WorldWideScience

Sample records for single volcanic system

  1. The Volcanism Ontology (VO): a model of the volcanic system

    Science.gov (United States)

    Myer, J.; Babaie, H. A.

    2017-12-01

    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  2. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  3. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  4. Toward an integrated Volcanic Ash Observing System in Europe

    Science.gov (United States)

    Lee, Deborah; Lisk, Ian

    2014-05-01

    Volcanic ash from the Icelandic eruption of Eyjafjallajökull in April and May of 2010 resulted in the decision by many northern European countries to impose significant restrictions on the use of their airspace. The eruption, extent and persistence of the ash revealed how reliant society now is on a safe and efficient air transport system and the fragility of that system when affected by the impact of complex natural hazards. As part of an EC framework programme, the 2011-2013 WEZARD (WEather HaZARD for aeronautics) consortium conducted a cross-industry volcanic ash capability and gap analyses, with the EUMETNET (network of 29 National Meteorological Services) led Work Package 3 focussing on a review of observational and monitoring capabilities, atmospheric dispersion modelling and data exchange. The review has revealed a patchwork of independent observing capabilities for volcanic ash, with some countries investing and others not at all, and most existing networks focus on space-based products. Existing capabilities do not provide the necessary detail on the geographical and vertical extent of volcanic ash and associated levels of contamination, which decision makers in the aviation industry require in order to decide where it is safe to fly. A resultant high priority was identified by WEZARD Work Package 3 for an enhanced observational network of complementary monitoring systems needed to initialise, validate and verify volcanic ash dispersion model output and forecasts. Thus a key recommendation is to invest in a major pre-operational demonstrator "European volcanic ash observing network", focussing on distal monitoring, and aiming to a) fill R&D gaps identified in instrumentation and algorithms and b) integrate data, where possible in near-real-time, from a range of ground-based, airborne and space-based techniques. Here we present a key WEZARD recommendation toward an integrated volcanic ash observing system in Europe, in context with other related projects

  5. Exsolution lamellae in volcanic pyroxene; Single phenocryst thermometry for long-lived magmatic reservoir

    Science.gov (United States)

    I Made, R.; Herrin, J. S.; Tay, Y. Y.; Costa Rodriguez, F.

    2017-12-01

    Comprehensive understanding of the relevant timescales of thermal and chemical evolution of magma below the active volcanoes can help us to better anticipate volcanic eruptions and their likely precursor signals. In recent years, several lines of thermochronological inquiry have converged on a realization that, within many volcanic systems, magmas experience prolonged periods of relatively low-temperature storage prior to eruption during short duration transient events. This prolonged storage at low magmatic temperatures can result in series of solid state phase transformations within minerals, producing a petrologic record of their thermal history. In this example, we observed pigeonite exsolution lamellae in augite phenocrysts from the 2011 eruption of Cordon Caulle volcano, Chile. The small size of these features ( 70nm width and bear exsolution textures and apply this knowledge to understanding the thermal conditions of magma storage in long-lived volcanic reservoirs.

  6. Exploring the Potential Impacts of Historic Volcanic Eruptions on the Contemporary Global Food System

    Science.gov (United States)

    Puma, Michael J.; Chon, S.; Wada, Y.

    2015-01-01

    A better understanding of volcanic impacts on crops is urgently needed, as volcanic eruptions and the associated climate anomalies can cause unanticipated shocks to food production. Such shocks are a major concern given the fragility of the global food system.

  7. Feedback between deglaciation and volcanism in arc settings: the example of the Mount Mazama volcanic system, Crater Lake, Oregon

    Science.gov (United States)

    Branecky, C.; Farner, M. J.; Keller, T.; Lanza, F.; Siravo, G.; Gonnermann, H. M.; Huybers, P. J.; Manga, M.; van der Wal, W.

    2015-12-01

    Previous studies have found correlations between glacial cycles and volcanism. Any such feedback mechanisms could have important implications for climate through variations in volcanic outgassing. Although decompression melting has been established as a cause for increased volcanism during deglaciation at mid-ocean ridge systems (Jull and McKenzie, 1996), it has not been determined how changes in glacial loading affect other settings such as volcanic arcs. We examine the Mount Mazama volcanic system, Oregon, where pulses of volcanism have been suggested to follow major deglaciations (Bacon et al. 2006). A statistical test regarding the timing of eruptions is first developed, and its application to eruption dates demonstrates statistically significant clustering of eruptions following deglaciation. To explore potential causes for the identified changes in probability of eruptions, the effects of glacial unloading on melt production are computed using a 1D mantle melting model, and the effect of ice unloading on shallow crustal stress conditions is tested with a viscoelastic stress model. Combining these effects into a simple eruption model, we propose that variations in melt supply rates from the mantle and changing stress conditions around a shallow crustal magma reservoir modulate eruption probability during glacial cycles. This model illustrates the physical plausibility of glacial variability causing the identified changes in eruption rates at Mt Mazama.

  8. Identification of the volcanic quartz origins from dune sand using a single-grain RTL measurement

    Science.gov (United States)

    Yawata, Takashi; Hashimoto, Tetsuo

    2004-05-01

    In an earlier study, we found that quartz grains extracted from Niigata dune sand all contained red thermoluminescence (RTL) phenomena. This RTL could subsequently be attributed to the volcanic origin of the material. The Agano River is assumed to be the main source of the Niigata dune material. Using the single aliquot regenerative method, which involves the measurement of several hundreds of grains, the measured equivalent doses from the RTL-quartz grains were larger than expected. Consequently, a single-grain method combined with RTL-measurement was developed to determine the equivalent doses from each quartz grain. Placing a biotite plate with a central hole for the sample grain on the sample disk made a significant contribution to keeping background levels as low as possible. The histogram of the equivalent doses evaluated from 72 quartz grains revealed that the Niigata dune originates from at least four different volcanic sources around Agano River. One of them is the Numazawa volcano, because the minimum equivalent dose values from the single grain method are equal to those of quartz grains from the Numazawa pumice.

  9. Magma chamber processes in central volcanic systems of Iceland

    DEFF Research Database (Denmark)

    Þórarinsson, Sigurjón Böðvar; Tegner, Christian

    2009-01-01

    New field work and petrological investigations of the largest gabbro outcrop in Iceland, the Hvalnesfjall gabbro of the 6-7 Ma Austurhorn intrusive complex, have established a stratigraphic sequence exceeding 800 m composed of at least 8 macrorhythmic units. The bases of the macrorhythmic units......3 of clinopyroxene and magnetite indicative of magma replenishment. Some macrorhythmic units show mineral trends indicative of up-section fractional crystallisation over up to 100 m, whereas others show little variation. Two populations of plagioclase crystals (large, An-rich and small, less An...... olivine basalts from Iceland that had undergone about 20% crystallisation of olivine, plagioclase and clinopyroxene and that the macrorhythmic units formed from thin magma layers not exceeding 200-300 m. Such a "mushy" magma chamber is akin to volcanic plumbing systems in settings of high magma supply...

  10. Single Purpose Satellite Systems

    OpenAIRE

    Watkins, Warren

    1989-01-01

    This paper examines the need for tactically responsive space systems capable of supporting battlefield and fleet commanders. Terminology used to describe this category of satellite system varies according to organization or agency. The Defense Advanced Research Projects Agency's Lightsat, the Naval Space Command's SPINSAT, and the Air Force Space Command s TACSAT, are reviewed. The United State Space Command's space support mission IS addressed and the role single-purpose satellites can play ...

  11. Volcanic features of Io

    Science.gov (United States)

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    Volcanic activity is apparently higher on Io than on any other body in the Solar System. Its volcanic landforms can be compared with features on Earth to indicate the type of volcanism present on Io. ?? 1979 Nature Publishing Group.

  12. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring.

    Science.gov (United States)

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-08-19

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.

  13. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring

    Science.gov (United States)

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-01-01

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro. PMID:26295394

  14. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring

    Directory of Open Access Journals (Sweden)

    David Moure

    2015-08-01

    Full Text Available This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC Broadcom BCM2835 Linux operating system (based on DebianTM that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.

  15. Geomechanical characterization of volcanic rocks using empirical systems and data mining techniques

    Directory of Open Access Journals (Sweden)

    T. Miranda

    2018-02-01

    Full Text Available This paper tries to characterize volcanic rocks through the development and application of an empirical geomechanical system. Geotechnical information was collected from the samples from several Atlantic Ocean islands including Madeira, Azores and Canarias archipelagos. An empirical rock classification system termed as the volcanic rock system (VRS is developed and presented in detail. Results using the VRS are compared with those obtained using the traditional rock mass rating (RMR system. Data mining (DM techniques are applied to a database of volcanic rock geomechanical information from the islands. Different algorithms were developed and consequently approaches were followed for predicting rock mass classes using the VRS and RMR classification systems. Finally, some conclusions are drawn with emphasis on the fact that a better performance was achieved using attributes from VRS.

  16. Time-dependent permeability evolution in compacting volcanic fracture systems and implications for gas overpressure

    Science.gov (United States)

    Farquharson, Jamie I.; Wadsworth, Fabian B.; Heap, Michael J.; Baud, Patrick

    2017-06-01

    Volcanic eruptions are driven by the ascent of volatile-laden magma. The capacity of a volcano system to outgas these volatiles-its permeability-controls the explosive potential, and fractures at volcanic conduit margins play a crucial role in tempering eruption explosivity by acting as outgassing pathways. However, these fractures are often filled with hot volcanic debris that welds and compacts over time, meaning that these permeable pathways have a finite lifetime. While numerous studies emphasize that permeability evolution is important for regulating pressure in shallow volcanic systems, how and when this occurs remains an outstanding question in volcanology. In this contribution, we show that different pressure evolution regimes can be expected across a range of silicic systems as a function of the width and distribution of fractures in the system, the timescales over which they can outgas (a function of depth and temperature), and the permeability of the host material. We define outgassing, diffusive relaxation, and pressure increase regimes, which are distinguished by comparing the characteristic timescales over which they operate. Moreover, we define a critical permeability threshold, which determines (in concert with characteristic timescales of diffusive mass exchange between the pore and melt phases) whether systems fracture and outgas efficiently, or if a volcano will be prone to pressure increases, incomplete healing, and explosive failure.

  17. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley

    2018-04-01

    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  18. Requirements and Implementation Feasibility for a CubeSat Thermal Infrared Imaging System to Monitor the Structure of Volcanic Ash Clouds

    Science.gov (United States)

    Thorsen, D.; Carroll, R.; Webley, P.; Hawkins, J.

    2014-12-01

    The 2010 eruption of the Eyjafjallajökull volcano in Iceland caused the cancellation of approximately 108,000 flights over an 8-day period, disrupted air traffic worldwide, and cost the airline industry more than $400 million per day. The inconvenience and economic impact of this and similar events, such as Puyehue-Cordon-Caulle in 2011, have heightened the interest in developing improved satellite remote sensing techniques for monitoring volcanic plumes and drifting clouds. For aviation safety, the operational/research community has started to move towards classifying the concentrations within volcanic plumes and clouds. Additionally, volcanic ash transport and dispersion (VATD) models are often used for forecasting ash cloud locations and they require knowledge of the structure of the erupting column to improve their ash simulations and also downwind 3-D maps of the ash cloud to calibrate/validate their modeling output. Existing remote sensing satellites utilize a brightness temperature method with thermal infrared (TIR) measurements from 10 - 12 μm to determine mass loading of volcanic ash along a single line of sight, but they have infrequent revisit times and they cannot resolve the three-dimensional structure of the ash clouds. A cluster of CubeSats dedicated to the monitoring of volcanic ash and plumes could provide both more frequent updates and the multi-aspect images needed to resolve the density structure of volcanic ash clouds and plumes. In this presentation, we discuss the feasibility and requirements for a CubeSat TIR imaging system and the associated on-board image processing that would be required to monitor the structure of volcanic ash clouds from Low Earth Orbit.

  19. Metallogenic hydrothermal solution system of post volcanic magma in Xiangshan ore field

    International Nuclear Information System (INIS)

    Xu Hengli; Shao Fei; Zou Maoqin

    2009-01-01

    This paper has systematically described uranium metallogenic characteristics of Xiangshan ore field.Sources of metallogenic materials are discussed in different temporal and spatial scale. Combining with background analysis of metallogenic tectonic-magmatic-geodynamics, formation and evolution of metallogenic hydrothermal solution system in Xiangshan volcanic basin are studied. Metallogenic hydrothermal solution system in Xiangshan ore field is considered as the objective product of systematic evolution of hydrothermal solution in post volcanic magma constrained by regional tectonic environment. In time scale, metallogenic hydrothermal solution system developed for about 50 Ma, but its active spaces varied in different time domains. So temporal and spatial distribution of uranium mineralization is constrained. Further exploration for the ore field is also suggested in this paper. (authors)

  20. GIS database and discussion for the distribution, composition, and age of Cenozoic volcanic rocks of the Pacific Northwest Volcanic Aquifer System study area

    Science.gov (United States)

    Sherrod, David R.; Keith, Mackenzie K.

    2018-03-30

    A substantial part of the U.S. Pacific Northwest is underlain by Cenozoic volcanic and continental sedimentary rocks and, where widespread, these strata form important aquifers. The legacy geologic mapping presented with this report contains new thematic categorization added to state digital compilations published by the U.S. Geological Survey for Oregon, California, Idaho, Nevada, Utah, and Washington (Ludington and others, 2005). Our additional coding is designed to allow rapid characterization, mainly for hydrogeologic purposes, of similar rocks and deposits within a boundary expanded slightly beyond that of the Pacific Northwest Volcanic Aquifer System study area. To be useful for hydrogeologic analysis and to be more statistically manageable, statewide compilations from Ludington and others (2005) were mosaicked into a regional map and then reinterpreted into four main categories on the basis of (1) age, (2) composition, (3) hydrogeologic grouping, and (4) lithologic pattern. The coding scheme emphasizes Cenozoic volcanic or volcanic-related rocks and deposits, and of primary interest are the codings for composition and age.

  1. Amphibole Thermometry and a Comparison of Results from Plutonic and Volcanic Systems

    Science.gov (United States)

    Sherman, T. M.; Putirka, K. D.; De Los Reyes, A. M. A.; Ratschbacher, B. C.

    2015-12-01

    Recent work (Ridolfi and Renzulli 2014) shows that amphiboles can be used to infer magmatic temperatures, even without knowledge of co-existing liquids. Here, we apply this approach, using new calibrations, to investigate felsic-mafic magma interactions, in a volcanic (Lassen Volcanic Center, a Cascade volcano) and plutonic (the Jurassic Guadalupe Igneous Complex) system. Preliminary data suggest that volcanic processes, as might be expected, preserve higher temperatures than plutonic materials (on average, volcanic amphiboles recorded 907±57.3°C while plutonic amphiboles recorded 764±59.7°C). We also find that the average T of a given mineral grain decreases with increased mineral size such that those crystallized below 800°C sometimes reach sizes beyond ~1mm, while those near 900°C appear truncated to ~0.3mm. It is not clear if T is the only control on amphibole crystal growth; however, our results would imply that larger grains not only require more time to grow but require continued undercooling. Significant cooling or heating is also recorded in many volcanically- and plutonically-grown grains, which may reflect transitioning between magmas of different T and composition. Core-to-rim cooling trends (with a common T of drop of 80oC) likely represent mafic-to-felsic magma transitions, whereas core-to-rim heating of similar magnitudes indicate a felsic-mafic transition. Some grains, though, exhibit a constant T (in the range 700-900°C) from core to rim, which perhaps indicates some shielding from magma mixing processes. Amphiboles might thus provide a reliable record of the intensity of magma mingling and mixing experienced by any particular enclave. Interestingly, volcanically-derived amphiboles appear to mostly record cooling towards the rims, while their plutonic counterparts tend to experience heating. It would thus appear that at Lassen, amphiboles are unaffected by later mafic magma recharge, but at the GIC, the plutonic amphiboles are more likely to

  2. Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis.

    Science.gov (United States)

    Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin

    2015-02-01

    Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.

  3. Is Kasei Valles (Mars) the largest volcanic channel in the solar system?

    Science.gov (United States)

    Leverington, David W.

    2018-02-01

    With a length of more than 2000 km and widths of up to several hundred kilometers, Kasei Valles is the largest outflow system on Mars. Superficially, the scabland-like character of Kasei Valles is evocative of terrestrial systems carved by catastrophic aqueous floods, and the system is widely interpreted as a product of outbursts from aquifers. However, as at other Martian outflow channels, clear examples of fluvial sedimentary deposits have proven difficult to identify here. Though Kasei Valles lacks several key properties expected of aqueous systems, its basic morphological and contextual properties are aligned with those of ancient volcanic channels on Venus, the Moon, Mercury, and Earth. There is abundant evidence that voluminous effusions of low-viscosity magmas occurred at the head of Kasei Valles, the channel system acted as a conduit for associated flows, and mare-style volcanic plains developed within its terminal basin. Combined mechanical and thermal incision rates of at least several meters per day are estimated to have been readily achieved at Kasei Valles by 20-m-deep magmas flowing with viscosities of 1 Pa s across low topographic slopes underlain by bedrock. If Kasei Valles formed through incision by magma, it would be the largest known volcanic channel in the solar system. The total volume of magma erupted at Kasei Valles is estimated here to have possibly reached or exceeded ∼5 × 106 km3, a volume comparable in magnitude to those that characterize individual Large Igneous Provinces on Earth. Development of other large outflow systems on Mars is expected to have similarly involved eruption of up to millions of cubic kilometers of magma.

  4. A networks-based discrete dynamic systems approach to volcanic seismicity

    Science.gov (United States)

    Suteanu, Mirela

    2013-04-01

    The detection and relevant description of pattern change concerning earthquake events is an important, but challenging task. In this paper, earthquake events related to volcanic activity are considered manifestations of a dynamic system evolving over time. The system dynamics is seen as a succession of events with point-like appearance both in time and in space. Each event is characterized by a position in three-dimensional space, a moment of occurrence, and an event size (magnitude). A weighted directed network is constructed to capture the effects of earthquakes on subsequent events. Each seismic event represents a node. Relations among events represent edges. Edge directions are given by the temporal succession of the events. Edges are also characterized by weights reflecting the strengths of the relation between the nodes. Weights are calculated as a function of (i) the time interval separating the two events, (ii) the spatial distance between the events, (iii) the magnitude of the earliest event among the two. Different ways of addressing weight components are explored, and their implications for the properties of the produced networks are analyzed. The resulting networks are then characterized in terms of degree- and weight distributions. Subsequently, the distribution of system transitions is determined for all the edges connecting related events in the network. Two- and three-dimensional diagrams are constructed to reflect transition distributions for each set of events. Networks are thus generated for successive temporal windows of different size, and the evolution of (a) network properties and (b) system transition distributions are followed over time and compared to the timeline of documented geologic processes. Applications concerning volcanic seismicity on the Big Island of Hawaii show that this approach is capable of revealing novel aspects of change occurring in the volcanic system on different scales in time and in space.

  5. Polymagmatic Activity at a Monogenetic Volcanic Centre: Defining the Evolution of a Plumbing System

    Science.gov (United States)

    Brenna, M.; Cronin, S. J.; Smith, I. E.; Sohn, Y.; Nemeth, K.

    2009-12-01

    Detailed stratigraphic samples of the Udo Tuff Cone and lava shield offshore of Jeju Island, South Korea provide insight into the evolutionary processes that affected the composition of the basaltic magma batches that fed the eruption. These are compared and contrasted with the model proposed by Smith et al. (2008, Contributions to Mineralogy and Petrology 155, 511-527) for the magmatic evolution of the Crater Hill monogenetic centre in the Auckland Volcanic Field. The eruption started in both cases with the most evolved alkalic magma, having lowest concentrations of MgO and highest of incompatible trace elements. The erupted magma became more primitive as the eruptions proceeded. However, at Crater Hill the eruption terminated with extrusion of the most primitive magma, whereas at Udo the last magma to erupt had shifted back to an intermediate composition. At Crater Hill, the chemical compositions show a single uninterrupted spectrum, but at Udo the eruption sequence can be subdivided into lower and upper tuff stages separated by a small MgO gap from c. 8.0 to c. 9.0 wt%. Furthermore, at Udo, a second tholeiitic magma batch forming the lava shield erupted shortly after the alkalic tuff cone, with no evidence of weathering or reworked material at their contact. Fractionation processes for the Udo tuff can be modelled similarly to those of Crater Hill. A primary magma generated in garnet peridotite at c. 2.5 to 3 GPa underwent mainly clinopyroxene ± spinel fractionation at c. 1.5 GPa. Slightly enriched LREEs in the Udo magma (compared to the Crater Hill) suggest that crystal fractionation possibly occurred in the presence of residual amphibole in the upper mantle. The tholeiitic magma at Udo was generated in a chemically different source with residual garnet at c. 1.5 to 2.5 GPa and evolved through olivine fractionation at a shallower level compared to the alkalic magma and without residual amphibole. The Crater Hill model can be adapted to Udo by assuming the two

  6. Volcanic stratigraphy: A review

    Science.gov (United States)

    Martí, Joan; Groppelli, Gianluca; Brum da Silveira, Antonio

    2018-05-01

    Volcanic stratigraphy is a fundamental component of geological mapping in volcanic areas as it yields the basic criteria and essential data for identifying the spatial and temporal relationships between volcanic products and intra/inter-eruptive processes (earth-surface, tectonic and climatic), which in turn provides greater understanding of the geological evolution of a region. Establishing precise stratigraphic relationships in volcanic successions is not only essential for understanding the past behaviour of volcanoes and for predicting how they might behave in the future, but is also critical for establishing guidelines for exploring economic and energy resources associated with volcanic systems or for reconstructing the evolution of sedimentary basins in which volcanism has played a significant role. Like classical stratigraphy, volcanic stratigraphy should also be defined using a systematic methodology that can provide an organised and comprehensive description of the temporal and spatial evolution of volcanic terrain. This review explores different methods employed in studies of volcanic stratigraphy, examines four case studies that use differing stratigraphic approaches, and recommends methods for using systematic volcanic stratigraphy based on the application of the concepts of traditional stratigraphy but adapted to the needs of volcanological environment.

  7. The permeability of fractured rocks in pressurised volcanic and geothermal systems.

    Science.gov (United States)

    Lamur, A; Kendrick, J E; Eggertsson, G H; Wall, R J; Ashworth, J D; Lavallée, Y

    2017-07-21

    The connectivity of rocks' porous structure and the presence of fractures influence the transfer of fluids in the Earth's crust. Here, we employed laboratory experiments to measure the influence of macro-fractures and effective pressure on the permeability of volcanic rocks with a wide range of initial porosities (1-41 vol. %) comprised of both vesicles and micro-cracks. We used a hand-held permeameter and hydrostatic cell to measure the permeability of intact rock cores at effective pressures up to 30 MPa; we then induced a macro-fracture to each sample using Brazilian tensile tests and measured the permeability of these macro-fractured rocks again. We show that intact rock permeability increases non-linearly with increasing porosity and decreases with increasing effective pressure due to compactional closure of micro-fractures. Imparting a macro-fracture both increases the permeability of rocks and their sensitivity to effective pressure. The magnitude of permeability increase induced by the macro-fracture is more significant for dense rocks. We finally provide a general equation to estimate the permeability of intact and fractured rocks, forming a basis to constrain fluid flow in volcanic and geothermal systems.

  8. Lower Pliensbachian caldera volcanism in high-obliquity rift systems in the western North Patagonian Massif, Argentina

    Science.gov (United States)

    Benedini, Leonardo; Gregori, Daniel; Strazzere, Leonardo; Falco, Juan I.; Dristas, Jorge A.

    2014-12-01

    In the Cerro Carro Quebrado and Cerro Catri Cura area, located at the border between the Neuquén Basin and the North Patagonian Massif, the Garamilla Formation is composed of four volcanic stages: 1) andesitic lava-flows related to the beginning of the volcanic system; 2) basal massive lithic breccias that represent the caldera collapse; 3) voluminous, coarse-crystal rich massive lava-like ignimbrites related to multiple, steady eruptions that represent the principal infill of the system; and, finally 4) domes, dykes, lava flows, and lava domes of rhyolitic composition indicative of a post-collapse stage. The analysis of the regional and local structures, as well as, the architectures of the volcanic facies, indicates the existence of a highly oblique rift, with its principal extensional strain in an NNE-SSW direction (˜N10°). The analyzed rocks are mainly high-potassium dacites and rhyolites with trace and RE elements contents of an intraplate signature. The age of these rocks (189 ± 0.76 Ma) agree well with other volcanic sequences of the western North Patagonian Massif, as well as, the Neuquén Basin, indicating that Pliensbachian magmatism was widespread in both regions. The age is also coincident with phase 1 of volcanism of the eastern North Patagonia Massif (188-178 Ma) represented by ignimbrites, domes, and pyroclastic rocks of the Marifil Complex, related to intraplate magmatism.

  9. Seismological studies of the plumbing system beneath the Klyuchevskoy volcanic group in Kamchataka, Russia

    Science.gov (United States)

    Koulakov, I.; Shapiro, N.; Abkadyirov, I.; Gordeev, E.; Jakovlev, A.; Kugaenko, Y.; Droznin, D.; Droznina, S.; Senyukov, S.; Novgorodova, A.; Kulakov, R.; Deev, E.

    2016-12-01

    The Klyuchevskoy volcanic group (KVG) is one of largest and most active clusters of subduction-related volcanoes in the World. Within an area of 70 km size, there are 13 closely located stratovolcanoes, of which Klyuchevskoy, Bezymianny, and Tolbachik produced numerous strong eruptions during recent decades. The Klyuchevskoy and Tolbachik recent eruptions produced lavas of basaltic to basaltic-andesitic composition while Bezimyanny is an explosive andesitic volcano. We present a seismological study of the KVG plumbing system. The first part of our study is the tomographic imaging based on data of permanent and temporary seismic stations operated in vicinity of the KVG. Beneath the Klyuchevskoy volcano at depths between 28 and 35 km, we observe an anomaly with very high Vp/Vs ratio collocated with a large cluster of long-period volcanic earthquakes. We propose that this feature represents the top of the mantle magmatic reservoir feeding the KVG. A narrow seismicity cluster beneath the Klyuchevskoy volcano marks a straight vertical conduit bringing basic magma from the deep reservoir at 30 km to the surface. For the Bezymianny volcano, we observe a middle-crust reservoir at 15 km depth, where the light andesitic magma is fractioned and separated. For the Tolbachik volcano, linearly clustered seismicity and seismic anomalies indicate two distinct pathways of magma ascending. In summary, the new seismic model has revealed three different types of plumbing systems explaining the variability of eruption styles in Klyuchevskoy, Bezymyanny and Tolbachik volcanoes. In the second part we study the occurrence of long-period (LP) seismic events occurring within KVG during two years preceding the large eruption of Tolbachik started at the end of 2012. We find two distinct groups of LP sources: events that occurred just below the edifices of the active volcanoes, and events at depths of 30 km in the vicinity of a deep magmatic reservoir. The time histories of these deep and

  10. Drilling of Submarine Shallow-water Hydrothermal Systems in Volcanic Arcs of the Tyrrhenian Sea, Italy

    Science.gov (United States)

    Petersen, S.; Augustin, N.; de Benedetti, A.; Esposito, A.; Gaertner, A.; Gemmell, B.; Gibson, H.; He, G.; Huegler, M.; Kleeberg, R.; Kuever, J.; Kummer, N. A.; Lackschewitz, K.; Lappe, F.; Monecke, T.; Perrin, K.; Peters, M.; Sharpe, R.; Simpson, K.; Smith, D.; Wan, B.

    2007-12-01

    Seafloor hydrothermal systems related to volcanic arcs are known from several localities in the Tyrrhenian Sea in water depths ranging from 650 m (Palinuro Seamount) to less than 50 m (Panarea). At Palinuro Seamount 13 holes (holes ended in mineralization. Metal enrichment at the top of the deposit is evident in some cores with polymetallic (Zn, Pb, Ag) sulfides overlying more massive and dense pyritic ore. The massive sulfide mineralization at Palinuro Seamount contains a number of unusual minerals, including enargite, tennantite, luzonite, and Ag-sulfosalts, that are not commonly encountered in mid-ocean ridge massive sulfides. In analogy to epithermal deposits forming on land, the occurrence of these minerals suggests a high sulfidation state of the hydrothermal fluids during deposition implying that the mineralizing fluids were acidic and oxidizing rather than near-neutral and reducing as those forming typical base metal rich massive sulfides along mid-ocean ridges. Oxidizing conditions during sulfide deposition can probably be related to the presence of magmatic volatiles in the mineralizing fluids that may be derived from a degassing magma chamber. Elevated temperatures within sediment cores and TV-grab stations (up to 60°C) indicate present day hydrothermal fluid flow. This is also indicated by the presence of small tube-worm bushes present on top the sediment. A number of drill holes were placed around the known phreatic gas-rich vents of Panarea and recovered intense clay-alteration in some holes as well as abundant massive anhydrite/gypsum with only trace sulfides along a structural depression suggesting the presence of an anhydrite seal to a larger hydrothermal system at depth. The aim of this study is to understand the role that magmatic volatiles and phase separation play in the formation of these precious and trace element-rich shallow water (<750m) hydrothermal systems in the volcanic arcs of the Tyrrhenian Sea.

  11. Intercomparison of SO2 camera systems for imaging volcanic gas plumes

    Science.gov (United States)

    Kern, Christoph; Lübcke, Peter; Bobrowski, Nicole; Campion, Robin; Mori, Toshiya; Smekens, Jean-François; Stebel, Kerstin; Tamburello, Giancarlo; Burton, Mike; Platt, Ulrich; Prata, Fred

    2015-07-01

    SO2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO2 cameras. In the first part of the experiment, the various technical designs are compared and the advantages and drawbacks of individual design options are considered. Though the ideal design was found to be dependent on the specific application, a number of general recommendations are made. Next, a time series of images recorded by all instruments at Stromboli Volcano (Italy) is compared. All instruments were easily able to capture SO2 clouds emitted from the summit vents. Quantitative comparison of the SO2 load in an individual cloud yielded an intra-instrument precision of about 12%. From the imagery, emission rates were then derived according to each group's standard retrieval process. A daily average SO2 emission rate of 61 ± 10 t/d was calculated. Due to differences in spatial integration methods and plume velocity determination, the time-dependent progression of SO2 emissions varied significantly among the individual systems. However, integration over distinct degassing events yielded comparable SO2 masses. Based on the intercomparison data, we find an approximate 1-sigma precision of 20% for the emission rates derived from the various SO2 cameras. Though it may still be improved in the future, this is currently within the typical accuracy of the measurement and is considered sufficient for most applications.

  12. Hydrothermal fluids vented at shallow depths at the Aeolian islands: relationships with volcanic and geothermal systems.

    Science.gov (United States)

    Italiano, Francesco; Caracausi, Antonio; Longo, Manfredi; Maugeri, Roberto; Paonita, Antonio

    2010-05-01

    lower values detected in venting gases from active volcanoes (e.g. Vulcano and Panarea). The explanation of such a difference is not related to the volcanic activity at all, but to the parent mantle that in the western side looks to be less contaminated compared to the eastern side. Crustal contamination has been invoked by several authors as the main factor that caused the dramatic 3He/4He decrease. Although the parent mantle produced magmas with different isotopic signature, the gas phase looks similar. To explain the results of the chemical analyses it is proposed that similar deep boundary conditions (pressure, temperature, oxidation level) act as buffers for the chemical composition of the venting gases. With the aim of investigating their origin, estimations of the deep equilibration conditions have been carried out. The reactive compounds detected in the sampled gases, largely used for geothermometric and geobarometric considerations of hydrothermal fluids were used in a system based on the CH4-CO-CO2 contents assuming the presence of a boiling aqueous solution. The equilibrium constants of the adopted reactions are a function of temperature and oxygen fugacity, being the latter buffered by the mineral assemblage of the host rocks. Due to the similarity in the chemical composition of the gases vented at all the islands, a theoretical model developed to interpret the chemical composition of the gases released at Panarea during the last volcanic crisis is here applied. The results have shown that geothermal boiling systems are detectable at all the islands with temperatures up to 350°C. The adopted geo-thermobarometric system is more sensitive to the contents of CO and CH4 than that of CO2, implying that although GWI induce modifications in the chemical composition, the estimated equilibrium temperatures do not change very much for variations of the CO2 content in the range of several volume percent, thus, whether or not the gaseous mixture underwent GWI. Moreover

  13. Risks associated with volcanic ash fallout from Mt.Etna with reference to industrial filtration systems

    International Nuclear Information System (INIS)

    Milazzo, Maria Francesca; Ancione, Giuseppa; Salzano, Ernesto; Maschio, Giuseppe

    2013-01-01

    The recent eruption of the Icelandic volcano has focused the worldwide attention on volcanic ash effects for the population, road, rail and air traffic and production activities. This paper aims to study of technological (industrial) accidental scenarios triggered by ash fallout and, more specifically, to define and quantify the potential damage on filtration systems. Malfunctions due to the filter clogging and service interruptions caused by the rupture of the filtering surface have been analysed in order to define the vulnerability of the equipment to such damages. Results are given in terms of threshold values of deposit on the filtering surface and exceedance probability curves of ash concentrations and the duration of the ash emission. This data can be easily implemented in the standard risk assessment with the aim to include the estimation of Natural-Technological (Na-Tech) hazards

  14. Tectonic Constraints on the Evolution of Geothermal Systems in the Central Andean Volcanic Zone (CAVZ)

    Science.gov (United States)

    Veloso, E. E.; Tardani, D.; Aron, F.; Elizalde, J. D.; Sanchez-Alfaro, P.; Godoy, B.

    2017-12-01

    South of 19°S, geothermal fields and Pliocene-to-Holocene volcanic centers of the Central Andean Volcanic Zone are spatially associated with distinct, large-scale fault systems disrupting the volcanic arc, which control the architecture and dynamics of the fluids reservoirs at shallow crustal levels. Based on an extensive compilation of structural, lithological and isotopic data, and satellite imagery band-ratio analyses, we produced detailed maps of 13 areas comprising 19 identified and/or potential geothermal fields, to examine if particular local-scale tectonic configurations are associated to fluids migrating from different crustal levels. We defined three main tectonic environments according to the specific, kilometer-scale structural arrangement and its spatial relation to the geothermal surface manifestations. T1, dominated by left-lateral, pure strike-slip motion on a NW-trending duplex-like geometry with geothermal fields located along the faults - in turn distributed into five major subparallel zones cutting across the orogenic belt between ca. 20° and 27°S. T2, dominated by shortening on a series of N-trending thrust faults and fault-propagated folds, cut and displaced by the above mentioned NW-trending faults, with geothermal fields hosted at fault intersections and at fold hinges. And T3, characterized by transtension accommodated by NW-to-WNW-trending left-lateral/normal faults, with hot-springs lying along the fault traces. Interestingly, each of the independently defined tectonic environments has distinctive helium (in fluids) and strontium (in lavas) isotopic signatures and estimated geothermal reservoir temperatures. T1 shows a large 4He contribution, low 87Sr/86Sr ratio and temperatures varying between ca. 220°-310°C; T3 low 4He and high 87Sr/86Sr ratio and temperature (260°-320°C); T2 isotopic values fall between T1 and T3, yet showing the lowest (130°-250°C) temperatures. We suggest that these particular isotopic signatures are due to

  15. The Role of Boron Chloride and noble gas isotope ratios in Taupo Volcanic Zone geothermal systems

    International Nuclear Information System (INIS)

    Hulston, J.R.

    1995-01-01

    The model of the geothermal system in which deep circulating groundwater con noble gases, at air saturated water concentrations, mixes with hot fluids of man origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks 'en route' the surface. It is demonstrated that this interaction is responsible for most of CO/sub 2/ in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed th the modelling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks like to be encountered in the geothermal system, but further information on the behaviour of B may be needed. If these problems can be overcome this modelling technique has promise for the estimation of the recharge of geothermal systems a hence the sustainability of these systems. (author). 17 refs., 4 figs

  16. Understanding Hydrological and Climate Conditions on Early Mars Through Sulfate Cycling and Microbial Activity in Terrestrial Volcanic Systems

    Science.gov (United States)

    Szynkiewicz, A.; Mikucki, J.; Vaniman, D.

    2017-10-01

    Our study is a type of Earth-based investigation in a Mars-analog environment that allows for determination of how changing wet and dry conditions in active volcanic/hydrothermal system affect sulfate fluxes into surface water and groundwater.

  17. Exupéry - a mobile fast response system for managing a volcanic crisis

    Science.gov (United States)

    Hort, M. K.

    2009-12-01

    Despite ever increasing efforts to monitor historically active volcanoes many of those are still very poorly or unmonitored, even in highly populated areas. In case of volcanic unrest or even a volcanic crisis evaluating the situation is therefore often very difficult due to the little information that is available for that specific volcano. Over the past decades several different programs have supported volcanic crisis management efforts in third world countries from sending experts all the way to improving or even installing new networks around the volcano. One of the main problems especially when quickly upgrading networks during a crisis is that each system usually comes with its own acquisition and processing system which makes it very difficult to manage the observational network and provide an interdisciplinary interpretation of the data with respect to the activity status of the volcano. Here we present a newly developed volcano fast response system which overcomes several of these shortcomings. The core of the system is a novel database (SEISHUB) that allows for the collection of data of various kinds, i.e. simple time series data like seismic data, gas measurements, GPS measurements, as well as satellite data (SO2 flux, thermal anomaly, ground deformation). Part of the collected data may also come from an already existing network. Data from new field instruments are transmitted through a wireless network that has been specifically designed for the volcano fast response system. One of the main difficulties with such a multidisciplinary data set is an easy access to the data. This is provided through a common Web based GIS interface which allows various datalayers being simultaneously accessed through a Web Browser. The underlying software is designed in such a way that it only uses open source software, so it can be easily installed on other systems not having to deal with purchasing proprietary software. Aside from this the system provides tools to

  18. Volcano alert level systems: managing the challenges of effective volcanic crisis communication

    Science.gov (United States)

    Fearnley, C. J.; Beaven, S.

    2018-05-01

    Over the last four decades, volcano observatories have adopted a number of different communication strategies for the dissemination of information on changes in volcanic behaviour and potential hazards to a wide range of user groups. These commonly include a standardised volcano alert level system (VALS), used in conjunction with other uni-valent communication techniques (such as information statements, reports and maps) and multi-directional techniques (such as meetings and telephone calls). This research, based on interviews and observation conducted 2007-2009 at the five US Geological Survey (USGS) volcano observatories, and including some of the key users of the VALS, argues for the importance of understanding how communicating volcanic hazard information takes place as an everyday social practice, focusing on the challenges of working across the boundaries between the scientific and decision-making communities. It is now widely accepted that the effective use, value and deployment of information across science-policy interfaces of this kind depend on three criteria: the scientific credibility of the information, its relevance to the needs of stakeholders and the legitimacy of both the information and the processes that produced it. Translation and two-way communication are required to ensure that all involved understand what information is credible and relevant. Findings indicate that whilst VALS play a role in raising awareness of an unfolding situation, supplementary communication techniques are crucial in facilitating situational understanding of that situation, and the uncertainties inherent to its scientific assessment, as well as in facilitating specific responses. In consequence, `best practice' recommendations eschew further standardisation, and focus on the in situ cultivation of dialogue between scientists and stakeholders as a means of ensuring that information, and the processes through which it is produced are perceived to be legitimate by all

  19. Hydrothermal systems of the Karymsky Volcanic Centre, Kamchatka: Geochemistry, time evolution and solute fluxes

    Science.gov (United States)

    Taran, Yuri; Kalacheva, Elena; Inguaggiato, Salvatore; Cardellini, Carlo; Karpov, Gennady

    2017-10-01

    Karymsky Volcanic Centre (KVC) at the middle of the frontal volcanic chain of the Kamchatka arc consists of two joined calderas (Akademii Nauk and Karymsky volcano) and hosts two hydrothermal systems: Akademii Nauk (AN) and Karymsky (K). The AN is a typical boiling system, with Na-Cl waters (TDS 1 g/l), low gas content (CO2-N2), with deep calculated temperatures of 200 °C. In contrast, springs of the K system have lower temperatures (up to 42 °C), strong gas bubbling, TDS 2.5 g/l, and are enriched in HCO3- and SO42 -, with Mg2 + as the main cation. There are two intriguing characteristics of the K field: (i) their CO2-rich gas (> 97 mol%) has the highest 3He/4He ratios ever measured for hydrothermal systems in Kamchatka of 8 Ra (where Ra = 1.4 × 10- 6) and (ii) their thermal waters have an unusual cation composition (Mg > Na > Ca). After the 1996 sublimnic eruption within AN caldera, new hot springs appeared close to the eruption site. In this paper we synthesize all published and new geochemical data sets. The Karymsky Lake and post-1996 new thermal springs demonstrate exponential decreases in their main dissolved species, with a characteristic time of 5 to 8 years. The chemistry of AN and K springs did not change after the eruption. However, the concentration of chloride in the lake water approached 35 mg/l, compared with a background of 8-11 mg/l revealing a possible new source of hot water within the Karymsky Lake. All thermal fields of the KVC are drained by the Karymsky River with an outflow rate at the source of 2 m3/s (flowing out from Karymsky Lake) and at the exit from the Karymsky caldera of 4.5 m3/s. Using the measured solute fluxes at the source (AN springs) and at the exit (AN + K springs) the natural heat flux from the two systems can be estimated as 67 MW and 120 MW, respectively, and ≥ 20 t/d for the chloride output from both systems.

  20. Identification of single-input-single-output quantum linear systems

    Science.gov (United States)

    Levitt, Matthew; GuÅ£ǎ, Mǎdǎlin

    2017-03-01

    The purpose of this paper is to investigate system identification for single-input-single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016), 10.1109/TAC.2015.2448491] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix.

  1. A Volcanic Hydrogen Habitable Zone

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-01-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N 2 –CO 2 –H 2 O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO 2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H 2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N 2 –CO 2 –H 2 O–H 2 ) can be sustained as long as volcanic H 2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H 2 warming is reduced in dense H 2 O atmospheres. The atmospheric scale heights of such volcanic H 2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  2. A Volcanic Hydrogen Habitable Zone

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: rmr277@cornell.edu [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{sub 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  3. Development of a low cost and low power consumption system for monitoring CO_{2} soil concentration in volcanic areas.

    Science.gov (United States)

    Awadallah Estévez, Shadia; Moure-García, David; Torres-González, Pedro; Acosta Sánchez, Leopoldo; Domínguez Cerdeña, Itahiza

    2017-04-01

    Volatiles dissolved in magma are released as gases when pressure or stress conditions change. H2O, CO2, SO2 and H2S are the most abundant gases involved in volcanic processes. Emission rates are related to changes in the volcanic activity. Therefore, in order to predict possible eruptive events, periodic measurements of CO2 concentrations from the soil should be carried out. In the last years, CO2 monitoring has been widespread for many reasons. A direct relationship between changes in volcanic activity and variations in concentration, diffuse flux and isotope ratios of this gas, have been observed prior to some eruptions or unrest processes. All these factors have pointed out the fact that CO2 emission data are crucial in volcanic monitoring programs. In addition, relevant instrumentation development has also taken place: improved accuracy, cost reduction and portability. Considering this, we propose a low cost and a low power consumption system for measuring CO2 concentration in the soil based on Arduino. Through a perforated pick-axe buried at a certain depth, gas samples are periodically taken with the aid of a piston. These samples are injected through a pneumatic circuit in the spectrometer, which measures the CO2 concentration. Simultaneously, the system records the following meteorological parameters: atmospheric pressure, precipitation, relative humidity and air and soil temperature. These parameters are used to correct their possible influence in the CO2 soil concentration. Data are locally stored (SD card) and transmitted via GPRS or WIFI to a data analysis center.

  4. Explosive to Effusive Transition in Intermediate Volcanism: An Analysis of Changing Magma System Conditions in Dominica

    Science.gov (United States)

    Bersson, J.; Waters, L. E.; Frey, H. M.; Nicolaysen, K. P.; Manon, M. R. F.

    2017-12-01

    The oscillation between explosive and effusive intermediate (59-62 wt% SiO2) volcanism in the Roseau Valley on Dominica, an island in the Lesser Antilles Arc, provides an opportunity to investigate temporal changes in the magmatic system. Here, we test the relationship between the Roseau ignimbrites (1-65 ka) and the Micotrin dome ( 1.1 ka) which are proposed to originate from the same magmatic system, with a detailed petrologic analysis of phenocrysts to determine commonalities or changes in pre-eruptive conditions (i.e., intensive variables). The ignimbrites are saturated in five phenocrysts (plagioclase + orthopyroxene + clinopyroxene + ilmenite + magnetite ± amphibole ± quartz), and the lava dome contains the same assemblage, but with notable differences: amphiboles are entirely reacted, and quartz occurs in greater abundance. Plagioclase in the ignimbrites ranges in composition from An46-93, and those in the dome range from An46-85. Two Fe-Ti oxide geo-thermometry reveal pre-eruptive temperatures from 730-820°C for three different ignimbrite units, whereas the pre-eruptive temperature for the dome is slightly hotter (850±23°C). Values of fO2 (relative to NNO) derived from Fe-Ti oxide oxygen-barometry range from +0.3 to +1.32 ΔNNO for the ignimbrites, which overlap with those from the dome (+0.5 to +0.9 ΔNNO). Pre-eruptive temperatures, plagioclase compositions, whole rock and glass compositions are incorporated into a plagioclase-liquid hygrometer to determine pre-eruptive melt H2O contents for each sample. H2O contents for ignimbrites range from 7.1-9.3 wt%, and those from the lava dome range from 6.7-7.1 wt%. Application of a H2O solubility model shows that water contents for the Roseau magmas correspond to pressures of 3-5 kbar. The most notable difference between the explosive and effusive magmas is that the lava dome has a higher pre-eruptive temperature than the ignimbrites. However, the results collectively suggest that more recent volcanism in

  5. The River Mountains Volcanic Section - Wilson Ridge Pluton, a Long Lived Multiphase Mid- Tertiary Igneous System in Southern Nevada and Northwestern Arizona, USA

    Science.gov (United States)

    Honn, D. K.; Simon, A. C.; Smith, E. I.; Spell, T. L.

    2007-12-01

    206Pb/238U zircon dates (LA-ICPMS) from 106-40 μm spots on 49 zircons suggest the Wilson Ridge Pluton in northwestern Arizona and its corresponding volcanic cover in the River Mountains of southern Nevada represent a complex multiphase igneous system active for 4.2 million years (based on a zircon core-rim pair) to a maximum of 7.2 million years (from two zircon rim dates 18.9 ± 0.8 to 13.1 ± 0.6 Ma). This period of activity is significantly longer than the 500 thousand year interval (12.99 ± 0.02 to 13.45 ± 0.02) determined by 40Ar/39Ar sanidine, biotite, hornblende, and whole rock dates. The 40Ar/39Ar dates only reflect the time when the igneous system cooled to mineral closure temperatures during emplacement in the upper crust. Zircon xenocrysts identified in cathodoluminescence images range in age from 1517.5 ± 11.2 Ma to 21.3 ± 0.8 Ma. Inherited zircon cores are as much as 8.9 million years older than their rims. Zircon dates correspond to pluton stratigraphy with late stage dikes at 15.3 Ma (mean age based on 9 dates), quartz monzonite intermediate in composition and age (mean age 15.5 Ma based on 20 dates), and the oldest unit, the Horsethief Canyon diorite (mean age 17.5 Ma based on 6 dates). Although the mean ages correspond to stratigraphy, the spread of ages for each unit overlaps, therefore these correlations are preliminary. The River Mountains volcanic section lies 20 km to the west of the pluton and may have been separated from it by west directed motion along the Saddle Island detachment fault. The River Mountains volcanic section and the Wilson Ridge Pluton are considered a single igneous system as demonstrated by major and trace element geochemistry, whole rock isotopic analyses (Sr and Nd), previous 40Ar/39Ar and K-Ar dates, mafic enclave chemistry, extensive magnesio-riebeckite alteration unique to both the River Mountains volcanic and Wilson Ridge Plutonic sections, and the location of the Saddle Island fault. Preliminary zircon dates

  6. Preliminary Findings of Petrology and Geochemistry of The Aladaǧ Volcanic System and Surrounding Areas (Kars, Turkey)

    Science.gov (United States)

    Duru, Olgun; Keskin, Mehmet

    2017-04-01

    Between the towns of Sarıkamış and Kaǧızman, NE Turkey, a medium-sized strato-volcano with satellite cones and domes on its slopes unconformably overlies the Erzurum-Kars Volcanic Plateau (EKVP) with a subhorizontal contact. It is called the Aladaǧ volcanic system (AVS). Dating results indicate that the AVS is Pliocene in age. The EKVP is known to be formed by a widespread volcanism between Middle Miocene to Pliocene. The young volcanism in E Turkey including the study area is linked to a collision between the Eurasia and Arabian continents, started almost 15 Ma ago. The EKVP lies over 2000 m above the sea level, and is deeply cut by the river Aras. On the slopes of the valley, one of the best volcano-stratigraphic transects of Eastern Anatolia, almost half a km thick, is exposed. That transect is composed of aphyric andesites-dacites, ignimbrites, tuffs, perlite and obsidian bands. Pyroclastic fall and surge-related pumice deposits are also widespread. Top of the plateau is composed of the andesitic to basaltic andesitic lavas containing plagioclase (Plg) and ortho/clino pyroxene (Opx/Cpx) phenocrysts set in glassy groundmass. In the northwest of the study area, an eroded stratovolcano, probably coeval with the plateau sequence is situated. It also consists of high-silica rhyolites and pyroclastic equivalents. The AVS is composed basically of intermediate lavas. The largest volcanic edifice of the Aladaǧ volcanic system, namely the Greater Aladaǧ stratovolcano reaches up to 3000 m height and includes a horseshoe shaped crater open to the North. Small volcanic cones and domes sit on the flanks of the Greater Aladaǧ volcano. The Aladaǧ lavas are divided into four sub-groups on the basis of their stratigraphic positions, mineral assemblages and textural properties. (1) The oldest products of the Greater Aladaǧ stratovolcano are andesitic and dasitic lavas. They directly sit on the EKVP. These are Plg and Opx/Cpx bearing lavas with porphric, vitrophyric

  7. Budget of shallow magma plumbing system at Asama Volcano, Japan, revealed by ground deformation and volcanic gas studies

    Science.gov (United States)

    Kazahaya, Ryunosuke; Aoki, Yosuke; Shinohara, Hiroshi

    2015-05-01

    Multiple cycles of the intensive volcanic gas discharge and ground deformation (inflation and deflation) were observed at Asama Volcano, Japan, from 2000 to 2011. Magma budget of the shallow magma plumbing system was estimated on the basis of the volcanic gas emission rates and ground deformation data. Recent inflations observed in 2004 and 2008 were modeled as a dike intrusion to 2-3 km west of Asama Volcano. Previous studies proposed that magma ascends from a midcrustal magma reservoir to the dike and reaches the surface via a sinuous conduit which connects the dike to the summit. The intensive volcanic sulfur dioxide discharge of up to 4600 t/d at the volcano was modeled by magma convective degassing through this magma pathway. The volcano deflates as shrinkage of the magma in a reservoir by volcanic gas discharge. We estimated the volume change of the dike modeled based on the GPS observations, the volume decrease of the magma by the volcanic gas discharge, and the amount of degassed magma produced to calculate the magma budget. The results show that the volume decrease of the magma by the volcanic gas discharge was larger than the volume change of the dike during the inflation periods. This indicates that a significant volume of magma at least more than 2 times larger than the volume change of the dike was supplied from the midcrustal magma reservoir to the dike. The volume decrease of the dike was comparable with the volume decrease of the magma by the volcanic gas discharge during the deflation periods. The long-term deflation trend of the dike and the volume of degassed magma (108-9 m3) suggest that the degassed magma produced is not stored in the dike and the magma is mainly supplied from the midcrustal magma reservoir. In both periods, the volume of degassed magma produced was 1 order of magnitude larger than the volume change of the dike. This indicates that the actual volume of the magma supplied from the midcrustal magma reservoir is up to 1 order of

  8. Numerical Simulation of a Non-volcanic Hydrothermal System Caused by Formation of a High Permeability Fracture Zone

    Science.gov (United States)

    Oka, Daisuke; Ehara, Sachio; Fujimitsu, Yasuhiro

    2010-05-01

    Because in the Japanese islands the earth crust activity is very active, a disposal stratum for high-level radioactive waste produced by reprocessing the spent nuclear fuel from nuclear power plants will be selected in the tectonically stable areas in which the waste can be disposed underground safely for a long term and there is no influence of earthquakes, seismic activities, volcanic activities, upheaval, sedimentation, erosion, climate and global sea level change and so on, which causes the risk of the inflow of the groundwater to destroy the disposal site or the outflow to the ground surface. However, even if the disposal stratum in such condition will be chosen, in case that a new high permeability fracture zone is formed by the earthquake, and a new hydrothermal system may be formed for a long term (thousands or millions years) and the system may affect the disposal site. Therefore, we have to understand the feature of the non-volcanic hydrothermal system through the high permeability fracture zone. We estimated such influence by using HYDROTHERM Ver2.2 (Hayba & Ingebritsen, 1994), which is a three-dimensional numerical reservoir simulator. The model field is the northwestern part of Kego Fault, which was formed by a series of earthquakes called "the 2005 Fukuoka Prefecture Western Offshore Earthquakes" (the main shock of Mjma 7.0 on 20 March 2005) in Kyushu, Japan. The results of the numerical simulations show the development of a low temperature hydrothermal system as a new fracture zone is formed, in case that there is no volcanic heat source. The results of the simulations up to 100,000 years after formation of the fracture zone show that the higher heat flow and the wider and more permeable fracture zone accelerate the development of the hydrothermal system in the fracture zone. As a result of calculation of up to10 million years, we clarified the evolutional process of the non-volcanic hydrothermal system through the high permeability fracture zone. At

  9. Distribution of biologic, anthropogenic, and volcanic constituents as a proxy for sediment transport in the San Francisco Bay Coastal System

    Science.gov (United States)

    McGann, Mary; Erikson, Li H.; Wan, Elmira; Powell, Charles; Maddocks, Rosalie F.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.

