM-IV and subjective well-being (assessed by WHO Subjective Well-being Inventory (all p values Conclusions Our manualized treatment comprised of a 16-week individual CBT program for major depression appears feasible and may achieve favorable treatment outcomes among Japanese patients with major depression. Further research involving a larger sample in a randomized, controlled trial design is warranted. Trial registration UMIN-CTR UMIN000002542.

  17. Cognitive behavioral therapy for depression among adults in Japanese clinical settings: a single-group study

    Science.gov (United States)

    2010-01-01

    Background Empirical support for cognitive behavioral therapy (CBT) for treating Japanese patients with major depression is lacking, therefore, a feasibility study of CBT for depression in Japanese clinical settings is urgently required. Findings A culturally adapted, 16-week manualized individual CBT program for Japanese patients with major depressive disorder was developed. A total of 27 patients with major depression were enrolled in a single-group study with the purpose of testing the feasibility of the program. Twenty six patients (96%) completed the study. The mean total score on the Beck Depression Inventory-II (BDI-II) for all patients (Intention-to-treat sample) improved from 32.6 to 11.7, with a mean change of 20.8 (95% confidence interval: 17.0 to 24.8). Within-group effect size at the endpoint assessment was 2.64 (Cohen's d). Twenty-one patients (77.7%) showed treatment response and 17 patients (63.0%) achieved remission at the end of the program. Significant improvement was observed in measurement of subjective and objective depression severity (assessed by BDI-II, Quick Inventory of Depressive Symptomatology-Self Rated, and Hamilton Depression Rating Scale), dysfunctional attitude (assessed by Dysfunctional Attitude Scale), global functioning (assessed by Global Assessment of Functioning of DSM-IV) and subjective well-being (assessed by WHO Subjective Well-being Inventory) (all p values < 0.001). Conclusions Our manualized treatment comprised of a 16-week individual CBT program for major depression appears feasible and may achieve favorable treatment outcomes among Japanese patients with major depression. Further research involving a larger sample in a randomized, controlled trial design is warranted. Trial registration UMIN-CTR UMIN000002542. PMID:20529252

  18. Dual-polarization wavelength conversion of 16-QAM signals in a single silicon waveguide with a lateral p-i-n diode [Invited

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Gajda, Andrzej; Liebig, Erik

    2018-01-01

    with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence (≤0.5 dB) and the high conversion efficiency (CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due......A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation (QAM) signals at 16 GBd is demonstrated...... to the reverse-biased p-i-n diode are key in ensuring high CE levels....

  19. AN ANALYSIS OF TEN YEARS OF THE FOUR GRAND SLAM MEN'S SINGLES DATA FOR LACK OF INDEPENDENCE OF SET OUTCOMES

    Directory of Open Access Journals (Sweden)

    Denny Meyer

    2006-12-01

    Full Text Available The objective of this paper is to use data from the highest level in men's tennis to assess whether there is any evidence to reject the hypothesis that the two players in a match have a constant probability of winning each set in the match. The data consists of all 4883 matches of grand slam men's singles over a 10 year period from 1995 to 2004. Each match is categorised by its sequence of win (W or loss (L (in set 1, set 2, set 3,... to the eventual winner. Thus, there are several categories of matches from WWW to LLWWW. The methodology involves fitting several probabilistic models to the frequencies of the above ten categories. One four-set category is observed to occur significantly more often than the other two. Correspondingly, a couple of the five-set categories occur more frequently than the others. This pattern is consistent when the data is split into two five-year subsets. The data provides significant statistical evidence that the probability of winning a set within a match varies from set to set. The data supports the conclusion that, at the highest level of men's singles tennis, the better player (not necessarily the winner lifts his play in certain situations at least some of the time

  20. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode.

    Science.gov (United States)

    Namekata, Naoto; Adachi, Shunsuke; Inoue, Shuichiro

    2009-04-13

    We report a telecom-band single-photon detector for gigahertz clocked quantum key distribution systems. The single-photon detector is based on a sinusoidally gated InGaAs/InP avalanche photodiode. The gate repetition frequency of the single-photon detector reached 1.5 GHz. A quantum efficiency of 10.8 % at 1550 nm was obtained with a dark count probability per gate of 6.3 x 10(-7) and an afterpulsing probability of 2.8 %. Moreover, the maximum detection rate of the detector is 20 MHz.

  1. Complex Dynamic Scene Perception: Effects of Attentional Set on Perceiving Single and Multiple Event Types

    Science.gov (United States)

    Sanocki, Thomas; Sulman, Noah

    2013-01-01

    Three experiments measured the efficiency of monitoring complex scenes composed of changing objects, or events. All events lasted about 4 s, but in a given block of trials, could be of a single type (single task) or of multiple types (multitask, with a total of four event types). Overall accuracy of detecting target events amid distractors was…

  2. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  3. Setting Passing Scores on Passage-Based Tests: A Comparison of Traditional and Single-Passage Bookmark Methods

    Science.gov (United States)

    Skaggs, Gary; Hein, Serge F.; Awuor, Risper

    2007-01-01

    In this study, a variation of the bookmark standard setting procedure for passage-based tests is proposed in which separate ordered item booklets are created for the items associated with each passage. This variation is compared to the traditional bookmark procedure for a fifth-grade reading test. The results showed that the single-passage…

  4. All-optical bit-pattern recognition in data segments using logic AND and XOR in a single all-active MZI wavelength converter

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Fjelde, T; Buron, J D

    2002-01-01

    A novel and cost-effective scheme far comparing a segment of an incoming data stream to an expected sequence, using a single, all- active MZI is proposed. The comparator comprises the logic AND and XOR functions, and is demonstrated at 10 Gb/s...

  5. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    Science.gov (United States)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  6. Tunable and non-reciprocal dual-wavelength SOA-fiber ring laser

    Science.gov (United States)

    Sabry, Yasser M.; Khalil, Kamal; Khalil, Diaa

    2017-02-01

    Dual-wavelength fiber lasers provide a low cost and simple method for the optical generation of microwave and THz radiation over the electrical techniques. The main reported technique for this purpose is based on the use of FBGs with two different and close wavelengths allowing these two wavelengths only to oscillate within a laser cavity comprising EDFA or SOA gain medium, where the latter provides much less homogeneous line-broadening and improved stability. Non-conventional FBGs and filtering mechanisms were reported all based on unidirectional configuration, where the two wavelengths propagate in the same direction in the ring laser. In this work, we report a tunable dual-wavelength ring laser including non-reciprocal circulators connected back to back providing uncommon path and allowing for having each wavelength rotating in a different direction in the ring. This technique provides the flexibility of controlling each of the wavelengths separately in terms of tunability, polarization and losses. Two tunable Fabry-Perot filters are inserted in the uncommon path and the wavelength of the CW and the CCW waves are controlled independently. Polarization controllers are used in the ring to achieve better stability and achieve single longitudinal mode of operation. For a given settings of the filters, the wavelength of the CW wave is 1485.2 nm while the CCW wave wavelength is 1488.5 nm. The generation of tunable dual wavelength laser is demonstrated by tuning of either of the Fabry-Perot filters. For instance, the CCW wave was tuned from 1532.2 nm to 1534.1 nm while holding the CW at 1535.2 nm. The results demonstrate the generation of tunable dual-wavelength laser output in the proposed nonreciprocal ring, which allows for tunable THz generation.

  7. Single- and multiple-set resistance training improves skeletal and respiratory muscle strength in elderly women

    Directory of Open Access Journals (Sweden)

    Abrahin O

    2014-10-01

    Full Text Available Odilon Abrahin,1–3 Rejane P Rodrigues,1–3 Vanderson C Nascimento,3 Marzo E Da Silva-Grigoletto,1,4 Evitom C Sousa,3 Anderson C Marçal1,2 1Department of Physical Education, Federal University of Sergipe, Sergipe, Brazil; 2Center of Research in Intracellular Signaling, Department of Morphology, Federal University of Sergipe, Sergipe, Brazil; 3Laboratory of Resistance Exercise and Health, Sports Department, University of Pará State, Belem, Brazil; 4Scientific Sport, Sergipe, Brazil Introduction: Aging involves a progressive reduction of respiratory muscle strength as well as muscle strength. Purpose: Compare the effects of resistance training volume on the maximum inspiratory pressure (MIP, maximum expiratory pressure (MEP, functional performance, and muscle strength in elderly women. Methods: Thirty elderly women were randomly assigned to a group performing either single sets (1-SET or three sets (3-SET of exercises. The sit-to-stand test, MIP, MEP, and muscle strength were assessed before and after 24 training sessions. Progressive resistance training was performed two times per week for a total of 8–12 repetitions, using the main muscle groups of the upper and lower limbs. Results: The main results showed that the participants significantly increased their MEP (P<0.05; 1-SET: 34.6%; 3-SET: 35.8% and MIP (P<0.05; 1-SET: 13.7%; 3-SET: 11.2%. Both groups also improved in the sit-to-stand test (P<0.05; 1-SET: 10.6%; 3-SET: 17.1%. After 24 training sessions, muscle strength also significantly increased (P<0.0001; 40%–80% in both groups. An intergroup comparison did not show any statistically significant differences between the groups in any of the parameters analyzed. Conclusion: Single- and multiple-set resistance training programs increased MIP, MEP, muscle strength, and sit-to-stand test performance in elderly women after 24 sessions of training. In conclusion, our results suggested that elderly women who are not in the habit of

  8. Gene Set Analyses of Genome-Wide Association Studies on 49 Quantitative Traits Measured in a Single Genetic Epidemiology Dataset

    Directory of Open Access Journals (Sweden)

    Jihye Kim

    2013-09-01

    Full Text Available Gene set analysis is a powerful tool for interpreting a genome-wide association study result and is gaining popularity these days. Comparison of the gene sets obtained for a variety of traits measured from a single genetic epidemiology dataset may give insights into the biological mechanisms underlying these traits. Based on the previously published single nucleotide polymorphism (SNP genotype data on 8,842 individuals enrolled in the Korea Association Resource project, we performed a series of systematic genome-wide association analyses for 49 quantitative traits of basic epidemiological, anthropometric, or blood chemistry parameters. Each analysis result was subjected to subsequent gene set analyses based on Gene Ontology (GO terms using gene set analysis software, GSA-SNP, identifying a set of GO terms significantly associated to each trait (pcorr < 0.05. Pairwise comparison of the traits in terms of the semantic similarity in their GO sets revealed surprising cases where phenotypically uncorrelated traits showed high similarity in terms of biological pathways. For example, the pH level was related to 7 other traits that showed low phenotypic correlations with it. A literature survey implies that these traits may be regulated partly by common pathways that involve neuronal or nerve systems.

  9. Inclusive Classrooms for LGBTQ Students: Using Linked Text Sets to Challenge the Hegemonic "Single Story"

    Science.gov (United States)

    Dodge, Autumn M.; Crutcher, Paul A.

    2015-01-01

    As teachers, it is important that we grapple with the reality that schools, teachers, and the larger social institutions that impact us are never neutral. Scholars explain that the starting place for teachers who want to enact practices for social justice and to disrupt harmful "single stories" is to read LGBTQ titles and consider how…

  10. Forensic usefulness of a 25 X-chromosome single-nucleotide polymorphism marker set

    DEFF Research Database (Denmark)

    Tomas, Carmen; Sanchez, Juan J; Castro, Jose Aurelio

    2010-01-01

    -nucleotide polymorphisms (X-SNPs) is still limited. STUDY DESIGN AND METHODS: The forensic usefulness of a set of 25 SNPs located across the X-chromosome was analyzed in 13 populations. The applicability of the 25 X-SNPs in kinship testing was illustrated in two immigration cases where the conclusions based....... The usefulness of X-chromosome markers was particularly illustrative in Case 1, where the typing of 25 X-SNPs would have been sufficient to exclude paternity. CONCLUSION: The high level of polymorphism, low degree of linkage disequilibrium, and very low probability of mutation of the 25 X-SNPs makes this set...

  11. DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes.

    Science.gov (United States)

    Samwer, Matthias; Schneider, Maximilian W G; Hoefler, Rudolf; Schmalhorst, Philipp S; Jude, Julian G; Zuber, Johannes; Gerlich, Daniel W

    2017-08-24

    Eukaryotic cells store their chromosomes in a single nucleus. This is important to maintain genomic integrity, as chromosomes packaged into separate nuclei (micronuclei) are prone to massive DNA damage. During mitosis, higher eukaryotes disassemble their nucleus and release individualized chromosomes for segregation. How numerous chromosomes subsequently reform a single nucleus has remained unclear. Using image-based screening of human cells, we identified barrier-to-autointegration factor (BAF) as a key factor guiding membranes to form a single nucleus. Unexpectedly, nuclear assembly does not require BAF's association with inner nuclear membrane proteins but instead relies on BAF's ability to bridge distant DNA sites. Live-cell imaging and in vitro reconstitution showed that BAF enriches around the mitotic chromosome ensemble to induce a densely cross-bridged chromatin layer that is mechanically stiff and limits membranes to the surface. Our study reveals that BAF-mediated changes in chromosome mechanics underlie nuclear assembly with broad implications for proper genome function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Puncture black hole initial data: A single domain Galerkin-collocation method for trumpet and wormhole data sets

    Science.gov (United States)

    Clemente, P. C. M.; de Oliveira, H. P.

    2017-07-01

    We present a single-domain Galerkin-collocation method to calculate puncture initial data sets for single and binary black holes, either in the trumpet or wormhole geometries. The combination of aspects belonging to the Galerkin and the collocation methods together with the adoption of spherical coordinates in all cases are shown to be very effective. We propose a unified expression for the conformal factor to describe trumpet and spinning black holes. In particular, for the spinning trumpet black holes, we exhibit the deformation of the limit surface due to the spin from a sphere to an oblate spheroid. We also revisit the energy content in the trumpet and wormhole puncture data sets. The algorithm can be extended to describe binary black holes.

  13. Color and wavelengths

    CERN Document Server

    Bell, Samantha

    2018-01-01

    "Using the new Next Generation Science Standards (NGSS), the My World of Science series provides the earliest readers with background on key STEM concepts. Color and Wavelengths explores the different frequencies in light wavelengths in a simple, engaging way that will help readers develop word recognition and reading skills. Includes a glossary and index"-- Provided by publisher.

  14. A set-covering formulation for a drayage problem with single and double container loads

    Science.gov (United States)

    Ghezelsoflu, A.; Di Francesco, M.; Frangioni, A.; Zuddas, P.

    2018-01-01

    This paper addresses a drayage problem, which is motivated by the case study of a real carrier. Its trucks carry one or two containers from a port to importers and from exporters to the port. Since up to four customers can be served in each route, we propose a set-covering formulation for this problem where all possible routes are enumerated. This model can be efficiently solved to optimality by a commercial solver, significantly outperforming a previously proposed node-arc formulation. Moreover, the model can be effectively used to evaluate a new distribution policy, which results in an enlarged set of feasible routes and can increase savings w.r.t. the policy currently employed by the carrier.

  15. Investigations on heavy ion induced Single-Event Transients (SETs) in highly-scaled FinFETs

    International Nuclear Information System (INIS)

    Gaillardin, M.; Raine, M.; Paillet, P.; Adell, P.C.; Girard, S.; Duhamel, O.; Andrieu, F.; Barraud, S.; Faynot, O.

    2015-01-01

    We investigate Single-Event Transients (SET) in different designs of multiple-gate devices made of FinFETs with various geometries. Heavy ion experimental results are explained by using a thorough charge collection analysis of fast transients measured on dedicated test structures. Multi-level simulations are performed to get new insights into the charge collection mechanisms in multiple-gate devices. Implications for multiple-gate device design hardening are finally discussed.

  16. Expanded potential of seleno-carbohydrates as a molecular tool for X-ray structural determination of a carbohydrate-protein complex with single/multi-wavelength anomalous dispersion phasing.

    Science.gov (United States)

    Suzuki, Tatsuya; Makyio, Hisayoshi; Ando, Hiromune; Komura, Naoko; Menjo, Masanori; Yamada, Yusuke; Imamura, Akihiro; Ishida, Hideharu; Wakatsuki, Soichi; Kato, Ryuichi; Kiso, Makoto

    2014-04-01

    Seleno-lactoses have been successfully synthesized as candidates for mimicking carbohydrate ligands for human galectin-9 N-terminal carbohydrate recognition domain (NCRD). Selenium was introduced into the mono- or di-saccharides using p-methylselenobenzoic anhydride (Tol2Se) as a novel selenating reagent. The TolSe-substituted monosaccharides were converted into selenoglycosyl donors or acceptors, which were reacted with coupling partners to afford seleno-lactoses. The seleno-lactoses were converted to the target compounds. The structure of human galectin-9 NCRD co-crystallized with 6-MeSe-lactose was determined with single/multi-wavelength anomalous dispersion (SAD/MAD) phasing and was similar to that of the co-crystal with natural lactose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Training With Curved Laparoscopic Instruments in Single-Port Setting Improves Performance Using Straight Instruments: A Prospective Randomized Simulation Study.

    Science.gov (United States)

    Lukovich, Peter; Sionov, Valery Ben; Kakucs, Timea

    2016-01-01

    Lately single-port surgery is becoming a widespread procedure, but it is more difficult than conventional laparoscopy owing to the lack of triangulation. Although, these operations are also possible with standard laparoscopic instruments, curved instruments are being developed. The aims of the study were to identify the effect of training on a box trainer in single-port setting on the quality of acquired skills, and transferred with the straight and curved instruments for the basic laparoscopic tasks, and highlight the importance of a special laparoscopic training curriculum. A prospective study on a box trainer in single-port setting was conducted using 2 groups. Each group performed 2 tasks on the box trainer in single-port setting. Group-S used conventional straight laparoscopic instruments, and Group-C used curved laparoscopic instruments. Learning curves were obtained by daily measurements recorded in 7-day sessions. On the last day, the 2 groups changed instruments between each other. 1st Department of Surgery, Semmelweis University of Medicine from Budapest, Hungary, a university teaching hospital. In all, 20 fifth-year medical students were randomized into 2 groups. None of them had any laparoscopic or endoscopic experience. Participation was voluntary. Although Group-S performed all tasks significantly faster than Group-C on the first day, the difference proved to be nonsignificant on the last day. All participants achieved significantly shorter task completion time on the last day than on the first day, regardless of the instrument they used. Group-S showed improvement of 63.5%, and Group-C 69.0% improvement by the end of the session. After swapping the instruments, Group-S reached significantly higher task completion time with curved instruments, whereas Group-C showed further progression of 8.9% with straight instruments. Training with curved instruments in a single-port setting allows for a better acquisition of skills in a shorter period. For this

  18. Identification of a core set of rhizobial infection genes using data from single cell-types

    Directory of Open Access Journals (Sweden)

    Da-Song eChen

    2015-07-01

    Full Text Available Genome-wide expression studies on nodulation have varied in their scale from entire root systems to dissected nodules or root sections containing nodule primordia. More recently efforts have focused on developing methods for isolation of root hairs from infected plants and the application of laser-capture microdissection technology to nodules. Here we analyze two published data sets to identify a core set of infection genes that are expressed in the nodule and in root hairs during infection. Among the genes identified were those encoding phenylpropanoid biosynthesis enzymes including Chalcone-O-Methyltransferase which is required for the production of the potent Nod gene inducer 4’,4-dihydroxy-2-methoxychalcone. A promoter-GUS analysis in transgenic hairy roots for two genes encoding Chalcone-O-Methyltransferase isoforms revealed their expression in rhizobially infected root hairs and the nodule infection zone but not in the nitrogen fixation zone. We also describe a group of Rhizobially Induced Peroxidases whose expression overlaps with the production of superoxide in rhizobially infected root hairs and in nodules and roots. Finally, we identify a cohort of co-regulated transcription factors as candidate regulators of these processes.

  19. Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths

    DEFF Research Database (Denmark)

    Andersen, T.V.; Hilligsøe, Karen Marie; Nielsen, C.K.

    2004-01-01

    We demonstrate continuous-wave wavelength conversion through four-wave mixing in an endlessly single mode photonic crystal fiber. Phasematching is possible at vanishing pump power in the anomalous dispersion regime between the two zero-dispersion wavelengths. By mixing appropriate pump and idler...... line width lasers....

  20. Short wavelength FELS

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  1. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  2. Comprehensive detection of diverse exon 19 deletion mutations of EGFR in lung Cancer by a single probe set.

    Science.gov (United States)

    Bae, Jin Ho; Jo, Seong-Min; Kim, Hak-Sung

    2015-12-15

    Detection of exon 19 deletion mutation of EGFR, one of the most frequently occurring mutations in lung cancer, provides the crucial information for diagnosis and treatment guideline in non-small-cell lung cancer (NSCLC). Here, we demonstrate a simple and efficient method to detect various exon 19 deletion mutations of EGFR using a single probe set comprising of an oligo-quencher (oligo-Q) and a molecular beacon (MB). While the MB hybridizes to both the wild and mutant target DNA, the oligo-Q only binds to the wild target DNA, leading to a fluorescent signal in case of deletion mutation. This enables the comprehensive detection of the diverse exon 19 deletion mutations using a single probe set. We demonstrated the utility and efficiency of the approach by detecting the frequent exon 19 deletion mutations of EGFR through a real-time PCR and in situ fluorescence imaging. Our approach enabled the detection of genomic DNA as low as 0.02 ng, showing a detection limit of 2% in a heterogeneous DNA mixture, and could be used for detecting mutations in a single cell level. The present MB and oligo-Q dual probe system can be used for diagnosis and treatment guideline in NSCLC. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Testing initiatives increase rates of HIV diagnosis in primary care and community settings: an observational single-centre cohort study.

    Directory of Open Access Journals (Sweden)

    Prini Mahendran

    Full Text Available The primary objective was to examine trends in new HIV diagnoses in a UK area of high HIV prevalence between 2000 and 2012 with respect to site of diagnosis and stage of HIV infection.Single-centre observational cohort study.An outpatient HIV department in a secondary care UK hospital.1359 HIV-infected adults.Demographic information (age, gender, ethnicity, and sexual orientation, site of initial HIV diagnosis (Routine settings such as HIV/GUM clinics versus Non-Routine settings such as primary care and community venues, stage of HIV infection, CD4 count and seroconversion symptoms were collated for each participant.There was a significant increase in the proportion of new HIV diagnoses made in Non-Routine settings (from 27.0% in 2000 to 58.8% in 2012; p<0.001. Overall there was a decrease in the rate of late diagnosis from 50.7% to 32.9% (p=0.001. Diagnosis of recent infection increased from 23.0% to 47.1% (p=0.001. Of those with recent infection, significantly more patients were likely to report symptoms consistent with a seroconversion illness over the 13 years (17.6% to 65.0%; p<0.001.This is the first study, we believe, to demonstrate significant improvements in HIV diagnosis and a shift in diagnosis of HIV from HIV/GUM settings to primary practice and community settings due to multiple initiatives.

  4. Effectiveness of Single Session of Low-Level Laser Therapy with a 940 nm Wavelength Diode Laser on Pain, Swelling, and Trismus After Impacted Third Molar Surgery.

    Science.gov (United States)

    Eroglu, Cennet Neslihan; Keskin Tunc, Serap

    2016-09-01

    In low-level laser therapy (LLLT), applications are generally performed in repetitive sessions using wavelengths of around 800 nm, at which the depth of penetration of laser is greater. The present study aimed to investigate the effects of LLLT with a 940 nm diode laser, which was performed extraorally on all the primarily and secondarily affected areas immediately after surgery in a single session, on pain, swelling, and trismus that occurred after impacted tooth extraction. Thirty-five outpatients with similarly impacted lower third molars on both sides were selected. The teeth of patients were removed in two separate operations. Postoperatively, the patients received laser therapy with energy of 4 J/cm(2) on one side and no laser energy was applied to the other side (placebo side). Swelling, trismus, and subjective assessment of pain on a visual analog scale were evaluated and compared between the laser-treated and placebo sides. There was no statistically significant difference in pain, swelling, or trismus between the sides (Mann-Whitney U test p > 0.05). However, according to the clinical outcomes, swelling and trismus were less in the laser-treated side than in the placebo side. A single-session LLLT that would be applied with a diode laser immediately after impacted tooth extraction might help patients to be less affected by postoperative trismus and swelling.

  5. Single case design studies in music therapy: resurrecting experimental evidence in small group and individual music therapy clinical settings.

    Science.gov (United States)

    Geist, Kamile; Hitchcock, John H

    2014-01-01

    The profession would benefit from greater and routine generation of causal evidence pertaining to the impact of music therapy interventions on client outcomes. One way to meet this goal is to revisit the use of Single Case Designs (SCDs) in clinical practice and research endeavors in music therapy. Given the appropriate setting and goals, this design can be accomplished with small sample sizes and it is often appropriate for studying music therapy interventions. In this article, we promote and discuss implementation of SCD studies in music therapy settings, review the meaning of internal study validity and by extension the notion of causality, and describe two of the most commonly used SCDs to demonstrate how they can help generate causal evidence to inform the field. In closing, we describe the need for replication and future meta-analysis of SCD studies completed in music therapy settings. SCD studies are both feasible and appropriate for use in music therapy clinical practice settings, particularly for testing effectiveness of interventions for individuals or small groups. © the American Music Therapy Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. A novel wavelength reused bidirectional RoF-WDM-PON architecture to mitigate reflection and Rayleigh backscattered noise in multi-Gb/s m-QAM OFDM SSB upstream and downstream transmission over a single fiber

    Science.gov (United States)

    Patel, Dhananjay; Dalal, U. D.

    2017-05-01

    A novel m-QAM Orthogonal Frequency Division Multiplexing (OFDM) Single Sideband (SSB) architecture is proposed for centralized light source (CLS) bidirectional Radio over Fiber (RoF) - Wavelength Division Multiplexing (WDM) - Passive Optical Network (PON). In bidirectional transmission with carrier reuse over the single fiber, the Rayleigh Backscattering (RB) noise and reflection (RE) interferences from optical components can seriously deteriorate the transmission performance of the fiber optic systems. These interferometric noises can be mitigated by utilizing the optical modulation schemes at the Optical Line Terminal (OLT) and Optical Network Unit (ONU) such that the spectral overlap between the optical data spectrum and the RB and RE noise is minimum. A mathematical model is developed for the proposed architecture to accurately measure the performance of the transmission system and also to analyze the effect of interferometric noise caused by the RB and RE. The model takes into the account the different modulation schemes employed at the OLT and the ONU using a Mach Zehnder Modulator (MZM), the optical launch power and the bit-rates of the downstream and upstream signals, the gain of the amplifiers at the OLT and the ONU, the RB-RE noise, chromatic dispersion of the single mode fiber and optical filter responses. In addition, the model analyzes all the components of the RB-RE noise such as carrier RB, signal RB, carrier RE and signal RE, thus providing the complete representation of all the physical phenomena involved. An optical m-QAM OFDM SSB signal acts as a test signal to validate the model which provides excellent agreement with simulation results. The SSB modulation technique using the MZM at the OLT and the ONU differs in the data transmission technique that takes place through the first-order higher and the lower optical sideband respectively. This spectral gap between the downstream and upstream signals reduces the effect of Rayleigh backscattering and

  7. Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain.

    Science.gov (United States)

    da Silveira, Thiago L T; Kozakevicius, Alice J; Rodrigues, Cesar R

    2017-02-01

    The main objective of this study was to enhance the performance of sleep stage classification using single-channel electroencephalograms (EEGs), which are highly desirable for many emerging technologies, such as telemedicine and home care. The proposed method consists of decomposing EEGs by a discrete wavelet transform and computing the kurtosis, skewness and variance of its coefficients at selected levels. A random forest predictor is trained to classify each epoch into one of the Rechtschaffen and Kales' stages. By performing a comprehensive set of tests on 106,376 epochs available from the Physionet public database, it is demonstrated that the use of these three statistical moments has enhanced performance when compared to their application in the time domain. Furthermore, the chosen set of features has the advantage of exhibiting a stable classification performance for all scoring systems, i.e., from 2- to 6-state sleep stages. The stability of the feature set is confirmed with ReliefF tests which show a performance reduction when any individual feature is removed, suggesting that this group of feature cannot be further reduced. The accuracies and kappa coefficients yield higher than 90 % and 0.8, respectively, for all of the 2- to 6-state sleep stage classification cases.

  8. Single- and double energy N{sup +} ion irradiated planar optical waveguides in Er: Tungsten–tellurite oxide glass and sillenite type Bismuth Germanate crystals working up to telecommunications wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M.; Lohner, T. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Righini, G.C. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2013-07-15

    Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Fabrication of channel waveguides in such a material via N{sup +} ion implantation was reported recently. Sillenite type Bismuth Germanate (BGO) crystals are good nonlinear optical materials. Parameters of waveguide fabrication in both materials via implantation of MeV-energy N{sup +} ions were optimized. First single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in both materials. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.1 MeV were performed to suppress leaky modes by increasing barrier width. Improvement of waveguide characteristics was found by m-line spectroscopy and spectroscopic ellipsometry.

  9. All-fiber photon-pair source at telecom wavelengths

    DEFF Research Database (Denmark)

    Christensen, Erik Nicolai; Usuga Castaneda, Mario A.; Rottwitt, Karsten

    2017-01-01

    Single photon sources are a key element for quantum computing, quantum key distribution (QKD) and quantum communications. In particular, producing single photons at telecommunications wavelengths is valuable for QKD protocols and would enable realizing the quantum internet. The preferred method...

  10. A prospective 10-year study of metal ceramic single crowns and fixed dental prosthesis retainers in private practice settings.

    Science.gov (United States)

    Reitemeier, Bernd; Hänsel, Kristina; Kastner, Christian; Weber, Anke; Walter, Michael H

    2013-03-01

    Metal ceramic restorations are widely used in prosthodontics, but long-term data on their clinical performance in private practice settings based on prospective trials are sparse. This clinical trial was designed to provide realistic long-term survival rates for different outcomes related to tooth loss, crown loss, and metal ceramic defect. Ninety-five participants were provided with 190 noble metal ceramic single crowns and 138 participants with 276 fixed dental prosthesis retainer crowns on vital posterior teeth. Follow-up examinations were scheduled 2 weeks after insertion, annually up to 8 years, and after 10 years. Kaplan-Meier survival analyses, Mantel-Cox logrank tests, and Cox regression analyses were conducted. Because of variations in the time of the last examinations, the maximum observation period was 12.1 years. For the primary outcome 'loss of crown or tooth', the Kaplan-Meier survival rate was 94.3% ±1.8% (standard error) at 8.0 years (last outcome event) for single crowns and 94.4% ±1.5% at 11.0 years for fixed dental prosthesis retainer crowns. The difference between the survival functions was not significant (P>.05). For the secondary outcome 'metal ceramic defect', the survival rate was 88.8% ±3.2% at 11.0 years for single crowns and 81.7% ±3.5% at 11.0 years for fixed dental prosthesis retainer crowns. In Cox regression models, the only significant covariates for the outcome event 'metal ceramic defect' were bruxism in the medical history (single crowns) and signs and symptoms of bruxism (fixed dental prosthesis retainer crowns) with hazard ratios of 3.065 (95% CI 1.063 - 8.832) and 2.554 (95% CI 1.307 - 4.992). Metal ceramic crowns provided in private practice settings show good longevity. Bruxism appears to indicate a risk for metal ceramic defects. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  11. Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program

    International Nuclear Information System (INIS)

    Labar, Janos L.

    2005-01-01

    A computer program called 'ProcessDiffraction' helps indexing a set of single crystal selected area electron diffraction (SAED) patterns by determining which of the presumed structures can fit all the measured patterns simultaneously. Distances and angles are measured in the digitalized patterns with a graphical tool by clicking on the two shortest non-collinear vectors (spots), using user-supplied calibration data. Centers of the spots and center of the pattern are optionally refined by the program. Suggested individual indexing solutions (consistent with an assumed unit cell) are listed by the program for each pattern. Simulated patterns are also consulted to check if the shortest calculated distances coincide with measured ones. Common solutions for the set are selected by checking the angles between the suggested zone axes against the angles between the experimental goniometer settings. The indexing process is manually controlled by selecting the candidate structures (one-by-one) for indexing and by specifying the tolerances for d-values, plane angles and zone angles. Patterns of any crystal system can be indexed successfully. Although error bars are larger in electron diffraction than in X-ray diffraction (XRD), frequently, many unrelated indexings are possible for any one electron diffraction pattern (irrespective of the indexing method), a set of SAED patterns can generally be indexed unambiguously, i.e. the three-dimensional reciprocal space can be identified correctly. Two other tools also help planning tilting experiments: zones along a plane can be listed (with their angles extended from a pre-selected zone in that plane) and zones lying at a given angle (specified with a tolerance) from a zone can also be identified (as they are situated between two cones). Another tool searches the XRD database directly either for advice on possible structures for a composition or to help calibration

  12. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  13. Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method

    Science.gov (United States)

    Broglia, Riccardo; Durante, Danilo

    2017-11-01

    This paper focuses on the analysis of a challenging free surface flow problem involving a surface vessel moving at high speeds, or planing. The investigation is performed using a general purpose high Reynolds free surface solver developed at CNR-INSEAN. The methodology is based on a second order finite volume discretization of the unsteady Reynolds-averaged Navier-Stokes equations (Di Mascio et al. in A second order Godunov—type scheme for naval hydrodynamics, Kluwer Academic/Plenum Publishers, Dordrecht, pp 253-261, 2001; Proceedings of 16th international offshore and polar engineering conference, San Francisco, CA, USA, 2006; J Mar Sci Technol 14:19-29, 2009); air/water interface dynamics is accurately modeled by a non standard level set approach (Di Mascio et al. in Comput Fluids 36(5):868-886, 2007a), known as the single-phase level set method. In this algorithm the governing equations are solved only in the water phase, whereas the numerical domain in the air phase is used for a suitable extension of the fluid dynamic variables. The level set function is used to track the free surface evolution; dynamic boundary conditions are enforced directly on the interface. This approach allows to accurately predict the evolution of the free surface even in the presence of violent breaking waves phenomena, maintaining the interface sharp, without any need to smear out the fluid properties across the two phases. This paper is aimed at the prediction of the complex free-surface flow field generated by a deep-V planing boat at medium and high Froude numbers (from 0.6 up to 1.2). In the present work, the planing hull is treated as a two-degree-of-freedom rigid object. Flow field is characterized by the presence of thin water sheets, several energetic breaking waves and plungings. The computational results include convergence of the trim angle, sinkage and resistance under grid refinement; high-quality experimental data are used for the purposes of validation, allowing to

  14. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  15. Single well thermal tracer test, a new experimental set up for characterizing thermal transport in fractured media

    Science.gov (United States)

    de La Bernardie, Jérôme; Bour, Olivier; Guihéneuf, Nicolas; Chatton, Eliot; Labasque, Thierry; Longuevergne, Laurent; Le Lay, Hugo; Koch, Floriant; Gerard, Marie-Françoise; Le Borgne, Tanguy

    2017-04-01

    Thermal transport in fractured media depends on the hydrological properties of fractures and thermal characteristics of rock. Tracer tests using heat as tracer can thus be a good alternative to characterize fractured media for shallow geothermal needs. This study investigates the possibility of implementing a new thermal tracer test set up, the single well thermal tracer test, to characterize hydraulic and thermal transport properties of fractured crystalline rock. The experimental setup is based on injecting hot water in a fracture isolated by a double straddle packer in the borehole while pumping and monitoring the temperature in a fracture crossing the same borehole at greater elevation. One difficulty comes from the fact that injection and withdrawal are achieved in the same borehole involving thermal losses along the injection tube that may disturb the heat recovery signal. To be able to well localize the heat influx, we implemented a Fiber-Optic Distributed Temperature Sensing (FO-DTS) which allows the temperature monitoring with high spatial and temporal resolution (29 centimeters and 30 seconds respectively). Several tests, at different pumping and injection rates, were performed in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). We show through signal processing how the thermal breakthrough may be extracted thanks to Fiber-Optic distributed temperature measurements. In particular, we demonstrate how detailed distributed temperature measurements were useful to identify different inflows and to estimate how much heat was transported and stored within the fractures network. Thermal breakthrough curves of single well thermal tracer tests were then interpreted with a simple analytical model to characterize hydraulic and thermal characteristics of the fractured media. We finally discuss the advantages of these tests compared to cross-borehole thermal tracer tests.

  16. Reusable, extensible, and modifiable R scripts and Kepler workflows for comprehensive single set ChIP-seq analysis.

    Science.gov (United States)

    Cormier, Nathan; Kolisnik, Tyler; Bieda, Mark

    2016-07-05

    There has been an enormous expansion of use of chromatin immunoprecipitation followed by sequencing (ChIP-seq) technologies. Analysis of large-scale ChIP-seq datasets involves a complex series of steps and production of several specialized graphical outputs. A number of systems have emphasized custom development of ChIP-seq pipelines. These systems are primarily based on custom programming of a single, complex pipeline or supply libraries of modules and do not produce the full range of outputs commonly produced for ChIP-seq datasets. It is desirable to have more comprehensive pipelines, in particular ones addressing common metadata tasks, such as pathway analysis, and pipelines producing standard complex graphical outputs. It is advantageous if these are highly modular systems, available as both turnkey pipelines and individual modules, that are easily comprehensible, modifiable and extensible to allow rapid alteration in response to new analysis developments in this growing area. Furthermore, it is advantageous if these pipelines allow data provenance tracking. We present a set of 20 ChIP-seq analysis software modules implemented in the Kepler workflow system; most (18/20) were also implemented as standalone, fully functional R scripts. The set consists of four full turnkey pipelines and 16 component modules. The turnkey pipelines in Kepler allow data provenance tracking. Implementation emphasized use of common R packages and widely-used external tools (e.g., MACS for peak finding), along with custom programming. This software presents comprehensive solutions and easily repurposed code blocks for ChIP-seq analysis and pipeline creation. Tasks include mapping raw reads, peakfinding via MACS, summary statistics, peak location statistics, summary plots centered on the transcription start site (TSS), gene ontology, pathway analysis, and de novo motif finding, among others. These pipelines range from those performing a single task to those performing full analyses of

  17. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    Science.gov (United States)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  18. THE TWO-WAVELENGTH METHOD OF MICROSPECTROPHOTOMETRY

    Science.gov (United States)

    Mendelsohn, Mortimer L.

    1961-01-01

    In connection with the potential development of automatic two-wavelength microspectrophotometry, a new version of the two-wavelength method has been formulated. Unlike its predecessors, the Ornstein and Patau versions, the new method varies the area of the photometric field seeking to maximize a relationship between distributional errors at the two wavelengths. Stating this distributional error relationship in conventional photometric terms, the conditions at the maximum are defined by taking the first derivative with respect to field size and setting it equal to zero. This operation supplies two equations; one relates the transmittances at the two wavelengths, and a second states the relative amount of chromophore in the field in terms of transmittance at one wavelength. With the first equation to drive a servomechanism which sets the appropriate field size, the desired answer can then be obtained directly and continuously from the second equation. The result is identical in theory with those of the earlier methods, but the technique is more suitable for electronic computing. PMID:14472536

  19. The Long Wavelength Array

    Science.gov (United States)

    Pihlström, Ylva

    The Long Wavelength Array (LWA) will be a new, open-skies, user-oriented aperture synthesis instrument dedicated to explore frequencies between 20 and 80 MHz. The LWA will provide high temporal (millisecond or better) and high spatial resolution (arcsecond) and mJy-level sensitivity. The LWA key science areas include acceleration, propagation, and turbulence in the ISM; the high-redshift Universe; planetary, solar and space science; and the transient universe at radio wavelengths. In addition, key goals of the LWA are as a training ground for the next generation of radio astronomers and to re-invigorate radio astronomy in the US at the university level. The LWA will be operated by the University of New Mexico on behalf of the South West Consortium (SWC), thereby providing opportunities for students within the fields of astronomy, computer science and electrical engineering. Currently, in its first year of construction funding, the LWA team is now bringing up the first station near the Very Large Array site in the southwest US.

  20. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles

    Science.gov (United States)

    Cotterell, Michael I.; Willoughby, Rose E.; Bzdek, Bryan R.; Orr-Ewing, Andrew J.; Reid, Jonathan P.

    2017-08-01

    Calculations of aerosol radiative forcing require knowledge of wavelength-dependent aerosol optical properties, such as single-scattering albedo. These aerosol optical properties can be calculated using Mie theory from knowledge of the key microphysical properties of particle size and refractive index, assuming that atmospheric particles are well-approximated to be spherical and homogeneous. We provide refractive index determinations for aqueous aerosol particles containing the key atmospherically relevant inorganic solutes of NaCl, NaNO3, (NH4)2SO4, NH4HSO4 and Na2SO4, reporting the refractive index variation with both wavelength (400-650 nm) and relative humidity (from 100 % to the efflorescence value of the salt). The accurate and precise retrieval of refractive index is performed using single-particle cavity ring-down spectroscopy. This approach involves probing a single aerosol particle confined in a Bessel laser beam optical trap through a combination of extinction measurements using cavity ring-down spectroscopy and elastic light-scattering measurements. Further, we assess the accuracy of these refractive index measurements, comparing our data with previously reported data sets from different measurement techniques but at a single wavelength. Finally, we provide a Cauchy dispersion model that parameterises refractive index measurements in terms of both wavelength and relative humidity. Our parameterisations should provide useful information to researchers requiring an accurate and comprehensive treatment of the wavelength and relative humidity dependence of refractive index for the inorganic component of atmospheric aerosol.

  1. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles

    Directory of Open Access Journals (Sweden)

    M. I. Cotterell

    2017-08-01

    Full Text Available Calculations of aerosol radiative forcing require knowledge of wavelength-dependent aerosol optical properties, such as single-scattering albedo. These aerosol optical properties can be calculated using Mie theory from knowledge of the key microphysical properties of particle size and refractive index, assuming that atmospheric particles are well-approximated to be spherical and homogeneous. We provide refractive index determinations for aqueous aerosol particles containing the key atmospherically relevant inorganic solutes of NaCl, NaNO3, (NH42SO4, NH4HSO4 and Na2SO4, reporting the refractive index variation with both wavelength (400–650 nm and relative humidity (from 100 % to the efflorescence value of the salt. The accurate and precise retrieval of refractive index is performed using single-particle cavity ring-down spectroscopy. This approach involves probing a single aerosol particle confined in a Bessel laser beam optical trap through a combination of extinction measurements using cavity ring-down spectroscopy and elastic light-scattering measurements. Further, we assess the accuracy of these refractive index measurements, comparing our data with previously reported data sets from different measurement techniques but at a single wavelength. Finally, we provide a Cauchy dispersion model that parameterises refractive index measurements in terms of both wavelength and relative humidity. Our parameterisations should provide useful information to researchers requiring an accurate and comprehensive treatment of the wavelength and relative humidity dependence of refractive index for the inorganic component of atmospheric aerosol.

  2. Performance of single and concatenated sets of mitochondrial genes at inferring metazoan relationships relative to full mitogenome data.

    Directory of Open Access Journals (Sweden)

    Justin C Havird

    Full Text Available Mitochondrial (mt genes are some of the most popular and widely-utilized genetic loci in phylogenetic studies of metazoan taxa. However, their linked nature has raised questions on whether using the entire mitogenome for phylogenetics is overkill (at best or pseudoreplication (at worst. Moreover, no studies have addressed the comparative phylogenetic utility of mitochondrial genes across individual lineages within the entire Metazoa. To comment on the phylogenetic utility of individual mt genes as well as concatenated subsets of genes, we analyzed mitogenomic data from 1865 metazoan taxa in 372 separate lineages spanning genera to subphyla. Specifically, phylogenies inferred from these datasets were statistically compared to ones generated from all 13 mt protein-coding (PC genes (i.e., the "supergene" set to determine which single genes performed "best" at, and the minimum number of genes required to, recover the "supergene" topology. Surprisingly, the popular marker COX1 performed poorest, while ND5, ND4, and ND2 were most likely to reproduce the "supergene" topology. Averaged across all lineages, the longest ∼2 mt PC genes were sufficient to recreate the "supergene" topology, although this average increased to ∼5 genes for datasets with 40 or more taxa. Furthermore, concatenation of the three "best" performing mt PC genes outperformed that of the three longest mt PC genes (i.e, ND5, COX1, and ND4. Taken together, while not all mt PC genes are equally interchangeable in phylogenetic studies of the metazoans, some subset can serve as a proxy for the 13 mt PC genes. However, the exact number and identity of these genes is specific to the lineage in question and cannot be applied indiscriminately across the Metazoa.

  3. Inter-domain routing in optical networks wavelength converters

    NARCIS (Netherlands)

    Beshir, A.; Yannuzzi, M.; Kuipers, F.

    2010-01-01

    With the increasing deployment of wavelength division multiplexing (WDM) optical networks, the need for advanced lightpath provisioning algorithms and protocols in a multi-domain setting is becoming evident. In order to increase efficiency by relaxing the wavelength continuity constraint in WDM

  4. Measurement of Magic Wavelengths for the ^{40}Ca^{+} Clock Transition.

    Science.gov (United States)

    Liu, Pei-Liang; Huang, Yao; Bian, Wu; Shao, Hu; Guan, Hua; Tang, Yong-Bo; Li, Cheng-Bin; Mitroy, J; Gao, Ke-Lin

    2015-06-05

    We demonstrate experimentally the existence of magic wavelengths and determine the ratio of oscillator strengths for a single trapped ion. For the first time, two magic wavelengths near 396 nm for the ^{40}Ca^{+} clock transition are measured simultaneously with high precision. By tuning the applied laser to an intermediate wavelength between transitions 4s_{1/2}→4p_{1/2} and 4s_{1/2}→4p_{3/2}, the sensitivity of the clock transition Stark shift to the oscillator strengths is greatly enhanced. Furthermore, with the measured magic wavelengths, we determine the ratio of the oscillator strengths with a deviation of less than 0.5%. Our experimental method may be applied to measure magic wavelengths for other ion clock transitions. Promisingly, the measurement of these magic wavelengths paves the way to building all-optical trapped ion clocks.

  5. Reference wavelength method for a two-color pyrometer.

    Science.gov (United States)

    Hahn, J W; Rhee, C

    1987-12-15

    The reference wavelength method is used for a two-color pyrometer and, with the reference wavelength method, an analytical formula of the ratio temperature for the two-color pyrometer is derived. For one channel of the two-color pyrometer, with a triangular spectral response of 0.1-micro m FWHM and 2.0-micro m peak wavelength, the effective wavelength and the correction factors with several reference wavelengths are determined. By fitting the curves of the effective wavelength and the correction factor to simple functional forms of temperature, the radiance errors for both cases are calculated. Also, it is found that the correction factor determined in a single-color pyrometer can be used directly in one channel of the two-color pyrometer without additional calculation.

  6. Dual-Wavelength Internal-Optically-Pumped Semiconductor Laser Diodes

    Science.gov (United States)

    Green, Benjamin

    Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser diode would enable further advances and deployment of these technologies. The output of conventional laser diodes is however limited to a single wavelength band with a few subsequent lasing modes depending on the device design. This thesis investigates a novel semiconductor laser device design with a single cavity waveguide capable of dual-wavelength laser output with large spectral separation. The novel dual-wavelength semiconductor laser diode uses two shorter- and longer-wavelength active regions that have separate electron and hole quasi-Fermi energy levels and carrier distributions. The shorter-wavelength active region is based on electrical injection as in conventional laser diodes, and the longer-wavelength active region is then pumped optically by the internal optical field of the shorter-wavelength laser mode, resulting in stable dual-wavelength laser emission at two different wavelengths quite far apart. Different designs of the device are studied using a theoretical model developed in this work to describe the internal optical pumping scheme. The carrier transport and separation of the quasi-Fermi distributions are then modeled using a software package that solves Poisson's equation and the continuity equations to simulate semiconductor devices. Three different designs are grown using molecular beam epitaxy, and broad-area-contact laser diodes are processed using conventional methods. The modeling and experimental results of the first generation design indicate that the optical confinement factor of the

  7. Wavelength conversion devices and techniques

    DEFF Research Database (Denmark)

    Stubkjær, Kristian; Jørgensen, Carsten; Danielsen, Søren Lykke

    1996-01-01

    Wavelength division multiplexed (WDM) networks are currently subject to an immense interest because of the extra capacity and flexibility they provide together with the possibilities for graceful system upgrades. For full network flexibility it is very attractive to be able to translate the chann...... wavelengths in an easy way and preferably without opto-electronic conversion. Here, we will first briefly look at advantages of employing optical wavelength converters in WDM networks and next review the optical wavelength conversion devices with emphasis on recent developments....

  8. On the existence and uniqueness problems of solutions for set-valued and single-valued nonlinear operator equations in probabilistic normed spaces

    Directory of Open Access Journals (Sweden)

    Shih-Sen Chang

    1994-01-01

    Full Text Available In this paper, we introduce the concept of more general probabilistic contractors in probabilistic normed spaces and show the existence and uniqueness of solutions for set-valued and single-valued nonlinear operator equations in Menger probabilistic normed spaces.

  9. Three-band, 1.9-μm axial resolution full-field optical coherence microscopy over a 530-1700 nm wavelength range using a single camera

    OpenAIRE

    Federici, Antoine; Dubois, Arnaud

    2014-01-01

    International audience; Full-field optical coherence microscopy is an established optical technology based on low-coherence interference microscopy for high-resolution imaging of semitransparent samples. In this Letter, we demonstrate an extension of the technique using a visible to short-wavelength infrared camera and a halogen lamp to image in three distinct bands centered at 635, 870, and 1170 nm. Reflective microscope objectives are employed to minimize chromatic aberrations of the imagin...

  10. Group vs. single mindfulness meditation: exploring avoidance, impulsivity, and weight management in two separate mindfulness meditation settings.

    Science.gov (United States)

    Mantzios, Michail; Giannou, Kyriaki

    2014-07-01

    Recent research has identified that mindfulness meditation in group settings supports people who are trying to lose weight. The present research investigated mindfulness meditation in group and individual settings, and explored the potential impact on weight loss and other factors (i.e. mindfulness, impulsivity, and avoidance) that may assist or hinder weight loss. Specifically, the hypotheses tested were that the group setting assisted dieters more than the individual setting by reducing weight, cognitive-behavioral avoidance, and impulsivity and by increasing mindfulness. Participants (n = 170) who were trying to lose weight were randomly assigned to practice meditation for 6 weeks within a group or independently. Measurements in mindfulness, cognitive-behavioral avoidance, impulsivity, and weight occurred twice (pre- and post-intervention). Results indicated that participants in the group setting lost weight and lowered their levels of cognitive-behavioral avoidance, while impulsivity and mindfulness remained stable. On the other hand, participants in the individual condition lost less weight, while there was an increase in cognitive-behavioral avoidance and mindfulness scores, but a decrease in impulsivity. Seeing that benefits and limitations observed in group settings are not replicated when people meditate alone, this study concluded that mindfulness meditation in individual settings needs to be used with caution, although there are some potential benefits that could aid future weight loss research. © 2014 The International Association of Applied Psychology.

  11. Fixed Points of Single- and Set-Valued Mappings in Uniformly Convex Metric Spaces with No Metric Convexity

    Directory of Open Access Journals (Sweden)

    Rafa Espínola

    2010-01-01

    Full Text Available We study the existence of fixed points and convergence of iterates for asymptotic pointwise contractions in uniformly convex metric spaces. We also study the existence of fixed points for set-valued nonexpansive mappings in the same class of spaces. Our results do not assume convexity of the metric which makes a big difference when studying the existence of fixed points for set-valued mappings.

  12. Comparing signal intensity and refraction sensitivity of double and single mask edge illumination lab-based x-ray phase contrast imaging set-ups

    Science.gov (United States)

    Kallon, G. K.; Diemoz, P. C.; Vittoria, F. A.; Basta, D.; Endrizzi, M.; Olivo, A.

    2017-10-01

    Double mask edge illumination (DM-EI) set-ups can detect differential phase and attenuation information from a sample. However, analytical separation of the two signals often requires acquiring two frames with inverted differential phase contrast signals. Typically, between these two acquisitions, the first mask is moved to create a different illumination condition. This can lead to potential errors which adversely affect the data collected. In this paper, we implement a single mask EI laboratory set-up that allows for a single shot retrieval of the differential phase and attenuation images, without the need for a high resolution detector or high magnification. As well as simplifying mask alignment, the advantages of the proposed set-up can be exploited in one of two ways: either the total acquisition time can be halved with respect to the DM-EI set-up or, for the same acquisition time, twice the statistics can be collected. In this latter configuration, the signal-to-noise ratio and contrast in the mixed intensity images, and the angular sensitivity of the two set-ups were compared. We also show that the angular sensitivity of the single mask set-up can be well approximated from its illumination curve, which has been modelled as a convolution between the source spatial distribution at the detector plane, the pre-sample mask and the detector point spread function (PSF). A polychromatic wave optics simulation was developed on these bases and benchmarked against experimental data. It can also be used to predict the angular sensitivity and contrast of any set-up as a function of detector PSF.

  13. Comparing signal intensity and refraction sensitivity of double and single mask edge illumination lab-based x-ray phase contrast imaging set-ups

    International Nuclear Information System (INIS)

    Kallon, G K; Diemoz, P C; Vittoria, F A; Basta, D; Endrizzi, M; Olivo, A

    2017-01-01

    Double mask edge illumination (DM-EI) set-ups can detect differential phase and attenuation information from a sample. However, analytical separation of the two signals often requires acquiring two frames with inverted differential phase contrast signals. Typically, between these two acquisitions, the first mask is moved to create a different illumination condition. This can lead to potential errors which adversely affect the data collected. In this paper, we implement a single mask EI laboratory set-up that allows for a single shot retrieval of the differential phase and attenuation images, without the need for a high resolution detector or high magnification. As well as simplifying mask alignment, the advantages of the proposed set-up can be exploited in one of two ways: either the total acquisition time can be halved with respect to the DM-EI set-up or, for the same acquisition time, twice the statistics can be collected. In this latter configuration, the signal-to-noise ratio and contrast in the mixed intensity images, and the angular sensitivity of the two set-ups were compared. We also show that the angular sensitivity of the single mask set-up can be well approximated from its illumination curve, which has been modelled as a convolution between the source spatial distribution at the detector plane, the pre-sample mask and the detector point spread function (PSF). A polychromatic wave optics simulation was developed on these bases and benchmarked against experimental data. It can also be used to predict the angular sensitivity and contrast of any set-up as a function of detector PSF. (paper)

  14. Excitation wavelength dependence

    Indian Academy of Sciences (India)

    WINTEC

    is a long (~40 Å) cylinder with a central water filled tunnel with radius ~8 Å ... In our femtosecond upconversion set up (FOG 100,. CDP), the sample was .... in water. The emission maximum of R6G in. 105 mM does not display any λex dependence. This indicates that the cationic dye (R6G) is predomi- nantly localized in the ...

  15. Single-case effect size calculation: comparing regression and non-parametric approaches across previously published reading intervention data sets.

    Science.gov (United States)

    Ross, Sarah G; Begeny, John C

    2014-08-01

    Growing from demands for accountability and research-based practice in the field of education, there is recent focus on developing standards for the implementation and analysis of single-case designs. Effect size methods for single-case designs provide a useful way to discuss treatment magnitude in the context of individual intervention. Although a standard effect size methodology does not yet exist within single-case research, panel experts recently recommended pairing regression and non-parametric approaches when analyzing effect size data. This study compared two single-case effect size methods: the regression-based, Allison-MT method and the newer, non-parametric, Tau-U method. Using previously published research that measured the Words read Correct per Minute (WCPM) variable, these two methods were examined by comparing differences in overall effect size scores and rankings of intervention effect. Results indicated that the regression method produced significantly larger effect sizes than the non-parametric method, but the rankings of the effect size scores had a strong, positive relation. Implications of these findings for research and practice are discussed. Copyright © 2014 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  16. Wavelengths of Bioconvection Patterns

    DEFF Research Database (Denmark)

    Bees, Martin Alan; Hill, N.A.

    1998-01-01

    Bioconvection occurs as the result of the collective behaviour of many micro-organisms swimming in a fluid and is realised as patterns similar to those of thermal convection which occur when a layer of water is heated from below. A methodology is developed to record the bioconvection patterns...... that are formed by aqueous cultures of the single-celled alga Chlamydomonas nivalis. The analysis that is used to quantify the patterns as a function of cell concentration, suspension depth and time is described and experimental results are presented....

  17. Simultaneous Realization of Wavelength Conversion, 2R Regeneration, and All-Optical Multiple Logic Gates with OR, NOR, XOR, and XNOR Functions Based on Self-Polarization Rotation in a Single SOA: An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Youssef Said

    2012-01-01

    Full Text Available We highlight the feasibility of experimental implementation of both inverted and noninverted wavelength conversion, 2R regeneration, and all-optical logic functions, such as OR, NOR, XOR, and XNOR optical gates by exploiting the self-polarization rotation in a semiconductor optical amplifier (SOA device without changing the setup configuration. Switching between each optical function is done by only adjusting the input optical power level. In order to allow optimum control and preserve the polarization state of the injected and collected signals, the polarimetric measures have been carried out in free space.

  18. Multi-valued logic circuits using hybrid circuit consisting of three gates single-electron transistors (TG-SETs) and MOSFETs.

    Science.gov (United States)

    Shin, SeungJun; Yu, YunSeop; Choi, JungBum

    2008-10-01

    New multi-valued logic (MVL) families using the hybrid circuits consisting of three gates single-electron transistors (TG-SETs) and a metal-oxide-semiconductor field-effect transistor (MOSFET) are proposed. The use of SETs offers periodic literal characteristics due to Coulomb oscillation of SET, which allows a realization of binary logic (BL) circuits as well as multi-valued logic (MVL) circuits. The basic operations of the proposed MVL families are successfully confirmed through SPICE circuit simulation based on the physical device model of a TG-SET. The proposed MVL circuits are found to be much faster, but much larger power consumption than a previously reported MVL, and they have a trade-off between speed and power consumption. As an example to apply the newly developed MVL families, a half-adder is introduced.

  19. Rapid cadmium SAD phasing at the standard wavelength (1 Å).

    Science.gov (United States)

    Panneerselvam, Saravanan; Kumpula, Esa Pekka; Kursula, Inari; Burkhardt, Anja; Meents, Alke

    2017-07-01

    Cadmium ions can be effectively used to promote crystal growth and for experimental phasing. Here, the use of cadmium ions as a suitable anomalous scatterer at the standard wavelength of 1 Å is demonstrated. The structures of three different proteins were determined using cadmium single-wavelength anomalous dispersion (SAD) phasing. Owing to the strong anomalous signal, the structure of lysozyme could be automatically phased and built using a very low anomalous multiplicity (1.1) and low-completeness (77%) data set. Additionally, it is shown that cadmium ions can easily substitute divalent ions in ATP-divalent cation complexes. This property could be generally applied for phasing experiments of a wide range of nucleotide-binding proteins. Improvements in crystal growth and quality, good anomalous signal at standard wavelengths (i.e. no need to change photon energy) and rapid phasing and refinement using a single data set are benefits that should allow cadmium ions to be widely used for experimental phasing.

  20. Effect of Modifying Intervention Set Size with Acquisition Rate Data While Practicing Single-Digit Multiplication Facts

    Science.gov (United States)

    Burns, Matthew K.; Zaslofsky, Anne F.; Maki, Kathrin E.; Kwong, Elena

    2016-01-01

    Incremental rehearsal (IR) has consistently led to effective retention of newly learned material, including math facts. The number of new items taught during one intervention session, called the intervention set, could be used to individualize the intervention. The appropriate amount of information that a student can rehearse and later recall…

  1. Return to Work and Multilevel Versus Single-Level Cervical Fusion for Radiculopathy in a Workers' Compensation Setting.

    Science.gov (United States)

    Faour, Mhamad; Anderson, Joshua T; Haas, Arnold R; Percy, Rick; Woods, Stephen T; Ahn, Uri M; Ahn, Nicholas U

    2017-01-15

    Retrospective comparative cohort study. Examine the impact of multilevel fusion on return to work (RTW) status and compare RTW status after multi- versus single-level cervical fusion for patients with work-related injury. Patients with work-related injuries in the workers' compensation systems have less favorable surgical outcomes. Cervical fusion provides a greater than 90% likelihood of relieving radiculopathy and stabilizing or improving myelopathy. However, more levels fused at index surgery are reportedly associated with poorer surgical outcomes than single-level fusion. Data was collected from the Ohio Bureau of Workers' Compensation (BWC) between 1993 and 2011. The study population included patients who underwent cervical fusion for radiculopathy. Two groups were constructed (multilevel fusion [MLF] vs. single-level fusion [SLF]). Outcomes measures evaluated were: RTW criteria, RTW cervical fusion for radiculopathy was associated with poor return to work profile after surgery. Multilevel cervical fusion was associated with lower RTW rates, less likelihood of achieving stable return to work, and higher rate of disability after surgery. 3.

  2. Multi-wavelength Praseodymium fiber laser using stimulated Brillouin scattering

    Science.gov (United States)

    Ahmad, H.; Aidit, S. N.; Tiu, Z. C.

    2018-02-01

    A multi-wavelength Brillouin Praseodymium fiber laser (MWBPFL) operating at 1300 nm region is demonstrated based on the hybrid scheme by utilizing Brillouin gain medium and Praseodymium-doped fluoride fiber as linear gain medium. A 15 μm air gap is incorporated into the cavity to allow the switching of Brillouin frequency spacing from double to single spacing. Under the Brillouin pump of 8 dBm and the 1020 nm pump power of 567.2 mW, 36 Stokes lines with a wavelength spacing of 0.16 nm and 24 Stokes lines with a wavelength spacing of 0.08 nm are achieved. The wavelength tunability of 8 nm is realized for both MWBPFLs by shifting the Brillouin pump wavelength. The MWBPFLs exhibit an excellent stability in the number of generated Stokes and power level over one-hour period.

  3. Topology optimised wavelength dependent splitters

    DEFF Research Database (Denmark)

    Hede, K. K.; Burgos Leon, J.; Frandsen, Lars Hagedorn

    A photonic crystal wavelength dependent splitter has been constructed by utilising topology optimisation1. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1). The topology optimised wavelength dependent splitter demonstrates promising 3D FDTD simulation results....... This complex photonic crystal structure is very sensitive against small fabrication variations from the expected topology optimised design. A wavelength dependent splitter is an important basic building block for high-performance nanophotonic circuits. 1J. S. Jensen and O. Sigmund, App. Phys. Lett. 84, 2022...

  4. The Idiographic Study of Leadership Behavior in Natural Settings: An Empirical Analysis Using a Single Case Experimental Design.

    Science.gov (United States)

    1982-08-01

    Management , 1977, 1, 105-109. LAuthans, F. Leadership : A proposal for a social learning theory base and observational and functional analysis...Manz, C.C., & Sims, H.P. Self management as a substitute for leadership : A social learning theory perspective. Academy of Management Review, 1980, 5...AD-AI19 89 NEBRASKA UNIV LINCOLN DEPT OF MANAGEMENT F/G 5/1 THE IDIOGRAPHIC STUDY OF LEADERSHIP BEHAVIOR IN NATURAL SETTING-ETCIU)AUG 82 T R DAVI , F

  5. Visual CRO display of pulse height distribution including discriminator setting for a single channel X-ray analyser

    International Nuclear Information System (INIS)

    Shaw, S.E.

    1979-01-01

    An outline for a simple pulse spectroscope which attaches to a standard laboratory CRO is presented. The peak amplitude voltage of each pulse from the linear amplifier of a single channel X-ray analyser is stored for the duration of one oscilloscope trace. For each amplifier pulse, input from the discriminator is tested and if these is coincidence of pulses the oscilloscope beam is blanked for approximately the first 2 cm of its traverse across the screen. Repetition of pulses forms a pulse height distribution with a rectangular dark area marking the position of the discriminator window. (author)

  6. Single-dose compared with multiple day antibiotic prophylaxis for cesarean section in low-resource settings, a randomized controlled, noninferiority trial.

    Science.gov (United States)

    Westen, Esther H M N; Kolk, Pascal R; van Velzen, Christine L; Unkels, Regine; Mmuni, Nicholaus S; Hamisi, Alex D; Nakua, Ritha E; Vlek, Anne L M; van Beekhuizen, Heleen J

    2015-01-01

    To investigate the efficacy of a single prophylactic dose of ampicillin combined with metronidazole to prevent postcesarean section infections compared with a multiple day regimen in low-resource settings. An evaluator-blinded randomized, controlled, noninferiority trial. Two rural hospitals in Tanzania. Of 181 enrolled eligible women with an indication for cesarean section, information on 176 was analyzed by intention-to-treat. The women were randomly assigned to either the intervention group who received a single dose of ampicillin and metronidazole, or to the control group who received a multiple-day regimen of ampicillin/amoxicillin and metronidazole. The primary outcome was maternal postcesarean infection. Secondary outcomes were severity of these infections, other maternal complications, and the duration of hospital stay. In the intervention group (n = 89), six women (6.7%) developed a wound infection compared with nine (10.3%) in the control group (n = 87) (difference 3.60; 95% CI -4.65 to 11.85) (p = 0.40). A single dose of prophylactic ampicillin and metronidazole is equally effective as a multiple-day regimen in preventing postcesarean wound infections in low-resource settings, therefore it can be considered as a good strategy in low-resource settings. The reduced quantity of prophylactic antibiotics will reduce costs without increasing the risk of maternal infection. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  7. A 5-year retrospective study of survival of zirconia single crowns fitted in a private clinical setting.

    Science.gov (United States)

    Ortorp, Anders; Kihl, Maria Lind; Carlsson, Gunnar E

    2012-06-01

    The aim of this report was to evaluate the 5-year clinical performance and survival of zirconia (NobelProcera™) single crowns. All patients treated with porcelain-veneered zirconia single crowns in a private practice during the period October 2004 to November 2005 were included. The records were scrutinized for clinical data. Information was available for 162 patients and 205 crowns. Most crowns (78%) were placed on premolars and molars. Out of the 143 crowns that were followed for 5 years, 126 (88%) did not have any complications. Of those with complications, the most common were: extraction of abutment tooth (7; 3%), loss of retention (15; 7%), need of endodontic treatment (9; 4%) and porcelain veneer fracture (6; 3%). No zirconia cores fractured. In total 19 restorations (9%) were recorded as failures: abutment tooth extraction (7), remake of crown due to lost retention (6), veneer fracture (4), persistent pain (1) and caries (1). The 5-year cumulative survival rate (CSR) was 88.8%. According to the present 5-year results zirconia crowns (NobelProcera™) are a promising prosthodontic alternative also in the premolar and molar regions. Out of the 143 crowns followed for 5 years, 126 (88%) did not have any complications. However, 9% of the restorations were judged as failures. Further studies are necessary to evaluate the long-term success. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Multi-wavelength lasers with suppressed spectral linewidth of 10 kHz.

    Science.gov (United States)

    Wang, Tianhe; Yang, Tianxin; Jia, Dongfang; Wang, Zhaoying; Ge, Chunfeng

    2014-11-03

    High coherent multi-wavelength or multi-tone light source are in high demand for optical density wavelength division multiplexed (DWDM) networks as the telecommunication capacity expands exponentially. However the linewidths of commercial multi-wavelength semiconductor lasers are typically a few MHz which is not acceptable when the frequency spacing of the multi-tones is 10 GHz. In this paper, a novel and simple method to suppress the linewidths of the multi-wavelength from ~6 MHz to ~10 kHz using an all-optical approach is proposed and demonstrated. The linewidths of the multi-wavelength are suppressed by a factor of 600 and the noise level of the multi-wavelength is decreased by nearly 20 dB. Each wavelength of the multi-wavelength operates in single longitudinal mode. Finally, more than 8 wavelengths over 10 nm are suppressed simultaneously through the approach and scheme presented in this work.

  9. Moderation of effects of AAC based on setting and types of aided AAC on outcome variables: an aggregate study of single-case research with individuals with ASD.

    Science.gov (United States)

    Ganz, Jennifer B; Rispoli, Mandy J; Mason, Rose Ann; Hong, Ee Rea

    2014-06-01

    The purpose of this meta-analysis was to evaluate the potential moderating effects of intervention setting and type of aided augmentative and alternative communication (AAC) on outcome variables for students with autism spectrum disorders. Improvement rate difference, an effect size measure, was used to calculate aggregate effects across 35 single-case research studies. Results indicated that the largest effects for aided AAC were observed in general education settings. With respect to communication outcomes, both speech generating devices (SGDs) and the Picture Exchange Communication System (PECS) were associated with larger effects than other picture-based systems. With respect to challenging behaviour outcomes, SGDs produced larger effects than PECS. This aggregate study highlights the importance of considering intervention setting, choice of AAC system and target outcomes when designing and planning an aided AAC intervention.

  10. Systematic wavelength selection for improved multivariate spectral analysis

    Science.gov (United States)

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.

    1995-01-01

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  11. Rotman lens for mm-wavelengths

    Science.gov (United States)

    Hall, Leonard T.; Hansen, Hedley J.; Abbott, Derek

    2002-11-01

    The 77 GHz band has been reserved for intelligent cruise control in luxury cars and some public transport services in America and the United Kingdom. The Rotman lens offers a cheap and compact means to extend the single beam systems generally used, to fully functional beam staring arrangements. Rotman lenses have been built for microwave frequencies with limited success. The flexibility of microstrip transmission lines and the advent of fast accurate simulation packages allow practical Rotman lenses to be designed at mm-wavelengths. This paper discusses the limitations of the conventional design approach and predicts the performance of a new Rotman lens designed at 77 GHz.

  12. Free-space wavelength-multiplexed optical scanner.

    Science.gov (United States)

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  13. A Survey of the Routing and Wavelength Assignment Problem

    DEFF Research Database (Denmark)

    Gamst, Mette

    When transmitting data in an all-optical network, data connections must be established in such a way that two or more connections never share a wavelength on the same fi ber. The NP-hard Routing and Wavelength Assignment (RWA) problem consists of finding paths and wavelengths for a set of data co...... connections. This survey introduces the RWA and gives an overview of heuristic, metaheuristic and exact solution methods from the literature. Running times for the heuristic methods are presented and computational results are discussed....

  14. Preclinical evaluation of Sunitinib as a single agent in the prophylactic setting in a mouse model of bone metastases

    Directory of Open Access Journals (Sweden)

    Schem Christian

    2013-01-01

    Full Text Available Abstract Background A substantial number of breast cancer patients are identified as being at high risk of developing metastatic disease. With increasing number of targeted therapeutics entering clinical trials, chronic administration of these agents may be a feasible approach for the prevention of metastases within this subgroup of patients. In this preclinical study we examined whether Sunitinib, a multi-tyrosine kinase inhibitor which has anti-angiogenic and anti-resorptive activity, is effective in the prevention of bone metastases. Method Sunitinib was administered daily with the first dose commencing prior to tumor cell inoculation. Intracardiac injection was performed with MDA-MB23 bone-seeking cells, which were stably transfected with DsRed2. In vivo plain radiography and fluorescent imaging (Berthold NightOwl was used in the analysis of bone metastases. Histomorphometry was used for the quantification of TRAP+ cells from bone sections and immunohistochemistry was performed using an antibody reactive to CD34 for quantification of microvessel density. Results Preventive dosing administration of Sunitinib does not inhibit colonization of tumor cells to bone or reduce the size of osteolytic lesions. There was a decrease in the number of TRAP+ cells with Sunitinib treatment but this did not reach significance. Sunitinib inhibited tumor growth as determined by imaging of fluorescent tumor area. Immunohistochemical analyses of microvessel density revealed a concomitant decrease in the number of tumor blood vessels. Conclusions The findings suggest that Sunitinib can be used as a therapeutic agent for the treatment of bone metastases but as a single agent it is not effective in terms of prevention. Therefore a combination approach with other cytostatic drugs should be pursued.

  15. A Bilingual Child Learns Social Communication Skills through Video Modeling-A Single Case Study in a Norwegian School Setting

    Directory of Open Access Journals (Sweden)

    Meral Özerk

    2015-09-01

    Full Text Available Video modeling is one of the recognized methods used in the training and teaching of children with Autism Spectrum Disorders (ASD. The model’s theoretical base stems from Albert Bandura's (1977; 1986 social learning theory in which he asserts that children can learn many skills and behaviors observationally through modeling. One can assume that by observing others, a child with ASD can construct an idea of how new behaviors are performed, and on later occasions this mentally and visually constructed information will serve as a guide for his/her way of behaving. There are two types of methods for model learning: 1 In Vivo Modeling and 2 Video Modeling. These can be used a to teach children with ASD skills that are not yet in their behavioral repertoire and / or b to improve the children's emerging behaviors or skills. In the case of linguistic minority children at any stage of their bilingual development, it has been presumed that some of their behaviors that can be interpreted as attitude or culture-related actions. This approach, however, can sometimes delay referral, diagnosis, and intervention. In our project, we used Video Modeling and positive targeted results with regard to teaching social communication skills and target behavior to an eleven year-old bilingual boy with ASD. Our study also reveals that through Video Modeling, children with ASD can learn desirable behavioral skills as by-products. Video Modeling can also contribute positively to the social inclusion of bilingual children with ASD in school settings. In other words, bilingual children with ASD can transfer the social communication skills and targeted behaviors they learn through second-language at school to a first-language milieu.

  16. A bilingual child learns social communication skills through video modeling-a single case study in a norwegian school setting

    Directory of Open Access Journals (Sweden)

    Meral Özerk

    2015-09-01

    Full Text Available Video modeling is one of the recognized methods used in the training and teaching of children with Autism Spectrum Disorders (ASD. The model’s theoretical base stems from Albert Bandura's (1977; 1986 social learning theory in which he asserts that children can learn many skills and behaviors observationally through modeling. One can assume that by observing others, a child with ASD can construct an idea of how new behaviors are performed, and on later occasions this mentally and visually constructed information will serve as a guide for his/her way of behaving. There are two types of methods for model learning: 1 In Vivo Modeling and 2 Video Modeling. These can be used a to teach children with ASD skills that are not yet in their behavioral repertoire and / or b to improve the children's emerging behaviors or skills. In the case of linguistic minority children at any stage of their bilingual development, it has been presumed that some of their behaviors that can be interpreted as attitude or culture-related actions. This approach, however, can sometimes delay referral, diagnosis, and intervention. In our project, we used Video Modeling and achieved positive results with regard to teaching social communication skills and target behavior to an eleven year-old bilingual boy with ASD. Our study also reveals that through Video Modeling, children with ASD can learn desirable behavioral skills as by-products. Video Modeling can also contribute positively to the social inclusion of bilingual children with ASD in school settings. In other words, bilingual children with ASD can transfer the social communication skills and targeted behaviors they learn through second-language at school to a first-language milieu.

  17. Single Source 5-dimensional (Space-, Wavelength-, Time-, Polarization-, Quadrature-) 43 Tbit/s Data Transmission of 6 SDM × 6 WDM × 1.2 Tbit/s Nyquist-OTDM-PDM-QPSK

    DEFF Research Database (Denmark)

    Hu, Hao; Ye, Feihong; Medhin, Ashenafi Kiros

    2014-01-01

    We demonstrate 43-Tbit/s transmission over 67.4-km seven-core fiber using a single source. Each of the 6 outer cores carries 6 Nyquist-WDM channels using 320-Gbaud Nyquist- OTDM-PDM-QPSK 330-GHz spaced, and the center core carries 10-GHz clock pulses....

  18. Single Source 5-dimensional (Space-, Wavelength-, Time-, Polarization-, Quadrature-) 43 Tbit/s Data Transmission of 6 SDM × 6 WDM × 1.2 Tbit/s Nyquist-OTDM-PDM-QPSK

    DEFF Research Database (Denmark)

    Hu, Hao; Ye, Feihong; Medhin, Ashenafi Kiros

    2014-01-01

    We demonstrate 43-Tbit/s transmission over 67.4-km seven-core fiber using a single source. Each of the 6 outer cores carries 6 Nyquist-WDM channels using 320-Gbaud Nyquist- OTDM-PDM-QPSK 330-GHz spaced, and the center core carries 10-GHz clock pulses....

  19. Setting Single or Multiple Goals for Diet and Physical Activity Behaviors Improves Cardiovascular Disease Risk Factors in Adults With Type 2 Diabetes: A Pragmatic Pilot Randomized Trial.

    Science.gov (United States)

    Swoboda, Christine M; Miller, Carla K; Wills, Celia E

    2016-08-01

    The purpose of this study was to evaluate a 4-month telephone-based goal-setting and decision support intervention among adults with type 2 diabetes mellitus (T2DM) and multiple risk factors for cardiovascular disease (CVD). A randomized pretest-posttest control group design was employed. Overweight or obese adults aged 40 to 75 years with T2DM and ≥1 additional CVD risk factor were provided with individualized CVD risk information. At baseline and each biweekly telephone call, the multiple-goal group self-selected both diet- and physical activity-related goals, the single goal group set a single goal, and the control group received information about community health resources. Dietary intake was assessed via a food frequency questionnaire, physical activity via questionnaire, and A1C and blood lipids via fasting fingerstick sample. Between-group differences for clinical (ie, A1C, blood pressure, and blood lipids), physical activity, and dietary variables were evaluated using Kruskal-Wallis, Mann-Whitney U, analysis of variance, and t tests. From pre- to postintervention, the single-goal group demonstrated significant improvement in systolic blood pressure and intake of servings of fruits, vegetables, and refined grains (all P < .05). The multiple-goal group reported significant reduction in percent energy from total, saturated, monounsaturated, and trans fat intake and significant increase in leisure time walking (all P < .05). A multiple-goal approach over 4 months can improve dietary and physical activity outcomes, while a single-goal approach may facilitate improvement in one behavioral domain. Additional research is needed to evaluate maintenance of the achieved changes. © 2016 The Author(s).

  20. Wavelength conversion techniques and devices

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Hansen, Peter Bukhave

    1997-01-01

    interesting for use in WDM optical fibre networks. However, the perfect converter has probably not yet been fabricated and new techniques such as conversion relying on cross-absorption modulation in electro-absorption modulators might also be considered in pursue of effective conversion devices......Taking into account the requirements to the converters e.g., bit rate transparency (at least up to 10 Gbit/s), polarisation independence, wavelength independence, moderate input power levels, high signal-to-noise ratio and high extinction ratio interferometric wavelength convertors are very...

  1. Wavelength standards in the infrared

    CERN Document Server

    Rao, KN

    2012-01-01

    Wavelength Standards in the Infrared is a compilation of wavelength standards suitable for use with high-resolution infrared spectrographs, including both emission and absorption standards. The book presents atomic line emission standards of argon, krypton, neon, and xenon. These atomic line emission standards are from the deliberations of Commission 14 of the International Astronomical Union, which is the recognized authority for such standards. The text also explains the techniques employed in determining spectral positions in the infrared. One of the techniques used includes the grating con

  2. MoS2-wrapped microfiber-based multi-wavelength soliton fiber laser

    Science.gov (United States)

    Lu, Feifei

    2017-11-01

    The single-, dual- and triple-wavelength passively mode-locked erbium-doped fiber lasers are demonstrated with MoS2 and polarization-dependent isolator (PD-ISO). The saturable absorber is fabricated by wrapping an MoS2 around a microfiber. The intracavity PD-ISO acts as a wavelength-tunable filter with a polarization controller (PC) by adjusting the linear birefringence. Single-wavelength mode-locked fiber laser can self-start with suitable pump power. With appropriate PC state, dual- and triple-wavelength operations can be observed when gains at different wavelengths reach a balance. It is noteworthy that dual-wavelength pulses exhibiting peak and dip sidebands, respectively, are demonstrated in the experiment. The proposed simple and multi-wavelength all-fiber conventional soliton lasers could possess potential applications in numerous fields, such as sensors, THz generations and optical communications.

  3. MULTI-WAVELENGTH AIRBORNE LASER SCANNING FOR ARCHAEOLOGICAL PROSPECTION

    Directory of Open Access Journals (Sweden)

    C. Briese

    2013-07-01

    Full Text Available Airborne laser scanning (ALS is a widely used technique for the sampling of the earth's surface. Next to the widely used geometric information current systems provide additional information about the signal strength of each echo. In order to utilize this information, radiometric calibration is essential. As a result physical observables that characterise the backscatter characteristic of the sensed surface are available. Due to the active illumination of the surfaces these values are independent of shadows caused by sunlight and due to the simultaneously recorded 3D information a single-channel true orthophoto can be directly estimated from the ALS data. By the combination of ALS data utilizing different laser wavelengths a multi-wavelength orthophoto of the scene can be generated. This contribution presents, next to the practical calibration workflow, the radiometric calibration results of the archaeological study site Carnuntum (Austria. The area has been surveyed at three different ALS wavelengths within a very short period of time. After the radiometric calibration of each single ALS wavelength (532 nm, 1064 nm and 1550 nm a multi-channel ALS orthophoto is derived. Subsequently, the radiometric calibration results of the single- and multi-wavelength ALS data are studied in respect to present archaeological features. Finally, these results are compared to the radiometric calibration results of an older ALS data acquisition campaign and to results of a systematic air photo interpretation.

  4. Deep groundwater flow systems and their characterization in single-well settings by ''push-pull'' tracer tests

    Energy Technology Data Exchange (ETDEWEB)

    Hebig-Schubert, Klaus

    2014-11-21

    This thesis demonstrates the growing importance of deep groundwater research and the increasing demand for the development of suitable single-well test methods. At the forefront of the research on groundwater in the deep underground, radioactive waste disposal in deep geological repositories, CO{sub 2} storage, geothermal energy supply, and aquifer storage and recovery systems (ASR) are on the agenda. The developments of suitable methods for investigating these resources are a main target. Currently available methods show considerable limitations. Accordingly, comprehensive methods for the hydraulic and hydrochemical characterization of deeper aquifers with single-well access are needed. Therefore, the goal of this PhD thesis was to identify, test, and enhance potentially suitable single-well methods for characterization of groundwater flow and solute transport in such settings. For this, several Single-Well Injection-Withdrawal (''push-pull'') tracer tests were applied at the Hamasato field site (Horonobe, Japan) in a ∝100 m deep groundwater monitoring well. Aim was to characterize the impact of a dynamic saltwater-freshwater interface on a coastal aquifer. Based on the experiences of the first methodological test, a second field campaign was conducted. This campaign focused on a systematic evaluation of the push-pull tracer test method for the first time at all. The experiments focused on the investigation of the so-called ''chaser'' and its impact on the test results. The chaser is a specific part of many push-pull tracer tests setups. From these experiments, a specific test design for the investigation of the saltwater-freshwater interface in a single-well setting was developed. The application of this design on questions regarding different fluids within the same system, e.g. different mineralized fluids (saltwater-freshwater-interface, ASR) or temperatures (geothermal research), are promising future approaches for

  5. Setting up a Prospective Thyroid Biobank for Translational Research: Practical Approach of a Single Institution (2004-2009, Pasteur Hospital, Nice, France).

    Science.gov (United States)

    Lassalle, Sandra; Hofman, Véronique; Ilie, Marius; Butori, Catherine; Bonnetaud, Christelle; Gaziello, Marie Clotilde; Selva, Eric; Gavric-Tanga, Virginie; Guevara, Nicolas; Castillo, Laurent; Santini, José; Chabannon, Christian; Hofman, Paul

    2011-03-01

    In the last few years, conditions for setting up a human biobank in France have been upgraded by taking into account (1) the new laws and regulations that integrate the ethical and societal dimension of biobanking and delineate the risks for patients associated with the procurement of human cells and tissues, (2) the increasing request by scientists for human samples with proven biological quality and sophisticated sets of annotations, including information produced through the evergrowing use of molecular biology in pathology, and (3) establishment of procedures concerning the safety of the personnel working with biological products. For this purpose, health authorities and national research institutes in France have provided significant support for the set up of biobanks. The present work was conducted to describe how we set up a biobank targeting diseases of a specific organ (thyroid gland), with the aim of rapidly developing translational research projects. The prospective experience of a single institution (Pasteur Hospital, Nice, France) over a 6-year period (2004-2009) is presented from the practical point of view of a surgical pathology laboratory. We describe different procedures required to obtain high-quality thyroid biological resources and clinical annotations. The procedures were established for the management of biological products obtained from 1454 patients who underwent thyroid surgery. The preanalytical steps leading to the storage of frozen specimens were carried out in parallel with diagnostic procedures. As the number of international networks for research programs using biological products is steadily increasing, it is crucial to harmonize the procedures used by biobanks. In this regard, the described thyroid biobank has been set up using criteria established by the French National Cancer Institute (Institut National du Cancer) to guarantee the quality of different collections stored in biobanks.

  6. Isoplanatic patch of the human eye for arbitrary wavelengths

    Science.gov (United States)

    Han, Guoqing; Cao, Zhaoliang; Mu, Quanquan; Wang, Yukun; Li, Dayu; Wang, Shaoxin; Xu, Zihao; Wu, Daosheng; Hu, Lifa; Xuan, Li

    2018-03-01

    The isoplanatic patch of the human eye is a key parameter for the adaptive optics system (AOS) designed for retinal imaging. The field of view (FOV) usually sets to the same size as the isoplanatic patch to obtain high resolution images. However, it has only been measured at a specific wavelength. Here we investigate the wavelength dependence of this important parameter. An optical setup is initially designed and established in a laboratory to measure the isoplanatic patch at various wavelengths (655 nm, 730 nm and 808 nm). We established the Navarro wide-angle eye model in Zemax software to further validate our results, which suggested high consistency between the two. The isoplanatic patch as a function of wavelength was obtained within the range of visible to near-infrared, which can be expressed as: θ=0.0028 λ - 0 . 74. This work is beneficial for the AOS design for retinal imaging.

  7. One-step in-diffusion as a result of multipulse laser irradiation of LiNbO3 single-crystalline substrates covered with thin Ti deposits on the effect of the radiation wavelength

    International Nuclear Information System (INIS)

    Ferrari, A.; Schirone, L.; Maiello, G.

    1994-05-01

    We studied Ti in-diffusion as an effect of multiple laser irradiation, in either visible of ultraviolet (u.v.) spectral ranges, of LiNbO 3 single-crystalline structures with Ti coatings of two different thickness. It is shown that while u.v. (excimer, λ approx. 308 nm) laser irradiation causes a complete expulsion of the Ti deposit, the visible (ruby, λ approx. 694.3 nm) laser irradiation at intermediate incident laser fluence (up to approx. 0.7J cm -2 ) promotes efficient Ti in-diffusion from the thin (400 A width) Ti deposit down to a micrometre range implantation depth. (author). 7 refs, 6 figs

  8. Review of short wavelength lasers

    International Nuclear Information System (INIS)

    Hagelstein, P.L.

    1985-01-01

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references

  9. Review of short wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, P.L.

    1985-03-18

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references.

  10. 1.28 Tb/s wavelength conversion for polarisation multiplexed RZ-DPSK signals

    DEFF Research Database (Denmark)

    Hu, Hao; Palushani, Evarist; Galili, Michael

    2010-01-01

    All-optical wavelength conversion for single wavelength channel 1.28-Tb/s polarisation multiplexed RZ-DPSK signals was demonstrated using a 100-m polarisation-maintaining highly nonlinear fibre (PM-HNLF). Error free performance for the converted signal was achieved.......All-optical wavelength conversion for single wavelength channel 1.28-Tb/s polarisation multiplexed RZ-DPSK signals was demonstrated using a 100-m polarisation-maintaining highly nonlinear fibre (PM-HNLF). Error free performance for the converted signal was achieved....