  10. Transverse systems along the extensional Tyrrhenian margin of central Italy and their influence on volcanism

    Science.gov (United States)

    Acocella, Valerio; Funiciello, Renato

    2006-04-01

    The Tyrrhenian margin of central Italy has undergone Plio-Quaternary extension, developing NW-SE normal faults and NE-SW faults. The NE-SW faults decrease in frequency toward NE with the stretching factor β, becoming negligible for β fissure eruptions are mostly controlled by NE-SW faults. Structural field data show normal motions for 76% of NW-SE Quaternary faults and transtensive for 73% of NE-SW Quaternary faults. Analogue experiments simulating the NE-SW Tyrrhenian extension show that transverse transtensive faults form with differential extension Δβ > 0.21. These data suggest that the NE-SW transtensive structures are transfer faults of the NW-SE normal faults due to relevant differential extension (Δβ > 0.21) within a stretched crust (β > 1.3). The minor dip-slip and strike-slip components of the NE-SW and NW-SE faults, respectively, possibly result from the NW-SE extension due to the southeastward slab retreat beneath the Calabrian arc. The NE-SW and NW-SE extensions in the central southern Tyrrhenian Sea account for the composite kinematics of the NE-SW structures, which, in turn, exert a twofold role in controlling volcanism. Where their dip-slip component forms basins, the associated decompression induces magma accumulation (developing central volcanoes) at the intersection among NW-SE and NE-SW systems. Where transfer faults are mainly strike slip, their inferred subvertical attitude enhances their permeability to magma, accounting for the observed NE-SW fissure eruptions. Regional extension, forming NW-SE faults, enhances the overall generation and rise of magma along the margin, but NE-SW structures focus magma rise and emplacement at shallower levels.

  11. Bromo volcano area as human-environment system: interaction of volcanic eruption, local knowledge, risk perception and adaptation strategy

    Science.gov (United States)

    Bachri, Syamsul; Stötter, Johann; Sartohadi, Junun

    2013-04-01

    People in the Bromo area (located within Tengger Caldera) have learn to live with the threat of volcanic hazard since this volcano is categorized as an active volcano in Indonesia. During 2010, the eruption intensity increased yielding heavy ash fall and glowing rock fragments. A significant risk is also presented by mass movement which reaches areas up to 25 km from the crater. As a result of the 2010 eruption, 12 houses were destroyed, 25 houses collapsed and there were severe also effects on agriculture and the livestock sector. This paper focuses on understanding the interaction of Bromo volcanic eruption processes and their social responses. The specific aims are to 1) identify the 2010 eruption of Bromo 2) examine the human-volcano relationship within Bromo area in general, and 3) investigate the local knowledge related to hazard, risk perception and their adaptation strategies in specific. In-depth interviews with 33 informants from four districts nearest to the crater included local people and authorities were carried out. The survey focused on farmers, key persons (dukun), students and teachers in order to understand how people respond to Bromo eruption. The results show that the eruption in 2010 was unusual as it took continued for nine months, the longest period in Bromo history. The type of eruption was phreatomagmatic producing material dominated by ash to fine sand. This kind of sediment typically belongs to Tengger mountain eruptions which had produced vast explosions in the past. Furthermore, two years after the eruption, the interviewed people explained that local knowledge and their experiences with volcanic activity do not influence their risk perception. Dealing with this eruption, people in the Bromo area applied 'lumbung desa' (traditional saving systems) and mutual aid activity for surviving the volcanic eruption. Keywords: Human-environment system, local knowledge, risk perception, adaptation strategies, Bromo Volcano Indonesia

  12. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    Science.gov (United States)

    Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.

  13. Nested Architecture of Pyroclastic Bedforms Generated by a Single Flow Event: Outcrop Examples from the Izu Volcanic Islands, Japan

    Science.gov (United States)

    Nemoto, Y.; Yoshida, S.

    2009-12-01

    We claim that compound bedforms, where small bedforms (e.g., dunes and antidunes) occur within and around the larger bedforms, are common in pyroclastic-flow deposits, using Quaternary-Holocene outcrop examples from the modern Izu volcanic island chain some 100-150 km SSW of Tokyo. The nested occurrence of bedforms have been well documented for siliciclastic deposits, as exemplified by compound dunes where small dunes (c. cm- dm thick) occur between the avalanche surfaces within larger dunes, indicating that these dunes of different sizes were produced simultaneously. However, compound dunes have rarely been reported from pyroclastic deposits. In contrast, we have discovered that compound dunes are common in pyroclastic flow deposits in the late Pleistocene & Holocene outcrops in Niijima and Oshima of the Izu volcanic island chain. Moreover, these outcrops contain abundant compound antidunes, which have been reported from neither siliciclastic or pyroclastic deposits. This is probably because flume studies, where most of published antidune studies are based, focus on small (c. cm-dm high) antidunes. In Niijima Island, we examined pyroclastic-flow deposits shed from Mt. Miyatsuka (14 ka) and Mt. Mukai (886 A.D.). Both groups of deposits contain abundant antidune stratifications, which commonly form nested structures in a two- or three-fold hierarchy, with subordinate crossbeddings originated from dune migrations. Each class of antidunes is characterized by multiple scour surfaces and vertical aggradations around mounds of lag deposits above erosion surfaces, and typically has both upstream and downstream accretion components with different proportions. The late Pleistocene pyroclastic outcrops of the nearby Oshima Island exhibit similar patterns. The geometry of the accretion surfaces vary significantly in the outcrops of both Niijima and Oshima. Whereas the antidunes dominated by upstream accretion are characterized by (1) gently inclined accretion surface and (2

  14. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.

    2011-08-23

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  15. Exploring the Response of the Ocean and the Coupled Climate System to Volcanic Eruptions in a Hierarchy of Models

    Science.gov (United States)

    Gupta, M.; Marshall, J.

    2016-12-01

    A hierarchy of idealized models - ranging from a 2-box model, a 1-d diffusion model and a fully coupled global climate model (GCM) - are used to study the role of the ocean in the response of the climate system to a volcanic eruption. We find that an active ocean sequesters surface temperature anomalies induced by an eruption in to its interior, increasing the initial damping rate, relative to a slab ocean. However, shielded from damping to the atmosphere, the effect of the volcano persists on decadal timescales. This favors accumulation of the response from a succession of volcanic eruptions over time and may in part explain the multiple centuries of cold temperatures experienced during, for example, the Little Ice Age. The role of the deeper ocean, and the physical processes involved in this prolonged response, are explored further in a coupled model consisting of an atmosphere coupled to a passive mixed layer as well as in a fully coupled GCM. Of particular interest are the responses of the Atlantic Meridional Overturning Circulation, the Inter-Tropical Convergence Zone and Sub-Tropical Cells to a volcanic eruption. Finally, linear response function theory is used to explore the connection between the impulsive response (volcano) and the step-function response (e.g. 4xCO2 radiative perturbation).

  16. Provenance and drainage system of the Early Cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology

    Directory of Open Access Journals (Sweden)

    Xiu-Mian Hu

    2015-01-01

    Full Text Available The age range of the major intra-plate volcanic event that affected the northern Indian margin in the Early Cretaceous is here defined precisely by detrital zircon geochronology. U–Pb ages of Early Cretaceous detrital zircons found in the Cretaceous to the Paleocene sandstones cluster mainly between 142 Ma and 123 Ma in the northern Tethys Himalayan unit, and between 140 Ma and 116 Ma in the southern Tethys Himalayan unit. The youngest and oldest detrital zircons within this group indicate that volcanism in the source areas started in the latest Jurassic and ended by the early Albian. Stratigraphic data indicate that volcaniclastic sedimentation began significantly earlier in southern Tibet (Tithonian than in Nepal (Valanginian, and considerably later in Spiti and Zanskar (Aptian/Albian to the west. This apparent westward migration of magmatism was explained with progressive westward propagation of extensional/transtensional tectonic activity and development of fractures cutting deeply across the Indian continental margin crust. However, detrital zircon geochronology provides no indication of heterochroneity in magmatic activity in the source areas from east to west, and thus lends little support to such a scenario. Westward migration of volcaniclastic sedimentation may thus reflect instead the westward progradation of major drainage systems supplying volcanic detritus sourced from the same volcanic centers in the east. Development of multiple radial drainage away from the domal surface uplift associated with magmatic upwelling, as observed for most large igneous provinces around the world, may also explain why U–Pb ages of detrital zircons tend to cluster around 133–132 Ma (the age of the Comei igneous province in Tethys Himalayan units, but around 118–117 Ma (the age of the Rajmahal igneous province in Lesser Himalayan units.

  17. Syn-volcanic cannibalisation of juvenile felsic crust: Superimposed giant 18O-depleted rhyolite systems in the hot and thinned crust of Mesoproterozoic central Australia

    Science.gov (United States)

    Smithies, R. H.; Kirkland, C. L.; Cliff, J. B.; Howard, H. M.; Quentin de Gromard, R.

    2015-08-01

    Eruptions of voluminous 18O-depleted rhyolite provide the best evidence that the extreme conditions required to produce and accumulate huge volumes of felsic magma can occur in the upper 10 km of the crust. Mesoproterozoic bimodal volcanic sequences from the Talbot Sub-basin in central Australia contain possibly the world's most voluminous accumulation of 18O-depleted rhyolite. This volcanic system differs from the better known, but geochemically similar, Miocene Snake River Plain - Yellowstone Plateau of North America. Both systems witnessed 'super' sized eruptions from shallow crustal chambers, and produced 18O-depleted rhyolite. The Talbot system, however, accumulated over a much longer period (>30 Ma), at a single depositional centre, and from a magma with mantle-like isotopic compositions that contrast strongly with the isotopically evolved basement and country-rock compositions. Nevertheless, although the Talbot rhyolites are exclusively 18O-depleted, the unavoidable inference of an 18O-undepleted precursor requires high-temperature rejuvenation of crust in an upper-crustal chamber, and in this respect the evolution of the Talbot rhyolites and 18O-depleted rhyolites of the Snake River Plain - Yellowstone Plateau is very similar. However, instead of older crustal material, the primary upper-crustal source recycled into Talbot rhyolites was comagmatic (or nearly so) felsic rock itself derived from a contemporaneous juvenile basement hot-zone. Whereas giant low δ18O volcanic systems show that voluminous melting of upper crust can occur, our studies indicate that felsic magmas generated at lower crustal depths can also contribute significantly to the thermal and material budget of these systems. The requirement that very high-temperatures be achieved and sustained in the upper crust means that voluminous low δ18O magmatism is rare, primarily restricted to bimodal tholeiitic, high-K rhyolite (A-type) magmatic associations in highly attenuated lithosphere. In the

  18. Application of a Hybrid Detection and Location Scheme to Volcanic Systems

    Science.gov (United States)

    Thurber, C. H.; Lanza, F.; Roecker, S. W.

    2017-12-01

    We are using a hybrid method for automated detection and onset estimation, called REST, that combines a modified version of the nearest-neighbor similarity scheme of Rawles and Thurber (2015; RT15) with the regression approach of Kushnir et al. (1990; K90). This approach incorporates some of the windowing ideas proposed by RT15 into the regression techniques described in K90. The K90 and RT15 algorithms both define an onset as that sample where a segment of noise at earlier times is most "unlike" a segment of data at later times; the main difference between the approaches is how one defines "likeness." Hence, it is fairly straightforward to adapt the RT15 ideas to a K90 approach. We also incorporated the running mean normalization scheme of Bensen et al. (2007), used in ambient noise pre-processing, to reduce the effects of coherent signals (such as earthquakes) in defining noise segments. This is especially useful for aftershock sequences, when the persistent high amplitudes due to many earthquakes biases the true noise level. We use the fall-off of the K90 estimation function to assign uncertainties and the asymmetry of the function as a causality constraint. The detection and onset estimation stage is followed by iterative pick association and event location using a grid-search method. Some fine-tuning of some parameters is generally required for optimal results. We present 2 applications of this scheme to data from volcanic systems: Makushin volcano, Alaska, and Laguna del Maule (LdM), Chile. In both cases, there are permanent seismic networks, operated by the Alaska Volcano Observatory (AVO) and Observatorio Volcanológico de Los Andes del Sur (OVDAS), respectively, and temporary seismic arrays were deployed for a year or more. For Makushin, we have analyzed a year of data, from summer 2015 to summer 2016. The AVO catalog has 691 events in our study volume; REST processing yields 1784 more events. After quality control, the event numbers are 151 AVO events and

  19. Historical volcanism and the state of stress in the East African Rift System

    Directory of Open Access Journals (Sweden)

    Geoffrey Wadge

    2016-09-01

    Full Text Available Crustal extension at the East African Rift System (EARS should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800 and find that 7 match the (approximate geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement, transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale, suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days, but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002 due to major along

  20. Importance of Geodetically Controlled Topography to Constrain Rates of Volcanism and Internal Magma Plumbing Systems

    Science.gov (United States)

    Glaze, Lori S.; Baloga, S. M.; Garvin, James B.; Quick, Lynnae C.

    2014-01-01

    Investigation of lava flow deposits is a key component of Investigation II.A.1 in the VEXAG Goals, Objectives and Investigations. Because much of the Venus surface is covered in lava flows, characterization of lava flow emplacement conditions(eruption rate and eruption duration) is critical for understanding the mechanisms through which magma is stored and released onto the surface as well as for placing constraints on rates of volcanic resurfacing throughout the geologic record preserved at the surface.

  1. Single Bit Radar Systems for Digital Integration

    OpenAIRE

    Bjørndal, Øystein

    2017-01-01

    Small, low cost, radar systems have exciting applications in monitoring and imaging for the industrial, healthcare and Internet of Things (IoT) sectors. We here explore, and show the feasibility of, several single bit square wave radar architectures; that benefits from the continuous improvement in digital technologies for system-on-chip digital integration. By analysis, simulation and measurements we explore novel and harmonic-rich continuous wave (CW), stepped-frequency CW (SFCW) and freque...

  2. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  3. Characterization of the Hydrothermal System of the Tinguiririca Volcanic Complex, Central Chile, using Structural Geology and Passive Seismic Tomography

    Science.gov (United States)

    Pavez Orrego, Claudia; Tapia, Felipe; Comte, Diana; Gutierrez, Francisco; Lira, Elías; Charrier, Reynaldo; Benavente, Oscar

    2016-04-01

    A structural characterization of the hydrothermal-volcanic field associated with the Tinguiririca Volcanic Complex had been performed by combining passive seismic tomography and structural geology. This complex corresponds to a 20 km long succession of N25°E oriented of eruptive centers, currently showing several thermal manifestations distributed throughout the area. The structural behavior of this zone is controlled by the El Fierro - El Diablo fault system, corresponding to a high angle reverse faults of Oligocene - Miocene age. In this area, a temporary seismic network with 16 short-period stations was setup from January to April of 2010, in the context of the MSc thesis of Lira- Energía Andina (2010), covering an area of 200 km2 that corresponds with the hydrothermal field of Tinguiririca Volcanic Complex (TVC), Central Chile, Southern Central Andes. Using P- and S- wave arrival times, a 3D seismic velocity tomography was performed. High Vp/Vs ratios are interpreted as zones with high hot fluid content and high fracturing. Meanwhile, low Vp/Vs anomalies could represent the magmatic reservoir and the conduit network associated to the fluid mobility. Based on structural information and thermal manifestations, these anomalies have been interpreted. In order to visualize the relation between local geology and the velocity model, the volume associated with the magma reservoir and the fluid circulation network has been delimited using an iso-value contour of Vp/Vs equal to 1.70. The most prominent observed feature in the obtained model is a large "V" shaped low - velocity anomaly extending along the entire study region and having the same vergency and orientation as the existing high-angle inverse faults, which corroborates that El Fierro - El Diablo fault system represents the local control for fluid mobility. This geometry coincides with surface hydrothermal manifestations and with available geochemical information of the area, which allowed us to generate a

  4. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013.

    Science.gov (United States)

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-08-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  5. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013

    Science.gov (United States)

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-08-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania—Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  6. Volcanic-plutonic connections and metal fertility of highly evolved magma systems: A case study from the Herberton Sn-W-Mo Mineral Field, Queensland, Australia

    Science.gov (United States)

    Cheng, Yanbo; Spandler, Carl; Chang, Zhaoshan; Clarke, Gavin

    2018-03-01

    Understanding the connection between the highly evolved intrusive and extrusive systems is essential to explore the evolution of high silicic magma systems, which plays an important role in discussions of planetary differentiation, the growth of continents, crustal evolution, and the formation of highly evolved magma associated Sn-W-Mo mineral systems. To discern differences between "fertile" and "non-fertile" igneous rocks associated with Sn-W-Mo mineralization and reveal the genetic links between coeval intrusive and extrusive rocks, we integrate whole rock geochemistry, geochronology and Hf isotope signatures of igneous zircons from contemporaneous plutonic and volcanic rocks from the world-class Herberton Mineral Field of Queensland, Australia. The 310-300 Ma intrusive rocks and associated intra-plutonic W-Mo mineralization formed from relatively oxidized magmas after moderate degrees of crystal fractionation. The geochemical and isotopic features of the coeval volcanic succession are best reconciled utilizing the widely-accepted volcanic-plutonic connection model, whereby the volcanic rocks represent fractionated derivatives of the intrusive rocks. Older intrusions emplaced at 335-315 Ma formed from relatively low fO2 magmas that fractionated extensively to produce highly evolved granites that host Sn mineralization. Coeval volcanic rocks of this suite are compositionally less evolved than the intrusive rocks, thereby requiring a different model to link these plutonic-volcanic sequences. In this case, we propose that the most fractionated magmas were not lost to volcanism, but instead were effectively retained at the plutonic level, which allowed further localized build-up of volatiles and lithophile metals in the plutonic environment. This disconnection to the volcanism and degassing may be a crucial step for forming granite-hosted Sn mineralization. The transition between these two igneous regimes in Herberton region over a ∼30 m.y. period is attributed to

  7. The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico

    Science.gov (United States)

    Rioux, Matthew; Farmer, Lang; Bowring, Samuel; Wooton, Kathleen M.; Amato, Jeffrey M.; Coleman, Drew S.; Verplanck, Philip L.

    2016-01-01

    The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean 206Pb/238U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean 206Pb/238U date of 36.259 ± 0.021 Ma. Weighted mean 206Pb/238U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the

  8. Systems interaction and single failure criterion

    International Nuclear Information System (INIS)

    1981-01-01

    This report documents the results of a six-month study to evaluate the ongoing research programs of the U.S. Nuclear Regulatory Commission (NRC) and U.S. commercial nuclear station owners which address the safety significance of systems interaction and the regulatory adequacy of the single failure criterion. The evaluation of system interactions provided is the initial phase of a more detailed study leading to the development and application of methodology for quantifying the relative safety of operating nuclear plants. (Auth.)

  9. Single event upsets in spacecraft digital systems

    Science.gov (United States)

    Leukowicz, P. E.; Richter, L. J.

    This paper describes the physical environments that can result in random bit changes in spaceborne memory systems. The impact of bit flips in digital telemetry systems is emphasized, with special attention paid to software requirements for protection from single event upset (SEU) effects. Some observations on incidence rates are presented along with an outline of hardware and software methods that can be taken to prevent future SEU problems. Several conclusions are drawn about strategies for preventing data corruption on the next generation of satellites in the presence of SEU-inducing particles.

  10. Volcanic gas

    Science.gov (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  11. Candidate constructional volcanic edifices on Mercury

    OpenAIRE

    Wright, J.; Rothery, D. A.; Balme, M. R.; Conway, S. J.

    2018-01-01

    [Introduction] Studies using MESSENGER data suggest that Mercury’s crust is predominantly a product of effusive volcanism that occurred in the first billion years following the planet’s formation. Despite this planet-wide effusive volcanism, no constructional volcanic edifices, characterized by a topographic rise, have hitherto been robustly identified on Mercury, whereas constructional volcanoes are common on other planetary bodies in the solar system with volcanic histories. Here, we descri...

  12. Fluid circulation and structural system of Cerritos Colorados geothermal field in La Primavera volcanic caldera (Mexico) inferred from geophysical surveys

    Science.gov (United States)

    Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.

    2017-12-01

    Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to

  13. Variations of System IV period of the sulfur ions in the Io torus for the volcanic event in 2015 observed by the HISAKI/EXCEED

    Science.gov (United States)

    Ryo, A.; Misawa, H.; Tsuchiya, F.; Kagitani, M.; Yoshioka, K.; Yoshikawa, I.; Kimura, T.; Murakami, G.; Yamazaki, A.

    2017-12-01

    Previous ground-based and probe observations of Io plasma torus (IPT) in various wavelengths have detected a periodic variation which is longer than System III period (9.925 h). It has been called System IV period. Although various ideas to explain the origin of System IV period are proposed , little progress has been made. A previous study reported that the System IV period was 10.07 h during the Cassini's Jupiter flyby in 2000. This period was shorter than the typical period of 10.21h (Brown 1995). The Io's volcanic event just before Cassini's flyby might shorten the System IV period (Steffl et al., 2006). However, the certainty of this inference is not clear from the Cassini observation. Here, we analyzed time variations in intensities of EUV emissions from IPT obtained by the HISAKI satellite to understand the mechanism responsible for the System IV period and the influence of Io's volcanic event on IPT. The data used in this study was obtained from Dec. 2014 to the middle of May 2015. During this period, the Io's volcanic event from Jan. to Mar. 2015 was reported from the observation of Iogenic sodium emission (Yoneda et al., 2015). To find variations of the System IV period, the temporal variation of System III longitude at peak EUV intensity was derived by fitting light curves of three ion species (S II 76.5 nm + 126 nm, S III 68 nm, and S IV 65.7 nm + 140.5 nm). The System IV periods of S II before and after the Io's volcanic event were 10.16±0.008 h and 10.03±0.006 h, respectively. On the other hands, the System IV period of S II was 9.95±0.003 h during the Io's volcanic event. This is the first observational evidence which shows that the System IV period has shortened during the Io's volcanic event, which is consistent with the result from Cassini observation. Origin of the System IV period has been discussed with sub-corotation of plasma in IPT. Since the sub-corotation occurs due to mass loading of newly picked-up ions into IPT, it is expected that

  14. Surface deformation time series and source modeling for a volcanic complex system based on satellite wide swath and image mode interferometry: The Lazufre system, central Andes

    Science.gov (United States)

    Anderssohn, J.; Motagh, M.; Walter, T. R.; Rosenau, M.; Kaufmann, H.; Oncken, O.

    2009-12-01

    The variable spatio-temporal scales of Earth's surface deformation in potentially hazardous volcanic areas pose a challenge for observation and assessment. Here we used Envisat data acquired in Wide Swath Mode (WSM) and Image Mode (IM) from ascending and descending geometry, respectively, to study time-dependent ground uplift at the Lazufre volcanic system in Chile and Argentina. A least-squares adjustment was performed on 65 IM interferograms that covered the time period of 2003-2008. We obtained a clear trend of uplift reaching 15-16 cm in this 5-year interval. Using a joint inversion of ascending and descending interferograms, we evaluated the geometry and time-dependent progression of a horizontally extended pressurized source beneath the Lazufre volcanic system. Our results hence indicate that an extended magma body at a depth between 10 and 15 km would account for most of the ground uplift. The maximum inflation reached up to ~40 cm during 2003-2008. The lateral propagation velocity of the intrusion was estimated to be nearly constant at 5-10 km/yr during the observation time, which has important implications for the physical understanding of magma intrusion processes.

  15. Single-Shell tank system description

    International Nuclear Information System (INIS)

    FIELD, J.G.

    2003-01-01

    The Hanford Site single-shell tank (SST) system consists of 149 underground SSTs and processing equipment designed and constructed between 1940 and 1964 to transport and store radioactive hazardous/dangerous wastes generated from irradiated nuclear fuel processing. The tanks, designed to store waste, vary in size from between 190,000 to 3,800,000 L (50,000 gal to 1,000,000 gal) and contain a variety of solid and liquid waste. The system also includes miscellaneous underground storage tanks (IMUST). In addition to the tanks, there is a large amount of ancillary equipment associated with the system and although not designed to store wastes, the ancillary equipment is contaminated through contact with the waste. Waste was routed to the tanks through a network of underground piping, with interconnections provided in concrete pits that allowed changes to the routing through instrumentation. Processing vaults used during waste handling operations, evaporators used to reduce the waste stored in the system, and other miscellaneous structures used for a variety of waste handling operations are also included in the system. The SST system was taken out of service in 1980 and no additional waste has been added to the tanks. The SSTs and ancillary equipment were designed and constructed before promulgation of Resource Conservation and Recovery Act (RCRA) in 1986. The purpose of this document is to describe the SST system for use in performing an engineering and compliance assessment in support of M-23 milestones (Ecology, et al. 2000). This system description provides estimated locations and volumes of waste within the SST system, including storage tanks, transfer systems, evaporators aid miscellaneous support facilities

  16. Volcanic Catastrophes

    Science.gov (United States)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  17. Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai’i and Maui

    Energy Technology Data Exchange (ETDEWEB)

    Fercho, Steven [Ormat Nevada, Inc., Reno, NV (United States); Owens, Lara [Ormat Nevada, Inc., Reno, NV (United States); Walsh, Patrick [Ormat Nevada, Inc., Reno, NV (United States); Drakos, Peter [Ormat Nevada, Inc., Reno, NV (United States); Martini, Brigette [Corescan Inc., Ascot (Australia); Lewicki, Jennifer L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kennedy, Burton M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    Suites of new geophysical and geochemical exploration surveys were conducted to provide evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai’i. Ground-based gravity (~400 stations) coupled with heli-bourne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults, while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth which may represent a potentially young source of heat. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ. This survey generally did not detect CO2 levels above background, with the exception of a weak anomalous flux signal over one young cinder cone. The general lack of observed CO2 flux signals on the HSWRZ is likely due to a combination of lower magmatic CO2 fluxes and relatively high biogenic surface CO2 fluxes which mix with the magmatic signal. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals, however aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwater here. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2 flux indicative of upflow of magmatic fluids here is likely due to effective “scrubbing” by high groundwater and a mature hydrothermal system. Dissolved inorganic carbon (DIC) concentrations, δ13C compositions and 3He/4He values were sampled at Maui from several shallow

  18. Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system

    Science.gov (United States)

    Lane, S.J.; Chouet, B.A.; Phillips, J.C.; Dawson, P.; Ryan, G.A.; Hurst, E.

    2001-01-01

    Gas-liquid flows, designed to be analogous to those in volcanic conduits, are generated in the laboratory using organic gas-gum rosin mixtures expanding in a vertically mounted tube. The expanding fluid shows a range of both flow and pressure oscillation behaviors. Weakly supersaturated source liquids produce a low Reynolds number flow with foam expanding from the top surface of a liquid that exhibits zero fluid velocity at the tube wall; i.e., the conventional "no-slip" boundary condition. Pressure oscillations, often with strong long-period characteristics and consistent with longitudinal and radial resonant oscillation modes, are detected in these fluids. Strongly supersaturated source liquids generate more energetic flows that display a number of flow regimes. These regimes include a static liquid source, viscous flow, detached flow (comprising gas-pockets-at-wall and foam-in-gas annular flow, therefore demonstrating strong radial heterogeneity), and a fully turbulent transonic fragmented or mist flow. Each of these flow regimes displays characteristic pressure oscillations that can be related to resonance of flow features or wall impact phenomena. The pressure oscillations are produced by the degassing processes without the need of elastic coupling to the confining medium or flow restrictors and valvelike features. The oscillatory behavior of the experimental flows is compared to seismoacoustic data from a range of volcanoes where resonant oscillation of the fluid within the conduit is also often invoked as controlling the observed oscillation frequencies. On the basis of the experimental data we postulate on the nature of seismic signals that may be measured during large-scale explosive activity. Copyright 2001 by the American Geophysical Union.

  19. Potential volcanic impacts on future climate variability

    Science.gov (United States)

    Bethke, Ingo; Outten, Stephen; Otterå, Odd Helge; Hawkins, Ed; Wagner, Sebastian; Sigl, Michael; Thorne, Peter

    2017-11-01

    Volcanic activity plays a strong role in modulating climate variability. Most model projections of the twenty-first century, however, under-sample future volcanic effects by not representing the range of plausible eruption scenarios. Here, we explore how sixty possible volcanic futures, consistent with ice-core records, impact climate variability projections of the Norwegian Earth System Model (NorESM) under RCP4.5 (ref. ). The inclusion of volcanic forcing enhances climate variability on annual-to-decadal timescales. Although decades with negative global temperature trends become ~50% more commonplace with volcanic activity, these are unlikely to be able to mitigate long-term anthropogenic warming. Volcanic activity also impacts probabilistic projections of global radiation, sea level, ocean circulation, and sea-ice variability, the local-scale effects of which are detectable when quantifying the time of emergence. These results highlight the importance and feasibility of representing volcanic uncertainty in future climate assessments.

  20. Quantitative analysis of the hydrothermal system in Lassen Volcanic National Park and Lassen Known Geothermal Resource Area

    Energy Technology Data Exchange (ETDEWEB)

    Sorey, M.L.; Ingebritsen, S.E.

    1984-01-01

    The Lassen hydrothermal system is in the southern Cascade Range, approximately 70 kilometers east-southeast of Redding, California. The conceptual model of the Lassen system is termed a liquid-dominated hydrothermal system with a parasitic vapor-dominated zone. The essential feature of this model is that steam and steam-heated discharge at relatively high elevations in Lassen Volcanic National Park (LVNP) and liquid discharge with high chloride concentrations at relatively low elevations outside LVNP in the Lassen Known Geothermal Resource Area (KGRA) are both fed by an upflow of high-enthalpy, two-phase fluid within the Park. Liquid flows laterally away from the upflow area towards the areas of high-chloride discharge, and steam rises through a vapor-dominated zone to feed the steam and steam-heated features. The geometric model corresponds to an areally restricted flow regime that connects the Bumpass Hell area in LVNP with regions of chloride hot springs in the Mill Creek canyon in the KGRA south of LVNP. Simulations of thermal fluid withdrawal in the Mill Creek Canyon were carried out in order to determine the effects of such withdrawal on portions of the hydrothermal system within the Park. 19 refs., 17 figs., 4 tabs.

  1. Gravisensing in single-celled systems

    Science.gov (United States)

    Braun, M.; Limbach, C.

    Single-celled systems are favourable cell types for studying several aspects of gravisensing and gravitropic responses. Whether and how actin is involved in both processes in higher plant statocytes is still a matter of intensive debate. In single-celled and tip-growing characean rhizoids and protonemata, however, there is clear evidence that actin is a central keyplayer controlling polarized growth and the mechanisms of gravity sensing and growth reorientation. Both cell types exhibit a unique actin polymerization in the extending tip, strictly colocalized with the prominent ER-aggregate in the center of the Spitzenkoerper. The local accumulation of ADF and profilin in this central array suggest that actin polymerization is controlled by these actin-binding proteins, which can be regulated by calcium, pH and a variety of other parameters. Distinct actin filaments extend even into the outermost tip and form a dense meshwork in the apical and subapical region, before they become bundled by villin to form two populations of thick actin cables that generate rotational cytoplasmic streaming in the basal region. Actomyosin not only mediates the delivery of secretory vesicles to the growing tip and controls the incorporation pattern of cell wall material, but also coordinates the tip-focused distribution pattern of calcium channels in the apical membrane. They establish the tip-high calcium gradient, a prerequisite for exocytosis. Microgravity experiments have added much to our understanding that both cell types use an efficient actomyosin-based system to control and correct the position of their statoliths and to direct sedimenting statoliths to confined graviperception sites at the plasma membrane. Actin's involvement in the graviresponses is more indirect. The upward growth of negatively gravitropic protonemata was shown to be preceded by a statolith-induced relocalization the Ca2+-calcium gradient to the upper flank that does not occur in positively gravitropic

  2. A volcanic activity alert-level system for aviation: review of its development and application in Alaska

    Science.gov (United States)

    Guffanti, Marianne; Miller, Thomas P.

    2013-01-01

    An alert-level system for communicating volcano hazard information to the aviation industry was devised by the Alaska Volcano Observatory (AVO) during the 1989–1990 eruption of Redoubt Volcano. The system uses a simple, color-coded ranking that focuses on volcanic ash emissions: Green—normal background; Yellow—signs of unrest; Orange—precursory unrest or minor ash eruption; Red—major ash eruption imminent or underway. The color code has been successfully applied on a regional scale in Alaska for a sustained period. During 2002–2011, elevated color codes were assigned by AVO to 13 volcanoes, eight of which erupted; for that decade, one or more Alaskan volcanoes were at Yellow on 67 % of days and at Orange or Red on 12 % of days. As evidence of its utility, the color code system is integrated into procedures of agencies responsible for air-traffic management and aviation meteorology in Alaska. Furthermore, it is endorsed as a key part of globally coordinated protocols established by the International Civil Aviation Organization to provide warnings of ash hazards to aviation worldwide. The color code and accompanying structured message (called a Volcano Observatory Notice for Aviation) comprise an effective early-warning message system according to the United Nations International Strategy for Disaster Reduction. The aviation color code system currently is used in the United States, Russia, New Zealand, Iceland, and partially in the Philippines, Papua New Guinea, and Indonesia. Although there are some barriers to implementation, with continued education and outreach to Volcano Observatories worldwide, greater use of the aviation color code system is achievable.

  3. Multitasking in academia: Effective combinations of research, education and public outreach illustrated by a volcanic ash warning system

    Science.gov (United States)

    Bye, B. L.; Plag, H.

    2011-12-01

    Science permeates our society. Its role and its perceived importance evolves with time. Scientists today are highly specialized, yet society demands they master a variety of skills requiring not only a number of different competencies but also a broad mindset. Scientists are subjected to a meritocracy in terms of having to produce scientific papers. Peer-reviewed scientific publications used to be sufficient to meet the various laws and regulations with respect to dissemination of scientific results. This has dramatically changed; both expressed directly through public voices (such as in the climate change discourses), but also by politicians and policy makers. In some countries research funding now comes with specific requirements concerning public outreach that go way beyond peer-reviewed publications and presentation at scientific conferences. Science policies encourage multidisciplinary cooperation and scientific questions themselves often cannot be answered without knowledge and information from several scientific areas. Scientists increasingly need to communicate knowledge and results in more general terms as well as educating future generations. A huge challenge lies in developing the knowledge, human capacity and mindset that will allow an individual academician to contribute to education, communicate across scientific fields and sectors in multidisciplinary cross sectoral cooperations and also reach out to the general public while succeeding within the scientific meritocracy. We demonstrate how research, education and communication within and outside academia can effectively be combined through a presentation of the International Airways Volcano Watch that encompasses an operational volcanic ash warning system for the aviation industry. This presentation will show the role of science throughout the information flow, from basic science to the pilots' decision-making. Furthermore, it will illustrate how one can connect specific scientific topics to societal

  4. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.

    2016-04-01

    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  5. The Geothermal Systems along the Watukosek fault system (East Java, Indonesia):The Arjuno-Welirang Volcanic Complex and the Lusi Mud-Eruption

    Science.gov (United States)

    Inguaggiato, Salvatore; Mazzini, Adriano; Vita, Fabio; Sciarra, Alessandra

    2016-04-01

    The Java Island is characterized by an intense volcanic activity with more then 100 active volcanoes. Moreover, this island is also known by the presence of many mud volcanoes and hydrothermal springs. In particular, in the 2006 several sudden hot mud eruptions, with fluids around 100° C, occurred in the NE side of the island resulting in a prominent eruption named Lusi (contraction of Lumpur Sidoarjo) located along the major Watukosek strike-slip fault zone. The Watukosek fault system, strikes from the Arjuno-Welirang volcanic complex, intersects Lusi and extends towards the NE of the Java island. Conversely of the normal mud eruptions (cold fluids emitted in a short time period of few days), the Lusi eruption was characterized by a persistent effusive hot fluids emissions for a long-time period of, so far, nearly a decade. Moreover, the isotopic composition of emitted gases like Helium showed a clear magmatic origin. For this reasons we decided to investigate the near Arjuno-Welirang complex located on the same strike-slip fault. Arjuno-Welirang is a twin strato-volcano system located in the East of Java along the Watukosek fault, at about 25 km SW respect to the Lusi volcano system. It features two main peaks: Arjuno (3339 masl) and Welirang (3156 masl). The last recorded eruptive activity took place in August 1950 from the flanks of Kawah Plupuh and in October 1950 from the NW part of the Gunung Welirang. This strato-volcano is characterized by a S-rich area, with high T-vent fumarole at least up to 220° C (and likely higher), located mainly in the Welirang crater. In addition, several hot springs vent from the flanks of the volcano, indicate the presence of a large hydrothermal system. During July 2015, in the framework of the Lusi Lab project (ERC grant n° 308126), we carried out a geochemical field campaign on the Arjuno-Welirang volcano hydrothermal system area, sampling water and dissolved gases from the thermal and cold springs located on the flanks of

  6. Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system

    Science.gov (United States)

    Janik, Cathy J.; McLaren, Marcia K.

    2010-01-01

    Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235–270°C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220–240°C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (inversions indicate primarily N–S oriented normal faulting and E–W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5–10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ≤123°C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N2-rich, arc-type component and gases derived from air-saturated meteoric recharge water. Most gases have relatively weak isotopic indicators of upper mantle or volcanic components, except for gas from Sulphur Works where δ13C–CO2, δ34S–H2S, and δ15N–N2 values indicate a contribution from the mantle and a subducted sediment source in an arc volcanic setting.

  7. Volcanism and associated hazards: The Andean perspective

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  8. Environmental and anthropogenic factors affecting the respiratory toxicity of volcanic ash in vitro

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J.; Damby, David E.; Ayris, Paul M.; Barošová, Hana; Geers, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Clift, Martin J. D.

    2016-04-01

    Human exposure to inhalable volcanic ash particles following an eruption is a health concern, as respirable-sized particles can potentially contribute towards adverse respiratory health effects, such as the onset or exacerbation of respiratory and cardiovascular diseases. Although there is substantial information on the mineralogical properties of volcanic ash that may influence its biological reactivity, knowledge as to how external factors, such as air pollution, contribute to and augment the potential reactivity is limited. To determine the respiratory effects of volcanic particle interactions with anthropogenic pollution and volcanic gases we will experimentally assess: (i) physicochemical characteristics of volcanic ash relevant to respiratory toxicity; (ii) the effects of simultaneously inhaling anthropogenic pollution (i.e. diesel exhaust particles (DEP)) and volcanic ash (of different origins); (iii) alteration of volcanic ash toxicity following interaction with volcanic gases. In order to gain a first understanding of the biological impact of the respirable fraction of volcanic ash when inhaled with DEP in vitro, we used a sophisticated 3D triple cell co-culture model of the human alveolar epithelial tissue barrier. The multi-cellular system was exposed to DEP [0.02 mg/mL] and then exposed to either a single or repeated dose of well-characterised respirable volcanic ash (0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from the Soufrière Hills volcano, Montserrat for a period of 24 hours using a pseudo-air liquid interface approach. Cultures were subsequently assessed for adverse biological endpoints including cytotoxicity, oxidative stress and (pro)-inflammatory responses. Results indicated that the combination of DEP and respirable volcanic ash at sub-lethal concentrations incited a significant release of pro-inflammatory markers that was greater than the response for either DEP or volcanic ash, independently. Further work is planned, to determine if

  9. Program computes single-point failures in critical system designs

    Science.gov (United States)

    Brown, W. R.

    1967-01-01

    Computer program analyzes the designs of critical systems that will either prove the design is free of single-point failures or detect each member of the population of single-point failures inherent in a system design. This program should find application in the checkout of redundant circuits and digital systems.

  10. 34 CFR 200.12 - Single State accountability system.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Single State accountability system. 200.12 Section 200... Improving Basic Programs Operated by Local Educational Agencies State Accountability System § 200.12 Single State accountability system. (a)(1) Each State must demonstrate in its State plan that the State has...

  11. Fluid Pressure Increases in Hydrothermal Systems Induced by Seismic Waves: Possible Triggers of Earthquakes and Volcanic Eruptions

    Science.gov (United States)

    Roeloffs, E.

    2002-12-01

    That seismic waves trigger microseismicity in hydrothermal settings hundreds of km from the epicenter is plausibly linked to seismic-wave-induced fluid pressure changes at these distances. Although fluid pressure decreases have been observed in diverse settings, in the hydrothermal system at Long Valley, California, that seismic waves from earthquakes increase fluid pressure or discharge. Other published data, from thermal springs in Japan, Yellowstone, and Klamath Falls, Oregon, support the idea that seismic waves have induced pressure and discharge changes and that, in hydrothermal systems, these changes are usually increases. Temperature increases in seafloor hydrothermal vents within days after earthquakes as distant as 220 km imply, moreover, that seismic waves enhance conductance of vertical fluid flow pathways. The influence of seismic waves (wavelengths of km), on hot, fluid-filled subsurface fractures (apertures of mm to cm) could proceed by several mechanisms. Local fluid flow induced at crack walls could remove mineral seals. Spatially uniform acceleration can move gas bubbles relative to denser liquid and solid phases. Thermal expansion can elevate pressure around hot fluid that has penetrated upward. By lowering effective stress and directly weakening faults that are themselves flow paths, seismic waves could initiate processes leading to volcanic eruptions or other earthquakes where sufficient subsurface magma or elastic strain energy have previously accumulated. This type of earthquake-volcano linkage could explain why volcanos statistically erupt more frequently up to 5 years after M>7 earthquakes hundreds of km distant. For example, 11 months elapsed after the Ms 7.8 Luzon (Phillipines) earthquake before Mount Pinatubo erupted on June 15, 1991, 100 km away. Steam emission and 3 M4+ earthquakes in the Pinatubo area followed within days of the Luzon event, however, and a hydrothermal explosion on April 2 started the continuous unrest that built to

  12. Unvented single stack sanitary drainage system I

    DEFF Research Database (Denmark)

    Najman, Z.

    This report forms the basis of the preparation of design recommendations. In the observation tables all single results from 147 tests of charging are dispersed on 53 test set-ups. At test set-ups in 1 till 4 floors height discharge pipes with dimensions of 100, 125, and 150 mm were tested with di...

  13. Superficial alteration mineralogy in active volcanic systems: An example of Poás volcano, Costa Rica

    Science.gov (United States)

    Rodríguez, Alejandro; van Bergen, Manfred J.

    2017-10-01

    The alteration mineralogy in the crater area of Poás volcano (Costa Rica) has been studied to constrain acid fluid-rock interaction processes and conditions relevant for the formation of sulphate-bearing mineral assemblages found on the surface of Mars. Individual sub-environments, which include the hyperacid lake (Laguna Caliente), ephemeral hot springs, fumarole vents and areas affected by acid rain and/or spray from the lake, are marked by distinct secondary mineral associations, with sulphates commonly as prevailing component. The sulphates occur in a wide mineralogical diversity comprising gypsum/anhydrite, various polyhydrated Al-sulphates, alunite-jarosite group minerals, halotrichite-, voltaite- and copiapite-group minerals, epsomite and römerite. Depending on the sub-environment, they are variably associated with clay minerals (kaolinite-group and smectite-group), zeolites, SiO2-polymorphs, Fe-(hydro)oxides, Ti-oxides, native sulphur, sulphides, chlorides, fluorides, phosphates and carbonates. Geochemical modelling was performed to identify mechanisms responsible for the formation of the secondary minerals found in the field, and to predict their possible stability under conditions not seen at the surface. The results indicate that the appearance of amorphous silica, hematite, anhydrite/gypsum, pyrite, anatase and kaolinite is relatively insensitive to the degree of acidity of the local aqueous system. On the other hand, alunite-jarosite group minerals, elemental sulphur and Al(OH)SO4 only form under acidic conditions (pH formation required a repetitive sequence of olivine dissolution and evaporation in an open system involving limited amounts of fluid. The mineral variety in the crater of Poás is remarkably similar to sulphate-bearing assemblages considered to be the product of acid-sulphate alteration on Mars. The analogy suggests that comparable fluid-rock interaction controls operated in Martian volcanic environments.

  14. Initial Single-Shell Tank Retrieval System mission analysis report

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    This document provides the mission analysis for the Initial Single-Shell Tank Retrieval System task, which supports the Single-Shell Tank Waste Retrieval Program in its commitment to remove waste from single-shell tanks for treatment and final closure

  15. Global Martian volcanism as a new interpretation of geological past of terrestrial bodies and moons in the Solar System

    Science.gov (United States)

    Zalewska, N.

    2017-09-01

    When we look at the volcanic cones and the various other volcanic forms on Earth, we also notice that craters, especially those that are inactive for millions of years, are strikingly similar to the conically formed domes and caldera craters on Mars and terrestrial planets, additionally including moons of Jupiter and moons of other large planets as well as our Moon. The difference between the impact crater and the volcanic crater on terrestrial bodies can be very difficult to recognize because of close similarity between them, especially in morphology as well as the geometric distortion of images made by spectrometers in the nadir. In this case, the geochemistry and the degree of melting or lack there at the moment of impact must be taken into account. Whether shocked varieties of quartz are found in the crater or not, will tell us which phenomenon occurred. This would require precise on site research using rovers.

  16. Computer systems for annotation of single molecule fragments

    Science.gov (United States)

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  17. Visualization Techniques for Single Channel DPF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Heather E.; Maupin, Gary D.; Carlson, Shelley J.; Saenz, Natalio T.; Gallant, Thomas R.

    2007-04-01

    New techniques have been developed to visualize soot deposition in both traditional and new diesel particulate filter (DPF) substrate materials using a modified cyanoacrylate fuming technique. Loading experiments have been conducted on a variety of single channel DPF substrates to develop a deeper understanding of soot penetration, soot deposition characteristics, and to confirm modeling results. Early results indicate that stabilizing the soot layer using a vapor adhesive may allow analysis of the layer with new methods.

  18. Active fault systems of the Kivu rift and Virunga volcanic province, and implications for geohazards

    Science.gov (United States)

    Zal, H. J.; Ebinger, C. J.; Wood, D. J.; Scholz, C. A.; d'Oreye, N.; Carn, S. A.; Rutagarama, U.

    2013-12-01

    H Zal, C Ebinger, D. Wood, C. Scholz, N. d'Oreye, S. Carn, U. Rutagarama The weakly magmatic Western rift system, East Africa, is marked by fault-bounded basins filled by freshwater lakes that record tectonic and climatic signals. One of the smallest of the African Great Lakes, Lake Kivu, represents a unique geohazard owing to the warm, saline bottom waters that are saturated in methane, as well as two of the most active volcanoes in Africa that effectively dam the northern end of the lake. Yet, the dynamics of the basin system and the role of magmatism were only loosely constrained prior to new field and laboratory studies in Rwanda. In this work, we curated, merged, and analyzed historical and digital data sets, including spectral analyses of merged Shuttle Radar Topography Mission topography and high resolution CHIRP bathymetry calibrated by previously mapped fault locations along the margins and beneath the lake. We quantitatively compare these fault maps with the time-space distribution of earthquakes located using data from a temporary array along the northern sector of Lake Kivu, as well as space-based geodetic data. During 2012, seismicity rates were highest beneath Nyiragongo volcano, where a range of low frequency (1-3 s peak frequency) to tectonic earthquakes were located. Swarms of low-frequency earthquakes correspond to periods of elevated gas emissions, as detected by Ozone Monitoring Instrument (OMI). Earthquake swarms also occur beneath Karisimbi and Nyamuragira volcanoes. A migrating swarm of earthquakes in May 2012 suggests a sill intrusion at the DR Congo-Rwanda border. We delineate two fault sets: SW-NE, and sub-N-S. Excluding the volcano-tectonic earthquakes, most of the earthquakes are located along subsurface projections of steep border faults, and intrabasinal faults calibrated by seismic reflection data. Small magnitude earthquakes also occur beneath the uplifted rift flanks. Time-space variations in seismicity patterns provide a baseline

  19. Io - Volcanic Eruption

    Science.gov (United States)

    1979-01-01

    This photo of a volcanic eruption on Jupiter's satellite Io (dark fountain-like feature near the limb) was taken March 4, 1979, about 12 hours before Voyager 1's closest approach to Jupiter. This and the accompanying photo present the evidence for the first active volcanic eruption ever observed on another body in the solar system. This photo taken from a distance of 310,000 miles (499,000 kilometers), shows a plume-like structure rising more than 60 miles (100 kilometers) above the surface, a cloud of material being produced by an active eruption. At least four eruptions have been identified on Voyager 1 pictures and many more may yet be discovered on closer analysis. On a nearly airless body like Io, particulate material thrown out of a volcano follows a ballistic trajectory, accounting for the dome-like shape of the top of the cloud, formed as particles reach the top of their flight path and begin to fall back. Spherical expansion of outflowing gas forms an even larger cloud surrounding the dust. Several regions have been identified by the infrared instrument on Voyager 1 as being several hundred degrees Fahrenheit warmer than surrounding terrain, and correlated with the eruptions. The fact that several eruptions appear to be going on simultaneously makes Io the most active surface in the solar system and suggests to scientists that Io is undergoing continuous volcanism, revising downward the age of Io's surface once again. JPL manages and controls the Voyager Project for NASA's Office of Space Science.

  20. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity

    Directory of Open Access Journals (Sweden)

    María Sofía Urbieta

    2015-07-01

    Full Text Available The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  1. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity.

    Science.gov (United States)

    Urbieta, María Sofía; Porati, Graciana Willis; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén

    2015-07-08

    The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  2. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system

    Science.gov (United States)

    De la Cruz-Reyna, Servando; Tilling, Robert I.

    2008-02-01

    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System (VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green-yellow-red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  3. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  4. Systems interaction and single failure criterion

    International Nuclear Information System (INIS)

    1983-10-01

    This study is a continued assessment of US research. All three of the systems interaction review methodologies which NRC's Systems Interaction Section (SIS) is studying are recommended. They are the Digraph-Matrix Analysis and Interactive Fault Tree/Failure Modes and Effects Analysis methodologies. A third methodology was developed for the Indian Point 3 system interaction review. It is recommended to developing the capability to perform and evaluate systems interaction reviews at Swedish nuclear plants. The Swedish demonstration studies should be performed on BWR's. (G.B.)