  11. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    Science.gov (United States)

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  12. Evaluation of J and CTOD (Crack Tip Opening Displacement) fracture parameters for pipeline steels using Single Edge Notch Tension SE(T) specimens

    Energy Technology Data Exchange (ETDEWEB)

    Paredes Tobar, Lenin Marcelo; Ruggieri, Claudio [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Naval e Oceanica

    2009-12-19

    This work presents an evaluation procedure to determine the elastic-plastic J-integral and CTOD for pin-loaded and clamped single edge notch tension (SE(T)) specimens based upon the eta-method. The primary objective is to derive estimation equations applicable to determine J and CTOD fracture parameters for a wide range of a/W-ratios and material flow properties. Very detailed non-linear finite element analyses for plane-strain and full-thickness, 3-D models provide the evolution of load with increased crack mouth opening displacement which is required for the estimation procedure. The present analyses, when taken together with previous studies provide a fairly extensive body of results which serve to determine parameters J and CTOD for different materials using tension specimens with varying geometries. (author)

  13. General derivation of the Green's functions for the atomic approach of the Anderson model: application to a single electron transistor (SET)

    Science.gov (United States)

    Foglio, M. E.; Lobo, T.; Figueira, M. S.

    2012-09-01

    We consider the cumulant expansion of the periodic Anderson model (PAM) in the case of a finite electronic correlation U, employing the hybridization as perturbation, and obtain a formal expression of the exact one-electron Green's function (GF). This expression contains effective cumulants that are as difficult to calculate as the original GF, and the atomic approach consists in substituting the effective cumulants by the ones that correspond to the atomic case, namely by taking a conduction band of zeroth width and local hybridization. In a previous work (T. Lobo, M. S. Figueira, and M. E. Foglio, Nanotechnology 21, 274007 (2010), 10.1088/0957-4484/21/27/274007) we developed the atomic approach by considering only one variational parameter that is used to adjust the correct height of the Kondo peak by imposing the satisfaction of the Friedel sum rule. To obtain the correct width of the Kondo peak in the present work, we consider an additional variational parameter that guarantees this quantity. The two constraints now imposed on the formalism are the satisfaction of the Friedel sum rule and the correct Kondo temperature. In the first part of the work, we present a general derivation of the method for the single impurity Anderson model (SIAM), and we calculate several density of states representative of the Kondo regime for finite correlation U, including the symmetrical case. In the second part, we apply the method to study the electronic transport through a quantum dot (QD) embedded in a quantum wire (QW), which is realized experimentally by a single electron transistor (SET). We calculate the conductance of the SET and obtain a good agreement with available experimental and theoretical results.

  14. A single visit multidisciplinary model for managing patients with mutations in moderate and high-risk genes in a community practice setting.

    Science.gov (United States)

    O'Leary, Michael P; Goldner, Bryan S; Abboy, Sridevi; Mercado, Philip D; Plurad, Hong Yoon

    2018-01-01

    The introduction of screening for multiple high and moderate risk mutations in genes has resulted in a complex approach to patient care involving multiple disciplines. We sought to describe the feasibility of a single visit multidisciplinary approach to the management of patients with an identified high/moderate risk gene mutation. Patients who presented to our community hospital over a 1-year period who were found to have a high/moderate risk genetic mutation on a screening panel were referred to the High Risk Genetic Clinic. Thirty-five patients were included. The majority were female [34 (97.1%)], Hispanic [22 (62.9%)], with a family history of cancer [21 (60%)]. Mean age was 40.3 years. Most of the participants had a BRCA1 gene mutation [10 (28.6%)]. Patients were seen at the High Risk Genetic Clinic within a mean of 41.9 days from the day of genetic mutation diagnosis. Four patients did not show and were significantly younger (19.3 vs. 39.6 years, p = 0.014). In this community setting, we provided coordinated care within multiple disciplines related to a genetic mutation in a single clinic visit. Increased efforts at coordinating early care should be directed towards patients diagnosed at a younger age.

  15. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination

    Science.gov (United States)

    Spigulis, Janis; Oshina, Ilze; Berzina, Anna; Bykov, Alexander

    2017-09-01

    Chromophore distribution maps are useful tools for skin malformation severity assessment and for monitoring of skin recovery after burns, surgeries, and other interactions. The chromophore maps can be obtained by processing several spectral images of skin, e.g., captured by hyperspectral or multispectral cameras during seconds or even minutes. To avoid motion artifacts and simplify the procedure, a single-snapshot technique for mapping melanin, oxyhemoglobin, and deoxyhemoglobin of in-vivo skin by a smartphone under simultaneous three-wavelength (448-532-659 nm) laser illumination is proposed and examined. Three monochromatic spectral images related to the illumination wavelengths were extracted from the smartphone camera RGB image data set with respect to crosstalk between the RGB detection bands. Spectral images were further processed accordingly to Beer's law in a three chromophore approximation. Photon absorption path lengths in skin at the exploited wavelengths were estimated by means of Monte Carlo simulations. The technique was validated clinically on three kinds of skin lesions: nevi, hemangiomas, and seborrheic keratosis. Design of the developed add-on laser illumination system, image-processing details, and the results of clinical measurements are presented and discussed.

  16. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  17. Wavelength-encoded OCDMA system using opto-VLSI processors

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  18. Wavelength-encoded OCDMA system using opto-VLSI processors.

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  19. RIRS versus mPCNL for single renal stone of 2-3 cm: clinical outcome and cost-effective analysis in Chinese medical setting.

    Science.gov (United States)

    Pan, Jiahua; Chen, Qi; Xue, Wei; Chen, Yonghui; Xia, Lei; Chen, Haige; Huang, Yiran

    2013-02-01

    The aim of the study was to compare the clinical outcome and the cost-effectiveness between retrograde intra renal surgery (RIRS) and mini-percutaneous nephrolithotripsy (mPCNL) for the management of single renal stone of 2-3 cm in Chinese medical setting. From May 2005 to February 2011, 115 patients with solitary renal calculi were treated either by RIRS or mPCNL. 56 patients were in RIRS group while 59 were in mPCNL group. Patients' demographics between the two groups, in terms of gender, age, BMI, history of ESWL as well as stone side, stone location and stone size were comparable. Peri-operative course, clinical outcome, complication rates and medical cost were compared. The effective quotient (EQ) of two groups was calculated. Data were analyzed using Fisher's exact test, Chi-square test and Student's t test. EQ for RIRS and mPCNL were 0.52 and 0.90. The initial stone-free rate (SFR) of RIRS group and mPCNL group was 71.4 and 96.6 %, respectively (P = 0.000). The mean procedure number was 1.18 in RIRS group and 1.03 in mPCNL group, respectively (P = 0.035). The operative time for RIRS was longer (P = 0.000) while the mean hospital stay was shorter (P = 0.000). There was no statistical difference in peri-operative complications between the groups. The initial hospitalization cost, laboratory and radiology test cost of RIRS group were lower (P = 0.000). However, counting the retreatment cost in the two groups, the total medical expenditure including the overall hospitalization cost, overall laboratory and radiology test cost and post-operative out-patient department (OPD) visit cost was similar between two groups. In conclusion, with similar total medical cost, mPCNL achieved faster stone clearance and lower retreatment rate without major complications, which implied higher cost-effectiveness for the treatment of single renal stone of 2-3 cm in Chinese medical setting. RIRS is also a safe and reliable choice for patients having contraindications or

  20. Using wavelength-normalized optical spectroscopy to improve the accuracy of bacteria growth rate quantification

    Science.gov (United States)

    McBirney, Samantha E.; Trinh, Kristy; Wong-Beringer, Annie; Armani, Andrea M.

    2017-02-01

    One of the fundamental analytical measurements performed in microbiology is monitoring and characterizing cell concentration in culture media. Measurement error will give rise to reproducibility problems in a wide range of applications, from biomanufacturing to basic research. Therefore, it is critical that the generated results are consistent. Single wavelength optical density (OD) measurements have become the preferred approach. Here, we compare the conventional OD600 technique with a multi-wavelength normalized scattering optical spectroscopy method to measure the growth rates of Pseudomonas aeruginosa and Staphylococcus aureus, two of the leading nosocomial pathogens with proven abilities to develop resistance. The multi-wavelength normalization process minimizes the impact of bacteria byproducts and environmental noise on the signal, thereby accurately quantifying growth rates with high fidelity at low concentrations. In contrast, due to poor absorbance and scattering at 600 nm, the classic OD600 measurement method is able to detect bacteria but cannot quantify the growth rate reliably. Our wavelength-normalization protocol to detect bacteria growth rates can be readily and easily adopted by research labs, given that it only requires the use of a standard spectrophotometer and implementation of straightforward data analysis. Measuring and monitoring bacteria growth rates play a critical role in a wide range of settings, spanning from therapeutic design and development to diagnostics and disease prevention. Having a full understanding of the growth cycles of bacteria known to cause severe infections and diseases will lead to a better understanding of the pathogenesis of these illnesses, leading to better treatment and, ultimately, the development of a cure.

  1. Solutions for ultra-high speed optical wavelength conversion and clock recovery

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    This paper reports on our recent advances in ultra-fast optical communications relying on ultra-short pulses densely stacked in ultra-high bit rate serial data signals at a single wavelength. The paper describes details in solutions for the network functionalities of wavelength conversion and clock...

  2. Wavelength modulation spectroscopy of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.E.

    1977-10-01

    The use of modulation spectroscopy to study the electronic properties of solids has been very productive. The construction of a wide range Wavelength Modulation Spectrometer to study the optical properties of solids is described in detail. Extensions of the working range of the spectrometer into the vacuum ultraviolet are discussed. Measurements of the reflectivity and derivative reflectivity spectra of the lead chalcogenides, the chalcopyrite ZnGeP/sub 2/, the layer compounds GaSe and GaS and their alloys, the ferroelectric SbSI, layer compounds SnS/sub 2/ and SnSe/sub 2/, and HfS/sub 2/ were made. The results of these measurements are presented along with their interpretation in terms of band structure calculations.

  3. Sustainable Assessment of Alternative Sites for the Construction of a Waste Incineration Plant by Applying WASPAS Method with Single-Valued Neutrosophic Set

    Directory of Open Access Journals (Sweden)

    Edmundas Kazimieras Zavadskas

    2015-12-01

    Full Text Available The principles of sustainability have become particularly important in the construction, real estate maintenance sector, and all areas of life in recent years. The one of the major problem of urban territories that domestic and construction waste of generated products cannot be removed automatically. The above necessity induces the demand of systems and technologies for waste life cycle and proper disposal development. Siting of the waste incineration plant is a complex process, which includes all factors of sustainability principles. The selection of the construction area is a complex problem due to the existence of different tangible and intangible factors and the multiple alternatives available. Multicriteria decision-making methods (MCDM present powerful and flexible techniques for the solution of many sustainability problems. In this paper, we propose a new extension of WASPAS method, namely WASPAS-SVNS. This extension is realized in the framework of the single-valued neutrosophic set that enables to represent and model the indeterminacy explicitly and the functions of the truth-membership, the indeterminacy-membership and the falsity-membership are not related to each other. The paper deals with the solution of the waste incineration plant siting problem due to the requirements of sustainability factors.

  4. Systematic instruction of assistive technology for cognition (ATC) in an employment setting following acquired brain injury: A single case, experimental study.

    Science.gov (United States)

    Powell, Laurie E; Glang, Ann; Pinkelman, Sarah; Albin, Richard; Harwick, Robin; Ettel, Deborah; Wild, Michelle R

    2015-01-01

    Assistive technology for cognition (ATC) can be an effective means of compensating for cognitive impairments following acquired brain injury. Systematic instruction is an evidence-based approach to training a variety of skills and strategies, including the use of ATC. This study experimentally evaluated systematic instruction applied to assistive technology for cognition (ATC) in a vocational setting. The study used a single-case, multiple-probe design across behaviors design. The participant was a 50-year old female with cognitive impairments following an acquired brain injury (ABI). As a part-time employee, she was systematically instructed on how to operate and routinely use selected applications (apps) on her iPod Touch to support three work-related skills: (a) recording/recalling the details of work assignments, (b) recording/recalling work-related meetings and conversations, and (c) recording/performing multi-step technology tasks. The experimental intervention was systematic instruction applied to ATC. The dependent measures were: (a) the use of ATC at work as measured by an ATC routine task analysis; and (b) recall of work-related tasks and information. Treatment effects were replicated across the three work-related skills and were maintained up to one year following the completion of intensive training across behaviors with periodic review (booster sessions). Systematic instruction is a critical component to teaching the routine use of ATC to compensate for cognitive impairments following ABI.

  5. Three-channel single-wavelength lidar depolarization calibration

    Science.gov (United States)

    McCullough, Emily M.; Sica, Robert J.; Drummond, James R.; Nott, Graeme J.; Perro, Christopher; Duck, Thomas J.

    2018-02-01

    Linear depolarization measurement capabilities were added to the CANDAC Rayleigh-Mie-Raman lidar (CRL) at Eureka, Nunavut, in the Canadian High Arctic in 2010. This upgrade enables measurements of the phases (liquid versus ice) of cold and mixed-phase clouds throughout the year, including during polar night. Depolarization measurements were calibrated according to existing methods using parallel- and perpendicular-polarized profiles as discussed in ). We present a new technique that uses the polarization-independent Rayleigh elastic channel in combination with one of the new polarization-dependent channels, and we show that for a lidar with low signal in one of the polarization-dependent channels this method is superior to the traditional method. The optimal procedure for CRL is to determine the depolarization parameter using the traditional method at low resolution (from parallel and perpendicular signals) and then to use this value to calibrate the high-resolution new measurements (from parallel and polarization-independent Rayleigh elastic signals). Due to its use of two high-signal-rate channels, the new method has lower statistical uncertainty and thus gives depolarization parameter values at higher spatial-temporal resolution by up to a factor of 20 for CRL. This method is easily adaptable to other lidar systems which are considering adding depolarization capability to existing hardware.

  6. Three-channel single-wavelength lidar depolarization calibration

    Directory of Open Access Journals (Sweden)

    E. M. McCullough

    2018-02-01

    Full Text Available Linear depolarization measurement capabilities were added to the CANDAC Rayleigh–Mie–Raman lidar (CRL at Eureka, Nunavut, in the Canadian High Arctic in 2010. This upgrade enables measurements of the phases (liquid versus ice of cold and mixed-phase clouds throughout the year, including during polar night. Depolarization measurements were calibrated according to existing methods using parallel- and perpendicular-polarized profiles as discussed in . We present a new technique that uses the polarization-independent Rayleigh elastic channel in combination with one of the new polarization-dependent channels, and we show that for a lidar with low signal in one of the polarization-dependent channels this method is superior to the traditional method. The optimal procedure for CRL is to determine the depolarization parameter using the traditional method at low resolution (from parallel and perpendicular signals and then to use this value to calibrate the high-resolution new measurements (from parallel and polarization-independent Rayleigh elastic signals. Due to its use of two high-signal-rate channels, the new method has lower statistical uncertainty and thus gives depolarization parameter values at higher spatial–temporal resolution by up to a factor of 20 for CRL. This method is easily adaptable to other lidar systems which are considering adding depolarization capability to existing hardware.

  7. UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation.

    Science.gov (United States)

    Peacock, Mike; Evans, Chris D; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Jones, Timothy G; Lebron, Inma

    2014-05-01

    Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.

  8. Methods of Attenuation Correction for Dual-Wavelength and Dual-Polarization Weather Radar Data

    Science.gov (United States)

    Meneghini, R.; Liao, L.

    2007-01-01

    In writing the integral equations for the median mass diameter and number concentration, or comparable parameters of the raindrop size distribution, it is apparent that the forms of the equations for dual-polarization and dual-wavelength radar data are identical when attenuation effects are included. The differential backscattering and extinction coefficients appear in both sets of equations: for the dual-polarization equations, the differences are taken with respect to polarization at a fixed frequency while for the dual-wavelength equations, the differences are taken with respect to frequency at a fixed polarization. An alternative to the integral equation formulation is that based on the k-Z (attenuation coefficient-radar reflectivity factor) parameterization. This-technique was originally developed for attenuating single-wavelength radars, a variation of which has been applied to the TRMM Precipitation Radar data (PR). Extensions of this method have also been applied to dual-polarization data. In fact, it is not difficult to show that nearly identical equations are applicable as well to dualwavelength radar data. In this case, the equations for median mass diameter and number concentration take the form of coupled, but non-integral equations. Differences between this and the integral equation formulation are a consequence of the different ways in which attenuation correction is performed under the two formulations. For both techniques, the equations can be solved either forward from the radar outward or backward from the final range gate toward the radar. Although the forward-going solutions tend to be unstable as the attenuation out to the range of interest becomes large in some sense, an independent estimate of path attenuation is not required. This is analogous to the case of an attenuating single-wavelength radar where the forward solution to the Hitschfeld-Bordan equation becomes unstable as the attenuation increases. To circumvent this problem, the

  9. Design of dual ring wavelength filters for WDM applications

    Science.gov (United States)

    Sathyadevaki, R.; Shanmuga sundar, D.; Sivanantha Raja, A.

    2016-12-01

    Wavelength division multiplexing plays a prime role in an optical communication due to its advantages such as easy network expansion, longer span lengths etc. In this work, photonic crystal based filters with the dual rings are proposed which act as band pass filters (BPF) and channel drop filter (CDF) that has found a massive applications in C and L-bands used for wavelength selection and noise filtering at erbium doped fiber amplifiers and dense wavelength division multiplexing operation. These filters are formulated on the square lattice with crystal rods of silicon material of refractive index 3.4 which are perforated on an air of refractive index 1. Dual ring double filters (band pass filter and channel drop filter) on single layout possess passing and dropping band of wavelengths in two distinct arrangements with entire band quality factors of 92.09523 & 505.263 and 124.85019 & 456.8633 for the pass and drop filters of initial setup and amended setup respectively. These filters have the high-quality factor with broad and narrow bandwidths of 16.8 nm & 3.04 nm and 12.85 nm & 3.3927 nm. Transmission spectra and band gap of the desired filters is analyzed using Optiwave software suite. Two dual ring filters incorporated on a single layout comprises the size of 15×11 μm which can also be used in the integrated photonic chips for the ultra-compact unification of devices.

  10. Design of a wavelength frame multiplication system using acceptance diagrams

    International Nuclear Information System (INIS)

    Nekrassov, D.; Zendler, C.; Lieutenant, K.

    2013-01-01

    The concept of Wavelength Frame Multiplication (WFM) was developed to extend the usable wavelength range on long pulse neutron sources for instruments using pulse shaping choppers. For some instruments, it is combined with a pulse shaping double chopper, which defines a constant wavelength resolution, and a set of frame overlap choppers that prevent spurious neutrons from reaching the detector thus avoiding systematic errors in the calculation of wavelength from time of flight. Due to its complexity, the design of such a system is challenging and there are several criteria that need to be accounted for. In this work, the design of the WFM chopper system for a potential future liquids reflectometer at the European Spallation Source (ESS) is presented, which makes use of acceptance diagrams. They prove to be a powerful tool for understanding the work principle of the system and recognizing potential problems. The authors assume that the presented study can be useful for design or upgrade of further instruments, in particular the ones planned for the ESS. -- Highlights: • Design of a wavelength frame multiplication system for a long pulse source beamline. • First application of the acceptance diagrams method to WFM systems. • Confirmation of analytical considerations by neutronic MC simulations. • Implications of this work for instrument design at the European Spallation Source

  11. Optimization of dual-wavelength intravascular photoacoustic imaging of atherosclerotic plaques using Monte Carlo optical modeling

    Science.gov (United States)

    Dana, Nicholas; Sowers, Timothy; Karpiouk, Andrei; Vanderlaan, Donald; Emelianov, Stanislav

    2017-10-01

    Coronary heart disease (the presence of coronary atherosclerotic plaques) is a significant health problem in the industrialized world. A clinical method to accurately visualize and characterize atherosclerotic plaques is needed. Intravascular photoacoustic (IVPA) imaging is being developed to fill this role, but questions remain regarding optimal imaging wavelengths. We utilized a Monte Carlo optical model to simulate IVPA excitation in coronary tissues, identifying optimal wavelengths for plaque characterization. Near-infrared wavelengths (≤1800 nm) were simulated, and single- and dual-wavelength data were analyzed for accuracy of plaque characterization. Results indicate light penetration is best in the range of 1050 to 1370 nm, where 5% residual fluence can be achieved at clinically relevant depths of ≥2 mm in arteries. Across the arterial wall, fluence may vary by over 10-fold, confounding plaque characterization. For single-wavelength results, plaque segmentation accuracy peaked at 1210 and 1720 nm, though correlation was poor (primary wavelength (≈1.0). Results suggest that, without flushing the luminal blood, a primary and secondary wavelength near 1210 and 1350 nm, respectively, may offer the best implementation of dual-wavelength IVPA imaging. These findings could guide the development of a cost-effective clinical system by highlighting optimal wavelengths and improving plaque characterization.

  12. Sub-picometer multi-wavelength detector based on highly sensitive nanomechanical resonator

    Science.gov (United States)

    Maeda, Etsuo; Kometani, Reo

    2017-07-01

    The wavelength division multiplexing (WDM) method for near infrared (NIR) optical fiber (1530-1565 nm) is the system that is wildly used for intercontinental communication. WDM achieves high-speed and large-capacity communication, but costs a lot because the high-resolution (˜10 pm) wavelength locker for wavelength stabilization only corresponds to a single wavelength. In this report, we propose a highly sensitive sub-picometer multi-wavelength detector that substitutes a typical single-wavelength detector for WDM. Our wavelength detector consists of a narrow band (FWHM 20 000) nanomechanical resonator. The photonic absorber confines and transforms the illuminated NIR light wave into thermal stress, and then, the thermal stress in the nanomechanical resonator will appear as the eigenfrequency shift of the nanomechanical resonator. Through experimental works with an NIR laser and optical Doppler vibration meter, the sensitivity of our wavelength detector was determined to be 0.196 pm in the 10-nm-range of the NIR region. Our sub-picometer multi-wavelength detector will achieve a fast, wide-band, and cost-effective optical communication system.

  13. Frequency domain phase retrieval of simultaneous multi-wavelength phase-shifting interferometry

    International Nuclear Information System (INIS)

    Yin, Zhenxing; Zhong, Liyun; Xu, Xiaofei; Zhang, Wangping; Lu, Xiaoxu; Tian, Jindong

    2016-01-01

    In simultaneous multi-wavelength phase-shifting interferometry, we propose a novel frequency domain phase retrieval (FDPR) algorithm. First, using only a one-time phase-shifting operation, a sequence of simultaneous multi-wavelength phase-shifting interferograms (SPSMWIs) are captured by a monochrome charge-coupled device. Second, by performing a Fourier transform for each pixel of SPSMWIs, the wrapped phases of each wavelength can be retrieved from the complex amplitude located in the spectral peak of each wavelength. Finally, the phase of the synthetic wavelength can be obtained by the subtraction between the wrapped phases of a single wavelength. In this study, the principle and the application condition of the proposed approach are discussed. Both the simulation and the experimental result demonstrate the simple and convenient performance of the proposed FDPR approach. (paper)

  14. Peptide Inhibitor of Complement C1 (PIC1) demonstrates antioxidant activity via single electron transport (SET) and hydrogen atom transfer (HAT).

    Science.gov (United States)

    Gregory Rivera, Magdielis; Hair, Pamela S; Cunnion, Kenji M; Krishna, Neel K

    2018-01-01

    Reactive oxygen species (ROS) are natural byproducts of oxidative respiration that are toxic to organs and tissues. To mitigate ROS damage, organisms have evolved a variety of antioxidant systems to counteract these harmful molecules, however in certain pathological conditions these protective mechanisms can be overwhelmed. We have recently demonstrated that Peptide Inhibitor of Complement C1 (PIC1) mitigates peroxidase activity of the heme bearing proteins myeloperoxidase, hemoglobin, and myoglobin through a reversible process. To determine if this property of PIC1 was antioxidant in nature, we tested PIC1 in a number of well-established antioxidant assays. PIC1 showed dose-dependent antioxidant activity in a total antioxidant (TAC) assay, hydroxyl radical antioxidant capacity (HORAC) assay, oxygen radical antioxidant capacity (ORAC) assay as well as the thiobarbituric acid reactive substances (TBARS) assay to screen for PIC1 antioxidant activity in human plasma. The antioxidant activity of PIC1 in the TAC assay, as well as the HORAC/ORAC assay demonstrated that this peptide acts via the single electron transport (SET) and hydrogen atom transfer (HAT) mechanisms, respectively. Consistent with this mechanism of action, PIC1 did not show activity in a metal chelating activity (MCA) assay. PIC1 contains two vicinal cysteine residues and displayed similar antioxidant activity to the well characterized cysteine-containing tripeptide antioxidant molecule glutathione (GSH). Consistent with the role of the cysteine residues in the antioxidant activity of PIC1, oxidation of these residues significantly abrogated antioxidant activity. These results demonstrate that in addition to its described complement inhibiting activity, PIC1 displays in vitro antioxidant activity.

  15. Solar Observations at Submillimeter Wavelengths

    Science.gov (United States)

    Kaufmann, P.

    We review earlier to recent observational evidences and theoretical motivations leading to a renewed interest to observe flares in the submillimeter (submm) - infrared (IR) range of wavelengths. We describe the new solar dedicated submillimeter wave telescope which began operations at El Leoncito in the Argentina Andes: the SST project. It consists of focal plane arrays of two 405 GHz and four 212 GHz radiometers placed in a 1.5-m radome-enclosed Cassegrain antenna, operating simultaneously with one millisecond time resolution. The first solar events analyzed exhibited the onset of rapid submm-wave spikes (100-300 ms), well associated to other flare manifestations, especially at X-rays. The spikes positions were found scattered over the flaring source by tens of arcseconds. For one event an excellent association was found between the gamma-ray emission time profile and the rate of occurrence of submm-wave rapid spikes. The preliminary results favour the idea that bulk burst emissions are a response to numerous fast energetic injections, discrete in time, produced at different spatial positions over the flaring region. Coronal mass ejections were associated to the events studied. Their trajectories extrapolated to the solar surface appear to correspond to the onset time of the submm-wave spikes, which might represent an early signature of the CME's initial acceleration process.

  16. All-optical wavelength-shifting technologies

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Mikkelsen, Benny; Danielsen, Søren Lykke

    1995-01-01

    State-of-the-art results for interferometric wavelength converters for WDM fiber networks have been presented. The interferometric converters are capable of high speed (10 Gbit/s), polarisation and wavelength independent (within 30 nn) wavelength conversion. In addition they offer unique features...... such as extinction ratio improvement and spectral cleaning. The 1-dB input power dynamic range is around 4 dB but can be increased to 8 dB by a simple control scheme...

  17. Quantum dot SOA/silicon external cavity multi-wavelength laser.

    Science.gov (United States)

    Zhang, Yi; Yang, Shuyu; Zhu, Xiaoliang; Li, Qi; Guan, Hang; Magill, Peter; Bergman, Keren; Baehr-Jones, Thomas; Hochberg, Michael

    2015-02-23

    We report a hybrid integrated external cavity, multi-wavelength laser for high-capacity data transmission operating near 1310 nm. This is the first demonstration of a single cavity multi-wavelength laser in silicon to our knowledge. The device consists of a quantum dot reflective semiconductor optical amplifier and a silicon-on-insulator chip with a Sagnac loop mirror and microring wavelength filter. We show four major lasing peaks from a single cavity with less than 3 dB power non-uniformity and demonstrate error-free 4 × 10 Gb/s data transmission.

  18. Effective wavelength calibration for moire fringe projection

    International Nuclear Information System (INIS)

    Purcell, Daryl; Davies, Angela; Farahi, Faramarz

    2006-01-01

    The fringe patterns seen when using moire instruments are similar to the patterns seen in traditional interferometry but differ in the spacing between consecutive fringes. In traditional interferometry, the spacing is constant and related to the wavelength of the source. In moire fringe projection, the spacing (the effective wavelength) may not be constant over the field of view and the spacing depends on the system geometry. In these cases, using a constant effective wavelength over the field of view causes inaccurate surface height measurements. We examine the calibration process of the moirefringe projection measurement, which takes this varying wavelength into account to produce a pixel-by-pixel wavelength map. The wavelength calibration procedure is to move the object in the out-of-plane direction a known distance until every pixel intensity value goes through at least one cycle. A sinusoidal function is then fit to the data to extract the effective wavelength pixel by pixel, yielding an effective wavelength map. A calibrated step height was used to validate the effective wavelength map with results within 1% of the nominal value of the step height. The error sources that contributed to the uncertainty in determining the height of the artifact are also investigated

  19. Starbursts at space ultraviolet wavelengths

    Science.gov (United States)

    González Delgado, Rosa M.

    2006-06-01

    Starbursts are systems with very high star formation rate per unit area. They are the preferred place where massive stars form; the main source of thermal and mechanical heating in the interstellar medium, and the factory where the heavy elements form. Thus, starbursts play an important role in the origin and evolution of galaxies. The similarities between the physical properties of local starbursts and high-z star-forming galaxies, highlight the cosmological relevance of starbursts. On the other hand, nearby starbursts are laboratories where to study violent star formation processes and their interaction with the interstellar and intergalactic media, in detail and deeply. Starbursts are bright at ultraviolet (UV) wavelengths, as they are in the far-infrared, due to the ‘picket-fence’ interstellar dust distribution. After the pioneering IUE program, high spatial and spectral resolution UV observations of local starburst galaxies, mainly taken with HST and FUSE, have made relevant contributions to the following issues: The determination of the initial mass function (IMF) in violent star forming systems in low and high metallicity environments, and in dense (e.g. in stellar clusters) and diffuse environments: A Salpeter IMF with high-mass stars constrains well the UV properties. The modes of star formation: Starburst clusters are an important mode of star formation. Super-stellar clusters have properties similar to globular clusters. The role of starbursts in AGN: Nuclear starbursts can dominate the UV light in Seyfert 2 galaxies, having bolometric luminosities similar to the estimated bolometric luminosities of the obscured AGN. The interaction between massive stars and the interstellar and intergalactic media: Outflows in cold, warm and coronal phases leave their imprints on the UV interstellar lines. Outflows of a few hundred km s-1 are ubiquitous phenomena in starbursts. These metal-rich outflows and the ionizing radiation can travel to the halo of galaxies

  20. Return to Work Rates After Single-level Cervical Fusion for Degenerative Disc Disease Compared With Fusion for Radiculopathy in a Workers' Compensation Setting.

    Science.gov (United States)

    Faour, Mhamad; Anderson, Joshua T; Haas, Arnold R; Percy, Rick; Woods, Stephen T; Ahn, Uri M; Ahn, Nicholas U

    2016-07-15

    A retrospective comparative cohort study. To compare return to work (RTW) rates for patients who underwent single-level cervical fusion for radiculopathy compared with fusion for degenerative disc disease (DDD) as an indication for surgery. Studies have shown that workers' compensation subjects have less favorable surgical and functional outcomes compared with the general population. Cervical decompression and fusion have provided great results with relieving radicular symptoms. Fusion for DDD, however, remains controversial. We retrospectively collected data of 21 169 subjects with cervical comorbidities who filed their claims for work-related injuries with Ohio Bureau of Workers' Compensation (BWC) between 1993 and 2011. The primary outcome was whether subjects met RTW criteria within 3-year follow-up after fusion. The secondary outcome measures and data on presurgical characteristics and secondary outcomes of each cohort were also collected. Successful RTW status was affected by a number of presurgical risk factors: DDD as an indication for surgery, age of more than 50 years, out of work for more than 6 months, psychological evaluation, opioid use, legal litigation, and permanent disability. The DDD group had lower rate of successful RTW status (50.9%) and was less likely to have a sustained RTW status (odds ratio = 0.61, 95% confidence interval: 0.48-0.79, P = 0.0001) compared with the radiculopathy group (successful RTW rate 62.9%). RTW rate within 1 year after surgery was lower in the DDD group (39.9%) compared with the radiculopathy group (53.1%; P = 0.0001). DDD patients were absent 112 days more on average after surgery compared with radiculopathy patients (P = 0.0003). Cervical fusion for DDD is associated with lower rate of successful RTW status when compared with fusion for radiculopathy in a worker's compensation setting. The decision to include surgical intervention in the management plan of cervical DDD should be approached with

  1. Dual-wavelength light-scattering technique for selective detection of volcanic ash particles in the presence of water droplets

    Directory of Open Access Journals (Sweden)

    Z. Jurányi

    2015-12-01

    Full Text Available A new method is presented in this paper which analyses the scattered light of individual aerosol particles simultaneously at two different wavelengths in order to retrieve information on the particle type. We show that dust-like particles, such as volcanic ash, can be unambiguously discriminated from water droplets on a single-particle level. As a future application of this method, the detection of volcanic ash particles should be possible in a humid atmosphere in the presence of cloud droplets. The characteristic behaviour of pure water's refractive index can be used to separate water droplets and dust-like particles which are commonly found in the micrometre size range in the ambient air. The low real part of the water's refractive index around 2700–2800 nm results in low scattered light intensities compared to e.g. the visible wavelength range, and this feature can be used for the desired particle identification. The two-wavelength measurement set-up was theoretically and experimentally tested and studied. Theoretical calculations were done using Mie theory. Comparing the ratio of the scattered light at the two wavelengths (visible-to-IR (infrared, R value for water droplets and different dust types (basalt, andesite, African mineral dust, sand, volcanic ash, pumice showed at least 9-times-higher values (on average 70 times for water droplets than for the dust types at any diameter within the particle size range of 2–20 μm. The envisaged measurement set-up was built up into a laboratory prototype and was tested with different types of aerosols. We generated aerosols from the following powders, simulating dust-like particles: cement dust, ISO 12103-1 A1 Ultrafine Test Dust and ash from the 2012 eruption of the Etna volcano. Our measurements verified the theoretical considerations; the median experimental R value is 8–21 times higher for water than for the "dust" particles.

  2. Wavelength dependence of the ocular straylight.

    Science.gov (United States)

    Ginis, Harilaos S; Perez, Guillermo M; Bueno, Juan M; Pennos, Alexandros; Artal, Pablo

    2013-05-01

    Ocular straylight is the combined effect of light scattering in the optical media and the diffuse reflectance from the various fundus layers. The aim of this work was to employ an optical technique to measure straylight at different wavelengths and to identify the optimal conditions for visually relevant optical measurements of straylight. The instrument, based on the double-pass (DP) principle, used a series of uniform disks that were projected onto the retina, allowing the recording of the wide-angle point spread function (PSF) from its peak and up to 7.3° of visual angle. A liquid crystal wavelength tunable filter was used to select six different wavelengths ranging from 500 to 650 nm. The measurements were performed in nine healthy Caucasian subjects. The straylight parameter was analyzed for small (0.5°) and large (6°) angles. For small angles, the wavelength dependence of straylight matches the transmittance spectrum of hemoglobin, which suggests that diffuse light from the fundus contributes significantly to the total straylight for wavelengths longer than 600 nm. Eyes with lighter pigmentation exhibited higher straylight at all wavelengths. For larger angles, straylight was less dependent on wavelength and eye pigmentation. Small-angle straylight in the eye is affected by the wavelength-dependent properties of the fundus. At those small angles, measurements using wavelengths near the peak of the spectral sensitivity of the eye might be better correlated with the visual aspects of straylight. However, the impact of fundus reflectance on the values of the straylight parameter at larger angles did not depend on the measuring wavelength.

  3. ENABLING SEARCHES ON WAVELENGTHS IN A HYPERSPECTRAL INDICES DATABASE

    Directory of Open Access Journals (Sweden)

    F. Piñuela

    2017-10-01

    Full Text Available Spectral indices derived from hyperspectral reflectance measurements are powerful tools to estimate physical parameters in a non-destructive and precise way for several fields of applications, among others vegetation health analysis, coastal and deep water constituents, geology, and atmosphere composition. In the last years, several micro-hyperspectral sensors have appeared, with both full-frame and push-broom acquisition technologies, while in the near future several hyperspectral spaceborne missions are planned to be launched. This is fostering the use of hyperspectral data in basic and applied research causing a large number of spectral indices to be defined and used in various applications. Ad hoc search engines are therefore needed to retrieve the most appropriate indices for a given application. In traditional systems, query input parameters are limited to alphanumeric strings, while characteristics such as spectral range/ bandwidth are not used in any existing search engine. Such information would be relevant, as it enables an inverse type of search: given the spectral capabilities of a given sensor or a specific spectral band, find all indices which can be derived from it. This paper describes a tool which enables a search as described above, by using the central wavelength or spectral range used by a given index as a search parameter. This offers the ability to manage numeric wavelength ranges in order to select indices which work at best in a given set of wavelengths or wavelength ranges.

  4. Enabling Searches on Wavelengths in a Hyperspectral Indices Database

    Science.gov (United States)

    Piñuela, F.; Cerra, D.; Müller, R.

    2017-10-01

    Spectral indices derived from hyperspectral reflectance measurements are powerful tools to estimate physical parameters in a non-destructive and precise way for several fields of applications, among others vegetation health analysis, coastal and deep water constituents, geology, and atmosphere composition. In the last years, several micro-hyperspectral sensors have appeared, with both full-frame and push-broom acquisition technologies, while in the near future several hyperspectral spaceborne missions are planned to be launched. This is fostering the use of hyperspectral data in basic and applied research causing a large number of spectral indices to be defined and used in various applications. Ad hoc search engines are therefore needed to retrieve the most appropriate indices for a given application. In traditional systems, query input parameters are limited to alphanumeric strings, while characteristics such as spectral range/ bandwidth are not used in any existing search engine. Such information would be relevant, as it enables an inverse type of search: given the spectral capabilities of a given sensor or a specific spectral band, find all indices which can be derived from it. This paper describes a tool which enables a search as described above, by using the central wavelength or spectral range used by a given index as a search parameter. This offers the ability to manage numeric wavelength ranges in order to select indices which work at best in a given set of wavelengths or wavelength ranges.

  5. Effects of music in advertising: Three experiments replicating single-exposure musical conditioning of consumer choice (Gorn, 1982) in an individual setting.

    NARCIS (Netherlands)

    Vermeulen, I.E.; Beukeboom, C.J.

    2016-01-01

    Can single pairing of background music with an advertised product condition choice behavior? Gorn's (1982) demonstration of this effect remains controversial given his unconventional conditioning procedure, unusual data analyses, probably confounded stimuli, and possible demand artifacts. We review

  6. Wavelength initialization employing wavelength recognition scheme in WDM-PON based on tunable lasers

    Science.gov (United States)

    Mun, Sil-Gu; Lee, Eun-Gu; Lee, Jong Hyun; Lee, Sang Soo; Lee, Jyung Chan

    2015-01-01

    We proposed a simple method to initialize the wavelength of tunable lasers in WDM-PON employing wavelength recognition scheme with an optical filter as a function of wavelength and accomplished plug and play operation. We also implemented a transceiver based on our proposed wavelength initialization scheme and then experimentally demonstrated the feasibility in WDM-PON configuration guaranteeing 16 channels with 100 GHz channel spacing. Our proposal is a cost-effective and easy-to-install method to realize the wavelength initialization of ONU. In addition, this method will support compatibility with all kind of tunable laser regardless of their structures and operating principles.

  7. Analysis of subsystems in wavelength-division-multiplexing networks

    DEFF Research Database (Denmark)

    Liu, Fenghai

    2001-01-01

    Wavelength division multiplexing (WDM) technology together with optical amplification has created a new era for optical communication. Transmission capacity is greatly increased by adding more and more wavelength channels into a single fiber, as well as by increasing the line rate of each channel....... WDM not only can be used to increase transmission capacity, but also to introduce a new dimension to design and implement flexible, reliable, cost effective optical networks. Optical signals may pass through several nodes in the optical network without being terminated and converted into an electrical...... signal. The impairments from the subsystems in an optical network, such as interferometric crosstalk, filtering effect, dispersion in optical components, fiber dispersion and non-linearity, will accumulate and degrade the signal, hence limit the size of the network. Therefore, the study...

  8. Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser

    International Nuclear Information System (INIS)

    Durán-Sánchez, M; Álvarez-Tamayo, R I; Kuzin, E A; Ibarra-Escamilla, B; González-García, A; Maya-Ordoñez, F; Pottiez, O; Flores-Rosas, A

    2014-01-01

    We demonstrate experimentally a dual-wavelength tunable actively Q-switched fiber laser using 3 m of Er 3+ /Yb 3+ co-doped fiber as the gain medium. For wavelength tuning we used a tunable Hi-Bi FBG having two reflection wavelengths separated by 0.4 nm. The laser emits a dual-wavelength signal that is tunable in a range of 11.8 nm. Laser operation can be switched between single and double wavelength emission. The laser operates at repetition rates from 30 to 110 kHz with pulse durations of 280 ns and pulse energies near 0.5 μJ. (letter)

  9. Wavelength selection of rolling grain ripples

    Science.gov (United States)

    Wesfreid, José Eduardo; Rousseaux, Germain; Baradel, Christian; Stegner, Alexandre

    2002-11-01

    A flat particle bed under an oscillatory viscous flow is generally unstable and leads to the formation of ripples. Using a cylindrical oscillating tank, we have studied in laboratory, at very high resolution, the wavelength selection, the morphology and the temporal evolution of theses ripples. Initially, the rolling of individual grains on the flat sand bed induces small rolling grain ripples. At this stage the wavelength selection depends on the grain diameter, the viscous boundary layer and the viscous length. In a second stage, the ripples follow a coarsening process which increase both the height and the wavelength of the patterns. For few cases, especially close to the onset of ripple formation, a logarithmic growth of the wavelength is observed. Then, if we wait long enough the system always evolves to a final vortex ripple state which is mainly controlled by the amplitude of the fluid excursion.

  10. Wavelength-versatile optical vortex lasers

    Science.gov (United States)

    Omatsu, Takashige; Miyamoto, Katsuhiko; Lee, Andrew J.

    2017-12-01

    The unique properties of optical vortex beams, in particular their spiral wavefront, have resulted in the emergence of a wide range of unique applications for this type of laser output. These applications include optical tweezing, free space optical communications, microfabrication, environmental optics, and astrophysics. However, much like the laser in its infancy, the adaptation of this type of laser output requires a diversity of wavelengths. We report on recent progress on development of optical vortex laser sources and in particular, focus on their wavelength extension, where nonlinear optical processes have been used to generate vortex laser beams with wavelengths which span the ultraviolet to infrared. We show that nonlinear optical conversion can be used to not only diversify the output wavelength of these sources, but can be used to uniquely engineer the wavefront and spatial properties of the laser output.

  11. Toward Understanding the Role of Web 2.0 Technology in Self-Directed Learning and Job Performance in a Single Organizational Setting: A Qualitative Case Study

    Science.gov (United States)

    Caruso, Shirley J.

    2016-01-01

    This single instrumental qualitative case study explores and thickly describes job performance outcomes based upon the manner in which self-directed learning activities of a purposefully selected sample of 3 construction managers are conducted, mediated by the use of Web 2.0 technology. The data collected revealed that construction managers are…

  12. The Influence of Function, Topography, and Setting on Noncontingent Reinforcement Effect Sizes for Reduction in Problem Behavior: A Meta-Analysis of Single-Case Experimental Design Data

    Science.gov (United States)

    Ritter, William A.; Barnard-Brak, Lucy; Richman, David M.; Grubb, Laura M.

    2018-01-01

    Richman et al. ("J Appl Behav Anal" 48:131-152, 2015) completed a meta-analytic analysis of single-case experimental design data on noncontingent reinforcement (NCR) for the treatment of problem behavior exhibited by individuals with developmental disabilities. Results showed that (1) NCR produced very large effect sizes for reduction in…

  13. Multiple-wavelength free-space laser communications

    Science.gov (United States)

    Purvinskis, Robert; Giggenbach, Dirk; Henniger, Hennes; Perlot, Nicolas; David, Florian

    2003-07-01

    Free-space optical communications systems in the atmosphere, based on intensity modulation and direct detection, are heavily affected by fading caused by turbulence cells of varying scale and motion. Several data sets of fading measurements under different scenarios have been recorded demonstrating this effect. In this paper we introduce a form of free-space laser communications involving a source operating on several wavelengths. The goal is to overcome atmospheric interference on a communications link. We have performed simulations using the DLR PILab Matlab toolbox. These indicate the extent to which the turbulence and beam properties interact. Experimental investigations are planned. Further properties are also taken into account, including the choice of appropriate laser bandwidth and wavelengths, the effect of atmospheric absorption from aerosols and molecular absorption lines, as well as effects of atmospheric structure on beam propagation. Possible scenarios for application of this scheme will be presented as well.

  14. Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths.