  5. Seismically active column and volcanic plumbing system beneath the island arc of the Izu-Bonin subduction zone

    Czech Academy of Sciences Publication Activity Database

    Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav

    2009-01-01

    Roč. 179, č. 3 (2009), s. 1301-1312 ISSN 0956-540X Institutional research plan: CEZ:AV0Z30120515 Keywords : seismicity and tectonics * volcano seismology * subduction zone processes * volcanic arc processes * magma migration and fragmentation * Pacific Ocean Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.435, year: 2009

  6. Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations

    Directory of Open Access Journals (Sweden)

    J. Segschneider

    2013-02-01

    Full Text Available The response of the global climate-carbon cycle system to an extremely large Northern Hemisphere mid-latitude volcanic eruption is investigated using ensemble integrations with the comprehensive Earth System Model MPI-ESM. The model includes dynamical compartments of the atmosphere and ocean and interactive modules of the terrestrial biosphere as well as ocean biogeochemistry. The MPI-ESM was forced with anomalies of aerosol optical depth and effective radius of aerosol particles corresponding to a super eruption of the Yellowstone volcanic system. The model experiment consists of an ensemble of fifteen model integrations that are started at different pre-ENSO states of a control experiment and run for 200 years after the volcanic eruption. The climate response to the volcanic eruption is a maximum global monthly mean surface air temperature cooling of 3.8 K for the ensemble mean and from 3.3 K to 4.3 K for individual ensemble members. Atmospheric pCO2 decreases by a maximum of 5 ppm for the ensemble mean and by 3 ppm to 7 ppm for individual ensemble members approximately 6 years after the eruption. The atmospheric carbon content only very slowly returns to near pre-eruption level at year 200 after the eruption. The ocean takes up carbon shortly after the eruption in response to the cooling, changed wind fields and ice cover. This physics-driven uptake is weakly counteracted by a reduction of the biological export production mainly in the tropical Pacific. The land vegetation pool shows a decrease by 4 GtC due to reduced short-wave radiation that has not been present in a smaller scale eruption. The gain of the soil carbon pool determines the amplitude of the CO2 perturbation and the long-term behaviour of the overall system: an initial gain caused by reduced soil respiration is followed by a rather slow return towards pre-eruption levels. During this phase, the ocean compensates partly for the reduced atmospheric

  7. Crustal Seismicity and Geomorphic Observations of the Chiripa-Haciendas Fault System: The Guanacaste Volcanic Arc Sliver of Western Costa Rica

    Science.gov (United States)

    Lewis, J. C.; Montero Pohly, W. K.; Araya, M. C.

    2017-12-01

    It has recently been shown that contemporary northwest motion of the Nicoya Peninsula of Costa Rica reflects a tectonic sliver that includes much of the upper-plate arc, referred to as the Guanacaste Volcanic Arc Sliver (GVAS). Here we characterize historical seismicity and geomorphic expressions of faults that define the northeastern margin of the GVAS. Several crustal earthquakes and their aftershocks provide constraints on the geometry and/or kinematics of the fault system. These include the Armenia earthquake of July 12, 2011, the Bijagua earthquake of January 27, 2002, the Tilarán earthquake of April 13, 1973 and two much older events. We summarize these earthquakes in the context of recent fault mapping and focal mechanism solutions, and suggest that most of the deformation can be explained by slip on steeply dipping NW-striking fault planes accommodating dextral slip. Streams that cross the major fault traces we have mapped also show deflections consistent with dextral slip. These include map-view apparent offsets of 6.5 km for the Haciendas River, 1.0 km for the Orosi River and 0.6 km for the Pizote River. Although preservation is poor, we document stream terrace risers that reveal truncations and/or offsets consistent with dextral slip. Additional constraints on the fault system are apparent as it is traced into Lake Nicaragua. Previous workers have shown that earthquake clusters accommodate a combination of dextral slip on NW-strike faults and sinistral slip NE-strike faults, the latter described as part of a system of bookshelf fault blocks. Whether the northeastern margin of the GVAS under Lake Nicaragua is a single fault strand or an array of bookshelf blocks remains an open question. An equally important gap in our understanding is the kinematic link of the fault system to the east where the GVAS originates. Our results set the stage for expanded studies that will be essential to understanding the relative contributions of Cocos Ridge collision and

  8. Spatial and temporal variations of diffuse CO2 degassing at El Hierro volcanic system: Relation to the 2011-2012 submarine eruption

    Science.gov (United States)

    Melián, Gladys; Hernández, Pedro A.; Padrón, Eleazar; Pérez, Nemesio M.; Barrancos, José; Padilla, Germán.; Dionis, Samara; Rodríguez, Fátima; Calvo, David; Nolasco, Dacil

    2014-09-01

    We report herein the results of extensive diffuse CO2 emission surveys performed on El Hierro Island in the period 1998-2012. More than 17,000 measurements of the diffuse CO2 efflux were carried out, most of them during the volcanic unrest period that started in July 2011. Two significant precursory signals based on geochemical and geodetical studies suggest that a magma intrusion processes might have started before 2011 in El Hierro Island. During the preeruptive and eruptive periods, the time series of the diffuse CO2 emission released by the whole island experienced two significant increases. The first started almost 2 weeks before the onset of the submarine eruption, reflecting a clear geochemical anomaly in CO2 emission, most likely due to increasing release of deep-seated magmatic gases to the surface. The second one, between 24 October and 27 November 2011, started before the most energetic seismic events of the volcanic-seismic unrest. The data presented here demonstrate that combined continuous monitoring studies and discrete surveys of diffuse CO2 emission provide important information to optimize the early warning system in volcano monitoring programs and to monitor the evolution of an ongoing volcanic eruption, even though it is a submarine eruption.

  9. Single board system for fuzzy inference

    Science.gov (United States)

    Symon, James R.; Watanabe, Hiroyuki

    1991-01-01

    The very large scale integration (VLSI) implementation of a fuzzy logic inference mechanism allows the use of rule-based control and decision making in demanding real-time applications. Researchers designed a full custom VLSI inference engine. The chip was fabricated using CMOS technology. The chip consists of 688,000 transistors of which 476,000 are used for RAM memory. The fuzzy logic inference engine board system incorporates the custom designed integrated circuit into a standard VMEbus environment. The Fuzzy Logic system uses Transistor-Transistor Logic (TTL) parts to provide the interface between the Fuzzy chip and a standard, double height VMEbus backplane, allowing the chip to perform application process control through the VMEbus host. High level C language functions hide details of the hardware system interface from the applications level programmer. The first version of the board was installed on a robot at Oak Ridge National Laboratory in January of 1990.

  10. Thermobarometry of Whangarei volcanic field lavas, New Zealand: Constraints on plumbing systems of small monogenetic basalt volcanoes

    Science.gov (United States)

    Shane, Phil; Coote, Alisha

    2018-04-01

    The intra-plate, basaltic Whangarei volcanic field (WVF) is a little-studied cluster of Quaternary monogenetic volcanoes in northern New Zealand. Clinopyroxene-melt equilibria provides an insight to the ascent and storage of the magmas that is not evident from whole-rock-scale geochemistry. Basalts from two of the younger volcanoes contain a population of equilibrium and disequilibrium clinopyroxene phenocrysts. Many of the crystals are resorbed, and are characterised by diffuse, patchy zoning, and low MgO (Mg#70-80) and Cr2O3 contents. Such crystals also occur as relic cores in other phenocrysts. These grew in a magma that was more evolved than that of the host rock composition. Equilibrium clinopyroxenes are enriched in MgO (Mg#83-88) and Cr2O3 ( 0.4-0.9 wt%), and occur as reverse-zoned crystals, and rim/mantle overgrowths on relic cores of other crystals. These crystals and rim/mantles zones nucleated in magma with a composition similar to that of the host rock. The textural relationships demonstrate that a mafic magma intruded a more silicic resident magma, resulting in crystal-exchange and entrainment of antecrysts. Clinopyroxene-melt equilibria indicate that the crystallisation occurred at temperatures in the range 1135-1195 °C, and pressures in the range 290-680 MPa. The dominant pressure mode (400-550 MPa) equates to depths of about 15-19 km which coincides with a present-day body of partial melt in the crust. Higher pressures indicated by subordinate crystal populations indicate staged ascent and crystallisation above the Moho ( 26 km depth). Thus, the magmatic system is envisaged as a crystal mush column through the lower and mid crust. Such crystallisation histories are perhaps not expected in low flux, monogenetic magma systems, and reflect the importance of the crustal density structure beneath the volcanoes. Future activity could be preceded by seismic events in the lower crust as the magmas intrude localised crystal mush bodies.

  11. Family Systems and the Single Client.

    Science.gov (United States)

    Baldwin, Cynthia

    1997-01-01

    Describes how a counselor used a combination of systemic family counseling techniques with a divorced middle-aged male client. The counselor states that it proved to be an efficient and honoring combination that helped the client move differently, with more freedom and self-assurance, toward his goals. (MKA)

  12. Challenges and Benefits of Standardising Early Warning Systems: A Case Study of New Zealand’s Volcanic Alert Level System

    OpenAIRE

    Fearnley, C. J.; Potter, S. H.; Scott, B. J.; Leonard, G. S.; Gregg, C. E.

    2017-01-01

    Volcano early warning systems are used globally to communicate volcano-related information to diverse stakeholders ranging from specific user groups to the general public, or both. Within the framework of a volcano early warning system, Volcano Alert Level (VAL) systems are commonly used as a simple communication tool to inform society about the status of activity at a specific volcano. Establishing a VAL system that is effective for multiple volcanoes can be challenging, given that each volc...

  13. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy

    Science.gov (United States)

    Battistel, Maria; Hurwitz, Shaul; Evans, William; Barbieri, Maurizio

    2017-01-01

    Geothermal energy exploration is based in part on interpretation of the chemistry, temperature, and discharge rate of thermal springs. Here we present the major element chemistry and the δD, δ18O, 87Sr/86Sr and δ11B isotopic ratio of groundwater from the low-enthalpy geothermal system near the city of Viterbo in the Cimino-Vico volcanic district of west-Central Italy. The geothermal system hosts many thermal springs and gas vents, but the resource is still unexploited. Water chemistry is controlled by mixing between low salinity,HCO3-rich fresh waters (<24.2°C) flowing in shallow volcanic rocks and SO4-rich thermal waters (25.3°C to 62.2°C) ascending from deep, high permeability Mesozoic limestones. The (equivalent) SO4/Cl (0.01–0.02), Na/Cl (2.82–5.83) and B/Cl ratios (0.02–0.38) of thermal waters differs from the ratios in other geothermal systems from Central Italy, probably implying a lack of hydraulic continuity across the region. The δ18O (−6.6‰ to −5.9‰) and δD (−40.60‰ to −36.30‰) isotopic composition of spring water suggest that the recharge area for the geothermal system is the summit region of Mount Cimino. The strontium isotope ratios (87Sr/86Sr) of thermal waters (0.70797–0.70805) are consistent with dissolution of the Mesozoic evaporite-carbonate units that constitute the reservoir, and the ratios of cold fresh waters mainly reflect shallow circulation through the volcanic cover and some minor admixture (<10%) of thermal water as well. The boron isotopic composition (δ11B) of fresh waters (−5.00 and 6.12‰) is similar to that of the volcanic cover, but the δ11B of thermal waters (−8.37‰ to −4.12‰) is a mismatch for the Mesozoic reservoir rocks and instead reflects dissolution of secondary boron minerals during fluid ascent through flysch units that overlie the reservoir. A slow and tortuous ascent enhances extraction of boron but also promotes conductive cooling, partially masking the heat present in the

  14. Inverse Dipolar Magnetic Anomaly Over the Volcanic Cone Linked to Reverse Polarity Magnetizations in Lavas and Tuffs - Implications for the Conduit System

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Trigo-Huesca, A.

    2012-12-01

    A combined magnetics and paleomagnetic study of Toluquilla monogenetic volcano and associated lavas and tuffs from Valsequillo basin in Central Mexico provides evidence on a magnetic link between lavas, ash tuffs and the underground volcanic conduit system. Paleomagnetic analyses show that lavas and ash tuffs carry reverse polarity magnetizations, which correlate with the inversely polarized dipolar magnetic anomaly over the volcano. The magnetizations in the lava and tuff show similar southward declinations and upward inclinations, supporting petrological inferences that the tuff was emplaced while still hot and indicating a temporal correlation for lava and tuff emplacement. Conduit geometry is one of the important controlling factors in eruptive dynamics of basaltic volcanoes. However volcanic conduits are often not, or only partly, exposed. Modeling of the dipolar anomaly gives a reverse polarity source magnetization associated with a vertical prismatic body with southward declination and upward inclination, which correlates with the reverse polarity magnetizations in the lava and tuff. The study documents a direct correlation of the paleomagnetic records with the underground magmatic conduit system of the monogenetic volcano. Time scale for cooling of the volcanic plumbing system involves a longer period than the one for the tuff and lava, suggesting that magnetization for the source of dipolar anomaly may represent a long time average as compared to the spot readings in the lava and tuff. The reverse polarity magnetizations in lava and tuff and in the underground source body for the magnetic anomaly are interpreted in terms of eruptive activity of Toluquilla volcano at about 1.3 Ma during the Matuyama reverse polarity C1r.2r chron.

  15. Process tomography via sequential measurements on a single quantum system

    CSIR Research Space (South Africa)

    Bassa, H

    2015-09-01

    Full Text Available The authors utilize a discrete (sequential) measurement protocol to investigate quantum process tomography of a single two-level quantum system, with an unknown initial state, undergoing Rabi oscillations. The ignorance of the dynamical parameters...

  16. Local to global: a collaborative approach to volcanic risk assessment

    Science.gov (United States)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna

    2017-04-01

    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio

  17. Mixing Ventilation System in a Single-Aisle Aircraft Cabin

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Zhang, Chen; Wojcik, Kamil

    2014-01-01

    and present a design procedure of the system. Finally, a personalised ventilation system will be described, which can be used together with the mixing ventilation system. The experiments are made in a full-scale, left side mock-up of a single-aisle (Boeing 737) cabin with four seats. The four passengers...

  18. Easy Volcanic Aerosol (EVA v1.0: an idealized forcing generator for climate simulations

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2016-11-01

    Full Text Available Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. To include the effects of volcanic eruptions in climate model simulations, the Easy Volcanic Aerosol (EVA forcing generator provides stratospheric aerosol optical properties as a function of time, latitude, height, and wavelength for a given input list of volcanic eruption attributes. EVA is based on a parameterized three-box model of stratospheric transport and simple scaling relationships used to derive mid-visible (550 nm aerosol optical depth and aerosol effective radius from stratospheric sulfate mass. Precalculated look-up tables computed from Mie theory are used to produce wavelength-dependent aerosol extinction, single scattering albedo, and scattering asymmetry factor values. The structural form of EVA and the tuning of its parameters are chosen to produce best agreement with the satellite-based reconstruction of stratospheric aerosol properties following the 1991 Pinatubo eruption, and with prior millennial-timescale forcing reconstructions, including the 1815 eruption of Tambora. EVA can be used to produce volcanic forcing for climate models which is based on recent observations and physical understanding but internally self-consistent over any timescale of choice. In addition, EVA is constructed so as to allow for easy modification of different aspects of aerosol properties, in order to be used in model experiments to help advance understanding of what aspects of the volcanic aerosol are important for the climate system.

  19. Silicate volcanism on Io

    Science.gov (United States)

    Carr, M. H.

    1986-03-01

    This paper is mainly concerned with the nature of volcanic eruptions on Io, taking into account questions regarding the presence of silicates or sulfur as principal component. Attention is given to the generation of silicate magma, the viscous dissipation in the melt zone, thermal anomalies at eruption sites, and Ionian volcanism. According to the information available about Io, it appears that its volcanism and hence its surface materials are dominantly silicic. Several percent of volatile materials such as sulfur, but also including sodium- and potassium-rich materials, may also be present. The volatile materials at the surface are continually vaporized and melted as a result of the high rates of silicate volcanism.

  20. Classifying the Infrasonic Fingerprints of a Dynamic Volcanic System: A Quantitative Comparison of Optical and Infrasound Records at Villarrica Volcano, Chile.

    Science.gov (United States)

    Miller, A. J. C.; Palma, J.; Keller, W.; Johnson, J. B.

    2015-12-01

    On March 3, 2015 Villarrica Volcano underwent an abrupt change in volcanic behavior that culminated in a large fire fountaining event lasting 30 minutes that prompted the evacuation of residents within 9 km from the vent. This paroxysm was the first in 30 years and changed summit morphology by temporarily capping the previously stable lava lake with volcanic material. After March 3, Villarrica exhibited a period of quiescence before reactivating with various levels of ash venting associated with strombolian style activity. Ten infrasound arrays, each comprising three pressure transducers, were deployed in January and February that recorded until mid June and serendipitously chronicled the awakening, paroxysm, and recovery to a more open vent system typical to Villarrica. Coincidentally, several optical datasets were gathered. Time lapse photography, provided by Proyecto Observacion Villarrica Internet (POVI), recorded vent activity at an interval of ~15 seconds with a 240 mm zoom lens at 16 km from the vent, starting December 2014 until March 12, 2015. Additionally, video footage of the vent was recorded at 30 frames per second (fps) with a 50 mm lensed surveillance camera between March 4 and June of 2015 at a distance of 16 km from the vent. The combined infrasound and image processing approach offers novel insight into the various acoustic signatures of a dynamic and violent volcanic system. Video parameters, including plume color, ascent rate, and duration of venting are synthesized as time series. These video metrics of vent activity are then quantitatively compared to the corresponding infrasound waveform. The result is the classification of several different infrasound modes of activity during the diverse eruptive sequence of Villarrica between January and June of 2015.

  1. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  2. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

  3. Realization of single-phase single-stage grid-connected PV system

    Directory of Open Access Journals (Sweden)

    Osama M. Arafa

    2017-05-01

    Full Text Available This paper presents a single phase single stage grid-tied PV system. Grid angle detection is introduced to allow operation at any arbitrary power factor but unity power factor is chosen to utilize the full inverter capacity. The system ensures MPPT using the incremental conductance method and it can track the changes in insolation level without oscillations. A PI voltage controller and a dead-beat current controller are used to ensure high quality injected current to the grid. The paper investigates the system structure and performance through numerical simulation using Matlab/Simulink. An experimental setup controlled by the MicrolabBox DSP prototyping platform is utilized to realize the system and study its performance. The precautions for smooth and safe system operation including the startup sequence are fully considered in the implementation.

  4. Voluminous and crystal-rich igneous rocks of the Permian Wurzen volcanic system, northern Saxony, Germany: physical volcanology and geochemical characterization

    Science.gov (United States)

    Repstock, Alexander; Breitkreuz, Christoph; Lapp, Manuel; Schulz, Bernhard

    2017-11-01

    The North Saxon Volcanic Complex (NSVC) is a nested caldera edifice dominated by the c. 295 Ma Rochlitz Volcanic System and the c. 289 Ma Wurzen Volcanic System (WVS). The climactic activity of the WVS resembled a VEI ≥ 7 fissure `supereruption' resulting in voluminous and crystal-rich caldera-fill ignimbrites (minimum volume c. 199 km3); caldera outflow facies is not known sofar. Precursory to the WVS `monotonous intermediates', rhyolitic and rhyodacitic volcanic activity led to deposition of the low-volume Wermsdorf and Cannewitz ignimbrites. Modal analysis of the WVS pyroclastic units reveals an inhomogeneous crystal population (≤ 58 vol%) comprising k-feldspar, plagioclase, quartz, ortho- and clinopyroxene and minor amounts of biotite. The Wurzen caldera fill ignimbrites feature three types of fiamme: (1) felsic fiamme; (2) mafic fiamme; and (3) granite-porphyry fiamme. This, the modal variation, and the common presence of clinopyroxene and biotite indicate a strong magma mingling component in the WVS—characteristics which have not been observed in the precursory, Wermsdorf and Cannewitz ignimbrites. The caldera fill ignimbrites feature a large compositional variation from (basaltic) trachyandesite to rhyolite caused by basaltic injection and magma mingling. It is proposed that magmatic underplating led to reheating crystal mush and finally to convection processes within the WVS magma chamber. The predominance of either pyroxene or biotite as mafic mineral in the (trachy-) dacitic to rhyolitic ignimbrites indicates eruption of crystal mush from different magma batches. Prominent negative Nb and Ta anomalies of the Wurzen caldera fill ignimbrites, porphyries, and mafic dykes indicate enhanced melt-crust interaction or contamination of mantle melt. In the aftermath of the WVS caldera eruption, basaltic, trachyandesitic, andesitic and rhyolitic melts ascended puncturing the Wurzen-α and β ignimbrites leading to an array of NW-SE-trending dykes, subvolcanic

  5. Load compensation for single phase system using series active filter ...

    African Journals Online (AJOL)

    In this paper a new control strategy for series active filter has been proposed for improvement of power quality problems in single phase system. Since the non linear loads in the system comprises of both voltage source harmonic and current source harmonic loads and the dominancy of each type of load varies from time to ...

  6. Synthesis of a one-part geopolymer system for soil stabilizer using fly ash and volcanic ash

    Directory of Open Access Journals (Sweden)

    Tigue April Anne S.

    2018-01-01

    Full Text Available A novel approach one-part geopolymer was employed to investigate the feasibility of enhancing the strength of in-situ soil for possible structural fill application in the construction industry. Geopolymer precursors such as fly ash and volcanic ash were utilized in this study for soil stabilization. The traditional geopolymer synthesis uses soluble alkali activators unlike in the case of ordinary Portland cement where only water is added to start the hydration process. This kind of synthesis is an impediment to geopolymer soil stabilizer commercial viability. Hence, solid alkali activators such as sodium silicate (SS, sodium hydroxide (SH, and sodium aluminate (SA were explored. The influence of amount of fly ash (15% and 25%, addition of volcanic ash (0% and 12.5%, and ratio of alkali activator SS:SH:SA (50:50:0, 33:33:33, 50:20:30 were investigated. Samples cured for 28 days were tested for unconfined compressive strength (UCS. To evaluate the durability, sample yielding highest UCS was subjected to sulfuric acid resistance test for 28 days. Analytical techniques such as X-ray fluorescence (XRF, X-ray diffraction (XRD, and scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM/EDX were performed to examine the elemental composition, mineralogical properties, and microstructure of the precursors and the geopolymer stabilized soil.

  7. MPC of Single Phase Inverter for PV System

    OpenAIRE

    Irtaza M. Syed; Kaamran Raahemifar

    2014-01-01

    This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regula...

  8. System and method for single-phase, single-stage grid-interactive inverter

    Science.gov (United States)

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  9. Dynamics of melting beneath a small-scale basaltic system: a U-Th-Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand

    Science.gov (United States)

    McGee, Lucy E.; Beier, Christoph; Smith, Ian E. M.; Turner, Simon P.

    2011-09-01

    The Auckland volcanic field is a Quaternary monogenetic basaltic field of 50 volcanoes. Rangitoto is the most recent of these at ~500 year BP and may mark a change in the behaviour of the field as it is the largest by an order of magnitude and is unusual in that it erupted magmas of alkalic then subalkalic basaltic composition in discrete events separated by ≤50 years. Major and trace element geochemistry together with Sr-Nd and U-Th-Ra isotopes provides the basis for modelling the melting conditions that brought about the eruption of two chemically different lavas with very little spatial or temporal change. Sr-Nd isotopes suggest that the source for both eruptions is similar with a slight degree of heterogeneity. The basalts show high 230Th-excess compared with comparable continental volcanic fields. We show that the alkalic basalts give evidence for lower degrees of partial melting, higher amounts of residual garnet, a longer melting column and lower melting and upwelling rates compared with the subalkalic basalts. The low upwelling rates (0.1-1.5 cm/year) modelled for both magmas do not suggest a plume or major upwelling in the mantle region beneath Auckland; therefore, we suggest localised convection due to relict movement from the active subduction system situated 400 km to the southeast. A higher porosity for the initial alkalic basalt is based on 226Ra-excesses, suggesting movement of melt by two different porosities: the initial melt travelling in fast high porosity channels from greater depths preserving a high 230Th-excess and the subsequent subalkalic magma travelling from a shallower depth through lower porosity diffuse channels preserving a high 226Ra-excess; this creates a negative array in (226Ra/230Th) versus (230Th/238U) space previously only seen in mid ocean ridge Basalt data. This mechanism suggests the Auckland volcanic field may operate by the presence of discrete melt batches that are able to move at different depths and speeds giving the

  10. Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems

    Science.gov (United States)

    Portnyagin, Maxim; Duggen, Svend; Hauff, Folkmar; Mironov, Nikita; Bindeman, Ilya; Thirlwall, Matthew; Hoernle, Kaj

    2015-12-01

    We present new major and trace element, high-precision Sr-Nd-Pb (double spike), and O-isotope data for the whole range of rocks from the Holocene Tolbachik volcanic field in the Central Kamchatka Depression (CKD). The Tolbachik rocks range from high-Mg basalts to low-Mg basaltic trachyandesites. The rocks considered in this paper represent mostly Late Holocene eruptions (using tephrochronological dating), including historic ones in 1941, 1975-1976 and 2012-2013. Major compositional features of the Tolbachik volcanic rocks include the prolonged predominance of one erupted magma type, close association of middle-K primitive and high-K evolved rocks, large variations in incompatible element abundances and ratios but narrow range in isotopic composition. We quantify the conditions of the Tolbachik magma origin and evolution and revise previously proposed models. We conclude that all Tolbachik rocks are genetically related by crystal fractionation of medium-K primary magmas with only a small range in trace element and isotope composition. The primary Tolbachik magmas contain 14 wt.% of MgO and 4% wt.% of H2O and originated by partial melting ( 6%) of moderately depleted mantle peridotite with Indian-MORB-type isotopic composition at temperature of 1250 °C and pressure of 2 GPa. The melting of the mantle wedge was triggered by slab-derived hydrous melts formed at 2.8 GPa and 725 °C from a mixture of sediments and MORB- and Meiji-type altered oceanic crust. The primary magmas experienced a complex open-system evolution termed Recharge-Evacuation-Fractional Crystallization (REFC). First the original primary magmas underwent open-system crystal fractionation combined with periodic recharge of the magma chamber with more primitive magma, followed by mixing of both magma types, further fractionation and finally eruption. Evolved high-K basalts, which predominate in the Tolbachik field, and basaltic trachyandesites erupted in 2012-2013 approach steady-state REFC liquid

  11. A single-chip computer analysis system for liquid fluorescence

    International Nuclear Information System (INIS)

    Zhang Yongming; Wu Ruisheng; Li Bin

    1998-01-01

    The single-chip computer analysis system for liquid fluorescence is an intelligent analytic instrument, which is based on the principle that the liquid containing hydrocarbons can give out several characteristic fluorescences when irradiated by strong light. Besides a single-chip computer, the system makes use of the keyboard and the calculation and printing functions of a CASIO printing calculator. It combines optics, mechanism and electronics into one, and is small, light and practical, so it can be used for surface water sample analysis in oil field and impurity analysis of other materials

  12. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  13. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid......In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve...... the performance and efficiency of SR motor. However, the inherent characteristic of this motor is that the negative torque is very sensitive with the excitation current near the turn-on angle. The slow excitation current limits the torque generation region and reduces the average torque. Therefore, a novel single...

  14. The use of geographical information systems for disaster risk reduction strategies: a case study of Volcan de Colima, Mexico

    Science.gov (United States)

    Landeg, O.

    Contemporary disaster risk management requires the analysis of vulnerability and hazard exposure, which is imperative at Volcan de Colima (VdC), Mexico, due to the predicted, large-magnitude eruption forecast to occur before 2025. The methods used to gauge social vulnerability included the development and application of proxies to census records, the undertaking of a building vulnerability survey and the spatial mapping of civil and emergency infrastructure. Hazard exposure was assessed using primary modelling of laharic events and the digitalisation of secondary data sources detailing the modelled extent of pyroclastic flows and tephra deposition associated with a large-magnitude (VEI 5) eruption at VdC. The undertaking and analysis of a risk perception survey of the population enabled an understanding of the cognitive behaviour of residents towards the volcanic risk. In comparison to the published hazard map, the GIS analysis highlighted an underestimation of lahar hazard on the western flank of VdC and the regional tephra hazard. Vulnerability analysis identified three communities where social deprivation is relatively high, and those with significant elderly and transient populations near the volcano. Furthermore, recognition of the possibility of an eruption in the near future was found to be low across the study region. These results also contributed to the analysis of emergency management procedures and the preparedness of the regional authorities. This multidisciplinary research programme demonstrates the success of applying a GIS platform to varied integrative spatial and temporal analysis. Furthermore, ascertaining the impact of future activity at VdC upon its surrounding populations permits the evaluation of emergency preparedness and disaster risk reduction strategies.

  15. Ice Nuclei Production in Volcanic Clouds

    Science.gov (United States)

    Few, A. A.

    2012-12-01

    The paper [Durant et al., 2008] includes a review of research on ice nucleation in explosive volcanic clouds in addition to reporting their own research on laboratory measurements focused on single-particle ice nucleation. Their research as well as the research they reviewed were concerned with the freezing of supercooled water drops (250 to 260 K) by volcanic ash particles acting as ice freezing nuclei. Among their conclusions are: Fine volcanic ash particles are very efficient ice freezing nuclei. Volcanic clouds likely contain fine ash concentrations 104 to 105 times greater than found in meteorological clouds. This overabundance of ice nuclei will produce a cloud with many small ice crystals that will not grow larger as they do in meteorological clouds because the cloud water content is widely distributed among the numerous small ice crystals. The small ice crystals have a small fall velocity, thus volcanic clouds are very stable. The small ice crystals are easily lofted into the stratosphere transporting water and adsorbed trace gasses. In this paper we examine the mechanism for the production of the small ice nuclei and develop a simple model for calculating the size of the ice nuclei based upon the distribution of magma around imbedded bubbles. We also have acquired a volcanic bomb that exhibits bubble remnants on its entire surface. The naturally occurring fragments from the volcanic bomb reveal a size distribution consistent with that predicted by the simple model. Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst (2008), Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

  16. Single-cell technologies to study the immune system.

    Science.gov (United States)

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.

  17. A performance comparison of single product kanban control systems

    Directory of Open Access Journals (Sweden)

    Alvin Ang

    2015-01-01

    Full Text Available This paper presents a simulation experiment comparing the Single Stage, Single Product Base Stock (BS, Traditional Kanban Control System (TKCS and Extended Kanban Control System (EKCS. The results showed that BS incurs the highest cost in all scenarios; while EKCS is found to be effective only in a very niche scenario. TKCS is still a very powerful factory management system to date; and EKCS did not perform exceptionally well. The only time EKCS did outperform TKCS was during low demand arrival rates and low Backorder (Cb and Shortage costs (Cs. That is because during then, it holds no stock. The most important discovery made here is that EKCS becomes TKCS once it has base stock (or dispatched kanbans. The results have also evinced the strength of the pure kanban system, the TKCS over BS. Hence managers using BS should consider upgrading to TKCS to save cost.

  18. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua

    2014-01-01

    Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank...... is a tank in tank heat storage with domestic hot water in the inner tank and space heating water in the outer tank. The total tank volume is 750 liters and the solar collector area is 9 m2. The auxiliary energy supply system is based on electrical heating element(s)/heat pump and is different for all three...... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys...

  19. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    Melo G and Canesin C A 2013 Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 60(3): 1156–1167. [7] Jain S and Agarwal V 2007 Comparison of the perfor- mance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems.

  20. Water Flow Experiments: Single and Double Bottle Systems

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 23; Issue 1. Water Flow Experiments: Single and Double Bottle Systems ... Jain International Residential School, Jakkasandra Post, Kanakapura Road, Ramanagara Dist., Karnataka 562 112, India. Room No 425, SH-3 Ashoka University, Near Rai Police ...

  1. Bilateral single system ectopic ureters: Case report with literature ...

    African Journals Online (AJOL)

    Bilateral single system ureteral ectopia (BSSEU) is one of the rarest entities in urology, with less than 80 cases reported so far. Incontinence resulting from the underlying anomaly can be devastating to the child. It is generally agreed that suitable urinary continence and long dry intervals are seldom obtainable because of ...

  2. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV ...

  3. Evolution Of An Upper Crustal Plutonic-Volcanic Plumbing System:Insights From High Precision U-Pb Zircon Geochronology Of Intracaldera Tuff And Intrusions In Silver Creek Caldera, Arizona, USA

    Science.gov (United States)

    Zhang, T.; Mundil, R.; Miller, C. F.; Miller, J. S.; Paterson, S. R.

    2010-12-01

    Study of both plutonic and volcanic regimes in one single magmatic system is a powerful approach towards obtaining a more complete view of the long-term evolution of magma systems. The recently discovered Silver Creek caldera is the source of the voluminous Peach Spring Tuff (PST) (Ferguson, 2008) and presents a unique opportunity to study a field laboratory of a linked plutonic-volcanic system. This relict west-facing half caldera is predominantly filled with trachytic intracaldera tuff with the caldera margin intruded by several petrologically distinct hypabyssal intrusions. These include porphyritic granite with granophyric texture, felsic leucogranite, porphyritic monzonite exposed on NE side of the caldera that is zoned from more felsic to more mafic, and quartz-phyric dikes that intrude the caldera fill. We present preliminary single zircon ages from 4 samples that have been analyzed using the CA-TIMS method after thermal annealing and chemical leaching (Mattinson 2005), including 1 sample from intracaldera tuff and 3 samples from caldera-related intrusions. 3-D total U/Pb isochron ages from all four samples fall within a range of 18.32-18.90 Ma with uncertainties between 0.09 and 0.39 Ma, although some of them lack precision and are compromised by elevated common Pb. For example, zircon from the dated porphyritic monzonite yields an age of 18.32±0.42 Ma (MSWD=2.7) where the excess scatter may result from real age dispersion and/or different compositions of the common Pb contribution. The PST had been dated to ~18.5 Ma by 40Ar/39Ar techniques (Nielson et al., 1990). In order to be compared to U/Pb ages the 40Ar/39Ar age must be adjusted for a revised age for the then used flux monitor (MMbh-1) and corrected for the now quantified systematic bias between 40Ar/39Ar and U/Pb ages (Renne et al., 2010), which results in a corrected age of 18.8 Ma. Thus, the ages for our samples match that of the PST within error. Based on current results, the age difference

  4. Volcanic Rocks and Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. The...

  5. Integrating Multiple Space Ground Sensors to Track Volcanic Activity

    Science.gov (United States)

    Chien, Steve; Davies, Ashley; Doubleday, Joshua; Tran, Daniel; Jones, Samuel; Kjartansson, Einar; Thorsteinsson, Hrobjartur; Vogfjord, Kristin; Guomundsson, Magnus; Thordarson, Thor; hide

    2011-01-01

    Volcanic activity can occur with little or no warning. Increasing numbers of space borne assets can enable coordinated measurements of volcanic events to enhance both scientific study and hazard response. We describe the use of space and ground measurements to target further measurements as part of a worldwide volcano monitoring system. We utilize a number of alert systems including the MODVOLC, GOESVOLC, US Air Force Weather Advisory, and Volcanic Ash Advisory Center (VAAC) alert systems. Additionally we use in-situ data from ground instrumentation at a number of volcanic sites, including Iceland.

  6. Martian volcanism: A review

    International Nuclear Information System (INIS)

    Carr, M.H.

    1987-01-01

    Martian volcanism is reviewed. It is emphasized that lava plains constitute the major type of effusive flow, and can be differentiated by morphologic characteristics. Shield volcanoes, domes, and patera constitute the major constructional landforms, and recent work has suggested that explosive activity and resulting pyroclastic deposits may have been involved with formation of some of the small shields. Analysis of morphology, presumed composition, and spectroscopic data all indicate that Martian volcanism was dominantly basaltic in composition

  7. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  8. Image analysis driven single-cell analytics for systems microbiology.

    Science.gov (United States)

    Balomenos, Athanasios D; Tsakanikas, Panagiotis; Aspridou, Zafiro; Tampakaki, Anastasia P; Koutsoumanis, Konstantinos P; Manolakos, Elias S

    2017-04-04

    Time-lapse microscopy is an essential tool for capturing and correlating bacterial morphology and gene expression dynamics at single-cell resolution. However state-of-the-art computational methods are limited in terms of the complexity of cell movies that they can analyze and lack of automation. The proposed Bacterial image analysis driven Single Cell Analytics (BaSCA) computational pipeline addresses these limitations thus enabling high throughput systems microbiology. BaSCA can segment and track multiple bacterial colonies and single-cells, as they grow and divide over time (cell segmentation and lineage tree construction) to give rise to dense communities with thousands of interacting cells in the field of view. It combines advanced image processing and machine learning methods to deliver very accurate bacterial cell segmentation and tracking (F-measure over 95%) even when processing images of imperfect quality with several overcrowded colonies in the field of view. In addition, BaSCA extracts on the fly a plethora of single-cell properties, which get organized into a database summarizing the analysis of the cell movie. We present alternative ways to analyze and visually explore the spatiotemporal evolution of single-cell properties in order to understand trends and epigenetic effects across cell generations. The robustness of BaSCA is demonstrated across different imaging modalities and microscopy types. BaSCA can be used to analyze accurately and efficiently cell movies both at a high resolution (single-cell level) and at a large scale (communities with many dense colonies) as needed to shed light on e.g. how bacterial community effects and epigenetic information transfer play a role on important phenomena for human health, such as biofilm formation, persisters' emergence etc. Moreover, it enables studying the role of single-cell stochasticity without losing sight of community effects that may drive it.

  9. Single-system ureteroceles in infants and children: imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Zerin, J.M.; Baker, D.R. [Dept. of Radiology, Indiana University Medical Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN (United States); Casale, J.A. [Dept. of Urology, Indiana University Medical Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN (United States)

    2000-03-01

    Purpose. The purpose of this manuscript is to describe the clinical and imaging findings in children who have single-system ureteroceles.Materials and methods. We reviewed the urology records and imaging studies in 32 consecutive infants and children who were diagnosed in our department with single-system ureteroceles.Results. There were 35 ureteroceles in the 32 patients - 29 were unilateral (14 right-sided, 15 left-sided) and 3 were bilateral. Twenty-five patients were boys (78 %) and 7 girls. Mean age at presentation was 0.7 years (0-9.2 years). Prenatally detected hydronephrosis or cystic renal dysplasia was the most common presentation (24 patients). Four presented with urinary infection, 2 with abdominal mass, 1 had myelomeningocele, and 1 had hypospadias. Three patients also had multiple non-urologic, congenital anomalies. Thirty-three ureteroceles were intravesical, and 2 were ectopic to the bladder neck. Twenty-four ureteroceles were associated with ipsilateral hydroureteronephrosis and 10 with ipsilateral multicystic dysplastic kidney. One patient had a normal ipsilateral kidney and a contralateral multicystic dysplastic kidney. The ureterocele was identified on at least one imaging study in each patient. Sixteen ureteroceles (47 %) everted at VCUG, mimicking paraureteral diverticula. Other variations included ureterocele prolapse and inadvertent ureterocele catheterization (1 each).Conclusions. Single-system ureterocele is an important, although uncommon cause of hydronephrosis and renal dysplasia in infants and children. Single-system ureterocele is distinguished clinically from the more common duplex-system ureterocele by its frequent occurrence in boys and its association with multicystic dysplastic kidney. Because these ureteroceles are frequently small and have a propensity to evert at VCUG, they can be mistaken for paraureteral diverticula. (orig.)

  10. Local and remote infrasound from explosive volcanism

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  11. Model Based Control of Single-Phase Marine Cooling Systems

    DEFF Research Database (Denmark)

    Hansen, Michael

    2014-01-01

    these systems. Traditionally, control for this type of cooling system has been limited to open-loop control of pumps combined with a couple of local PID controllers for bypass valves to keep critical temperatures within design limits. This research considers improvements in a retrofit framework to the control...... linearization, an H∞-control design is applied to the resulting linear system. Disturbance rejection capabilities and robustness of performance for this control design methodology is compared to a baseline design derived from classical control theory. This shows promising results for the nonlinear robust design......This thesis is concerned with the problem of designing model-based control for a class of single-phase marine cooling systems. While this type of cooling system has been in existence for several decades, it is only recently that energy efficiency has become a focus point in the design and operation...

  12. Development of a Single-Axis Edge Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Hanshaw, R.A.

    2000-02-18

    A SIP (Societe Genevoise d'Instruments de Physique) Trioptic coordinate measuring machine was modified for calibration of high quality single-axis glass standards to an uncertainty of {+-}0.000020 inch. The modification was accomplished through the addition of a frame grabber board, vision software, a high-resolution camera, stepper motors, a two-axis motor controller, and an HP-IB interface card. An existing temperature system (hygrometer, barometer, laser interferometer system, and optics) was retained as part of the system. An existing Hewlett Packard computer was replaced with a personal computer to accommodate the frame grabber board. Each component was integrated into the existing system using Visual Basic. The system was automated for unattended measurements by creating a machine programming language, which is recognized within the main program.

  13. Comprehensive study of the seismotectonics of the easter Aleutian arc and associated volcanic systems. Annual progress report, March 1, 1978--February 28, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, K.H.; Davies, J.N.; Beavan, J.; Johnson, D.; House, L.; Krause, J.; Hickman, S.; Winslow, M.; Hauptman, J.; Mori, J.; Sykes, L.R.

    1979-01-01

    Based on the historic seismic record and accurate hypocenter data obtained from the eastern Aleutian seismic network, a relationship between the subduction-zone seismicity, volcano-trench separation, and the occurrence of great thrust earthquakes has been established for the Aleutian arc. On the basis of strong-motion accelerometer data it was found that high stress drops (540 t 650 bars) were associated with two moderate-size earthquakes (m/sub b/ = 6.0 and 5.8) within the Shumagin Islands seismic gap. This indicates that near the down-dip end of the major thrust zone, at depths of about 40 km, high tectonic stresses have accumulated within the gap segment of the arc. That such accumulation of stress is presently an ongoing process is corroborated by results from geodetic precision leveling on Unga Island. The leveling data indicate tilt rates of about 1 microradian/year. The tilting is directed down towards the trench and up towards the volcanic arc. Whether the recent activity of Pavlof, Shishaldin and Westdahl volcanoes indicates transmission of high tectonic stresses from the major thrust zone to the volcanic arc is unresolved. The search for a shallow magma chamber beneath the seismically monitored Pavlof volcano is still inconclusive although large amounts of recently acquired data remain to be analyzed. A geologic reconnaissance of the Shumagin Islands and the Adjacent Alaska Peninsula revealed Quaternary uplifted marine terraces and evidence for Holocene faulting. Both findings have severe implications for long-term tectonic activity and seismic hazards in the region of this seismic gap, portions of which are presently considered for off-shore hydrocarbon exploration and development. A critical analysis of th presently operating seimic data acquisition system reveals that a major change in remote sensing and central recording equipment is urgently needed for the Pavlof, Cold Bay, and Shumagin sections of the seismic array.

  14. Can we develop an effective early warning system for volcanic eruptions using `off the shelf' webcams and low-light cameras?

    Science.gov (United States)

    Harrild, M.; Webley, P. W.; Dehn, J.

    2016-12-01

    An effective early warning system to detect volcanic activity is an invaluable tool, but often very expensive. Detecting and monitoring precursory events, thermal signatures, and ongoing eruptions in near real-time is essential, but conventional methods are often logistically challenging, expensive, and difficult to maintain. Our investigation explores the use of `off the shelf' webcams and low-light cameras, operating in the visible to near-infrared portions of the electromagnetic spectrum, to detect and monitor volcanic incandescent activity. Large databases of webcam imagery already exist at institutions around the world, but are often extremely underutilised and we aim to change this. We focus on the early detection of thermal signatures at volcanoes, using automated scripts to analyse individual images for changes in pixel brightness, allowing us to detect relative changes in thermally incandescent activity. Primarily, our work focuses on freely available streams of webcam images from around the world, which we can download and analyse in near real-time. When changes in activity are detected, an alert is sent to the users informing them of the changes in activity and a need for further investigation. Although relatively rudimentary, this technique provides constant monitoring for volcanoes in remote locations and developing nations, where it is not financially viable to deploy expensive equipment. We also purchased several of our own cameras, which were extensively tested in controlled laboratory settings with a black body source to determine their individual spectral response. Our aim is to deploy these cameras at active volcanoes knowing exactly how they will respond to varying levels of incandescence. They are ideal for field deployments as they are cheap (0-1,000), consume little power, are easily replaced, and can provide telemetered near real-time data. Data from Shiveluch volcano, Russia and our spectral response lab experiments are presented here.

  15. Volcanism and associated hazards: the Andean perspective

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2009-12-01

    Full Text Available Andean volcanism occurs within the Andean Volcanic Arc (AVA, which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions" recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru. The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3 in 1985 of Nevado del Ruiz (Colombia killed about 25 000 people – the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent

  16. Development of an air heating system for single family housing

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gunner, Amalie; Nikolaisen, Christian Grønborg

    2017-01-01

    The initial objective of the project was to break with common thinking about Space heating and to document that air heating can be used as the sole source of heating in a single Family house. The basic idea is that the ventilation must be installed in any case and it may equally well form the heat...... source of the house - Thus the waterborne heating system can be eliminated....

  17. On the origin of nonclassicality in single systems

    International Nuclear Information System (INIS)

    Aravinda, S; Srikanth, R; Pathak, Anirban

    2017-01-01

    In the framework of certain general probability theories of single systems, we identify various nonclassical features such as incompatibility, multiple pure-state decomposability, measurement disturbance, no-cloning and the impossibility of certain universal operations, with the non-simpliciality of the state space. This is shown to naturally suggest an underlying simplex as an ontological model. Contextuality turns out to be an independent nonclassical feature, arising from the intransitivity of compatibility. (paper)

  18. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  19. Introduction of a single chip TLD system for patient dosimetry

    International Nuclear Information System (INIS)

    Hranitzky, C.; Halda, M.; Mueller, G.; Stadtmann, H.; Obryk, B.

    2008-01-01

    A thermoluminescence dosimetry system with single detector chips was developed for patient dosimetry applications. LiF:Mg,Cu,P detector chips, dosimetry protocol, calibration, and dose calculation were prepared for measurements inside phantoms for determining organ and effective doses in medical diagnostic examinations. The first step was optimizing the readout time-temperature-profile for reaching a well resolved dosimetric peak and stability of the glow curves. A number of parameters was varied for the optimization process, e.g. preheating and heating rate. Individual chip sensitivities, residual dose and dose linearity were studied for establishing a reliable and accurate TL dosimetry system. (author)

  20. Synchronization of uncertain chaotic systems using a single transmission channel

    International Nuclear Information System (INIS)

    Feng Yong; Yu Xinghuo; Sun Lixia

    2008-01-01

    This paper proposes a robust sliding mode observer for synchronization of uncertain chaotic systems with multi-nonlinearities. A new control strategy is proposed for the construction of the robust sliding mode observer, which can avoid the strict conditions in the design process of Walcott-Zak observer. A new method of multi-dimensional signal transmission via single transmission channel is proposed and applied to chaos synchronization of uncertain chaotic systems with multi-nonlinearities. The simulation results are presented to validate the method

  1. Diffuse emissions of Volatile Organic Compounds (VOCs) from soil in volcanic and hydrothermal systems: evidences for the influence of microbial activity on the carbon budget

    Science.gov (United States)

    Venturi, Stefania; Tassi, Franco; Fazi, Stefano; Vaselli, Orlando; Crognale, Simona; Rossetti, Simona; Cabassi, Jacopo; Capecchiacci, Francesco

    2017-04-01

    Soils in volcanic and hydrothermal areas are affected by anomalously high concentrations of gases released from the deep reservoirs, which consists of both inorganic (mainly CO2 and H2S) and organic (volatile organic compounds; VOCs) species. VOCs in volcanic and hydrothermal fluids are mainly composed of saturated and unsaturated hydrocarbons (alkanes, aromatics, alkenes, and cyclics), with variable concentrations of O- and S-bearing compounds and halocarbons, depending on the physicochemical conditions at depth. VOCs in interstitial soil gases and fumarolic emissions from four volcanic and hydrothermal systems in the Mediterranean area (Solfatara Crater, Poggio dell'Olivo and Cava dei Selci, in Italy, and Nisyros Island, in Greece) evidenced clear compositional differences, suggesting that their behavior is strongly affected by secondary processes occurring at shallow depths and likely controlled by microbial activity. Long-chain saturated hydrocarbons were significantly depleted in interstitial soil gases with respect to those from fumarolic discharges, whereas enrichments in O-bearing compounds (e.g. aldehydes, ketones), DMSO2 and cyclics were commonly observed. Benzene was recalcitrant to degradation processes, whereas methylated aromatics were relatively instable. The chemical and isotopic (δ13C in CO2 and CH4) composition of soil gases collected along vertical profiles down to 50 cm depth at both Solfatara Crater and Poggio dell'Olivo (Italy) showed evidences of relevant oxidation processes in the soil, confirming that microbial activity likely plays a major role in modifying the composition of deep-derived VOCs. Despite their harsh conditions, being typically characterized by high temperatures, low pH, and high toxic gases and metal contents, the variety of habitats characterizing volcanic and hydrothermal environments offers ideal biomes to extremophilic microbes, whose metabolic activity can consume and/or produce VOCs. In the Solfatara Crater, microbial

  2. Nickel-Titanium Single-file System in Endodontics.

    Science.gov (United States)

    Dagna, Alberto

    2015-10-01

    This work describes clinical cases treated with a innovative single-use and single-file nickel-titanium (NiTi) system used in continuous rotation. Nickel-titanium files are commonly used for root canal treatment but they tend to break because of bending stresses and torsional stresses. Today new instruments used only for one treatment have been introduced. They help the clinician to make the root canal shaping easier and safer because they do not require sterilization and after use have to be discarded. A new sterile instrument is used for each treatment in order to reduce the possibility of fracture inside the canal. The new One Shape NiTi single-file instrument belongs to this group. One Shape is used for complete shaping of root canal after an adequate preflaring. Its protocol is simple and some clinical cases are presented. It is helpful for easy cases and reliable for difficult canals. After 2 years of clinical practice, One Shape seems to be helpful for the treatment of most of the root canals, with low risk of separation. After each treatment, the instrument is discarded and not sterilized in autoclave or re-used. This single-use file simplifies the endodontic therapy, because only one instrument is required for canal shaping of many cases. The respect of clinical protocol guarantees predictable good results.

  3. How `Monogenetic' is the Auckland Volcanic Field?

    Science.gov (United States)

    Spargo, S. R.; Smith, I. E.; Wilson, C. J.

    2007-05-01

    The Auckland Field is the youngest basaltic intraplate volcanic field in New Zealand; it is located about 350-400 km behind the present day active convergent plate boundary. The field contains about 50 recognised late Pleistocene to Holocene eruptive centres generated by the rise and eruption of very small volume (mainly less than 0.35 km3) batches of magma. The field covers approximately 100 km2 of the Auckland urban area and has been termed monogenetic, implying that individual centres erupt single magma batches during brief eruptive periods. Detailed studies of individual centres reveal significant compositional diversity. The following trends are recognised: 1). Single trends from early evolved to later less evolved compositions representing deep near source fractionation of a single magma batch generated in the garnet peridotite stability field (e.g. Crater Hill about 29 ka, 0.1 km3), this is demonstrably monogenetic behaviour. 2). Multiple compositional trends in magmas from a single eruption event signifying the sequential rise and fractionation of magma batches generated from different sources (3-8 percent melt of a garnet peridotite source at depths of about 80-50 km and 5-12 percent melt of spinel peridotite at depths about 50- 22km), for example Pupuke (about 250 ka, 0.1 km3) this is polygenetic behaviour. 3). Multiple compositional trends in temporarily discrete eruption events from the same centre (Rangitoto, 8 to 700 a, 2.3 km3) this is also polygenetic behaviour. The chemical diversity observed within these three volcanic centres, representing the life span of the Auckland Volcanic Field, questions how well we actually understand this very common type of global volcanism. The range of compositions observed in individual centres of the Auckland Volcanic Field reflects the interplay of melting and fractionation processes at different depths in the mantle and calls into question the use of the term monogenetic to describe them.

  4. Seasonality of volcanic eruptions

    Science.gov (United States)

    Mason, B.; Pyle, D.; Dade, B.; Jupp, T.

    2003-04-01

    An analysis of volcanic activity in the last three hundred years reveals that the frequency of onset of volcanic eruptions varies systematically with the time of year. We analysed the Smithsonian catalogue of more than 3200 subaerial eruptions recorded during the last 300 years. We also investigated continuous records, which are not part of the general catalogue, of individual explosions at Sakurajima volcano (Japan, 150 events per year since 1955) and Semeru (Indonesia, 100,000 events during the period 1997-2000). A higher proportion (as much as 18 percent of the average monthly rate) of eruptions occur worldwide between December and March. This observation is statistically significant at above the 99 percent level. This pattern is independent of the time interval considered, and emerges whether individual eruptions are counted with equal weight or with weights proportional to event explosivity. Elevated rates of eruption onset in boreal winter months are observed in northern and southern hemispheres alike, as well as in most volcanically-active regions including, most prominently, the 'Ring of Fire' surrounding the Pacific basin. Key contributors to this regional pattern include volcanoes in Central and South America, the volcanic provinces of the northwest Pacific rim, Indonesia and the southwest Pacific basin. On the smallest spatial scales, some individual volcanoes for which detailed histories exist exhibit peak levels in eruption activity during November-January. Seasonality is attributed to one or more mechanisms associated with the annual hydrological cycle, and may correspond to the smallest time-scale over which fluctuations in stress due to the redistribution of water-masses are felt by the Earth's crust. Our findings have important ramifications for volcanic risk assessment, and offer new insight into possible changes in volcanic activity during periods of long-term changes in global sea level.