    Science.gov (United States)

    Pospori, A; Marques, C A F; Sagias, G; Lamela-Rivera, H; Webb, D J

    2018-01-22

    The Bragg wavelength of a polymer optical fiber Bragg grating can be permanently shifted by utilizing the thermal annealing method. In all the reported fiber annealing cases, the authors were able to tune the Bragg wavelength only to shorter wavelengths, since the polymer fiber shrinks in length during the annealing process. This article demonstrates a novel thermal annealing methodology for permanently tuning polymer optical fiber Bragg gratings to any desirable spectral position, including longer wavelengths. Stretching the polymer optical fiber during the annealing process, the period of Bragg grating, which is directly related with the Bragg wavelength, can become permanently longer. The methodology presented in this article can be used to multiplex polymer optical fiber Bragg gratings at any desirable spectral position utilizing only one phase-mask for their photo-inscription, reducing thus their fabrication cost in an industrial setting.

  15. Dual wavelength asymmetric photochemical synthesis with circularly polarized light† †Electronic supplementary information (ESI) available: Full detailed methods used for the entire study; further discussion of the work not central to the main message of the paper; full derivation of the kinetics models used to predict the dual wavelength enantioselectivity; computational details and energy breakdown; more complete mechanism for the reaction. See DOI: 10.1039/c4sc03897e

    Science.gov (United States)

    Richardson, Robert D.; Baud, Matthias G. J.; Weston, Claire E.; Rzepa, Henry S.

    2015-01-01

    Asymmetric photochemical synthesis using circularly polarized (CP) light is theoretically attractive as a means of absolute asymmetric synthesis and postulated as an explanation for homochirality on Earth. Using an asymmetric photochemical synthesis of a dihydrohelicene as an example, we demonstrate the principle that two wavelengths of CP light can be used to control separate reactions. In doing so, a photostationary state (PSS) is set up in such a way that the enantiomeric induction intrinsic to each step can combine additively, significantly increasing the asymmetric induction possible in these reactions. Moreover, we show that the effects of this dual wavelength approach can be accurately determined by kinetic modelling of the PSS. Finally, by coupling a PSS to a thermal reaction to trap the photoproduct, we demonstrate that higher enantioselectivity can be achieved than that obtainable with single wavelength irradiation, without compromising the yield of the final product. PMID:29218156

  16. Laser oscillator with a wavelength stabilizing device

    International Nuclear Information System (INIS)

    Terada, T.; Yamaguchi, I.

    1975-01-01

    The laser tube constantly maintains a desired uniform wavelength of the laser beam. At least one of the two mirror members of the laser tube is movable, and is coupled magnetically with an electromagnetic stabilizing mechanism. The magnetic power of the electromagnetic mechanism is adjustable so that the distance between the two mirror members can be maintained constant irrespective of temperature changes and the like. As a result, a laser beam having a constant desired uniform wavelength is obtained. (auth)

  17. The Single and Combined Effects of Multiple Intensities of Behavior Modification and Methylphenidate for Children with Attention Deficit Hyperactivity Disorder in a Classroom Setting

    Science.gov (United States)

    Fabiano, Gregory A.; Pelham, William E., Jr.; Gnagy, Elizabeth M.; Burrows-MacLean, Lisa; Coles, Erika K.; Chacko, Anil; Wymbs, Brian T.; Walker, Kathryn S.; Arnold, Fran; Garefino, Allison; Keenan, Jenna K.; Onyango, Adia N.; Hoffman, Martin T.; Massetti, Greta M.; Robb, Jessica A.

    2007-01-01

    Currently behavior modification, stimulant medication, and combined treatments are supported as evidence-based interventions for attention deficit hyperactivity disorder in classroom settings. However, there has been little study of the relative effects of these two modalities and their combination in classrooms. Using a within-subject design, the…

  18. Coupled-Mode Theory derivation of the formal equivalence between a three-mode waveguide and a set of three mutually coupled single-mode waveguides

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available The formal identification between a two-mode waveguide and a system of two mutually coupled single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero, the super-modes of the coupled system merge continuously into the modes of the multimode waveguide. For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond. But not without some precautions…

  19. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode.

    Science.gov (United States)

    Kuhlmann, Andreas V; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D; Warburton, Richard J

    2013-07-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10(7) and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  20. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode

    International Nuclear Information System (INIS)

    Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.

    2013-01-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10 7 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance

  1. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Brunner, Daniel [Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca (Spain); Ludwig, Arne [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Reuter, Dirk [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Department Physik, Universität Paderborn, Warburger Strasse 100, D-33098 Paderborn (Germany); Wieck, Andreas D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-07-15

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  2. Multi-wavelength fiber optical parametric oscillator with ultra-narrow wavelength spacing.

    Science.gov (United States)

    Chen, Daru; Sun, Bing

    2010-08-16

    We propose a novel multi-wavelength fiber optical parametric oscillator (MW-FOPO) based on a ring cavity. A highly nonlinear fiber and a Mach-Zehnder interferometer formed by two 3-dB optical couplers are used as the gain medium and the comb filter, respectively. Multi-wavelength lasing of the MW-FOPO with an ultra-narrow wavelength spacing of about 0.08 nm is achieved. The output spectrum of the MW-FOPO covers a wavelength regime from 1510 nm to 1615 nm (for lasing wavelengths with the power that exceeds -60 dBm). The stability of the MW-FOPO is discussed and experimentally demonstrated. A comparison of the output spectra between the MW-FOPO and the multi-wavelength Erbium-doped fiber laser is also presented.

  3. Mid-wavelength infrared unipolar nBp superlattice photodetector

    Science.gov (United States)

    Kazemi, Alireza; Myers, Stephen; Taghipour, Zahra; Mathews, Sen; Schuler-Sandy, Ted; Lee, Seunghyun; Cowan, Vincent M.; Garduno, Eli; Steenbergen, Elizabeth; Morath, Christian; Ariyawansa, Gamini; Scheihing, John; Krishna, Sanjay

    2018-01-01

    We report a Mid-Wavelength Infrared (MWIR) barrier photodetector based on the InAs/GaSb/AlSb type-II superlattice (T2SL) material system. The nBp design consists of a single unipolar barrier (InAs/AlSb SL) placed between a 4 μm thick p-doped absorber (InAs/GaSb SL) and an n-type contact layer (InAs/GaSb SL). At 80 K, the device exhibited a 50% cut-off wavelength of 5 μm, was fully turned-ON at zero bias and the measured QE was 50% (front side illumination with no AR coating) at 4.5 μm with a dark current density of 4.7 × 10-6 A/cm2 at Vb = 50 mV. At 150 K and Vb = 50 mV, the 50% cut-off wavelength increased to 5.3 μm, and the QE was 54% at 4.5 μm with a dark current of 5.0 × 10-4 A/cm2.

  4. Arbitrarily high super-resolving phase measurements at telecommunication wavelengths

    International Nuclear Information System (INIS)

    Kothe, Christian; Bjoerk, Gunnar; Bourennane, Mohamed

    2010-01-01

    We present two experiments that achieve phase super-resolution at telecommunication wavelengths. One of the experiments is realized in the space domain and the other is realized in the time domain. Both experiments show high visibility and are performed with standard lasers and single-photon detectors. The first experiment uses six-photon coincidences, whereas the latter experiment needs no coincidence measurements, is easy to perform, and achieves, in principle, arbitrarily high phase super-resolution. Here, we demonstrate a 30-fold increase of the resolution. We stress that neither entanglement nor joint detection is needed in these experiments, which demonstrates that neither is necessary to achieve phase super-resolution.

  5. A randomized clinical trial evaluating prophylactic single-dose vs prolonged course of antibiotics for caesarean section in a high HIV-prevalence setting.

    Science.gov (United States)

    Gidiri, M F; Ziruma, A

    2014-02-01

    The evidence that perioperative antibiotics for caesarean delivery are effective in reducing infective morbidity is unequivocal. In developing countries, especially those with high HIV-prevalence, clinicians have increasingly become anxious about the efficacy of perioperative antibiotics, hence the adoption of treatment regimens, as described in this study. We set out to investigate if these fears have a basis by conducting a randomised clinical trial. The setting was two tertiary units in a developing country with a significant HIV-prevalence. The outcome measures assessed were: pyrexia, wound infection, admission with puerperal sepsis, laparotomy for pelvic abscess and duration of hospital stay. There was no statistically significant difference between the two arms of the study with regard to the above outcomes. Our conclusion is that the two antibiotic regimens are equivalent in preventing infection, therefore there is no justification for subjecting patients to week-long antibiotics and the unnecessary increase in nurse workload.

  6. Direct and indirect single electron transfer (SET-photochemical approaches for the preparation of novel phthalimide and naphthalimide-based lariat-type crown ethers

    Directory of Open Access Journals (Sweden)

    Dae Won Cho

    2014-02-01

    Full Text Available In this review, we describe direct and indirect photochemical approaches that have been developed for the preparation of phthalimide- and naphthalimide-based, lariat-type crown ethers. The direct route utilizes a strategy in which nitrogen-linked side chains containing polyethoxy-tethered phthalimides and naphthalimides, possessing terminal α-trialkylsilyl groups, are synthesized utilizing concise routes and UV-irradiation to form macrocyclic ring systems. In contrast, the indirect route developed for the synthesis of lariat-type crown ethers employs sequences in which SET-promoted macrocyclization reactions of α-trialkylsilyl-terminated, polyethoxy-tethered phthalimides and naphthalimides are followed by a side chain introduction through substitution reactions at the amidol centers in the macrocyclic ethers. The combined observations made in these investigations demonstrate the unique features of SET-promoted photocyclization reactions that make them well-suited for the use in the synthesis of functionalized crown ethers. In addition, while some limitations exist for the general use of SET-photochemical reactions in large-scale organic synthesis, important characteristics of the photoinduced macrocyclization reactions make them applicable to unique situations in which high temporal and spatial control is required.

  7. Neighborhood-targeted and case-triggered use of a single dose of oral cholera vaccine in an urban setting: Feasibility and vaccine coverage.

    Science.gov (United States)

    Parker, Lucy A; Rumunu, John; Jamet, Christine; Kenyi, Yona; Lino, Richard Laku; Wamala, Joseph F; Mpairwe, Allan M; Muller, Vincent; Llosa, Augusto E; Uzzeni, Florent; Luquero, Francisco J; Ciglenecki, Iza; Azman, Andrew S

    2017-06-01

    In June 2015, a cholera outbreak was declared in Juba, South Sudan. In addition to standard outbreak control measures, oral cholera vaccine (OCV) was proposed. As sufficient doses to cover the at-risk population were unavailable, a campaign using half the standard dosing regimen (one-dose) targeted high-risk neighborhoods and groups including neighbors of suspected cases. Here we report the operational details of this first public health use of a single-dose regimen of OCV and illustrate the feasibility of conducting highly targeted vaccination campaigns in an urban area. Neighborhoods of the city were prioritized for vaccination based on cumulative attack rates, active transmission and local knowledge of known cholera risk factors. OCV was offered to all persons older than 12 months at 20 fixed sites and to select groups, including neighbors of cholera cases after the main campaign ('case-triggered' interventions), through mobile teams. Vaccination coverage was estimated by multi-stage surveys using spatial sampling techniques. 162,377 individuals received a single-dose of OCV in the targeted neighborhoods. In these neighborhoods vaccine coverage was 68.8% (95% Confidence Interval (CI), 64.0-73.7) and was highest among children ages 5-14 years (90.0%, 95% CI 85.7-94.3), with adult men being less likely to be vaccinated than adult women (Relative Risk 0.81, 95% CI: 0.68-0.96). In the case-triggered interventions, each lasting 1-2 days, coverage varied (range: 30-87%) with an average of 51.0% (95% CI 41.7-60.3). Vaccine supply constraints and the complex realities where cholera outbreaks occur may warrant the use of flexible alternative vaccination strategies, including highly-targeted vaccination campaigns and single-dose regimens. We showed that such campaigns are feasible. Additional work is needed to understand how and when to use different strategies to best protect populations against epidemic cholera.

  8. Near infra-red spectroscopy quantitative modelling of bivalve protein, lipid and glycogen composition using single-species versus multi-species calibration and validation sets

    Science.gov (United States)

    Bartlett, Jill K.; Maher, William A.; Purss, Matthew B. J.

    2018-03-01

    Near infrared spectroscopy (NIRS) quantitative modelling was used to measure the protein, lipid and glycogen composition of five marine bivalve species (Saccostrea glomerata, Ostrea angasi, Crassostrea gigas, Mytilus galloprovincialis and Anadara trapezia) from multiple locations and seasons. Predictive models were produced for each component using individual species and aggregated sample populations for the three oyster species (S. glomerata, O. angasi and C. gigas) and for all five bivalve species. Whole animal tissues were freeze dried, ground to > 20 μm and scanned by NIRS. Protein, lipid and glycogen composition were determined by traditional chemical analyses and calibration models developed to allow rapid NIRS-measurement of these components in the five bivalve species. Calibration modelling was performed using wavelet selection, genetic algorithms and partial least squares analysis. Model quality was assessed using RPIQ and RMESP. For protein composition, single species model results had RPIQ values between 2.4 and 3.5 and RMSEP between 8.6 and 18%, the three oyster model had an RPIQ of 2.6 and an RMSEP of 10.8% and the five bivalve species had an RPIQ of 3.6 and RMSEP of 8.7% respectively. For lipid composition, single species models achieved RPIQ values between 2.9 and 5.3 with RMSEP between 9.1 and 11.2%, the oyster model had an RPIQ of 3.6 and RMSEP of 6.8 and the five bivalve model had an RPIQ of 5.2 and RMSEP of 6.8% respectively. For glycogen composition, the single species models had RPIQs between 3.8 and 18.9 with RMSEP between 3.5 and 9.2%, the oyster model had an RPIQ of 5.5 and RMSEP of 7.1% and the five bivalve model had an RPIQ of 4 and RMSEP of 7.6% respectively. Comparison between individual species models and aggregated models for three oyster species and five bivalve species for each component indicate that aggregating data from like species produces high quality models with robust and reliable quantitative application. The benefit of

  9. Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths.

    Science.gov (United States)

    Balram, Krishna C; Audet, Ross M; Miller, David A B

    2013-04-22

    We demonstrate the use of a subwavelength planar metal-dielectric resonant cavity to enhance the absorption of germanium photodetectors at wavelengths beyond the material's direct absorption edge, enabling high responsivity across the entire telecommunications C and L bands. The resonant wavelength of the detectors can be tuned linearly by varying the width of the Ge fin, allowing multiple detectors, each resonant at a different wavelength, to be fabricated in a single-step process. This approach is promising for the development of CMOS-compatible devices suitable for integrated, high-speed, and energy-efficient photodetection at telecommunications wavelengths.

  10. Coumarins as wavelength shifters in polystyrene

    International Nuclear Information System (INIS)

    Pla-Dalmau, A.; Foster, G.W.; Zhang, G.

    1995-01-01

    A series of commercially available coumarins was tested as wavelength shifters in polystyrene for a tile/fiber calorimeter application. The objective was to find a compound that when incorporated in a polystyrene matrix absorbed in the 400-450 nm wavelength range, fluoresced in the green region of the visible spectrum (λ em =450-550 nm), and exhibited both short decay time and high quantum yield. Transmittance, fluorescence, and decay time determinations were performed in order to characterize each coumarin in polystyrene. Two coumarins (C510 and C515) were found to have faster decay times ( similar 8 ns vs. 12 ns) and superior light output (100-120%) compared to the commonly-used green wavelength shifter, K-27. (orig.)

  11. Activities to investigate wavelength-shifting optical fibers

    Science.gov (United States)

    Anderson, Megan; Strong, Denver; Baker, Blane

    2017-07-01

    Understanding principles and operation of optical fibers is important for students of physics due to increased applications of fiber optics in today’s technological world. In an effort to devise new activities to study such fibers, we obtained samples of wavelength-shifting WLS optical fibers, used in construction of research-grade particle detectors. Qualitative experiments in our laboratories examined how these fibers interact with various colors of visible light. From these results, student activities were developed to increase critical thinking in introductory physics courses and to facilitate students’ progression from traditional-classroom to research-oriented settings.

  12. A set of dual promoter vectors for high throughput cloning, screening, and protein expression in eukaryotic and prokaryotic systems from a single plasmid.

    Science.gov (United States)

    Sinah, Namita; Williams, Charlotte A; Piper, Robert C; Shields, S Brookhart

    2012-08-23

    The ability to produce the same recombinant protein in both prokaryotic and eukaryotic cells offers many experimental opportunities. However, the cloning of the same gene into multiple plasmids is required, which is time consuming, laborious and still may not produce soluble, stable protein in sufficient quantities. We have developed a set of expression vectors that allows for ligation-independent cloning and rapid functional screening for protein expression in both E. coli and S. cerevisiae. A set of expression vectors was made that can express the same open reading frame in E. coli (via the T7 phage promoter) and in S. cerevisiae (via the CUP1 or MET25 promoter). These plasmids also contain the essential elements for replication and selection in both cell types and have several advantages: they allow for cloning of genes by homologous recombination in yeast, protein expression can be determined before plasmid isolation and sequencing, and a GST-fusion tag is added to aid in soluble expression and purification. We have also included a TEV recognition site that allows for the specific cleavage of the fusion proteins to yield native proteins. The dual promoter vectors can be used for rapid cloning, expression, and purification of target proteins from both prokaryotic and eukaryotic systems with the ability to study post-translation modifications.

  13. Effect of using a laryngeal tube on the no-flow time in a simulated, single-rescuer, basic life support setting with inexperienced users.

    Science.gov (United States)

    Meyer, O; Bucher, M; Schröder, J

    2016-03-01

    The laryngeal tube (LT) is a recommended alternative to endotracheal intubation during advanced life support (ALS). Its insertion is relatively simple; therefore, it may also serve as an alternative to bag mask ventilation (BMV) for untrained personnel performing basic life support (BLS). Data support the influence of LT on the no-flow time (NFT) compared with BMV during ALS in manikin studies. We performed a manikin study to investigate the effect of using the LT for ventilation instead of BMV on the NFT during BLS in a prospective, randomized, single-rescuer study. All 209 participants were trained in BMV, but were inexperienced in using LT; each participant performed BLS during a 4-min time period. No significant difference in total NFT (LT: mean 81.1 ± 22.7 s; BMV: mean 83.2 ± 13.1 s, p = 0.414) was found; however, significant differences in the later periods of the scenario were identified. While ventilating with the LT, the proportion of chest compressions increased significantly from 67.2 to 73.2%, whereas the proportion of chest compressions increased only marginally when performing BMV. The quality of the chest compressions and the associated ventilation rate did not differ significantly. The mean tidal volume and mean minute volume were significantly lower when performing BMV. The NFT was significantly shorter in the later periods in a single-rescuer, cardiac arrest scenario when using an LT without previous training compared with BMV with previous training. A possible explanation for this result may be the complexity and workload of alternating tasks (e.g., time loss when reclining the head and positioning the mask for each ventilation during BMV).

  14. An evaluation of a body image intervention in adolescent girls delivered in single-sex versus co-educational classroom settings.

    Science.gov (United States)

    Dunstan, Candice J; Paxton, Susan J; McLean, Siân A

    2017-04-01

    Body dissatisfaction is now recognized as having considerable negative impact on social, psychological, and physical health, particularly in adolescent girls. Consequently, we have developed a six-session co-educational body image intervention (Happy Being Me Co-educational) designed to reduce body dissatisfaction and its risk factors in Grade 7 girls. In addition to evaluating the program's efficacy, we aimed to identify whether girls would benefit equally when it was delivered as a universal intervention to a whole class including both boys and girls (co-educational delivery), or delivered as a selective intervention to girls only (single-sex delivery). Participants were 200 Grade 7 girls from five schools in Melbourne, Australia. Schools were randomly allocated to receive the intervention in single-sex classes (n=74), co-educational classes (n=73), or participate as a no-intervention control (n=53). Girls completed self-report assessments of body dissatisfaction, psychological (internalization of the thin ideal, appearance comparison, and self-esteem) and peer environment (weight-related teasing and appearance conversations) risk factors for body dissatisfaction, and dietary restraint, at baseline, post-intervention, and at 6-month follow-up. Significant improvements in body dissatisfaction and psychological risk factors were observed in the intervention group at post-intervention and these were maintained at follow-up for psychological risk factors. Importantly, no significant differences between universal and selective delivery were observed, suggesting that the intervention is appropriate for dissemination in both modes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A single-shot T2mapping protocol based on echo-split gradient-spin-echo acquisition and parametric multiplexed sensitivity encoding based on projection onto convex sets reconstruction.

    Science.gov (United States)

    Chu, Mei-Lan; Chang, Hing-Chiu; Oshio, Koichi; Chen, Nan-Kuei

    2018-01-01

    To develop a high-speed T 2 mapping protocol that is capable of accurately measuring T 2 relaxation time constants from a single-shot acquisition. A new echo-split single-shot gradient-spin-echo (GRASE) pulse sequence is developed to acquire multicontrast data while suppressing signals from most nonprimary echo pathways in Carr-Purcell-Meiboom-Gill (CPMG) echoes. Residual nonprimary pathway signals are taken into consideration when performing T 2 mapping using a parametric multiplexed sensitivity encoding based on projection onto convex sets (parametric-POCSMUSE) reconstruction method that incorporates extended phase graph modeling of GRASE signals. The single-shot echo-split GRASE-based T 2 mapping procedure was evaluated in human studies at 3 Tesla. The acquired data were compared with reference data obtained with a more time-consuming interleaved spin-echo echo planar imaging protocol. T 2 maps derived from conventional single-shot GRASE scans, in which nonprimary echo pathways were not appropriately addressed, were also evaluated. Using the developed single-shot T 2 mapping protocol, quantitatively accurate T 2 maps can be obtained with a short scan time (parametric-POCSMUSE reconstruction. Magn Reson Med 79:383-393, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Short wavelength sources and atoms and ions

    International Nuclear Information System (INIS)

    Kennedy, E.T.

    2008-01-01

    The interaction of ionizing radiation with atoms and ions is a key fundamental process. Experimental progress has depended in particular on the development of short wavelength light sources. Laser-plasma and synchrotron sources have been exploited for several decades and most recently the development of short wavelength Free Electron Laser (FEL) sources is revolutionizing the field. This paper introduces laser plasma and synchrotron sources through examples of their use in studies of the interaction of ionizing radiation with atoms and ions, ranging from few-electron atomic and ionic systems to the many-electron high atomic number actinides. The new FEL source (FLASH) at DESY is introduced. (author)

  17. Wavelength division multiplexing a practical engineering guide

    CERN Document Server

    Grobe, Klaus

    2013-01-01

    In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rate

  18. Variable wavelength selection devices: Physics and applications

    Science.gov (United States)

    Xianyu, Haiqing

    Variable wavelength selection (VWS) achieved by implementing tunability to wavelength discriminating devices has generated great interest in basic science, applied physics, and technology. This thesis focuses on the underlying physics and application of several novel wavelength discriminating devices. Holographical polymer dispersed liquid crystals (HPDLCs) are switchable volume gratings formed by exposing a photopolymerizable monomer and liquid crystal mixture to interfering monochromatic light beams. An HPDLCs wavelength discriminating ability along with its switchability, allow it to be utilized in VWS devices. A novel mode HPDLC, total internal reflection (TIR) HPDLC, has been developed as a wavelength selective filter. The grating planes in this device are tilted so that the diffracted light experiences total internal reflection at the glass-air interface and is trapped in the cell until it eventually escapes from an edge. A VWS device is demonstrated by stacking TIR HPDLCs operating at different wavelengths. Converging or diverging recording beams are employed to fabricate chirped reflection HPDLCs with a pitch gradient along the designated direction, creating chirped switchable reflection gratings (CSRGs). A pixelated version of the CSRG is developed herein, and a dynamic spectral equalizer is presented by combining the pixelated CSRG with a prism (for wavelength discrimination). A switchable circular to point converter (SCPC), which enables the random selection of the wavelength bands divided by the Fabry-Perot interferometer utilizing the controllable beam steering capability of transmission HPDLCs, is demonstrated. A random optical cross-switch (TIROL) can be created by integrating a Fabry-Perot interferometer with a stack of SCPC units. The in-plane electric field generated by the interdigitated electrodes is utilized to elongate the helical pitch of a cholesteric liquid crystal and thereby induces a red shift of the transmission reflection peak

  19. New strategy for optimizing wavelength converter placement

    Science.gov (United States)

    Foo, Y. C.; Chien, S. F.; Low, Andy L. Y.; Teo, C. F.; Lee, Youngseok

    2005-01-01

    This paper proposes a new strategic alternate-path routing to be combined with the particle swarm optimization (PSO) algorithm to better solve the wavelength converters placement problem. The strategic search heuristic is designed to provide network connectivity topologies for the converters to be placed more effectively. The new strategy is applied to the 14-node NSFNET to examine its efficiency in reducing the blocking probability in sparse wavelength conversion network. Computed results show that, when applied to the identical optimization framework, our search method outperforms both the equal-cost multipath routing and traffic-engineering-aware shortest-path routing.

  20. Development of a sapphire fiber thermometer using two wavelength bands

    Science.gov (United States)

    Ye, Linhua; Shen, Yonghang

    1996-09-01

    This paper reports the development of a sapphire ((alpha) - Al2O3) single crystal optical fiber thermometer using two wavelength bands. A thin film of precious metal or ceramic deposited onto one end of the sapphire fiber forms a mini-radiation cavity. The other end of the sapphire fiber is coupled to a low-loss silica fiber. Radiation from the small cavity is transmitted along the silica fiber into a photodetection system which consists of a lens, beam splitter, two interference filters (820 nm and 940 nm center wavelength, 30 nm bandwidth) and two silicon photocells. The temperature measurement is based on the detection of radiation from the small cavity. The sapphire fiber (0.25 - 1.0 mm diameter, 100 - 450 mm length) was grown by the laser heated pedestal growth (LHPG) methods. Transmission loss in the sapphire fiber was experimentally measured. Theoretical analysis shows the apparent emittance of the small cavity with a length to diameter (L/D) ratio greater than eight is a constant value near to one, so the small cavity can be considered as a small black-body cavity. Using the developed sapphire fiber temperature sensor, we have built a sapphire fiber thermometer based on a 8098 single-chip microcomputer system. It was calibrated at some known stable temperature point and uses the fundamental radiation law to extrapolate to other temperatures. By taking the ratio of the optical power at two wavelengths, errors due to changes in the system, such as emissivity and transmission losses, can be canceled out. The thermometer has an operating temperature range of 800 to 1900 degrees Celsius, and an accuracy of 0.2% at 1000 degrees Celsius. There are a number of applications of the thermometer both in science and industry.

  1. A segmentation and classification scheme for single tooth in MicroCT images based on 3D level set and k-means+.

    Science.gov (United States)

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2017-04-01

    Accurate classification of different anatomical structures of teeth from medical images provides crucial information for the stress analysis in dentistry. Usually, the anatomical structures of teeth are manually labeled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing 3 dimensional (3D) information, and classify the tooth by employing unsupervised learning i.e., k-means++ method. In order to evaluate the proposed method, the experiments are conducted on the sufficient and extensive datasets of mandibular molars. The experimental results show that our method can achieve higher accuracy and robustness compared to other three clustering methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Metastable coexistence of multiple genotypes in a constant environment with a single resource through fixed settings of a multiplication-survival trade-off.

    Science.gov (United States)

    Maharjan, Ram; Ferenci, Thomas

    2016-04-01

    The biological complexity of trade-offs has been a major obstacle in understanding bacterial diversity and coexistence. Here we reduce the biological complexity by using isogenic Escherichia coli strains differing only in a multiplication-survival trade-off regulated by RpoS. The contribution of trade-off characteristics to fitness in different environments was determined. We then designed an environment with intermediate-stress levels that elicits an equivalent fitness. We found metastable coexistence of three strains in steady-state chemostats until mutations changed the relative fitness of competing strains. Our results help explain the rich intra- and inter-species diversity of bacteria through alternative settings of relatively few trade-offs. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Efficient phase locking of two dual-wavelength fiber amplifiers by an all-optical self-feedback loop

    Science.gov (United States)

    Lei, Bing; Chen, Keshan; Yao, Tianfu; Shi, Jianhua; Hu, Haojun

    2017-10-01

    Efficient phase locking of two dual-wavelength fiber amplifiers has been demonstrated by using a self-feedback coupling and intracavity filtering configuration, and the effect of bandwidth and wavelength spacing on their phase locking performances have been investigated in experiment. Two independent fiber lasers with different operating wavelength were combined incoherently by a 3 dB fiber coupler to form a dual-wavelength seed source laser, which was injected into the fiber amplifiers' coupling array through the self-feedback loop. The effect of bandwidth and wavelength spacing was researched by altering the seed laser's pump power and operating wavelengths respectively. As long as the feedback loop and the single-mode fiber filtering configuration were well constructed in the unidirectional ring laser cavity, stable phase locking states and high fringe visibility interference patterns could always be obtained in our experiment. When the spacing of two operating wavelength was varied from 1.6 nm to 19.6 nm, the fringe visibility decreased slightly with the increase of wavelength spacing, and the corresponding fringe visibility was always larger than 0.6. In conclusion, we believe that efficient phase locking of several multi-wavelength laser sources is also feasible by passive self-adjusting methods, and keeping the component laser beams' phase relationship stable and fixed is more important than controlling their operating wavelengths.

  4. Wavelength Tunable Flip-Flop Operation of a Modulated Grating Y-branch Laser

    DEFF Research Database (Denmark)

    An, Yi; Lorences Riesgo, Abel; Peucheret, Christophe

    2012-01-01

    Wavelength tunable flip-flop operation is experimentally demonstrated in a single modulated grating Y-branch laser for the first time. The control pulses have energies of 0.16-0.34 pJ and the switching time is about 200 ps.......Wavelength tunable flip-flop operation is experimentally demonstrated in a single modulated grating Y-branch laser for the first time. The control pulses have energies of 0.16-0.34 pJ and the switching time is about 200 ps....

  5. Mathematical model of optimized design of multi-point sensoric measurement with Bragg gratings using wavelength divison multiplex

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Kepak, Stanislav; Rapant, Lukas; Martinek, Radek; Bednarek, Lukas; Novak, Martin; Vasinek, Vladimir

    2016-04-01

    Fiber Bragg gratings (FBGs) belongs to the single-point optical sensors used in many fields and applications where they often replace a standard sensors. They are easy to multiplex and the wavelength division multiplex is the most widely used method. FBGs in sensory branch are designed for a different Bragg wavelength which gives different measure and sensitivity coefficients. Existing algorithm is based on the determination of left and right boundaries of the measuring channel and the central Bragg wavelength. In this paper is presented the new mathematical model for calculation of Bragg wavelength, sensitivity coefficient and channel width of any FBG in the single step. The model takes into account the following input parameters: wavelength of the optical source, source bandwidth, the type of measured quantity, measuring ranges, width of the FBG reflected spectrum and the guard band between adjacent channels. The mathematical model is verified by using a simulation in software OptiSystem.

  6. Brief motivational interview and educational brochure in emergency room settings for adolescents and young adults with alcohol-related problems: a randomized single-blind clinical trial.

    Science.gov (United States)

    Segatto, Maria Luiza; Andreoni, Solange; de Souza e Silva, Rebeca; Diehl, Alessandra; Pinsky, Ilana

    2011-09-01

    To evaluate the effectiveness of brief motivational interviewing and an educational brochure when delivered in emergency room to reduce alcohol abuse and related problems among adolescents and young adults. A randomized single-blind clinical trial with a three-month follow-up was carried out at three emergency rooms from October 2004 to November 2005; subjects assessed were 16-25 years old treated for alcohol related events up to 6 hours after consumption. Socio-demographic data, quantity, frequency and negative consequences of alcohol consumption, motivation to change habits and future risk perception were evaluated. Statistical analysis was performed on subjects who completed follow-up (completers). ANCOVA model was used to analyze the difference between the intervention groups with statistical significance level α = 5% and confidence interval (CI) of 95%. 186 subjects formed the initial sample, being 175 included and randomized to the educational brochure group (n = 88) or motivational interviewing group (n = 87). Follow-up assessment was performed in 85.2% of the sample. No significant difference between groups was observed. However, significant reductions (p motivational interviewing, educational brochure and nonintervention should be of future interest among Brazilian adolescent populations.

  7. Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator.

    Science.gov (United States)

    Jin, Yuwei; Cristescu, S M; Harren, Frans J M; Mandon, Julien

    2015-08-10

    We demonstrate a two-crystal mid-infrared dual-wavelength optical parametric oscillator, synchronously pumped by a high power femtosecond Yb:fiber laser. The singly-resonant ring cavity, containing two periodically poled lithium niobate crystals, is capable of generating two synchronized idler wavelengths, independently tunable over 30 THz in the 2.9 - 4.2 μm wavelength region, due to the cascaded quadratic nonlinear effect. The independent tunability of the two idlers makes the optical parametric oscillator a promising source for ultrafast pulse generation towards the THz wavelength region, based on different frequency generation. In addition, the observed frequency doubled idler within the crystal indicates the possibility to realize a broadband optical self-phase locking between pump, signal, idler and higher order generated parametric lights.

  8. Self-mixing interference in dual-wavelength fiber ring laser using cascaded fiber Bragg gratings

    Science.gov (United States)

    Xia, Wei; Zhou, Xiuzhen; Zhang, Congcong; Li, Chuncheng; Wang, Ming

    2013-11-01

    Self-mixing interference in dual-wavelength fiber ring laser (FRL) with serial connection of fiber Bragg gratings (FBGs) is presented. Wavelength division multiplexing and active sensing is achieved by extracting single wavelength and adding feedback to the system. The expression of the optical output power of dual-wavelength fiber ring laser is analyzed when optical feedback is introduced. The gain competition and the intensities alternation among the applied channels are discussed. We apply the developed system for displacement measurements of two moving objects and investigate the influence on output signals under different feedback conditions. The experimental results show that this system has improved efficiency to expand the channels and maintains many advantages of self-mixing interference, validating the feasibility for implementation in a dual-channel displacement sensor at the same time.

  9. Characterization of ethanol concentrations at ultraviolet wavelength ...

    African Journals Online (AJOL)

    This paper presents the measurement of optical absorption spectrum for different concentrations of ethanol at ultraviolet wavelength. Ethanol absorption spectrum was measured using portable spectroscopy setup from Avantes. It consists of Balanced Deuterium Halogen light source and spectrometer. The light source can ...

  10. Smart wavelength meter for integrated photonics

    NARCIS (Netherlands)

    Benelajla, Meryem; Taballione, Caterina; Boller, Klaus J.

    2017-01-01

    Thermally tunable SiN waveguide microring resonators in connection with neural network readout algorithms appear promising for use as integrated optical wavelength meters. So far, we have observed long-term reliability and a temperature immunity of the readout across several degrees of ambient

  11. Alien wavelength modeling tool and field trial

    DEFF Research Database (Denmark)

    Sambo, N.; Sgambelluri, A.; Secondini, M.

    2015-01-01

    A modeling tool is presented for pre-FEC BER estimation of PM-QPSK alien wavelength signals. A field trial is demonstrated and used as validation of the tool's correctness. A very close correspondence between the performance of the field trial and the one predicted by the modeling tool has been...

  12. Random-phase metasurfaces at optical wavelengths

    DEFF Research Database (Denmark)

    Pors, Anders; Ding, Fei; Chen, Yiting

    2016-01-01

    of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light...

  13. Topology Optimization of Sub-Wavelength Antennas

    DEFF Research Database (Denmark)

    Erentok, Aycan; Sigmund, Ole

    2011-01-01

    We propose a topology optimization strategy for the systematic design of a three-dimensional (3D), conductor-based sub-wavelength antenna. The post-processed finite-element (FE) models of the optimized structure are shown to be self-resonant, efficient and exhibit distorted omnidirectional...

  14. Adaptive multilayer optics for extreme ultraviolet wavelengths

    NARCIS (Netherlands)

    Bayraktar, Muharrem

    2015-01-01

    In this thesis we describe the development of a new class of optical components to enhance the imaging performance by enabling adaptations of the optics. When used at extreme ultraviolet (EUV) wavelengths, such ‘adaptive optics’ offers the potential to achieve the highest spatial resolution in

  15. Self Calibration of a 2-wavelength Pyrometer

    Science.gov (United States)

    Ng, Daniel

    1998-01-01

    Pyrometers require calibrations to determine their instrument constants before they can be used in remote temperature measurements. These constants reflect the combined effects of detector response, the transmissivities of intervening optical media (windows and gases) and the emissivity of the measured surface. We describe here the principal and the demonstration of self calibrating 2-wavelength pyrometer.

  16. Two-wavelength spatial-heterodyne holography

    Science.gov (United States)

    Hanson, Gregory R.; Bingham, Philip R.; Simpson, John T.; Karnowski, Thomas P.; Voelkl, Edgar

    2007-12-25

    Systems and methods are described for obtaining two-wavelength differential-phase holograms. A method includes determining a difference between a filtered analyzed recorded first spatially heterodyne hologram phase and a filtered analyzed recorded second spatially-heterodyned hologram phase.

  17. Solar Prominence Modelling and Plasma Diagnostics at ALMA Wavelengths

    Science.gov (United States)

    Rodger, Andrew; Labrosse, Nicolas

    2017-09-01

    Our aim is to test potential solar prominence plasma diagnostics as obtained with the new solar capability of the Atacama Large Millimeter/submillimeter Array (ALMA). We investigate the thermal and plasma diagnostic potential of ALMA for solar prominences through the computation of brightness temperatures at ALMA wavelengths. The brightness temperature, for a chosen line of sight, is calculated using the densities of electrons, hydrogen, and helium obtained from a radiative transfer code under non-local thermodynamic equilibrium (non-LTE) conditions, as well as the input internal parameters of the prominence model in consideration. Two distinct sets of prominence models were used: isothermal-isobaric fine-structure threads, and large-scale structures with radially increasing temperature distributions representing the prominence-to-corona transition region. We compute brightness temperatures over the range of wavelengths in which ALMA is capable of observing (0.32 - 9.6 mm), however, we particularly focus on the bands available to solar observers in ALMA cycles 4 and 5, namely 2.6 - 3.6 mm (Band 3) and 1.1 - 1.4 mm (Band 6). We show how the computed brightness temperatures and optical thicknesses in our models vary with the plasma parameters (temperature and pressure) and the wavelength of observation. We then study how ALMA observables such as the ratio of brightness temperatures at two frequencies can be used to estimate the optical thickness and the emission measure for isothermal and non-isothermal prominences. From this study we conclude that for both sets of models, ALMA presents a strong thermal diagnostic capability, provided that the interpretation of observations is supported by the use of non-LTE simulation results.

  18. Wavelength Dependence of Light-Induced Cycloadditions.

    Science.gov (United States)

    Menzel, Jan P; Noble, Benjamin B; Lauer, Andrea; Coote, Michelle L; Blinco, James P; Barner-Kowollik, Christopher

    2017-11-08

    The wavelength-dependent conversion of two rapid photoinduced ligation reactions, i.e., the light activation of o-methylbenzaldehydes, leading to the formation of reactive o-quinodimethanes (photoenols), and the photolysis of 2,5-diphenyltetrazoles, affording highly reactive nitrile imines, is probed via a monochromatic wavelength scan at constant photon count. The transient species are trapped by cycloaddition with N-ethylmaleimide, and the reactions are traced by high resolution mass spectrometry and nuclear magnetic resonance spectroscopy. The resulting action plots are assessed in the context of Beer-Lambert's law and provide combined with time-dependent density functional theory and multireference calculations an in-depth understanding of the underpinning mechanistic processes, including conical intersections. The π → π* transition of the carbonyl group of the o-methylbenzaldehyde correlates with a highly efficient conversion to the cycloadduct, showing no significant wavelength dependence, while conversion following the n → π* transition proceeds markedly less efficient at longer wavelengths. The influence of absorbance and reactivity has critical consequences for an effective reaction design: At high concentrations of o-methylbenzaldehydes (c = 8 mmol L -1 ), photoligations with N-ethylmaleimide (possible for λ ≤ 390 nm) are ideally performed at 330 nm, whereas at high light penetration regimes at lower concentrations (c = 0.3 mmol L -1 ), 315 nm irradiation leads to the highest conversion. Activation and trapping of 2,5-diphenyltetrazoles (possible for λ ≤ 322 nm) proceeds best at a wavelength shorter than 295 nm, irrespective of concentration.

  19. UVB phototherapy in an outpatient setting or at home: a pragmatic randomised single-blind trial designed to settle the discussion. The PLUTO study.

    Science.gov (United States)

    Koek, Mayke B G; Buskens, Erik; Steegmans, Paul H A; van Weelden, Huib; Bruijnzeel-Koomen, Carla A F M; Sigurdsson, Vigfús

    2006-08-01

    Home ultraviolet B (UVB) treatment is a much-debated treatment, especially with regard to effectiveness, safety and side effects. However, it is increasingly being prescribed, especially in the Netherlands. Despite ongoing discussions, no randomised research has been performed, and only two studies actually compare two groups of patients. Thus, firm evidence to support or discourage the use of home UVB phototherapy has not yet been obtained. This is the goal of the present study, the PLUTO study (Dutch acronym for "national trial on home UVB phototherapy for psoriasis"). We designed a pragmatic randomised single-blind multi-centre trial. This trial is designed to evaluate the impact of home UVB treatment versus UVB phototherapy in a hospital outpatient clinic as to effectiveness, quality of life and cost-effectiveness. In total 196 patients with psoriasis who were clinically eligible for UVB phototherapy were included. Normally 85% of the patients treated with UVB show a relevant clinical response. With a power of 80% and a 0.05 significance level it will be possible to detect a reduction in effectiveness of 15%. Effectiveness will be determined by calculating differences in the Psoriasis Area and Severity Index (PASI) and the Self Administered PASI (SAPASI) scores. Quality of life is measured using several validated generic questionnaires and a disease-specific questionnaire. Other outcome measures include costs, side effects, dosimetry, concomitant use of medication and patient satisfaction. Patients are followed throughout the therapy and for 12 months thereafter. The study is no longer recruiting patients, and is expected to report in 2006. In the field of home UVB phototherapy this trial is the first randomised parallel group study. As such, this trial addresses the weaknesses encountered in previous studies. The pragmatic design ensures that the results can be well generalised to the target population. Because, in addition to effectiveness, aspects such as

  20. UVB phototherapy in an outpatient setting or at home: a pragmatic randomised single-blind trial designed to settle the discussion. The PLUTO study

    Directory of Open Access Journals (Sweden)

    van Weelden Huib

    2006-08-01

    Full Text Available Abstract Background Home ultraviolet B (UVB treatment is a much-debated treatment, especially with regard to effectiveness, safety and side effects. However, it is increasingly being prescribed, especially in the Netherlands. Despite ongoing discussions, no randomised research has been performed, and only two studies actually compare two groups of patients. Thus, firm evidence to support or discourage the use of home UVB phototherapy has not yet been obtained. This is the goal of the present study, the PLUTO study (Dutch acronym for "national trial on home UVB phototherapy for psoriasis". Methods We designed a pragmatic randomised single-blind multi-centre trial. This trial is designed to evaluate the impact of home UVB treatment versus UVB phototherapy in a hospital outpatient clinic as to effectiveness, quality of life and cost-effectiveness. In total 196 patients with psoriasis who were clinically eligible for UVB phototherapy were included. Normally 85% of the patients treated with UVB show a relevant clinical response. With a power of 80% and a 0.05 significance level it will be possible to detect a reduction in effectiveness of 15%. Effectiveness will be determined by calculating differences in the Psoriasis Area and Severity Index (PASI and the Self Administered PASI (SAPASI scores. Quality of life is measured using several validated generic questionnaires and a disease-specific questionnaire. Other outcome measures include costs, side effects, dosimetry, concomitant use of medication and patient satisfaction. Patients are followed throughout the therapy and for 12 months thereafter. The study is no longer recruiting patients, and is expected to report in 2006. Discussion In the field of home UVB phototherapy this trial is the first randomised parallel group study. As such, this trial addresses the weaknesses encountered in previous studies. The pragmatic design ensures that the results can be well generalised to the target population

  1. Robot-assisted radical prostatectomy in the setting of previous abdominal surgery: Perioperative results, oncological and functional outcomes, and complications in a single surgeon's series.