  5. Seasonality of volcanic eruptions

    Science.gov (United States)

    Mason, B. G.; Pyle, D. M.; Dade, W. B.; Jupp, T.

    2004-04-01

    An analysis of volcanic activity during the last three hundred years reveals that volcanic eruptions exhibit seasonality to a statistically significant degree. This remarkable pattern is observed primarily along the Pacific "Ring of Fire" and locally at some individual volcanoes. Globally, seasonal fluctuations amount to 18% of the historical average monthly eruption rate. In some regions, seasonal fluctuations amount to as much as 50% of the average eruption rate. Seasonality principally reflects the temporal distribution of the smaller, dated eruptions (volcanic explosivity index of 0-2) that dominate the eruption catalog. We suggest that the pattern of seasonality correlates with the annual Earth surface deformation that accompanies the movement of surface water mass during the annual hydrological cycle and illustrate this with respect to global models of surface deformation and regional measurements of annual sea level change. For example, seasonal peaks in the eruption rate of volcanoes in Central America, the Alaskan Peninsula, and Kamchatka coincide with periods of falling regional sea level. In Melanesia, in contrast, peak numbers of volcanic eruptions occur during months of maximal regional sea level and falling regional atmospheric pressure. We suggest that the well-documented slow deformation of Earth's surface that accompanies the annual movements of water mass from oceans to continents acts to impose a fluctuating boundary condition on volcanoes, such that volcanic eruptions tend to be concentrated during periods of local or regional surface change rather than simply being distributed randomly throughout the year. Our findings have important ramifications for volcanic risk assessment and volcanoclimate feedback mechanisms.

  6. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy

    DEFF Research Database (Denmark)

    Battistel, Maria; Hurwitz, Shaul; Evans, William C.

    2016-01-01

    Geothermal energy exploration is based in part on interpretation of the chemistry, temperature, and discharge rate of thermal springs. Here we present the major element chemistry and the δD, δ18O, 87Sr/86Sr and δ11B isotopic ratio of groundwater from the low-enthalpy geothermal system near the city...... of Viterbo in the Cimino-Vico volcanic district of west-Central Italy. The geothermal system hosts many thermal springs and gas vents, but the resource is still unexploited. Water chemistry is controlled by mixing between low salinity,HCO3-rich fresh waters (... and SO4-rich thermal waters (25.3 °C to 62.2 °C) ascending from deep, high permeability Mesozoic limestones. The (equivalent) SO4/Cl (0.01–0.02), Na/Cl (2.82–5.83) and B/Cl ratios (0.02–0.38) of thermal waters differs from the ratios in other geothermal systems from Central Italy, probably implying...

  7. Using a single chip FEC for satellite systems

    Science.gov (United States)

    Onotera, L.; Nicholson, R.

    Information transmission over digital satellite communication channels is primarily power-limited, where forward error correction (FEC) codes can significantly improve performance. The use of FEC can reduce the required signal to noise ratio to sustain a given bit error rate. The use of forward error correction has become a standard part of present day digital satellite communication systems. Means of applying a new very large scale integration (VLSI) integrated circuit FEC chip into various kinds of systems is discussed. Specifically, some of the considerations and tradeoffs in continuous single channel per carrier (SCPC), multiple channels per carrier (MCPC), and burst systems are related to the new design. This new chip will provide an effective space and cost advantage by inserting a powerful forward error correction capability into most types of satellite digital communication links.

  8. Deformation monitoring of the 2014 dyke intrusion and eruption within the Bárðarbunga volcanic system, and associated stress triggering at neighbouring volcanoes

    Science.gov (United States)

    Parks, Michelle; Árnadóttir, Thóra; Dumont, Stéphanie; Sigmundsson, Freysteinn; Hooper, Andrew; Drouin, Vincent; Ófeigsson, Benedikt; María Friðriksdóttir, Hildur; Hreinsdóttir, Sigrún; Rafn Heimisson, Elías; Vogfjörd, Kristín; Jónsdóttir, Kristín; Hensch, Martin; Guðmundsson, Gunnar; Magnússon, Eyjólfur; Einarsson, Páll; Rut Hjartardóttir, Ásta; Pedersen, Rikke

    2015-04-01

    The recent unrest and activity within the Bárðarbunga volcanic system, Iceland was initially identified by the onset of an intense earthquake swarm on the 16th August 2014 and concurrent movement registered at several nearby continuous GPS (cGPS) sites. Over the following weeks additional cGPS stations were installed, campaign sites were reoccupied and interferograms formed using X-band satellite images. Data were analysed in near real-time and used to map ground displacements associated with the initial dyke emplacement and propagation (NE of Bárðarbunga), responsible for the sudden unrest. On the 29th August 2014, a small fissure opened up just a few kilometers to the north of the Vatnajökull ice cap, at Holuhraun. The eruption lasted only a few hours, but was followed on 31st August by the onset of a fissure eruption, characterised by lava fountaining and the extrusion of extensive lava flows. The eruption continues at the time of writing (January 2015). We demonstrate how Interferometric Synthetic Aperture Radar (InSAR) analysis, in conjunction with GPS measurements and earthquake seismicity, has been instrumental in the continued monitoring of Bárðarbunga volcanic system since the onset of unrest. We also investigate how changes in the local stress field induced by the dyke intrusion and concurrent magma withdrawal may trigger seismicity and potentially renewed activity at neighbouring volcanoes. InSAR analysis has systematically been used throughout the eruption to monitor co-eruptive displacement in the vicinity of both the dyke and the eruption site, along with major co-eruptive subsidence occurring beneath the Bárðarbunga caldera - the latter is believed to have commenced shortly after the onset of the unrest and is associated with magma withdrawal beneath the central volcano, feeding the dyke and the ongoing eruption. We use Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) techniques to generate a time series of

  9. Simple test system for single molecule recognition force microscopy

    International Nuclear Information System (INIS)

    Riener, Christian K.; Stroh, Cordula M.; Ebner, Andreas; Klampfl, Christian; Gall, Alex A.; Romanin, Christoph; Lyubchenko, Yuri L.; Hinterdorfer, Peter; Gruber, Hermann J.

    2003-01-01

    We have established an easy-to-use test system for detecting receptor-ligand interactions on the single molecule level using atomic force microscopy (AFM). For this, avidin-biotin, probably the best characterized receptor-ligand pair, was chosen. AFM sensors were prepared containing tethered biotin molecules at sufficiently low surface concentrations appropriate for single molecule studies. A biotin tether, consisting of a 6 nm poly(ethylene glycol) (PEG) chain and a functional succinimide group at the other end, was newly synthesized and covalently coupled to amine-functionalized AFM tips. In particular, PEG 800 diamine was glutarylated, the mono-adduct NH 2 -PEG-COOH was isolated by ion exchange chromatography and reacted with biotin succinimidylester to give biotin-PEG-COOH which was then activated as N-hydroxysuccinimide (NHS) ester to give the biotin-PEG-NHS conjugate which was coupled to the aminofunctionalized AFM tip. The motional freedom provided by PEG allows for free rotation of the biotin molecule on the AFM sensor and for specific binding to avidin which had been adsorbed to mica surfaces via electrostatic interactions. Specific avidin-biotin recognition events were discriminated from nonspecific tip-mica adhesion by their typical unbinding force (∼40 pN at 1.4 nN/s loading rate), unbinding length (<13 nm), the characteristic nonlinear force-distance relation of the PEG linker, and by specific block with excess of free d-biotin. The convenience of the test system allowed to evaluate, and compare, different methods and conditions of tip aminofunctionalization with respect to specific binding and nonspecific adhesion. It is concluded that this system is well suited as calibration or start-up kit for single molecule recognition force microscopy

  10. Volcanic activity and climatic changes.

    Science.gov (United States)

    Bryson, R A; Goodman, B M

    1980-03-07

    Radiocarbon dates of volcanic activity suggest variations that appear to be related to climatic changes. Historical eruption records also show variations on the scale of years to centuries. These records can be combined with simple climatic models to estimate the impact of various volcanic activity levels. From this analysis it appears that climatic prediction in the range of 2 years to many decades requires broad-scale volcanic activity prediction. Statistical analysis of the volcanic record suggests that some predictability is possible.

  11. Electron-assisted magnetization tunneling in single spin systems

    Science.gov (United States)

    Balashov, Timofey; Karlewski, Christian; Märkl, Tobias; Schön, Gerd; Wulfhekel, Wulf

    2018-01-01

    Magnetic excitations of single atoms on surfaces have been widely studied experimentally in the past decade. Lately, systems with unprecedented magnetic stability started to emerge. Here, we present a general theoretical investigation of the stability of rare-earth magnetic atoms exposed to crystal or ligand fields of various symmetry and to exchange scattering with an electron bath. By analyzing the properties of the atomic wave function, we show that certain combinations of symmetry and total angular momentum are inherently stable against first or even higher-order interactions with electrons. Further, we investigate the effect of an external magnetic field on the magnetic stability.

  12. A Transformer-less Single Phase Inverter For photovoltaic Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Qu, Ying

    2017-01-01

    A single phase transformer-less inverter is introduced in this paper. The negative polarities of the input voltage and output terminal have common ground. Therefore, the leakage current problem that is common in PV systems is eliminated naturally. In addition, the proposed inverter has fewer...... components compared with its counterparts and only one switch conducts during the active states which enhance the inverter efficiency. The proposed inverter is analyzed in details and compared with some existing topologies. The performance of the proposed inverter is validated using the simulation results....

  13. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  14. Modeling volcanic ash dispersal

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard...

  15. Volcanism Studies: Final Report for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Crowe, Bruce M.; Perry, Frank V.; Valentine, Greg A.; Bowker, Lynn M.

    1998-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( than about 7 x 10 -8 events yr -1 . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit

  16. Single bunch transfer system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Sheehan, J.; Singh, O.; Rambo, W.

    1983-01-01

    The accelerator system at the National Synchrotron Light Source consists of an S-band 85 MeV linac and three synchrotron rings. The electron beam from the linac is accelerated by the booster ring to 600 MeV and transferred to one of the two storage rings. The smaller of the two rings operates between 300 and 800 MeV emtting photons in the vacuum ultraviolet (VUV), while the larger storage ring operates up to 2.5 GeV and emits photons in the x-ray spectrum. A system is described for loading the storage rings by filling a single-phase space bunch in the booster ring and transferring it at the end of each booster cycle into a selected bucket in one of the storage rings. By controlling the timing of the transfer on successive transfer cycles, many fill patterns may be obtained

  17. Single Station System and Method of Locating Lightning Strikes

    Science.gov (United States)

    Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)

    2003-01-01

    An embodiment of the present invention uses a single detection system to approximate a location of lightning strikes. This system is triggered by a broadband RF detector and measures a time until the arrival of a leading edge of the thunder acoustic pulse. This time difference is used to determine a slant range R from the detector to the closest approach of the lightning. The azimuth and elevation are determined by an array of acoustic sensors. The leading edge of the thunder waveform is cross-correlated between the various acoustic sensors in the array to determine the difference in time of arrival, AT. A set of AT S is used to determine the direction of arrival, AZ and EL. The three estimated variables (R, AZ, EL) are used to locate a probable point of the lightning strike.

  18. Ice nucleation and overseeding of ice in volcanic clouds

    Science.gov (United States)

    Durant, A. J.; Shaw, R. A.; Rose, W. I.; Mi, Y.; Ernst, G. G. J.

    2008-05-01

    Water is the dominant component of volcanic gas emissions, and water phase transformations, including the formation of ice, can be significant in the dynamics of volcanic clouds. The effectiveness of volcanic ash particles as ice-forming nuclei (IN) is poorly understood and the sparse data that exist for volcanic ash IN have been interpreted in the context of meteorological, rather than volcanic clouds. In this study, single-particle freezing experiments were carried out to investigate the effect of ash particle composition and surface area on water drop freezing temperature. Measured freezing temperatures show only weak correlations with ash IN composition and surface area. Our measurements, together with a review of previous volcanic ash IN measurements, suggest that fine-ash particles (equivalent diameters between approximately 1 and 1000 μm) from the majority of volcanoes will exhibit an onset of freezing between ˜250-260 K. In the context of explosive eruptions where super-micron particles are plentiful, this result implies that volcanic clouds are IN-rich relative to meteorological clouds, which typically are IN-limited, and therefore should exhibit distinct microphysics. We can expect that such "overseeded" volcanic clouds will exhibit enhanced ice crystal concentrations and smaller average ice crystal size, relative to dynamically similar meteorological clouds, and that glaciation will tend to occur over a relatively narrow altitude range.

  19. Mylonitic volcanics near Puging, Upper Siang district, Arunachal ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 6. Mylonitic volcanics near ... This paper provides field evidence proving that the compression due the Burmese plate made oblique slip thrusting and zones of mylonitised volcanics possible and associated metasediments were formed. The kinematic ...

  20. Synchronization of impacting mechanical systems with a single constraint

    Science.gov (United States)

    Baumann, Michael; Biemond, J. J. Benjamin; Leine, Remco I.; van de Wouw, Nathan

    2018-01-01

    This paper addresses the synchronization problem of mechanical systems subjected to a single geometric unilateral constraint. The impacts of the individual systems, induced by the unilateral constraint, generally do not coincide even if the solutions are arbitrarily 'close' to each other. The mismatch in the impact time instants demands a careful choice of the distance function to allow for an intuitively correct comparison of the discontinuous solutions resulting from the impacts. We propose a distance function induced by the quotient metric, which is based on an equivalence relation using the impact map. The distance function obtained in this way is continuous in time when evaluated along jumping solutions. The property of maximal monotonicity, which is fulfilled by most commonly used impact laws, is used to significantly reduce the complexity of the distance function. Based on the simplified distance function, a Lyapunov function is constructed to investigate the synchronization problem for two identical one-dimensional mechanical systems. Sufficient conditions for the uncoupled individual systems are provided under which local synchronization is guaranteed. Furthermore, we present an interaction law which ensures global synchronization, also in the presence of grazing trajectories and accumulation points (Zeno behavior). The results are illustrated using numerical examples of a 1-DOF mechanical impact oscillator which serves as stepping stone in the direction of more general systems.

  1. A Detection of Milankovitch Periodocity in Records of Global Arc Volcanism

    Science.gov (United States)

    Jegen, M. D.; Kutterolf, S.; Mitrovica, J. X.; Kwasnitschka, T.; Freundt, A.; Huybers, P.

    2010-12-01

    The intervals between volcanic activity varies on a wide range of spatial and temporal scales, from less than a year in single volcanic systems to timescales of 10^6 years and longer in global volcanism. The causes of these timescales are poorly understood although the long-term global variations are likely linked to plate-tectonic processes. Here we present evidence for temporal changes in eruption frequencies at an intermediate timescale (10 000 years). In particular we use the Pleistocene to Recent records of widespread tephras of sub-Plinian to Plinian, and occasionally co-ignimbrite origin, along the Pacific Ring of Fire, which accounts for about half of the global length of 44,000 km of active subduction. Eruptions at arc volcanoes tend to be highly explosive and the well-preserved tephra records from the ocean floor can be assumed to be representative of how eruption frequencies varied with time. We show that volcanic activity along the Pacific Ring of Fire evolved through alternating intervals of high and low activity; although there are regional differences, these variations in activity have a statistically significant periodicity of approximately 41 ka that matches the temporal variation in the Earth's obliquity. This suggests that the timescale of volcanic activity is controlled by effects of global climate changes which result in redistribution of water masses between oceans and polar ice caps. While our statistical correlations suggest that the timescale of volcanic activity is controlled by effects of global climate changes, the physical nature of these effects is presently investigated.

  2. Unrest within a large rhyolitic magma system at Laguna del Maule volcanic field (Chile) from 2007 through 2013: geodetic measurements and numerical models

    Science.gov (United States)

    Le Mevel, H.; Cordova, L.; Ali, S. T.; Feigl, K. L.; DeMets, C.; Williams-Jones, G.; Tikoff, B.; Singer, B. S.

    2013-12-01

    The Laguna del Maule (LdM) volcanic field is remarkable for its unusual concentration of post-glacial rhyolitic lava coulées and domes that erupted between 25 and 2 thousand years ago. Covering more than 100 square kilometers, they erupted from 24 vents encircling a lake basin approximately 20 km in diameter on the range crest of the Andes. Geodetic measurements at the LdM volcanic field show rapid uplift since 2007 over an area more than 20 km in diameter that is centered on the western portion of the young rhyolite domes. By quantifying this active deformation and its evolution with time, we aim to investigate the storage conditions and dynamic processes in the underlying rhyolitic reservoir that drive the ongoing inflation. Analyzing interferometric synthetic aperture radar (InSAR) data, we track the rate of deformation. The rate of vertical uplift is negligible from 2003 to 2004, accelerates from at least 200 mm/yr in 2007 to more than 300 mm/yr in 2012, and then decreases to 200mm/yr in early 2013. To describe the deformation, we use a simple model that approximates the source as a 8 km-by-6 km sill at a depth of 5 km, assuming a rectangular dislocation in a half space with uniform elastic properties. Between 2007 and 2013, the modeled sill increased in volume by at least 190 million cubic meters. Four continuous GPS stations installed in April 2012 around the lake confirm this extraordinarily high rate of vertical uplift and a substantial rate of radial expansion. As of June 2013, the rapid deformation persists in the InSAR and GPS data. To describe the spatial distribution of material properties at depth, we are developing a model using the finite element method. This approach can account for geophysical observations, including magneto-telluric measurements, gravity surveys, and earthquake locations. It can also calculate changes in the local stress field. In particular, a large increase in stress in the magma chamber roof could lead to the initiation and

  3. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems

    Science.gov (United States)

    Nordstrom, D. Kirk; Guo, Qinghai; McCleskey, R. Blaine

    2014-01-01

    Explanations for the lack of acid geothermal springs in Tibet are inferred from a comprehensive hydrochemical comparison of Tibetan geothermal waters with those discharged from Yellowstone (USA) and two active volcanic areas, Nevado del Ruiz (Colombia) and Miravalles (Costa Rica) where acid springs are widely distributed and diversified in terms of geochemical characteristic and origin. For the hydrothermal areas investigated in this study, there appears to be a relationship between the depths of magma chambers and the occurrence of acid, chloride-rich springs formed via direct magmatic fluid absorption. Nevado del Ruiz and Miravalles with magma at or very close to the surface (less than 1–2 km) exhibit very acidic waters containing HCl and H2SO4. In contrast, the Tibetan hydrothermal systems, represented by Yangbajain, usually have fairly deep-seated magma chambers so that the released acid fluids are much more likely to be fully neutralized during transport to the surface. The absence of steam-heated acid waters in Tibet, however, may be primarily due to the lack of a confining layer (like young impermeable lavas at Yellowstone) to separate geothermal steam from underlying neutral chloride waters and the possible scenario that the deep geothermal fluids below Tibet carry less H2S than those below Yellowstone.

  4. Volcanic air pollution hazards in Hawaii

    Science.gov (United States)

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  5. A Single Deformed Bow Shock for Titan-Saturn System

    Science.gov (United States)

    Sulaiman, A. H.; Omidi, N.; Kurth, W. S.; Madanian, H.; Cravens, T.; Sergis, N.; Dougherty, M. K.; Edberg, N. J. T.

    2017-12-01

    During periods of high solar wind pressure, Saturn's bow shock is pushed inside Titan's orbit exposing the moon and its ionosphere to the supersonic solar wind. The Cassini spacecraft's T96 encounter with Titan occurred during such a period and is the subject of this presentation. The observations during this encounter show evidence for the presence of outbound and inbound shock crossings associated with Saturn and Titan. They also reveal the presence of two foreshocks: one between the outbound Kronian and inbound Titan bow shocks (foreshock-1) and the other between the outbound Titan and inbound Kronian bow shocks (foreshock-2). Using electromagnetic hybrid (kinetic ions, fluid electrons) simulations and Cassini observations we show that the origin of foreshock-1 is tied to the formation of a single deformed bow shock for the Titan-Saturn system. We also report for the first time, the observations of spontaneous hot flow anomalies (SHFAs) in foreshock-1 making Saturn the fourth planet this phenomenon has been observed and indicating its universal nature. The results of hybrid simulations also show the generation of oblique fast magnetosonic waves upstream of the outbound Titan bow shock in agreement with the observations of large amplitude magnetosonic pulsations in foreshock-2. The formation of a single deformed bow shock results in unique foreshock-bow shock or foreshock-foreshock geometries. For example, the presence of Saturn's foreshock upstream of Titan's quasi-perpendicular bow shock result in ion acceleration through a combination of shock drift and Fermi processes. We also discuss the implications of a single deformed bow shock for Saturn's magnetopause and magnetosphere.

  6. Heavy metals in the volcanic environment and thyroid cancer.

    Science.gov (United States)

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2017-12-05

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  7. Geothermal systems in the Sunda volcanic island arc : Investigations on the islands of Java and Bali, Indonesia

    OpenAIRE

    Purnomo, Budi Joko

    2015-01-01

    The different physicochemical characteristics between volcano-hosted and fault-hosted on the Java island were determined. Boron isotope was applied to further distinguish the two geothermal systems. The possibility of a carbonate sedimentary basement as the host-rock of geothermal systems on the Bali island was investigated. The volcano-hosted had higher HCO3- contents and Mg/Na ratios compared the fault-hosted due to the CO2 magmatic gas supply. The reservoir temperature and lithium (Li) enr...

  8. The relationship between carbonate facies, volcanic rocks and plant remains in a late Palaeozoic lacustrine system (San Ignacio Fm, Frontal Cordillera, San Juan province, Argentina)

    Science.gov (United States)

    Busquets, P.; Méndez-Bedia, I.; Gallastegui, G.; Colombo, F.; Cardó, R.; Limarino, O.; Heredia, N.; Césari, S. N.

    2013-07-01

    The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the

  9. Performance characterization of pneumatic single pellet injection system

    International Nuclear Information System (INIS)

    Schuresko, D.D.; Milora, S.L.; Hogan, J.T.; Foster, C.A.; Combs, S.K.

    1982-01-01

    The Oak Ridge National Laboratory single-shot pellet injector, which has been used in plasma fueling experiments on ISX and PDX, has been upgraded and extensively instrumented in order to study the gas dynamics of pneumatic pellet injection. An improved pellet transport line was developed which utilizes a 0.3-cm-diam by 100-cm-long guide tube. Pellet gun performance was characterized by measurements of breech and muzzle dynamic pressures and by pellet velocity and mass determinations. Velocities up to 1.4 km/s were achieved for intact hydrogen pellets using hydrogen propellant at 5-MPa breech pressure. These data have been compared with new pellet acceleration calculations which include the effects of propellant friction, heat transfer, time-dependent boundary conditions, and finite gun geometry. These results provide a basis for the extrapolation of present-day pneumatic injection system performance to velocities in excess of 2 km/s

  10. An improved system of detecting single event effect in SRAM

    International Nuclear Information System (INIS)

    Tong Teng; Wang Xiaohui; Zhang Zhangang; Liu Tianqi; Gu Song; Yang Zhenlei; Su Hong; Liu Jie

    2014-01-01

    The material research center in Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS) have made a fruitful achievements in the research of single event effects (SEEs) occurring in static random access memory (SRAM). However, there are some drawbacks exist in the two systems of detecting SEE owning by the material research center. Therefore, an improved method of detecting SEE is proposed, and the method functionality is implemented in a circuit. Further, a sequence of experiments are carried out in the beam radiation terminal of the Heavy Ion Facility in Lanzhou (HIRFL), and a bunch of experimental data are collected. The irradiation tests were carried out using 129 Xe for the SEE research of 65 nm SRAMs; Using 12 C for the SEE research of the 65, 130 and 150 nm SRAMs with ECC module; Using 129 Xe for the SEL research of the common commercial SRAMs and so on. These experiments provide a statistical evidence of the effectiveness and robustness of the improved system. It is believed that the proposed system will be beneficial for detecting SEE in diverse settings, and it could be taken advantage of as a platform for future research on SEE tests in more intricate devices. (authors)

  11. Memory under stress: from single systems to network changes.

    Science.gov (United States)

    Schwabe, Lars

    2017-02-01

    Stressful events have profound effects on learning and memory. These effects are mainly mediated by catecholamines and glucocorticoid hormones released from the adrenals during stressful encounters. It has been known for long that both catecholamines and glucocorticoids influence the functioning of the hippocampus, a critical hub for episodic memory. However, areas implicated in other forms of memory, such as the insula or the dorsal striatum, can be affected by stress as well. Beyond changes in single memory systems, acute stress triggers the reconfiguration of large scale neural networks which sets the stage for a shift from thoughtful, 'cognitive' control of learning and memory toward more reflexive, 'habitual' processes. Stress-related alterations in amygdala connectivity with the hippocampus, dorsal striatum, and prefrontal cortex seem to play a key role in this shift. The bias toward systems proficient in threat processing and the implementation of well-established routines may facilitate coping with an acute stressor. Overreliance on these reflexive systems or the inability to shift flexibly between them, however, may represent a risk factor for psychopathology in the long-run. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. On the climatic implications of volcanic cooling

    Science.gov (United States)

    Lindzen, Richard S.; Giannitsis, Constantine

    1998-03-01

    A simple energy balance model is used to investigate the response to a volcanic-type radiative forcing under different assumptions about the climatic sensitivity of the system. Volcanic eruptions are used as control experiments to investigate the role of the ocean-atmosphere coupling and of diffusive heat uptake by the thermocline. The effect of varying equilibrium climate sensitivity by varying the coupling of the atmosphere and ocean is examined, high sensitivity being associated with weak coupling. A model representing a coupled land-ocean system, with a reasonably realistic representation of the large-scale physics is used. It is found that systems with large equilibrium sensitivities not only respond somewhat more strongly to radiative perturbations but also return to equilibrium with much longer timescales. Based on this behavior pattern, we examine the model response to a series of volcanic eruptions following Krakatoa in 1883. Comparison between the model results and past temperature records seems to suggest that use of small sensitivity parameters is more appropriate. Despite the uncertainties associated with both the physics and the quantitative characteristics of the radiative forcing and the temperature anomalies produced by volcanic eruptions, the present study constitutes a possible test of different assumptions about the sensitivity of the climate system.

  13. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Cook, A. F.; Hansen, C.

    1981-09-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  14. The Auckland Volcanic Field - a basaltic field showing random behavior?

    Science.gov (United States)

    Le Corvec, N.; Rowland, J. V.; Lindsay, J. M.

    2012-04-01

    Basaltic monogenetic volcanism is a worldwide phenomenon typically producing fields of volcanic centers that increase in number with time. The process of field growth is not constant but punctuated by single eruptions, flare-ups and hiatuses. The development of a volcanic field involves physical processes that occur in the mantle, where batches of basaltic magma originate, and within the intervening lithosphere through which magma is transferred to the surface. The spatial and temporal distribution of volcanic centers within such volcanic fields results from, and thus may provide insights to, these physical processes (e.g., magma production, tectonic controls), thereby aiding in our understanding of a volcanic field's future development. The Auckland Volcanic Field (AVF), which lies in the most populated area of New Zealand, comprises 50 volcanic centers and produced its last eruption ~600 years ago. A recent study has provided a relative chronology of the entire sequence of eruptions, which is here used together with the spatial distribution of volcanic centers to investigate the evolution of the field in time and space. Two methods were used: 1) the Poisson Nearest Neighbor (PNN) analysis which evaluates the spatial distribution of a natural population over the spatial distribution of a statistical random model, the Poisson model; and 2) the Voronoi analysis which evaluates the spatial characteristics of each volcanic center by dividing a region (i.e., the volcanic field) into a set of polygons. The results of the PNN analysis show that the temporal evolution of the spatial distribution of the volcanic centers within the AVF follows the Poisson model, therefore they cannot be used to extrapolate the future evolution of the volcanic field. The preliminary results of the Voronoi analysis show in combination with the geochemical signatures from some volcanic centers a possible zonation within the source region, and/or the magmas may be variably affected on their way

  15. Flagellates as model system for gravity detection of single cells

    Science.gov (United States)

    Lebert, Michael; Richter, Peter; Daiker, Viktor; Schuster, Martin; Tebart, Jenny; Strauch, Sebastian M.; Donat-Peter, H.

    Euglena gracilis is a unicellular, photosynthetic organism which uses light and gravity as en-vironmental hints to reach and stay in horizons of the water column which are optimal for growth and reproduction. The orientation in respect to light (so called positive and nega-tive phototaxis, i.e. movement toward or away of a light source) was well known and fairly good understood. In contrast, knowledge about the movement away from the centre of gravity (negative gravitaxis) was rather scarce. Over a century it was unclear whether orientation in respect to the gravity vector is based on a physical or a physiological mechanism. Recent results clearly favour the latter. Knock-down mutants (RNAi) were characterized which define certain key components of the gravitactic signal transduction chain. These key components include a TRP-like channel, a gravitaxis-specific calmodulin and a protein kinase A. The molecular characterization of these components is currently performed and will be presented. Euglena is not only a model system for the close understanding of gravity detection in single cells, but can also be used as photosynthetic component, i.e. oxygen source and carbon dioxide as well as nitrogenic components sink in Closed Environmental Systems (CES). Due CES are systems of choice in times of scarce flight opportunities. They allow a massive sample sharing and combine possibilities to do microgravity research for biologists but also for engineers, physicists and material scientists. Recent attempts include Aquacells and Omegahab. In the near future miniaturized systems (Chinese ShenZhou) as well as advanced CES will be flown or tested, respectively. Current attempts and plans will be presented.

  16. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  17. The History of a Plutonic-Volcanic System Determined from Compositional and Mineral Inclusion Mapping of Alkali Feldspar Megacrysts

    Science.gov (United States)

    Belfanti, S. A. D.; Gualda, G. A. R.

    2017-12-01

    Alkali-feldspar megacrysts (2-20 cm long) occur in many granitic rocks, providing extensive records of crystallization within magma bodies. We will use megacrysts from Yosemite National Park's Tuolumne Intrusive Suite to determine if and how megacrysts record recharge and eruption. Preliminary work has focused on 4 crystals. Based on BSE patterns, crystals can be divided into 3 zones: (1) the core, which represents the crystal's first growth and sometimes displays some resorption; (2) the interior, including a series of sub-zones that correspond to different growth periods; and (3) the rim, or outermost growth stage. Common BSE patterns include decreasing brightness from the inner portion of a growth period outward, increasing brightness towards either side of a boundary, and periods of constant brightness, for a full or partial period. Most mineral inclusions appear as single crystals ( 10-25%) or as groups of 2-4 crystals ( 60-75%). Large clusters of 10 or more individuals are less common ( 5-15%), and clusters of >20 crystals are rare ( 1-3%). Most crystals (85-95%) occur on growth boundaries or within the core. Magnetite is common in the more central parts of the interior zone, appearing only occasionally in the core and towards the rim. Accessories, amphibole, and biotite are more evenly distributed within the megacryst. Biotite and titanite grains large enough to display habit appear to be within 20 degrees of parallel with zone boundaries. Most other inclusions are small or not elongated enough to display clear alignment. The total volume of inclusions (excluding quartz and plagioclase, which have X-ray attenuation very similar to that of alkali feldspar) does not exceed 1% of megacryst volume. Plagioclase seems to be at least equal in volume to all other inclusions combined, but as noted above, its exact volume is currently indiscernible. Magnetite makes up about 1/6 of inclusion volume, zircon 1/3, and all others the remaining half. We will complement our

  18. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  19. Delineation of the High Enthalpy Reservoirs of the Sierra Nevada Volcanic Geothermal System, South-Central Chile

    Science.gov (United States)

    Alam, M.; Muñoz, M.; Parada, M.

    2011-12-01

    Geothermal system associated with the Pleistocene-Holocene Sierra Nevada volcano (SNVGS) in the Araucanía Region of Chile has surface manifestations from the north-western flank of the volcano, up to Manzanar and Malalcahuello. Baños del Toro, located on the northwestern flank of the volcano, has numerous fumaroles and acid pools (acid sulfate waters, T=~90°C, pH=2.1, TDS=3080 mg/L); while Aguas de la Vaca, near the base of the volcano, has a bubbling spring (chloride-sulfate waters, T=~60°C, pH=7.0, TDS=950 mg/L). Five shallow (Geotermia) of the Ministry of Energy and Mining, Government of Chile.

  20. Screening criteria of volcanic hazards aspect in the NPP site evaluation

    International Nuclear Information System (INIS)

    Nur Siwhan

    2013-01-01

    Studies have been conducted on the completeness of regulation in Indonesia particularly on volcanic hazards aspects in the evaluation of nuclear power plant site. Volcanic hazard aspect needed to identify potential external hazards that may endanger the safety of the operation of nuclear power plants. There are four stages for evaluating volcanic hazards, which are initial assessment, characterization sources of volcanic activity in the future, screening volcanic hazards and assessment of capable volcanic hazards. This paper discuss the third stage of the general evaluation which is the screening procedure of volcanic hazards. BAPETEN Chairman Regulation No. 2 Year of 2008 has only one screening criteria for missile volcanic phenomena, so it required screening criteria for other hazard phenomena that are pyroclastic flow density; lava flows; avalanche debris materials; lava; opening hole new eruptions, volcano missile; tsunamis; ground deformation; and hydrothermal system and ground water anomaly. (author)

  1. Distinguishing high surf from volcanic long-period earthquakes

    Science.gov (United States)

    Lyons, John; Haney, Matt; Fee, David; Paskievitch, John F.

    2014-01-01

    Repeating long-period (LP) earthquakes are observed at active volcanoes worldwide and are typically attributed to unsteady pressure fluctuations associated with fluid migration through the volcanic plumbing system. Nonvolcanic sources of LP signals include ice movement and glacial outburst floods, and the waveform characteristics and frequency content of these events often make them difficult to distinguish from volcanic LP events. We analyze seismic and infrasound data from an LP swarm recorded at Pagan volcano on 12–14 October 2013 and compare the results to ocean wave data from a nearby buoy. We demonstrate that although the events show strong similarity to volcanic LP signals, the events are not volcanic but due to intense surf generated by a passing typhoon. Seismo-acoustic methods allow for rapid distinction of volcanic LP signals from those generated by large surf and other sources, a critical task for volcano monitoring.

  2. The excitation and characteristic frequency of the long-period volcanic event: An approach based on an inhomogeneous autoregressive model of a linear dynamic system

    Science.gov (United States)

    Nakano, Masaru; Kumagai, Hiroyuki; Kumazawa, Mineo; Yamaoka, Koshun; Chouet, Bernard A.

    1998-05-01

    We present a method to quantify the source excitation function and characteristic frequencies of long-period volcanic events. The method is based on an inhomogeneous autoregressive (AR) model of a linear dynamic system, in which the excitation is assumed to be a time-localized function applied at the beginning of the event. The tail of an exponentially decaying harmonic waveform is used to determine the characteristic complex frequencies of the event by the Sompi method. The excitation function is then derived by operating an AR filter constructed from the characteristic frequencies to the entire seismogram of the event, including the inhomogeneous part of the signal. We apply this method to three long-period events at Kusatsu-Shirane Volcano, central Japan, whose waveforms display simple decaying monochromatic oscillations except for the beginning of the events. We recover time-localized excitation functions lasting roughly 1 s at the start of each event and find that the estimated functions are very similar to each other at all the stations of the seismic network for each event. The phases of the characteristic oscillations referred to the estimated excitation function fall within a narrow range for almost all the stations. These results strongly suggest that the excitation and mode of oscillation are both dominated by volumetric change components. Each excitation function starts with a pronounced dilatation consistent with a sudden deflation of the volumetric source which may be interpreted in terms of a choked-flow transport mechanism. The frequency and Q of the characteristic oscillation both display a temporal evolution from event to event. Assuming a crack filled with bubbly water as seismic source for these events, we apply the Van Wijngaarden-Papanicolaou model to estimate the acoustic properties of the bubbly liquid and find that the observed changes in the frequencies and Q are consistently explained by a temporal change in the radii of the bubbles

  3. Long-period (12sec) Volcanic Tremor Observed at Usu 2000 Eruption: Seismological Detection of a Deep Magma Plumbing system

    Science.gov (United States)

    KAWAKATSU, H.; YAMAMOTO, M.

    2001-12-01

    Mt. Usu is a dacitic stratovolcano located in southwestern Hokkaido, Japan, and has erupted repeatedly (in 1910, 1943-45, and 1977-78). In the end of March 2000, after twenty some years of quiescence, Usu volcano began its activity with an intensive earthquake swarm. After several days of the earthquake swarm, on March 31, 2000, the eruption began at the northwest foot of the volcano. We have installed five broadband seismometers around the volcano, and detected long period (12 sec) tremors (hereafter called LPTs) which are continually emitted from the volcano. Although these LPTs are continually observed at an interval of a few minutes, there exist no corresponding surface activities such as eruptions. The source of these LPTs are located relatively deep at a depth of 5 km, and their amplitude variation well correlates with the uplift rate of the eruption area. We thus attribute these LPTs to the flow induced vibration of a magma chamber and its outlet located around the source region of the LPTs. The estimated moment tensor for LPTs shows a reversed polarity for the isotropic and CLVD components. This is consistent with a combination of a deflating spherical source and an inflating crack which opens northwestern direction toward the eruption site. The volumetric magma flow rate may be estimated from the observed RMS amplitude of LPT through a seismic moment rate, and turns out to be around 3*E5 m3 per day. Geodetic observations report the volume change of the order of 107 m3 within the first few days. It appears that the volume flow rate estimated from LPTs is about one order of magnitude smaller than that of the actual flow rate. This may be reasonable if we consider that through seismic waves we are observing a fluctuating part of the magma flow. This may be the first seismological detection of dynamics of a main magma plumbing system beneath volcanos directly related to eruption activities.

  4. Real Time Volcanic Cloud Products and Predictions for Aviation Alerts

    Science.gov (United States)

    Krotkov, Nickolay A.; Habib, Shahid; da Silva, Arlindo; Hughes, Eric; Yang, Kai; Brentzel, Kelvin; Seftor, Colin; Li, Jason Y.; Schneider, David; Guffanti, Marianne; hide

    2014-01-01

    Volcanic eruptions can inject significant amounts of sulfur dioxide (SO2) and volcanic ash into the atmosphere, posing a substantial risk to aviation safety. Ingesting near-real time and Direct Readout satellite volcanic cloud data is vital for improving reliability of volcanic ash forecasts and mitigating the effects of volcanic eruptions on aviation and the economy. NASA volcanic products from the Ozone Monitoring Insrument (OMI) aboard the Aura satellite have been incorporated into Decision Support Systems of many operational agencies. With the Aura mission approaching its 10th anniversary, there is an urgent need to replace OMI data with those from the next generation operational NASA/NOAA Suomi National Polar Partnership (SNPP) satellite. The data provided from these instruments are being incorporated into forecasting models to provide quantitative ash forecasts for air traffic management. This study demonstrates the feasibility of the volcanic near-real time and Direct Readout data products from the new Ozone Monitoring and Profiling Suite (OMPS) ultraviolet sensor onboard SNPP for monitoring and forecasting volcanic clouds. The transition of NASA data production to our operational partners is outlined. Satellite observations are used to constrain volcanic cloud simulations and improve estimates of eruption parameters, resulting in more accurate forecasts. This is demonstrated for the 2012 eruption of Copahue. Volcanic eruptions are modeled using the Goddard Earth Observing System, Version 5 (GEOS-5) and the Goddard Chemistry Aerosol and Radiation Transport (GOCART) model. A hindcast of the disruptive eruption from Iceland's Eyjafjallajokull is used to estimate aviation re-routing costs using Metron Aviation's ATM Tools.

  5. Contrasting estimates on the depth of magma storage zones in volcanic systems from mineral barometry and phase equilibrium experiments: a case study from Mount Merapi, Indonesia

    Science.gov (United States)

    Erdmann, Saskia; Martel, Caroline

    2015-04-01

    Mount Merapi, located in central Java, erupts on average every 5-10 years by discharging block-and-ash flows that pose local, but spatially restricted hazards. In 2010, however, the volcano erupted with a force that has been unprecedented in over 100 years. Its proximity to the metropolis of Yogyakarta with a population of >4 million makes short- and long-term eruption forecasting a task of vital importance. Critical to the appraisal of the volcano's hazard potential are tight constraints on its upper-crustal magma plumbing system and particularly on the location of its pre-eruptive reservoir. Previous petrological studies have estimated on the basis of amphibole and clinopyroxene barometry that the main magma storage zone below Merapi is located at depths of >10-15 km, while geophysical surveys have inferred significant magma storage zones at depths of ~5.5-9 km. We have carried out phase equilibrium experiments on basaltic andesite erupted in 2010, which indicate that the main pre-eruptive reservoir is located at a depth of ~7-8 km (~200 MPa). Our results thus corroborate the findings of earlier geophysical surveys and highlight the extreme uncertainty of mineral-based pressure estimates for volcanic magma systems. We point out that the commonly employed amphibole barometric calibrations of Ridolfi et al. (2010) and Ridolfi & Renzulli (2012) calculate low crystallization pressure for amphibole crystallized from felsic melt and high crystallization pressure for amphibole crystallized from mafic melt, and that the calculated pressure is thus largely unrelated to true values. Commonly employed clinopyroxene barometers (e.g., those of Nimis 1999; Putirka 2008) are also of limited use for estimating the location of crustal magma reservoirs, because the methods have large standard errors and are extremely temperature-sensitive. As a result, the calculated crystallization pressures inevitably indicate crystallization over a large range of depths, often from deep- to

  6. Electrical conduction and photoresponses of gamma-ray-irradiated single-stranded DNA/single-walled carbon nanotube composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Hong, W.; Lee, E.M.; Kim, D.W.; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr

    2015-04-15

    Highlights: •Effects of gamma-ray irradiation on single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. •Barrier for thermally activated conduction in the composite systems modified by the gamma-ray irradiation. •Photoresponses reveal photoexcitation and oxygen photodesorption modified by gamma-ray irradiation. -- Abstract: Effects of gamma-ray irradiation on the electrical conductivity and photoresponse have been studied for single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. The temperature-dependent electrical conductivity of the ssDNA/SWNT composite films, well described by a fluctuation-induced tunneling model, indicated modification of the barrier for thermally activated conduction by the gamma-ray irradiation. Besides, the photoresponse measurements indicated modified photoexcited charge carrier generation and oxygen photodesorption in the composite systems due to the gamma-ray irradiation.

  7. Pre-eruptive volatile and erupted gas phase characterization of the 2014 basalt of Bárðarbunga volcanic system, Iceland.

    Science.gov (United States)

    Haddadi, Baptiste; Moune, Séverine; Sigmarsson, Olgeir; Gauthier, Pierre-Jean; Gouhier, Mathieu

    2015-04-01

    The 2014 Holuhraun eruption on the Bárðarbunga Volcanic System is the largest fissure eruption in Iceland since the 1783 Laki eruption. The eruption started end of August 2014 and has been characterized by large emission of SO2 into the atmosphere. It provides a rare opportunity to study in details magmatic and degassing processes during a large-volume fissure eruption. In order to characterize the pre-eruptive magmatic composition and to assess the plume chemistry at the eruption site, lava and tephra were sampled together with the eruption plume. The basalt composition is olivine tholeiite with MgO close to 7 wt%. It is phenocryst-poor with plagioclase as the dominant mineral phase but olivine and clinopyroxene are also present together with sulphide globules composed principally of pyrite and chalcopyrite. The volatile (S, Cl and F) and major element concentrations were measured by the electron microprobe in melt inclusions (MIs) trapped in plagioclase and clinopyroxene and groundmass glass. The MIs composition ranges from fairly primitive basaltic compositions (MgO: 9.03 wt%) down to evolved qz-tholeiites (MgO: 5.57 wt%), with estimated pre-eruptive S concentrations of 1500 ppm. Tephra groundmass glass contains 400 ppm S, whereas Cl and F concentrations are respectively slightly lower and indistinguishable from those in the MIs. This implies limited exsolution of halogens but 75% of the initial sulphur content. Relatively to their total iron content, MIs are sulphur saturated, and their oxygen fugacity close to the FMQ buffer. The difference between the estimated initial volatile concentrations measured in the MIs and in the tephra groundmass (i.e. the so-called petrological method) yields 7.2 Mt SO2, limited HCl and no HF atmospheric mass loading from the Holuhraun 2014 eruption. The SO2/HCl molar ratio of the gas phase, calculated from the MIs, is 13 and 14, respectively, using average and estimated pre-eruptive S and Cl concentrations in the MIs. Filter

  8. Delayed Consensus Problem for Single and Double Integrator Systems

    Directory of Open Access Journals (Sweden)

    Martín Velasco-Villa

    2015-01-01

    Full Text Available This work deals with the analysis of the consensus problem for networks of agents constituted by single and double integrator systems. It is assumed that the communication among agents is affected by a constant time-delay. Previous and numerous analysis of the problem shows that the maximum communication time-delay that can be introduced to the network without affecting the consensus of the group of the agents depends on the considered topology. In this work, a control scheme that is based on the estimation of future states of the agents and that allows increasing the magnitude of a possible time-delay affecting the communication channels is proposed. How the proposed delay compensation strategy is independent of the network topology in the sense that the maximum allowable time-delay that could be supported by the network depends on a design parameter and not on the maximum eigenvalue of the corresponding Laplacian matrix is shown. It is formally proven that, under the proposed prediction scheme, the consensus of the group can be achieved by improving the maximum time-delay bounds previously reported in the literature. Numerical simulations show the effectiveness of the proposed solution.

  9. Single vs. dual color fire detection systems: operational tradeoffs

    Science.gov (United States)

    Danino, Meir; Danan, Yossef; Sinvani, Moshe

    2017-10-01

    In attempt to supply a reasonable fire plume detection, multinational cooperation with significant capital is invested in the development of two major Infra-Red (IR) based fire detection alternatives, single-color IR (SCIR) and dual-color IR (DCIR). False alarm rate was expected to be high not only as a result of real heat sources but mainly due to the IR natural clutter especially solar reflections clutter. SCIR uses state-of-the-art technology and sophisticated algorithms to filter out threats from clutter. On the other hand, DCIR are aiming at using additional spectral band measurements (acting as a guard), to allow the implementation of a simpler and more robust approach for performing the same task. In this paper we present the basics of SCIR & DCIR architecture and the main differences between them. In addition, we will present the results from a thorough study conducted for the purpose of learning about the added value of the additional data available from the second spectral band. Here we consider the two CO2 bands of 4-5 micron and of 2.5-3 micron band as well as off peak band (guard). The findings of this study refer also to Missile warning systems (MWS) efficacy, in terms of operational value. We also present a new approach for tunable filter to such sensor.

  10. Implementation of a single sign-on system between practice, research and learning systems.

    Science.gov (United States)

    Purkayastha, Saptarshi; Gichoya, Judy W; Addepally, Siva Abhishek

    2017-03-29

    Multiple specialized electronic medical systems are utilized in the health enterprise. Each of these systems has their own user management, authentication and authorization process, which makes it a complex web for navigation and use without a coherent process workflow. Users often have to remember multiple passwords, login/logout between systems that disrupt their clinical workflow. Challenges exist in managing permissions for various cadres of health care providers. This case report describes our experience of implementing a single sign-on system, used between an electronic medical records system and a learning management system at a large academic institution with an informatics department responsible for student education and a medical school affiliated with a hospital system caring for patients and conducting research. At our institution, we use OpenMRS for research registry tracking of interventional radiology patients as well as to provide access to medical records to students studying health informatics. To provide authentication across different users of the system with different permissions, we developed a Central Authentication Service (CAS) module for OpenMRS, released under the Mozilla Public License and deployed it for single sign-on across the academic enterprise. The module has been in implementation since August 2015 to present, and we assessed usability of the registry and education system before and after implementation of the CAS module. 54 students and 3 researchers were interviewed. The module authenticates users with appropriate privileges in the medical records system, providing secure access with minimal disruption to their workflow. No passwords requests were sent and users reported ease of use, with streamlined workflow. The project demonstrates that enterprise-wide single sign-on systems should be used in healthcare to reduce complexity like "password hell", improve usability and user navigation. We plan to extend this to work with other

  11. Sensitivity to volcanic field boundary

    Science.gov (United States)

    Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed

    2016-04-01

    Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and

  12. Electronprobe microanalysis of volcanic glass at cryogenic temperatures

    Science.gov (United States)

    Kearns, S.; Steen, N.; Erlund, E.

    2003-04-01

    Analysis of volcanic glass is of particular importance to volcanologists and petrologists. However, for many volcanic systems, the production of good quantitative analyses is problematic due to the interstitial nature of the glass and the instability of the sample under the impact of a high energy electron beam on the surface. Previous studies have established that alkali ions, especially sodium and potassium migrate away from the point of beam impact during routine EPMA of glasses yielding erroneous results. An initial study here has investigated the effects both at normal ambient temperature (298 K) and cryogenic temperature (83 K) by means of a liquid-nitrogen cooled cryo-stage across a broad range of volcanic glass compositions. The glasses studied have between 48 and 76 wt% SiO_2 and varying concentrations of sodium and potassium and other non-volatile components. The water content of each glass was independently determined by FTIR spectroscopy. All analyses were performed on a Cameca Camebax Micro operating under SAMX automation software. Under "normal" wavelength dispersive EPMA operating conditions, a typical analysis might take between two and four minutes depending on the number of spectrometers available, the number of elements analysed and the required precision and detection limits for the elements concerned. Results show that there is a strong relationship between initial temperature and stability of the alkali species during the course of a single analysis. Under cryogenic analytical conditions the glass is seen to be immune to the heating effects of the electron beam and alkali ions will remain stable in the sample. Consequently it is possible to analyse these materials with higher beam currents, smaller spot sizes and longer dwell times than is possible under ambient temperature conditions. Analysis performed using the cryo-stage can yield a marked improvement in the precision and detection limits of both major and minor elements compared with

  13. Uranium series, volcanic rocks

    Science.gov (United States)

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  14. OPE3 : A model system for single-molecule transport

    NARCIS (Netherlands)

    Frisenda, R.

    2016-01-01

    In this dissertation, charge-transport through individual organic molecules is investigated. The single molecules are contacted with two-terminal mechanically controllable break junction gold electrodes and their electrical and mechanical behavior studied at room and low temperature.

  15. Climatic Impact of Volcanic Eruptions

    Directory of Open Access Journals (Sweden)

    Gregory A. Zielinski

    2002-01-01

    Full Text Available Volcanic eruptions have the potential to force global climate, provided they are explosive enough to emit at least 1–5 megaton of sulfur gases into the stratosphere. The sulfuric acid produced during oxidation of these gases will both absorb and reflect incoming solar radiation, thus warming the stratosphere and cooling the Earth’s surface. Maximum global cooling on the order of 0.2–0.3°C, using instrumental temperature records, occurs in the first 2 years after the eruption, with lesser cooling possibly up to the 4th year. Equatorial eruptions are able to affect global climate, whereas mid- to high-latitude events will impact the hemisphere of origin. However, regional responses may differ, including the possibility of winter warming following certain eruptions. Also, El Niño warming may override the cooling induced by volcanic activity. Evaluation of different style eruptions as well as of multiple eruptions closely spaced in time beyond the instrumental record is attained through the analysis of ice-core, tree-ring, and geologic records. Using these data in conjunction with climate proxy data indicates that multiple eruptions may force climate on decadal time scales, as appears to have occurred during the Little Ice Age (i.e., roughly AD 1400s–1800s. The Toba mega-eruption of ~75,000 years ago may have injected extremely large amounts of material into the stratosphere that remained aloft for up to about 7 years. This scenario could lead to the initiation of feedback mechanisms within the climate system, such as cooling of sea-surface temperatures. These interacting mechanisms following a mega-eruption may cool climate on centennial time scales.

  16. Vibration isolation systems, considered as systems with single degree of freedom

    Directory of Open Access Journals (Sweden)

    Zebilila Mohammed

    2017-01-01

    Full Text Available The research considers and analyzes vibration isolation systems, whose design schemes are single degree of freedom systems, including nonlinear elements - displacement limiter and viscous damper. Presented are calculation formulas in closed form for linear systems in operational modes (for harmonic and impulse loads, algorithms and examples of calculation of linear and nonlinear systems in operational and transient modes. The calculation method and the above dependences are written using the transfer (TF and impulse response functions (IRF of linear dynamical systems and dependencies that determine the relationship between these functions. The effectiveness of 2 options of vibration isolation systems in transient modes is analyzed. There is significant reduction of load from the equipment to the supporting structures in the starting-stopping modes by the use of displacement limiter.

  17. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  18. Microphysical Properties of Alaskan Volcanic Ash

    Science.gov (United States)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved

  19. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  20. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...... and analyses light reflected from the polymer-based single- mode fibre-optic sensor system....

  1. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-09-23

    Explosive volcanic eruptions are magnificent events that in many ways affect the Earth\\'s natural processes and climate. They cause sporadic perturbations of the planet\\'s energy balance, activating complex climate feedbacks and providing unique opportunities to better quantify those processes. We know that explosive eruptions cause cooling in the atmosphere for a few years, but we have just recently realized that volcanic signals can be seen in the subsurface ocean for decades. The volcanic forcing of the previous two centuries offsets the ocean heat uptake and diminishes global warming by about 30%. The explosive volcanism of the twenty-first century is unlikely to either cause any significant climate signal or to delay the pace of global warming. The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial aerosol layer in the lower stratosphere to counteract global warming. In this chapter we aim to discuss these recently discovered volcanic effects and specifically pay attention to how we can learn about the hidden Earth-system mechanisms activated by explosive volcanic eruptions. To demonstrate these effects we use our own model results when possible along with available observations, as well as review closely related recent publications.

  2. Benefits of a single payment system: case study of Abu Dhabi health system reforms.

    Science.gov (United States)

    Vetter, Philipp; Boecker, Klaus

    2012-12-01

    In 2005 leaders in the wealthy Emirate of Abu Dhabi inherited an health system from their predecessors that was well-intentioned in its historic design, but that did not live up to aspirations in any dimension. First, the Emirate defined a vision to deliver "world-class" quality care in response to citizen's needs. It has since introduced tiered mandatory health insurance for all inhabitants linked to a single standard payment system, which generates accurate data as an invaluable by-product. A newly created independent health system regulator monitors these data and licenses, audits, and inspects all health service professionals, facilities, and insurers accordingly. We analyse these health system reforms using the "Getting Health Reform Right" framework. Our analysis suggests that an integrated set of reforms addressing all reform levers is critical to achieving the outcomes observed. The reform programme has improved access, by giving all residents health cards. The approximate doubling of demand has been matched by flexible supply, with the private sector adding 5 new hospitals and 93 clinics to the health system infrastructure since 2006. The focus on reliable raw-data flows through the single standard payment system functions as a motor for improvement services, innovation, and investment, for instance by allowing payers to 'pay for quality', which may well be applicable in other contexts. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. DYNAMICS OF MAGMA IN THE PLUMBING SYSTEM OF MT. ETNA VOLCANO, SICILY, ITALY: A CONTRIBUTION FROM PETROLOGIC DATA OF VOLCANICS ERUPTED FROM 2007 TO 2009

    Science.gov (United States)

    Corsaro, R.; Miraglia, L.

    2009-12-01

    Geophysical, volcanological, geochemical and petrologic studies performed during last decades, greatly improved the knowledge of Mt. Etna’s plumbing system. In particular the petrologic data have shown that Etnean magmas differentiate for the interplay of complex processes such as crystal fractionation, mixing, interaction with crustal and mantle-derived fluids. Here we investigate the dynamics of magma residing during the last years in the shallow portion of Mt. Etna plumbing system (less than 5 km b.s.l.), which has been erupted by the summit South East Crater (SEC) in 2007 and 2008 and during the flank eruption from 13 May 2008 to 6 July 2009. The volcanic activity in the selected period showed different eruptive styles such as lava effusion, Strombolian explosions and/or fire-fountains. Petrography, mineral chemistry, major, trace elements, Sr/Nd isotopes have been acquired for products erupted from 2007 to 2009, allowing to identify the main magmatic processes modifying magma composition during its storage in the shallow plumbing system and controlling the eruptive styles. Our results highlight that the variable composition of magma erupted by SEC during the several fire fountains from 2007 to 2008, can be mainly explained with a crystal fractionation in the shallow plumbing system. This process is sporadically associated with the input of a more primitive magma from depth that mixes with the one already stored and is erupted during the fire fountains of 29 March and 4 September 2007. The other SEC paroxysms which are not strictly associated with the arrival of a more primitive magma, seem to be driven by the dynamic of a bubble-melt mixture in the SEC reservoir. The flank eruption starting on 13 May 2008 from a fissure at about 2800 m a.s.l, occurs just a few days after the SEC fire fountain of 10 May 2008. The products erupted during the first days of the flank eruption are very similar to tephra of 10 May SEC paroxysm, suggesting that the eruption

  4. ASSESSMENT of POTENTIAL CARBON DIOXIDE-BASED DEMAND CONTROL VENTILATION SYSTEM PERFORMANCE in SINGLE ZONE SYSTEMS

    Science.gov (United States)

    2013-03-21

    requirements of a 400 m3 space in a multiuse facility in South Korea using two types of DCV systems—one CO2-based and the other uses a radio frequency...identification (RFID) device to detect zone occupancy 25 (Jeong et al., 2010). A dedicated outdoor air system supplies ventilation air to the zone...use a known control scheme (ASHRAE, 2010b). Carbon Dioxide Sensor Modeling Case Study 2 While the first case study examines a single multiuse

  5. Integrating Ground System Tools From Multiple Technologies Into a Single System Environment

    Science.gov (United States)

    Ritter, George H.

    2004-01-01

    With rapid technology changes and new and improved development techniques, it becomes extremely difficult to try to add capabilities to existing ground systems without wanting to replace the entire system. Replacing entire systems is not usually cost effective so there is a need to be able to slowly improve systems without long development times that introduce risk due to large amounts of change. The Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) ground system provides command, telemetry, and payload planning systems in support of the International Space Station. Our systems have continuously evolved with technology changes due to hardware end of life issues, and also due to user requirement changes. As changes have been implemented, we have tried to take advantage of some of the latest technologies while at the same time maintaining certain legacy capabilities that are not cost affective to replace. One of our biggest challenges is to integrate all of these implementations into a single system that is usable, maintainable, and scalable. Another challenge is to provide access to our tools in such a way that users are not aware of all the various implementation methods and tools being used. This approach not only makes our system much more usable, it allows us to continue to migrate capabilities and to add capabilities without impacting system usability. This paper will give an overview of the tools used for MSFC ISS payload operations and show an approach for integrating various technologies into a single environment that is maintainable, flexible, usable, cost effective, and that meets user needs.

  6. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    Science.gov (United States)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  7. Load compensation for single phase system using series active filter

    African Journals Online (AJOL)

    user

    Abstract. The exponentially rising application of power electronics based appliances in Domestic Consumer Voltage Distribution. System (DCVDS) has enhanced power quality problems even at the lowest voltage level in distribution system. Starting from transmission system to low voltage distribution system, quite a good ...

  8. California's Vulnerability to Volcanic Hazards: What's at Risk?

    Science.gov (United States)

    Mangan, M.; Wood, N. J.; Dinitz, L.

    2015-12-01

    California is a leader in comprehensive planning for devastating earthquakes, landslides, floods, and tsunamis. Far less attention, however, has focused on the potentially devastating impact of volcanic eruptions, despite the fact that they occur in the State about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have occurred in the past 1,000 years—most recently in northern California (Lassen Peak 1914 to 1917)—and future volcanic eruptions are inevitable. The likelihood of renewed volcanism in California is about one in a few hundred to one in a few thousand annually. Eight young volcanoes, ranked as Moderate to Very High Threat [1] are dispersed throughout the State. Partially molten rock (magma) resides beneath at least seven of these—Medicine Lake Volcano, Mount Shasta, Lassen Volcanic Center, Clear Lake Volcanic Field, Long Valley Volcanic Region, Coso Volcanic Field, and Salton Buttes— causing earthquakes, toxic gas emissions, hydrothermal activity, and (or) ground deformation. Understanding the hazards and identifying what is at risk are the first steps in building community resilience to volcanic disasters. This study, prepared in collaboration with the State of California Governor's Office of Emergency Management and the California Geological Survey, provides a broad perspective on the State's exposure to volcano hazards by integrating mapped volcano hazard zones with geospatial data on at-risk populations, infrastructure, and resources. The study reveals that ~ 16 million acres fall within California's volcano hazard zones, along with ~ 190 thousand permanent and 22 million transitory populations. Additionally, far-field disruption to key water delivery systems, agriculture, utilities, and air traffic is likely. Further site- and sector-specific analyses will lead to improved hazard mitigation efforts and more effective disaster response and recovery. [1] "Volcanic Threat and Monitoring Capabilities

  9. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  10. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using

  11. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    A still booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the demand of “clean” power generation. Grid-connected PV systems will become an even active player in the future mixed power systems, which are linked by a vast of power electronics...

  12. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...

  13. Customized Pull Systems for Single-Product Flow Lines

    NARCIS (Netherlands)

    Gaury, E.G.A.; Kleijnen, J.P.C.; Pierreval, H.

    1998-01-01

    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage

  14. Volcanology: Volcanic bipolar disorder explained

    Science.gov (United States)

    Jellinek, Mark

    2014-02-01

    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  15. Monogenetic volcanic hazards and assessment

    Science.gov (United States)

    Connor, C.; Connor, L. J.; Richardson, J. A.

    2012-12-01

    Many of the Earth's major cities are build on the products of monogenetic volcanic eruptions and within geologically active basaltic volcanic fields. These cities include Mexico City (Mexico), Auckland (New Zealand), Melbourne (Australia), and Portland (USA) to name a few. Volcanic hazards in these areas are complex, and involve the potential formation of new volcanic vents and associated hazards, such as lava flows, tephra fallout, and ballistic hazards. Hazard assessment is complicated by the low recurrence rate of volcanism in most volcanic fields. We have developed a two-stage process for probabilistic modeling monogenetic volcanic hazards. The first step is an estimation of the possible locations of future eruptive vents based on kernel density estimation and recurrence rate of volcanism using Monte Carlo simulation and accounting for uncertainties in age determinations. The second step is convolution of this spatial density / recurrence rate model with hazard codes for modeling lava inundation, tephra fallout, and ballistic impacts. A methodology is presented using this two-stage approach to estimate lava flow hazard in several monogenetic volcanic fields, including at a nuclear power plant site near the Shamiram Plateau, a Quaternary volcanic field in Armenia. The location of possible future vents is determined by estimating spatial density from a distribution of 18 mapped vents using a 2-D elliptical Gaussian kernel function. The SAMSE method, a modified asymptotic mean squared error approach, uses the distribution of known eruptive vents to optimally determine a smoothing bandwidth for the Gaussian kernel function. The result is a probability map of vent density. A large random sample (N=10000) of vent locations is drawn from this probability map. For each randomly sampled vent location, a lava flow inundation model is executed. Lava flow input parameters (volume and average thickness) are determined from distributions fit to field observations of the low

  16. Volcanic crisis in

    Directory of Open Access Journals (Sweden)

    Mgs. Víctor Manuel Pérez Martínez

    2007-01-01

    Full Text Available The article is the result of an investigation which is focussed on some deontological aspects of the scientificjournalism. In the first place it gives a theoretical vision about science, journalism, internet and including some reflectionsabout the deontological principles in handling the information about science and technology. This focus is useful as it formsthe base of an investigation where we deal with the information about a possible ”volcanic crisis” in El Teide during the years2004-2005 done by the digital newspaper” El Dïa” a canarian newspaper from Tenerife. The work required the revision of theinformation which was published and a followed analysis of its context. It was used the digital version with the purpose ofvisualizing the news which was published. It was also compared with a printed version, with local cover but divulged theinformation to the public who was most affected by this particular news. The results give rise to some questions regardinghow the information is given to a topic which is of local interest as well as national and international interest due to therepercussions in the social, economical and tourist field (the tourist field is the main industrial sector in Tenerife by receivingthis type of news.

  17. Volcanic Zone, New Zealand

    Directory of Open Access Journals (Sweden)

    Graham J. Weir

    2001-01-01

    Full Text Available A conceptual model of the Taupo Volcanic Zone (TVZ is developed, to a depth of 25 km, formed from three constant density layers. The upper layer is formed from eruption products. A constant rate of eruption is assumed, which eventually implies a constant rate of extension, and a constant rate of volumetric creation in the middle and bottom layers. Tectonic extension creates volume which can accomodate magmatic intrusions. Spreading models assume this volume is distributed throughout the whole region, perhaps in vertical dykes, whereas rifting models assume the upper crust is thinned and the volume created lies under this upper crust. Bounds on the heat flow from such magmatic intrusions are calculated. Heat flow calculations are performed and some examples are provided which match the present total heat output from the TVZ of about 4200 MW, but these either have extension rates greater than the low values of about 8 ± 4 mm/a being reported from GPS measurements, or else consider extension rates in the TVZ to have varied over time.

  18. Eruptive dynamics and hazards associated with obsidian bearing ignimbrites of the Geghama Volcanic Highland, Central Armenia: a textural insight

    Science.gov (United States)

    Matthews, Zoe; Manning, Christina J.

    2017-04-01

    The Geghama Volcanic highland in central Armenia is an ideal setting to study the young ( 750-25 ka [1]) volcanism that characterises the Lesser Caucasus region. The volcanism in the area is bimodal in composition: the eastern highlands are dominated by numerous monogenetic scoria cones, whilst the west shows more evolved volcanism centered on two obsidian bearing, polygenetic domes (Hatis and Gutanasar) [2]. Activity at Hatis and Gutanasar is thought to have spanned 550ka-200ka [3] and produced a range of products including obsidian flows, ignimbrites and basaltic scoria cones, consistent with long lived and complex magma storage systems. During a similar time period there is evidence for the presence of hominin groups in the surrounding region [3] and it is likely that at least some of the volcanic activity at Hatis and Gutanasar impacted on their distribution [4]. A better understanding of the eruptive behaviour of these volcanoes during this period could therefore shed light on the effect of volcanic activity on the dispersal of man through this period. Whilst large regional studies have striven to better understand the timing and source of volcanism in Armenia, there have been few detailed studies on single volcanoes. Obsidian is ubiquitous within the volcanic material of both Gutanasar and Hatis as lava flows, dome deposits and within ignimbrites. This study aims to better understand the eruptive history of Gutanasar, with specific focus upon the determination of the petrogenetic history of obsidian lenses observed within the ignimbrite deposits. Identification of these obsidians as the result of welding or in-situ melting will help constrain eruptive volumes and flow thickness, important for the reconstruction of palaeo-volcanic hazards. In order to interpret how this obsidian was deposited, macro textural analysis is combined with micro textural measurements of microlite crystals. Quantitative measurements of microlites in obsidian can provide significant

  19. Design of tracking photovoltaic systems with a single vertical axis

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, E. [Ciudad Universitaria, Madrid (Spain). Instituto de Energeia Solar; Perez, M. [Pol Industrial La Nava, Naavarrsa (Spain). Alternativas Energeticas Solares; Ezpeleta, A. [Energia Hidroelectrica Navarra, Pamplona (Spain); Acedo, J. [Ingeteam SA, Pamplona (Spain)

    2002-07-01

    Solar tracking is used in large grid-connected photovoltaic plants to maximise solar radiation collection and, hence, to reduce the cost of delivered electricity. In particular, single vertical axis tracking, also called azimuth tracking, allows for energy gains up to 40%, compared with optimally tilted fully static arrays. This paper examines the theoretical aspects associated with the design of azimuth tracking, taking into account shadowing between different trackers and back-tracking features. Then, the practical design of the trackers installed at the 1.4 MW Tudela PV plant is presented and discussed. Finally, this tracking alternative is compared with the more conventional fully stationary approach. (author)

  20. Soil gas measurements around the most recent volcanic system of metropolitan France (Lake Pavin, Massif Central); Mesure des gaz des sols autour du systeme volcanique le plus recent de France metropolitaine (lac Pavin, Massif Central)

    Energy Technology Data Exchange (ETDEWEB)

    Gal, F. [BRGM, Metrology, Monitoring and Analysis Division, 3, avenue Claude-Guillemin, 45060 Orleans cedex 02 (France); Gadalia, A. [BRGM, Department of Geothermal Energy, 3, avenue Claude-Guillemin, 45060 Orleans cedex 02 (France)

    2011-01-15

    Soil gas monitoring techniques (CO{sub 2}, O{sub 2}, {sup 222}Rn, {sup 4}He) are used in the geographical context of the recent volcanic system of Lake Pavin (Puy-de-Dome), to get a better knowledge of local gaseous emissions, in order to establish whether or not this system can present evidence of reactivation. Concentrations up to 100% CO{sub 2} and 50 ppm of helium are measured in a narrow geographical area (Escarot Mofette), together with a magmatic origin for these gases. Radon activity in the Mofette area is quite high, but does not show, compared to surrounding areas, enrichments as high as those measured for CO{sub 2} or helium. Hourly records of these radon activities, performed during several weeks, suggest the existence of pulsed radon exhalation in the Mofette area. The period of this pulsation is around 40 days but its origin remains poorly understood. Apart from this Mofette, no evidence of gas originating from depth is highlighted. (authors)

  1. Profilographic detection system for single-track scanning device

    International Nuclear Information System (INIS)

    Silar, J.; Kula, J.

    1988-01-01

    A profilographic detection system is claimed for diagnosing the renal function by isotope nephrography, and the bladder filling in small children and infants. The configuration described guarantees good position resolution and sensitivity of the detection system. (E.J.). 2 figs

  2. Copenhagen's single system premise prevents a unified view of integer and fractional quantum Hall effect

    CERN Document Server

    Post, E J

    1999-01-01

    This essay presents conclusive evidence of the impermissibility of Copenhagen's single system interpretation of the Schroedinger process. The latter needs to be viewed as a tool exclusively describing phase and orientation randomized ensembles and is not be used for isolated single systems. Asymptotic closeness of single system and ensemble behavior and the rare nature of true single system manifestations have prevented a definitive identification of this Copenhagen deficiency over the past three quarter century. Quantum uncertainty so becomes a basic trade mark of phase and orientation disordered ensembles. The ensuing void of usable single system tools opens a new inquiry for tools without statistical connotations. Three, in part already known, period integrals here identified as flux, charge and action counters emerge as diffeo-4 invariant tools fully compatible with the demands of the general theory of relativity. The discovery of the quantum Hall effect has been instrumental in forcing a distinction betw...

  3. Active Volcanic Plumes on Io

    Science.gov (United States)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http

  4. Epistemic planning for single- and multi-agent systems

    DEFF Research Database (Denmark)

    Bolander, Thomas; Andersen, Mikkel Birkegaard

    2011-01-01

    In this paper, we investigate the use of event models for automated planning. Event models are the action defining structures used to define a semantics for dynamic epistemic logic. Using event models, two issues in planning can be addressed: Partial observability of the environment and knowledge...... the specification of a more complex class of planning domains, than those simply concerned with simple facts about the world. We show how to model multi-agent planning problems using Kripke-models for representing world states, and event models for representing actions. Our mechanism makes use of slight....... In planning, partial observability gives rise to an uncertainty about the world. For single-agent domains, this uncertainty can come from incomplete knowledge of the starting situation and from the nondeterminism of actions. In multi-agent domains, an additional uncertainty arises from the fact that other...

  5. Autonomous Manoeuvring Systems for Collision Avoidance on Single Carriageway Roads

    Science.gov (United States)

    Jiménez, Felipe; Naranjo, José Eugenio; Gómez, Óscar

    2012-01-01

    The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles’ positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed. PMID:23443391

  6. Autonomous manoeuvring systems for collision avoidance on single carriageway roads.

    Science.gov (United States)

    Jiménez, Felipe; Naranjo, José Eugenio; Gómez, Oscar

    2012-11-29

    The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles' positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed.

  7. Autonomous Manoeuvring Systems for Collision Avoidance on Single Carriageway Roads

    Directory of Open Access Journals (Sweden)

    Óscar Gómez

    2012-11-01

    Full Text Available The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles’ positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed.

  8. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  9. The feeder system for the 2014 fissure eruption at Holuhraun, Bárðarbunga volcanic system, Iceland: Geodetic and seismic constraints on subsurface activity in the area north of the Vatnajökull ice cap

    Science.gov (United States)

    Dumont, Stéphanie; Parks, Michelle; Sigmundsson, Freysteinn; Hooper, Andy; Hreinsdóttir, Sigrun; Ófeigsson, Benedikt; Spaans, Karsten; Vogfjörd, Kristin; Jónsdóttir, Kristín; Hensch, Martin; Gudmundsson, Gunnar; Rafn Heimisson, Elias; Drouin, Vincent; Árnadóttir, Thóra; Pedersen, Rikke; Rut Hjartardóttir, Ásta; Magnússon, Eyjólfur

    2015-04-01

    structures from the interferograms. During the first weeks of the volcanic unrest, the surface deformation near the top of the dyke exceeded one meter in the line of sight, resulting in a systematic decorrelation in the phase signal observed above the dyke. However the amount of subsidence may be evaluated using the estimate of offsets in range and azimuth. We compare the distribution of slip along these fissures/faults and its space-time evolution to the amount of dyke opening at depth obtained from modeling of geodetic data for different time spans defined by the interferograms. By comparing geodetic and seismic data, we investigate the development of the dyke and its influence on the surface deformation. This allows us to analyse the plumbing system feeding the eruptive fissure as a clue to better understand the ongoing volcanic eruption. This study is based on multiple data sets is supported by the FP7 FutureVolc project and the CEOS Icelandic Supersite. Funded by the European Commission, FutureVolc project is concerned with improving the monitoring of Icelandic volcanoes and facilitating a multi-disciplinary approach to better understanding volcanic processes.

  10. Sills of the San Rafael Volcanic Field, Utah

    Science.gov (United States)

    Gallant, E.; Connor, C.; Connor, L.; Richardson, J. A.; Wetmore, P. H.

    2014-12-01

    Substantial populations, such as Mexico City, Auckland, and Portland, are built within or near monogenetic fields, so it is important to understand both eruption precursors and magma plumbing systems in such areas. Directly observing the plumbing systems of this rarely witnessed eruption style provides valuable insight into the nature of magmatic transport and storage within the shallow crust, as well as the associated monogenetic eruptive processes. Within the San Rafael Desert of Central Utah is an exposed Pliocene complex of approximately 2000 mapped dikes, 12 sills, and 60 conduits eroded to a depth of 800 m below the paleosurface. A combination of airborne LiDAR (ALS), provided by NCALM, and terrestrial LiDAR (TLS) surveys are used to map the dip of 5 major sills within a 35 sq km area. The ALS provides a 1 m aerial resolution of exposed volcanic features and the TLS gives vertical measurements to cm accuracy. From these data we determine that the 5-25 m thick sills in this area dip approximately 1 to 6 degrees. Field observations show that steps in sills and related fabrics indicate flow direction in sills during emplacement and that sills normally propagate down dip in the Entrada sandstone host rock away from apparent feeder dikes and conduits. Some sills have foundered roofs, especially near conduits, suggesting that nearly neutrally buoyant magmas emplaced into sills along bed partings in the Entrada, differentiated, and in some cases flowed back into conduits. By volume, at 800 m depth in the San Rafael, nearly all igneous rock (approximately 90 percent) is located in sills rather than in dikes or conduits. These observations are consistent with geochemical models that suggest differentiation in shallow sills explains geochemical trends observed in single monogenetic volcanoes in some active fields. Deformation associated with sill inflation and deflation may be a significant precursor to eruptive activity in monogenetic volcanic fields.

  11. Observations And Implications Of Spatial Complexity In Hotspot Volcanism

    Science.gov (United States)

    Kundargi, Rohan Kiran

    One of the defining characteristics of hotspot volcanism is the presence of a long-lived, linear chain of age-progressive volcanoes created by the movement of the lithosphere over a stationary melting anomaly. However, the spatial distribution of volcanism at hotspots is often complex and highly variable suggesting that the relationship between magma generation and magma transport at hotspots is poorly understood. Here, I present the results of the first systematic quantitative characterization of the spatial distribution of volcanism at oceanic hotspots. In the first study I develop a novel methodology to characterize the across-strike distribution of volcanism at hotspots and apply it to a catalog of 40 oceanic hotspots. I find that only 25% (10/40) of hotspots exhibit the simple single-peak profile predicted by geodynamic models of melt generation in mantle plumes. The remaining 75% (30/40) of hotspots exhibit a dual- or multi-peak pattern. In the second study, I focus on the across-strike distribution of volcanism at the oceanic hotspots that are sourced by a deep-rooted mantle plume. 14 out of the 15 consensus plume-fed hotspots exhibit a dual-peaked across-strike profile. The spacing between these peaks display a strong negative correlation with lithospheric age, in direct contrast to models of inter-volcanic spacing controlled by elastic plate thickness. This relation suggests a different mechanism controls volcanic spacing at plume-fed hotspots. In the third chapter, I investigate variations in the average topographic profiles over time along the two longest and best-constrained oceanic hotspot tracks: Hawaii and Louisville. I find that the dual-peak across-strike profile of volcanism is a persistent feature at the Louisville hotspot over the entire length of the track examined (spanning a period of more than 65 Myr). In contrast, the dual-peak profile of volcanism at Hawaii is only evident along the most recent portion of the track (i.e., over the last 5

  12. A chaotic system with a single unstable node

    Energy Technology Data Exchange (ETDEWEB)

    Sprott, J.C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Jafari, Sajad, E-mail: sajadjafari@aut.ac.ir [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Pham, Viet-Thanh [School of Electronics and Telecommunications, Hanoi University of Science and Technology, 01 Dai Co Viet, Hanoi (Viet Nam); Hosseini, Zahra Sadat [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)

    2015-09-25

    This paper describes an unusual example of a three-dimensional dissipative chaotic flow with quadratic nonlinearities in which the only equilibrium is an unstable node. The region of parameter space with bounded solutions is relatively small as is the basin of attraction, which accounts for the difficulty of its discovery. Furthermore, for some values of the parameters, the system has an attracting torus, which is uncommon in three-dimensional systems, and this torus can coexist with a strange attractor or with a limit cycle. The limit cycle and strange attractor exhibit symmetry breaking and attractor merging. All the attractors appear to be hidden in that they cannot be found by starting with initial conditions in the vicinity of the equilibrium, and thus they represent a new type of hidden attractor with important and potentially problematic engineering consequences. - Highlights: • An unusual example of a three-dimensional dissipative chaotic flow is introduced. • In this system the only equilibrium is an unstable node. • For some values of the parameters, the system has an attracting torus. • This torus can coexist with a strange attractor or with a limit cycle. • These properties are uncommon in three-dimensional systems.

  13. Recurrent Neural Network for Single Machine Power System Stabilizer

    Directory of Open Access Journals (Sweden)

    Widi Aribowo

    2010-04-01

    Full Text Available In this paper, recurrent neural network (RNN is used to design power system stabilizer (PSS due to its advantage on the dependence not only on present input but also on past condition. A RNN-PSS is able to capture the dynamic response of a system without any delays caused by external feedback, primarily by the internal feedback loop in recurrent neuron. In this paper, RNNPSS consists of a RNN-identifier and a RNN-controller. The RNN-Identifier functions as the tracker of dynamics characteristics of the plant, while the RNN-controller is used to damp the system’s low frequency oscillations. Simulation results using MATLAB demonstrate that the RNNPSS can successfully damp out oscillation and improve the performance of the system.

  14. Using Infrasound and Machine Learning for Monitoring Plinian Volcanic Eruptions

    Science.gov (United States)

    Ham, F. M.; Iyengar, I.; Hambebo, B. M.; Garces, M. A.; Deaton, J.; Perttu, A.; Williams, B.

    2012-12-01

    Large plinian volcanic eruptions can inject a substantial amount of volcanic gas and ash into the stratosphere. This can present a severe hazard to commercial air traffic. A hazardous Icelandic volcanic ash-eruption was reported on April 14, 2010. This resulted in London's aviation authority to issue an alert that an ash plume was moving from an eruption in Iceland towards northwestern Europe. This eruption resulted in the closure of large areas of European airspace. Large plinian volcanic eruptions radiate infrasonic signals that can be detected by a global infrasound array network. To reduce potential hazards for commercial aviation from volcanic ash, these infrasound sensor arrays have been used to detect infrasonic signals released by sustained volcanic eruptions that can inject ash into the stratosphere at aircraft's cruising altitudes, typically in the order of 10km. A system that is capable of near, real-time eruption detection and discrimination of plinian eruptions from other natural phenomena that can produce infrasound with overlapping spectral content (0.01 to 0.1 Hz) is highly desirable to provide ash-monitoring for commercial aviation. In the initial study, cepstral features were extracted from plinian volcanic eruptions and mountain associated wave infrasound signals. These feature vectors were then used to train and test a two-module neural network classifier (radial basis function neural networks were used for each module). One module is dedicated to classifying plinian volcanic eruptions, the other mountain associated waves. Using an independent validation dataset, the classifier's correct classification rate was 91.5%. Then a different two-module neural network classifier was designed to discriminate between plinian volcanic eruptions and a collection of infrasound signals that are not-of-interest but have spectral content that overlaps with the volcano signals. One module is again dedicated to classifying plinian volcanic eruptions, however, in

  15. High spectral efficient W-band optical/wireless system employing single-sideband single-carrier modulation.

    Science.gov (United States)

    Ho, Chun-Hung; Lin, Chun-Ting; Cheng, Yu-Hsuan; Huang, Hou-Tzu; Wei, Chia-Chien; Chi, Sien

    2014-02-24

    With broader available bandwidth, W-band wireless transmission has attracted a lot of interests for future Giga-bit communication. In this article, we experimentally demonstrate W-band radio-over-fiber (RoF) system employing single-sideband single-carrier (SSB-SC) modulation with lower peak-to-average-power ratio (PAPR) than orthogonal frequency division multiplex (OFDM). To overcome the inter-symbol interference (ISI) of the penalty from uneven frequency response and SSB-SC modulation, frequency domain equalizer (FDE) and decision feedback equalizer (DFE) are implemented. We discuss the maximum available bandwidth of different modulation formats between SSB-SC and OFDM signals at the BER below forward error correction (FEC) threshold (3.8 × 10(-3)). Up to 50-Gbps 32-QAM SSB-SC signals with spectral efficiency of 5 bit/s/Hz can be achieved.

  16. Monte Carlo simulations of lattice models for single polymer systems

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Ping

    2014-01-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10 4 ). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior

  17. Control Issues in Single-Stage Photovoltaic Systems

    DEFF Research Database (Denmark)

    A. Mastromauro, Rosa; Liserre, Marco; Dell’Aquila, Antonio

    2012-01-01

    Photovoltaic Systems (PVS) can be easily integrated in residential buildings hence they will be the main responsible of making low-voltage grid power flow bidirectional. Control issues on both the PV side and on the grid side have received much attention from manufacturers, competing for efficiency...

  18. Single-channel digital command-detection system

    Science.gov (United States)

    Carl, C. C.; Couvillon, L. A.; Goldstein, R. M.; Posner, E. C.; Green, R. R.

    1973-01-01

    System, fabricated of highly-reliable digital logic elements, operates on binary pulse-code-modulated signals and derives internal synchronization from data signal. All-digital implementation of detector develops synchronization from data signal by computer cross-correlation of command modulation signal with its expected forms in sequence and adjusts detector phases in accordance with correlation peaks.

  19. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    tracking (MPPT) controller is used which enables the maximum power extraction under varying irradiation and temperature conditions. The validity of the proposed system is verified through simulation as well as hardware implementation. Keywords. Current controller; MPPT; photovoltaic; PLL; PV inverter; voltage controller.

  20. Open Source Clinical NLP – More than Any Single System

    Science.gov (United States)

    Masanz, James; Pakhomov, Serguei V.; Xu, Hua; Wu, Stephen T.; Chute, Christopher G.; Liu, Hongfang

    2014-01-01

    The number of Natural Language Processing (NLP) tools and systems for processing clinical free-text has grown as interest and processing capability have surged. Unfortunately any two systems typically cannot simply interoperate, even when both are built upon a framework designed to facilitate the creation of pluggable components. We present two ongoing activities promoting open source clinical NLP. The Open Health Natural Language Processing (OHNLP) Consortium was originally founded to foster a collaborative community around clinical NLP, releasing UIMA-based open source software. OHNLP’s mission currently includes maintaining a catalog of clinical NLP software and providing interfaces to simplify the interaction of NLP systems. Meanwhile, Apache cTAKES aims to integrate best-of-breed annotators, providing a world-class NLP system for accessing clinical information within free-text. These two activities are complementary. OHNLP promotes open source clinical NLP activities in the research community and Apache cTAKES bridges research to the health information technology (HIT) practice. PMID:25954581

  1. Open Source Clinical NLP - More than Any Single System.

    Science.gov (United States)

    Masanz, James; Pakhomov, Serguei V; Xu, Hua; Wu, Stephen T; Chute, Christopher G; Liu, Hongfang

    2014-01-01

    The number of Natural Language Processing (NLP) tools and systems for processing clinical free-text has grown as interest and processing capability have surged. Unfortunately any two systems typically cannot simply interoperate, even when both are built upon a framework designed to facilitate the creation of pluggable components. We present two ongoing activities promoting open source clinical NLP. The Open Health Natural Language Processing (OHNLP) Consortium was originally founded to foster a collaborative community around clinical NLP, releasing UIMA-based open source software. OHNLP's mission currently includes maintaining a catalog of clinical NLP software and providing interfaces to simplify the interaction of NLP systems. Meanwhile, Apache cTAKES aims to integrate best-of-breed annotators, providing a world-class NLP system for accessing clinical information within free-text. These two activities are complementary. OHNLP promotes open source clinical NLP activities in the research community and Apache cTAKES bridges research to the health information technology (HIT) practice.

  2. Magmatic Processes and Systems Deduced from Single Crystals

    Science.gov (United States)

    Davidson, J.; Bezard, R. C.; Morgan, D. J.; Ginibre, C.

    2014-12-01

    When crystals grow in liquids the composition of their outermost layer will reflect that of the host with which they are in equilibrium and will therefore record the liquid composition, pressure and temperature.. Following separation from their sources, magmas differentiate. This change in liquid composition is driven largely by crystallisation in response to cooling or decompression. Other open system processes such as mixing and contamination are common. These can lead to abrupt changes in trace element and isotopic composition, accompanied by petrographic features, such as dissolution surfaces or zones of melt inclusions. Where such careful mineral-scale studies have been performed, the prevalence of open system processes is clear. In many cases these are shown by core-rim isotopic variations. Crystal-scale compositional variations in the context of whole rock compositions and petrography have allowed us to show crustal assimilation even from regions of supposedly oceanic crust such as the Lesser Antilles. In tandem with tracking magma evolution, core-rim analyses of appropriate crystals have also provided diffusion profiles which reflect timescales of magmatic processes. A key point, long recognised by Bruce Marsh, is that in situ geochemical data should be considered in a petrographic context in order to gain the most (and most credible) insights on the workings of magma systems from hand specimen to whole volcano/pluton scales: The petrographic microscope is not dead yet Identification of magmatic processes from in situ scrutiny allows us to synthesise the architectures and inner workings of magma systems. The evidence for interaction among magmas in many systems is compelling and suggests that many exist as stacked dike-sill arrangements with wall-rock focussed crystal growth and mush zones. These are consistent with many of the systematics suggested some time ago by Bruce Marsh

  3. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt

    OpenAIRE

    Manning, Joseph G.; Ludlow, Francis; Stine, Alexander R.; Boos, William R.; Sigl, Michael; Marlon, Jennifer R.

    2017-01-01

    PUBLISHED Volcanic eruptions provide tests of human and natural system sensitivity to abrupt shocks because their repeated occurrence allows the identification of systematic relationships in the presence of random variability. Here we show a suppression of Nile summer flooding via the radiative and dynamical impacts of explosive volcanism on the African monsoon, using climate model output, ice-core-based volcanic forcing data, Nilometer measurements, and ancient Egyptian writings. We then ...

  4. Rate of volcanism on Venus

    International Nuclear Information System (INIS)

    Fegley, B. Jr.; Prinn, R.G.

    1988-07-01

    The maintenance of the global H 2 SO 4 clouds on Venus requires volcanism to replenish the atmospheric SO 2 which is continually being removed from the atmosphere by reaction with calcium minerals on the surface of Venus. The first laboratory measurements of the rate of one such reaction, between SO 2 and calcite (CaCO 3 ) to form anhydrite (CaSO 4 ), are reported. If the rate of this reaction is representative of the SO 2 reaction rate at the Venus surface, then we estimate that all SO 2 in the Venus atmosphere (and thus the H 2 SO 4 clouds) will be removed in 1.9 million years unless the lost SO 2 is replenished by volcanism. The required rate of volcanism ranges from about 0.4 to about 11 cu km of magma erupted per year, depending on the assumed sulfur content of the erupted material. If this material has the same composition as the Venus surface at the Venera 13, 14 and Vega 2 landing sites, then the required rate of volcanism is about 1 cu km per year. This independent geochemically estimated rate can be used to determine if either (or neither) of the two discordant (2 cu km/year vs. 200 to 300 cu km/year) geophysically estimated rates is correct. The geochemically estimated rate also suggests that Venus is less volcanically active than the Earth

  5. Double and triple entanglement in a single neutron system

    International Nuclear Information System (INIS)

    Erdösi, D.

    2015-01-01

    Single-neutron interferometry is used in various experiments to study the foundations of quantum mechanics. The drawback of this technique, however, is that the contrast of neutron interferometers is very prone to disturbances, in particular, temperature variations. In order to achieve very low degrading of the contrast, we develop new devices to manipulate the neutron-s spin and energy in the interferometer. These devices open the door for quantum state generation with much higher fidelities than it has been possible so far in neutron interferometry. Spin rotators with time-dependent (radio-frequency (RF)) field change both spin and energy. We improve our RF spin-rotators for the interferometer by equipping them with miniature Helmholtz coils, which allows to adjust the energy shift due to each RF coil independently. This is essential for the generation of certain quantum states. This improvement is made possible by a new coil cooling method. Furthermore, we also develop new Larmor precession accelerators and decelerators that do not consume energy and hence do not produce heat at all. We demonstrate two applications of the new spin and energy manipulators by generating bi- and tripartite entanglement between the neutron's spin, energy and path degrees of freedom in the interferometer: we succeed in generating a Bell-like state and GHZ- and W-like states. For Bell state generation we also introduce a convenient spin preparation scheme that uses our Larmor precession manipulator. We achieve a considerably more significant violation of a Bell-like inequality than with the previous method, thus further confirming quantum contextuality. With our RF spin rotators we achieve for the GHZ- and W-like states fidelities between 95 and 99%. (author) [de

  6. Quaternary basaltic volcanism in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina

    in basalts from all the studied volcanic fields in Payenia is signs of lower crustal contamination indicating assimilation of, in some cases, large amounts of trace element depleted, mafic, plagioclase-bearing rocks. The northern Payenia is dominated by backarc basalts erupted between late Pliocene to late...... are isotopically similar to the Andean Southern Volcanic Zone arc rocks and their mantle source possibly resembled the source of South Atlantic N-MORB prior to addition of fluids and melts from the subduction channel. However, it must have been more enriched than the estimates of depleted upper mantle from...

  7. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel

    2016-01-23

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic and structural field data along the strike-slip Central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activity steadily migrated eastward and currently focus on a 10 km long x 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter-term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the Central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  8. Study on irradiation effects of nucleus electromagnetic pulse on single chip computer system

    International Nuclear Information System (INIS)

    Hou Minsheng; Liu Shanghe; Wang Shuping

    2001-01-01

    Intense electromagnetic pulse, namely nucleus electromagnetic pulse (NEMP), lightning electromagnetic pulse (LEMP) and high power microwave (HPM), can disturb and destroy the single chip computer system. To study this issue, the authors made irradiation experiments by NEMPs generated by gigahertz transversal electromagnetic (GTEM) Cell. The experiments show that shutdown, restarting, communication errors of the single chip microcomputer system would occur when it was irradiated by the NEMPs. Based on the experiments, the cause on the effects on the single chip microcomputer system is discussed

  9. Method and apparatus for single-stepping coherence events in a multiprocessor system under software control

    Science.gov (United States)

    Blumrich, Matthias A.; Salapura, Valentina

    2010-11-02

    An apparatus and method are disclosed for single-stepping coherence events in a multiprocessor system under software control in order to monitor the behavior of a memory coherence mechanism. Single-stepping coherence events in a multiprocessor system is made possible by adding one or more step registers. By accessing these step registers, one or more coherence requests are processed by the multiprocessor system. The step registers determine if the snoop unit will operate by proceeding in a normal execution mode, or operate in a single-step mode.

  10. Applying Data Mining Techniques to Improve Information Security in the Cloud: A Single Cache System Approach

    OpenAIRE

    Amany AlShawi

    2016-01-01

    Presently, the popularity of cloud computing is gradually increasing day by day. The purpose of this research was to enhance the security of the cloud using techniques such as data mining with specific reference to the single cache system. From the findings of the research, it was observed that the security in the cloud could be enhanced with the single cache system. For future purposes, an Apriori algorithm can be applied to the single cache system. This can be applied by all cloud providers...

  11. Limbic systems for emotion and for memory, but no single limbic system.

    Science.gov (United States)

    Rolls, Edmund T

    2015-01-01

    The concept of a (single) limbic system is shown to be outmoded. Instead, anatomical, neurophysiological, functional neuroimaging, and neuropsychological evidence is described that anterior limbic and related structures including the orbitofrontal cortex and amygdala are involved in emotion, reward valuation, and reward-related decision-making (but not memory), with the value representations transmitted to the anterior cingulate cortex for action-outcome learning. In this 'emotion limbic system' a computational principle is that feedforward pattern association networks learn associations from visual, olfactory and auditory stimuli, to primary reinforcers such as taste, touch, and pain. In primates including humans this learning can be very rapid and rule-based, with the orbitofrontal cortex overshadowing the amygdala in this learning important for social and emotional behaviour. Complementary evidence is described showing that the hippocampus and limbic structures to which it is connected including the posterior cingulate cortex and the fornix-mammillary body-anterior thalamus-posterior cingulate circuit are involved in episodic or event memory, but not emotion. This 'hippocampal system' receives information from neocortical areas about spatial location, and objects, and can rapidly associate this information together by the different computational principle of autoassociation in the CA3 region of the hippocampus involving feedback. The system can later recall the whole of this information in the CA3 region from any component, a feedback process, and can recall the information back to neocortical areas, again a feedback (to neocortex) recall process. Emotion can enter this memory system from the orbitofrontal cortex etc., and be recalled back to the orbitofrontal cortex etc. during memory recall, but the emotional and hippocampal networks or 'limbic systems' operate by different computational principles, and operate independently of each other except insofar as an

  12. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  13. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A.; Wells, S.; Bowker, L.; Finnegan, K.; Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report

  14. Analyzing System on A Chip Single Event Upset Responses using Single Event Upset Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We are investigating the application of classical reliability performance metrics combined with standard single event upset (SEU) analysis data. We expect to relate SEU behavior to system performance requirements. Our proposed methodology will provide better prediction of SEU responses in harsh radiation environments with confidence metrics. single event upset (SEU), single event effect (SEE), field programmable gate array devises (FPGAs)

  15. Single-Chip Computers With Microelectromechanical Systems-Based Magnetic Memory

    NARCIS (Netherlands)

    Carley, L. Richard; Bain, James A.; Fedder, Gary K.; Greve, David W.; Guillou, David F.; Lu, Michael S.C.; Mukherjee, Tamal; Santhanam, Suresh; Abelmann, Leon; Min, Seungook

    This article describes an approach for implementing a complete computer system (CPU, RAM, I/O, and nonvolatile mass memory) on a single integrated-circuit substrate (a chip)—hence, the name "single-chip computer." The approach presented combines advances in the field of microelectromechanical

  16. Joint impact of quantization and clipping on single- and multi-carrier block transmission systems

    NARCIS (Netherlands)

    Yang, H.; Schenk, T.C.W.; Smulders, P.F.M.; Fledderus, E.R.

    2008-01-01

    This work investigates the joint impact of quantization and clipping, caused by analog-to-digital converters (ADCs) with low bit resolutions, on single- and multi-carrier block transmission systems in wireless multipath environments. We consider single carrier block transmission with frequency

  17. Quantitative Synthesis and Component Analysis of Single-Participant Studies on the Picture Exchange Communication System

    Science.gov (United States)

    Tincani, Matt; Devis, Kathryn

    2011-01-01

    The "Picture Exchange Communication System" (PECS) has emerged as the augmentative communication intervention of choice for individuals with autism spectrum disorder (ASD), with a supporting body of single-participant studies. This report describes a meta-analysis of 16 single-participant studies on PECS with percentage of nonoverlapping data…

  18. Precoding Design for Single-RF Massive MIMO Systems: A Large System Analysis

    KAUST Repository

    Sifaou, Houssem

    2016-08-26

    This work revisits a recently proposed precoding design for massive multiple-input multiple output (MIMO) systems that is based on the use of an instantaneous total power constraint. The main advantages of this technique lie in its suitability to the recently proposed single radio frequency (RF) MIMO transmitter coupled with a very-high power efficiency. Such features have been proven using simulations for uncorrelated channels. Based on tools from random matrix theory, we propose in this work to analyze the performance of this precoder for more involved channels accounting for spatial correlation. The obtained expressions are then optimized in order to maximize the signalto- interference-plus-noise ratio (SINR). Simulation results are provided in order to illustrate the performance of the optimized precoder in terms of peak-to-average power ratio (PAPR) and signal-to-interference-plus-noise ratio (SINR). © 2012 IEEE.

  19. Attendance fingerprint identification system using arduino and single board computer

    Science.gov (United States)

    Muchtar, M. A.; Seniman; Arisandi, D.; Hasanah, S.

    2018-03-01

    Fingerprint is one of the most unique parts of the human body that distinguishes one person from others and is easily accessed. This uniqueness is supported by technology that can automatically identify or recognize a person called fingerprint sensor. Yet, the existing Fingerprint Sensor can only do fingerprint identification on one machine. For the mentioned reason, we need a method to be able to recognize each user in a different fingerprint sensor. The purpose of this research is to build fingerprint sensor system for fingerprint data management to be centralized so identification can be done in each Fingerprint Sensor. The result of this research shows that by using Arduino and Raspberry Pi, data processing can be centralized so that fingerprint identification can be done in each fingerprint sensor with 98.5 % success rate of centralized server recording.

  20. Mechanisms of gravitropism in single-celled systems

    Science.gov (United States)

    Greuel, Nicole; Braun, Markus; Hauslage, Jens; Wiemann, Katharina

    Physiological processes in plants are influenced by a variety of external stimuli. Gravity is the only constant factor that provides plants with reliable information for their orientation. Gravity-oriented growth responses, called gravitropism, enable plants to adapt to a diversity of habitats on Earth and to survive changing environmental conditions. For instance, the ability to respond gravitropically prevents crop, flattened by a windstorm, from decay. Even small deviations from the genetically programmed set-point angle of plant organs are recognized by specialized cells, the statocytes, in which dense particles, the statoliths, sediment in the direction of gravity and activate gravity sensors - membrane bound gravity-receptor proteins. Activation of receptor proteins creates a physiological signal that initiates a stimulus-specific signal transduction cascade causing the gravitropic response. To unravel the gravitropic signalling pathways in plant statocytes, our research focused on a unicellular model system, the rhizoid of the green alga Chara. Experiments under microgravity conditions during sounding-rocket and parabolic plane flights have shown that the actin cytoskeleton is a key element of the gravityinduced statolith-sedimentation process in characean rhizoids. Actomyosin, consisting of a dense meshwork of mainly axially oriented actin microfilaments and motor proteins (myosins), actively guides sedimenting statoliths to gravisensitive plasma membrane areas where gravireceptor molecules are exclusively located. TEXUS and MAXUS sounding rocket missions were performed to determine the threshold acceleration level (< 0.1g) required for lateral statolith displacement. parabolic flight experiments aboard the airbus A300 Zero-G have shown that sedimented but weightless statoliths are still capable of activating the membrane-bound gravireceptor in characean rhizoids. The results contradict the classical model of a mechanoreceptor that is activated by the

  1. Psoriasis in systemic lupus erythematosus: a single-center experience.

    Science.gov (United States)

    Tselios, Konstantinos; Yap, Kristy Su-Ying; Pakchotanon, Rattapol; Polachek, Ari; Su, Jiandong; Urowitz, Murray B; Gladman, Dafna D

    2017-04-01

    The coexistence of psoriasis with systemic lupus erythematosus (SLE) has been reported in limited case series, raising hypotheses about shared pathogenetic mechanisms. Nevertheless, important differences regarding treatment do exist. The aim of the present study was to determine the prevalence and characteristics of psoriasis in a defined cohort of lupus patients. Patients with psoriasis were retrieved from the University of Toronto Lupus Clinic from its inception in 1970 up to 2015. Charts were hand-searched to collect information concerning demographic, clinical, and therapeutic variables. Patients were matched with non-psoriasis lupus patients to identify the impact of supervening psoriasis on lupus activity, damage accrual, and venous thromboembolic (VTEs) and cardiovascular events (CVEs). Psoriasis was diagnosed in 63 patients (49 females, 14 males) for a prevalence of 3.46% (63/1823). The male-to-female ratio was significantly higher in non-psoriasis patients (0.286 vs. 0.138, p = 0.017). Plaque psoriasis was the most prominent type (55/63, 87.3%) whereas three patients had pustular disease; one had psoriatic arthritis. Nine patients (14.3%) were administered systemic treatment with methotrexate (n = 5), azathioprine (n = 1), ustekinumab (n = 3), and etanercept (n = 1). Psoriasis was definitely deteriorated by hydroxychloroquine in one patient. There was no significant impact of psoriasis on disease activity, damage accrual, VTEs, and CVEs. The prevalence of psoriasis was twice as high as that of the general Canadian population in this lupus cohort. Plaque psoriasis was the most prominent subtype, and topical treatment was adequate in the majority of patients. Supervening psoriasis had no significant impact on lupus activity and damage accrual.

  2. Single Center Experience with the AngioVac Aspiration System

    Energy Technology Data Exchange (ETDEWEB)

    Salsamendi, Jason, E-mail: jsalsamendi@med.miami.edu; Doshi, Mehul, E-mail: mdoshi@med.miami.edu; Bhatia, Shivank, E-mail: sbhatia1@med.miami.edu [University of Miami Miller School of Medicine/Jackson Memorial Hospital, Department of Vascular and Interventional Radiology (United States); Bordegaray, Matthew, E-mail: matthewbordegaray@gmail.com [University of Miami Miller School of Medicine/Jackson Memorial Hospital, Department Radiology (United States); Arya, Rahul, E-mail: rahul.arya@jhsmiami.org [University of Miami Miller School of Medicine/Jackson Memorial Hospital, Department of Vascular and Interventional Radiology (United States); Morton, Connor, E-mail: cmorton@med.miami.edu [University of Miami Miller School of Medicine (United States); Narayanan, Govindarajan, E-mail: gnarayanan@med.miami.edu [University of Miami Miller School of Medicine/Jackson Memorial Hospital, Department of Vascular and Interventional Radiology (United States)

    2015-08-15

    PurposeThe AngioVac catheter system is a mechanical suction device designed for removal of intravascular material using extracorporeal veno-venous bypass circuit. The purpose of this study is to present the outcomes in patients treated with the AngioVac aspiration system and to discuss its efficacy in different vascular beds.Materials and MethodsA retrospectively review was performed of seven patients treated with AngioVac between October 2013 and December 2014. In 6/7 cases, the AngioVac cannula was inserted percutaneously and the patient was placed on veno-venous bypass. In one of the cases, the cannula was inserted directly into the Fontan circuit after sternotomy and the patient was maintained on cardiopulmonary bypass. Thrombus location included iliocaval (2), SVC (1), pulmonary arteries (1), Fontan circuit and Glenn shunt with pulmonary artery extension (1), right atrium (1), and IVC with renal vein extension (1).ResultsThe majority of thrombus (50–95 %) was removed in 5/7 cases, and partial thrombus removal (<50 %) was confirmed in 2/7 cases. Mean follow-up was 205 days (range 64–403 days). All patients were alive at latest follow-up. Minor complications included three neck hematomas in two total patients. No major complications occurred.ConclusionAngioVac is a useful tool for acute thrombus removal in the large vessels. The setup and substantial cost may limit its application in straightforward cases. More studies are needed to establish the utility of AngioVac in treatment of intravascular and intracardiac material.