    Science.gov (United States)

    Di Pierro, Giovanni Battista; Grande, Pietro; Mordasini, Livio; Danuser, Hansjörg; Mattei, Agostino

    2016-12-01

    Data on safety and efficacy of robot-assisted radical prostatectomy (RARP) after previous abdominal surgery are scarce. Hence, we assessed perioperative, oncological and functional outcomes, and complications of RARP in patients with previous abdominal surgery after 1-year minimum follow-up. Prospectively collected data from 339 consecutive patients undergoing transperitoneal RARP by a single surgeon (AM) between November 2008 and May 2014 were analysed. Complications were classified according to Modified Clavien System. Biochemical recurrence (BCR) was defined as two consecutive PSA values ≥ 0.2 ng/ml. Functional outcomes were assessed using validated, self-administered questionnaires. In particular, only patients undergoing nerve-sparing RARP with no erectile dysfunction (baseline IIEF-5 score >21) and no use of phosphodiesterase-5 inhibitors preoperatively who were interested in erections and required no adjuvant therapy (radiation, orchiectomy and androgen-deprivation therapy) were evaluated concerning potency recovery. Patients without and with previous abdominal surgery were compared using Mann-Whitney and chi-square tests (or Fisher exact test). On 339 patients, 247 (71.6%) had not undergone previous abdominal surgery (Group 1) and 92 (28.4%) were pre-operated (Group 2). There were no statistically significant differences between Groups 1 and 2 regarding mean operative time (260 vs. 257 min; p = 0.597), median number of resected nodes (16 vs. 17; p = 0.484), mean length of stay (7.2 vs. 7.1 d; p = 0.151), positive surgical margin (12.5% vs. 16.3%; p = 0.233) and complication rates (26.7% vs. 31.5%; p = 0.187). Median (IQR) follow-up was 36 (12-48) months. For Groups 1 and 2, BCR-free survival rates were 78.5% and 79.8% (p = 0.467); continence rates were 97.9% and 100% (p = 0.329), whereas a potency recovery was achieved in 69.5% and 62.2% of patients (p = 0.460), respectively. Transperitoneal RARP is a safe and efficient treatment for

  2. Single, community-based blood glucose readings may be a viable alternative for community surveillance of HbA1c and poor glycaemic control in people with known diabetes in resource-poor settings

    Directory of Open Access Journals (Sweden)

    Daniel D. Reidpath

    2016-08-01

    Full Text Available Background: The term HbA1c (glycated haemoglobin is commonly used in relation to diabetes mellitus. The measure gives an indication of the average blood sugar levels over a period of weeks or months prior to testing. For most low- and middle-income countries HbA1c measurement in community surveillance is prohibitively expensive. A question arises about the possibility of using a single blood glucose measure for estimating HbA1c and therefore identifying poor glycaemic control in resource-poor settings. Design: Using data from the 2011–2012 US National Health and Nutrition Examination Surveys, we examined the relationship between HbA1c and a single fasting measure of blood glucose in a non-clinical population of people with known diabetes (n=333. A linear equation for estimating HbA1c from blood glucose was developed. Appropriate blood glucose cut-off values were set for poor glycaemic control (HbA1c≥69.4 mmol/mol. Results: The HbA1c and blood glucose measures were well correlated (r=0.7. Three blood glucose cut-off values were considered for classifying poor glycaemic control: 8.0, 8.9, and 11.4 mmol/L. A blood glucose of 11.4 had a specificity of 1, but poor sensitivity (0.37; 8.9 had high specificity (0.94 and moderate sensitivity (0.7; 8.0 was associated with good specificity (0.81 and sensitivity (0.75. Conclusions: Where HbA1c measurement is too expensive for community surveillance, a single blood glucose measure may be a reasonable alternative. Generalising the specific results from these US data to low resource settings may not be appropriate, but the general approach is worthy of further investigation.

  3. Quantum optics with single quantum dot devices

    International Nuclear Information System (INIS)

    Zwiller, Valery; Aichele, Thomas; Benson, Oliver

    2004-01-01

    A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots

  4. The single-isocenter treatment of head and neck cancer: time gain using MLC and automatic set-up; Traitement des cancers ORL: gain de temps avec le collimateur multilames et la mise en place automatique

    Energy Technology Data Exchange (ETDEWEB)

    Meerleer, G.O. de; Vakaet, L.A.M.L.; Bate, M.T.; Wagter, C. de; Naeyer, B. de; Neve, W.J. de [University Hospital, Gent (Belgium). Div. of Radiotherapy (R-UZG)

    1999-05-01

    In this manuscript, we studied the difference in the treatment time required to execute a single-isocenter three-field irradiation of the head and neck, using either tray-mounted cerro-bend blocks or a multi-leaf collimator (MLC) for field shaping and automatic set-up. A total of twenty consecutive, unselected patients (16 males, four females), were eligible for this study because the dose they were to received was 44 Gy (2 Gy/fraction) to the head,neck and supraclavicular regions. Patients were randomly allocated to one of two treatment groups. The first group (n=11) was treated on a Philips SL-75 linear accelerator (SL-75), using 5 MV photons and tray-mounted cerro-bend blocks. The second group (n=9) was treated on a Philips SL-25 linear accelerator (SL-25-MLC), using 6 MV photons and a MLC. Patients of the second group were treated using the automatic set-up of the SL-25-MLC, without entering the treatment room between consecutive fields. Overall treatment time was significantly shorter on the SL-25-MLC than on the SL-75 (P<0.0001). The difference in total treatment-execution time was in the range of 157 s per treatment session. The largest difference was observed in the set-up time. There was an average of a 125 s time gain per treatment day (P<0.0001) in favour of the SL-25-MLC. Compared to tray-mounted cerro-bend blocks, a MLC and automatic set-up results in a significant time advantage when a single isocenter technique is used to treat head and neck cancer. (authors)

  5. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water

    Science.gov (United States)

    Reif, Maria M.; Hünenberger, Philippe H.

    2011-04-01

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006), 10.1529/biophysj.106.083667; M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li+, Na+, K+, Rb+, Cs+) and halide (F-, Cl-, Br-, I-) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998), 10.1021/jp982638r; Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, Δ G_hyd^{ominus }[H+] = -1100, -1075 or -1050 kJ mol-1, resulting in three sets L, M, and H for the SPC water model and three sets LE, ME, and HE for the SPC/E water model (alternative sets can easily be interpolated to intermediate Δ G_hyd^{ominus }[H+] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is

  6. WDM cross-connect cascade based on all-optical wavelength converters for routing and wavelength slot interchanging using a reduced number of internal wavelengths

    DEFF Research Database (Denmark)

    Pedersen, Rune Johan Skullerud; Mikkelsen, Benny; Jørgensen, Bo Foged

    1998-01-01

    Optical transport layers need rearrangeable wavelength-division multiplexing optical cross-connects (OXCs) to increase the capacity and flexibility of the network. It has previously been shown that a cross-connect based on all-optical wavelength converters for routing as well as wavelength slot...

  7. Narrow Wavelength, Frequency Modulated Source at 1.5mm Wavelength, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs narrow linewidth lasers in the 1.5 or 2 micron wavelength regime for Lidar applications. The laser should be tunable by several nm and frequency modulated...

  8. Compact, Wavelength Stabilized Seed Source for Multi-Wavelength Lidar Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA LaRC is developing a compact, multi-wavelength High Spectral resolution Lidar (HSRL) system designed to measure various optical and microphysical properties of...

  9. Resonances of periodic metal-dielectric structures at the infrared wavelength region

    Science.gov (United States)

    Sternberg, Oren

    2002-01-01

    Metal meshes have been used as reflectors in radar receivers for wavelength much longer than the periodic constant of the conducting wires and as optical reflectors in a Fabry-Perot in the far infrared. Cross shaped metal meshes can be used as band pass filters but the design theory and near field properties have not been known. Transmittance of thin, single-layer and multiplayer metal meshes has been investigated using Micro-Strips, yielding numerical solutions of Maxwell's equations. The near field effect was studied for two alignment configurations of cross shaped metal meshes, both free standing and with dielectrics, and transmission line theory was applied for the interpretation as an oscillator mode model. The model for the interpretation of the mode of a single mesh uses a pair of coupled surface wave (that is one standing wave on each side). The transmittance of multi-layer metal meshes are interpreted as modes composed of resonance modes of the single mesh, the Fabry-Perot modes depending on the separation of the meshes, and their interaction. Experimental data for thick inductive cross shaped metal meshes agree very well with Micro-Strips calculations in the long wavelength region and with Fourier Modal method calculations in the short wavelength. The transmittances of all these meshes show similar resonance peaks and the same dependence on thickness of the short wavelength peaks, suggesting that the interpretation using the oscillator mode model is valid in the short and long wavelength region. Stacks of thin metal meshes have been studied with Micro-Strips and transmission line theory. Narrow transmission regions for inductive meshes and narrow bandgap regions for capacitive meshes may be obtained from layered structures for the aligned configuration and spacing of 1/4 resonance wavelength of a single layer.

  10. Multi-Wavelength Observations of Supernova Remnants

    Science.gov (United States)

    Williams, B.

    2012-01-01

    Supernova remnants (SNRs) provide a laboratory for studying various astrophysical processes, including particle acceleration, thermal and non thermal emission processes across the spectrum, distribution of heavy elements, the physics of strong shock waves, and the progenitor systems and environments of supernovae. Long studied in radio and X-rays, the past decade has seen a dramatic increase in the detection and subsequent study of SNRs in the infrared and gamma-ray regimes. Understanding the evolution of SNRs and their interaction with the interstellar medium requires a multi-wavelength approach. I will review the various physical processes observed in SNRs and how these processes are intertwined. In particular, I will focus on X-ray and infrared observations, which probe two very different but intrinsically connected phases of the ISM: gas and dust. I will discuss results from multi-wavelength studies of several SNRs at various stages of evolution, including Kepler, RCW 86, and the Cygnus Loop.

  11. Human wavelength discrimination of monochromatic light explained by optimal wavelength decoding of light of unknown intensity.

    Directory of Open Access Journals (Sweden)

    Li Zhaoping

    Full Text Available We show that human ability to discriminate the wavelength of monochromatic light can be understood as maximum likelihood decoding of the cone absorptions, with a signal processing efficiency that is independent of the wavelength. This work is built on the framework of ideal observer analysis of visual discrimination used in many previous works. A distinctive aspect of our work is that we highlight a perceptual confound that observers should confuse a change in input light wavelength with a change in input intensity. Hence a simple ideal observer model which assumes that an observer has a full knowledge of input intensity should over-estimate human ability in discriminating wavelengths of two inputs of unequal intensity. This confound also makes it difficult to consistently measure human ability in wavelength discrimination by asking observers to distinguish two input colors while matching their brightness. We argue that the best experimental method for reliable measurement of discrimination thresholds is the one of Pokorny and Smith, in which observers only need to distinguish two inputs, regardless of whether they differ in hue or brightness. We mathematically formulate wavelength discrimination under this wavelength-intensity confound and show a good agreement between our theoretical prediction and the behavioral data. Our analysis explains why the discrimination threshold varies with the input wavelength, and shows how sensitively the threshold depends on the relative densities of the three types of cones in the retina (and in particular predict discriminations in dichromats. Our mathematical formulation and solution can be applied to general problems of sensory discrimination when there is a perceptual confound from other sensory feature dimensions.

  12. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function

    OpenAIRE

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-01

    Synthesis of single-wavelength temporal phase-shifting algorithms (PSA) for interferometry is well-known and firmly based on the frequency transfer function (FTF) paradigm. Here we extend the single-wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when several simultaneous laser-colors are present. The FTF-based synthesis for dual-wavelength PSA (DW-PSA) is optimized for high signal-to-noise ratio and minimum number of temporal phase-shifted interferograms. The DW-PSA synthesi...

  13. Optical Detection in Ultrafast Short Wavelength Science

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Hall, Chris J.

    2010-01-01

    A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.

  14. Wavelength switching in an optical klystron

    International Nuclear Information System (INIS)

    Berryman, K.W.; Smith, T.I.

    1995-01-01

    A symmetric optical klystron consists of two identical undulator sections separated a dispersive section. For a device of a given length, an optical klystron is capable of producing much more bunching, and therefore more gain, than a traditional undulator. Another consequence of introducing dispersion between two undulator sections is that the overall spontaneous radiation pattern results from the interference between the two undulator sections, and as such resembles a standard undulator radiation pattern modulated by a sinusoidal interference term. The presence of several wavelength peaks in the spontaneous lineshape implies an equal number of peaks in the gain spectrum. If the strength of the dispersion section is adjusted to provide nearly equal gain on the two largest of these peaks, then they will compete, and the FEL may switch wavelengths based on noise, cavity length, or other perturbations. We provide the first observations of this behavior, using the FIREFLY system at the Stanford Picosecond FEL Center. In FIREFLY, relative wavelength switching by more than 3%--more than twice the laser linewidth-has been observed by varying dispersion section strength, while at intermediate points stable switching has also been observed as a function of cavity length

  15. Wavelength switching in an optical klystron

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, K.W.; Smith, T.I. [Stanford Univ., CA (United States)

    1995-12-31

    A symmetric optical klystron consists of two identical undulator sections separated a dispersive section. For a device of a given length, an optical klystron is capable of producing much more bunching, and therefore more gain, than a traditional undulator. Another consequence of introducing dispersion between two undulator sections is that the overall spontaneous radiation pattern results from the interference between the two undulator sections, and as such resembles a standard undulator radiation pattern modulated by a sinusoidal interference term. The presence of several wavelength peaks in the spontaneous lineshape implies an equal number of peaks in the gain spectrum. If the strength of the dispersion section is adjusted to provide nearly equal gain on the two largest of these peaks, then they will compete, and the FEL may switch wavelengths based on noise, cavity length, or other perturbations. We provide the first observations of this behavior, using the FIREFLY system at the Stanford Picosecond FEL Center. In FIREFLY, relative wavelength switching by more than 3%--more than twice the laser linewidth-has been observed by varying dispersion section strength, while at intermediate points stable switching has also been observed as a function of cavity length.

  16. Wavelength Tunable Flip-Flop Operation of a Modulated Grating Y-branch Laser

    DEFF Research Database (Denmark)

    An, Yi; Lorences Riesgo, Abel; Peucheret, Christophe

    2012-01-01

    Wavelength tunable flip-flop operation is experimentally demonstrated in a single modulated grating Y-branch laser for the first time. The control pulses have energies of 0.16-0.34 pJ and the switching time is about 200 ps....

  17. Total detection of Tianma Toutong tablets for quality consistency by a five-wavelength fusion fingerprint and chemometrics.

    Science.gov (United States)

    Yang, Zhe; Sun, Guo-Xiang

    2017-07-01

    A fingerprint method was developed and combined with chemometrics for quality evaluation of Tianma Toutong tablets, which are herbal medicine tablets used to treat migraine. Samples were analyzed by high-performance liquid chromatography, where five single-wavelength profiles (203, 232, 254, 280 and 310 nm) were fused to generate a five-wavelength fusion fingerprint and were also used for the quantitative analysis of seven chemical markers (gastrodin, caffeic acid, hesperidin, isoimperatorin, chlorogenic acid, ferulic acid and imperatorin). A systematic quantitative fingerprint method and principal component analysis were used to analyze the generated data. Samples could be well distinguished from different manufacturers by analyzing the chromatographic data sets. In addition, the partial least squares model can serve as an antioxidant activity evaluation of Tianma Toutong tablets, as well as a reference for the selection of active constituents to analyze the spectrum-activity relationship. In summary, the integrated use of the fingerprint and chemometric analysis provides a reliable method for the identification of markers and the quality control of Tianma Toutong tablets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A low-temperature external cavity diode laser for broad wavelength tuning

    Science.gov (United States)

    Tobias, William G.; Rosenberg, Jason S.; Hutzler, Nicholas R.; Ni, Kang-Kuen

    2016-11-01

    We report on the design and characterization of a low-temperature external cavity diode laser (ECDL) system for broad wavelength tuning. The performance achieved with multiple diode models addresses the scarcity of commercial red laser diodes below 633 nm, which is a wavelength range relevant to the spectroscopy of many molecules and ions. Using a combination of multiple-stage thermoelectric cooling and water cooling, the operating temperature of a laser diode is lowered to -64 °C, more than 85 °C below the ambient temperature. The laser system integrates temperature and diffraction grating feedback tunability for coarse and fine wavelength adjustments, respectively. For two different diode models, single-mode operation is achieved with 38 mW output power at 616.8 nm and 69 mW at 622.6 nm, more than 15 nm below their ambient temperature free-running wavelengths. The ECDL design can be used for diodes of any available wavelength, allowing individual diodes to be tuned continuously over tens of nanometers and extending the wavelength coverage of commercial laser diodes.

  19. Energy Levels, wavelengths and hyperfine structure measurements of Sc II

    Science.gov (United States)

    Hala, Fnu; Nave, Gillian

    2018-01-01

    Lines of singly ionized Scandium (Sc II) along with other Iron group elements have been observed [1] in the region surrounding the massive star Eta Carinae [2,3] called the strontium filament (SrF). The last extensive analysis of Sc II was the four-decade old work of Johansson & Litzen [4], using low-resolution grating spectroscopy. To update and extend the Sc II spectra, we have made observation of Sc/Ar, Sc/Ne and Sc/Ge/Ar hollow cathode emission spectrum on the NIST high resolution FT700 UV/Vis and 2 m UV/Vis/IR Fourier transform spectrometers (FTS). More than 850 Sc II lines have been measured in the wavelength range of 187 nm to 3.2 μm. connecting a total of 152 energy levels. The present work also focuses to resolve hyperfine structure (HFS) in Sc II lines. We aim to obtain accurate transition wavelengths, improved energy levels and HFS constants of Sc II. The latest results from work in progress will be presented.Reference[1] Hartman H, Gull T, Johansson S and Smith N 2004 Astron. Astrophys. 419 215[2] Smith N, Morse J A and Gull T R 2004 Astrophys. J. 605 405[3] Davidson K and Humphreys R M 1997 Annu. Rev. Astron. Astrophys. 35[4] Johansson S and Litzén U 1980 Phys. Scr. 22 49

  20. Multiple-wavelength neutron holography with pulsed neutrons.

    Science.gov (United States)

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-08-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering-that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF 2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique.

  1. t-PA power-pulse spray with rheolytic mechanical thrombectomy using cross-sectional image-guided portal vein access for single setting treatment of subacute superior mesenteric vein thrombosis

    Directory of Open Access Journals (Sweden)

    Mubin I Syed

    2018-01-01

    Full Text Available Background: Isolated superior mesenteric vein (SMV thrombosis is a rare but potentially fatal condition if untreated. Current treatments include transjugular or transhepatic approaches for rheolytic mechanical thrombectomy and subsequent infusions of thrombolytics. Tissue plasminogen activator (t-PA power-pulse spray can provide benefit in a single setting without thrombolytic infusions. Computed tomography (CT guidance for portal vein access is underutilized in this setting. Materials and Methods: Case 1 discusses acute SMV thrombosis treated with rheolytic mechanical thrombectomy alone using ultrasound guidance for portal vein access. Case 2 discusses subacute SMV thrombosis treated with the addition of t-PA power-pulse spray to the rheolytic mechanical thrombectomy, using CT guidance for portal vein access. Results: With rheolytic mechanical thrombectomy alone, the patient in Case 1 had significant improvement in abdominal pain. Follow-up CT demonstrated no residual SMV thrombosis and the patient continued to do well in long-term follow-up. With the addition of t-PA power-pulse spray to rheolytic mechanical thrombectomy, the patient in Case 2 with subacute SMV thrombosis dramatically improved postprocedure with resolution of abdominal pain. Follow-up imaging demonstrated patency to the SMV and partial resolution of thrombus. The patient continued to do well at 2-year follow-up. Conclusions: Adding t-PA power-pulse spray to rheolytic mechanical thrombectomy can provide benefit in a single setting versus mechanical thrombectomy alone and prevent the need for subsequent infusions of thrombolytic therapy. CT guidance is a useful alternative of localization for portal vein access via the transhepatic route that is nonoperator-dependent and helpful in the case of obese patients.

  2. Wavelength scale terahertz spectrometer based on extraordinary transmission

    Science.gov (United States)

    Henstridge, M.; Zhou, Jing; Guo, L. Jay; Merlin, R.

    2017-08-01

    Subwavelength-slotted parallel plate waveguides exhibit a localized electromagnetic resonance bound to the slits at a frequency slightly below the transverse electric cutoff [R. Merlin, Phys. Rev. X 2, 031015 (2012)]. The resonance is long-lived and, as opposed to the vanishingly small transmission shown by a single sub-wavelength aperture, it gives perfect transmission for perfectly conducting plates. We show that the aperture-supported resonances of a pair of slotted copper plates have long lifetimes at Terahertz (THz) frequencies. Finite element method calculations show that these bound resonances can have quality factors greater than 100. The effects of the plate dimensions and imperfect parallel alignment are also discussed. Using THz time domain spectroscopy, we measured the transmission of a broadband pulse through a test structure for several plate separations and demonstrated, as a proof-of-principle, the function of the slotted waveguide as a highly compact THz spectrometer.

  3. Effects of Multiple Scattering for Millimeter-Wavelength Weather Radars

    Science.gov (United States)

    Kobayashi, Satoru; Tanelli, Simone; Im, Eastwood

    2004-01-01

    Effects of multiple scattering on the reflectivity measurement for millimeter-wavelength weather radars are studied, in which backscattering enhancement may play an important role. In the previous works, the backscattering enhancement has been studied for plane wave injection, the reflection of which is received at the infinite distance. In this paper, a finite beam width of a Gaussian antenna pattern along with spherical wave is taken into account. A time-independent second order theory is derived for a single layer of clouds of a uniform density. The ordinary second-order scattering (ladder term) and the second-order backscattering enhancement (cross term) are derived for both the copolarized and cross-polarized waves.

  4. Plasmonic Behavior of Deep Sub-Wavelength Superconducting RF Metamaterials

    Science.gov (United States)

    Anlage, Steven; Kurter, Cihan; Sarytchev, Liza; Abrahams, John; Bennett, C.; Lan, Tian; Zhuravel, A. P.; Ustinov, A. V.

    2011-03-01

    We have designed and built ultra-small RF metamaterials with magnetically active spiral elements made of superconducting Nb films. RF transmission measurements on single, 1-D and 2-D arrays of spirals show robust magnetic response when Nb is in the superconducting state at frequencies as low as 14 MHz (corresponding to wavelength ~ 3000 * 'atom' size). Numerical simulations capture the main features of the experimental spectra. The resonant features are tunable via variations in temperature and RF magnetic field. As temperature approaches Tc , the superconducting kinetic inductance contribution to the total inductance increases, placing this RF metamaterial in the plasmonic limit. We study this approach to the plasmonic limit and compare to the analogous situation of frequency approaching the plasma edge in normal metal metamaterials. Supported by ONR through Grant No. N000140811058 and CNAM.

  5. Gyrokinetic theory for arbitrary wavelength electromagnetic modes in tokamaks

    International Nuclear Information System (INIS)

    Qin, H.; Tang, W.M.; Rewoldt, G.

    1997-01-01

    A linear gyrokinetic system for arbitrary wavelength electromagnetic modes is developed. A wide range of modes in inhomogeneous plasmas, such as the internal kink modes, the toroidal Alfven eigenmode (TAE) modes, and the drift modes, can be recovered from this system. The inclusion of most of the interesting physical factors into a single framework enables one to look at many familiar modes simultaneously and thus to study the modifications of and the interactions between them in a systematic way. Especially, the authors are able to investigate self-consistently the kinetic MHD phenomena entirely from the kinetic side. Phase space Lagrangian Lie perturbation methods and a newly developed computer algebra package for vector analysis in general coordinate system are utilized in the analytical derivation. In tokamak geometries, a 2D finite element code has been developed and tested. In this paper, they present the basic theoretical formalism and some of the preliminary results

  6. Multi-wavelength Spectrophotometry of V2573 Ophiuchus

    Science.gov (United States)

    Venturini, C. C.; Rudy, R. J.; Lynch, D. K.; Russell, R. W.; Mazuk, S.; Hammel, H. B.; Puetter, R. C.; Perry, R. B.

    2003-12-01

    We present spectrophotometry spanning the optical to the thermal infrared of Nova Oph 2003 (V2573 Oph) from two different epochs shortly after initial discovery. The first measurement was taken 9 days after outburst with simultaneous wavelength coverage between 0.5 to 2.5 microns. At this time, the nova was in early decline and exhibited first overtone emission from carbon monoxide, which is seldom seen in novae. The spectrum at that time was very similar to V705 Cas (Evans et al. 1996, MNRAS, 282, 1049) and V2274 Cyg (Rudy et al. 2003, ApJ, 596), two other novae with CO emission. It showed lines of C I, N I, O I as well as emission features of H I, He I, Na I, and Fe II. The second measurement was taken 35 days after initial outburst with wavelength coverage between 3.0 and 13.0 microns. The spectrum was well fit by a 1000 K grey body. The discontinuity between the flux levels of the two data sets indicates a substantial increase in the infrared emission by the later epoch, probably due to the formation of dust. There was no evidence of emission from the CO fundamental or any atomic or ionic spectral features. The authors acknowledge the assistance of the Aerospace Corporation's Independent Research and Development program and the US Air Force Space and Missile Systems Center through the Mission Oriented Investigation and Experimentation program, under contract F4701-00-C-0009.

  7. Wavelength tuning of porous silicon microcavities

    International Nuclear Information System (INIS)

    Mulders, J.; Reece, P.; Zheng, W.H.; Lerondel, G.; Sun, B.; Gal, M.

    2002-01-01

    Full text: In the last decade much attention has been given to porous silicon (PS) for optoelectronic applications, which include efficient room temperature light emission as well as microcavity formation. Due to the large specific surface area, the use of porous silicon microcavities (PSMs) has been proposed for chemical sensing. Large wavelength shifts have indicated that the optical properties of PSMs are indeed strongly dependent on the environment. In this paper, we report the shifting of the resonance frequency of high quality PSMs, with the aim of tuning a future PS device to a certain required wavelength. The PSM samples were prepared by anodically etching p + -doped (5mΩcm) bulk silicon wafer in a solution (25%) of aqueous HF and ethanol. The device structure consisted of a PS layer sandwiched between 2 stacks of thin PS layers with alternating high and low effective refractive indices (RI), i.e. distributed Bragg mirrors (DBM). The layer thickness depends on the etch time while the porosity and hence refractive index is determined by the current density as the Si is etched. The position and the width of the stop-band can be fully controlled by the design of the DBMs, with the microcavity resonance mode sitting within the stop-band. We achieved tuning of the microcavity resonance by a number of methods, including temperature dependent tuning. The temperature induced wavelength shift was found to be of the order of 10 -15 nm. Computer modeling of these changes in the reflectivity spectra allowed us to quantify the changes of the effective refractive index and the respective layer thicknesses

  8. Wavelength-agnostic WDM-PON System

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael; Zou, S.

    2016-01-01

    on the standardization status of this lowcost system in the new ITU-T G.metro draft recommendation, in the context of autonomous tuning. We also discuss some low-effort implementations of the pilot-tone labels and investigate the impact of these labels on the transmission channels.......Next-generation WDM-PON solutions for metro and access systems will take advantage of remotely controlled wavelength-tunable ONUs to keep system costs as low as possible. For such a purpose, each ONU signal can be labeled by a pilot tone modulated onto the optical data stream. We report...

  9. Wavelength switchable fiber-optic Sagnac filter

    Science.gov (United States)

    Su, Dan; Qiao, Xueguang; Rong, Qiangzhou; Shao, Zhihua

    2018-03-01

    A wavelength switchable fiber-optic comb filter based on an in-line Sagnac interference is proposed and demonstrated. The proposed filter consists of a polarizer, two polarization controllers (PCs) and two sections of polarization maintaining fiber (PMFs). The output comb spectrum characteristics of the configuration are theoretically analyzed by Jones matrix, and then numerically simulated and experimentally demonstrated, of which the results present four comb filter-types (sinusoidal, flat-top and narrow-band superposition, and line-shaped spectra) by adjusting the polarizations of light with PCs.

  10. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.

    2015-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  11. Innovative Long Wavelength Infrared Detector Workshop Proceedings

    Science.gov (United States)

    1995-12-01

    Reflection Mass Spectometry and IIIN MBE "JREM8 ff TWA Tam be w Guns MmA "FPy r~w. JaM: 10m Duuw F"w. •MM wW VG MOE rmtw SM LN2 r Composition Control...OW U.S. DEPARTMENT OF COMMERCE NationalI Technical Information Service 19980309 037 Accession Number: 6026 Publication Date : Dec 01, 1995 Title...Innovative Long Wavelength Infrared Detector Workshop Proceedings Pages: 00500 Cataloged Date : Mar 11, 1996 Document Type: HC Number of Copies In

  12. Wavelength conversion in optical packet switching

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Hansen, Peter Bukhave; Stubkjær, Kristian

    1998-01-01

    A detailed traffic analysis of optical packet switch design is performed. Special consideration is given to the complexity of the optical buffering and the overall switch block structure is considered in general. Wavelength converters are shown to improve the traffic performance of the switch...... blocks for both random and bursty traffic. Furthermore, the traffic performance of switch blocks with add-drop switches has been assessed in a Shufflenetwork showing the advantage of having converters at the inlets. Finally, the aspect of synchronization is discussed through a proposal to operate...... the packet switch block asynchronously, i.e. without packet alignment at the input...

  13. A femtosecond Raman generator for long wavelength two-photon and third harmonic generation imaging

    Directory of Open Access Journals (Sweden)

    J. Trägårdh

    2016-12-01

    Full Text Available We demonstrate a femtosecond single pass Raman generator based on an YVO4 crystal pumped by a high energy fiber laser at a wavelength of 1064 nm and a repetition rate of 1 MHz. The Raman generator shifts the pump wavelength to 1175 nm, in a broadband spectrum, making it suitable for multi-photon microscopy. We use the Raman generator for third harmonic generation imaging of live plant specimens as well as for two-photon fluorescence imaging of red fluorescent protein expressing HeLa cells. We demonstrate that the photo-damage to a live specimen is low.

  14. An energy-aware engineered control plane for wavelength-routed networks

    DEFF Research Database (Denmark)

    Ricciardi, Sergio; Wang, Jiayuan; Palmieri, Francesco

    2015-01-01

    ' operational expenditures. To face this problem, we propose a single-stage routing and wavelength assignment scheme, based on several network engineering extensions to the Generalised Multi-Protocol Label Switching (GMPLS) control plane protocols, mainly Open Shortest Path First, with new composed metrics...... is able to operate effectively in wide area wavelength routing scenarios, where multiple heterogeneous equipment, ranging from pure photonic to opaque routing/switching, amplification and regeneration devices are deployed in a GMPLS-empowered network. Copyright (c) 2014 John Wiley & Sons, Ltd....

  15. Wavelength Conversion of DP-QPSK Signals in a Silicon Polarization Diversity Circuit

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Schroeder, Jochen; Ding, Yunhong

    2015-01-01

    Multichannel wavelength conversion is experimentally demonstrated for high-speed 128 Gb/s dual-polarization quadrature phase-shift keying signals using four-wave mixing in a polarization diversity circuit with silicon nanowires as nonlinear elements. The wavelength conversion performance is inves...... is investigated for both single-and three-channel input signals, showing quality factors well >9.8 dB (corresponding to bit-error-ratios better than 10(-3)) and with a negligible power penalty compared with the back-to-back case....

  16. Benzoxazinone derivatives: new fluorescent probes for two-color flow cytometry analysis using one excitation wavelength.

    Science.gov (United States)

    Monsigny, M; Midoux, P; Le Bris, M T; Roche, A C; Valeur, B

    1989-01-01

    A new class of fluorescent dye which upon excitation at 488 nm turns red is shown to be probe-suitable for using in flow cytometry alone or in conjunction with fluorescein derivatives. 7-dimethylamino 3-(p-formylstyryl) 1,4 benzoxazin 2-one is suitable for rendering microorganisms, such as Plasmodium merozoites and cells detectable by flow cytometry, allowing a dual fluorescence analysis when the cells are labelled with suitable fluoresceinylated ligands such as fluorescein labeled neoglycoproteins or antibodies. The synthesis of the new benzoxazinone derivatives is described: p-[beta-(7-dimethylamino 1,4 benzoxazin 2-one 3-yl)-vinyl]-phenylpropenoic acid can be easily activated as a hydroxysuccinimide derivative and linked to amino groups of polypeptides. Hydrophilic polypeptides such as poly-L-lysine or glycosylated polymers combined with this new fluorescent dye are shown to be helpful in analyzing cell surface receptors, in dual fluorescence flow cytometry analysis, using a single excitation wavelength and two sets of compounds labeled with the new benzoxazinone derivative and with fluorescein isothiocyanate, respectively. The new benzoxazinone derivative has a high molar absorbance, a good quantum yield fluorescence when it is bound to hydrophilic polypeptides and its fluorescence intensity is not dependent on pH in the physiological pH range.

  17. Passively synchronized dual-wavelength Q-switched lasers

    DEFF Research Database (Denmark)

    Janousek, Jiri; Tidemand-Lichtenberg, Peter; Mortensen, Jesper Liltorp

    We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG....

  18. Automatic sets and Delone sets

    International Nuclear Information System (INIS)

    Barbe, A; Haeseler, F von

    2004-01-01

    Automatic sets D part of Z m are characterized by having a finite number of decimations. They are equivalently generated by fixed points of certain substitution systems, or by certain finite automata. As examples, two-dimensional versions of the Thue-Morse, Baum-Sweet, Rudin-Shapiro and paperfolding sequences are presented. We give a necessary and sufficient condition for an automatic set D part of Z m to be a Delone set in R m . The result is then extended to automatic sets that are defined as fixed points of certain substitutions. The morphology of automatic sets is discussed by means of examples

  19. Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement.

    Science.gov (United States)

    Wu, Guanhao; Takahashi, Mayumi; Inaba, Hajime; Minoshima, Kaoru

    2013-06-15

    A synthetic-wavelength interferometry of optical frequency combs is proposed for the pulse-to-pulse alignment in absolute distance measurement. The synthetic wavelength derived from the virtual second harmonic and the real second harmonic is used to bridge the interference intensity peak-finding method and the heterodyne interferometric phase measurement, so that the pulse-to-pulse alignment can be linked directly to single-wavelength heterodyne interferometry. The experimental results demonstrate that the distance measured by the peak-finding method with micrometer accuracy can be improved to the nanometer level by applying the method proposed.

  20. Dye mixtures for ultrafast wavelength shifters

    International Nuclear Information System (INIS)

    Gangopadhyay, S.; Liu, L.; Palsule, C.; Borst, W.; Wigmans, R.

    1994-01-01

    Particle detectors based on scintillation processes have been used since the discovery of radium about 100 years ago. The fast signals that can be obtained with these detectors, although often considered a nice asset, were rarely essential for the success of experiments. However, the new generation of high energy particle accelerators require particle detectors with fast response time. The authors have produced fast wavelength shifters using mixtures of various Coumarin dyes with DCM in epoxy-polymers (DGEBA+HHPA) and measured the properties of these wavelength shifters. The particular mixtures were chosen because there is a substantial overlap between the emission spectrum of Coumarin and the absorption spectrum of DCM. The continuous wave and time-resolved fluorescence spectra have been studied as a function of component concentration to optimize the decay times, emission peaks and quantum yields. The mean decay times of these mixtures are in the range of 2.5--4.5 ns. The mean decay time increases with an increase in Coumarin concentration at a fixed DCM concentration or with a decrease in DCM concentration at a fixed Coumarin concentration. This indicates that the energy transfer is radiative at lower relative DCM concentrations and becomes non-radiative at higher DCM concentrations

  1. Long-wavelength microinstabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Tang, W.W.; Rewoldt, G.

    1993-01-01

    Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in TFTR L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities

  2. Coherence techniques at extreme ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  3. A high efficiency ultrahigh vacuum compatible flat field spectrometer for extreme ultraviolet wavelengths

    International Nuclear Information System (INIS)

    Blagojevic, B.; Le Bigot, E.-O.; Fahy, K.; Aguilar, A.; Makonyi, K.; Takacs, E.; Tan, J.N.; Pomeroy, J.M.; Burnett, J.H.; Gillaspy, J.D.; Roberts, J.R.

    2005-01-01

    A custom, flat field, extreme ultraviolet spectrometer built specifically for use with low power light sources that operate under ultrahigh vacuum conditions is reported. The spectral range of the spectrometer extends from 4 nm to 40 nm. The instrument optimizes the light gathering power and signal-to-noise ratio while achieving good resolution. A detailed description of the spectrometer and design considerations are presented, as well as a procedure that could be used to obtain a synthetic wavelength calibration with the aid of only a single known spectral feature. This synthetic wavelength calibration is compared to a standard wavelength calibration obtained from previously reported spectral lines of Xe, Ar, and Ne ions recorded with this spectrometer

  4. Fast Restoration Based on Alternative Wavelength Paths in a Wide Area Optical IP Network

    Science.gov (United States)

    Matera, Francesco; Rea, Luca; Venezia, Matteo; Capanna, Lorenzo; Del Prete, Giuseppe

    In this article we describe an experimental investigation of IP network restoration based on wavelength recovery. We propose a procedure for metro and wide area gigabit Ethernet networks that allows us to route the wavelength in case of link failure to another existing link by exploiting wavelength division multiplexing in the fiber. Such a procedure is obtained by means of an optical switch that is managed by a loss-of-light signal that is generated by a router in case of link failure. Such a method has been tested in an IP network consisting of three core routers with optical gigabit Ethernet interfaces connected by means of 50-km-long single-mode fibers between Rome and Pomezia. Compared with other conventional restoration techniques, such as OSPF and MPLS, our method -in very fast (20 ms) and is compatible with real-time TV services and low-cost chips.

  5. Binary sub-wavelength diffractive lenses with long focal depth and high transverse resolution.

    Science.gov (United States)

    Feng, Di; Ou, Pan; Feng, Li-Shuang; Hu, Shu-Ling; Zhang, Chun-Xi

    2008-12-08

    This study explores two-dimensional binary sub-wavelength diffractive lenses (BSDLs) for implementing long focal depth and high transverse resolution based on the rigorous electromagnetic theory and the finite-difference time-domain method. Focusing performances, such as the actual focal depth, the ratio between the focal depth of the designed BSDL and the focal depth of the conventional sub-wavelength lens and the spot size of the central lobe at the actual focal plane, for different f-numbers, have been studied in the case of TE incidence polarization wave. The rigorous numerical results indicate that the designed BSDLs indeed have long focal depth and high transverse resolution by modulating the binary sub-wavelength characteristic sizes. Because BSDLs have the ability for monolithic integration and can require only single step fabrication, the investigations may provide useful information for BSDLs' application in micro-optical systems. (c) 2008 Optical Society of America

  6. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA.

    Science.gov (United States)

    Cleary, Ciaran S; Power, Mark J; Schneider, Simon; Webb, Roderick P; Manning, Robert J

    2010-12-06

    We report remarkably fast and strongly wavelength-dependent gain recovery in a single SOA without the aid of an offset filter. Full gain recovery times as short as 9 ps were observed in pump-probe measurements when pumping to the blue wavelength side of a continuous wave probe, in contrast to times of 25 to 30 ps when pumping to the red wavelength side. Experimental and numerical analysis indicate that the long effective length and high gain led to deep saturation of the second half of the SOA by the probe. The consequent absorption of blue-shifted pump pulses in this region resulted in device dynamics analogous to those of the Turbo-Switch.

  7. Wavelength dependence for the photoreactions of DNA-Psoralen monoadducts. 1. Photoreversal of monoadducts

    International Nuclear Information System (INIS)

    Shi, Y.; Hearst, J.E.

    1987-01-01

    The authors have studied the wavelength dependence for the photoreversal of a monoadducted psoralen derivative, HMT [4'(hydroxymethyl)-4,5',8-trimethylpsoralen], in a single-stranded deoxyoligonucleotide (5'-GAAGCTACGAGC-3'). The psoralen was covalently attached to the thymidine residue in the oligonucleotide as either a furan-side monoadduct, which is formed through the cycloaddition between the 4',5' double bond of the psoralen and the 5,6 double bond of the thymidine, or a pyrone-side monoadduct, which is formed through the cycloaddition between the 3,4 double bond of the psoralen and the 5,6 double bond of the thymidine. As a comparison, they have also investigated the wavelength-dependent photoreversal of the isolated thymidine-HMT monoadducts. All photoreversal action spectra correlate with the extinction spectra of the isolate monoadducts. In the case of the pyrone-side monoadduct, two absorption bands contribute to the photoreversal with a quantum yield of 2 x 10 -2 at wavelengths below 250 nm and 7 x 10 -3 at wavelengths from 287 to 314 nm. The incorporation of the monoadduct into the DNA oligomer had little effect upon the photoreversal rate. For the furan-side monoadduct at least three absorption bands contribute to the photoreversal. The quantum yield varied from 5 x 10 -2 at wavelengths below 250 nm to 7 x 10 -4 at wavelengths between 295 and 365 nm. In contrast to the case of the pyrone-side monoadduct, the incorporation of the furan-side monoadduct into the DNA oligomer reduced the photoreversal rate constant at wavelengths above 285 nm

  8. The Wavelength Dependence of the Lunar Phase Curve as Seen by the LRO LAMP

    Science.gov (United States)

    Liu, Y.; Retherford, K. D.; Greathouse, T. K.; Hendrix, A. R.; Mandt, K.; Gladstone, R.; Cahill, J. T.; Egan, A.; Kaufmann, D. E.; Grava, C.; Pryor, W. R.

    2016-12-01

    The Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) provides global coverage of both nightside and dayside of the Moon in the far ultraviolet (FUV) wavelengths. The nightside observations use roughly uniform diffuse illumination sources from interplanetary medium Lyman-α sky glow and UV-bright stars so that traditional photometric corrections do not apply. In contrast, the dayside observations use sunlight as its illumination source where bidirectional reflectance is measured. The bidirectional reflectance is dependent on the incident, emission, and phase angles as well as the soil properties. Thus the comparisons of dayside mapping and nightside mapping techniques offer a method for cross-comparing the photometric correction factors because the observations are made under different lighting and viewing conditions. Specifically, the nightside data well constrain the single-scattering coefficient. We'll discuss the wavelength dependence of the lunar phase curve as seen by the LAMP instrument in dayside data. Our preliminary results indicate that the reflectance in the FUV wavelengths decreases with the increasing phase angles from 0° to 90°, similar to the phase curve in the UV-visible wavelengths as studied by Hapke et al. (2012) using LRO wide angle camera (WAC) data, among other visible-wavelength lunar studies. Particularly, we'll report how coherent backscattering and shadow hiding contribute to the opposition surge, given the fact that the albedo at FUV wavelengths is extremely low and thus multiple scattering is significantly less important. Finally, we'll report the derived Hapke parameters at FUV wavelengths for our study areas.

  9. Controlling light oxidation flavor in milk by blocking riboflavin excitation wavelengths by interference.

    Science.gov (United States)

    Webster, J B; Duncan, S E; Marcy, J E; O'Keefe, S F

    2009-01-01

    Milk packaged in glass bottles overwrapped with iridescent films (treatments blocked either a single visible riboflavin [Rb] excitation wavelength or all visible Rb excitation wavelengths; all treatments blocked UV Rb excitation wavelengths) was exposed to fluorescent lighting at 4 degrees C for up to 21 d and evaluated for light-oxidized flavor. Controls consisted of bottles with no overwrap (light-exposed treatment; represents the light barrier properties of the glass packaging) and bottles overwrapped with aluminum foil (light-protected treatment). A balanced incomplete block multi-sample difference test, using a ranking system and a trained panel, was used for evaluation of light oxidation flavor intensity. Volatiles were evaluated by gas chromatography and Rb degradation was evaluated by fluorescence spectroscopy. Packaging overwraps limited production of light oxidation flavor over time but not to the same degree as the complete light block. Blocking all visible and UV Rb excitation wavelengths reduced light oxidation flavor better than blocking only a single visible excitation wavelength plus all UV excitation wavelengths. Rb degraded over time in all treatments except the light-protected control treatment and only minor differences in the amount of degradation among treatments was observed. Hexanal production was significantly higher in the light-exposed control treatment compared to the light-protected control treatment from day 7; it was only sporadically significantly higher in the 570 nm and 400 nm block treatments. Pentanal, heptanal, and an unidentified volatile compound also increased in concentration over time, but there were no significant differences in concentration among the packaging overwrap treatments for these compounds.