  3. Electrochemistry and bioelectrochemistry towards the single-molecule level: Theoretical notions and systems

    International Nuclear Information System (INIS)

    Zhang Jingdong; Chi Qijin; Albrecht, Tim; Kuznetsov, Alexander M.; Grubb, Mikala; Hansen, Allan G.; Wackerbarth, Hainer; Welinder, Anne C.; Ulstrup, Jens

    2005-01-01

    Surface structures controlled at the nanometer and single-molecule levels, with functions crucially determined by interfacial electron transfer (ET) are broadly reported in recent years, with different kinds of electrochemically controlled nanoscale/single molecule systems. One is the broad class of metallic and semiconductor-based nanoparticles, nano-arrays, nanotubes, and nanopits. Others are based on self-assembled molecular monolayers. The latter extend to bioelectrochemical systems with redox metalloproteins and DNA-based molecules as targets. We overview here some recent achievements in areas of interfacial electrochemical ET systems, mapped to the nanoscale and single-molecule levels. Focus is on both experimental and theoretical studies in our group. Systems addressed are organized monolayers of redox active transition metal complexes, and metalloproteins and metalloenzymes on single-crystal Au(1 1 1)-electrode surfaces. These systems have been investigated by voltammetry, spectroscopy, microcantilever technology, and scanning probe microscopy. A class of Os-complexes has shown suitable as targets for electrochemical in situ scanning tunnelling microscopy (STM), with close to single-molecule scanning tunnelling spectroscopic (STS) features. Mapping of redox metalloproteins from the three major classes, i.e. blue copper proteins, heme proteins, and iron-sulfur proteins, at the monolayer and single-molecule levels have also been achieved. In situ STM and spectroscopy of redox molecules and biomolecules have been supported by new theoretical frames, which extend established theory of interfacial electrochemical ET. The electrochemical nanoscale and single-molecule systems discussed are compared with other recent nanoscale and single-molecule systems with conspicuous device-like properties, particularly unimolecular rectifiers and single-molecule transistors. Both of these show analogies to electrochemical in situ STM features of redox molecules and

  4. Geologic Map of Lassen Volcanic National Park and Vicinity, California

    Science.gov (United States)

    Clynne, Michael A.; Muffler, L.J. Patrick

    2010-01-01

    modified for inclusion here. Figure 2 (sheet 3) shows the mapping credit for previous work; figure 3 (sheet 3) shows locations discussed throughout the text. A CD-ROM entitled Database for the Geologic Map of Lassen Volcanic National Park and Vicinity, California accompanies the printed map (Muffler and others, 2010). The CD-ROM contains ESRI compatible geographic information system data files used to create the 1:50,000-scale geologic map, both geologic and topographic data and their associated metadata files, and printable versions of the geologic map and pamphlet as PDF formatted files. The 1:50,000-scale geologic map was compiled from 1:24,000-scale geologic maps of individual quadrangles that are also included in the CD-ROM. It also contains ancillary data that support the map including locations of rock samples selected for chemical analysis (Clynne and others, 2008) and radiometric dating, photographs of geologic features, and links to related data or web sites. Data contained in the CD-ROM are also available on this Web site. The southernmost Cascade Range consists of a regional platform of basalt and basaltic andesite, with subordinate andesite and sparse dacite. Nested within these regional rocks are 'volcanic centers', defined as large, long-lived, composite, calc-alkaline edifices erupting the full range of compositions from basalt to rhyolite, but dominated by andesite and dacite. Volcanic centers are produced by the focusing of basaltic flux from the mantle and resultant enhanced interaction of mafic magma with the crust. Collectively, volcanic centers mark the axis of the southernmost Cascade Range. The map area includes the entire Lassen Volcanic Center, parts of three older volcanic centers (Maidu, Dittmar, and Latour), and the products of regional volcanism (fig. 4, sheet 3). Terminology used for subdivision of the Lassen Volcanic Center has been modified from Clynne (1984, 1990).

  5. Single camera photogrammetry system for EEG electrode identification and localization.

    Science.gov (United States)

    Baysal, Uğur; Sengül, Gökhan

    2010-04-01

    In this study, photogrammetric coordinate measurement and color-based identification of EEG electrode positions on the human head are simultaneously implemented. A rotating, 2MP digital camera about 20 cm above the subject's head is used and the images are acquired at predefined stop points separated azimuthally at equal angular displacements. In order to realize full automation, the electrodes have been labeled by colored circular markers and an electrode recognition algorithm has been developed. The proposed method has been tested by using a plastic head phantom carrying 25 electrode markers. Electrode locations have been determined while incorporating three different methods: (i) the proposed photogrammetric method, (ii) conventional 3D radiofrequency (RF) digitizer, and (iii) coordinate measurement machine having about 6.5 mum accuracy. It is found that the proposed system automatically identifies electrodes and localizes them with a maximum error of 0.77 mm. It is suggested that this method may be used in EEG source localization applications in the human brain.

  6. A dynamical system perspective to understanding badminton singles game play.

    Science.gov (United States)

    Chow, Jia Yi; Seifert, Ludovic; Hérault, Romain; Chia, Shannon Jing Yi; Lee, Miriam Chang Yi

    2014-02-01

    By altering the task constraints of cooperative and competitive game contexts in badminton, insights can be obtained from a dynamical systems perspective to investigate the underlying processes that results in either a gradual shift or transition of playing patterns. Positional data of three pairs of skilled female badminton players (average age 20.5±1.38years) were captured and analyzed. Local correlation coefficient, which provides information on the relationship of players' displacement data, between each pair of players was computed for angle and distance from base position. Speed scalar product was in turn established from speed vectors of the players. The results revealed two patterns of playing behaviors (i.e., in-phase and anti-phase patterns) for movement displacement. Anti-phase relation was the dominant coupling pattern for speed scalar relationships among the pairs of players. Speed scalar product, as a collective variable, was different between cooperative and competitive plays with a greater variability in amplitude seen in competitive plays leading to a winning point. The findings from this study provide evidence for increasing stroke variability to perturb existing stable patterns of play and highlights the potential for speed scalar product to be a collective variable to distinguish different patterns of play (e.g., cooperative and competitive). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Single-layer Ultralight, Flexible, Shielding Tension Shell System for Extreme Heat and Radiation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a flexible thermal protection system (FTPS) with a Boron Nitride Nanotube (BNNT)-based single-layer, lightweight,...

  8. Single-Stage, Gelled Hydrazine System for Mars Ascent Vehicle Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm, Inc. in cooperation with Aerojet Rocketdyne is presenting an innovative approach to the Mars Ascent Vehicle (MAV). The single-stage monopropellant system...

  9. Applying Data Mining Techniques to Improve Information Security in the Cloud: A Single Cache System Approach

    Directory of Open Access Journals (Sweden)

    Amany AlShawi

    2016-01-01

    Full Text Available Presently, the popularity of cloud computing is gradually increasing day by day. The purpose of this research was to enhance the security of the cloud using techniques such as data mining with specific reference to the single cache system. From the findings of the research, it was observed that the security in the cloud could be enhanced with the single cache system. For future purposes, an Apriori algorithm can be applied to the single cache system. This can be applied by all cloud providers, vendors, data distributors, and others. Further, data objects entered into the single cache system can be extended into 12 components. Database and SPSS modelers can be used to implement the same.

  10. Analisa Kecepatan Transfer Data Pada Perancangan Hotspot Sederhana Dengan System Single Sign On Di Perkantoran

    Directory of Open Access Journals (Sweden)

    Bela Neziah Arum Pangesti

    2017-05-01

    Full Text Available The problems office in the utilization of wireless technology has widely used but sometimes without take into the number of users, so it is not mangkus. The networking system for small office can be use wireless simple system. Most of the office has applied hotspot but that is old system, one account for all people using internet access. Single sign-on is a system services of hotspot, this system verifying an account for each user so people have different and username dan a password. The methodology used is literature review, analysis, design, implementation, testing and analysis of the data transfer rate. The hotspot with a single sign-on system using mikrotik, and access point, the connected with networking devices in the office. Winbox tools is used to configuration. Testing with the user had been connected to the hotspot system single sign on. Methods of test to user login on the system single sign-on is the black box texting. Testing the speed of data transfer is used staff user and guest user who uploaded three types of files to the drive with diffrent bandwidth. Then the network sniffing is used tools wireshark. The results from this study is simple hotspot service with single sign-on system for office and from the analysis of the data transfer rate was known the data transfer rate on the staff user and guest user to the three types of file is a type of word files greater than PDF and PPT.

  11. Carboniferous-Permian volcanic evolution in Central Europe—U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic)

    Science.gov (United States)

    Hoffmann, Uwe; Breitkreuz, Christoph; Breiter, Karel; Sergeev, Sergey; Stanek, Klaus; Tichomirowa, Marion

    2013-01-01

    Nine SHRIMP U/Pb ages on zircon and two Pb/Pb single zircon ages have been determined from Late Paleozoic volcanic rocks from Saxony and northern Bohemia. Samples came from the Teplice-Altenberg Volcanic Complex, the Meissen Volcanic Complex, the Chemnitz Basin, the Döhlen Basin, the Brandov-Olbernhau Basin, and the North Saxon Volcanic Complex. The Teplice-Altenberg Volcanic Complex is subdivided into an early Namurian phase (Mikulov Ignimbrite, 326.8 ± 4.3 Ma), thus older than assumed by previous studies, and a late caldera-forming phase (Teplice Ignimbrite, 308.8 ± 4.9 Ma). The age of the latter, however, is not well constrained due to a large population of inherited zircon and possible hydrothermal overprint. The Leutewitz Ignimbrite, product of an early explosive volcanic episode of the Meissen Volcanic Complex yielded an age of 302.9 ± 2.5 Ma (Stephanian A). Volcanic rocks intercalated in the Brandov-Olbernhau Basin (BOB, 302 ± 2.8 Ma), Chemnitz Basin (CB, 296.6 ± 3.0 Ma), Döhlen Basin (DB, 296 ± 3.0 Ma), and the North Saxon Volcanic Complex (NSVC, c. 300-290 Ma) yielded well-constrained Stephanian to Sakmarian ages. The largest Late Paleozoic ignimbrite-forming eruption in Central Europe, the Rochlitz Ignimbrite, has a well-defined middle Asselian age of 294.4 ± 1.8 Ma. Ages of palingenic zircon revealed that the Namurian-Westphalian magmatism assimilated larger amounts of crystalline basement that formed during previous Paleozoic geodynamic phases. The Precambrian inherited ages support the chronostratigraphic structure assumed for the Saxo-Thuringian Zone of the Variscan Orogen. The present results help to improve the chronostratigraphic allocation of the Late Paleozoic volcanic zones in Central Europe. At the same time, the radiometric ages have implications for the interbasinal correlation and for the geodynamic evolution of the Variscan Orogeny.

  12. Level-statistics in Disordered Systems: A single parametric scaling and Connection to Brownian Ensembles

    OpenAIRE

    Shukla, Pragya

    2004-01-01

    We find that the statistics of levels undergoing metal-insulator transition in systems with multi-parametric Gaussian disorders and non-interacting electrons behaves in a way similar to that of the single parametric Brownian ensembles \\cite{dy}. The latter appear during a Poisson $\\to$ Wigner-Dyson transition, driven by a random perturbation. The analogy provides the analytical evidence for the single parameter scaling of the level-correlations in disordered systems as well as a tool to obtai...

  13. Single event monitoring system based on Java 3D and XML data binding

    International Nuclear Information System (INIS)

    Wang Liang; Chinese Academy of Sciences, Beijing; Zhu Kejun; Zhao Jingwei

    2007-01-01

    Online single event monitoring is important to BESIII DAQ System. Java3D is extension of Java Language in 3D technology, XML data binding is more efficient to handle XML document than SAX and DOM. This paper mainly introduce the implementation of BESIII single event monitoring system with Java3D and XML data binding, and interface for track fitting software with JNI technology. (authors)

  14. 76 FR 66950 - Privacy Act; Notice of Revision of System of Records, the Single Family Housing Enterprise Data...

    Science.gov (United States)

    2011-10-28

    ... Revision of System of Records, the Single Family Housing Enterprise Data Warehouse AGENCY: Office of the... systems, the Single Family Housing Enterprise Data Warehouse (SFHEDW). The revision to the record system...: Single Family Housing Enterprise Data Warehouse (SFHEDW). System location: The HUD Data Center, Hewlett...

  15. The "Escarot" gas seep, French Massif Central: CO2 discharge from a quiescent volcanic system - Characterization and quantification of gas emissions

    Science.gov (United States)

    Gal, F.; Leconte, S.; Gadalia, A.

    2018-03-01

    Natural CO2 emissions from the volcanic rocks of the French Massif Central are poorly constrained. It is of interest better to assess the emission of such non-anthropogenic gases that may significantly contribute to the global carbon budget. We quantified the CO2 emissions to the atmosphere in a small area (0.052 km2) located in the Massif Central close to Lake Pavin, the most recent volcanic edifice in metropolitan France. The specific character of this area, known as the Escarot mofette, was earlier studied for soil-gas concentrations only. In June 2017, we used the accumulation chamber method for measuring CO2 flux and related O2 depletion in the gases emitted at the soil/atmosphere interface, resulting in 176 data acquisitions over four days. In addition, 44 soil-gas concentration measurements were made at selected locations. CO2 emission rates are estimated at 8100 ± 1800 tons/year of deep-seated CO2 and at 660 ± 440 tons/year of biologically produced CO2. The uncertainty on these evaluations comes from the high-frequency variability of CO2 efflux in the more emissive areas and from the occurrence of heavy precipitation events. Though unexpected, these events were used for quantifying the decreases in CO2 efflux, which were as high as 500% over a few hours or even days in some locations. However, repeat acquisitions performed under more favourable weather conditions showed errors of commonly accepted amplitude (±15%). The area showed several degassing centres aligned along a NNW-SSE direction that correlates well with known geological structures, proving the ability of soil-gas methods to map hidden faults. The whole area is characterized by strong CO2 enrichment and related O2 depletion, but it is nonetheless possible to detect areas influenced by the rise of deep-seated gases and a few peripheral areas where biological processes dominate (CO2 up to 10% vol.). This study of gas emissions in a non-urban area also provides complementary information that is

  16. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  17. QSpec: online control and data analysis system for single-cell Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Lihui Ren

    2014-06-01

    Full Text Available Single-cell phenotyping is critical to the success of biological reductionism. Raman-activated cell sorting (RACS has shown promise in resolving the dynamics of living cells at the individual level and to uncover population heterogeneities in comparison to established approaches such as fluorescence-activated cell sorting (FACS. Given that the number of single-cells would be massive in any experiment, the power of Raman profiling technique for single-cell analysis would be fully utilized only when coupled with a high-throughput and intelligent process control and data analysis system. In this work, we established QSpec, an automatic system that supports high-throughput Raman-based single-cell phenotyping. Additionally, a single-cell Raman profile database has been established upon which data-mining could be applied to discover the heterogeneity among single-cells under different conditions. To test the effectiveness of this control and data analysis system, a sub-system was also developed to simulate the phenotypes of single-cells as well as the device features.

  18. How Did Climate and Humans Respond to Past Volcanic Eruptions?

    Science.gov (United States)

    Toohey, Matthew; Ludlow, Francis; Legrande, Allegra N.

    2016-01-01

    To predict and prepare for future climate change, scientists are striving to understand how global-scale climatic change manifests itself on regional scales and also how societies adapt or don't to sometimes subtle and complex climatic changes. In this regard, the strongest volcanic eruptions of the past are powerful test cases, showcasing how the broad climate system responds to sudden changes in radiative forcing and how societies have responded to the resulting climatic shocks. These issues were at the heart of the inaugural workshop of the Volcanic Impacts on Climate and Society (VICS) Working Group, convened in June 2016 at the Lamont-Doherty Earth Observatory of Columbia University in Palisades, N.Y. The 3-day meeting gathered approximately 50 researchers, who presented work intertwining the history of volcanic eruptions and the physical processes that connect eruptions with human and natural systems on a global scale.

  19. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1979-01-01

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  20. The volcaniclastic sequence of Aranzazu: Record of the impact of volcanism on Neogene fluvial system in the middle part of the Central Cordillera, Colombia

    International Nuclear Information System (INIS)

    Borrero Pena, Carlos Alberto; Rosero Cespedes, Juan Sebastian; Valencia M, Julian David; Pardo Trujillo, Andres

    2008-01-01

    The volcaniclastic sequence of Aranzazu (VSA, late Pliocene - early Pleistocene?) was sourced from the northernmost sector of the Machin - Cerro Bravo volcanic complex. The volcaniclastic accumulations filled the pre-existing fault-bend depressions in the surroundings of Aranzazu town (Caldas department, Colombia). A new classification of volcaniclastic deposits is proposed, in which the lahars are defined as volcaniclastic resedimented deposits, and differentiated from the primary volcaniclastic and epiclastic deposits. The updating the sedimentology and rheology of the deposits related with the laharic events is aimed. The VSA stratigraphy is based on the lithofacies identification and the definition of the architectural elements for syn- and inter-eruptive periods. The VSA lower member corresponds to the successive aggradation of syneruptive lahars (SV and SB elements) resulted from re-sedimentation of pumice-rich pyroclastic deposits and transported as debris and hyperconcentrated stream/flood flows. The VSA middle and upper members defined by coal contents were formed during the dominion of inter-eruptive (FF element) over the syn-eruptive (SV and SB elements) periods. They were formed during the reestablishment of the fluvial condition after the syn-eruptive laharic activity. Once the fluvial deposition was strengthened, the necessary conditions for the peat formation were propitious and the coal-bearing bed sets were developed.

  1. Assessment of hydraulic properties of sedimentary and volcanic aquifer systems under arid conditions in the Republic of Djibouti (Horn of Africa)

    Science.gov (United States)

    Jalludin, Mohamed; Razack, Moumtaz

    The Republic of Djibouti (23,000 km2 500,000 inhabitants), located within the Horn of Africa, undergoes an arid climate with an average annual rainfall less than 150 mm. Water resources are provided up to 98% by groundwater. Two types of aquifers are encountered: volcanic and sedimentary aquifers. This paper focuses on the assessment of their hydraulic properties, which is necessary for future tasks regarding the management of these aquifers. To this end, a data base consisting of all available pumping test data obtained since the 1960s was compiled. Pumping tests have been interpreted to determine transmissivity. Solely for volcanic aquifers, transmissivity also has been estimated through an empirical relationship using specific capacity corrected for turbulent well losses. The transmissivity of each type of aquifer can span up to four orders of magnitude, pointing out their strong heterogeneity. For the various volcanic rocks, the younger the rock, the higher the transmissivity. The transmissivity of volcanic rocks has therefore decreased in the course of geological time. At present, a much better understanding of the hydraulic properties of these complex aquifers has been obtained, which should enable optimal management of their groundwater resources through the use of numerical modeling. La République de Djibouti (23,000 km2 500,000 habitants), située dans la Corne de l'Afrique, subit un climat aride avec une pluviométrie moyenne annuelle inférieure à 150 mm. Les ressources en eau sont fournies à plus de 98% par les eaux souterraines contenues dans des aquifères sédimentaires ou volcaniques. Cet article a pour objectif l'évaluation des propriétés hydrauliques de ces aquifères, étape indispensable pour entreprendre par la suite des études en vue de la gestion de ces aquifères. Une base rassemblant les données d'essais par pompage disponibles depuis les années Soixante a d'abord été établie. Les essais par pompage ont été interprétés pour

  2. Comprehensive study of the seismotectonics of the eastern Aleutian ARC and associated volcanic systems. Annual progress report, March 1, 1981-February 28, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, K. H.; Hauksson, E.; Sykes, L. R.

    1981-01-01

    Assessment of the seismic potential for occurrence of great earthquakes in three seismic gaps (Shumagin Islands, Unalaska Island, and Yakataga-Kayak regions) has been completed. In the best-instrumented seismic gap in the Shumagin Islands region, the likelihood for a great earthquake within the next two decades is high. Analysis of earthquake data collected from a telemetered network operated in the Shumagin seismic gap shows near-quiescence in the shallow portion of the main thrust zone. Installation of digital recording equipment at the central station of the Shumagin network, combined with interactive computer analysis at Lamont-Doherty of either digitally recorded or digitized analog seismic data has provided new research possibilities for studying seismic source properties, wave propagation in a laterally heterogeneous velocity structure of the subduction zone, and for seismically screening the root-zone and volcanic pile of Pavlof volcano. High time-resolution data (0.01 sec), and wider frequency band-pass data (0.5 to 30 Hz) are now being collected. Seismic data for two eruptive sequences of Pavlof-volcano have been obtained.

  3. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    Pushed by the booming installations of single-phase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of low voltage ride-through (LVRT) and the grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant detection and control strategies are discussed. Some faulty modes are studied experimentally...

  4. A single-system model predicts recognition memory and repetition priming in amnesia.

    Science.gov (United States)

    Berry, Christopher J; Kessels, Roy P C; Wester, Arie J; Shanks, David R

    2014-08-13

    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. Copyright © 2014 the authors 0270-6474/14/3410963-12$15.00/0.

  5. An Oxygen Scavenging System for Improvement of Dye Stability in Single-Molecule Fluorescence Experiments☆

    Science.gov (United States)

    Aitken, Colin Echeverría; Marshall, R. Andrew; Puglisi, Joseph D.

    2008-01-01

    The application of single-molecule fluorescence techniques to complex biological systems places demands on the performance of single fluorophores. We present an enzymatic oxygen scavenging system for improved dye stability in single-molecule experiments. We compared the previously described protocatechuic acid/protocatechuate-3,4-dioxygenase system to the currently employed glucose oxidase/catalase system. Under standardized conditions, we observed lower dissolved oxygen concentrations with the protocatechuic acid/protocatechuate-3,4-dioxygenase system. Furthermore, we observed increased initial lifetimes of single Cy3, Cy5, and Alexa488 fluorophores. We further tested the effects of chemical additives in this system. We found that biological reducing agents increase both the frequency and duration of blinking events of Cy5, an effect that scales with reducing potential. We observed increased stability of Cy3 and Alexa488 in the presence of the antioxidants ascorbic acid and n-propyl gallate. This new O2-scavenging system should have wide application for single-molecule fluorescence experiments. PMID:17921203

  6. Interactions between climatic forcing of lake level change, tectonics and volcanism in the Rungwe Volcanic Province, SW Highlands of Tanzania

    Science.gov (United States)

    Delvaux, D.; Williamson, D.

    2009-04-01

    The Rungwe Volcanic Province extends between the Rukwa and Nyasa (Malawi) rift lakes, which both experimented marked water level fluctuations (several hundred meters in altitude) during the last 40 ka. The infilling of water reservoirs whether artificial or natural, is known to be able to trigger earthquakes and volcanism (Ambraseys and Sarma, 1968). In the Southwestern Highlands of Tanzania and most especially in the Rungwe Volcanic Province where the western and eastern branches of the East African Rift System meet, a similar link is likely highlighted. Compilation of available data supplemented by new observations allows investigating the time relations between (1) climatically induced, rapid water level fluctuations in the surrounding rift lakes, (2) tectonic activation of the fault systems that extend from the lacustrine depressions to the volcanic area, and (3) deposition of tephra layers in soils and sediments. The latter are considered to reflect the frequency and/or magnitude of explosive eruptions in the Rungwe massif. According to these data, a connexion is suggested between the great lakes level change, tectonics, and volcanic activity for the last glacial - interglacial transition (14 - 11.5 cal. ka BP), and possibly also during the Holocene.

  7. Model-based aviation advice on distal volcanic ash clouds by assimilating aircraft in situ measurements

    Directory of Open Access Journals (Sweden)

    G. Fu

    2016-07-01

    Full Text Available The forecast accuracy of distal volcanic ash clouds is important for providing valid aviation advice during volcanic ash eruption. However, because the distal part of volcanic ash plume is far from the volcano, the influence of eruption information on this part becomes rather indirect and uncertain, resulting in inaccurate volcanic ash forecasts in these distal areas. In our approach, we use real-life aircraft in situ observations, measured in the northwestern part of Germany during the 2010 Eyjafjallajökull eruption, in an ensemble-based data assimilation system combined with a volcanic ash transport model to investigate the potential improvement on the forecast accuracy with regard to the distal volcanic ash plume. We show that the error of the analyzed volcanic ash state can be significantly reduced through assimilating real-life in situ measurements. After a continuous assimilation, it is shown that the aviation advice for Germany, the Netherlands and Luxembourg can be significantly improved. We suggest that with suitable aircrafts measuring once per day across the distal volcanic ash plume, the description and prediction of volcanic ash clouds in these areas can be greatly improved.

  8. Growth of single T cells and single thymocytes in a high cloning efficiency filler-cell free microculture system.

    Science.gov (United States)

    Chen, W F; Ewing, T; Scollay, R; Shortman, K

    1988-01-01

    A high cloning-efficiency microculture system is described in which single T cells, stimulated to divide by phorbol ester and calcium ionophore, grow rapidly under the influence of purified growth factors in the absence of other cells. The kinetics of clonal growth has been monitored over a five day period by phase-contrast microscopy. Mature peripheral T cells, and mature subpopulations from the thymus, responded with a cloning efficiency over 80%; they required IL-2 as a minimum but several other factors enhanced growth. Ly2+L3T4- thymocytes (mean doubling time 10.4 hr) grew more rapidly than Ly2-L3T4+ thymocytes (mean doubling time 15.2 hr). Early (Ly2-L3T4-) thymocytes responded with a cloning efficiency of 60%; their efficient growth was dependent on both IL-1 and IL-2. The typical Ly2+L3T4+ cortical thymocyte did not grow under these conditions.

  9. A single mode method for the analysis and identification of nonlinear MDOF systems

    Science.gov (United States)

    Huang, Liping; Iwan, W. D.

    In order to apply mode approach to describe a nonlinear system, the concept of modal response of nonlinear systems is examined, and an amplitude-dependent modal model is presented based on an analysis of a single mode of response. The effectiveness of this model is examined under different types and various levels of excitation. A corresponding identification procedure for cubic systems is proposed and applied to the analysis of a 3DOF soltening nonlinear system.

  10. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  11. Evaluation of gases, condensates, and SO2 emissions from Augustine volcano, Alaska: the degassing of a Cl-rich volcanic system

    Science.gov (United States)

    Symonds, R.B.; Rose, William I.; Gerlach, T.M.; Briggs, P.H.; Harmon, R.S.

    1990-01-01

    After the March-April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380??45 metric tons/day (T/D) on 7/24/86 to 27??6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870??C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870??C with an oxygen fugacity near the Ni-NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3-6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9-84.8 mol% H2O). Values of ??D and ??18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390??-642??C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much

  12. Io - One of at Least Four Simultaneous Erupting Volcanic Eruptions

    Science.gov (United States)

    1979-01-01

    This photo of an active volcanic eruption on Jupiter's satellite Io was taken 1 hour, 52 minutes after the accompanying picture, late in the evening of March 4, 1979, Pacific time. On the limb of the satellite can be seen one of at least four simultaneous volcanic eruptions -- the first such activity ever observed on another celestial body. Seen against the limb are plume-like structures rising more than 60 miles (100 kilometers) above the surface. Several eruptions have been identified with volcanic structures on the surface of Io, which have also been identified by Voyager 1's infrared instrument as being abnormally hot -- several hundred degrees warmer than surrounding terrain. The fact that several eruptions appear to be occurring at the same time suggests that Io has the most active surface in the solar system and that volcanism is going on there essentially continuously. Another characteristic of the observed volcanism is that it appears to be extremely explosive, with velocities more than 2,000 miles an hour (at least 1 kilometer per second). That is more violent than terrestrial volcanoes like Etna, Vesuvius or Krakatoa.

  13. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming

    Science.gov (United States)

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W

    2015-01-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  14. An automated system for high-throughput single cell-based breeding

    Science.gov (United States)

    Yoshimoto, Nobuo; Kida, Akiko; Jie, Xu; Kurokawa, Masaya; Iijima, Masumi; Niimi, Tomoaki; Maturana, Andrés D.; Nikaido, Itoshi; Ueda, Hiroki R.; Tatematsu, Kenji; Tanizawa, Katsuyuki; Kondo, Akihiko; Fujii, Ikuo; Kuroda, Shun'ichi

    2013-01-01

    When establishing the most appropriate cells from the huge numbers of a cell library for practical use of cells in regenerative medicine and production of various biopharmaceuticals, cell heterogeneity often found in an isogenic cell population limits the refinement of clonal cell culture. Here, we demonstrated high-throughput screening of the most suitable cells in a cell library by an automated undisruptive single-cell analysis and isolation system, followed by expansion of isolated single cells. This system enabled establishment of the most suitable cells, such as embryonic stem cells with the highest expression of the pluripotency marker Rex1 and hybridomas with the highest antibody secretion, which could not be achieved by conventional high-throughput cell screening systems (e.g., a fluorescence-activated cell sorter). This single cell-based breeding system may be a powerful tool to analyze stochastic fluctuations and delineate their molecular mechanisms. PMID:23378922

  15. Comparison of the accuracy of the calibration model on the double and single integrating sphere systems

    CSIR Research Space (South Africa)

    Singh

    2011-05-01

    Full Text Available The accuracy of the calibration model for the single and double integrating sphere systems are compared for a white light system. A calibration model is created from a matrix of samples with known absorption and reduced scattering coefficients...

  16. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.

    2016-01-01

    of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral...

  17. Single-Mask Fabrication of Temperature Triggered MEMS Switch for Cooling Control in SSL System

    NARCIS (Netherlands)

    Wei, J.; Ye, H.; Van Zeijl, H.W.; Sarro, P.M.; Zhang, G.Q.

    2012-01-01

    A micro-electro-mechanical-system (MEMS) based, temperature triggered, switch is developed as a cost-effective solution for smart cooling control of solid-state-lighting systems. The switch (1.0x0.4 mm2) is embedded in a silicon substrate and fabricated with a single-mask 3D micro-machining process.

  18. System upgrade and its complications in patients with a single lead atrial pacemaker

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Andersen, Henning Rud; Nielsen, Jens Cosedis

    2013-01-01

    To investigate the indications for system upgrade with single lead atrial pacing (AAIR), complications associated with these re-interventions, and possible predictors for system upgrade among patients included in the Danish Multicenter Randomized Trial on AAIR vs. dual-chamber pacing (DDDR) in si...

  19. Modeling and Control of a Single-Phase Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2013-01-01

    This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

  20. Apically extruded dentin debris by reciprocating single-file and multi-file rotary system.

    Science.gov (United States)

    De-Deus, Gustavo; Neves, Aline; Silva, Emmanuel João; Mendonça, Thais Accorsi; Lourenço, Caroline; Calixto, Camila; Lima, Edson Jorge Moreira

    2015-03-01

    This study aims to evaluate the apical extrusion of debris by the two reciprocating single-file systems: WaveOne and Reciproc. Conventional multi-file rotary system was used as a reference for comparison. The hypotheses tested were (i) the reciprocating single-file systems extrude more than conventional multi-file rotary system and (ii) the reciprocating single-file systems extrude similar amounts of dentin debris. After solid selection criteria, 80 mesial roots of lower molars were included in the present study. The use of four different instrumentation techniques resulted in four groups (n = 20): G1 (hand-file technique), G2 (ProTaper), G3 (WaveOne), and G4 (Reciproc). The apparatus used to evaluate the collection of apically extruded debris was typical double-chamber collector. Statistical analysis was performed for multiple comparisons. No significant difference was found in the amount of the debris extruded between the two reciprocating systems. In contrast, conventional multi-file rotary system group extruded significantly more debris than both reciprocating groups. Hand instrumentation group extruded significantly more debris than all other groups. The present results yielded favorable input for both reciprocation single-file systems, inasmuch as they showed an improved control of apically extruded debris. Apical extrusion of debris has been studied extensively because of its clinical relevance, particularly since it may cause flare-ups, originated by the introduction of bacteria, pulpal tissue, and irrigating solutions into the periapical tissues.

  1. A single-system model predicts recognition memory and repetition priming in amnesia

    NARCIS (Netherlands)

    Berry, C.J.; Kessels, R.P.C.; Wester, A.J.; Shanks, D.R.

    2014-01-01

    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with

  2. A Single-System Account of the Relationship between Priming, Recognition, and Fluency

    Science.gov (United States)

    Berry, Christopher J.; Shanks, David R.; Henson, Richard N. A.

    2008-01-01

    A single-system computational model of priming and recognition was applied to studies that have looked at the relationship between priming, recognition, and fluency in continuous identification paradigms. The model was applied to 3 findings that have been interpreted as evidence for a multiple-systems account: (a) priming can occur for items not…

  3. Simulation of a quantum NOT gate for a single qutrit system

    Indian Academy of Sciences (India)

    level system; qutrit; three-level transitions; one-qutrit quantum gate. ... Because of the fact that the three-level atom defines a total normalized state composed of superposition of three different single-level states, it is assumed that such a system ...

  4. Reduced cooling following future volcanic eruptions

    Science.gov (United States)

    Hopcroft, Peter O.; Kandlbauer, Jessy; Valdes, Paul J.; Sparks, R. Stephen J.

    2017-11-01

    Volcanic eruptions are an important influence on decadal to centennial climate variability. Large eruptions lead to the formation of a stratospheric sulphate aerosol layer which can cause short-term global cooling. This response is modulated by feedback processes in the earth system, but the influence from future warming has not been assessed before. Using earth system model simulations we find that the eruption-induced cooling is significantly weaker in the future state. This is predominantly due to an increase in planetary albedo caused by increased tropospheric aerosol loading with a contribution from associated changes in cloud properties. The increased albedo of the troposphere reduces the effective volcanic aerosol radiative forcing. Reduced sea-ice coverage and hence feedbacks also contribute over high-latitudes, and an enhanced winter warming signal emerges in the future eruption ensemble. These findings show that the eruption response is a complex function of the environmental conditions, which has implications for the role of eruptions in climate variability in the future and potentially in the past.

  5. A Comparison of Single and Multi-Stream Recycling Systems in Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Calvin Lakhan

    2015-06-01

    Full Text Available This study examines differences in cost and recycling performance between single and multi-stream recycling systems in Ontario, Canada. Using panel data from 223 provincial municipalities spanning a ten year period, focus is placed on analyzing: (a Are material management costs for municipalities who implement single stream collection less than those that implement multi stream collection? (b Are recycling rates for single stream municipalities higher than municipalities with multi stream collection? (c Do municipalities with multi stream collection realize higher revenues from the sale of recyclable material? The results of the analysis show that while single stream recycling programs recycle more than multi stream programs, they face significantly higher material management costs. This was contrary to the prevailing opinion that single stream recycling is a cheaper alternative to multi-stream recycling. As far as can be ascertained, this is one of the few studies of its kind to examine the differences in material management costs and recycling performance between single and multi-stream recycling systems. This topic is of increasing importance, as single stream recycling is being touted as preferred waste management option in both Ontario and abroad.

  6. Tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation

    Directory of Open Access Journals (Sweden)

    M Soltani

    2015-12-01

    Full Text Available In this work, we generalize the entanglement of three-qbit Bosonic systems beyond the single-mode approximation when one of the observers is accelerated. For this purpose, we review the effects of acceleration on field modes and quantum states. The single-mode approximation and beyond the single-mode approximation methods are introduced. After this brief introduction, the main problem of this paper, tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation is investigated. The tripartite entangled states have different classes with GHZ and W states being most important. Here, we choose &pi-tangle as a measure of tripartite entanglement. If the three parties share GHZ state, the corresponding &pi-tangle will increase by increasing acceleration for some Unruh modes. This phenomenon, increasing entanglement, has never been observed in the single-mode approximation for bosonic case. Moreover, the &pi-tangle dose not exhibit a monotonic behavior with increasing acceleration. In the infinite acceleration limit, the &pi-tangle goes to different nonzero values for distinct Unruh modes. Unlike GHZ state, the entanglement of the W state shows only monotonically increasing and decreasing behaviors with increasing acceleration. Also, the entanglement for all possible choices of Unruh modes approaches only 0.176 in the high acceleration limit. Therefore, according to the quantum entanglement, there is no distinction between the single-mode approximation and beyond the single-mode approximation methods in this limit.

  7. Single Microwave-Photon Detector using an Artificial Lambda-type Three-Level System

    Science.gov (United States)

    2016-01-11

    Single microwave -photon detector using an artificial Λ-type three-level system Kunihiro Inomata,1∗†, Zhirong Lin,1†, Kazuki Koshino,2, William D...are those of the author and are not necessarily endorsed by the United States Government. Single microwave -photon detector using an artificial Λ-type...in both the optical and the microwave domains. However, the energy of mi- crowave quanta are four to five orders of magnitude less than their optical

  8. Single Microfluidic Electrochemical Sensor System for Simultaneous Multi-Pulmonary Hypertension Biomarker Analyses

    OpenAIRE

    Lee, GeonHui; Lee, JuKyung; Kim, JeongHoon; Choi, Hak Soo; Kim, Jonghan; Lee, SangHoon; Lee, HeaYeon

    2017-01-01

    Miniaturized microfluidic biosensors have recently been advanced for portable point-of-care diagnostics by integrating lab-on-a-chip technology and electrochemical analysis. However, the design of a small, integrated, and reliable biosensor for multiple and simultaneous electrochemical analyses in a single device remains a challenge. Here, we present a simultaneous microfluidic electrochemical biosensing system to detect multiple biomarkers of pulmonary hypertension diseases in a single devic...

  9. Electrochemistry and bioelectrochemistry towards the single-molecule level: Theoretical notions and systems

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Albrecht, Tim

    2005-01-01

    Surface structures controlled at the nanometer and single-molecule levels, with functions crucially determined by interfacial electron transfer (ET) are broadly reported in recent years, with different kinds of electrochemically controlled nanoscale/single molecule systems. One is the broad class...... tunnelling spectroscopic (STS) features. Mapping of redox metalloproteins from the three major classes, i.e. blue copper proteins, heme proteins, and iron-sulfur proteins, at the monolayer and single-molecule levels have also been achieved. In situ STM and spectroscopy of redox molecules and biomolecules...

  10. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    International Nuclear Information System (INIS)

    FV PERRY; GA CROWE; GA VALENTINE; LM BOWKER

    1997-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( -7 events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a priority issue for performance assessment studies

  11. Three-dimensional (3-D) video systems: bi-channel or single-channel optics?

    Science.gov (United States)

    van Bergen, P; Kunert, W; Buess, G F

    1999-11-01

    This paper presents the results of a comparison between two different three-dimensional (3-D) video systems, one with single-channel optics, the other with bi-channel optics. The latter integrates two lens systems, each transferring one half of the stereoscopic image; the former uses only one lens system, similar to a two-dimensional (2-D) endoscope, which transfers the complete stereoscopic picture. In our training centre for minimally invasive surgery, surgeons were involved in basic and advanced laparoscopic courses using both a 2-D system and the two 3-D video systems. They completed analog scale questionnaires in order to record a subjective impression of the relative convenience of operating in 2-D and 3-D vision, and to identify perceived deficiencies in the 3-D system. As an objective test, different experimental tasks were developed, in order to measure performance times and to count pre-defined errors made while using the two 3-D video systems and the 2-D system. Using the bi-channel optical system, the surgeon has a heightened spatial perception, and can work faster and more safely than with a single-channel system. However, single-channel optics allow the use of an angulated endoscope, and the free rotation of the optics relative to the camera, which is necessary for some operative applications.

  12. VOLCANIC RISK ASSESSMENT - PROBABILITY AND CONSEQUENCES

    International Nuclear Information System (INIS)

    G.A. Valentine; F.V. Perry; S. Dartevelle

    2005-01-01

    framework is an important way to focus research in the most critical areas as well as providing an integrated approach to a range of complex processes. Uncertainty in both event probability and consequences can formally be accounted for within a decision framework and therefore is explicitly communicated to decision makers. Such an approach also tends to open new questions about volcanic systems and their interactions with humans and infrastructure, thereby driving new basic research

  13. Venus volcanism and El Chichon

    Science.gov (United States)

    Bell, Peter M.

    Reinterpretations of telemetry data returned to earth from the Pioneer Venus Orbiter suggest that the surface of Venus may be characterized by violent immense volcanic activity. L.W. Esposito has made an interactive analysis of Pioneer ultraviolet spectral data and similar data from the earth's atmosphere [Science, 223, 1072-1074, 1984]. Spacecraft analysis of sulfur dioxide in the earth's upper atmosphere, apparently released by El Chich[acu]on, Mexico, in March 1982 (EOS, June 14, 1983, p. 411, and August 16, 1983, p. 506) prompted reanalysis of accumulated Pioneer ultraviolet data. Massive injections of sulfur dioxide into the Venus atmosphere could be the result of volcanic eruptions about the size of the Krakatoa explosive eruption that took place between Java and Summatra in 1883.

  14. Source mechanisms of volcanic tsunamis.

    Science.gov (United States)

    Paris, Raphaël

    2015-10-28

    Volcanic tsunamis are generated by a variety of mechanisms, including volcano-tectonic earthquakes, slope instabilities, pyroclastic flows, underwater explosions, shock waves and caldera collapse. In this review, we focus on the lessons that can be learnt from past events and address the influence of parameters such as volume flux of mass flows, explosion energy or duration of caldera collapse on tsunami generation. The diversity of waves in terms of amplitude, period, form, dispersion, etc. poses difficulties for integration and harmonization of sources to be used for numerical models and probabilistic tsunami hazard maps. In many cases, monitoring and warning of volcanic tsunamis remain challenging (further technical and scientific developments being necessary) and must be coupled with policies of population preparedness. © 2015 The Author(s).

  15. Solar energy heating system design package for a single-family residence at New Castle, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    The design of a solar heating and hot water system for the New Castle Redevelopment Authority's single-family dwelling located at New Castle, Pennsylvania is described. Documentation submitted by the contractor for Government review of plans, specifications, cost trade studies and verification status for approval to commit the system to fabrication is presented. Also included are system integration drawings, major subsystems drawings, and architect's specifications and plans.

  16. Single-Server Queueing System with Markov-Modulated Arrivals and Service Times

    OpenAIRE

    Dimitrov, Mitko

    2011-01-01

    Key words: Markov-modulated queues, waiting time, heavy traffic. Markov-modulated queueing systems are those in which the input process or service mechanism is influenced by an underlying Markov chain. Several models for such systems have been investigated. In this paper we present heavy traffic analysis of single queueing system with Poisson arrival process whose arrival rate is a function of the state of Markov chain and service times depend on the state of the same Markov chain at the e...

  17. Comparison between Conventional OCDMA and Subcarrier Multiplexing SAC OCDMA System Based on Single Photodiode Detection

    OpenAIRE

    Ahmad N. A. A; Junita M. N; Aljunid Syed Alwi; Che Beson Mohd Rashidi; Endut Rosdisham

    2017-01-01

    This paper demonstrates the comparison between conventional OCDMA system and subcarrier multiplexing (SCM) SAC-OCDMA system by applying Recursive Combinatorial (RC) code based on single photodiode detection (SPD). SPD is used in the receiver part to reduce the effect of multiple access interference (MAI) which contributes as a dominant noise in incoherent SAC-OCDMA systems. From this analysis, the performance of SCM OCDMA network could be improved by using lower data rates and higher received...

  18. Setting Single Photon Detectors for Use with an Entangled Photon Distribution System

    Science.gov (United States)

    2017-12-01

    System by Daniel E Jones, Drew Weninger, and Michael Brodsky Approved for public release; distribution is unlimited...Laboratory Setting Single Photon Detectors for Use with an Entangled Photon Distribution System by Daniel E Jones and Michael Brodsky Computational...Use with an Entangled Photon Distribution System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Daniel E Jones

  19. Uranium deposits in volcanic rocks

    International Nuclear Information System (INIS)

    1985-01-01

    Twenty-eight papers were presented at the meeting and two additional papers were provided. Three panels were organized to consider the specific aspects of the genesis of uranium deposits in volcanic rocks, recognition criteria for the characterization of such deposits, and approaches to exploration. The papers presented and the findings of the panels are included in the Proceedings. Separate abstracts were prepared for each of these papers

  20. Tectonic shortening and coeval volcanism during the Quaternary ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Tectonic shortening ... Abstract. The Northeast Japan arc, a mature volcanic arc with a back-arc marginal basin (Japan Sea), is located on a convergent plate boundary along the subducting Pacific plate and the overriding North American plate. From a ...

  1. Preliminary design requirements document for the initial single-shell tank retrieval system

    Energy Technology Data Exchange (ETDEWEB)

    Hertzel, J.S., Westinghouse Hanford

    1996-07-24

    The scope of this Preliminary Design Requirements Document is to identify and define the functions, with associated requirements, which must be performed to demonstrate and accomplish the initial single-shell tank saltcake retrieval from selected tanks. This document sets forth functions, requirements, performance requirements and design constraints necessary to begin conceptual design for the Initial Single-shell Tank Retrieval System. System and physical interfaces between the Initial Single-shell Tank Retrieval System project and the Tank Waste Remediation are identified. The constraints, performance requirements, and transfer of information and data across a technical interface will be documented in an Interface Control Document. The design requirements provided in this document will be augmented by additional detailed design to be documented by the project.

  2. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhu

    2016-02-01

    Full Text Available Developing a model of primate neural tube (NT development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs. The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the “NESC-TO-NTs” system, we model the functions of folic acid (FA on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases.

  3. Single-molecule imaging and manipulation of biomolecular machines and systems.

    Science.gov (United States)

    Iino, Ryota; Iida, Tatsuya; Nakamura, Akihiko; Saita, Ei-Ichiro; You, Huijuan; Sako, Yasushi

    2018-02-01

    Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration. We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems. Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines. Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: "What is life?" This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Role of single-particle and pair condensates in Bose systems with arbitrary intensity of interaction

    Directory of Open Access Journals (Sweden)

    A.S. Peletminskii

    2013-03-01

    Full Text Available We study a superfluid Bose system with single-particle and pair condensates on the basis of a half-phenomenological theory of a Bose liquid not involving the weakness of interparticle interaction. The coupled equations describing the equilibrium state of such system are derived from the variational principle for entropy. These equations are analyzed at zero temperature both analytically and numerically. It is shown that the fraction of particles in the single-particle and pair condensates essentially depends on the total density of the system. At densities attainable in condensates of alkali-metal atoms, almost all particles are in the single-particle condensate. The pair condensate fraction grows with increasing total density and becomes dominant. It is shown that at density of liquid helium, the single-particle condensate fraction is less than 10% that agrees with experimental data on inelastic neutron scattering, Monte Carlo calculations and other theoretical predictions. The ground state energy, pressure, and compressibility are found for the system under consideration. The spectrum of single-particle excitations is also analyzed.

  5. Volcanic gas surveillance in Colombia using NOVAC ScanDOAS instruments

    Science.gov (United States)

    Garzón, Gustavo; Makario Londoño, John; Silva, Betty; Galle, Bo; Arellano, Santiago

    2013-04-01

    Volcano surveillance in Colombia was formally initiated just after reactivation of Nevado del Ruiz volcano, when over 23,000 people were killed and approximately 5,000 were injured by four thick lahars that raced down river valleys on the volcanós flanks. The Armero tragedy was the second-deadliest volcanic disaster in the 20th century, being surpassed only by the 1902 eruption of Mount Pelée, and is the fourth-deadliest volcanic eruption in recorded history. Gas monitoring on Colombian volcanic fumaroles started as in situ sampling with chemical lab analyses, later a gas telemetry system was developed and finally, from year 2007 and onwards, we are using optical remote sensing instruments for volcanic gas monitoring developed in the European projects DORSIVA and NOVAC. NOVAC (Network for Observation of Volcanic and Atmospheric Change) today encompasses 64 scanDOAS (plus mobileDOAS) systems at 24 active volcanoes in four continents. SO2 data from NOVAC technology at active Colombian volcanoes, will be presented together with all cases of explosive eruptions from 2007 until 2012. Special attention will be given on periods of volcanic eruptions, when magma body is transported from the deep to the surface and a clear increase of sulphur dioxide is detected at NOVAC stations located at 4 - 8 km distance from the volcanic fumaroles.

  6. Improving global detection of volcanic eruptions using the Ozone Monitoring Instrument (OMI

    Directory of Open Access Journals (Sweden)

    V. J. B. Flower

    2016-11-01

    Full Text Available Volcanic eruptions pose an ever-present threat to human populations around the globe, but many active volcanoes remain poorly monitored. In regions where ground-based monitoring is present the effects of volcanic eruptions can be moderated through observational alerts to both local populations and service providers, such as air traffic control. However, in regions where volcano monitoring is limited satellite-based remote sensing provides a global data source that can be utilised to provide near-real-time identification of volcanic activity. This paper details a volcanic plume detection method capable of identifying smaller eruptions than is currently feasible, which could potentially be incorporated into automated volcanic alert systems. This method utilises daily, global observations of sulfur dioxide (SO2 by the Ozone Monitoring Instrument (OMI on NASA's Aura satellite. Following identification and classification of known volcanic eruptions in 2005–2009, the OMI SO2 data, analysed using a logistic regression analysis, permitted the correct classification of volcanic events with an overall accuracy of over 80 %. Accurate volcanic plume identification was possible when lower-tropospheric SO2 loading exceeded ∼ 400 t. The accuracy and minimal user input requirements of the developed procedure provide a basis for incorporation into automated SO2 alert systems.

  7. Somatic growth in 94 single ventricle children -- comparing systemic right and left ventricle patients

    DEFF Research Database (Denmark)

    Hessel, Trine witzner; Greisen, Gorm; Idorn, Lars

    2013-01-01

    We sought to compare and assess growth in single ventricle children with a systemic right or left ventricle in five time periods: at birth, before neonatal surgery, before the Glenn anastomosis and finally before and after the Fontan operation to 11 years of age.......We sought to compare and assess growth in single ventricle children with a systemic right or left ventricle in five time periods: at birth, before neonatal surgery, before the Glenn anastomosis and finally before and after the Fontan operation to 11 years of age....

  8. Common-Ground-Type Tansformerless Inverters for Single-Phase Solar Photovoltaic Systems

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2018-01-01

    This paper proposes a family of novel flying capacitor transformerless inverters for single-phase photovoltaic (PV) systems. Each of the new topologies proposed is based on a flying capacitor principle and requires only four power switches and/or diodes, one capacitor, and a small filter at the o......This paper proposes a family of novel flying capacitor transformerless inverters for single-phase photovoltaic (PV) systems. Each of the new topologies proposed is based on a flying capacitor principle and requires only four power switches and/or diodes, one capacitor, and a small filter...

  9. Generation of robust tripartite entanglement with a single-cavity optomechanical system

    Science.gov (United States)

    Yang, Xihua; Ling, Yang; Shao, Xuping; Xiao, Min

    2017-05-01

    We present a proposal to generate robust tripartite optomechanical entanglement with a single-cavity optomechanical system driven by a single input laser field. The produced stationary tripartite entanglement among two longitudinal cavity modes and a mirror oscillation mode via radiation pressure force exhibits robustness to the variation of the environment temperature when the cavity free spectral range is close to the mechanical oscillation frequency. The present optomechanical system can serve as an alternative intermediary for quantum-state exchange between two microwave (or optical) fields as well as between photons and the macroscopic mechanical oscillator, and may be potentially useful for quantum information processing and quantum networks.

  10. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2013-01-01

    Pushed by the booming installations of singlephase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of Low Voltage Ride-Through (LVRT) and grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant synchronization and control strategies are discussed. Some faulty modes are studied experimentally...

  11. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  12. Fluidic Logic Used in a Systems Approach to Enable Integrated Single-cell Functional Analysis

    Directory of Open Access Journals (Sweden)

    Naveen Ramalingam

    2016-09-01

    Full Text Available The study of single cells has evolved over the past several years to include expression and genomic analysis of an increasing number of single cells. Several studies have demonstrated wide-spread variation and heterogeneity within cell populations of similar phenotype. While the characterization of these populations will likely set the foundation for our understanding of genomic- and expression-based diversity, it will not be able to link the functional differences of a single cell to its underlying genomic structure and activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor and measure the response due to perturbation, and link these response measurements to downstream genomic and transcriptomic analysis. In order to address this challenge, we developed a platform to integrate and miniaturize many of the experimental steps required to study single-cell function. The heart of this platform is an elastomer-based Integrated Fluidic Circuit (IFC that uses fluidic logic to select and sequester specific single cells based on a phenotypic trait for downstream experimentation. Experiments with sequestered cells that have been performed include on-chip culture, exposure to a variety of stimulants, and post-exposure image-based response analysis, followed by preparation of the mRNA transcriptome for massively parallel sequencing analysis. The flexible system embodies experimental design and execution that enable routine functional studies of single cells.

  13. Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field

    Science.gov (United States)

    Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting

    2016-09-01

    In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.

  14. Low Voltage Ride-Through Capability of a Single-Stage Single-Phase Photovoltaic System Connected to the Low-Voltage Grid

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    The progressively growing of single-phase photovoltaic (PV) systems makes the Distribution System Operators (DSO) to update or revise the existing grid codes in order to guarantee the availability, quality and reliability of the electrical system. It is expected that the future PV systems connected...... to the low-voltage grid will be more active with functionalities of low voltage ride-through (LVRT) and the grid support capability, which is not the case today. In this paper, the operation principle is demonstrated for a single-phase grid-connected PV system in low voltage ride through operation in order...... to map future challenges. The system is verified by simulations and experiments. Test results show that the proposed power control method is effective and the single-phase PV inverters connected to low-voltage networks are ready to provide grid support and ride-through voltage fault capability...

  15. Global CO2 Emission from Volcanic Lakes

    Science.gov (United States)

    Perez, N.; Hernandez Perez, P. A.; Padilla, G.; Melian Rodriguez, G.; Padron, E.; Barrancos, J.; Calvo, D.; Kusukabe, M.; Mori, T.; Nolasco, D.

    2009-12-01

    During the last two decades, scientists have paid attention to CO2 volcanic emissions and its contribution to the global C budget. Excluding MORBs as a net source of CO2 to the atmosphere, the global CO2 discharge from subaerial volcanism has been estimated about 300 Mt y-1 and this rate accounts for both visible (plume & fumaroles) and non-visible (diffuse) volcanic gas emanations (Mörner & Etíope, 2002). However, CO2 emissions from volcanic lakes have not been considered to estimate the global CO2 discharge from subaerial volcanoes. In order to improve this global CO2 emission rate and estimate the global CO2 emission from volcanic lakes, an extensive research on CO2 emission of volcanic lakes from Phillipines, Nicaragua, Guatemala, Mexico, Indonesia, Germany, France, Cameroon, Costa Rica, El Salvador and Ecuador had been recently carried out. In-situ measurements of CO2 efflux from the surface environment of volcanic lakes were performed by means of a modified floating device of the accumulation chamber method. To quantify the total CO2 emission from each volcanic lake, CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). CO2 emission rates were normalized by the lake area (km2), and volcanic lakes were grouped following classification in acid, alkaline and neutral lakes. The observed average normalized CO2 emission rate values increase from alkaline (5.5 t km-2 d-1), neutral (210.0 t km-2 d-1), to acid (676.8 t km-2 d-1) volcanic lakes. Taking into account (i) these normalized CO2 emission rates from 31 volcanic lakes, (ii) the number of volcanic lakes in the world (~ 1100), (iii) the fraction of the investigated alkaline (45%), neutral (39%), and acid (16%) volcanic lakes, and (iv) the average areas of the investigated alkaline (36,8 km2), neutral (3,7 km2), and acid (0,5 km2) volcanic lakes; the global CO2 emission from volcanic lakes is about ~ 182 Mt year-1. This estimated value is about ~ 50% of the actual estimated global CO2

  16. Professional conduct of scientists during volcanic crises

    Science.gov (United States)

    IAVCEI SubcommitteeCrisis Protocols; Newhall, Chris; Aramaki, Shigeo; Barberi, Franco; Blong, Russell; Calvache, Marta; Cheminee, Jean-Louis; Punongbayan, Raymundo; Siebe, Claus; Simkin, Tom; Sparks, Stephen; Tjetjep, Barry; Newhall, Chris

    Stress during volcanic crises is high, and any friction between scientists can distract seriously from both humanitarian and scientific effort. Friction can arise, for example, if team members do not share all of their data, if differences in scientific interpretation erupt into public controversy, or if one scientist begins work on a prime research topic while a colleague with longer-standing investment is still busy with public safety work. Some problems arise within existing scientific teams; others are brought on by visiting scientists. Friction can also arise between volcanologists and public officials. Two general measures may avert or reduce friction: (a) National volcanologic surveys and other scientific groups that advise civil authorities in times of volcanic crisis should prepare, in advance of crises, a written plan that details crisis team policies, procedures, leadership and other roles of team members, and other matters pertinent to crisis conduct. A copy of this plan should be given to all current and prospective team members. (b) Each participant in a crisis team should examine his or her own actions and contribution to the crisis effort. A personal checklist is provided to aid this examination. Questions fall generally in two categories: Are my presence and actions for the public good? Are my words and actions collegial, i.e., courteous, respectful, and fair? Numerous specific solutions to common crisis problems are also offered. Among these suggestions are: (a) choose scientific team leaders primarily for their leadership skills; (b) speak publicly with a single scientific voice, especially when forecasts, warnings, or scientific disagreements are involved; (c) if you are a would-be visitor, inquire from the primary scientific team whether your help would be welcomed, and, in general, proceed only if the reply is genuinely positive; (d) in publications, personnel evaluations, and funding, reward rather than discourage teamwork. Models are

  17. Electrochemical sensor monitoring of volcanic gases

    Science.gov (United States)

    Roberts, Tjarda; Freshwater, Ray; Oppenheimer, Clive; Saffell, John; Jones, Rod; Griffiths, Paul; Braban, Christine; Mead, Iqbal

    2010-05-01

    Advances in instrumentation have fuelled a recent growth of interest in using portable sensor systems for environmental monitoring of pollution. Developments in wireless technology are enabling such systems to operate remotely and autonomously, generating a wealth of environmental data. We report here on the application of miniature Alphasense electrochemical sensors to the detection and characterisation of gases in volcanic plumes. A highly portable sensor system was developed to operate an array of 6 low cost electrochemical sensors to detect CO, H2, HCl, SO2, H2S and NO2 at 1 Hz. A miniature pump draws air over all sensors simultaneously (i.e. sensors arranged in parallel). The sensor output in these campaigns was logged on PDAs for real-time viewing, and later download (with a view to future data-streaming). The instrument was deployed at a number of volcanoes and was subject to extremely harsh conditions including highly acidic environments, low (Antarctic) temperatures, and transport over rough terrain. Analysis methods are demonstrated that consider calibration, cross-sensitivities of the sensors to multiple gases, differing sensor response times, temperature dependence, and background sensor drift with time. The analysis is applied to a range of plume field-measurements to extract gas concentrations ranging from 100's ppmv to sub-ppmv and to characterise the individual volcano emissions. Applications of similar sensor systems for real-time long-term monitoring of volcanic emissions (which may indicate and ultimately predict eruptive behavior), and UAV and balloon-borne plume sampling are now already being realised. This work focused on demonstrating the application of electrochemical sensors to monitoring of environmental pollution from volcanoes. Other applications for similar sensors include the near-source monitoring of industrial emissions, and of pollutant levels enhanced by traffic emissions in the urban environment.

  18. New current control based MPPT technique for single stage grid connected PV systems

    International Nuclear Information System (INIS)

    Jain, Sachin; Agarwal, Vivek

    2007-01-01

    This paper presents a new maximum power point tracking algorithm based on current control for a single stage grid connected photovoltaic system. The main advantage of this algorithm comes from its ability to predict the approximate amplitude of the reference current waveform or power that can be derived from the PV array with the help of an intermediate variable β. A variable step size for the change in reference amplitude during initial tracking helps in fast tracking. It is observed that if the reference current amplitude is greater than the array capacity, the system gets unstable (i.e. moves into the positive slope region of the p-v characteristics of the array). The proposed algorithm prevents the PV system from entering the positive slope region of the p-v characteristics. It is also capable of restoring stability if the system goes unstable due to a sudden environmental change. The proposed algorithm has been tested on a new single stage grid connected PV configuration recently developed by the authors to feed sinusoidal current into the grid. The system is operated in a continuous conduction mode to realize advantages such as low device current stress, high efficiency and low EMI. A fast MPPT tracker with single stage inverter topology operating in CCM makes the overall system highly efficient. Specific cases of the system, operating in just discontinuous current mode and discontinuous current mode and their relative merits and demerits are also discussed

  19. Single-parameter scaling and maximum entropy inside disordered one-dimensional systems: Theory and experiment

    Science.gov (United States)

    Cheng, Xiaojun; Ma, Xujun; Yépez, Miztli; Genack, Azriel Z.; Mello, Pier A.

    2017-11-01

    The single-parameter scaling hypothesis relating the average and variance of the logarithm of the conductance is a pillar of the theory of electronic transport. We use a maximum-entropy ansatz to explore the logarithm of the particle, or energy density lnW (x ) at a depth x into a random one-dimensional system. Single-parameter scaling would be the special case in which x =L (the system length). We find the result, confirmed in microwave measurements and computer simulations, that the average of lnW (x ) is independent of L and equal to -x /ℓ , with ℓ the mean free path. At the beginning of the sample, var [lnW (x )] rises linearly with x and is also independent of L , with a sublinear increase and then a drop near the sample output. At x =L we find a correction to the value of var [lnT ] predicted by single-parameter scaling.

  20. Design optimization of single-main-amplifier KrF laser-fusion systems

    International Nuclear Information System (INIS)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    KrF lasers appear to be a very promising laser fusion driver for commercial applications. The Large Amplifier Module for the Aurora Laser System at Los Alamos is the largest KrF laser in the world and is currently operating at 5 kJ with 10 to 15 kJ eventually expected. The next generation system is anticipated to be a single-main-amplifier system that generates approximately 100 kJ. This paper examines the cost and efficiency tradeoffs for a complete single-main-amplifier KrF laser fusion experimental facility. It has been found that a 7% efficient $310/joule complete laser-fusion system is possible by using large amplifier modules and high optical fluences

  1. A New Power Calculation Method for Single-Phase Grid-Connected Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    A new method to calculate average active power and reactive power for single-phase systems is proposed in this paper. It can be used in different applications where the output active power and reactive power need to be calculated accurately and fast. For example, a grid-connected photovoltaic...... system in low voltage ride through operation mode requires a power feedback for the power control loop. Commonly, a Discrete Fourier Transform (DFT) based power calculation method can be adopted in such systems. However, the DFT method introduces at least a one-cycle time delay. The new power calculation...... method, which is based on the adaptive filtering technique, can achieve a faster response. The performance of the proposed method is verified by experiments and demonstrated in a 1 kW single-phase grid-connected system operating under different conditions.Experimental results show the effectiveness...

  2. A research on the positioning technology of vehicle navigation system from single source to "ASPN"

    Science.gov (United States)

    Zhang, Jing; Li, Haizhou; Chen, Yu; Chen, Hongyue; Sun, Qian

    2017-10-01

    Due to the suddenness and complexity of modern warfare, land-based weapon systems need to have precision strike capability on roads and railways. The vehicle navigation system is one of the most important equipments for the land-based weapon systems that have precision strick capability. There are inherent shortcomings for single source navigation systems to provide continuous and stable navigation information. To overcome the shortcomings, the multi-source positioning technology is developed. The All Source Positioning and Navigaiton (ASPN) program was proposed in 2010, which seeks to enable low cost, robust, and seamless navigation solutions for military to use on any operational platform and in any environment with or without GPS. The development trend of vehicle positioning technology was reviewed in this paper. The trend indicates that the positioning technology is developed from single source and multi-source to ASPN. The data fusion techniques based on multi-source and ASPN was analyzed in detail.

  3. Graphical user interface for input output characterization of single variable and multivariable highly nonlinear systems

    Directory of Open Access Journals (Sweden)

    Shahrukh Adnan Khan M. D.

    2017-01-01

    Full Text Available This paper presents a Graphical User Interface (GUI software utility for the input/output characterization of single variable and multivariable nonlinear systems by obtaining the sinusoidal input describing function (SIDF of the plant. The software utility is developed on MATLAB R2011a environment. The developed GUI holds no restriction on the nonlinearity type, arrangement and system order; provided that output(s of the system is obtainable either though simulation or experiments. An insight to the GUI and its features are presented in this paper and example problems from both single variable and multivariable cases are demonstrated. The formulation of input/output behavior of the system is discussed and the nucleus of the MATLAB command underlying the user interface has been outlined. Some of the industries that would benefit from this software utility includes but not limited to aerospace, defense technology, robotics and automotive.

  4. A Novel Flying Capacitor Transformerless Inverter for Single-Phase Grid Connected Solar Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2016-01-01

    This paper proposes a new single-phase flying capacitor transformerless PV inverter for grid-connected photovoltaic (PV) systems. The neutral of the grid can be directly connected to the negative terminal of the source (PV). It consists of four power switches, one diode, one capacitor and a small...

  5. Addressing Single and Multiple Bad Data in the Modern PMU-based Power System State Estimation

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    Detection and analysis of bad data is an important sector of the static state estimation. This paper addresses single and multiple bad data in the modern phasor measurement unit (PMU)-based power system static state estimations. To accomplish this objective, available approaches in the PMU-based ...

  6. PI and repetitive control for single phase inverter based on virtual rotating coordinate system

    Science.gov (United States)

    Li, Mengqi; Tong, Yibin; Jiang, Jiuchun; Liang, Jiangang

    2018-03-01

    Microgrid technology developed rapidly and nonlinear loads were connected increasingly. A new control strategy was proposed for single phase inverter when connected nonlinear loads under island condition. PI and repetitive compound controller was realized under synchronous rotating coordinate system and acquired high quality sinusoidal voltage output without voltage spike when loads step changed. Validity and correctness were verified by simulation using MATLAB/Simulink.

  7. Single-grain results from an EMCCD-based imaging system

    International Nuclear Information System (INIS)

    Thomsen, K.J.; Kook, M.; Murray, A.S.; Jain, M.; Lapp, T.

    2015-01-01

    Here we compare the performance of an EMCCD-based imaging system with the standard laser-based single-grain Risø attachment. We first compare gamma dose distributions and the relative sensitivity of the two instruments is investigated using a single sample, by comparing the number of grains accepted into a dose distribution. EMCCD cross-talk is shown to be of concern at low light levels. We also make use of the fact that the EMCCD can observe TL signals from individual grains to examine the use of the correlation between the quartz 110 °C TL peak and the fast component OSL signal to correct for sensitivity change. Finally, we present the OSL dose distributions from a set of both well-bleached and poorly-bleached sedimentary samples. From a comparison of the measured doses, we conclude that the two instruments give indistinguishable dose estimates and dispersions, despite the fact that the laser-based system is effectively about four times as sensitive as the EMCCD. - Highlights: • Using an EMCCD-based imaging system to measure quartz single-grain OSL and TL. • PMT based system more sensitive. • Quartz OSL decay rate variability caused by varying effective stimulation power. • EMCCD imaging can provide useful measurements of single-grain quartz doses.

  8. High-speed indoor optical wireless communication system with single channel imaging receiver.

    Science.gov (United States)

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2012-04-09

    In this paper we experimentally investigate a gigabit indoor optical wireless communication system with single channel imaging receiver. It is shown that the use of single channel imaging receiver rejects most of the background light. This single channel imaging receiver is composed of an imaging lens and a small photo-sensitive area photodiode attached on a 2-axis actuator. The actuator and photodiode are placed on the focal plane of the lens to search for the focused light spot. The actuator is voice-coil based and it is low cost and commercially available. With this single channel imaging receiver, bit rate as high as 12.5 Gbps has been successfully demonstrated and the maximum error-free (BER20% has been achieved. When this system is integrated with our recently proposed optical wireless based indoor localization system, both high speed wireless communication and mobility can be provided to users over the entire room. Furthermore, theoretical analysis has been carried out and the simulation results agree well with the experiments. In addition, since the rough location information of the user is available in our proposed system, instead of searching for the focused light spot over a large area on the focal plane of the lens, only a small possible area needs to be scanned. By further pre-setting a proper comparison threshold when searching for the focused light spot, the time needed for searching can be further reduced.

  9. Ventilation system consequence calculations to support salt well pumping single-shell tank 241-A-101

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, G.W.

    1997-05-07

    This document presents the radiological dose and toxicological exposure calculations for an accident scenario involved with the ventilation system used to support salt well pumping single-shell tank 241-A-101. This tank has been listed on the Hydrogen Watch List.

  10. Ventilation system consequence calculations to support salt well pumping single-shell tank 241-A-101

    International Nuclear Information System (INIS)

    Ryan, G.W.

    1997-01-01

    This document presents the radiological dose and toxicological exposure calculations for an accident scenario involved with the ventilation system used to support salt well pumping single-shell tank 241-A-101. This tank has been listed on the Hydrogen Watch List

  11. Single phase cascaded H5 inverter with leakage current elimination for transformerless photovoltaic system

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Jia, X.; Lu, Z.

    2016-01-01

    Leakage current reduction is one of the important issues for the transformelress PV systems. In this paper, the transformerless single-phase cascaded H-bridge PV inverter is investigated. The common mode model for the cascaded H4 inverter is analyzed. And the reason why the conventional cascade H...

  12. Contrasting single and multi-component working-memory systems in dual tasking

    NARCIS (Netherlands)

    Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels

    2016-01-01

    Working memory can be a major source of interference in dual tasking. However, there is no consensus on whether this interference is the result of a single working memory bottleneck, or of interactions between different working memory components that together form a complete working-memory system.

  13. Efficiencies of dynamic Monte Carlo algorithms for off-lattice particle systems with a single impurity

    KAUST Repository

    Novotny, M.A.

    2010-02-01

    The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing Markov Chains method are given. Simulation results are presented to confirm the theoretical efficiencies. © 2010.

  14. Stability results for a reaction-diffusion system with a single measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ramoul, Hichem [Centre universitaire de Khenchela, Route de Batna, BP 1252, Liberte, 40004 Khenchela (Algeria); Gaitan, Patricia [Laboratoire d' analyse, topologie, probabilites CNRS UMR 6632, Marseille (France) and Universite Aix-Marseille II (France); Cristofol, Michel [Laboratoire d' analyse, topologie, probabilites CNRS UMR 6632, Marseille, France and Universite Aix-Marseille III (France)

    2007-06-15

    For a two by two reaction-diffusion system on a bounded domain we give a simultaneous stability result for one coefficient and for the initial conditions. The key ingredient is a global Carleman-type estimate with a single observation acting on a subdomain.

  15. The optimal look-ahead policy for admission to a single server system

    NARCIS (Netherlands)

    Nawijn, W.M.

    1985-01-01

    This paper considers a service system with a single server, finite waiting room, and a renewal arrival process. Customers who arrive while the server is busy are lost. Upon completing service, the server chooses between two actions: either he immediately starts a new service, provided a customer is

  16. Look-ahead policies for admission to a single server loss system

    NARCIS (Netherlands)

    Nawijn, W.M.

    1990-01-01

    Consider a single server loss system in which the server, being idle, may reject or accept an arriving customer for service depending on the state at the arrival epoch. It is assumed that at every arrival epoch the server knows the service time of the arriving customer, the arrival time of the next

  17. Electrochemistry of single molecules and biomolecules, molecular scale nanostructures, and low-dimensional systems

    DEFF Research Database (Denmark)

    Nazmutdinov, Renat R.; Zinkicheva, Tamara T.; Zinkicheva, Tamara T.

    2018-01-01

    Electrochemistry at ultra-small scales, where even the single molecule or biomolecule can be characterized and manipulated, is on the way to a consolidated status. At the same time molecular electrochemistry is expanding into other areas of sophisticated nano- and molecular scale systems including...

  18. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    under grid faults. The focus of this paper is put on the benchmarking of synchronization techniques, mainly about phase locked loop (PLL) based methods, in single-phase PV power systems operating under grid faults. Some faulty mode cases are studied at the end of this paper in order to compare...

  19. Recent progress in volcanism studies: Site characterization activities for the Yucca Mountain site characterization project

    International Nuclear Information System (INIS)

    Crowe, B.M.; Valentine, G.; Morley, R.; Perry, F.V.

    1992-01-01

    Significant progress has been made on volcanism studies over the past calendar year. There are a number of major highlights from this work. Geochronology data have been obtained for the Lathrop Wells center using a range of isotopic, radiogenic, and age-calibrated methods. Initial work is encouraging but still insufficient to resolve the age of the center with confidence. Geologic mapping of the Sleeping Butte volcanic centers was completed and a report issued on the geology and chronology data. Twenty shallow trenches have been constructed in volcanic units of the Lathrop Wells volcanic center. Results of detailed studies of the trenches support a polycyclic eruptive history. New soil data from the trenches continue to support a late Pleistocene or Holocene age for many of the volcanic units at the center. Geochemical data (trace element and isotopic analysis) show that the volcanic units of the Lathrop Wells center cannot be related to one another by fractional crystallization of a single magma batch, supporting a polycyclic model of volcanism. Structural models using existing data are used to evaluate the probability of magmatic disruption of a potential repository. Several permissive models have been developed but none lead to significant differences in calculating the disruption ratio. Work was initiated on the eruptive and subsurface effects of magmatic activity on a repository. (author)

  20. Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale.

    Science.gov (United States)

    Ermolin, Mikhail S; Fedotov, Petr S; Malik, Natalia A; Karandashev, Vasily K

    2018-06-01

    At present, there is concern about engineered nanoparticles in the environment, whereas natural nanoparticles (NPs) and their impact are often neglected. In our paper, we demonstrate the important role of nanoparticles of volcanic ash in transport of toxic elements on a global scale. A single volcanic eruption can eject millions of tons of ash. NPs of volcanic ash reach the upper troposphere and the stratosphere and may "travel" around the world for years affecting human health, environment, and even climate. So far, there is a gap in exposure assessment of volcanic ash NPs since their chemical composition remains largely unknown. Here we show for the first time that volcanic ash NPs can serve as an important carrier for potentially toxic elements. The concentrations of Ni, Zn, Cd, Ag, Sn, Se, Te, Hg, Tl, Pb, Bi in volcanic ash NPs (volcanoes from different regions of the world (Kamchatka, Far East of Russia and Andes, Chile). The work opens a new door into studies on biogeochemical impact of volcanic ash. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA

    Science.gov (United States)

    Deligne, Natalia I.; Conrey, Richard M.; Cashman, Katharine V.; Champion, Duane E.; Amidon, William H.

    2016-01-01

    To assess the complexity of eruptive activity within mafic volcanic fields, we present a detailed geologic investigation of Holocene volcanism in the upper McKenzie River catchment in the central Oregon Cascades, United States. We focus on the Sand Mountain volcanic field, which covers 76 km2 and consists of 23 vents, associated tephra deposits, and lava fields. We find that the Sand Mountain volcanic field was active for a few decades around 3 ka and involved at least 13 eruptive units. Despite the small total volume erupted (∼1 km3 dense rock equivalent [DRE]), Sand Mountain volcanic field lava geochemistry indicates that erupted magmas were derived from at least two, and likely three, different magma sources. Single units erupted from one or more vents, and field data provide evidence of both vent migration and reoccupation. Overall, our study shows that mafic volcanism was clustered in space and time, involved both explosive and effusive behavior, and tapped several magma sources. These observations provide important insights on possible future hazards from mafic volcanism in the central Oregon Cascades.

  2. Span length and information rate optimisation in optical transmission systems using single-channel digital backpropagation.

    Science.gov (United States)

    Karanov, Boris; Xu, Tianhua; Shevchenko, Nikita A; Lavery, Domaniç; Killey, Robert I; Bayvel, Polina

    2017-10-16

    The optimisation of span length when designing optical communication systems is important from both performance and cost perspectives. In this paper, the optimisation of inter-amplifier spacing and the potential increase of span length at fixed information rates in optical communication systems with practically feasible nonlinearity compensation schemes have been investigated. It is found that in DP-16QAM, DP-64QAM and DP-256QAM systems with practical transceiver noise limitations, single-channel digital backpropagation can allow a 50% reduction in the number of amplifiers without sacrificing information rates compared to systems with optimal span lengths and linear compensation.

  3. Experimental investigations on solar heating/heat pump systems for single family houses

    DEFF Research Database (Denmark)

    Andersen, Elsa; Perers, Bengt

    In the period 2013-2017 the project “Experimental investigations on solar heat pump systems for single family houses” is carried out at Department of Civil Engineering, Technical University of Denmark. The aim of this project is to increase the knowledge of the heat and mass transfer...... in the combined solar heating/heat pump system type when the heat pump makes use of a horizontal ground source heat exchanger. The knowledge is gained by experimental investigations on a solar heating/heat pump system and forms the basis for improved marketed combined solar heating/heat pump systems....

  4. Properties of the single Jovian planet population and the pursuit of Solar system analogues

    Science.gov (United States)

    Agnew, Matthew T.; Maddison, Sarah T.; Horner, Jonathan

    2018-04-01

    While the number of exoplanets discovered continues to increase at a rapid rate, we are still to discover any system that truly resembles the Solar system. Existing and near future surveys will likely continue this trend of rapid discovery. To see if these systems are Solar system analogues, we will need to efficiently allocate resources to carry out intensive follow-up observations. We seek to uncover the properties and trends across systems that indicate how much of the habitable zone is stable in each system to provide focus for planet hunters. We study the dynamics of all known single Jovian planetary systems, to assess the dynamical stability of the habitable zone around their host stars. We perform a suite of simulations of all systems where the Jovian planet will interact gravitationally with the habitable zone, and broadly classify these systems. Besides the system's mass ratio (Mpl/Mstar), and the Jovian planet's semi-major axis (apl) and eccentricity (epl), we find that there are no underlying system properties which are observable that indicate the potential for planets to survive within the system's habitable zone. We use Mpl/Mstar, apl and epl to generate a parameter space over which the unstable systems cluster, thus allowing us to predict which systems to exclude from future observational or numerical searches for habitable exoplanets. We also provide a candidate list of 20 systems that have completely stable habitable zones and Jovian planets orbiting beyond the habitable zone as potential first order Solar system analogues.

  5. Adaptive kanban control mechanism for a single-stage hybrid system

    Science.gov (United States)

    Korugan, Aybek; Gupta, Surendra M.

    2002-02-01

    In this paper, we consider a hybrid manufacturing system with two discrete production lines. Here the output of either production line can satisfy the demand for the same type of product without any penalties. The interarrival times for demand occurrences and service completions are exponentially distributed i.i.d. variables. In order to control this type of manufacturing system we suggest a single stage pull type control mechanism with adaptive kanbans and state independent routing of the production information.

  6. Financial efficiency of rainwater utilization system in single-family house

    OpenAIRE

    Stec Agnieszka

    2017-01-01

    Designing of sustainable water systems should be aimed at reducing the consumption of tap water and the use of alternative water sources, such as rainwater and graywater. Therefore, the aim of the researches conducted was to determine the cost-effectiveness of the economic exploitation of rainwater utilization system in single-family house. As a tool for the analysis, the methodology Life Cycle Cost was used. It provides a comparison of different investment options and the opportunity to choo...

  7. MODELLING AND SIMULATION OF A SINGLE-ZONE HEATING AND VENTILATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Mesut ŞENGİRGİN

    2005-03-01

    Full Text Available In this study, modelling and simulation results of a single-zone heating and ventilation system of a large office room are introduced. Heating system is controlled by an on-off controller. By considering the sinusoidal outdoor air tempareture variation and various outdoor/return air ratios as input parameters, dynamic behaviour of room air tempereture are investigated. For this purpose, MATLAB/Simulink code is used.

  8. Adaptive Morse-coded single-switch communication system for the disabled.

    Science.gov (United States)

    Luo, C H; Shih, C H

    1996-04-01

    Automatic recognition of Morse-code is generally developed at a fixed typing rate. However, this is not suitable for the disabled due to their difficulty in maintaining a stable typing rate. In this paper, a system recognizing varying typing speeds is developed using an adaptive technique, the Least-Mean Square (LMS) algorithm. This system helps the disabled have a wide latitude and varying typing speeds in single-switch communication with the Morse-code.

  9. Felsic volcanism in a basic shield (El Hierro, Canary Islands). Implications in terms of volcanic hazards.

    Science.gov (United States)

    Pedrazzi, Dario; Becerril Carretero, Laura; Martí Molist, Joan; Meletlidis, Stavros; Galindo Jiménez, Inés

    2014-05-01

    El Hierro, the southwesternmost and smallest island of the Canary Archipelago, is a complex basaltic shield volcano characterized by mainly effusive volcanism with both Strombolian and Hawaiian activity. Explosive felsic volcanism is not a common feature of the archipelago and, so far, it has only been reported on the central islands of Tenerife and Gran Canaria, where it has been responsible for the formation of large central volcanic complexes. The presence of felsic rocks on the other islands of the archipelago and specifically on El Hierro is mostly restricted to subvolcanic intrusions and a few lava flows, generally associated with the oldest parts of the islands. We hereby report the presence of a trachytic pumice deposit on the island of El Hierro, referred to here as the Malpaso Member. A detailed stratigraphic, lithological, and sedimentological study was carried out on the deposits of this explosive episode of felsic composition, which is the only one found on the Canary Islands apart from those of Gran Canaria and Tenerife. Four different subunits were identified on the basis of their lithological and granulometrical characteristics. The products of the eruption correspond to a single eruptive event and cover an area of about 13 km2. This deposit originated from a base-surge-type explosive eruption with a subsequent radial emplacement of dilute PDC currents, was emplaced from the vent that would have been located in a similar position to the volcano of Tanganasoga. The low vesicularity of juvenile fragments and the morphological characteristics of the fine particles, as well as the high proportion of lithic fragments and the ash-rich nature of the deposit, suggest that magma/water interaction controlled the dynamics of the eruption. This study demonstrates that magmas from El Hierro could have the potential for producing an explosive eruption, in an environment in which the majority of the eruptions are basaltic and effusive in nature. Bearing in mind

  10. Permeability of volcanic rocks to gas and water

    Science.gov (United States)

    Heap, M. J.; Reuschlé, T.; Farquharson, J. I.; Baud, P.

    2018-04-01

    The phase (gas or liquid) of the fluids within a porous volcanic system varies in both time and space. Laboratory experiments have shown that gas and water permeabilities can differ for the same rock sample, but experiments are biased towards rocks that contain minerals that are expected react with the pore fluid (such as the reaction between liquid water and clay). We present here the first study that systematically compares the gas and water permeability of volcanic rocks. Our data show that permeabilities to argon gas and deionised water can differ by a factor between two and five in two volcanic rocks (basalt and andesite) over a confining pressure range from 2 to 50 MPa. We suggest here that the microstructural elements that offer the shortest route through the sample-estimated to have an average radius 0.1-0.5 μm using the Klinkenberg slip factor-are accessible to gas, but restricted or inaccessible to water. We speculate that water adsorption on the surface of these thin microstructural elements, assumed here to be tortuous/rough microcracks, reduces their effective radius and/or prevents access. These data have important implications for fluid flow and therefore the distribution and build-up of pore pressure within volcanic systems.

  11. Felsic Volcanics on the Moon

    Science.gov (United States)

    Jolliff, B. L.; Lawrence, S. J.; Stopar, J.; Braden, S.; Hawke, B. R.; Robinson, M. S.; Glotch, T. D.; Greenhagen, B. T.; Seddio, S. M.

    2012-12-01

    Lunar Reconnaissance Orbiter (LRO) imaging and thermal data provide new morphologic and compositional evidence for features that appear to be expressions of nonmare silicic volcanism. Examples reflecting a range of sizes and volcanic styles include the Gruithuisen and Mairan Domes, and the Hansteen Alpha (H-A) and Compton-Belkovich (C-B) volcanic complexes. In this work we combine new observations with existing compositional remote sensing and Apollo sample data to assess possible origins. Images and digital topographic data at 100 m scale (Wide Angle Camera) and ~0.5 to 2 m (Narrow Angle Camera) reveal (1) slopes on volcanic constructs of ~12° to 27°, (2) potential endogenic summit depressions, (3) small domical features with dense boulder populations, and (4) irregular collapse features. Morphologies in plan view range from the circular to elliptical Gruithuisen γ and δ domes (~340 km2 each), to smaller cumulodomes such as Mairan T and C-B α (~30 km2, each), to the H-A (~375 km2) and C-B (~680 km2) volcanic complexes. Heights range from ~800-1800 m, and most domes are relatively flat-topped or have a central depression. Positions of the Christiansen Feature in LRO Diviner data reflect silicic compositions [1]. Clementine UVVIS-derived FeO varies from ~5 to 10 wt%. Lunar Prospector Th data indicate model values of 20-55 ppm [2,3], which are consistent with compositions ranging from KREEP basalt to lunar granite. The Apollo collection contains small rocks and breccia clasts of felsic/granitic lithologies. Apollo 12 samples include small, pristine and brecciated granitic rock fragments and a large, polymict breccia (12013) consisting of felsic material (quartz & K-feldspar-rich) and mafic phases (similar to KREEP basalt). Many of the evolved lunar rocks have geochemically complementary compositions. The lithologic associations and the lack of samples with intermediate composition suggest a form of magmatic differentiation that produced mafic and felsic

  12. [Impact of single disease payment system on hospital delivery service providers' behavior].

    Science.gov (United States)

    Chen, Ming; Guo, Yan

    2012-06-18

    To find out whether single disease payment system would have an impact on hospital delivery service providers' behavior. Zhouzhi County in Shaanxi Province where there was a payment change from fee for service (FFS) to single disease payment in 2007 was selected as the treatment group, and Guangling County in Shanxi Province with FFS was selected as the control group. Using a difference-in-difference (DD) design, this study empirically examined the impact of single disease payment on the cost of hospital delivery and length of stay. The data of 1 050 samples were taken from the hospitalization medical records and list of charges in the hospitals between 2005-11-01 and 2010-12-31. When taking the expense as dependent variable, the estimated value of DD variable was -262.73 with parity, length of stay, delivery mode, and payment controlled, which was significant at the 1‰ level. It indicated that the expense had decreased by 262.73 yuan after single disease payment was introduced. When taking the length of stay as dependent variable, the estimated value of DD variable was 0.53, which was not significant at the 5% level,meaning that the length of stay was not different between single disease payment and FFS. The payment change from FFS to single disease payment has an impact on hospital delivery service providers' behavior. It could make hospitals try their best to reduce the expenses under the price ceiling to avoid paying for the exceeding cost, and it also can restrict induced demand, but it could not motivate hospitals to reduce length of stay. This research provides evidence for policy makers that compared with FFS, single disease payment system is an effective payment method for controlling the expense of hospital delivery under the new cooperative medical scheme (NCMS) and the policy of subsidy for rural hospital delivery (SRHD) .

  13. Volcanic deposits in Antarctic snow and ice

    Science.gov (United States)

    Delmas, Robert J.; Legrand, Michel; Aristarain, Alberto J.; Zanolini, FrançOise

    1985-12-01

    Major volcanic eruptions are able to spread large amounts of sulfuric acid all over the world. Acid layers of volcanic origin were detected for the first time a few years ago by Hammer in Greenland ice. The present paper deals with volcanic deposits in the Antarctic. The different methods that can be used to find volcanic acid deposits in snow and ice cores are compared: electrical conductivity, sulfate, and acidity measurements. Numerous snow and ice samples collected at several Antarctic locations were analyzed. The results reveal that the two major volcanic events recorded by H2SO4, fallout in Antarctic ice over the last century are the eruptions of Krakatoa (1883) and Agung (1963), both located at equatorial latitudes in the southern hemisphere. The volcanic signals are found to be particularly well defined at central Antarctic locations apparently in relation to the low snow accumulation rates in these areas. It is demonstrated that volcanic sulfuric acid in snow is not even partially neutralized by ammonia. The possible influence of Antarctic volcanic activity on snow chemistry is also discussed, using the three recent eruptions of the Deception Island volcano as examples. Only one of them seems to have had a significant effect on the chemistry of snow at a location 200 km from this volcano. It is concluded that Antarctic volcanic ice records are less complicated than Greenland records because of the limited number of volcanos in the southern hemisphere and the apparently higher signal to background ratio for acidity in Antarctica than in Greenland.

  14. Volcanic Ash Nephelometer Probe, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes may enable unprecedented observations of...

  15. Nephelometric Dropsonde for Volcanic Ash, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced dropsondes that could effectively be guided through atmospheric regions of interest such as volcanic plumes could enable unprecedented observations of...

  16. Thermal vesiculation during volcanic eruptions.

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  17. Numerical simulation of explosive volcanic eruptions from the conduit flow to global atmospheric scales

    Directory of Open Access Journals (Sweden)

    G. G. J. Ernst

    2005-06-01

    Full Text Available Volcanic eruptions are unsteady multiphase phenomena, which encompass many inter-related processes across the whole range of scales from molecular and microscopic to macroscopic, synoptic and global. We provide an overview of recent advances in numerical modelling of volcanic effects, from conduit and eruption column processes to those on the Earth s climate. Conduit flow models examine ascent dynamics and multiphase processes like fragmentation, chemical reactions and mass transfer below the Earth surface. Other models simulate atmospheric dispersal of the erupted gas-particle mixture, focusing on rapid processes occurring in the jet, the lower convective regions, and pyroclastic density currents. The ascending eruption column and intrusive gravity current generated by it, as well as sedimentation and ash dispersal from those flows in the immediate environment of the volcano are examined with modular and generic models. These apply simplifications to the equations describing the system depending on the specific focus of scrutiny. The atmospheric dispersion of volcanic clouds is simulated by ash tracking models. These are inadequate for the first hours of spreading in many cases but focus on long-range prediction of ash location to prevent hazardous aircraft - ash encounters. The climate impact is investigated with global models. All processes and effects of explosive eruptions cannot be simulated by a single model, due to the complexity and hugely contrasting spatial and temporal scales involved. There is now the opportunity to establish a closer integration between different models and to develop the first comprehensive description of explosive eruptions and of their effects on the ground, in the atmosphere, and on the global climate.

  18. Magnetic signature of the Sicily Channel volcanism

    Science.gov (United States)

    Lodolo, E.; Civile, D.; Zanolla, C.; Geletti, R.

    2012-03-01

    Widespread Late Miocene to Quaternary volcanic activity is know to have occurred in the Sicily Channel continuing up to historical time. New magnetic anomaly data acquired in the Pantelleria Graben, one of the three main tectonic depressions forming the WNW-trending Sicily Channel rift system, integrated with available profiles, are used to identify and map volcanic bodies in this sector of the northern African margin. Some of these manifestations, both outcropping at the sea-floor or buried beneath a variable thickness of Plio-Quaternary sedimentary cover, have been imaged by seismic reflection profiles. Three main positive magnetic anomalies have been found: to the S-E of the Pantelleria Island, the largest emerged caldera of the Sicily Channel, along the eastern margin of the Nameless Bank, and at the north-western termination of the Linosa Graben. Only the anomaly located off the south-eastern coast of the Pantelleria Island, associated with a large outcropping body gradually buried beneath a substantially undisturbed Upper Pliocene-Quaternary sediments, aligns with the trend of the tectonic depression. 2-D geophysical models produced along seismic transects perpendicularly crossing the Pantelleria Graben have allowed to derive its deep crustal structure, and detect the presence of buried magmatic bodies which generate the anomalies. Marginal faults seem to have played a major role in focussing magma emplacement in this sector of the Sicily Channel. The other anomalies represent off-axis volcanic episodes and generally do not show evident magmatic manifestations at the sea-floor. These magnetic maxima seem to follow a NNE-SSW-trending belt extending from Linosa Island to the Nameless Bank, where pre-existing crustal anisotropies may have conditioned magma emplacement both at deep and shallow crustal levels. In general, data analysis has shown that there is a structural control on magma emplacement, with the major magmatic features located in specific locations

  19. Single-phase power distribution system power flow and fault analysis

    Science.gov (United States)

    Halpin, S. M.; Grigsby, L. L.

    1992-01-01

    Alternative methods for power flow and fault analysis of single-phase distribution systems are presented. The algorithms for both power flow and fault analysis utilize a generalized approach to network modeling. The generalized admittance matrix, formed using elements of linear graph theory, is an accurate network model for all possible single-phase network configurations. Unlike the standard nodal admittance matrix formulation algorithms, the generalized approach uses generalized component models for the transmission line and transformer. The standard assumption of a common node voltage reference point is not required to construct the generalized admittance matrix. Therefore, truly accurate simulation results can be obtained for networks that cannot be modeled using traditional techniques.

  20. Partial Shading Detection in Solar System Using Single Short Pulse of Load

    Directory of Open Access Journals (Sweden)

    Bartczak Mateusz

    2017-03-01

    Full Text Available A single photovoltaic panel under uniform illumination has only one global maximum power point, but the same panel in irregularly illuminated conditions can have more maxima on its power-voltage curve. The irregularly illuminated conditions in most cases are results of partial shading. In the work a single short pulse of load is used to extract information about partial shading. This information can be useful and can help to make some improvements in existing MPPT algorithms. In the paper the intrinsic capacitance of a photovoltaic system is used to retrieve occurrence of partial shading.

  1. Single Phase Transformer-less Buck-Boost Inverter with Zero Leakage Current for PV Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Abdelhakim, Ahmed; N. Soltani, Mohsen

    2017-01-01

    In this paper, a novel single-stage single-phase transformer-less buck-boost inverter is proposed, in which a reduced number of passive components is used. The proposed inverter combines the conventional buck, boost, and buck-boost converters in one converter in order to obtain a sinusoidal output...... voltage. In the proposed inverter, the input DC source and the load or grid have the same ground. Therefore, the leakage current problem in photovoltaic (PV) systems is eliminated. Furthermore, the proposed inverter supports the bi-directional power flow capability and it can inject reactive power...

  2. Single phase inverter for a three phase power generation and distribution system

    Science.gov (United States)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  3. A Larger Volcanic Field About Yucca Mountain: New Geochemical Data From the Death Valley Volcanic Field, Inyo County California

    Science.gov (United States)

    Tibbetts, A. K.; Smith, E. I.

    2008-12-01

    Volcanism is an important issue for the characterization of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. Due to recent legal decisions that now require DOE to evaluate hazards over both 10,000 year and 1,000,000 year compliance periods, the definition of the area of interest for calculation of disruption probability and a knowledge of the volcanic process have become more important. New geochemical data for the Death Valley volcanic field in the Greenwater Range in Inyo County, California indicate that the Death Valley field and the volcanoes about Yucca Mountain are parts of the same volcanic field. The Death Valley field is just 35 km south of Yucca Mountain and only 20 km south of buried volcanoes in the Amargosa Valley. Trace elements for both areas show a negative Nb anomaly, but differ in that Death Valley basalt has lower La (70 vs. 130 ppm). Isotopic ratios are remarkably similar and strongly support a link between the Death Valley and Yucca Mountain areas. The isotope ranges for Death Valley are -11.88 to -3.26, 0.706322 to 0.707600, 17.725 to 18.509, 15.512 to 15.587, and 38.237 to 38.854 for epsilon Nd, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb respectively. Crater Flat isotope ranges are -13.17 to -5.48, 0.706221 to 0.707851, 18.066 to 18.706, 15.488 to 15.564, and 38.143 to 38.709 for epsilon Nd, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb respectively. Depth of melting calculated using the Fe-Na geobarometer indicates that basalt magma was generated at depths of 135-138 km beneath Death Valley and 115-133 km for Crater Flat indicating asthenospheric melting for both areas. Combining the Death Valley and Yucca Mountain areas into a single volcanic field increases the area of interest for probability calculations by over 1/3 and increases the number of volcanic events by 23. The increased size of the volcanic field and number of volcanoes may result in an increase in the probability of disruption of the

  4. Neotectonics of Graciosa island (Azores: a contribution to seismic hazard assessment of a volcanic area in a complex geodynamic setting

    Directory of Open Access Journals (Sweden)

    Ana Hipólito

    2014-02-01

    Full Text Available Graciosa is a mid-Pleistocene to Holocene volcanic island that lies in a complex plate boundary between the North American, Eurasian, and Nubian plates. Large fault scarps displace the oldest (Middle Pleistocene volcanic units, but in the younger areas recent volcanism (Holocene to Upper Pleistocene conceals the surface expression of faulting, limiting neotectonic observations. The large displacement accumulated by the older volcanic units when compared with the younger formations suggests a variability of deformation rates and the possibility of alternating periods of higher and lower tectonic deformation rates; this would increase the recurrence interval of surface rupturing earthquakes. Nevertheless, in historical times a few destructive earthquakes affected the island attesting for its seismic hazard. Regarding the structural data, two main fault systems, incompatible with a single stress field, were identified at Graciosa Island. Thus, it is proposed that the region is affected by two alternating stress fields. The stress field #1 corresponds to the regional stress regime proposed by several authors for the interplate shear zone that constitutes the Azorean segment of the Eurasia-Nubia plate boundary. It is suggested that the stress field #2 will act when the area under the influence of the regional stress field #1 narrows as a result of variations in the differential spreading rates north and south of Azores. The islands closer to the edge of the sheared region will temporarily come under the influence of a different (external stress field (stress field #2. Such data support the concept that, in the Azores, the Eurasia-Nubia boundary corresponds to a complex and wide deformation zone, variable in time.

  5. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  6. Single-use surgical clothing system for reduction of airborne bacteria in the operating room.

    Science.gov (United States)

    Tammelin, A; Ljungqvist, B; Reinmüller, B

    2013-07-01

    It is desirable to maintain a low bacterial count in the operating room air to prevent surgical site infection. This can be achieved by ventilation or by all staff in the operating room wearing clothes made from low-permeable material (i.e. clean air suits). We investigated whether there was a difference in protective efficacy between a single-use clothing system made of polypropylene and a reusable clothing system made of a mixed material (cotton/polyester) by testing both in a dispersal chamber and during surgical procedures. Counts of colony-forming units (cfu)/m(3) air were significantly lower when using the single-use clothing system in both settings. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Application of Transaction Cost Economics to Capabilities-Based Acquisition: Exploring Single Service vs. Joint Service Programs and Single Systems vs. System-of-Systems

    National Research Council Canada - National Science Library

    Angelis, Diana; Dillard, John; Franck, Raymond; Melese, Francois; Brown, Mary M; Flowe, Robert M

    2008-01-01

    The US Department of Defense (DoD) is in the process of radical transformation -- transformation to a national security strategy predicated on joint Service purchases and complex System-of-Systems (SoS) capabilities...

  8. Compact teleoperated laparoendoscopic single-site robotic surgical system: Kinematics, control, and operation.

    Science.gov (United States)

    Isaac-Lowry, Oran Jacob; Okamoto, Steele; Pedram, Sahba Aghajani; Woo, Russell; Berkelman, Peter

    2017-12-01

    To date a variety of teleoperated surgical robotic systems have been developed to improve a surgeon's ability to perform demanding single-port procedures. However typical large systems are bulky, expensive, and afford limited angular motion, while smaller designs suffer complications arising from limited motion range, speed, and force generation. This work was to develop and validate a simple, compact, low cost single site teleoperated laparoendoscopic surgical robotic system, with demonstrated capability to carry out basic surgical procedures. This system builds upon previous work done at the University of Hawaii at Manoa and includes instrument and endoscope manipulators as well as compact articulated instruments designed to overcome single incision geometry complications. A robotic endoscope holder was used for the base, with an added support frame for teleoperated manipulators and instruments fabricated mostly from 3D printed parts. Kinematics and control methods were formulated for the novel manipulator configuration. Trajectory following results from an optical motion tracker and sample task performance results are presented. Results indicate that the system has successfully met the goal of basic surgical functionality while minimizing physical size, complexity, and cost. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan

    Science.gov (United States)

    Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.

    2013-12-01

    distributions of volcanic ash from Sakurajima volcano have basically characteristics of unimodal and gaussian. Mode of distributions are 150 - 200 micron at 5 km and 70-80 micron at 20 km respectively from the Showa crater. Mode and deviation of the grain size distribution are function of distance from the source. Fine volcanic ash less than 1 micron in diameter is few and exists in every samples. Component of volcanic ash samples are dark-colored dense glass shard (ca. 50%), light-colored dense glass shard (10%), variously colored and vesiculated glass shard (10%), free crystal (20%), lithic fragment (10%), and altered fragment (less than 5%) which are mostly having similar ratio in every location suggesting single source process of the eruption. We also found fine volcanic ash samples less than 10 micron are frequently aggregated. The present study includes the result of "Research and Development of Margin Assessment Methodology of Decay Heat Removal Function against External Hazards" entrusted to Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

  10. DECOVALEX-THMC Task D: Long-Term Permeability/Porosity Changes inthe EDZ and Near Field due to THM and THC Processes in Volcanic andCrystaline-Bentonite Systems, Status Report October 2005

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.; Rutqvist, J.; Sonnenthal, E.; Barr, D.

    2005-11-01

    The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The name DECOVALEXstands for DEvelopment of COupled models and their VALidation againstExperiments. The general goal of this project is to encouragemultidisciplinary interactive and cooperative research on modelingcoupled processes in geologic formations in support of the performanceassessment for underground storage of radioactive waste. Three multi-yearproject stages of DECOVALEX have been completed in the past decade,mainly focusing on coupled thermal-hydrological-mechanicalprocesses.Currently, a fourth three-year project stage of DECOVALEX isunder way, referred to as DECOVALEX-THMC. THMC stands for Thermal,Hydrological, Mechanical, and Chemical processes. The new project stageaims at expanding the traditional geomechanical scope of the previousDECOVALEX project stages by incorporating geochemical processes importantfor repository performance. The U.S. Department of Energy (DOE) leadsTask D of the new DECOVALEX phase, entitled "Long-termPermeability/Porosity Changes in the EDZ and Near Field due to THC andTHM Processes for Volcanic and Crystalline-Bentonite Systems." In itsleadership role for Task D, DOE coordinates and sets the direction forthe cooperative research activities of the international research teamsengaged in Task D.

  11. Debris Evaluation after Root Canal Shaping with Rotating and Reciprocating Single-File Systems

    Directory of Open Access Journals (Sweden)

    Alberto Dagna

    2016-10-01

    Full Text Available This study evaluated the root canal dentine surface by scanning electron microscope (SEM after shaping with two reciprocating single-file NiTi systems and two rotating single-file NiTi systems, in order to verify the presence/absence of the smear layer and the presence/absence of open tubules along the walls of each sample; Forty-eight single-rooted teeth were divided into four groups and shaped with OneShape (OS, F6 SkyTaper (F6, WaveOne (WO and Reciproc and irrigated using 5.25% NaOCl and 17% EDTA. Root canal walls were analyzed by SEM at a standard magnification of 2500×. The presence/absence of the smear layer and the presence/absence of open tubules at the coronal, middle, and apical third of each canal were estimated using a five-step scale for scores. Numeric data were analyzed using Kruskal-Wallis and Mann-Whitney U statistical tests and significance was predetermined at P < 0.05; The Kruskal-Wallis ANOVA for debris score showed significant differences among the NiTi systems (P < 0.05. The Mann-Whitney test confirmed that reciprocating systems presented significantly higher score values than rotating files. The same results were assessed considering the smear layer scores. ANOVA confirmed that the apical third of the canal maintained a higher quantity of debris and smear layer after preparation of all the samples; Single-use NiTi systems used in continuous rotation appeared to be more effective than reciprocating instruments in leaving clean walls. The reciprocating systems produced more debris and smear layer than rotating instruments.

  12. Tertiary volcanic rocks of the Mineral Mountain and Teapot Mountain quadrangles, Pinal County, Arizona

    Science.gov (United States)

    Keith, William J.; Theodore, Ted G.

    1979-01-01

    The widespread distribution of Tertiary volcanic rocks in south-central Arizona is controlled in part by prevolcanic structures along which volcanic vents were localized. Volcanic rocks in the Mineral Mountain and Teapot Mountain quadrangles mark the site of a major northwest-trending structural hingeline. This hingeline divides an older Precambrian X terrane on the west from intensely deformed sequences of rock as young as Pennsylvanian on the east, suggesting increased westerly uplift. The volcanic rocks consist of a pile of complexly interlayered rhyolite, andesite, dacite, flows and intrusive rocks, water-laid tuffs, and very minor olivine basalt. Although the rocks erupted from several different vents, time relations, space relations, and chemistry each give strong evidence of a single source for all the rocks. Available data (by the K-Ar dating method) on hornblende and biotite separates from the volcanic rocks range from 14 to 19 m.y. and establish the pre-middle Miocene age of major dislocations along the structural hingeline. Most of the volcanic rocks contain glass, either at the base of the flows or as an envelope around the intrusive phases. One of the intrusive rhyolites, however, seems to represent one of the final eruptions. Intense vesiculation of the intrusive rhyolite suggests a large content of volatiles at the time of its eruption. Mineralization is associated with the more silicic of these middle Miocene volcanic rocks; specifically, extensive fissure quartz veins contain locally significant amounts of silver, lead, and zinc and minor amounts of gold. Many of the most productive deposits are hosted by the volcanic rocks, although others occur in the Precambrian rocks. Magnetic data correspond roughly to the geology in outlining the overall extent of the volcanic rocks as a magnetic low.