  10. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter

    Directory of Open Access Journals (Sweden)

    Kyung Hyun Park

    2013-07-01

    Full Text Available We report a high-speed (~2 kHz dynamic multiplexed fiber Bragg grating (FBG sensor interrogation using a wavelength-swept laser (WSL with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement.

  11. Colorless DQPSK Receiver for Wavelength Routed Packet-Switched Networks

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Osadchiy, Alexey Vladimirovich; Tafur Monroy, Idelfonso

    2008-01-01

    We propose and demonstrate experimentally a scheme for the demodulation of 21.4-Gb/s return-to-zero differential quaternary phase-shift keying signals in packet-switched wavelength routed networks where packets at different wavelengths are arriving to the same demodulator. The idea is based...... on wavelength conversion, and in the demonstration, all channels were received error-free after wavelength conversion. In a packet arrival emulation, the ability of handling incoming packets at different wavelengths were successfully demonstrated....

  12. AJ/LPI at millimeter wavelengths

    Science.gov (United States)

    Tiffany, G. B.; Bleck, D. T.; Boatman, R. K.

    The AJ/LPI advantages of millimeter wavelength communication at or near the 60-GHz oxygen line have been apparent to researchers for many years. Realizing the full extent of these advantages in a system appropriate for field operation requires more than simply designing a conventional communications link for operation at 60 GHz. Very low sidelobe, narrow beamwidth antennas of rugged construction and the use of frequency agility and spread spectrum modulation are also necessary. Construction of short range, clear weather tactical communication systems exploiting tropospheric oxygen absorption in the 50- to 70-GHz region appears feasible with current state-of-the-art solid-state components. The critical design parameters for achieving all weather jamming resistance and covertness are frequency selection, power management, waveform design, and antenna side- and back-lobe performance.

  13. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating

    Science.gov (United States)

    Zheng, Yujin; Sekine, Takashi; Kurita, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki

    2018-03-01

    We demonstrate continuous-wave dual-wavelength operation of a broad-area distributed feedback (DFB) laser diode with a single external-cavity configuration. This high-power DFB laser has a narrow bandwidth (cavity DFB laser to output another stable wavelength beam with a narrow bandwidth of 0.27 nm. A frequency difference for dual-wavelength operation of 0.88 THz was achieved and an output power of up to 415 mW was obtained. The external-cavity DFB laser showed a stable dual-wavelength operation over the practical current and temperature ranges.

  14. Phase retrieval from the phase-shift moiré fringe patterns in simultaneous dual-wavelength interferometry

    Science.gov (United States)

    Cheng, Jinlong; Gao, Zhishan; Bie, Shuyou; Dou, Yimeng; Ni, Ruihu; Yuan, Qun

    2018-02-01

    Simultaneous dual-wavelength interferometry (SDWI) could extend the measured range of each single-wavelength interferometry. The moiré fringe generated in SDWI indirectly represents the information of the measured long synthetic-wavelength ({λ }{{S}}) phase, thus the phase demodulation is rather arduous. To address this issue, we present a method to convert the moiré fringe pattern into a synthetic-wavelength interferogram (moiré to synthetic-wavelength, MTS). After the square of the moiré fringe pattern in the MTS method, the additive moiré pattern is turned into a multiplicative one. And the synthetic-wavelength interferogram could be obtained by a low-pass filtering in spectrum of the multiplicative moiré fringe pattern. Therefore, when the dual-wavelength interferometer is implemented with the π/2 phase shift at {λ }{{S}}, a sequence of synthetic-wavelength phase-shift interferograms with π/2 phase shift could be obtained after the MTS method processing on the captured moiré fringe patterns. And then the synthetic-wavelength phase could be retrieved by the conventional phase-shift algorithm. Compared with other methods in SDWI, the proposed MTS approach could reduce the restriction of the phase shift and frame numbers for the adoption of the conventional phase-shift algorithm. Following, numerical simulations are executed to evaluate the performance of the MTS method in processing time, frames of interferograms and the phase shift error compensation. And the necessary linear carrier for MTS method is less than 0.11 times of the traditional dual-wavelength spatial-domain Fourier transform method. Finally, the deviations for MTS method in experiment are 0.97% for a step with the height of 7.8 μm and 1.11% for a Fresnel lens with the step height of 6.2328 μm.

  15. Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator.

    Science.gov (United States)

    Samanta, G K; Ebrahim-Zadeh, M

    2011-08-15

    We report a cw optical parametric oscillator (OPO) in a novel architecture comprising two nonlinear crystals in a single cavity, providing two independently tunable pairs of signal and idler wavelengths. Based on a singly resonant oscillator design, the device permits access to arbitrary signal and idler wavelength combinations within the parametric gain bandwidth and reflectivity of the OPO cavity mirrors. Using two identical 30 mm long MgO:sPPLT crystals in a compact four-mirror ring resonator pumped at 532 nm, we generate two pairs of signal and idler wavelengths with arbitrary tuning across 850-1430 nm, and demonstrate a frequency separation in the resonant signal waves down to 0.55 THz. Moreover, near wavelength-matched condition, coherent energy coupling between the resonant signal waves, results in reduced operation threshold and increased output power. A total output power >2.8 W with peak-to-peak power stability of 16% over 2 h is obtained. © 2011 Optical Society of America

  16. Single-shot femtosecond-pulsed phase-shifting digital holography.

    Science.gov (United States)

    Kakue, Takashi; Itoh, Seiya; Xia, Peng; Tahara, Tatsuki; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2012-08-27

    Parallel phase-shifting digital holography is capable of three-dimensional measurement of a dynamically moving object with a single-shot recording. In this letter, we demonstrated a parallel phase-shifting digital holography using a single femtosecond light pulse whose central wavelength and temporal duration were 800 nm and 96 fs, respectively. As an object, we set spark discharge in atmospheric pressure air induced by applying a high voltage to between two electrodes. The instantaneous change in phase caused by the spark discharge was clearly reconstructed. The reconstructed phase image shows the change of refractive index of air was -3.7 × 10(-4).

  17. Community Based Screening, Brief-Intervention and Referral for Treatment (SBIRT for unhealthy tobacco use: single arm study experience and Implementation Success in rural and semi-rural settings, South-West Nigeria

    Directory of Open Access Journals (Sweden)

    Victor Olufolahan Lasebikan

    2016-08-01

    Full Text Available Objective: To determine whether Screening, Brief Intervention and Referral to Treatment (SBIRT can reduce the prevalence of tobacco use in rural and semi-rural settings. Method: Design and participants: A non-randomized clinical trial with assessments at baseline and post-intervention assessments at 3 and 6 months was conducted in a rural and semi-rural district in South-West of Nigeria. A representative sample of 1203 persons consented to the study and had ASSIST administered to them by trained community healthcare extension workers between October, 2010 and April, 2011. Follow-up participation was more than 99% at all points. Intervention: Participants received a single ASSIST linked brief intervention (BI and referral for treatment (RT at entry, and a booster ASSIST BI and RT at 3 months.Main outcomes and measures: The primary outcome was self-reported scores on ASSIST. Results: At baseline, out of 1203 respondents, lifetime prevalence and current prevalence of any tobacco products was 405 (33.7% and 248 (20.6% respectively. Of the current users, on the ASSIST, 79 (31.9% scored 0-3 (low health risk, 130 (52.4% scored 4-26 (moderate risk, 39 (15.7% scored 27+ (high risk. At 3 months, out of 1199 respondents, prevalence of current users was 199 (16.5% and out of 1195 respondents, was 169 (14.1% at 6 months. Prevalence of tobacco use reduced significantly at 3 months Z = -3.1, p = 0.01 and at 6 months when compared with baseline Z = 4.2, p = 0.001, but not at 6 months compared with at 3 months, Z = 2.1, p = 0.09. Multivariate analysis revealed that age at initiation of tobacco use, gender, marital status, setting of dwelling and socioeconomic status were the only variables that were associated with current tobacco use at baseline, 3 months and 6 months.Conclusion: A one-time BI with a booster at 3 months had a significant effect on tobacco use in persons living in community settings. This finding suggests a need for promoting the adoption of

  18. [Measurement of multi-wavelength pulse oxygen saturation based on dynamic spectroscopy].

    Science.gov (United States)

    Wang, Xiao-Fei; Zhao, Wen-Jun

    2014-05-01

    The present paper puts forward multi-wavelength pulse oxygen saturation measurement based on dynamic spectroscopy to do the non-invasive determination of oxygen saturation. Compared to conventional ways, the new method makes full use of more wavelengths light and improves the measurement accuracy. During the experiment, the in-vivo measurements were carried out on 60 patients and their spectroscopic data were collected by the high sensitivity type fiber optic spectrometer. Singletrial estimation method was used to extract the dynamic spectroscopy at the wavelengths of 606. 44 approximately 987. 55 nm. Oxygen saturation obtained from arterial blood gas analysis is regarded as the true value. Synergy interval partial least square (siPLS) was used to establish the calibration model of subjects' oxygen saturation values against dynamic spectroscopy data. The relative error of prediction is +/-0. 017 6, but the relative error of the subjects in the same set measured by the patient monitor which was two-wavelength measure system is +/-0. 116 4. Measurement results show that the use of the high sensitivity type fiber optic spectrometer to collect multi-wavelength spectroscopic data and dynamic spectroscopy method to process data can do better in improving the accuracy of the oxygen saturation measurement.

  19. Saturn B and C ring studies at multiple wavelengths

    Science.gov (United States)

    Spilker, Linda; Deau, Estelle; Morishima, Ryuji; Filacchione, Gianrico; Hedman, Matt; Nicholson, Phil; Colwell, Josh; Bradley, Todd; Pilorz, Stu

    2015-04-01

    We can learn a great deal about the characteristics of Saturn's ring particles and their regoliths by modeling the changes in their brightness, color and temperature with changing viewing geometry over a wide range of wavelengths, from ultraviolet through the thermal infrared. Data from Cassini's Composite Infrared Spectrometer (CIRS), Visual and Infrared Mapping Spectrometer (VIMS), Imaging Science Subsystem (ISS) and Ultraviolet Imaging Spectrograph (UVIS) are jointly studied using data from the lit and unlit main rings at multiple geometries and solar elevations. Using multi-wavelength data sets allow us to test different thermal models by combining the effects of particle albedo, regolith grain size and surface roughness with thermal emissivity and inertia, particle spin rate and spin axis orientation. With the high spatial resolution of the Cassini data it is now possible to analyze these effects at smaller spatial scales and characterize higher optical depth regions in faint rings such as the outer C ring, where albedo differences may be present. The CIRS temperature and ISS color variations are confined primarily to phase angle over a range of solar elevations with only small differences from changing spacecraft elevation. Color and temperature dependence with varying solar elevation angle are also observed. Brightness dependence with changing solar elevation angle and phase angle is observed with UVIS. VIMS observations show that the IR ice absorption band depths are a very weak function of phase angle, out to ~140 deg phase, suggesting that interparticle light scattering is relatively unimportant except at very high phase angles. These results imply that the individual properties of the ring particles may play a larger role than the collective properties of the rings, in particular at visible wavelengths. The temperature and color variation with phase angle may be a result of scattering within the regolith and on possibly rough surfaces of the clumps, as

  20. A tunable narrow-line-width multi-wavelength Er-doped fiber laser based on a high birefringence fiber ring mirror and an auto-tracking filter

    Science.gov (United States)

    Jia, Xiu-jie; Liu, Yan-ge; Si, Li-bin; Guo, Zhan-cheng; Fu, Sheng-gui; Kai, Gui-yun; Dong, Xiao-yi

    2008-01-01

    A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.

  1. Single bunch instabilities in an SSC

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1984-01-01

    In this note coherent instability thresholds are estimated for the SSC and discuss some of the subsequent design restrictions. The various instabilities are set out in a block diagram with the essential features of each. The assumption is made that long wavelength coupled bunch effects can be cured effectively by a feedback system (both longitudinal and transverse) and that the impedance of the feedback system is such as to cancel that of the environment (at low frequency). Alternatively, the long wake field is assumed to be exactly canceled, on the average, by a feedback wake field. This leaves only single bunch effects. Thresholds for fast-blowup are discussed both in the longitudinal and transverse and the transverse mode coupling instability more familiar in electron/positron storage rings is covered. The impedances considered are a broadband impedance and the resistive wall impedance

  2. Optimized sub-wavelength grating mirror design for mid-infrared wavelength range

    OpenAIRE

    Chevallier, Christyves; Fressengeas, Nicolas; Genty, Frédéric; Jacquet, Joël

    2011-01-01

    The final publication is available at www.springerlink.com; International audience; Several designs of sub-wavelength grating mirrors adapted to mid-infrared operation are reported with several percents of tolerance for the grating fabrication. These designs have been automatically optimized by the use of a genetic-based algorithm to maximize a quality factor defined to meet the requirements of a VCSEL cavity mirror. These mirrors are devoted to an integration in VCSEL operating near λ=2.3 µm...

  3. Field Deployments of DWEL, A Dual-Wavelength Echidna Lidar

    Science.gov (United States)

    Howe, G.; Hewawasam, K.; Strahler, A. H.; Douglas, E. S.; Martel, J.; Cook, T.; Chakrabarti, S.; Li, Z.; Schaaf, C.; Paynter, I.; Saenz, E.; Wang, Z.; Yang, X.; Erb, A.

    2013-12-01

    provide at least 15-bit precision per rotation. The back-scattered return signal arriving at the scan mirror enters a 10-cm Newtonian-Nasmyth telescope and is split using a dichroic beamsplitter and narrow band pass filters. InGaAs photodiodes measure the return signals at each wavelength which are sampled at 2 gigasamples per second with 10-bit precision. Waveform and housekeeping data are first collected by an on-board compactPCI single-board computer before being transmitted live via Ethernet to a separate field PC. The required 115 W of power is supplied by high-density lithium ion batteries which together with the instrument bring the total weight to around 21 kg. The instrument has been designed to be eye-safe. In this presentation we will describe the features of the instrument along with data collected from the field campaigns. This work was made possible by the US National Science Foundation under grant MRI-0923389.

  4. Random-phase metasurfaces at optical wavelengths

    Science.gov (United States)

    Pors, Anders; Ding, Fei; Chen, Yiting; Radko, Ilya P.; Bozhevolnyi, Sergey I.

    2016-06-01

    Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector.

  5. Radiometry at infrared wavelengths for agricultural applications

    International Nuclear Information System (INIS)

    Schmugge, T.J.; Kustas, W.P.

    1999-01-01

    Measurements of thermal radiation at infrared wavelengths (7-14 μm) yield much information about the land surface. The primary use of these observations is for surface temperature determination as the emissivity is usually close to one. For this purpose it is fortuitous that the peak in the thermal emission occurs in an atmospheric transmission window. In additions there are variations in the emissivity of minerals and soils in the 7-14-μm region which can be interpreted for identification purposes. The emissivity for vegetative canopies has been found to be close to one with little spectral variation. Applications of the derived surface temperature to study the surface energy balance and to estimate the energy fluxes from the land surface are discussed. The basic concepts of the energy balance at the land surface are presented along with an example of how remotely sensed surface brightness temperatures can be used to estimate the sensible heat and to estimate plant water use. The example is from the Monsoon 90 experiment conducted over an arid watershed in the state of Arizona in the United States. In this case, surface temperatures derived from an aircraft thermal infrared sensor and vegetation and land use characteristics derived from a Landsat TM image were used in a two-source model to predict the surface heat fluxes. The agreement with ground measurements is reasonably good for the 3 days of observations. (author) [fr

  6. Metasurface axicon lens design at visible wavelengths

    Science.gov (United States)

    Alyammahi, Saleimah; Zhan, Qiwen

    2017-08-01

    The emerging field of metasurfaces is promising to realize novel optical devices with miniaturized flat format and added functionalities. Metasurfaces have been demonstrated to exhibit full control of amplitude, phase and polarization of electromagnetic waves. Using the metasurface, the wavefront of light can be manipulated permitting new functionalities such as focusing and steering of the beams and imaging. One optical component which can be designed using metasurfaces is the axicon. Axicons are conical lenses used to convert Gaussian beams into nondiffraction Bessel beams. These unique devices are utilized in different applications ranging from optical trapping and manipulation, medical imaging, and surgery. In this work, we study axicon lens design comprising of planar metasurfaces which generate non-diffracting Bessel beams at visible wavelengths. Dielectric metasurfaces have been used to achieve high efficiency and low optical loss. We measured the spot size of the resulted beams at different planes to demonstrate the non-diffraction properties of the resulted beams. We also investigated how the spot size is influenced by the axicon aperture. Furthermore, we examined the achromatic properties of the designed axicon. Comparing with the conventional lens, the metasurface axicon lens design enables the creation of flat optical device with wide range of depth of focus along its optical axis.

  7. Neutron scintillators using wavelength shifting fibers

    International Nuclear Information System (INIS)

    Hutchinson, D.P.; Miller, V.C.; Ramsey, J.A.

    1995-01-01

    A proposed design for an optically-based, one-dimension scintillation detector to replace the gas-filled position-sensitive proportional counter currently used for a wide-angle neutron detector (WAND) at the high-Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is presented. The scintillator, consisting of a mixture of 6 LiF and ZnS(Ag) powders in an epoxy binder, is coupled to an array of wavelength shifting optical fibers which provide position resolution. The wide-angle neutron detector is designed to cover a 120 degree arc with a 75 cm radius of curvature. The final detector design provides for 600 optical fibers coupled to the scintillator screen with an angular resolution of 0.2 degrees. Each individual pixel of the detector will be capable of operating at count rates exceeding 1 MHz. Results are presented from the measurement of neutron conversion efficiencies for several screen compositions, gamma-ray sensitivity, and spatial resolution of a 16 element one-dimensional array prototype

  8. High-Speed Tunable Short-Wavelength VCSEL for Optical Interconnects

    OpenAIRE

    Abdollahzadeh Davani, Hooman

    2015-01-01

    The forecast for serial transmission speed used in data communication systems is a continued exponential increase with time. It is directly scaled in concert with silicon integrated circuits and in response to the human society’s perpetual hunger for massive increases in the bandwidth. This leads to an increase in the data rate of a single transmission channel and at the same time to an efficient usage of the existing transmission medium by using methods such as wavelength devi...

  9. Research on cutoff wavelength of dominant mode and field patterns in trapezoidal microshield lines

    OpenAIRE

    SUN, Hai; WU, Yujiang

    2012-01-01

    The influence of the position of the metallic signal strip on the cutoff characteristic of the dominant mode and the field patterns in 3 types of trapezoidal microshield lines are calculated by the edge-based finite element method. These trapezoidal microshield lines include trapezoidal microshield lines with a single signal line, dual signal lines, and 3 signal lines. The cutoff wavelength of the dominant mode can be adjusted by changing the dimensions of metallic signal strips as w...

  10. Method for measuring thermal properties using a long-wavelength infrared thermal image

    Science.gov (United States)

    Walker, Charles L [Albuquerque, NM; Costin, Laurence S [Albuquerque, NM; Smith, Jody L [Albuquerque, NM; Moya, Mary M [Albuquerque, NM; Mercier, Jeffrey A [Albuquerque, NM

    2007-01-30

    A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.

  11. Wavelength encoding technique for particle analyses in hematology analyzer

    Science.gov (United States)

    Rongeat, Nelly; Brunel, Patrick; Gineys, Jean-Philippe; Cremien, Didier; Couderc, Vincent; Nérin, Philippe

    2011-07-01

    The aim of this study is to combine multiple excitation wavelengths in order to improve accuracy of fluorescence characterization of labeled cells. The experimental demonstration is realized with a hematology analyzer based on flow cytometry and a CW laser source emitting two visible wavelengths. A given optical encoding associated to each wavelength allows fluorescence identification coming from specific fluorochromes and avoiding the use of noisy compensation method.

  12. Broadband short pulse measurement by autocorrelation with a sum-frequency generation set-up

    Energy Technology Data Exchange (ETDEWEB)

    Glotin, F.; Jaroszynski, D.; Marcouille, O. [LURE, Orsay (France)] [and others

    1995-12-31

    Previous spectral and laser pulse length measurements carried out on the CLIO FEL at wavelength {lambda}=8.5 {mu}m suggested that very short light pulses could be generated, about 500 fs wide (FWHM). For these measurements a Michelson interferometer with a Te crystal, as a non-linear detector, was used as a second order autocorrelation device. More recent measurements in similar conditions have confirmed that the laser pulses observed are indeed single: they are not followed by other pulses distant by the slippage length N{lambda}. As the single micropulse length is likely to depend on the slippage, more measurements at different wavelengths would be useful. This is not directly possible with our actual interferometer set-up, based on a phase-matched non-linear crystal. However, we can use the broadband non-linear medium provided by one of our users` experiments: Sum-Frequency Generation over surfaces. With such autocorrelation set-up, interference fringes are no more visible, but this is largely compensated by the frequency range provided. First tests at 8 {mu}m have already been performed to validate the technic, leading to results similar to those obtained with our previous Michelson set-up.

  13. Broadband short pulse measurement by autocorrelation with a sum-frequency generation set-up

    International Nuclear Information System (INIS)

    Glotin, F.; Jaroszynski, D.; Marcouille, O.

    1995-01-01

    Previous spectral and laser pulse length measurements carried out on the CLIO FEL at wavelength λ=8.5 μm suggested that very short light pulses could be generated, about 500 fs wide (FWHM). For these measurements a Michelson interferometer with a Te crystal, as a non-linear detector, was used as a second order autocorrelation device. More recent measurements in similar conditions have confirmed that the laser pulses observed are indeed single: they are not followed by other pulses distant by the slippage length Nλ. As the single micropulse length is likely to depend on the slippage, more measurements at different wavelengths would be useful. This is not directly possible with our actual interferometer set-up, based on a phase-matched non-linear crystal. However, we can use the broadband non-linear medium provided by one of our users' experiments: Sum-Frequency Generation over surfaces. With such autocorrelation set-up, interference fringes are no more visible, but this is largely compensated by the frequency range provided. First tests at 8 μm have already been performed to validate the technic, leading to results similar to those obtained with our previous Michelson set-up

  14. Evaluation of wavelength-dependent hair growth effects on low-level laser therapy: an experimental animal study.

    Science.gov (United States)

    Kim, Tae-Hoon; Kim, Nam-Jeong; Youn, Jong-In

    2015-08-01

    In this study, we aimed to investigate the wavelength-dependent effects of hair growth on the shaven backs of Sprague-Dawley rats using laser diodes with wavelengths of 632, 670, 785, and 830 nm. Each wavelength was selected by choosing four peak wavelengths from an action spectrum in the range 580 to 860 nm. The laser treatment was performed on alternating days over a 2-week period. The energy density was set to 1.27 J/cm(2) for the first four treatments and 1.91 J/cm(2) for the last four treatments. At the end of the experiment, both photographic and histological examinations were performed to evaluate the effect of laser wavelength on hair growth. Overall, the results indicated that low-level laser therapy (LLLT) with a 830-nm wavelength resulted in greater stimulation of hair growth than the other wavelengths examined and 785 nm also showed a significant effect on hair growth.

  15. Multi-wavelength HPLC fingerprints from complex substances: An exploratory chemometrics study of the Cassia seed example

    International Nuclear Information System (INIS)

    Ni Yongnian; Lai Yanhua; Brandes, Sarina; Kokot, Serge

    2009-01-01

    Multi-wavelength fingerprints of Cassia seed, a traditional Chinese medicine (TCM), were collected by high-performance liquid chromatography (HPLC) at two wavelengths with the use of diode array detection. The two data sets of chromatograms were combined by the data fusion-based method. This data set of fingerprints was compared separately with the two data sets collected at each of the two wavelengths. It was demonstrated with the use of principal component analysis (PCA), that multi-wavelength fingerprints provided a much improved representation of the differences in the samples. Thereafter, the multi-wavelength fingerprint data set was submitted for classification to a suite of chemometrics methods viz. fuzzy clustering (FC), SIMCA and the rank ordering MCDM PROMETHEE and GAIA. Each method highlighted different properties of the data matrix according to the fingerprints from different types of Cassia seeds. In general, the PROMETHEE and GAIA MCDM methods provided the most comprehensive information for matching and discrimination of the fingerprints, and appeared to be best suited for quality assurance purposes for these and similar types of sample.

  16. Multi-wavelength HPLC fingerprints from complex substances: An exploratory chemometrics study of the Cassia seed example.

    Science.gov (United States)

    Ni, Yongnian; Lai, Yanhua; Brandes, Sarina; Kokot, Serge

    2009-08-11

    Multi-wavelength fingerprints of Cassia seed, a traditional Chinese medicine (TCM), were collected by high-performance liquid chromatography (HPLC) at two wavelengths with the use of diode array detection. The two data sets of chromatograms were combined by the data fusion-based method. This data set of fingerprints was compared separately with the two data sets collected at each of the two wavelengths. It was demonstrated with the use of principal component analysis (PCA), that multi-wavelength fingerprints provided a much improved representation of the differences in the samples. Thereafter, the multi-wavelength fingerprint data set was submitted for classification to a suite of chemometrics methods viz. fuzzy clustering (FC), SIMCA and the rank ordering MCDM PROMETHEE and GAIA. Each method highlighted different properties of the data matrix according to the fingerprints from different types of Cassia seeds. In general, the PROMETHEE and GAIA MCDM methods provided the most comprehensive information for matching and discrimination of the fingerprints, and appeared to be best suited for quality assurance purposes for these and similar types of sample.

  17. Multi-wavelength HPLC fingerprints from complex substances: An exploratory chemometrics study of the Cassia seed example

    Energy Technology Data Exchange (ETDEWEB)

    Ni Yongnian, E-mail: ynni@ncu.edu.cn [Stake Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 (China); Department of Chemistry, Nanchang University, Nanchang, Jiangxi 330047 (China); Lai Yanhua [Department of Chemistry, Nanchang University, Nanchang, Jiangxi 330047 (China); Brandes, Sarina; Kokot, Serge [Applied Chemistry Cluster, School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, Queensland 4001 (Australia)

    2009-08-11

    Multi-wavelength fingerprints of Cassia seed, a traditional Chinese medicine (TCM), were collected by high-performance liquid chromatography (HPLC) at two wavelengths with the use of diode array detection. The two data sets of chromatograms were combined by the data fusion-based method. This data set of fingerprints was compared separately with the two data sets collected at each of the two wavelengths. It was demonstrated with the use of principal component analysis (PCA), that multi-wavelength fingerprints provided a much improved representation of the differences in the samples. Thereafter, the multi-wavelength fingerprint data set was submitted for classification to a suite of chemometrics methods viz. fuzzy clustering (FC), SIMCA and the rank ordering MCDM PROMETHEE and GAIA. Each method highlighted different properties of the data matrix according to the fingerprints from different types of Cassia seeds. In general, the PROMETHEE and GAIA MCDM methods provided the most comprehensive information for matching and discrimination of the fingerprints, and appeared to be best suited for quality assurance purposes for these and similar types of sample.

  18. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  19. Critical de Broglie wavelength in superconductors

    Science.gov (United States)

    Talantsev, E. F.

    2018-03-01

    There are growing numbers of experimental evidences that the self-field critical currents, Jc(sf,T), are a new instructive tool to investigate fundamental properties of superconductors ranging from atomically thin films [M. Liao et al., Nat. Phys. 6 (2018), https://doi.org/10.1038/s41567-017-0031-6; E. F. Talantsev et al., 2D Mater. 4 (2017) 025072; A. Fete et al., Appl. Phys. Lett. 109 (2016) 192601] to millimeter-scale samples [E. F. Talantsev et al., Sci. Rep. 7 (2017) 10010]. The basic empirical equation which quantitatively accurately described experimental Jc(sf,T) was proposed by Talantsev and Tallon [Nat. Commun. 6 (2015) 7820] and it was the relevant critical field (i.e. thermodynamic field, Bc, for type-I and lower critical field, Bc1, for type-II superconductors) divided by the London penetration depth, λL. In this paper, we report new findings relating to this empirical equation. It is that the critical wavelength of the de Broglie wave, λdB,c, of the superconducting charge carrier which within a numerical pre-factor is equal to the largest of two characteristic lengths of Ginzburg-Landau theory, i.e. the coherence length, ξ, for type-I superconductors or the London penetration depth, λL, for type-II superconductors. We also formulate a microscopic criterion for the onset of dissipative transport current flow: ps ṡ 2ṡλL ln(1+2ṡ(λL ξ )) ≥ 1 2 ṡ ( h 2π), where ps is the charge carrier momentum, h is Planck’s constant and the inequality sign “ <” is reserved for the dissipation-free flow.

  20. Demonstrated Wavelength Portability of Raman Reference Data for Explosives and Chemical Detection

    Directory of Open Access Journals (Sweden)

    Timothy J. Johnson

    2012-01-01

    Full Text Available As Raman spectroscopy continues to evolve, questions arise as to the portability of Raman data: dispersive versus Fourier transform, wavelength calibration, intensity calibration, and in particular the frequency of the excitation laser. While concerns about fluorescence arise in the visible or ultraviolet, most modern (portable systems use near-infrared excitation lasers, and many of these are relatively close in wavelength. We have investigated the possibility of porting reference data sets from one NIR wavelength system to another: We have constructed a reference library consisting of 145 spectra, including 20 explosives, as well as sundry other compounds and materials using a 1064 nm spectrometer. These data were used as a reference library to evaluate the same 145 compounds whose experimental spectra were recorded using a second 785 nm spectrometer. In 128 cases of 145 (or 88.3% including 20/20 for the explosives, the compounds were correctly identified with a mean “hit score” of 954 of 1000. Adding in criteria for when to declare a correct match versus when to declare uncertainty, the approach was able to correctly categorize 134 out of 145 spectra, giving a 92.4% accuracy. For the few that were incorrectly identified, either the matched spectra were spectroscopically similar to the target or the 785 nm signal was degraded due to fluorescence. The results indicate that imported data recorded at a different NIR wavelength can be successfully used as reference libraries, but key issues must be addressed: the reference data must be of equal or higher resolution than the resolution of the current sensor, the systems require rigorous wavelength calibration, and wavelength-dependent intensity response should be accounted for in the different systems.

  1. Wavelength selection-based nonlinear calibration for transcutaneous blood glucose sensing using Raman spectroscopy

    Science.gov (United States)

    Dingari, Narahara Chari; Barman, Ishan; Kang, Jeon Woong; Kong, Chae-Ryon; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    While Raman spectroscopy provides a powerful tool for noninvasive and real time diagnostics of biological samples, its translation to the clinical setting has been impeded by the lack of robustness of spectroscopic calibration models and the size and cumbersome nature of conventional laboratory Raman systems. Linear multivariate calibration models employing full spectrum analysis are often misled by spurious correlations, such as system drift and covariations among constituents. In addition, such calibration schemes are prone to overfitting, especially in the presence of external interferences that may create nonlinearities in the spectra-concentration relationship. To address both of these issues we incorporate residue error plot-based wavelength selection and nonlinear support vector regression (SVR). Wavelength selection is used to eliminate uninformative regions of the spectrum, while SVR is used to model the curved effects such as those created by tissue turbidity and temperature fluctuations. Using glucose detection in tissue phantoms as a representative example, we show that even a substantial reduction in the number of wavelengths analyzed using SVR lead to calibration models of equivalent prediction accuracy as linear full spectrum analysis. Further, with clinical datasets obtained from human subject studies, we also demonstrate the prospective applicability of the selected wavelength subsets without sacrificing prediction accuracy, which has extensive implications for calibration maintenance and transfer. Additionally, such wavelength selection could substantially reduce the collection time of serial Raman acquisition systems. Given the reduced footprint of serial Raman systems in relation to conventional dispersive Raman spectrometers, we anticipate that the incorporation of wavelength selection in such hardware designs will enhance the possibility of miniaturized clinical systems for disease diagnosis in the near future. PMID:21895336

  2. Numerical investigation of the threshold intensity dependence on gas pressure in the breakdown of xenon by different laser wavelengths

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Abd El Hameid Mahmoud, Mohamed; Dawood, Nagia D. A.

    2014-07-01

    We report a theoretical analysis of the measurements that carried out to study the breakdown of xenon gas over a wide pressure range induced by laser source operating at different wavelengths. The study provided an investigation of the effect of laser wavelength as well as gas pressure on the physical processes associated with this phenomenon. To this aim a modified electron cascade model is applied. The model based on the numerical solution of the time dependent Boltzmann equation for the electron energy distribution function (EEDF) simultaneously with a set of rate equations which describe the rate of change of the formed excited states population. Comparison between the calculated and measured threshold intensities for the experimentally tested laser wavelengths and gas pressure range is obtained. Furthermore computations of the EEDF and its parameters showed the actual correlation between the gain and loss processes which determine the threshold breakdown intensity of xenon and the two experimentally tested parameters; laser wavelength and gas pressure.

  3. Sub-wavelength grating mode transformers in silicon slab waveguides.

    Science.gov (United States)

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  4. Modeling of wavelength multiplexing networks for storage area networking

    Science.gov (United States)

    Carranza, Aparicio; DeCusatis, Casimer M.

    2004-09-01

    Recently, there has been increased interest in the use of optical networks for disaster recovery of large computer systems by extending storage area networks (SANs) over hundreds of kilometers or more. These optical datacom networks, which incorporate wavelength division multiplexing (WDM), have several unique requirements. The purpose of this work has been to develop computer simulation tools for optical datacom networks. The models are capable of automatically designing a WDM network configuration based on minimal input; validating the design against any protocol-specific requirements; suggesting alternative configurations; and optimizing the design based on metrics including performance of the network (efficient use of bandwidth to support the attached computing devices), reliability (searching the proposed topology for single points of failure), scalability (based on user input of potential future upgrade paths), and cost of the associated networking equipment. The model incorporates typical computer performance data, which allows the prediction of system performance before the network is implemented. We present simulation results for a variety of MAN topologies, using currently available WDM networking equipment. These results have been validated by comparison with an enterprise optical networking testbed constructed for storage area networks.

  5. Coherent ultra dense wavelength division multiplexing passive optical networks

    Science.gov (United States)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  6. XUV spectral observations with two-wavelength laser irradiation

    Science.gov (United States)

    Burkhalter, P. G.; Apruzese, J. P.; Seely, J. F.; Brown, C. M.; Newman, D. A.

    1988-08-01

    XUV diagnostic equipment was designed and utilized on the OMEGA target chamber at the University of Rochester to study high atomic number plasma generation by two-wavelength laser excitation. Spectral data were collected from silver tracer dot targets irradiated with 1/3 TW of 0.35-μm laser light of the multiple-beam OMEGA laser and the single synchronized 1.06-μm beam of the GDL laser for generating energetic electrons. XUV spectral data in the 30-300-Å region were obtained with both a 3-m grazing incidence spectrograph and a compact 1-m grazing incidence spectrograph designed for reentrant mounting in the OMEGA chamber. High-resolution x-ray spectra were acquired in the 3.6-4.2-Å region with a dual, flat-diffraction crystal spectrograph. A low-resolution x-ray spectrum of silver was recorded with a curved mica spectrograph. Some x-ray spectral lines appeared only when both OMEGA and GDL beams were used. These were identified as 2p-3s,3d transitions in F-like Ag xxxix. F-, Na-, and Mg-like lines were found in the grazing incidence spectra, with F-like lines appearing only with 1.06-μm irradiation.

  7. Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength

    CERN Document Server

    Käufl, H.U; ESO/VUB Conference

    2009-01-01

    In the context of the NASA Deep Impact space mission, comet 9P/Tempel1 has been at the focus of an unprecedented worldwide long-term multi-wavelength observation campaign. The comet was also studied throughout its perihelion passage by various sources including the Deep Impact mission itself, the Hubble Space Telescope, Spitzer, Rosetta, XMM and all major ground-based observatories in a wavelength band from cm-wave radio astronomy to x-rays. This book includes the proceedings of a meeting that brought together an audience of theoreticians and observers - across the electromagnetic spectrum and from different sites and projects - to make full use of the massive ground-based observing data set. The coherent presentation of all data sets illustrates and examines the various observational constraints on modelling the cometary nucleus, cometary gas, cometary plasma, cometary dust, and the comet's surface and its activity.

  8. Highly accurate Michelson type wavelength meter that uses a rubidium stabilized 1560 nm diode laser as a wavelength reference

    International Nuclear Information System (INIS)

    Masuda, Shin; Kanoh, Eiji; Irisawa, Akiyoshi; Niki, Shoji

    2009-01-01

    We investigated the accuracy limitation of a wavelength meter installed in a vacuum chamber to enable us to develop a highly accurate meter based on a Michelson interferometer in 1550 nm optical communication bands. We found that an error of parts per million order could not be avoided using famous wavelength compensation equations. Chromatic dispersion of the refractive index in air can almost be disregarded when a 1560 nm wavelength produced by a rubidium (Rb) stabilized distributed feedback (DFB) diode laser is used as a reference wavelength. We describe a novel dual-wavelength self-calibration scheme that maintains high accuracy of the wavelength meter. The method uses the fundamental and second-harmonic wavelengths of an Rb-stabilized DFB diode laser. Consequently, a highly accurate Michelson type wavelength meter with an absolute accuracy of 5x10 -8 (10 MHz, 0.08 pm) over a wide wavelength range including optical communication bands was achieved without the need for a vacuum chamber.

  9. Is there an unknown risk for short-wavelength visible laser radiation?

    Energy Technology Data Exchange (ETDEWEB)

    Reidenbach, Hans-Dieter; Beckmann, Dirk; Al Ghouz, Imene; Dollinger, Klaus [Fachhochschule Koeln (Germany). Forschungsbereich Medizintechnik und Nichtionisierende Strahlung; Ott, Guenter [Bundesanstalt fuer Arbeitsschutz und Arbeitsmedizin (BAuA), Dortmund (Germany); Brose, Martin [Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse (BG ETEM), Koeln (Germany)

    2013-09-01

    A specially designed test apparatus was used in the investigation on temporary blinding. During provisional tests, exposure had been carried out with different wavelengths, power settings and exposure durations. One subject familiar to the effects of temporary blinding experienced an unusual effect, which lasted a long period of time. Concerning that this effect is not known enough to be considered in safety regulations, make it important to publish this report. (orig.)

  10. Endovenous simulated laser experiments at 940 nm and 1470 nm suggest wavelength-independent temperature profiles.

    Science.gov (United States)

    van den Bos, R R; van Ruijven, P W M; van der Geld, C W M; van Gemert, M J C; Neumann, H A M; Nijsten, T

    2012-07-01

    EVLA has proven to be very successful, but the optimum methods for energy delivery have still not been clarified. A better understanding of the mechanism of action may contribute to achieving a consensus on the best laser method and the most effective use of laser parameters, resulting in optimal clinical outcomes, maintaining high success rates with minimal adverse events. The aim of this study is to assess the impact of wavelength, pullback speed and power level on the endovenous temperature profile in an experimental setting. In an experimental setting, temperature measurements were performed using thermocouples. The experimental set-up consisted of a transparent box in which a glass tube was fixed. Different laser parameters (wavelength and power) and 2 different pullback speeds (2 and 5 mm/s) were used. Thermocouples were placed at different distances from the fiber tip. Validity of the experimental setting was assessed by performing the same temperature measurements using a stripped varicose vein. The maximal temperature rise and the time span that the temperature was above collagen denaturation temperature were measured. The experiments showed that decreasing the pullback speed (2 mm/s) and increasing the power (up to 14 W) both cause higher maximal temperature and a longer time above the temperature for collagen denaturation. The use of different laser wavelengths (940 or 1470 nm) did not influence the temperature profile. The results of our experiments show that wavelength on its own has not been demonstrated to be an important parameter to influence the temperature profile. Copyright © 2012 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Dual-wavelength pump-probe microscopy analysis of melanin composition

    Science.gov (United States)

    Thompson, Andrew; Robles, Francisco E.; Wilson, Jesse W.; Deb, Sanghamitra; Calderbank, Robert; Warren, Warren S.

    2016-01-01

    Pump-probe microscopy is an emerging technique that provides detailed chemical information of absorbers with sub-micrometer spatial resolution. Recent work has shown that the pump-probe signals from melanin in human skin cancers correlate well with clinical concern, but it has been difficult to infer the molecular origins of these differences. Here we develop a mathematical framework to describe the pump-probe dynamics of melanin in human pigmented tissue samples, which treats the ensemble of individual chromophores that make up melanin as Gaussian absorbers with bandwidth related via Frenkel excitons. Thus, observed signals result from an interplay between the spectral bandwidths of the individual underlying chromophores and spectral proximity of the pump and probe wavelengths. The model is tested using a dual-wavelength pump-probe approach and a novel signal processing method based on gnomonic projections. Results show signals can be described by a single linear transition path with different rates of progress for different individual pump-probe wavelength pairs. Moreover, the combined dual-wavelength data shows a nonlinear transition that supports our mathematical framework and the excitonic model to describe the optical properties of melanin. The novel gnomonic projection analysis can also be an attractive generic tool for analyzing mixing paths in biomolecular and analytical chemistry. PMID:27833147

  12. A Wavelength-shifting Optical Module (WOM) for in-ice neutrino detectors

    Science.gov (United States)

    Hebecker, Dustin; Archinger, Markus Gerhard; Böser, Sebastian; Brostean-Kaiser, Jannes; Del Pino Rosendo, Esther; Di Lorenzo, Vincenzo; DuVernois, Michael; Falke, Peter Johannes; Fösig, Carl-Christian; Karg, Timo; Köpke, Lutz; Kowalski, Marek; Looft, Andreas; Sand, Krystina; Tosi, Delia

    2016-04-01

    We report on the development status of a single-photon sensor that employs wavelength-shifting and light-guiding techniques to maximize the collection area while minimizing the dark noise rate. The sensor is tailored towards application in ice-Cherenkov neutrino detectors embedded in inert and cold, low-radioactivity and UV transparent ice as a detection medium, such as IceCube-Gen2 or MICA. The goal is to decrease the energy threshold as well as to increase the energy resolution and the vetoing capability of the neutrino telescope, when compared to a setup with optical sensors similar to those used in IceCube. The proposed sensor captures photons with wavelengths between 250 nm and 400 nm. These photons are re-emitted with wavelengths above 400 nm by a wavelength shifting coating applied to a 90 mm diameter polymer tube. The tube guides the light towards a small-diameter PMT via total internal reflection. By scaling the results from smaller laboratory prototypes, the total efficiency of the proposed detector for a Cherenkov spectrum is estimated to exceed that of a standard IceCube optical module. The status of the prototype development and the performance of its main components will be discussed.

  13. A Wavelength-shifting Optical Module (WOM for in-ice neutrino detectors

    Directory of Open Access Journals (Sweden)

    Hebecker Dustin

    2016-01-01

    Full Text Available We report on the development status of a single-photon sensor that employs wavelength-shifting and light-guiding techniques to maximize the collection area while minimizing the dark noise rate. The sensor is tailored towards application in ice-Cherenkov neutrino detectors embedded in inert and cold, low-radioactivity and UV transparent ice as a detection medium, such as IceCube-Gen2 or MICA. The goal is to decrease the energy threshold as well as to increase the energy resolution and the vetoing capability of the neutrino telescope, when compared to a setup with optical sensors similar to those used in IceCube. The proposed sensor captures photons with wavelengths between 250 nm and 400 nm. These photons are re-emitted with wavelengths above 400 nm by a wavelength shifting coating applied to a 90 mm diameter polymer tube. The tube guides the light towards a small-diameter PMT via total internal reflection. By scaling the results from smaller laboratory prototypes, the total efficiency of the proposed detector for a Cherenkov spectrum is estimated to exceed that of a standard IceCube optical module. The status of the prototype development and the performance of its main components will be discussed.

  14. High reflectivity YDH/SiO2 distributed Bragg reflector for UV-C wavelength regime

    KAUST Repository

    Alias, Mohd Sharizal

    2018-02-15

    A distributed Bragg reflector (DBR) composed of Y2O3-doped HfO2 (YDH)/SiO2 layers with high reflectivity spectrum centered at a wavelength of ~240 nm is deposited using radio-frequency magnetron sputtering. Before the DBR deposition, optical properties for a single layer of YDH, SiO2, and HfO2 thin films were studied using spectroscopic ellipsometry and spectrophotometry. To investigate the performance of YDH as a material for the high refractive index layer in the DBR, a comparison of its optical properties was made with HfO2 thin films. Due to larger optical bandgap, the YDH thin films demonstrated higher transparency, lower extinction coefficient, and lower absorption coefficient in the UV-C regime (especially for wavelengths below 250 nm) compared to the HfO2 thin films. The deposited YDH/SiO2 DBR consisting of 15 periods achieved a reflectivity higher than 99.9% at the wavelength of ~240 nm with a stopband of ~50 nm. The high reflectivity and broad stopband of YDH/SiO2 DBRs will enable further advancement of various photonic devices such as vertical-cavity surface-emitting lasers, resonant-cavity light-emitting diodes, and resonant-cavity photodetectors operating in the UV-C wavelength regime.

  15. Experimental determination of the slow-neutron wavelength distribution

    DEFF Research Database (Denmark)

    Lebech, Bente; Mikke, K.; Sledziewska-Blocka, D.

    1970-01-01

    Different experiments for determining the slow-neutron wavelength distribution in the region 227-3 meV have been carried out, and the results compared. It is concluded that the slow-neutron wave-length distribution can be determined accurately by elastic scattering on a pure incoherent or a pure ...

  16. Robust and Flexible Wavelength Division Multiplexed Optical Access Networks

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael; Grobe, Klaus

    Future wavelength division multiplexed (WDM) access networks should be as flexible as possible. One flexibility is port wavelength-agnosticism at the optical network unit (ONU) interface, achieved via tunable laser. At the same time such systems needs to be robust against crosstalk impairments...

  17. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength.

    Directory of Open Access Journals (Sweden)

    Taylor R Paskin

    Full Text Available Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli, planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green, as well as ultraviolet (UV and infrared (IR which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV causing the most intense photophobic responses while longer wavelengths produce no effect (red or an apparent attraction (IR. In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment.

  18. Wavelength and fiber assignment problems on avionic networks

    DEFF Research Database (Denmark)

    Zhang, Jiang; An, Yi; Berger, Michael Stübert

    2011-01-01

    This paper solves the wavelength and fiber assignment problems with systems' isolation requirements on the avionic ring networks. The experiment results give a general glace of the numbers of the wavelengths and fibers are required under certain scale of networks. At the beginning of increasing...

  19. Technologies for all-optical wavelength conversion in DWDM networks

    DEFF Research Database (Denmark)

    Wolfson, David; Fjelde, Tina; Kloch, Allan

    2001-01-01

    Different techniques for all-optical wavelength conversion are reviewed and the advantages and disadvantages seen from a system perspective are highlighted. All-optical wavelength conversion will play a major role in making cost-effective network nodes in future high-speed WDM networks, where fun...

  20. Fast fiber-optic multi-wavelength pyrometer.

    Science.gov (United States)

    Fu, Tairan; Tan, Peng; Pang, Chuanhe; Zhao, Huan; Shen, Yi

    2011-06-01

    A fast fiber-optic multi-wavelength pyrometer was developed for the ultraviolet-visible-near infrared spectra from 200 nm to 1700 nm using a CCD detector and an InGaAs detector. The pyrometer system conveniently and quickly provides the sufficient choices of multiple measurement wavelengths using optical diffraction, which avoids the use of narrow-band filters. Flexible optical fibers are used to transmit the radiation so the pyrometer can be used for temperature measurements in harsh environments. The setup and calibrations (wavelength calibration, nonlinearity calibration, and radiation response calibration) of this pyrometer system were described. Development of the multi-wavelength pyrometer involved optimization of the bandwidth and temperature discrimination of the multiple spectra data. The analysis results showed that the wavelength intervals, Δλ(CCD) = 30 nm and Δλ(InGaAs) = 50 nm, are the suitable choices as a tradeoff between the simple emissivity model assumption and the multiple signal discrimination. The temperature discrimination was also quantificationally evaluated for various wavelengths and temperatures. The measurement performance of the fiber-optic multi-wavelength pyrometer was partially verified through measurements with a high-temperature blackbody and actual hot metals. This multi-wavelength pyrometer can be used for remote high-temperature measurements. © 2011 American Institute of Physics

  1. Precision displacement interferometry with stabilization of wavelength on air

    Directory of Open Access Journals (Sweden)

    Buchta Z.

    2013-05-01

    Full Text Available We present an interferometric technique based on differential interferometry setup for measurement in the subnanometer scale in atmospheric conditions. The motivation for development of this ultraprecise technique is coming from the field of nanometrology. The key limiting factor in any optical measurement are fluctuations of the refractive index of air representing a source of uncertainty on the 10-6level when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of overdetermined interferometric setup where a reference length is derived from a mechanical frame made from a material with very low thermal coefficient on the 10-8level. The technique allows to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third represents a reference for stabilization of the wavelength of the laser source. The principle is demonstrated on an experimental setup and a set of measurements describing the performance is presented.

  2. Wavelength Assignment in Hybrid Quantum-Classical Networks.

    Science.gov (United States)

    Bahrani, Sima; Razavi, Mohsen; Salehi, Jawad A

    2018-02-22

    Optimal wavelength assignment in dense-wavelength-division-multiplexing (DWDM) systems that integrate both quantum and classical channels is studied. In such systems, weak quantum key distribution (QKD) signals travel alongside intense classical signals on the same fiber, where the former can be masked by the background noise induced by the latter. Here, we investigate how optimal wavelength assignment can mitigate this problem. We consider different DWDM structures and various sources of crosstalk and propose several near-optimal wavelength assignment methods that maximize the total secret key rate of the QKD channels. Our numerical results show that the optimum wavelength assignment pattern is commonly consisted of several interspersed quantum and classical bands. Using our proposed techniques, the total secret key rate of quantum channels can substantially be improved, as compared to conventional assignment methods, in the noise dominated regimes. Alternatively, we can maximize the number of QKD users supported under certain key rate constraints.

  3. Performance of an optical equalizer in a 10 G wavelength converting optical access network.

    Science.gov (United States)

    Mendinueta, José Manuel D; Cao, Bowen; Thomsen, Benn C; Mitchell, John E

    2011-12-12

    A centralized optical processing unit (COPU) that functions both as a wavelength converter (WC) and optical burst equaliser in a 10 Gb/s wavelength-converting optical access network is proposed and experimentally characterized. This COPU is designed to consolidate drifting wavelengths generated with an uncooled laser in the upstream direction into a stable wavelength channel for WDM backhaul transmission and to equalize the optical loud/soft burst power in order to relax the burst-mode receiver dynamic range requirement. The COPU consists of an optical power equaliser composed of two cascaded SOAs followed by a WC. Using an optical packet generator and a DC-coupled PIN-based digital burst-mode receiver, the COPU is characterized in terms of payload-BER for back-to-back and backhaul transmission distances of 22, 40, and 62 km. We show that there is a compromise between the receiver sensitivity and overload points that can be optimized tuning the WC operating point for a particular backhaul fiber transmission distance. Using the optimized settings, sensitivities of -30.94, -30.17, and -27.26 dBm with overloads of -9.3, -5, and >-5 dBm were demonstrated for backhaul transmission distances of 22, 40 and 62 km, respectively. © 2011 Optical Society of America

  4. Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees.

    Science.gov (United States)

    Vasas, Vera; Hanley, Daniel; Kevan, Peter G; Chittka, Lars

    2017-04-01

    Many pollinating insects acquire their entire nutrition from visiting flowers, and they must therefore be efficient both at detecting flowers and at recognizing familiar rewarding flower types. A crucial first step in recognition is the identification of edges and the segmentation of the visual field into areas that belong together. Honeybees and bumblebees acquire visual information through three types of photoreceptors; however, they only use a single receptor type-the one sensitive to longer wavelengths-for edge detection and movement detection. Here, we show that these long-wavelength receptors (peak sensitivity at ~544 nm, i.e., green) provide the most consistent signals in response to natural objects. Using our multispectral image database of flowering plants, we found that long-wavelength receptor responses had, depending on the specific scenario, up to four times higher signal-to-noise ratios than the short- and medium-wavelength receptors. The reliability of the long-wavelength receptors emerges from an intricate interaction between flower coloration and the bee's visual system. This finding highlights the adaptive significance of bees using only long-wavelength receptors to locate flowers among leaves, before using information provided by all three receptors to distinguish the rewarding flower species through trichromatic color vision.

  5. A multi-wavelength fiber laser based on superimposed fiber grating and chirp fiber Bragg grating for wavelength selection

    Science.gov (United States)

    Wang, Feng; Bi, Wei-hong; Fu, Xing-hu; Jiang, Peng; Wu, Yang

    2015-11-01

    In this paper, a new type of multi-wavelength fiber laser is proposed and demonstrated experimentally. Superimposed fiber grating (SIFG) and chirp fiber Bragg grating (CFBG) are used for wavelength selection. Based on gain equalization technology, by finely adjusting the stress device in the cavity, the gain and loss are equal, so as to suppress the modal competition and achieve multi-wavelength lasing at room temperature. The experimental results show that the laser can output stable multi-wavelength lasers simultaneously. The laser coupling loss is small, the structure is simple, and it is convenient for integration, so it can be widely used in dense wavelength division multiplexing (DWDM) system and optical fiber sensors.

  6. Simultaneous identification of optical constants and PSD of spherical particles by multi-wavelength scattering-transmittance measurement

    Science.gov (United States)

    Zhang, Jun-You; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming

    2018-04-01

    An accurate and stable identification technique is developed to retrieve the optical constants and particle size distributions (PSDs) of particle system simultaneously from the multi-wavelength scattering-transmittance signals by using the improved quantum particle swarm optimization algorithm. The Mie theory are selected to calculate the directional laser intensity scattered by particles and the spectral collimated transmittance. The sensitivity and objective function distribution analysis were conducted to evaluate the mathematical properties (i.e. ill-posedness and multimodality) of the inverse problems under three different optical signals combinations (i.e. the single-wavelength multi-angle light scattering signal, the single-wavelength multi-angle light scattering and spectral transmittance signal, and the multi-angle light scattering and spectral transmittance signal). It was found the best global convergence performance can be obtained by using the multi-wavelength scattering-transmittance signals. Meanwhile, the present technique have been tested under different Gaussian measurement noise to prove its feasibility in a large solution space. All the results show that the inverse technique by using multi-wavelength scattering-transmittance signals is effective and suitable for retrieving the optical complex refractive indices and PSD of particle system simultaneously.

  7. Multicriteria identification sets method

    Science.gov (United States)

    Kamenev, G. K.

    2016-11-01

    A multicriteria identification and prediction method for mathematical models of simulation type in the case of several identification criteria (error functions) is proposed. The necessity of the multicriteria formulation arises, for example, when one needs to take into account errors of completely different origins (not reducible to a single characteristic) or when there is no information on the class of noise in the data to be analyzed. An identification sets method is described based on the approximation and visualization of the multidimensional graph of the identification error function and sets of suboptimal parameters. This method allows for additional advantages of the multicriteria approach, namely, the construction and visual analysis of the frontier and the effective identification set (frontier and the Pareto set for identification criteria), various representations of the sets of Pareto effective and subeffective parameter combinations, and the corresponding predictive trajectory tubes. The approximation is based on the deep holes method, which yields metric ɛ-coverings with nearly optimal properties, and on multiphase approximation methods for the Edgeworth-Pareto hull. The visualization relies on the approach of interactive decision maps. With the use of the multicriteria method, multiple-choice solutions of identification and prediction problems can be produced and justified by analyzing the stability of the optimal solution not only with respect to the parameters (robustness with respect to data) but also with respect to the chosen set of identification criteria (robustness with respect to the given collection of functionals).

  8. State-set branching

    DEFF Research Database (Denmark)

    Jensen, Rune Møller; Veloso, Manuela M.; Bryant, Randal E.

    2008-01-01

    In this article, we present a framework called state-set branching that combines symbolic search based on reduced ordered Binary Decision Diagrams (BDDs) with best-first search, such as A* and greedy best-first search. The framework relies on an extension of these algorithms from expanding a single...... state in each iteration to expanding a set of states. We prove that it is generally sound and optimal for two A* implementations and show how a new BDD technique called branching partitioning can be used to efficiently expand sets of states. The framework is general. It applies to any heuristic function...... framework. The algorithms outperform the ordinary A* algorithm in almost all domains. In addition, they can improve the complexity of A* exponentially and often dominate both A* and blind BDD-based search by several orders of magnitude. Moreover, they have substantially better performance than BDDA...

  9. Wavelength-Agile External-Cavity Diode Laser for DWDM

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  10. Wavelength discrimination in the hummingbird hawkmoth Macroglossum stellatarum.

    Science.gov (United States)

    Telles, Francismeire J; Kelber, Almut; Rodríguez-Gironés, Miguel A

    2016-02-01

    Despite the strong relationship between insect vision and the spectral properties of flowers, the visual system has been studied in detail in only a few insect pollinator species. For instance, wavelength discrimination thresholds have been determined in two species only: the honeybee (Apis mellifera) and the butterfly Papilio xuthus. Here, we present the wavelength discrimination thresholds (Δλ) for the hawkmoth Macroglossum stellatarum. We compared the data with those found for the honeybee, the butterfly P. xuthus and the predictions of a colour discrimination model. After training moths to feed from a rewarded disc illuminated with a monochromatic light, we tested them in a dual-choice situation, in which they had to choose between light of the training wavelength and a novel unrewarded wavelength. To characterise the Δλ function, we decreased the difference between wavelengths in subsequent tests. We also varied the light intensity to test its effect on the discrimination capacity. In agreement with the predictions of the model, we found two expected minima of discrimination where photoreceptor sensitivities overlap, as well as a third, minor, unpredicted minimum around the peak of the blue photoreceptor. Macroglossum stellatarum is capable of discriminating between lights with a wavelength difference of 1-2 nm. These discrimination minima are similar to those found for the tetrachromatic P. xuthus, and are better than those of the honeybee. The moth is also capable of using achromatic information to discriminate between lights of long wavelengths. © 2016. Published by The Company of Biologists Ltd.

  11. DFB lasers at wavelengths in excess of 2300 nm for remote gas sensing

    Science.gov (United States)

    Koeth, J.; Fischer, M.; Legge, M.; Seufert, J.; Werner, R.

    2017-11-01

    Remote gas sensing for atmospheric and environmental studies using single mode emitting semiconductor lasers, e.g. in LIDAR applications has gained wide interest in the last few years. This technique has been brought to sophisticated sensitivity levels and nowadays detection limits are in the range of a few ppb. However, up until recently only semiconductor laser diode sources with wavelengths below 2.3 μm have been available, which inherently limits the detection sensitivity due to the fact that the fundamental absorption band of many gases lies in the spectral range beyond 2.3 μm. With novel distributed feedback laser diodes at wavelengths up to 2.9 μm higher detection sensitivities as compared to currently available laser based sensors are possible.

  12. Liquid Argon Scintillation Detection Utilizing Wavelength-Shifting Plates and Light Guides

    Energy Technology Data Exchange (ETDEWEB)

    Howard, B. [Indiana U.

    2018-02-06

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.

  13. Detection of faint X-ray spectral features using wavelength, energy, and spatial discrimination techniques

    International Nuclear Information System (INIS)

    Hudson, L.T.; Gillaspy, J.D.; Pomeroy, J.M.; Szabo, C.I.; Tan, J.N.; Radics, B.; Takacs, E.; Chantler, C.T.; Kimpton, J.A.; Kinnane, M.N.; Smale, L.F.

    2007-01-01

    We report here our methods and results of measurements of very low-signal X-ray spectra produced by highly charged ions in an electron beam ion trap (EBIT). A megapixel Si charge-coupled device (CCD) camera was used in a direct-detection, single-photon-counting mode to image spectra with a cylindrically bent Ge(2 2 0) crystal spectrometer. The resulting wavelength-dispersed spectra were then processed using several intrinsic features of CCD images and image-analysis techniques. We demonstrate the ability to clearly detect very faint spectral features that are on the order of the noise due to cosmic-ray background signatures in our images. These techniques remove extraneous signal due to muon tracks and other sources, and are coupled with the spectrometer wavelength dispersion and atomic-structure calculations of hydrogen-like Ti to identify the energy of a faint line that was not in evidence before applying the methods outlined here

  14. Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths.

    Science.gov (United States)

    Fernandez-Gonzalvo, Xavier; Corrielli, Giacomo; Albrecht, Boris; Grimau, Marcel Li; Cristiani, Matteo; de Riedmatten, Hugues

    2013-08-26

    We report an experiment demonstrating quantum frequency conversion of weak light pulses compatible with atomic quantum memories to telecommunication wavelengths. We use a PPLN nonlinear waveguide to convert weak coherent states at the single photon level with a duration of 30 ns from a wavelength of 780 nm to 1552 nm. We measure a maximal waveguide internal (external) conversion efficiency η(int) = 0.41 (η(ext) = 0.25), and we show that the signal to noise ratio (SNR) is good enough to reduce the input photon number below 1. In addition, we show that the noise generated by the pump beam in the crystal is proportional to the spectral bandwidth of the device, suggesting that narrower filtering could significantly increase the SNR. Finally, we demonstrate that the quantum frequency converter can operate in the quantum regime by converting a time-bin qubit and measuring the qubit fidelity after conversion.

  15. Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths.

    Science.gov (United States)

    Evans, Christopher C; Shtyrkova, Katia; Bradley, Jonathan D B; Reshef, Orad; Ippen, Erich; Mazur, Eric

    2013-07-29

    We observe spectral broadening of femtosecond pulses in single-mode anatase-titanium dioxide (TiO(2)) waveguides at telecommunication and near-visible wavelengths (1565 and 794 nm). By fitting our data to nonlinear pulse propagation simulations, we quantify nonlinear optical parameters around 1565 nm. Our fitting yields a nonlinear refractive index of 0.16 × 10(-18) m(2)/W, no two-photon absorption, and stimulated Raman scattering from the 144 cm(-1) Raman line of anatase with a gain coefficient of 6.6 × 10(-12) m/W. Additionally, we report on asymmetric spectral broadening around 794 nm. The wide wavelength applicability and negligible two-photon absorption of TiO(2) make it a promising material for integrated photonics.

  16. Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths

    Science.gov (United States)

    Phipps, C. R., Jr.; Harrison, R. F.; Shimada, T.; York, G. W.; Turner, R. F.

    1990-03-01

    This paper reports measurements of vacuum laser impulse coupling coefficients as large as 90 dyne/W, obtained with single microsec-duration CO2 laser pulses incident on a volume-absorbing, cellulose-nitrate-based plastic. This result is the largest coupling coefficient yet reported at any wavelength for a simple, planar target in vacuum, and partly results from expenditure of internal chemical energy in this material. Enhanced coupling was also observed in several other target materials that are chemically passive, but absorb light in depth at 10- and 3-micron wavelengths. The physical distinctions are discussed between this important case and that of simple, planar surface absorbers (such as metals) which were studied in the same experimental series, in light of the predictions of a simple theoretical model.

  17. Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides

    Science.gov (United States)

    Howard, B.

    2018-02-01

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.

  18. Analysis of the impact of wavelength separation on reflectivity error for differential absorption lidar using the ASTER spectral library

    Science.gov (United States)

    Tandy, William D.; Bartholomew, Jarett; Emery, William J.; Yerasi, Ashwin

    2017-07-01

    An investigation of the sensitivity of a gas-detecting, airborne differential absorption lidar to the wavelength-based reflectivity variations of the ground was made using the Jet Propulsion Laboratory's (JPL) reflectance library. The JPL library contains 2287 data sets of reflective materials covering a wide range from manmade to lunar regolith. The study covered an online wavelength range of 400 to 4000 nm. Two assumptions were made to provide a path to analysis. The first was that an instrument developer could tolerate no more than 5% error on the overall answer due to reflectivity differences from wavelength separation. The second was that, regardless of atmospheric conditions, molecular cross section, starting power levels, or myriad other effects, the offline received signal is 10% higher than the online received signal. From this foundation, wavelength separation limits were determined when 99%, 95%, and 90% of the materials in the database met the error criteria. It was found that most applications need wavelength separations within about 0.5 nm for low error while some applications could use wavelengths separated by 10 nm or more. Example case studies are provided to demonstrate the applicability and use of the computed plots intended for informing early-stage instrument design.

  19. Comparative investigation of methods to determine the group velocity dispersion of an endlessly single-mode photonic crystal fiber

    Science.gov (United States)

    Baselt, Tobias; Popp, Tobias; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter

    2017-05-01

    Endlessly single-mode fibers, which enable single mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode guidance. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion GVD based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array and compare the calculation with two methods to measure the wavelength-dependent time delay. We measure the time delay on a three hundred meter test fiber with a homemade supercontinuum light source, a set of bandpass filters and a fast detector and compare the results with a white light interferometric setup. To measure the dispersion of optical fibers with high accuracy, a time-frequency-domain setup based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelength dependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the endlessly single-mode fiber.

  20. Tailoring Chirped Moiré Fiber Bragg Gratings for Wavelength-Division-Multiplexing and Optical Code-Division Multiple-Access Applications

    Science.gov (United States)

    Chen, Lawrence R.; Smith, Peter W. E.

    The design and fabrication of chirped Moiré fiber Bragg gratings (CMGs) are presented, which can be used in either (1) transmission as passband filters for providing wavelength selectivity in wavelength-division-multiplexed (WDM) systems or (2) reflection as encoding/decoding elements to decompose short broadband pulses in both wavelength and time in order to implement an optical code-division multiple-access (OCDMA) system. In transmission, the fabricated CMGs have single or multiple flattened passbands ( 12 dB isolation and near constant in-band group delay. It is shown that these filters do not produce any measurable dispersion-induced power penalties when used to provide wavelength selectivity in 2.5 Gbit/s systems. It is also demonstrated how CMGs can be used in reflection to encode/decode short pulses from a wavelength-tunable mode-locked Er-doped fiber laser.

  1. Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength

    Science.gov (United States)

    Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver

    2017-09-01

    Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.

  2. Photonic-based multi-wavelength sensor for object identification.

    Science.gov (United States)

    Venkataraayan, Kavitha; Askraba, Sreten; Alameh, Kamal E; Smith, Clifton L

    2010-02-15

    A Photonic-based multi-wavelength sensor capable of discriminating objects is proposed and demonstrated for intruder detection and identification. The sensor uses a laser combination module for input wavelength signal multiplexing and beam overlapping, a custom-made curved optical cavity for multi-beam spot generation through internal beam reflection and transmission and a high-speed imager for scattered reflectance spectral measurements. Experimental results show that five different wavelengths, namely 473 nm, 532 nm, 635 nm, 670 nm and 785 nm, are necessary for discriminating various intruding objects of interest through spectral reflectance and slope measurements. Objects selected for experiments were brick, cement sheet, cotton, leather and roof tile.

  3. Rational choices for the wavelengths of a two color interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.

    1995-07-01

    If in a two color interferometer for plasma density measurements, the two wavelengths are chosen to have a ratio that is a rational number, and if the signals from each of the wavelengths are multiplied in frequency by the appropriate integer of the rational number and then heterodyned together, the resultant signal will have all effects of component motion nulled out. A phase measurement of this signal will have only plasma density information in it. With CO 2 lasers, it is possible to find suitable wavelength pairs which are close enough to rational numbers to produce an improvement of about 100 in density resolution, compared to standard two color interferometers

  4. Analog optical computing by half-wavelength slabs

    Science.gov (United States)

    Zangeneh-Nejad, Farzad; Khavasi, Amin; Rejaei, Behzad

    2018-01-01

    A new approach to perform analog optical differentiation is presented using half-wavelength slabs. First, a half-wavelength dielectric slab is used to design a first order differentiator. The latter works properly for both major polarizations, in contrast to our previously design based on Brewster effect (Youssefi et al., 2016). Inspired by the proposed dielectric differentiator, and by exploiting the unique features of graphene, we further design and demonstrate a reconfigurable and highly miniaturized differentiator using a half-wavelength plasmonic graphene film. To the best of our knowledge, our proposed graphene-based differentiator is even smaller than the most compact differentiator presented so far.

  5. Estimates of SASE power in the short wavelength region

    International Nuclear Information System (INIS)

    Kim, Kwang-Je.

    1992-03-01

    Given a sufficiently bright electron beam, the self-amplified-spontaneous emission (SASE) can provide gigawatts of short wavelength coherent radiation. The advantages of SASE approach are that is requires neither optical cavity nor an imput seed laser. In this note, we estimate the peak power performance of SASE for wavelengths shorter than 1000 Angstrom. At each wavelength, we calculate the saturated power from a uniform parameter undulator and the enhanced power from a tapered undulator. The method described here is an adaptation of that discussed by L.H. Yu, who discussed the harmonic generation scheme with seeded laser, to the case of SASE

  6. Using Single-Scattering Albedo Spectral Curvature to Characterize East Asian Aerosol Mixtures

    Science.gov (United States)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2015-01-01

    Spectral dependence of aerosol single-scattering albedo (SSA) has been used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, by analyzing SSA measured at four wavelengths, 440, 675, 870, and 1020 nm from the Aerosol Robotic Network data set, we find that the SSA spectra over East Asia are frequently peaked at 675 nm. In these cases, we suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Aerosol SSA spectral curvatures for East Asia during fall and winter are considerably larger than those found in places primarily dominated by biomass burning or dust aerosols. SSA curvature is found to increase as the SSA magnitude decreases. The curvature increases with coarse mode fraction (CMF) to a CMF value of about 0.4, then slightly decreases or remains constant at larger CMF. Mie calculations further verify that the strongest SSA curvature occurs at approx. 40% dust fraction, with 10% scattering aerosol fraction. The nonmonotonic SSA spectral dependence is likely associated with enhanced absorption in the shortwave by dust, absorption by black carbon at longer wavelengths, and also the flattened absorption optical depth spectral dependence due to the increased particle size.

  7. Development of wavelength-dispersive soft X-ray emission spectrometers for transmission electron microscopes--an introduction of valence electron spectroscopy for transmission electron microscopy.

    Science.gov (United States)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu(1-x)Zn(x) alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Malpha-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of pi- and sigma-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM.

  8. Multispectral iris fusion for enhancement, interoperability, and cross wavelength matching

    Science.gov (United States)

    Burge, Mark J.; Monaco, Matthew K.

    2009-05-01

    Traditionally, only a narrow band of the Near-Infrared (NIR) spectrum (700-900nm) is utilized for iris recognition since this alleviates any physical discomfort from illumination, reduces specular reflections and increases the amount of texture captured for some iris colors. However, previous research has shown that matching performance is not invariant to iris color and can be improved by imaging outside of the NIR spectrum. Building on this research, we demonstrate that iris texture increases with the frequency of the illumination for lighter colored sections of the iris and decreases for darker sections. Using registered visible light and NIR iris images captured using a single-lens multispectral camera, we illustrate how physiological properties of the iris (e.g., the amount and distribution of melanin) impact the transmission, absorbance, and reflectance of different portions of the electromagnetic spectrum and consequently affect the quality of the imaged iris texture. We introduce a novel iris code, Multispectral Enhanced irisCode (MEC), which uses pixel-level fusion algorithms to exploit texture variations elicited by illuminating the iris at different frequencies, to improve iris matcher performance and reduce Failure-To-Enroll (FTE) rates. Finally, we present a model for approximating an NIR iris image using features derived from the color and structure of a visible light iris image. The simulated NIR images generated by this model are designed to improve the interoperability between legacy NIR iris images and those acquired under visible light by enabling cross wavelength matching of NIR and visible light iris images.

  9. Temperature-controlled two-wavelength laser soldering of tissues.

    Science.gov (United States)

    Gabay, Ilan; Abergel, Avraham; Vasilyev, Tamar; Rabi, Yaron; Fliss, Dan M; Katzir, Abraham

    2011-11-01

    Laser tissue soldering is a method for bonding of incisions in tissues. A biological solder is spread over the cut, laser radiation heats the solder and the underlying cut edges and the incision is bonded. This method offers many advantages over conventional techniques (e.g., sutures). Past researches have shown that laser soldering, using a single laser, does not provide sufficient strength for bonding of cuts in thick (>1 mm) tissues. This study introduces a novel method for laser soldering of thick tissues, under temperature control, using two lasers, emitting two different wavelengths. An experimental system was built, using two lasers: (i) a CO(2) laser, whose radiation heated the upper surface of the tissue and (ii) a GaAs laser that heated an albumin layer under the tissue. An infrared fiber-optic radiometer monitored the temperature of the tissue. All three devices were connected to a computer that controlled the process. A computer simulation was written to optimize the system parameters. The system was tested on tissue phantoms, to validate the simulation and ensure that both the upper and lower sides of the cut were heated, and that the temperature could be controlled on both sides. The system was then used ex vivo to bond longitudinal cuts of lengths ∼12 mm in the esophagi of large farm pigs. The theoretical simulations showed a good stabilization of the temperatures at the upper and lower tissue surfaces at the target values. Experiments on tissue phantom showed a good agreement with these simulations. Incisions in esophagi, removed from large farm pigs, were then successfully bonded. The mean burst pressure was ∼3.6 m of water. This study demonstrated the capability of soldering cuts in thick tissues, paving the way for new types of surgical applications. Copyright © 2010 Wiley Periodicals, Inc.

  10. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Science.gov (United States)

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  11. Fabrication of Antireflective Sub-Wavelength Structures on Silicon Nitride Using Nano Cluster Mask for Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Lin Men-Ku

    2009-01-01

    Full Text Available Abstract We have developed a simple and scalable approach for fabricating sub-wavelength structures (SWS on silicon nitride by means of self-assembled nickel nanoparticle masks and inductively coupled plasma (ICP ion etching. Silicon nitride SWS surfaces with diameter of 160–200 nm and a height of 140–150 nm were obtained. A low reflectivity below 1% was observed over wavelength from 590 to 680 nm. Using the measured reflectivity data in PC1D, the solar cell characteristics has been compared for single layer anti-reflection (SLAR coatings and SWS and a 0.8% improvement in efficiency has been seen.

  12. 4.5 μm wavelength vertical external cavity surface emitting laser operating above room temperature

    Science.gov (United States)

    Rahim, M.; Khiar, A.; Felder, F.; Fill, M.; Zogg, H.

    2009-05-01

    A midinfrared vertical external cavity surface emitting laser with 4.5 μm emission wavelength and operating above room temperature has been realized. The active part consists of a single 850 nm thick epitaxial PbSe gain layer. It is followed by a 2 1/2 pair Pb1-yEuyTe/BaF2 Bragg mirror. No microstructural processing is needed. Excitation is done optically with a 1.5 μm wavelength laser. The device operates up to 45 °C with 100 ns pulses and delivers 6 mW output power at 27 °C heat-sink temperature.

  13. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Cahoon, Erica M.; Almirall, Jose R.

    2010-01-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  14. Multi-wavelength Ocean Profiling and Atmospheric Lidar

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build and demonstrate the world's first multi-wavelength ocean-profiling high spectral resolution lidar (HSRL). The lidar will provide profiles of...

  15. A Novel Wavelength Demodulation Method Using Twisted High Birefringence Fiber

    International Nuclear Information System (INIS)

    Niu, L Y; Yang, H Y; Wu, F; Li, Z Q

    2006-01-01

    The mathematical model of twisted high birefringence fiber was established through theoretical analysis. A novel FBG wavelength demodulation method was put forward, by using the twisted high birefringence fiber. The numerical simulation and the experiments were carried out to the system. The standard cosine relationship was observed between the output intensity of polarization analyzer and the twist angle for the signal light with different wavelengths. When the twist angle of the high birefringence fiber is 0 and π/2, the output intensity ratio of the system presents the linear relationship with the wavelength approximately. The experiment shows that system is in agreement very well with theoretical analysis to demodulate guasi-linearly FBG wavelength shift in range of about 10 nm

  16. Wavelength Drift Corrector for Wind Lidar Receivers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a key innovation to improve wavelength-sensitive lidar measurements (such as wind velocity) using photon-counting receivers. A novel binning technique to...

  17. An 8-channel wavelength demultiplexer based on photonic crystal fiber

    Science.gov (United States)

    Malka, Dror

    2017-05-01

    We propose a novel 8-channel wavelength demultiplexer based on photonic crystal fiber (PCF) structures that operate at 1530nm, 1535nm, 1540nm, 1545nm, 1550nm, 1555nm, 1560nm and 1565nm wavelengths. The new design is based on replacing some air-holes zones with silicon nitride and lithium niobate materials along the PCF axis with optimization of the PCF size. The reason of using these materials is because that each wavelength has a different value of coupling length. Numerical investigations were carried out on the geometrical parameters by using a beam propagation method (BPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565nm) with low crosstalk ((-16.88)-(-15.93) dB) and bandwidth (4.02-4.69nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.

  18. Swept wavelength lasers in the 1 um region

    DEFF Research Database (Denmark)

    Nielsen, Frederik Donbæk

    2006-01-01

    In this Ph.D. work rapidly wavelength tunable laser configurations operating in the 1 m range have been investigated. Such lasers are interesting for the so-called optical coherence tomography (OCT) technique, whereof one successful application today is within the field of ophthalmology....... In this application, the 1-1.1 m wavelength range is particular suitable for imaging features in the deeper lying layers of the human retina. Ytterbium Doped Fiber Amplifiers (YDFAs) are an attractive and available gain medium for the 1-1.1 m wavelength band. However, the relative long upper state lifetime, imposes...... a serious limitation on the achievable scanning speed if the YDFA is to be used using for so-called cavity tuned lasers. Another swept wavelength configuration, the so-called lightwave synthesized frequency sweeper, is therefore in this work experimentally and numerically investigated as a possible...

  19. Low Wavelength Loss of Germanium Doped Silica Fibers

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Grüner-Nielsen, Lars; Rottwitt, Karsten

    2008-01-01

    Attenuation of four step-index fibers are measured with high accuracy from 190 nm to 1700 nm. The spectra are deconvolved into different contributions and the influence of the Urbach edge at transmission wavelengths is investigated....

  20. Sub-wavelength antenna enhanced bilayer graphene tunable photodetector

    Science.gov (United States)

    Beechem, III, Thomas Edwin; Howell, Stephen W.; Peters, David W.; Davids, Paul; Ohta, Taisuke

    2016-03-22

    The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.

  1. Multiple Wavelength Quantum Dot Lasers (MW-QDL)

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative method to achieve optical gain over a wide spectral range using new laser materials is being investigated.  Multiple wavelength quantum dot lasers...

  2. Short Wavelength Fluctuations and Electron Transport in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Wong; K. Itoh; S.-I. Itoh; A. Fukuyama; M. Yagi

    2000-09-08

    Correlation between electron heat diffusivity and short wavelength (kri {approximately} 5) fluctuation amplitude was observed in the Tokamak Fusion Test Reactor (TFTR) tokamak in the core of enhanced reversed shear (ERS) plasmas [1]. These fluctuations propagate in the ion diamagnetic drift direction with wave number comparable to wpe/c. Further analysis of these data yields the ratios ce/ci and ce/De, and their values are consistent with the picture that the electron transport is mainly induced by the short wavelength fluctuations in the plasma core where the long wavelength (kri {approximately} 1) fluctuations are absent. Although there is not enough information to identify these short wavelength modes, the values of ce is found to be comparable to theoretical predictions based on the current diffusive ballooning mode theory [2].

  3. All optical wavelength conversion and parametric amplification in Ti:PPLN channel waveguides for telecommunication applications

    Energy Technology Data Exchange (ETDEWEB)

    Nouroozi, Rahman

    2010-10-19

    Efficient ultra-fast integrated all-optical wavelength converters and parametric amplifiers transparent to the polarization, phase, and modulation-level and -format are investigated. The devices take advantage of the optical nonlinearity of Ti:PPLN waveguides exploiting difference frequency generation (DFG). In a DFG, the signal ({lambda}{sub s}) is mixed with a pump ({lambda}{sub p}) to generate a wavelength shifted idler (1/{lambda}{sub i}=1/{lambda}{sub p}-1/{lambda}{sub s}). Efficient generation of the pump in Ti:PPLN channel guides is investigated using different approaches. In the waveguide resonators, first a resonance of the fundamental wave alone is considered. It is shown that the maximum power enhancement of the fundamental wave, and therefore the maximum second-harmonic generation (SHG) efficiency, can be achieved with low loss matched resonators. By this way, SHG efficiency of {proportional_to}10300%/W (10.3 %/mW) has been achieved in a 65 mm long waveguide resonator. Its operation for cSHG/DFG requires narrowband reflector for fundamental wave only. Thus, the SH (pump) wave resonator is investigated. The SH-wave resonator enhances the intracavity SH power only. Based on this scheme, an improvement of {proportional_to}10 dB for cSHG/DFG based wavelength conversion efficiency has been achieved with 50 mW of coupled fundamental power in a 30 mm long Ti:PPLN. However, operation was limited to relatively small fundamental power levels (<50 mW) due to the onset of photorefractive instabilities destroying the cavity stabilization. The cSHG/DFG efficiency can be considerably improved by using a double-pass configuration in which all the interacting waves were reflected by a broadband dielectric mirror deposited on the one endface of the waveguide. Three different approaches are investigated and up to 9 dB improvement of the wavelength conversion efficiency in comparison with the single-pass configuration is achieved. Polarization-insensitive wavelength

  4. Blocking probability in the hose-model optical VPN with different number of wavelengths

    Science.gov (United States)

    Roslyakov, Alexander V.

    2017-04-01

    Connection setup with guaranteed quality of service (QoS) in the optical virtual private network (OVPN) is a major goal for the network providers. In order to support this we propose a QoS based OVPN connection set up mechanism over WDM network to the end customer. The proposed WDM network model can be specified in terms of QoS parameter such as blocking probability. We estimated this QoS parameter based on the hose-model OVPN. In this mechanism the OVPN connections also can be created or deleted according to the availability of the wavelengths in the optical path. In this paper we have considered the impact of the number of wavelengths on the computation of blocking probability. The goal of the work is to dynamically provide a best OVPN connection during frequent arrival of connection requests with QoS requirements.

  5. Fiber optics frequency comb enabled linear optical sampling with operation wavelength range extension.

    Science.gov (United States)

    Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming

    2018-02-01

    Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.

  6. Wavelength stabilized multi-kW diode laser systems

    Science.gov (United States)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  7. Optical cross-connect circuit using hitless wavelength selective switch.

    Science.gov (United States)

    Goebuchi, Yuta; Hisada, Masahiko; Kato, Tomoyuki; Kokubun, Yasuo

    2008-01-21

    We have proposed and demonstrated the basic elements of a full matrix optical switching circuit (cross-connect circuit) using a hitless wavelength selective switch (WSS). The cross-connect circuits are made of a multi-wavelength channel selective switch consisting of cascaded hitless WSSs, and a multi-port switch. These switching elements are realized through the individual Thermo-Optic (TO) tuning of a series-coupled microring resonator, and can switch arbitrary wavelength channels without blocking other wavelength channels during tuning. We demonstrate a four wavelength selective switch using a parallel topology of double series coupled microring resonators and a three wavelength selective switch using a parallel topology of quadruple series coupled microring resonators. Since the spectrum shape of quadruple series coupled microring is much more box-like than the double series, a high extinction ratio of 39.0-46.6 dB and low switching cross talk of 19.3-24.5 dB were achieved.

  8. Wavelength calibration of an imaging spectrometer based on Savart interferometer

    Science.gov (United States)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Quan, Naicheng; Wei, Yutong; Tong, Cuncun

    2017-09-01

    The basic principle of Fourier-transform imaging spectrometer (FTIS) based on Savart interferometer is outlined. The un-identical distribution of the optical path difference which leads to the wavelength drift of each row of the interferogram is analyzed. Two typical methods for wavelength calibration of the presented system are described. The first method unifies different spectral intervals and maximum spectral frequencies of each row by a reference monochromatic light with known wavelength, and the dispersion compensation of Savart interferometer is also involved. The second approach is based on the least square fitting which builds the functional relation between recovered wavelength, row number and calibrated wavelength by concise equations. The effectiveness of the two methods is experimentally demonstrated with monochromatic lights and mixed light source across the detecting band of the system, and the results indicate that the first method has higher precision and the mean root-mean-square error of the recovered wavelengths is significantly reduced from 19.896 nm to 1.353 nm, while the second method is more convenient to implement and also has good precision of 2.709 nm.

  9. Edge-emitting InGaAs/GaAs laser with high temperature stability of wavelength and threshold current

    International Nuclear Information System (INIS)

    Gordeev, N Yu; Novikov, I I; Chunareva, A V; Il'inskaya, N D; Shernyakov, Yu M; Maximov, M V; Kalyuzhnyy, N A; Mintairov, S A; Lantratov, V M; Payusov, A S; Shchukin, V A; Ledentsov, N N

    2010-01-01

    We have investigated an edge-emitting tilted wave laser (TWL) with the active region based on GaInAs/GaAs quantum wells. In the TWL the wavelength stabilization is based on the coupling of the laser active waveguide cavity to a specially introduced thick epitaxial layer and the emission wavelength is defined by the combined cavity mode preferably by a single dominating mode. The TWL wafer has been grown by metal-organic chemical vapour deposition. Laser parameters have been investigated both in pulsed and CW mode in the temperature range of 15–60 °C. In the temperature window of 20–50 °C under CW excitation the lasers have shown high wavelength temperature stability with the temperature shift of 0.05 nm K −1 and threshold current stability with the characteristic temperature of 500 K. The data obtained prove the concept of thermal stability in tilted wave lasers

  10. Widely tunable/wavelength-swept SLM fiber laser with ultra-narrow linewidth and ultra-high OSNR

    Science.gov (United States)

    Feng, Ting; Ding, Dong-liang; Liu, Peng; Su, Hong-xin; Yao, X. Steve

    2016-11-01

    We propose and demonstrate a novel single-longitudinal-mode (SLM) erbium-doped fiber laser (EDFL) capable of operating at fixed-wavelength lasing mode with a tunable range more than 54 nm, an ultra-narrow linewidth of 473 Hz and an ultra-high optical signal-to-noise ratio ( OSNR) more than 72 dB, or operating at wavelength-swept mode with tunable sweep rate of 10—200 Hz and a sweep range more than 50 nm. The excellent features mainly benefit from a triple-ring subring cavity constructed by three optical couplers nested one another and a fiber Fabry-Pérot tunable filter which can be driven by a constant voltage or a periodic sweep voltage for fixed or wavelength- swept operation, respectively. The proposed EDFL has potential applications in high-resolution spectroscopy and fiber optic sensing.

  11. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry I: design and development

    Science.gov (United States)

    Ramm, Daniel

    2018-02-01

    Three dimensional dosimetry by optical CT readout of radiosensitive gels or solids has previously been indicated as a solution for measurement of radiotherapy 3D dose distributions. The clinical uptake of these dosimetry methods has been limited, partly due to impracticalities of the optical readout such as the expertise and labour required for refractive index fluid matching. In this work a fast laser beam optical CT scanner is described, featuring fluid-less and dual wavelength operation. A second laser with a different wavelength is used to provide an alternative reference scan to the commonly used pre-irradiation scan. Transmission data for both wavelengths is effectively acquired simultaneously, giving a single scan process. Together with the elimination of refractive index fluid matching issues, scanning practicality is substantially improved. Image quality and quantitative accuracy were assessed for both dual and single wavelength methods. The dual wavelength scan technique gave improvements in uniformity of reconstructed optical attenuation coefficients in the sample 3D volume. This was due to a reduction of artefacts caused by scan to scan changes. Optical attenuation measurement accuracy was similar for both dual and single wavelength modes of operation. These results established the basis for further work on dosimetric performance.

  12. Influence of incident light wavelength on time jitter of fast photomultipliers

    International Nuclear Information System (INIS)

    Moszynski, M.; Vacher, J.

    1977-01-01

    The study of the single photoelectron time resolution as a function of the wavelength of the incident light was performed for a 56 CVP photomultiplier having an S-1 photocathode. The light flash from the XP22 light emitting diode generator was passed through passband filters and illuminated the 5 mm diameter central part of the photocathode. A significant increase of the time resolution above 30% was observed when the wavelength of the incident light was changed from 790 nm to 580 nm. This gives experimental evidence that the time jitter resulting from the spread of the initial velocity of photoelectrons is proportional to the square root of the maximal initial energy of photoelectrons. Based on this conclusion the measured time jitter of C31024, RCA8850 and XP2020 photomultipliers with the use of the XP22 light emitting diode at 560 nm light wavelength was recalculated to estimate the time jitter at 400 nm near the maximum of the photocathode sensitivity. It shows an almost twice larger time spread at 400 nm for the C31024 and RCA8850 with a high gain first dynode and an about 1.5 times larger time spread for the XP2020 photomultiplier, than those measured at 560 nm. (Auth.)

  13. Rapid, k-space linear wavelength scanning laser source based on recirculating frequency shifter.

    Science.gov (United States)

    Wan, Minggui; Wang, Lin; Li, Feng; Cao, Yuan; Wang, Xudong; Feng, Xinhuan; Guan, Bai-Ou; Wai, P K A

    2016-11-28

    We propose and successfully demonstrate a k-space linear and self-clocked wavelength scanning fiber laser source based on recirculating frequency shifting (RFS). The RFS is realized with a high speed electro-optic dual parallel Mach-Zehnder modulator operating at the state of carrier suppressed single sideband modulation. A gated short pulse is injected into an amplified RFS loop to generate the wavelength scanning pulse train. We find that the accumulation of in-band amplified spontaneous emission (ASE) noise over multiple scanning periods will saturate the erbium-doped fiber amplifier and impede the amplification to the pulse signal in the RFS loop. To overcome the degradation of temporal signal due to the accumulation of ASE noise over multiple scanning periods, we insert a modulated optical switch into the RFS loop to completely attenuate the in-band ASE noise at the end of each scanning period. The signal to noise ratio of the temporal pulsed signal is greatly enhanced. K-space linear and self-clocked wavelength scanning fiber laser sources in 6.1 nm/7.2 nm scanning range with 20 GHz/30 GHz frequency shifting are successfully demonstrated.

  14. Experimental validation of a theoretical model of dual wavelength photoacoustic (PA) excitation in fluorophores

    Science.gov (United States)

    Märk, Julia; Theiss, Christoph; Schmitt, Franz-Josef; Laufer, Jan

    2015-03-01

    Fluorophores, such as exogenous dyes and genetically expressed proteins, exhibit radiative relaxation with long excited state lifetimes. This can be exploited for PA detection based on dual wavelength excitation using pump and probe wavelengths that coincide with the absorption and emission spectra, respectively. While the pump pulse raises the fluorophore to a long-lived excited state, simultaneous illumination with the probe pulse reduces the excited state lifetime due to stimulated emission (SE).This leads to a change in thermalized energy, and hence PA signal amplitude, compared to single wavelength illumination. By introducing a time delay between pump and probe pulses, the change in PA amplitude can be modulated. Since the effect is not observed in endogenous chromophores, it provides a contrast mechanism for the detection of fluorophores via PA difference imaging. In this study, a theoretical model of the PA signal generation in fluorophores was developed and experimentally validated. The model is based on a system of coupled rate equations, which describe the spatial and temporal changes in the population of the molecular energy levels of a fluorophore as a function of pump-probe energy and concentration. This allows the prediction of the thermalized energy distribution, and hence the time-resolved PA signal amplitude. The model was validated by comparing its predictions to PA signals measured in solutions of rhodamine 6G, a well-known laser dye, and Atto680, a NIR fluorophore.

  15. Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits.

    Science.gov (United States)

    Jin, Jeongwan; Saglamyurek, Erhan; Puigibert, Marcel lí Grimau; Verma, Varun; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-10-02

    Polarization-encoded photons at telecommunication wavelengths provide a compelling platform for practical realizations of photonic quantum information technologies due to the ease of performing single qubit manipulations, the availability of polarization-entangled photon-pair sources, and the possibility of leveraging existing fiber-optic links for distributing qubits over long distances. An optical quantum memory compatible with this platform could serve as a building block for these technologies. Here we present the first experimental demonstration of an atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of freedom of a telecom-wavelength photon. We show that heralded polarization qubits at a telecom wavelength are stored and retrieved with near-unity fidelity by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber. Despite remaining limitations in our proof-of-principle demonstration such as small storage efficiency and storage time, our broadband light-matter interface reveals the potential for use in future quantum information processing.

  16. A Design of High-Power Beam Combiner at Millimeter Wavelengths Utilizing Wire Grids

    Science.gov (United States)

    Lin, Mei; Yu, Yanzhong

    2009-05-01

    A beam combiner, which can combine multiple Gaussian beams into a single one, has many important applications, such as high-power radar and weapon. In this paper, we propose a new scheme of the design of high-power beam combiner at millimeter wavelengths by using wire grids. The design tool is to combine a genetic algorithm (GA) for global optimization and an Ansoft HFSS for rigorous electromagnetic computation. The design method is described in detail and the optimized results are presented. Finally, a brief summary is given.

  17. Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods.

    Science.gov (United States)

    Heimbeck, Martin S; Kim, Myung K; Gregory, Don A; Everitt, Henry O

    2011-05-09

    Terahertz digital off-axis holography is demonstrated using a Mach-Zehnder interferometer with a highly coherent, frequency tunable, continuous wave terahertz source emitting around 0.7 THz and a single, spatially-scanned Schottky diode detector. The reconstruction of amplitude and phase objects is performed digitally using the angular spectrum method in conjunction with Fourier space filtering to reduce noise from the twin image and DC term. Phase unwrapping is achieved using the dual wavelength method, which offers an automated approach to overcome the 2π phase ambiguity. Potential applications for nondestructive test and evaluation of visually opaque dielectric and composite objects are discussed. © 2011 Optical Society of America

  18. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks

    International Nuclear Information System (INIS)

    Patel, K. A.; Dynes, J. F.; Lucamarini, M.; Choi, I.; Sharpe, A. W.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.

    2014-01-01

    We demonstrate quantum key distribution (QKD) with bidirectional 10 Gb/s classical data channels in a single fiber using dense wavelength division multiplexing. Record secure key rates of 2.38 Mbps and fiber distances up to 70 km are achieved. Data channels are simultaneously monitored for error-free operation. The robustness of QKD is further demonstrated with a secure key rate of 445 kbps over 25 km, obtained in the presence of data lasers launching conventional 0 dBm power. We discuss the fundamental limit for the QKD performance in the multiplexing environment

  19. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup Nielsen, Birgitte

    2010-01-01

    . By adapting a bar geometry, the output power could be scaled even up to several tens of watts. Unfortunately, the high divergence which is a characteristic feature of the bar geometry could lead to a degradation of the overall beam quality of the laser bar. However, spectral beam combining is an effective...... solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm...

  20. Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation.

    Science.gov (United States)

    Memmolo, P; Finizio, A; Paturzo, M; Ferraro, P; Javidi, B

    2012-05-01

    A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.

  1. Experimental demonstration of optical stealth transmission over wavelength-division multiplexing network.

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Tang, Yeteng; Chen, Dalei

    2016-08-10

    We propose and experimentally demonstrate an optical stealth transmission system over a 200 GHz-grid wavelength-division multiplexing (WDM) network. The stealth signal is processed by spectral broadening, temporal spreading, and power equalizing. The public signal is suppressed by multiband notch filtering at the stealth channel receiver. The interaction between the public and stealth channels is investigated in terms of public-signal-to-stealth-signal ratio, data rate, notch-filter bandwidth, and public channel number. The stealth signal can transmit over 80 km single-mode fiber with no error. Our experimental results verify the feasibility of optical steganography used over the existing WDM-based optical network.

  2. The wavelength dependence of polarization in NGC 2023

    International Nuclear Information System (INIS)

    Rolph, C. D.; Scarrott, S. M.

    1989-01-01

    NGC 2023 is a bright reflection nebula illuminated by the central star HD37903. At 2 microns the nebula is seen solely by reflected light from the central star but in the NIR there is excess radiation that is supposed to arise from thermal emission from a population of small grains (Sellgren, 1984). The unexpectedly high surface brightness at R and I wavelengths has led to the suggestion that even at these wavelengths there is a significant contribution from this thermal emission process (Witt, Schild, and Kraiman, 1984). If the nebula is seen by reflected starlight then this radiation will be linearly polarized. The level of polarization depends on the scattering geometry, grain size distribution, etc., and is typically 20 to 40 percent for nebulae such as NGC 1999 which is morphologically similar to NGC 2023. If, in any waveband, there is a contribution of radiation from emission processes this radiation will be unpolarized and will serve to dilute the scattered radiation to give a lower level of observed polarization. A study of the wavelength dependence of polarization in nebulae in which there may be thermal emission from grains will indicate the contribution from this process to the total luminosity. Polarization maps were produced in BVRI wavebands for the NGC 2023 nebulosity which confirm that at all wavelengths it is a reflection nebula illuminated by a central star. The wavelength dependence of polarization at representative points in the nebula and in a scatter plot of polarization in V and I wavebands at all points at which measurements are given. Results indicate that throughout the nebula there is a general trend for the level of polarization to increase with wavelength and that maximum levels of polarization occur at the longest wavelengths. No evidence is seen in the data for any significant contribution from the thermal emission from grains in the BVRI luminosity of NGC 2023

  3. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  4. Wavelength tunable L Band polarization-locked vector soliton fiber laser based on SWCNT-SA and CFBG

    Science.gov (United States)

    Yan, Yaxi; Wang, Jiaqi; Wang, Liang; Cheng, Zhenzhou

    2018-04-01

    Wavelength tunable L-Band polarization-locked vector soliton fiber laser based on single-walled carbon nanotube saturable absorber (SWCNT-SA) and chirped fiber Bragg grating (CFBG) is presented for the first time. By inserting the SWCNT-SA into an all-fiber laser cavity, polarization-locked vector solitons (PLVS) are obtained. The CFBG glued on a plastic cantilever is used for wavelength tuning. By mechanically bending the cantilever, the center wavelength of the PLVS pulses can be continuously tuned from 1606.8 nm to 1614 nm, while the polarization-locked state is kept stable. The properties and dynamics of PLVSs are experimentally investigated and stable PLVS operation including high-order PLVSs is demonstrated. The pulse width and repetition rate are 7.06 ps and 11.9 MHz at a wavelength of 1611 nm, respectively. This work demonstrates the feasibility of using polarization-insensitive CFBG to realize wavelength tuning in PLVS fiber laser.

  5. Influence of ns-laser wavelength in laser-induced breakdown spectroscopy for discrimination of painting techniques

    Science.gov (United States)

    Bai, Xueshi; Syvilay, Delphine; Wilkie-Chancellier, Nicolas; Texier, Annick; Martinez, Loic; Serfaty, Stéphane; Martos-Levif, Dominique; Detalle, Vincent

    2017-08-01

    The influence of ns-laser wavelength to discriminate ancient painting techniques such as are fresco, casein, animal glue, egg yolk and oil was investigated in this work. This study was carried out with a single shot laser on samples covered by a layer made of a mixture of the cinnabar pigment and different binders. Three wavelengths based on Nd: YAG laser were investigated (1064, 532 and 266 nm). The plasma is controlled at the same electron temperature after an adjustment of pulse energy for these three wavelengths on a fresco sample without organic binder. This approach allows to eliminate the effects of laser pulse energy and the material laser absorption. Afterwards, the emission spectra were compared to separate different techniques. The organic binding media has been separated based on the relative emission intensity of the present CN or C2 rovibrational emissions. In order to test the capability of separating or identifying, the chemometric approach (PCA) was applied to the different matrix. The different solutions in term of wavelength range to optimise the identification was investigated. We focused on the evaluation for the laser wavelength to insure a better separation. The different capacity was interpreted by differentiating the binders by the altered interaction mechanisms between the laser photon and the binders. Also, the electron temperature in the plasma was estimated, which provided the evidences to our findings.

  6. Combination of interval set and soft set

    Directory of Open Access Journals (Sweden)

    Keyun Qin

    2013-04-01

    Full Text Available Soft set theory and interval set theory are all mathematical tools for dealing with uncertainties. This paper is devoted to the discussion of soft interval set and its application. The notion of soft interval sets is introduced by combining soft set and interval set. Several operations on soft interval sets are presented in a manner parallel to that used in defining operations on soft sets and the lattice structures of soft interval sets are established. In addition, a soft interval set based decision making problem is analyzed.

  7. All-optical 40 Gbit/s compact integrated interferometric wavelength converter

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Hansen, Peter Bukhave

    1997-01-01

    An interferometric Michelson wavelength converter is presented that combines a speed-optimized semiconductor optical amplifier technology with the benefits of the integrated interferometer showing 40-Gbit/s wavelength conversion. The optimized wavelength converter demonstrates noninverted converted...

  8. Wavelength tunability of laser based on Yb-doped YGAG ceramics

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Jambunathan, Venkatesan; Miura, Taisuke; Endo, Akira; Lucianetti, Antonio; Mocek, TomáÅ.¡

    2015-02-01

    The wavelength tunability of diode pumped laser based on Yb-doped mixed garnet Y3Ga2Al3O12 (Yb:YGAG) ceramics was investigated. The tested Yb:YGAG sample (10% Yb/Y) was in the form of 2mm thick plane-parallel face-polished plate (without AR coatings). A fiber (core diameter 100 μm, NA= 0.22) coupled laser diode (LIMO, LIMO35-F100-DL980-FG-E) with emission at wavelength 969 nm, was used for longitudinal Yb:YGAG pumping. The laser diode was operating in the pulsed regime (2 ms pulse length, 10 Hz repetition rate). The duty-cycle 2% ensured a low thermal load even under the maximum diode pumping power amplitude 20W (ceramics sample was only air-cooled). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ˜ 97% @ 1.01 - 1.09 μm. Wavelength tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The laser was continuously tunable over ˜ 58nm (from 1022nm to 1080 nm) and the tuning band was mostly limited by the free spectral range of used birefringent filter. The maximum output power amplitude 3W was obtained at wavelength 1046nm for absorbed pump power amplitude 10.6W. The laser slope efficiency was 34%.

  9. Choice of the laser wavelength for a herpetic keratitis treatment

    Science.gov (United States)

    Razhev, Alexander M.; Bagayev, Sergei N.; Chernikh, Valery V.; Kargapoltsev, Evgeny S.; Trunov, Alexander; Zhupikov, Andrey A.

    2002-06-01

    For the first time the effect of the UV laser radiation to human eye cornea with herpetic keratitis was experimentally investigated. In experiments the UV radiation of ArF (193 nm), KrCl (223 nm), KrF (248 nm) excimer lasers were used. Optimal laser radiation parameters for the treatment of the herpetic keratitis were determined. The immuno-biochemical investigations were carried out and the results of clinical trials are presented. The maximum ablation rate was obtained for the 248 nm radiation wavelength. The process of healing was successful but in some cases the haze on the surface of the cornea was observed. When used the 193 nm radiation wavelength the corneal surface was clear without any hazes but the epithelization process was slower than for 248 nm wavelength and in some cases the relapse was occurred. The best results for herpetic keratitis treatment have been achieved by utilizing the 223 nm radiation wavelength of the KrCl excimer laser. The use of the 223 nm radiation wavelength allows treating the herpetic keratitis with low traumatic process of ablation and provides high quality of corneal surface.

  10. A Multi-Wavelength IR Laser for Space Applications

    Science.gov (United States)

    Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.

    2017-01-01

    We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to mid-infrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 microns, 2.7 microns and 3.4 microns. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated.

  11. Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging

    Directory of Open Access Journals (Sweden)

    Yong Taik Lim

    2003-01-01

    Full Text Available Fluorescent semiconductor nanocrystals (quantum dots [QDs] are hypothesized to be excellent contrast agents for biomedical assays and imaging. A unique property of QDs is that their absorbance increases with increasing separation between excitation and emission wavelengths. Much of the enthusiasm for using QDs in vivo stems from this property, since photon yield should be proportional to the integral of the broadband absorption. In this study, we demonstrate that tissue scatter and absorbance can sometimes offset increasing QD absorption at bluer wavelengths, and counteract this potential advantage. By using a previously validated mathematical model, we explored the effects of tissue absorbance, tissue scatter, wavelength dependence of the scatter, water-to- hemoglobin ratio, and tissue thickness on QD performance. We conclude that when embedded in biological fluids and tissues, QD excitation wavelengths will often be quite constrained, and that excitation and emission wavelengths should be selected carefully based on the particular application. Based on our results, we produced near-infrared QDs optimized for imaging surface vasculature with white light excitation and a silicon CCD camera, and used them to image the coronary vasculature in vivo. Taken together, our data should prove useful in designing fluorescent QD contrast agents optimized for specific biomedical applications.

  12. Multi-Wavelength Photomagnetic Imaging for Oral Cancer

    Science.gov (United States)

    Marks, Michael

    In this study, a multi-wavelength Photomagnetic Imaging (PMI) system is developed and evaluated with experimental studies.. PMI measures temperature increases in samples illuminated by near-infrared light sources using magnetic resonance thermometry. A multiphysics solver combining light and heat transfer models the spatiotemporal distribution of the temperature change. The PMI system develop in this work uses three lasers of varying wavelength (785 nm, 808 nm, 860 nm) to heat the sample. By using multiple wavelengths, we enable the PMI system to quantify the relative concentrations of optical contrast in turbid media and monitor their distribution, at a higher resolution than conventional diffuse optical imaging. The data collected from agarose phantoms with multiple embedded contrast agents designed to simulate the optical properties of oxy- and deoxy-hemoglobin is presented. The reconstructed images demonstrate that multi-wavelength PMI can resolve this complex inclusion structure with high resolution and recover the concentration of each contrast agent with high quantitative accuracy. The modified multi-wavelength PMI system operates under the maximum skin exposure limits defined by the American National Standards Institute, to enable future clinical applications.

  13. Study of the correlation of scintillation decay and emission wavelength

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Yamaji, Akihiro; Kawaguchi, Noriaki; Kamada, Kei; Totsuka, Daisuke; Fukuda, Kentaro; Yamanoi, Kohei; Nishi, Ryosuke; Kurosawa, Shunsuke; Shimizu, Toshihiko; Sarukura, Nobuhiko

    2013-01-01

    In photoluminescence which directly excites the emission center of phosphor material is known to have a correlation between the emission wavelength and the decay time based on quantum mechanics. In scintillation phenomenon, host lattice of the material is first excited by ionizing radiation and then the excitation energy is transferred to emission centers. For the first time, we investigated the correlation between the scintillation decay and the emission wavelength by using pulse X-ray equipped streak camera system which could observe time and wavelength resolved scintillation phenomenon. Investigated materials were Ce 3+ , Pr 3+ and Nd 3+ doped oxides and fluorides which all showed 5d-4f transition based emission. As a result, we obtained the relation that τ (scintillation decay time) was proportional to the λ 2.15 (emission wavelength). -- Highlights: ► The correlation between emission wavelength and scintillation decay time is investigated. ► Photoluminescence decay times are also evaluated and compared with scintillation decay times. ► It is proved the relaxation process in emission center is dominant even in scintillation decay

  14. Optoelectronics: Continuously Spatial-Wavelength-Tunable Nanowire Lasers on a Single Chip

    Science.gov (United States)

    2014-01-28

    journals (N/A for none) 1. P. L. Nichols, Z. Liu, L. Yin, and C. Z. Ning, CdxPb1-xS Alloy Nanowires and Heterostructures with Simultaneous Emission in Mid...K. Ding, M. T. Hill, and C.Z. Ning, A Top-down Approach to Fabrication of High Quality Vertical Heterostructure Nanowire Arrays, Nano Lett., 11, 1646...2010 Paper submitted: 1. P. L. Nichols, Z. Liu, L. Yin, and C. Z. Ning, CdxPb1-xS Alloy Nanowires and Heterostructures with Simultaneous Emission

  15. Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles

    Science.gov (United States)

    Knepp, Travis N.; Szykman, James J.; Long, Russell; Duvall, Rachelle M.; Krug, Jonathan; Beaver, Melinda; Cavender, Kevin; Kronmiller, Keith; Wheeler, Michael; Delgado, Ruben; Hoff, Raymond; Berkoff, Timothy; Olson, Erik; Clark, Richard; Wolfe, Daniel; Van Gilst, David; Neil, Doreen

    2017-10-01

    Differing boundary/mixed-layer height measurement methods were assessed in moderately polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for light detection and ranging (lidar)-based MLH intercomparisons and ceilometer-network operation, and that sonde-derived boundary layer heights are higher (10-15 % at midday) than lidar-derived mixed-layer heights. We show that averaging the retrieved MLH to 1 h resolution (an appropriate timescale for a priori data model initialization) significantly improved the correlation between differing instruments and differing algorithms.

  16. Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles

    Directory of Open Access Journals (Sweden)

    T. N. Knepp

    2017-10-01

    Full Text Available Differing boundary/mixed-layer height measurement methods were assessed in moderately polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either. Filtering criteria were defined according to the change in mixed-layer height (MLH distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for light detection and ranging (lidar-based MLH intercomparisons and ceilometer-network operation, and that sonde-derived boundary layer heights are higher (10–15 % at midday than lidar-derived mixed-layer heights. We show that averaging the retrieved MLH to 1 h resolution (an appropriate timescale for a priori data model initialization significantly improved the correlation between differing instruments and differing algorithms.

  17. Wavelength calibration and instrumental resolution of 36 m SANS BATAN (SMARTer) using Silver Behenate powder

    International Nuclear Information System (INIS)

    Edy Giri Rachman Putra; Abarrul Ikram; Bharoto; Eddy Santoso

    2008-01-01

    A 36 meter small angle neutron scattering (SANS) spectrometer was constructed at the neutron scattering laboratory of the National Nuclear energy Agency of Indonesia (BATAN). The neutron wavelength calibration as well as the instrumental resolution have been validated using silver behenate (AgBE) powder [CH 3 (CH 2 ) 2 0COOAg] as one of the very few materials featuring Bragg reflections in the angular range accessible to SANS BATAN spectrometer (SMARTer). The known of lattice spacing enables the calculation of the neutron wavelength generated from mechanical velocity selector from the Bragg peak positions using Bragg Law. while, a sharp Bragg reflection with strong intensity at Q = 0.108 Amstrong -1 and other two weak reflections at 0.217 and 0.325 Amstrong -1 were emerged using the shortest neutron wavelength, λ=2.74 Amstrong at the highest rotational speed of the selector, 7000 rpm. The relative narrow intrinsic Full With in Half Maximum (FWHM) of the scattering profile from silver behenate powder was allowing the information on the instrumental resolution for different collimation length and pinholes set-up. From this measurement, SMARTer possess the instrumental resolution of 10% - 20%. (Author)

  18. Interferometry from near-infrared to mm-wavelengths: the transition disk around TW Hydrae

    Science.gov (United States)

    Menu, Jonathan; van Boekel, Roy; Henning, Thomas; Benisty, Myriam; Chandler, Claire; Linz, Hendrik; Waelkens, Christoffel

    2013-07-01

    For over a decade, the structure of the inner "hole" in the transition disk of TW Hydrae has been a subject of strong debate. Observations at different wavelengths have been modeled largely on an individual basis, and by consequence the inferred size scales are not necessarily agreeing. The disagreement at different wavelengths can simply be an indication for inconsistency, but might as well point to radial changes in dust properties, e.g.~caused by dust growth or the disk interaction with a sub-stellar companion. To probe the innermost region of the protoplanetary disk, observations at the highest possible spatial resolution are required. We present new near- and mid-infrared (VLTI/PIONIER and VLTI/MIDI) and millimeter (VLA) interferometric data of TW Hya. On the basis of the new and archival data, we investigate the shortcomings of existing models, both on the inner-disk and the outer-disk scales. Using a genetic fitting algorithm, a detailed radiative-transfer model is determined that reproduces the multi-wavelength data set. The modeling work shows that: 1) the inner disk structure agrees with surface-density profiles following from hydrodynamical simulations for disks with a companion; 2) the (sub-)mm data agrees with a centrally concentrated large grain population. Considering the latter observation, we indicate that the inferred surface densities agree with results from dust-growth simulations in protoplanetary disks. A current "best model" is proposed.

  19. Influence of wavelength on the outcome of the treatment of TMJ disorders: TMDS

    Science.gov (United States)

    Pinheiro, Antônio L. B.; Marques, Aparecida Maria C.; Carvalho, Carolina M.; Cangussú, Maria Cristina T.; Soares, Luiz Guilherme P.

    2013-03-01

    It is known that wavelength influences the outcome of many clinical protocols. Laser-phototherapy (LPT) and LEDs have been used on the treatment of pain of several origins including temporomandibular disorders - TMDs. TMDs are common painful multifactorial conditions affecting the temporomandibular joint whose treatment depends on the type and symptoms. Initially it requires pain control and for this, drugs, biting plates, oclusal adjustment, physiotherapy or their association are used. This work reports a series of patients of the Center of Biophotonics of the Federal University of Bahia over 10 years. Following standard anamneses, clinical and imaginologic examination and with the diagnosis of any type of TMD, the patients were set for light treatment. Treatment consisted of three sessions a week during six week. Prior irradiation, the patients were asked to score their pain using a VAS. λ780, λ 790, λ 830nm and/or λ660 and λ680nm lasers or LED were used on each session. Most patients were female (~43.6 years old). At the end of the 12 sessions the patients were again examined and score their pain using VAS. No other intervention was carried out during the treatment. The results were statistically analyzed and showed that most patients were asymptomatic or improved after treatment and that the association of wavelengths was very efficient on the symptomatic group. It is concluded that the association of both wavelengths was effective on pain reduction on TMJ disorders of several origins.

  20. Wavelength scanning interferometry using a Ti:Sapphire laser with wide tuning range

    Science.gov (United States)

    Davila, A.; Huntley, J. M.; Pallikarakis, C.; Ruiz, P. D.; Coupland, J. M.

    2012-08-01

    Wavelength scanning interferometry in the visible or near-infra red is normally restricted to relatively narrow wavelength tuning ranges, which results in poor depth resolution compared to related techniques such as scanning white light interferometry. We describe how a commercially-available Ti:Sapphire laser with>100 nm scan range has been customized to allow high speed scans of several tens of thousands of frames at rates of up to 30 frames s-1, with variable exposure time to compensate for wavelength variation of laser power output and camera sensitivity. Mode hops and other nonlinearities in the scans, which prevent successful depth reconstructions by the standard approach of temporal Fourier transformation, are handled by measuring phase changes in the interferograms from a set of four wedges, and resampling the intensity signals on a uniformly-spaced vector of wavenumbers. With these changes, the depth-resolution is improved by a factor of more than 100x, and is found to approach the theoretical limit for scan ranges of up to 37 nm.

  1. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  2. In-vacuum long-wavelength macromolecular crystallography.

    Science.gov (United States)

    Wagner, Armin; Duman, Ramona; Henderson, Keith; Mykhaylyk, Vitaliy

    2016-03-01

    Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline.

  3. Method of stabilizing a laser apparatus with wavelength converter

    DEFF Research Database (Denmark)

    2013-01-01

    A method of controlling beam quality and stability of a laser apparatus, the laser apparatus comprising, a diode laser (10) providing first radiation of at least a first wavelength, and a frequency conversion unit (12) configured to frequency-convert the first radiation from the diode laser......) into the first section (222), a second contact (221) for injecting a second current (I2) into the second section (223), and means for controlling a temperature of the diode laser; wherein the method comprises monitoring a first parameter indicative of the power content of a dominant lobe of the first radiation...... and to output the frequency-converted radiation (213), the frequency-converted radiation having at least a second wavelength different from the first wavelength, the diode laser (10) comprising at least a first and a second section (222,223), a first contact (220) for injecting a first current (I1...

  4. Enhanced Plasmonic Wavelength Selective Infrared Emission Combined with Microheater

    Directory of Open Access Journals (Sweden)

    Hiroki Ishihara

    2017-09-01

    Full Text Available The indirect wavelength selective thermal emitter that we have proposed is constructed using a new microheater, demonstrating the enhancement of the emission peak generated by the surface plasmon polariton. The thermal isolation is improved using a 2 μm-thick Si membrane having 3.6 and 5.4 mm outer diameter. The emission at around the wavelength of the absorption band of CO2 gas is enhanced. The absorption signal increases, confirming the suitability for gas sensing. Against input power, the intensity at the peak wavelength shows a steeper increasing ratio than the background intensity. The microheater with higher thermal isolation gives larger peak intensity and its increasing ratio against the input power.

  5. Particle image velocimetry based on wavelength division multiplexing

    Science.gov (United States)

    Tang, Chunxiao; Li, Enbang; Li, Hongqiang

    2018-01-01

    This paper introduces a technical approach of wavelength division multiplexing (WDM) based particle image velocimetry (PIV). It is designed to measure transient flows with different scales of velocity by capturing multiple particle images in one exposure. These images are separated by different wavelengths, and thus the pulse separation time is not influenced by the frame rate of the camera. A triple-pulsed PIV system has been created in order to prove the feasibility of WDM-PIV. This is demonstrated in a sieve plate extraction column model by simultaneously measuring the fast flow in the downcomer and the slow vortices inside the plates. A simple displacement/velocity field combination method has also been developed. The constraints imposed by WDM-PIV are limited wavelength choices of available light sources and cameras. The usage of WDM technique represents a feasible way to realize multiple-pulsed PIV.

  6. Multi-wavelength study of MGRO J2019+37

    Science.gov (United States)

    Hou, Chao; Chen, Song-Zhan; Yuan, Qiang; Cao, Zhen; He, Hui-Hai; Sheng, Xiang-Dong

    2014-08-01

    MGRO J2019+37, within the Cygnus region, is a bright extended source revealed by Milagro at 12-35 TeV. This source is almost as bright as the Crab Nebula in the northern sky, but is not confirmed by ARGO-YBJ around the TeV scale. Up to now, no obvious counterpart at low energy wavelengths has been found. Hence, MGRO J2019+37 is a rather mysterious object and its VHE γ-ray emission mechanism is worth investigating. In this paper, a brief summary of the multi-wavelength observations from radio to γ-rays is presented. All the available data from XMM-Newton and INTEGRAL at X-ray, and Fermi-LAT at γ-ray bands, are used to get constraints on its emission flux at low energy wavelengths. Then, its possible counterparts and the VHE emission mechanism are discussed.

  7. Wavelength-Dependent Damage to Adenoviral Proteins Across the Germicidal UV Spectrum.

    Science.gov (United States)

    Beck, Sara E; Hull, Natalie M; Poepping, Christopher; Linden, Karl G

    2018-01-02

    Adenovirus, a waterborne pathogen responsible for causing bronchitis, pneumonia, and gastrointestinal infections, is highly resistant to UV disinfection and therefore drives the virus disinfection regulations set by the U.S. Environmental Protection Agency. Polychromatic UV irradiation has been shown to be more effective at inactivating adenovirus and other viruses than traditional monochromatic irradiation emitted at 254 nm; the enhanced efficacy has been attributed to UV-induced damage to viral proteins. This research shows UV-induced damage to adenoviral proteins across the germicidal UV spectrum at wavelength intervals between 200 and 300 nm. A deuterium lamp with bandpass filters and UV light-emitting diodes (UV LEDs) isolated wavelengths in approximate 10 nm intervals. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and image densitometry were used to detect signatures for the hexon, penton, fiber, minor capsid, and core proteins. The greatest loss of protein signature, indicating damage to viral proteins, occurred below 240 nm. Hexon and penton proteins exposed to a dose of 28 mJ/cm 2 emitted at 214 nm were approximately 4 times as sensitive and fiber proteins approximately 3 times as sensitive as those exposed to a dose of 50 mJ/cm 2 emitted at 254 nm. At 220 nm, a dose of 38 mJ/cm 2 reduced the hexon and penton protein quantities to approximately 33% and 31% of the original amounts, respectively. In contrast, a much higher dose of 400 mJ/cm 2 emitted at 261 and 278 nm reduced the original protein quantity to between 66-89% and 80-93%, respectively. No significant damage was seen with a dose of 400 mJ/cm 2 at 254 nm. This research directly correlates enhanced inactivation at low wavelengths with adenoviral protein damage at those wavelengths, adding fundamental insight into the mechanisms of inactivation of polychromatic germicidal UV irradiation for improving UV water disinfection.

  8. Three wavelength optical alignment of the Nova laser

    International Nuclear Information System (INIS)

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Seppala, L.G.

    1983-01-01

    The Nova laser, presently under construction at Lawrence Livermore National Laboratory, will be capable of delivering more than 100 kJ of focused energy to an Inertial Confinement Fusion (ICF) target. Operation at the fundamental wavelength of the laser (1.05 μm) and at the second and third harmonic will be possible. This paper will discuss the optical alignment systems and techniques being implemented to align the laser output to the target at these wavelengths prior to each target irradiation. When experiments require conversion of the laser light to wavelengths of 0.53 μm and 0.35 μm prior to target irradiation, this will be accomplished in harmonic conversion crystals located at the beam entrances to the target chamber. The harmonic alignment system will be capable of introducing colinear alignment beams of all three wavelengths into the laser chains at the final spatial filter. The alignment beam at 1.05 μm will be about three cm in diameter and intense enough to align the conversion crystals. Beams at 0.53 μm and 0.35 μm will be expanded by the spatial filter to full aperture (74 cm) and used to illuminate the target and other alignment aids at the target chamber focus. This harmonic illumination system will include viewing capability as well. A final alignment sensor will be located at the target chamber. It will view images of the chamber focal plane at all three wavelengths. In this way, each beam can be aligned at the desired wavelength to produce the focal pattern required for each target irradiation. The design of the major components in the harmonic alignment system will be described, and a typical alignment sequence for alignment to a target will be presented

  9. Single transverse mode protein laser

    Science.gov (United States)

    Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat

    2017-12-01

    Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.

  10. OMEGA: a short-wavelength laser for fusion experiments

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.J.; Jacobs, S.D.; Lund, L.D.; McCrory, R.L.; Richardson, M.C.

    1983-01-01

    The OMEGA, Nd:glass laser facility was constructed for the purpose of investigating the feasibility of direct-drive laser fusion. With 24 beams producing a total energy of 4 kJ or a peak power of 12 TW, OMEGA is capable of nearly uniform illumination of spherical targets. Six of the OMEGA beams have recently been converted to short-wavelength operation (351 nm). In this paper, we discuss details of the system design and performance, with particular emphasis on the frequency-conversion system and multi-wavelength diagnostic system

  11. Intensities of decimetric-wavelength radio recombination lines

    International Nuclear Information System (INIS)

    Parrish, A.; Pankonin, V.

    1975-01-01

    We summarize the intensity results of some of the 221 and 248α recombination-line observations taken with the Arecibo telescope, and report additional results including 166α observations from the NRAO 300-foot (91 m) telescope. The brightness temperatures of these lines increase sharply with wavelength. We show that these results require that the upper levels of the recombining atoms be overpopulated with respect to LTE conditions. The most reasonable interpretation of the results is that the line emission at these decimetric wavelengths is stimulated by a background source of continuum radiation

  12. Tune-out wavelengths for helium atom in plasma environments

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Sabyasachi, E-mail: skar@hit.edu.cn, E-mail: karsabyasachi@yahoo.com; Wang, Yu-Shu; Wang, Yang [Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China); Jiang, Zishi [College of Physical Science and Technology, Heilongjiang University, Harbin 150080 (China)

    2016-08-15

    We investigate the effect of plasma screening on the tune-out wavelengths for helium atom using correlated exponential wave function within the framework of Debye shielding approach. The pseudostate summation technique has been used to calculate the dynamic dipole polarizability for the states (2 {sup 1}S, 3 {sup 1}S, 2 {sup 3}S, 3 {sup 3}S) of helium embedded in plasma environments. In a free-atomic system, our calculated results are in agreement with available theoretical and experimental predictions. The tune-out wavelengths show interesting behavior as functions of screening parameter.

  13. Cycle 24 COS FUV Internal/External Wavelength Scale Monitor

    Science.gov (United States)

    Fischer, William J.

    2018-02-01

    We report on the monitoring of the COS FUV wavelength scale zero-points during Cycle 24 in program 14855. Select cenwaves were monitored for all FUV gratings at Lifetime Position 3. The target and cenwaves have remained the same since Cycle 21, with a change only to the target acquisition sequence. All measured offsets are within the error goals, although the G140L cenwaves show offsets at the short-wavelength end of segment A that are approaching the tolerance. This behavior will be closely monitored in subsequent iterations of the program.

  14. Optimal laser wavelength for photoacoustic imaging of breast microcalcifications

    Science.gov (United States)

    Kang, Jeeun; Kim, Eun-Kyung; Young Kwak, Jin; Yoo, Yangmo; Song, Tai-Kyong; Ho Chang, Jin

    2011-10-01

    This paper presents photoacoustic imaging (PAI) for real-time detection of micro-scale calcifications (e.g., breast, which are an indicator of the cancer occurrence. Optimal wavelength of incident laser for the microcalcification imaging was ascertained through ex vivo experiments with seven breast specimens of volunteers. In the ex vivo experiments, the maximum amplitude of photoacoustic signals from the microcalcifications occurred when the laser wavelength ranged from 690 to 700 nm. This result demonstrated that PAI can serve as a real-time imaging and guidance tool for diagnosis and biopsy of the breast microcalcifications.

  15. Aperture Mask for Unambiguous Parity Determination in Long Wavelength Imagers

    Science.gov (United States)

    Bos, Brent

    2011-01-01

    A document discusses a new parity pupil mask design that allows users to unambiguously determine the image space coordinate system of all the James Webb Space Telescope (JWST) science instruments by using two out-of-focus images. This is an improvement over existing mask designs that could not completely eliminate the coordinate system parity ambiguity at a wavelength of 5.6 microns. To mitigate the problem of how the presence of diffraction artifacts can obscure the pupil mask detail, this innovation has been created with specifically designed edge features so that the image space coordinate system parity can be determined in the presence of diffraction, even at long wavelengths.

  16. Short wavelength temperature gradient driven modes in tokamak plasmas

    International Nuclear Information System (INIS)

    Smolyakov, A.I.; Yagi, M.; Kishimoto, Y.; Sydora, R.

    2003-01-01

    A new temperature gradient driven instability in the short wavelength region k perpendicular 2 ρ i 2 > 1 is investigated. The mode is driven by the ion temperature gradient; it exists with adiabatic electrons but may be further enhanced by the non-adiabatic electron effects. In the slab plasma approximation, both local dispersion equation and non-local (differential equation) analysis indicate instability in the short wavelength region. In the toroidal case the mode is somewhat similar to the 'ubiquitous mode' but does not require trapped electrons. (author)

  17. Negative refraction at telecommunication wavelengths through plasmon-photon hybridization.

    Science.gov (United States)

    Kalusniak, Sascha; Sadofev, Sergey; Henneberger, Fritz

    2015-11-16

    We demonstrate negative refraction at telecommunication wavelengths through plasmon-photon hybridization on a simple microcavity with metallic mirrors. Instead of using conventional metals, the plasmonic excitations are provided by a heavily doped semiconductor which enables us to tune them into resonance with the infrared photon modes of the cavity. In this way, the dispersion of the resultant hybrid cavity modes can be widely adjusted. In particular, negative dispersion and negative refraction at telecommunication wavelengths on an all-ZnO monolithical cavity are demonstrated.

  18. Improved wavelengths for Fe V and Ni V for analysis of spectra of white dwarf stellar stars

    Science.gov (United States)

    Ward, Jacob; Nave, Gillian

    2015-08-01

    A recent paper by J.C. Berengut et al. tests for a potential variation in the fine-structure constant, α, in the presence of a high gravitational field through spectral analysis of white-dwarf stars. The spectrum of G191-B2B has prominent Fe V and Ni V lines in the vacuum ultraviolet (VUV) region that were used to determine any variation in α via observed shifts in their wavelengths. Although no strong evidence for a variation was found, the authors did find a difference between values obtained for Fe V and Ni V that were indicative of a problem with the laboratory wavelengths. The laboratory wavelengths dominate the uncertainty of the measured variation, so improved values would tighten the constraints on the variation of α.We have re-measured the spectra of Fe V and Ni V spectra in the VUV in order to reduce the wavelength uncertainties and put the two spectra on a consistent wavelength scale. The spectra were produced by a sliding spark light source with electrodes made of invar, an iron nickel alloy. Spectra of Fe V and Ni V were obtained using peak currents of 750-2000 A. The spectra were recorded using the NIST Normal Incidence Vacuum Spectrograph with phosphor image plates and photographic plates as detectors. Wavelengths from 1100 Å to 1800 Å were covered in a single exposure. A spectrum of a Pt/Ne hollow cathode lamp was also recorded for wavelength calibration.The spectra recorded on photographic plates are better resolved than the phosphor image plate spectra and are being measured in two ways. The first measures the positions of the spectral lines on a comparator, traditionally used to measure many archival spectra at NIST. The second uses a commercial image scanner to obtain a digital image of the plate that can be analyzed using line fitting software. Preliminary analysis of these spectra indicates that the literature values of the Fe V and Ni V wavelengths are not on the same scale and differ from our new measurements by up to 0.02 Å in some

  19. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function.

    Science.gov (United States)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-05-02

    Synthesis of single-wavelength temporal phase-shifting algorithms (PSA) for interferometry is well-known and firmly based on the frequency transfer function (FTF) paradigm. Here we extend the single-wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when several simultaneous laser-colors are present. The FTF-based synthesis for dual-wavelength (DW) PSA is optimized for high signal-to-noise ratio and minimum number of temporal phase-shifted interferograms. The DW-PSA synthesis herein presented may be used for interferometric contouring of discontinuous industrial objects. Also DW-PSA may be useful for DW shop-testing of deep free-form aspheres. As shown here, using the FTF-based synthesis one may easily find explicit DW-PSA formulae optimized for high signal-to-noise and high detuning robustness. To this date, no general synthesis and analysis for temporal DW-PSAs has been given; only ad hoc DW-PSAs formulas have been reported. Consequently, no explicit formulae for their spectra, their signal-to-noise, their detuning and harmonic robustness has been given. Here for the first time a fully general procedure for designing DW-PSAs (or triple-wavelengths PSAs) with desire spectrum, signal-to-noise ratio and detuning robustness is given. We finally generalize DW-PSA to higher number of wavelength temporal PSAs.

  20. S-band multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier in the ring cavity

    Science.gov (United States)

    Anwar, Nur Elina; Ahmad Hambali, N. A. M.; Sohaimi, M. Syazwan; M. Shahimin, M.; A. Wahid, M. H.; Yusof, N. Roshidah; Malek, A. Zakiah

    2015-08-01

    This paper is focusing on simulation and analyzed of S-band multi-wavelength Brillouin-Raman fiber laser performance utilizing fiber Bragg grating and Raman amplifier in ring cavity by using Optisystem software. Raman amplifieraverage power model is employed for signal amplification. This laser system is operates in S-band wavelength region due to vast demanding on transmitting the information. Multi-wavelength fiber lasers based on hybrid Brillouin-Raman gain configuration supported by Rayleigh scattering effect have attracted significant research interest due to its ability to produced multi-wavelength signals from a single light source. In multi-wavelength Brillouin-Raman fiber, single mode fiber is utilized as the nonlinear gain medium. From output results, 90 % output coupling ratio has ability to provide the maximum average output power of 43 dBm at Brillouin pump power of 20 dBm and Raman pump power of 14 dBm. Furthermore, multi-wavelength Brillouin-Raman fiber laser utilizing fiber Bragg grating and Raman amplifier is capable of generated 7 Brillouin Stokes signals at 1480 nm, 1510 nm and 1530 nm.