  13. Gravimetric control of active volcanic processes

    Science.gov (United States)

    Saltogianni, Vasso; Stiros, Stathis

    2017-04-01

    Volcanic activity includes phases of magma chamber inflation and deflation, produced by movement of magma and/or hydrothermal processes. Such effects usually leave their imprint as deformation of the ground surfaces which can be recorded by GNSS and other methods, on one hand, and on the other hand they can be modeled as elastic deformation processes, with deformation produced by volcanic masses of finite dimensions such as spheres, ellipsoids and parallelograms. Such volumes are modeled on the basis of inversion (non-linear, numerical solution) of systems of equations relating the unknown dimensions and location of magma sources with observations, currently mostly GNSS and INSAR data. Inversion techniques depend on the misfit between model predictions and observations, but because systems of equations are highly non-linear, and because adopted models for the geometry of magma sources is simple, non-unique solutions can be derived, constrained by local extrema. Assessment of derived magma models can be provided by independent observations and models, such as micro-seismicity distribution and changes in geophysical parameters. In the simplest case magmatic intrusions can be modeled as spheres with diameters of at least a few tens of meters at a depth of a few kilometers; hence they are expected to have a gravimetric signature in permanent recording stations on the ground surface, while larger intrusions may also have an imprint in sensors in orbit around the earth or along precisely defined air paths. Identification of such gravimetric signals and separation of the "true" signal from the measurement and ambient noise requires fine forward modeling of the wider areas based on realistic simulation of the ambient gravimetric field, and then modeling of its possible distortion because of magmatic anomalies. Such results are useful to remove ambiguities in inverse modeling of ground deformation, and also to detect magmatic anomalies offshore.

  14. Power quality improvement of single-phase photovoltaic systems through a robust synchronization method

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Yang, Yongheng

    2014-01-01

    An increasing amount of single-phase photovoltaic (PV) systems on the distribution network requires more advanced synchronization methods in order to meet the grid codes with respect to power quality and fault ride through capability. The response of the synchronization technique selected...... to the harmonic voltage distortion without affecting the dynamic response of the synchronization. Therefore, the accurate response of the proposed MHDC-PLL enhances the power quality of the PV inverter systems and additionally, the proper fault ride-through operation of PV systems can be enabled by the fast...

  15. A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid

    Science.gov (United States)

    Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.

    2012-10-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.

  16. A new intelligent curtain control system based on 51 single chip microcomputer

    Science.gov (United States)

    Sun, Tuan; Wang, Yanhua; Wu, Mengmeng

    2017-04-01

    This paper uses 51 (single chip microcomputer) SCM as the operation and data processing center. According to the change of sunshine intensity and ambient temperature, a new type of intelligent curtain control system is designed by adopting photosensitive element and temperature sensor. In addition, the design also has a manual control mode. In the rain, when the light intensity is weak, the open position of the curtain can be set by the user. The system can maximize the user to provide user-friendly operation and comfortable living environment. The system can be applied to home or office environment, with a wide range of applications and simple operation and so on.

  17. A NEW FRACTIONAL MODEL OF SINGLE DEGREE OF FREEDOM SYSTEM, BY USING GENERALIZED DIFFERENTIAL TRANSFORM METHOD

    Directory of Open Access Journals (Sweden)

    HASHEM SABERI NAJAFI

    2016-07-01

    Full Text Available Generalized differential transform method (GDTM is a powerful method to solve the fractional differential equations. In this paper, a new fractional model for systems with single degree of freedom (SDOF is presented, by using the GDTM. The advantage of this method compared with some other numerical methods has been shown. The analysis of new approximations, damping and acceleration of systems are also described. Finally, by reducing damping and analysis of the errors, in one of the fractional cases, we have shown that in addition to having a suitable solution for the displacement close to the exact one, the system enjoys acceleration once crossing the equilibrium point.

  18. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    Directory of Open Access Journals (Sweden)

    Venkata K. K. Upadhyayula

    2008-01-01

    Full Text Available The possibility of using single-walled carbon nanotubes (SWCNTs aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies. The Freundlich adsorption equilibrium constant (k for S.aureus and E.coli determined from batch adsorption study was found to be 9×108 and 2×108 ml/g, respectively. The visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen. The results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability. This is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.

  19. K-Ar age of the Tertiary volcanic rocks in the Tohoku area, Japan

    International Nuclear Information System (INIS)

    Konda, Tadashi; Ueda, Yoshio.

    1980-01-01

    The absolute age of the Tertiary volcanic rocks in Tohoku area has been estimated by K-Ar method. The results are: (1) in case of the volcanic rocks of Monzen-Aikawa stage, 32.8 - 38.5 m.y.B.P., (2) in case of the volcanic rocks of Nozaki-Daijima stage, 22.0 - 25.1 m.y.B.P., (3) in case of the volcanic rocks of Nishikurosawa stage, 15.5 - 16.5 m.y.B.P., (4) in case of the volcanic rocks of Onnagawa stage, 12.6 - 14.8 m.y.B.P., (5) in case of the volcanic rocks of Funakawa stage, 9.6 - 11.3 m.y.B.P., and (6) in case of the volcanic rocks of Kitaura stage, 6.9 - 9.0 m.y.B.P. The samples used are such as biotite and whole rocks. The eruption periods in Tertiary volcanic activities presumed by K-Ar method are geologically significant. In the measurements made on the same system of samples under same conditions, there was difference in the K-Ar ages between the Monzen-Aikawa and the Nozaki-Daijima stages, and it was significantly noteworthy. It is indicated that the volcanic rock activities in the former stage had took place before those in the latter stage. In the Tohoku arc of northern Japan, the simultaneity in initial volcanic activities is not seen in the direction across the arc. (J.P.N.)

  20. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    International Nuclear Information System (INIS)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.; Gladney, E.; Bower, N.

    1986-01-01

    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns of basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs

  1. Database for potential hazards from future volcanic eruptions in California

    Science.gov (United States)

    White, Melissa N.; Ramsey, David W.; Miller, C. Dan

    2011-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the past 10,000 yr. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State's citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. This digital release contains information from maps of potential hazards from future volcanic eruptions in the state of California, published as Plate 1 in U.S. Geological Survey Bulletin 1847. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, main report text, and accompanying hazard tables from Bulletin 1847. It should be noted that much has been learned about the ages of eruptive events in the State of California since the publication of Bulletin 1847 in 1989. For the most up to date information on the status of California volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  2. Surface complexation modeling of americium sorption onto volcanic tuff.

    Science.gov (United States)

    Ding, M; Kelkar, S; Meijer, A

    2014-10-01

    Results of a surface complexation model (SCM) for americium sorption on volcanic rocks (devitrified and zeolitic tuff) are presented. The model was developed using PHREEQC and based on laboratory data for americium sorption on quartz. Available data for sorption of americium on quartz as a function of pH in dilute groundwater can be modeled with two surface reactions involving an americium sulfate and an americium carbonate complex. It was assumed in applying the model to volcanic rocks from Yucca Mountain, that the surface properties of volcanic rocks can be represented by a quartz surface. Using groundwaters compositionally representative of Yucca Mountain, americium sorption distribution coefficient (Kd, L/Kg) values were calculated as function of pH. These Kd values are close to the experimentally determined Kd values for americium sorption on volcanic rocks, decreasing with increasing pH in the pH range from 7 to 9. The surface complexation constants, derived in this study, allow prediction of sorption of americium in a natural complex system, taking into account the inherent uncertainty associated with geochemical conditions that occur along transport pathways. Published by Elsevier Ltd.

  3. A submarine volcanic eruption leads to a novel microbial habitat.

    Science.gov (United States)

    Danovaro, Roberto; Canals, Miquel; Tangherlini, Michael; Dell'Anno, Antonio; Gambi, Cristina; Lastras, Galderic; Amblas, David; Sanchez-Vidal, Anna; Frigola, Jaime; Calafat, Antoni M; Pedrosa-Pàmies, Rut; Rivera, Jesus; Rayo, Xavier; Corinaldesi, Cinzia

    2017-04-24

    Submarine volcanic eruptions are major catastrophic events that allow investigation of the colonization mechanisms of newly formed seabed. We explored the seafloor after the eruption of the Tagoro submarine volcano off El Hierro Island, Canary Archipelago. Near the summit of the volcanic cone, at about 130 m depth, we found massive mats of long, white filaments that we named Venus's hair. Microscopic and molecular analyses revealed that these filaments are made of bacterial trichomes enveloped within a sheath and colonized by epibiotic bacteria. Metagenomic analyses of the filaments identified a new genus and species of the order Thiotrichales, Thiolava veneris. Venus's hair shows an unprecedented array of metabolic pathways, spanning from the exploitation of organic and inorganic carbon released by volcanic degassing to the uptake of sulfur and nitrogen compounds. This unique metabolic plasticity provides key competitive advantages for the colonization of the new habitat created by the submarine eruption. A specialized and highly diverse food web thrives on the complex three-dimensional habitat formed by these microorganisms, providing evidence that Venus's hair can drive the restart of biological systems after submarine volcanic eruptions.

  4. Airborne volcanic ash; a global threat to aviation

    Science.gov (United States)

    Neal, Christina A.; Guffanti, Marianne C.

    2010-01-01

    The world's busy air traffic corridors pass over or downwind of hundreds of volcanoes capable of hazardous explosive eruptions. The risk to aviation from volcanic activity is significant - in the United States alone, aircraft carry about 300,000 passengers and hundreds of millions of dollars of cargo near active volcanoes each day. Costly disruption of flight operations in Europe and North America in 2010 in the wake of a moderate-size eruption in Iceland clearly demonstrates how eruptions can have global impacts on the aviation industry. Airborne volcanic ash can be a serious hazard to aviation even hundreds of miles from an eruption. Encounters with high-concentration ash clouds can diminish visibility, damage flight control systems, and cause jet engines to fail. Encounters with low-concentration clouds of volcanic ash and aerosols can accelerate wear on engine and aircraft components, resulting in premature replacement. The U.S. Geological Survey (USGS), in cooperation with national and international partners, is playing a leading role in the international effort to reduce the risk posed to aircraft by volcanic eruptions.

  5. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    International Nuclear Information System (INIS)

    Jeon, Juncheol; Han, Chulhee; Ung Chung, Jye; Choi, Seung-Bok

    2015-01-01

    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains. (paper)

  6. Performance evaluation of single effect and double effect absorption heat transformer systems used for seawater desalination

    Energy Technology Data Exchange (ETDEWEB)

    Gomri, R. [Constantine Univ., Constantine (Algeria). Dept. of Genie Climatique

    2009-07-01

    Desalination of sea or brackish water can be used to produce potable water. The distillation process is the most developed and widely used technique for seawater desalination. The distillation of sea or brackish water can be achieved by using a thermal energy source. Among the many options to improve the energy efficiency of desalination plants is the absorption heat transformer, which is a device that can deliver heat at a higher temperature than the temperature of the fluid by which it is fed. Absorption heat transformer systems are attractive for using waste heat from industrial processes and renewable energy such as solar energy and geothermal energy. This paper presented a comparative study between single effect and double effect absorption heat transformer systems used for seawater desalination. In order to simulate the performance of these combination systems, mathematical models were developed for a single absorption heat transformer and a double absorption heat transformer operating with the water/lithium bromide solution. A model was also developed for the overall desalination system. For the two systems, an identical heat source temperature was used to simulate the heat input to an absorption heat transformer. Energy and exergy analysis of the two systems were performed. Simulation results were used to examine and to compare the influence of the absorber temperature on the energy efficiency, exergy efficiency, and water production of the two systems. 19 refs., 1 tab., 7 figs.

  7. Development of a hybrid earthquake early warning system based on single sensor technique

    International Nuclear Information System (INIS)

    Gravirov, V.V.; Kislov, K.V.

    2012-01-01

    There are two methods to earthquake early warning system: the method based on a network of seismic stations and the single-sensor method. Both have advantages and drawbacks. The current systems rely on high density seismic networks. Attempts at implementing techniques based on the single-station principle encounter difficulties in the identification of earthquake in noise. The noise may be very diverse, from stationary to impulsive. It seems a promising line of research to develop hybrid warning systems with single-sensors being incorporated in the overall early warning network. This will permit using all advantages and will help reduce the radius of the hazardous zone where no earthquake warning can be produced. The main problems are highlighted and the solutions of these are discussed. The system is implemented to include three detection processes in parallel. The first is based on the study of the co-occurrence matrix of the signal wavelet transform. The second consists in using the method of a change point in a random process and signal detection in a moving time window. The third uses artificial neural networks. Further, applying a decision rule out the final earthquake detection is carried out and estimate its reliability. (author)

  8. A novel locally operated master-slave robot system for single-incision laparoscopic surgery.

    Science.gov (United States)

    Horise, Yuki; Matsumoto, Toshinobu; Ikeda, Hiroki; Nakamura, Yuta; Yamasaki, Makoto; Sawada, Genta; Tsukao, Yukiko; Nakahara, Yujiro; Yamamoto, Masaaki; Takiguchi, Shuji; Doki, Yuichiro; Mori, Masaki; Miyazaki, Fumio; Sekimoto, Mitsugu; Kawai, Toshikazu; Nishikawa, Atsushi

    2014-12-01

    Single-incision laparoscopic surgery (SILS) provides more cosmetic benefits than conventional laparoscopic surgery but presents operational difficulties. To overcome this technical problem, we have developed a locally operated master-slave robot system that provides operability and a visual field similar to conventional laparoscopic surgery. A surgeon grasps the master device with the left hand, which is placed above the abdominal wall, and holds a normal instrument with the right hand. A laparoscope, a slave robot, and the right-sided instrument are inserted through one incision. The slave robot is bent in the body cavity and its length, pose, and tip angle are changed by manipulating the master device; thus the surgeon has almost the same operability as with normal laparoscopic surgery. To evaluate our proposed system, we conducted a basic task and an ex vivo experiment. In basic task experiments, the average object-passing task time was 9.50 sec (SILS cross), 22.25 sec (SILS parallel), and 7.23 sec (proposed SILS). The average number of instrument collisions was 3.67 (SILS cross), 14 (SILS parallel), and 0.33 (proposed SILS). In the ex vivo experiment, we confirmed the applicability of our system for single-port laparoscopic cholecystectomy. We demonstrated that our proposed robot system is useful for single-incision laparoscopic surgery.

  9. Single molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update

    Science.gov (United States)

    Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.

    2015-01-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907

  10. Single microwave-photon detector using an artificial Λ-type three-level system

    Science.gov (United States)

    Inomata, Kunihiro; Lin, Zhirong; Koshino, Kazuki; Oliver, William D.; Tsai, Jaw-Shen; Yamamoto, Tsuyoshi; Nakamura, Yasunobu

    2016-07-01

    Single-photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an impedance-matched artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. Each signal photon deterministically induces a Raman transition in the Λ system and excites the qubit. The subsequent dispersive readout of the qubit produces a discrete `click'. We attain a high single-photon-detection efficiency of 0.66+/-0.06 with a low dark-count probability of 0.014+/-0.001 and a reset time of ~400 ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.

  11. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  12. Role of Atmospheric Chemistry in the Climate Impacts of Stratospheric Volcanic Injections

    Science.gov (United States)

    Legrande, Allegra N.; Tsigaridis, Kostas; Bauer, Susanne E.

    2016-01-01

    The climate impact of a volcanic eruption is known to be dependent on the size, location and timing of the eruption. However, the chemistry and composition of the volcanic plume also control its impact on climate. It is not just sulfur dioxide gas, but also the coincident emissions of water, halogens and ash that influence the radiative and climate forcing of an eruption. Improvements in the capability of models to capture aerosol microphysics, and the inclusion of chemistry and aerosol microphysics modules in Earth system models, allow us to evaluate the interaction of composition and chemistry within volcanic plumes in a new way. These modeling efforts also illustrate the role of water vapor in controlling the chemical evolution, and hence climate impacts, of the plume. A growing realization of the importance of the chemical composition of volcanic plumes is leading to a more sophisticated and realistic representation of volcanic forcing in climate simulations, which in turn aids in reconciling simulations and proxy reconstructions of the climate impacts of past volcanic eruptions. More sophisticated simulations are expected to help, eventually, with predictions of the impact on the Earth system of any future large volcanic eruptions.

  13. Volcanic sulfur degassing and the role of sulfides in controlling volcanic metal emissions

    Science.gov (United States)

    Edmonds, M.; Liu, E.

    2017-12-01

    Volcanoes emit prodigious quantities of sulfur and metals, their behaviour inextricably linked through pre-eruptive sulfide systematics and through degassing and speciation in the volcanic plume. Fundamental differences exist in the metal output of ocean island versus arc volcanoes, with volcanoes in Hawaii and Iceland outgassing large fluxes of gaseous and particulate chalcophiles; and arc volcanoes' plumes, in contrast, enriched in Zn, Cu, Tl and Pb. Metals and metalloids partition into a magmatic vapor phase from silicate melt at crustal pressures. Their abundance in magmatic vapor is influenced strongly by sulfide saturation and by the composition of the magmatic vapor phase, particularly with respect to chloride. These factors are highly dependent on tectonic setting. Metal outgassing is controlled by magma water content and redox: deep saturation in vapor and minimal sulfide in arc basalts yields metal-rich vapor; shallow degassing and resorption of sulfides feeds the metal content of volcanic gas in ocean islands. We present a detailed study of the sulfide systematics of the products of the 2014-2015 Holuhraun basaltic fissure eruption (Bárðarbunga volcanic system, Iceland) to illustrate the interplay between late water and sulfur outgassing; sulfide saturation and breakdown; and metal partitioning into a vapor phase. Sulfide globules, representing quenched droplets of an immiscible sulfide liquid, are preserved within erupted tephra. Sulfide globules in rapidly quenched tephra are preserved within both matrix glass and as inclusions in crystals. The stereologically-corrected 3D size distribution of sulfide globules ranges from eruption and co-existed with an immiscible sulfide liquid throughout much of ol-cpx-plag crystallisation. Individual globules are associated with locally elevated dissolved sulfur concentrations, with concentration gradients away from sulfides preserved over distances of 10-40 µm from the melt-sulfide interfaces. We discuss the

  14. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  15. Clinical performance and material properties of single-implant overdenture attachment systems.

    Science.gov (United States)

    Alsabeeha, Nabeel H M; Swain, Michael V; Payne, Alan G T

    2011-01-01

    The aim of this study was to evaluate the mechanical properties of different attachment systems used for mandibular single-implant overdentures and to compare their wear/deformation features with clinical performance in patients after 1 year. Three attachment systems were evaluated: large 5.9-mm titanium nitride-coated ball attachments with plastic matrices, standard 2.25-mm uncoated titanium alloy ball attachments with Dalla Bona-type gold alloy matrices, and Locator attachments of titanium nitride-coated patrices and nylon matrices. The hardness and elastic modulus of the systems were determined using the nanoindentation technique. Twelve attachments from each system were used in 36 edentulous patients to support mandibular single-implant overdentures. After 1 year, 5 samples from each system were retrieved and evaluated for wear changes under a scanning electron microscope. The titanium nitride-coated patrices, regardless of system, appeared unchanged and did not require any maintenance. Extensive wear was evident in the uncoated titanium alloy patrices and Dalla Bona-type gold alloy matrices, resulting in high maintenance (15 activations). Minimal wear was observed in the plastic matrices with minimal maintenance (2 replacements). The Locator nylon matrices showed extensive deformation and deterioration with a substantial need for maintenance (16 replacements). The performance of the patrices was related to hardness, while that of the matrices was related to the creep response. Large ball attachment systems of titanium nitride-coated patrices and plastic matrices reflect favorable wear behavior and clinical performance. These attachments are recommended for patients receiving mandibular single-implant overdentures.

  16. Use of multiple in situ instruments and remote sensed satellite data for calibration tests at Solfatara (Campi Flegrei volcanic area)

    Science.gov (United States)

    Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria; Doumaz, Fawzi; Andres Diaz, Jorge

    2017-04-01

    Monitoring natural hazards such as active volcanoes requires specific instruments to measure many parameters (gas emissions, surface temperatures, surface deformation etc.) to determine the activity level of a volcano. Volcanoes in most cases present difficult and dangerous environment for scientists who need to take in situ measurements. Remote Sensing systems on board of satellite permit to measure a large number of parameters especially during the eruptive events but still show large limits to monitor volcanic precursors and phenomena at local scale (gas species emitted by fumarole or summit craters degassing plumes and surface thermal changes of few degrees) for their specific risk. For such reason unmanned aircraft systems (UAS) mounting a variety of multigas sensors instruments (such as miniature mass spectrometer) or single specie sensors (such as electrochemical and IR sensors) allow a safe monitoring of volcanic activities. With this technology, it is possible to perform monitoring measurements of volcanic activity without risking the lives of scientists and personnel performing analysis during the field campaigns in areas of high volcanic activity and supporting the calibration and validation of satellite data measurements. These systems allowed the acquisition of real-time information such as temperature, pressure, relative humidity, SO2, H2S, CO2 contained in degassing plume and fumaroles, with GPS geolocation. The acquired data are both stored in the sensor and transmitted to a computer for real time viewing information. Information in the form of 3D concentration maps can be returned. The equipment used during the campaigns at Solfatara Volcano (in 2014, 2015 and 2016) was miniaturized instruments allowed measurements conducted either by flying drones over the fumarolic sites and by hand carrying into the fumaroles. We present the results of the field campaign held in different years at the Solfatara of Pozzuoli, near Naples, concerning measurements

  17. Comparison between Conventional OCDMA and Subcarrier Multiplexing SAC OCDMA System Based on Single Photodiode Detection

    Directory of Open Access Journals (Sweden)

    Ahmad N. A. A

    2017-01-01

    Full Text Available This paper demonstrates the comparison between conventional OCDMA system and subcarrier multiplexing (SCM SAC-OCDMA system by applying Recursive Combinatorial (RC code based on single photodiode detection (SPD. SPD is used in the receiver part to reduce the effect of multiple access interference (MAI which contributes as a dominant noise in incoherent SAC-OCDMA systems. From this analysis, the performance of SCM OCDMA network could be improved by using lower data rates and higher received power. The hybrid SCM OCDMA system shows better performance compare to conventional OCDMA system although the number of users involved is very high. This is because, for hybrid SCM OCDMA system, the number of users can be increased by increasing the number of subcarriers without affect the number of code length and optical codes. Increasing the number of subcarriers will enhance the power consumption by applying hybrid SCM system in OCDMA compared to the conventional OCDMA system. This is because increasing the number of users for hybrid SCM system does not affects the number of code length and the number of optical codes but only increase the number of subcarriers. Thus, hybrid SCM OCDMA system has to increase spectral efficiency and produce better performance compared to conventional of OCDMA system.

  18. Immunoadsorption with regenerating systems in neurological disorders --A single center experience.

    Science.gov (United States)

    Hohenstein, Bernd; Passauer, Jens; Ziemssen, Tjalf; Julius, Ulrich

    2015-05-01

    In recent years, immunoadsorption is increasingly recognized as an alternative treatment approach replacing therapeutic plasma exchange in a variety of neurological disorders. While most experience is based on the application of single-use tryptophan adsorbers, less data exists on the application of more efficient regenerating adsorber columns. We here report the systematic use of a regenerating adsorber system in various neurological indications such as multiple sclerosis, encephalitis, myasthenia gravis and chronic inflammatory demyelinating polyneuropathy, providing the expected treatment success in regard to reduction of immunoglobulins and antibody clearance, together with a low rate of adverse events. As it has been shown for single-use columns before, immunoadsorption with regenerating adsorbers can be successfully applied in disorders without known specific antibodies such as multiple sclerosis. Regenerating systems offer the perspective to provide a more efficacious long term treatment perspective for such patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Modified Single Photo-diode (MSPD) Detection Technique for SAC-OCDMA System

    Science.gov (United States)

    Abdulqader, Sarah G.; Fadhil, Hilal A.; Aljunid, S. A.

    2015-03-01

    In this paper, a new detection technique called modified single photo-diode (MSPD) detection for SAC-OCDMA system is proposed. The proposed system based on the single photo-diode (SPD) detection technique. The new detection technique is proposed to overcome the limitation of phase-induced intensity noise (PIIN) in SPD detection technique. However, the proposed detection is based on an optical hard limiter (OHL) followed by a SPD and a low-pass filter (LPF) in order to suppress the phase intensity noise (PIIN) at the receiver side. The results show that the MSPD detection based on OHL has a good performance even when the transmission distance is long, which is different from the case of SPD detection technique. Therefore, the MSPD detection technique is shown to be effective to improve the bit error rate (BER<10-9) and to suppress the noise in the practical optical fiber network.

  20. Single-stage quintuplet for upgrading triplet based lens system: Simulation for Atomki microprobe

    Science.gov (United States)

    Ponomarov, Artem; Rajta, Istvan; Nagy, Gyula; Romanenko, Oleksandr V.

    2017-08-01

    Among different configurations of lens systems for nuclear microprobes, the most common one is a triplet of magnetic quadrupole lenses. Nowadays, microanalysis and material modification will undoubtedly benefit from an improvement in spatial resolution. This work presents the results of simulations for improvement of the Oxford Triplet lens system at the Atomki microprobe with consideration of its system parameters and measured beam brightness distribution. For this purpose, an additional single-unit doublet of lenses with two power supplies was introduced. Using earlier developed methods, such a quintuplet system was optimized in order to determine the parameters which provided the highest resolution for different current operational modes with the same microprobe geometry. The tolerances for lens positioning accuracy were also calculated. The obtained quintuplet parameters indicate a resolution improvement for the Atomki microprobe compared to the Oxford Triplet system and these results validate further experimental testing of the proposed quintuplet.

  1. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  2. Zero-voltage ride-through capability of single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Zhang, Zhen; Yang, Yongheng; Ma, Ruiqing

    2017-01-01

    Distributed renewable energy systems play an increasing role in today’s energy paradigm. Thus, intensive research activities have been centered on improving the performance of renewable energy systems, including photovoltaic (PV) systems, which should be of multiple-functionality. That is, the PV...... systems should be more intelligent in the consideration of grid stability, reliability, and fault protection. Therefore, in this paper, the performance of single-phase grid-connected PV systems under an extreme grid fault (i.e., when the grid voltage dips to zero) is explored. It has been revealed...... that combining a fast and accurate synchronization mechanism with appropriate control strategies for the zero-voltage ride-through (ZVRT) operation is mandatory. Accordingly, the representative synchronization techniques (i.e., the phase-locked loop (PLL) methods) in the ZVRT operation are compared in terms...

  3. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    Science.gov (United States)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid

  4. Volcanic facies and mineral chemistry of Tertiary volcanics in the northern part of the Eastern Pontides, northeast Turkey: implications for pre-eruptive crystallization conditions and magma chamber processes

    Science.gov (United States)

    Yücel, Cem; Arslan, Mehmet; Temizel, İrfan; Abdioğlu, Emel

    2014-06-01

    temperature ranging from 970 to 978 °C at pressure ranging from 8.70 to 9.00 kbar with water content ranging from 8.04 to 8.64 wt.% and oxygen fugacity ranging from 10-8.75 to 10-8.87 (ΔNNO+2). Brown mica thermobarometric data show that Eocene volcanics were characterized by relatively high oxygen fugacity varying from 10-10.32 to 10-12.37 (HM) at temperature ranging from 858 to 953 °C and pressure ranging from 1.08 to 1.41 kbar. Miocene volcanics were crystallized at highly oxidized conditions, which are characterized by high oxygen fugacity of 10-12.0 (HM) at temperature of 875 °C and pressure of 2.09 kbar. The wide range of obtained temperatures for clinopyroxenes of the suites denotes that the equilibration of clinopyroxene crystals initiates from depth until close to the surface before magma eruption. The compositional variations, resorbed core and reverse zoning patterns in clinopyroxene phenocrysts, as well as variable pressures of crystallization, further indicate that the magmas that formed the suites were polybaric in origins and were composite products of more than one petrogenetic stage. The observed range of phenocryst assemblage and different compositional trends possibly originated from fractionation of magmas with different initial water contents under variable pressures of crystallization. The repeated occurrence of magmas from different suites during a single period of activity suggests that the magmatic system consists of several conduit systems and that magma reservoirs are dispersed at different levels of crustal magma chambers.

  5. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    OpenAIRE

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research oppor...

  6. Optimal Pilot and Payload Power Control in Single-Cell Massive MIMO Systems

    OpenAIRE

    Cheng, Hei Victor; Björnson, Emil; Larsson, Erik G.

    2016-01-01

    This paper considers the jointly optimal pilot and data power allocation in single-cell uplink massive multiple-input-multiple- output systems. Using the spectral efficiency (SE) as performance metric and setting a total energy budget per coherence interval, the power control is formulated as optimization problems for two different objective functions: the weighted minimum SE among the users and the weighted sum SE. A closed form solution for the optimal length of the pilot sequence is derive...

  7. Single, Integrated, Service-Centric Model of Military Health System Governance

    Science.gov (United States)

    that keeps pace with the operational agility and organizational flexibility requirements to support globally integrated operations is clear. This...of the research is to establish what the model of governance of the Military Health System should be. That, with other recommendations, should be the...foundation for the impending transformation. The research found that the model of governance should be a single service model with regional health

  8. Laparoscopic ureteric reimplantation of a single-system ectopic ureter in a girl: A rarity

    Directory of Open Access Journals (Sweden)

    Kumar Suresh

    2010-01-01

    Full Text Available A 14-year-old girl presented with continuous dribbling of urine along with normal voiding pattern since childhood. Cystourethroscopy showed absence of right ureteric opening, and vaginoscopy showed right ureter opening into vaginal vault. Radiological images showed small right kidney with normal excretory function with single-system ectopic ureter. Patient underwent laparoscopic transperitoneal extravesical ureteric reimplantation. At 3 months′ follow-up, intravenous urography (IVU and micturating cystourethrogram (MCU showed no obstruction and reflux.

  9. An Optical Tracking System based on Hybrid Stereo/Single-View Registration and Controlled Cameras

    OpenAIRE

    Cortes , Guillaume; Marchand , Eric; Ardouin , Jérôme; Lécuyer , Anatole

    2017-01-01

    International audience; Optical tracking is widely used in robotics applications such as unmanned aerial vehicle (UAV) localization. Unfortunately, such systems require many cameras and are, consequently, expensive. In this paper, we propose an approach to considerably increase the optical tracking volume without adding cameras. First, when the target becomes no longer visible by at least two cameras we propose a single-view tracking mode which requires only one camera. Furthermore, we propos...

  10. Decoupling of Fluctuating Power in Single-Phase Systems Through a Symmetrical Half-Bridge Circuit

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Single-phase ac/dc or dc/ac systems are inherently subject to the harmonic disturbance that is caused by the well-known double-line frequency ripple power. This issue can be eased through the installation of bulky electrolytic capacitors in the dc link. Unfortunately, such passive filtering...... power decoupling method, and both the input current and output voltage of the converter can be well regulated even when very small dc-link capacitors are employed....

  11. Reliability Assessment of a Single-Shot System by Use of Screen Test Results

    Science.gov (United States)

    2018-02-01

    unlimited. NUWC Keyport #17-002. Reliability Assessment of a Single-Shot System by Use of Screen Test Results Abstract: Field reliability prediction...approach described here assumes that the defect density during testing takes the form of an exponential decay, although other mathematical functions can...be substituted for the exponential. In order to apply the decay rate function to a discrete pass/fail test scheme, the approach provides for

  12. Primer System for Single Cell Detection of Double Mutation for Tay-Sachs Disease

    OpenAIRE

    Liu, Ming Cheng; Drury, Kenneth C.; Kipersztok, Simon; Zheng, Wenrong; Williams, R. Stan

    2000-01-01

    Purpose: Nearly 100% of infantile Tay-Sachs disease isproduced by two mutations occurring in the alpha chain ofthe lysosomal enzyme beta-N-acetylhexosaminidase (HEXA)in the Ashkenazi Jewish population. Although others havedescribed primer systems used to amplify both sitessimultaneously, few discuss the allele dropout problems inherent inthis test. Our goal was to construct a more robust testenabling stronger signal generation for single cellpreimplantation genetic diagnosis and to investigat...

  13. Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand

    Science.gov (United States)

    Cole, J. W.

    1990-08-01

    Taupor volcanic zone (TVZ) is the currently active volcanic arc and back-arc basin of the Taupo-Hikurangi arc-trench system, North Island, New Zealand. The volcanic arc is best developed at the southern (Tongariro volcanic centre) end of the TVZ, while on the eastern side of the TVZ it is represented mainly by dacite volcanoes, and in the Bay of Plenty andesite/dacite volcanoes occur on either side of the Whakatane graben. The back-arc basin is best developed in the central part of the TVZ and comprises bimodal rhyolite and high-alumina basalt volcanism. Widespread ignimbrite eruptions have occurred from this area in the past 0.6 Ma. Normal faults occur in both arc and back-arc basin. They are generally steeply dipping (>40°) and strike between 040° and 080°. In the back-arc basin, fault zones are en echelon and have the same trend as alignments of rhyolite domes and basalt vents. Open fissures have formed during historic earthquakes along some of the faults, and geodetic measurements on the north side of Lake Taupo suggest extension of 14±4 mm/year. In the Bay of Plenty and ML=6.3 earthquake occurred on 2 March 1987. Modelling of known structure in the area together with data derived from this earthquake suggests block faulting with faults dipping 45°±10° NW and a similar dip is suggested by seismic profiling of faults offshore of the Bay of Plenty where extension is estimated to be 5±2 mm/year. To the east of the TVZ, the North Island shear belt (NISB) is a zone of reverse-dextral, strike-slip faults, the surface expression of which terminates at the eastern end of the TVZ. On the opposite side of the TVZ in the offshore western Bay of Plenty and on line with the NISB is the Mayor Island fault belt. If the two fault belts were once continuous, as seems likely, strike-slip faults probably extend through the basement of the TVZ. When extension associated with the arc and back-arc basin is combined with these strike-slip faults, the resulting transtension

  14. 2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi

    2017-09-28

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.

  15. Geomorphological Approach for Regional Zoning In The Merapi Volcanic Area

    Directory of Open Access Journals (Sweden)

    Langgeng Wahyu Santosa

    2013-07-01

    Full Text Available Geomorphologial approach can be used as the basic for identifying and analyzing the natural resources potentials, especially in volcanic landscape. Based on its geomorphology, Merapi volcanic landscape can be divided into 5 morphological units, i.e.: volcanic cone, volcanic slope, volcanic foot, volcanic foot plain, and fluvio-volcanic plain. Each of these morphological units has specific characteristic and natural resources potential. Based on the condition of geomorphology, the regional zoning can be compiled to support the land use planning and to maintain the conservation of environmental function in the Merapi Volcanic area.

  16. Volcanic Ash on Slopes of Karymsky

    Science.gov (United States)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  17. Primer system for single cell detection of double mutation for Tay-Sachs disease.

    Science.gov (United States)

    Liu, M C; Drury, K C; Kipersztok, S; Zheng, W; Williams, R S

    2000-02-01

    Nearly 100% of infantile Tay-Sachs disease is produced by two mutations occurring in the alpha chain of the lysosomal enzyme beta-N-acetylhexosaminidase (HEXA) in the Ashkenazi Jewish population. Although others have described primer systems used to amplify both sites simultaneously, few discuss the allele dropout problems inherent in this test. Our goal was to construct a more robust test enabling stronger signal generation for single cell preimplantation genetic diagnosis and to investigate the occurrence of allele dropout. New nested primers were designed to optimize detection of both major Tay-Sachs mutations. Four hundred fifty-seven single cells, including normal cells and those carrying mutations of either the 4bp insertion exon 11 or splice-site intron 12 defects, were used to screen a new primer system. Based on PCR amplified product analysis, total efficiency of amplification was 85.3%, (390/457). The allele dropout rate for the 4bp insertion mutation in exon 11 and splice-site mutation in intron 12 was 4.8% and 5.8%, respectively. Multiple mutation detection and analysis within the Tay-Sachs disease gene (HEXA) is possible using single cells for clinical preimplantation genetic diagnosis. Alternative PCR primers and conditions offer various methods for developing systems compatible to specific program requirements.

  18. Probing correlated quantum many-body systems at the single-particle level

    International Nuclear Information System (INIS)

    Endres, Manuel

    2013-01-01

    The detection of correlation and response functions plays a crucial role in the experimental characterization of quantum many-body systems. In this thesis, we present novel techniques for the measurement of such functions at the single-particle level. Specifically, we show the single-atom- and single-site-resolved detection of an ultracold quantum gas in an optical lattice. The quantum gas is described by the Bose-Hubbard model, which features a zero temperature phase transition from a superfluid to a Mott-insulating state, a paradigm example of a quantum phase transition. We used the aforementioned detection techniques to study correlation and response properties across the superfluid-Mott-insulator transition. The single-atom sensitivity of our method is achieved by fluorescence detection of individual atoms with a high signal-to-noise ratio. A high-resolution objective collects the fluorescence light and yields in situ 'snapshots' of the quantum gas that allow for a single-site-resolved reconstruction of the atomic distribution. This allowed us to measure two-site and non-local correlation-functions across the superfluid-Mott-insulator transition. Non-local correlation functions are based on the information of an extended region of the system and play an important role for the characterization of low-dimensional quantum phases. While non-local correlation functions were so far only theoretical tools, our results show that they are actually experimentally accessible. Furthermore, we used a new thermometry scheme, based on the counting of individual thermal excitations, to measure the response of the system to lattice modulation. Using this method, we studied the excitation spectrum of the system across the two-dimensional superfluid-Mott-insulator transition. In particular, we detected a 'Higgs' amplitude mode in the strongly-interacting superfluid close to the transition point where the system is described by an effectively Lorentz-invariant low-energy theory

  19. Probing correlated quantum many-body systems at the single-particle level

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Manuel

    2013-02-27

    The detection of correlation and response functions plays a crucial role in the experimental characterization of quantum many-body systems. In this thesis, we present novel techniques for the measurement of such functions at the single-particle level. Specifically, we show the single-atom- and single-site-resolved detection of an ultracold quantum gas in an optical lattice. The quantum gas is described by the Bose-Hubbard model, which features a zero temperature phase transition from a superfluid to a Mott-insulating state, a paradigm example of a quantum phase transition. We used the aforementioned detection techniques to study correlation and response properties across the superfluid-Mott-insulator transition. The single-atom sensitivity of our method is achieved by fluorescence detection of individual atoms with a high signal-to-noise ratio. A high-resolution objective collects the fluorescence light and yields in situ 'snapshots' of the quantum gas that allow for a single-site-resolved reconstruction of the atomic distribution. This allowed us to measure two-site and non-local correlation-functions across the superfluid-Mott-insulator transition. Non-local correlation functions are based on the information of an extended region of the system and play an important role for the characterization of low-dimensional quantum phases. While non-local correlation functions were so far only theoretical tools, our results show that they are actually experimentally accessible. Furthermore, we used a new thermometry scheme, based on the counting of individual thermal excitations, to measure the response of the system to lattice modulation. Using this method, we studied the excitation spectrum of the system across the two-dimensional superfluid-Mott-insulator transition. In particular, we detected a 'Higgs' amplitude mode in the strongly-interacting superfluid close to the transition point where the system is described by an effectively Lorentz

  20. Managing health expenditure inflation under a single-payer system: Taiwan's National Health Insurance.

    Science.gov (United States)

    Yip, Winnie C; Lee, Yue-Chune; Tsai, Shu-Ling; Chen, Bradley

    2017-11-16

    As nations strive to achieve and sustain universal health coverage (UHC), they seek answers as to what health system structures are more effective in managing health expenditure inflation. A fundamental macro-level choice a nation has to make is whether to adopt a single- or a multiple-payer health system. Using Taiwan's National Health Insurance (NHI) as a case, this paper examines how a single-payer system manages its health expenditure growth and draws lessons for other countries whose socioeconomic development is similar to Taiwan's. Our analyses show that as a single payer, Taiwan's NHI is able to exercise its monopsony power to manage its health expenditure growth. This is achieved primarily through the adoption of a system-wide global budget. The global budget sets a hard aggregate budget cap to limit NHI's total spending to its expected revenue, with the annual budget growth rate established by a process of negotiation among key stakeholders. The global budget system is complemented by comprehensive and continuous monitoring and review of encounter records of all providers and patients, enabled by the NHI's advanced information technology. However, by paying its providers using a point-based fee schedule, Taiwan's NHI suffers from inefficient service provision. In particular, providers have incentives to increase use of services and drugs with positive profit margins. Furthermore, Taiwan demonstrates that its control of NHI expenditure growth might be leading it to inadequately meet the changing needs of the population, resulting in the rapid growth of private insurance to cover services excluded or not fully covered by the NHI. If this trend persists and results in a two-tier system, Taiwan's NHI may risk compromising the equity it has achieved in the past two decades. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Seamount volcanism along the Gakkel Ridge, Arctic Ocean

    Science.gov (United States)

    Cochran, James R.

    2008-09-01

    The Gakkel Ridge in the Arctic Ocean is the slowest spreading portion of the global mid-ocean ridge system. Total spreading rates vary from 12.8 mm yr-1 near Greenland to 6.5 mm yr-1 at the Siberian margin. Melting models predict a dramatic decrease in magma production and resulting crustal thickness at these low spreading rates. At slow spreading ridges, small volcanic seamounts are a dominant morphologic feature of the rift valley floor and an important mechanism in building the oceanic crust. This study quantitatively investigates the extent, nature and distribution of seamount volcanism at the ultraslow Gakkel Ridge, the manner in which it varies along the ridge axis and the relationship of the volcanoes to the larger scale rift morphology. A numerical algorithm is used to identify and characterize isolated volcanic edifices by searching gridded swath-bathymetry data for closed concentric contours protruding above the surrounding seafloor. A maximum likelihood model is used to estimate the total number of seamounts and the characteristic height within different seamount populations. Both the number and size of constructional volcanic features is greatly reduced at the Gakkel Ridge compared with the Mid-Atlantic Ridge (MAR). The density of seamounts (number/area) on the rift valley floor of the Western Volcanic Zone (WVZ) is ~55% that of the MAR. The observed volcanoes are also much smaller, so, the amount of erupted material is greatly reduced compared with the MAR. However, the WVZ is still able to maintain a MAR-like morphology with axial volcanic ridges, volcanoes scattered on the valley floor and rift valley walls consisting of high-angle faults. Seamount density at the Eastern Volcanic Zone (EVZ) is ~45% that of the WVZ (~25% that of the MAR). Seamounts are clustered at the widely spaced magmatic centres characteristic of the EVZ, although some seamounts are found between magmatic centres. These seamounts tend to be located at the edge of the rift valley

  2. Handbook for Volcanic Risk Management: an outcome from MIAVITA project

    Science.gov (United States)

    Bignami, Christian; Bosi, Vittorio; Costantini, Licia; Cristiani, Chiara; Lavigne, Franck; Thierry, Pierre

    2013-04-01

    Volcanic eruptions are one of the most impressive, violent and dramatic agents of change on Earth, threatening hundreds of millions of people. The crises management implies a strong cooperation among the main stakeholders (e.g., civil protection authorities, scientific institutions, operational forces). Considering the great amount of different actions required during the whole volcanic cycle (e.g., preparedness, unrest phase, crisis management, resilience), the role and responsibilities of stakeholders should be clarified in advance. In particular, the role of scientists, fundamental in all the phases, should be well discussed with the other stakeholders and well defined, for every country. This will allow a better management and response, and contribute to avoid misunderstanding. The new "Handbook for Volcanic Risk Management" issued by the MIAVITA European project, funded by the European Commission (Mitigate and Assess risk from Volcanic Impact on Terrain and human Activities) gives a contribution to that. Indeed, this handbook aims at synthesizing the acquired knowledge on volcanic risk management, such as prevention, preparedness, mitigation, intervention, crisis management and resilience, in a practical and useful way. It promotes the creation of an ideal bridge between different actors involved in risk management, improving and facilitating interactions among authorities and scientists. This work is based on current scientific research and the shared experience of the different MIAVITA project partners as well as on international good practices previously recommended. The handbook is composed of six sections. The first one briefly explains the global volcanic context and the principles of corresponding risk management. Section 2 contains a description of volcanic phenomena, damage and understanding size and effects that can be expected. Sections 3, 4 and 5 meet preparation and prevention issues and describe actions to be undertaken during the response phase

  3. Reliable Grid Condition Detection and Control of Single-Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai

    to the utility grid but also to sustain it. This thesis was divided into two main parts, namely "Grid Condition Detection" and "Control of Single-Phase DPGS". In the first part, the main focus was on reliable Phase Locked Loop (PLL) techniques for monitoring the grid voltage and on grid impedance estimation...... of the entire system. Regarding the advance control of DPGS, an active damping technique for grid-connected systems using inductor-capacitorinductor (LCL) filters was proposed in the thesis. The method is based on a notch filter, whose stopband can be automatically adjusted in relation with an estimated value...

  4. Application of Viral Systems for Single-Machine Total Weighted Tardiness Problem

    International Nuclear Information System (INIS)

    Santosa, Budi; Affandi, Umar

    2013-01-01

    In this paper, a relatively new algorithm inspired by the viral replication system called Viral Systems is used to solve the Single-Machine Total Weighted Tardiness (SMTWTP). SMTWTP is a job scheduling problem which is one of classical combinatorial problems known as np-hard problems. This algorithm makes the process of finding solutions through neighborhood and mutation mechanism. The experiment was conducted to evaluate its performance. There are seven parameters which are required to tune in to find best solution. The experiment was implemented on data sets of 40 jobs, 50 jobs, and 100 jobs. The results show that the algorithm can solve 235 optimally out of 275 problems.

  5. Ice Protection of Turbojet Engines by Inertia Separation of Water II : Single-offset-duct System

    Science.gov (United States)

    Von Glahn, Uwe

    1948-01-01

    Investigation of a single-offset-duct system designed to prevent entrance of water into a turbojet engine was conducted on a half-scale nacelle model. An investigation was made to determine ram-pressure recovery and radial velocity profiles at the compressor section and icing characteristics of such a duct system. At a design inlet velocity of 0.77, the maximum ram-pressure recovery attained with effective water-separating inlet was 77 percent, which is considerably less than attainable with a direct-ram inlet. Continuous heating of the accessory-housing surface would be required for inlets that have a small ice storage space.

  6. Integrated single grating compressor for variable pulse front tilt in simultaneously spatially and temporally focused systems.

    Science.gov (United States)

    Block, Erica; Thomas, Jens; Durfee, Charles; Squier, Jeff

    2014-12-15

    A Ti:Al(3)O(2) multipass chirped pulse amplification system is outfitted with a single-grating, simultaneous spatial and temporal focusing (SSTF) compressor platform. For the first time, this novel design has the ability to easily vary the beam aspect ratio of an SSTF beam, and thus the degree of pulse-front tilt at focus, while maintaining a net zero-dispersion system. Accessible variation of pulse front tilt gives full spatiotemporal control over the intensity distribution at the focus and could lead to better understanding of effects such as nonreciprocal writing and SSTF-material interactions.

  7. Acoustic Feedback and Echo Cancellation Strategies for Multiple-Microphone and Single-Loudspeaker Systems

    DEFF Research Database (Denmark)

    Guo, Meng; Elmedyb, Thomas Bo; Jensen, Søren Holdt

    2011-01-01

    Acoustic feedback/echo cancellation in a multiple-microphone and single-loudspeaker system is often carried out using a cancellation filter for each microphone channel, and the filters are adaptively estimated, independently of each other. In this work, we consider another strategy by estimating...... all the cancellation filters jointly and in this way exploit information from all microphone channels. We determine the statistical system behavior for the joint estimation strategy in terms of the convergence rate and steady-state behavior across time and frequency. We assess if an improved...

  8. Energy loss of the electron system in individual single-walled carbon nanotubes.

    Science.gov (United States)

    Santavicca, Daniel F; Chudow, Joel D; Prober, Daniel E; Purewal, Meninder S; Kim, Philip

    2010-11-10

    We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and hot electron outdiffusion.

  9. Feasibility study to damp power system multi-mode oscillations by using a single FACTS device

    Energy Technology Data Exchange (ETDEWEB)

    Du, W.; Wu, X. [School of Electrical Engineering, Southeast University, Nanjing (China); Wang, H.F. [School of Electronics, Electrical Engineering and Computer Science, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Dunn, R. [University of Bath, Bath (United Kingdom)

    2010-07-15

    To damp power system multi-mode oscillations, the commonly-used method is to arrange multiple decentralized stabilizers, such as PSS (Power System Stabilizer) and FACTS (Flexible AC Transmission Systems) stabilizers. In order to overcome the problem of interactions between stabilizers, coordinated design of multiple decentralized stabilizers has been proposed to simultaneously set parameters of all stabilizers. However, in practice it could be very difficult to implement the coordinated design of multiple stabilizers. This is because those stabilizers are often at different geographical locations in a power system and cross-location simultaneous field tuning of stabilizers' parameters is a tremendous task due to their interactions. Hence this paper proposes a novel scheme of damping power system multi-mode oscillations by using a single FACTS device and presents the results of feasibility study of the proposed scheme. It is demonstrated that multiple stabilizers can be arranged in a single FACTS device to effectively damp power system multi-mode oscillations. Under this scheme, multiple stabilizers are at a same geographical location in the power system and hence their parameters can be tuned simultaneously in coordination in the field. In the paper, three examples of multi-machine power systems installed with a UPFC (Unified Power Flow Controller), a STATCOM (Static Synchronous Compensator)/BESS (Battery Energy Storage System) and a MUPFC (Multiple-terminal UPFC) respectively are presented. Parameters of multiple stabilizers are designed in coordination by using a newly appeared method of optimisation-artificial fish swarm algorithm. Simulation results in the paper are compared with those obtained from applying the conventional scheme of decentralized control involving multiple PSSs. They demonstrate and confirm the feasibility of proposed scheme in the paper. (author)

  10. Subterranean fragmentation of magma during conduit initiation and evolution in the shallow plumbing system of the small-volume Jagged Rocks volcanoes (Hopi Buttes Volcanic Field, Arizona, USA)

    Science.gov (United States)

    Re, Giuseppe; White, James D. L.; Muirhead, James D.; Ort, Michael H.

    2016-08-01

    Monogenetic volcanoes have limited magma supply and lack long-lived sustained magma plumbing systems. They erupt once, often from multiple vents and sometimes over several years, and are rarely or never re-activated. Eruptive behavior is very sensitive to physical processes (e.g., volatile exsolution, magma-water interaction) occurring in the later stages of magma ascent at shallow crustal depths (shapes, dense groundmasses, and composite clasts (loaded and cored). The extent of fragmentation and the formation of subterranean open space controlled the nature of the particles and the architecture and geometry of these conduit structures and their deposits.

  11. Late Cenozoic volcanism, subduction, and extension in the Lassen Region of California, southern Cascade Range

    Science.gov (United States)

    Guffanti, Marianne; Clynne, Michael A.; Smith, James G.; Muffler, L. J. P.; Bullen, Thomas D.

    1990-11-01

    Hundreds of short-lived, small- to moderate-volume, mostly mafic volcanoes occur throughout the Lassen region of NE California and surround five longer-lived, large-volume, intermediate to silicic volcanic centers younger than 3 Ma. Volcanic rocks older than 7 Ma are scarce in the Lassen region. We identify 537 volcanic vents younger than 7 Ma, and we classify these into five age intervals and five compositional categories based on SiO2 content. Maps of vents by age and composition illustrate regionally representative volcanic trends. By 2 Ma, the eastern limit of voicanism had contracted westward toward the late Quaternary arc. Late Quaternary volcanism is concentrated around and north of the silicic Lassen volcanic center. The belt of most recent volcanism (25-0 ka) has been active since at least 2 Ma. Most mafic volcanism is cakalkaline basalt and basaltic andésite. However, lesser volume of low-potassium olivine tholeiite (LKOT), a geochemically distinctive basalt type found in the northern Basin and Range province, also has erupted throughout the Lassen segment of the Cascade arc since the Pliocene. Thus models of the mantle source and tectonic control of LKOT magmatism should be applicable both within and behind the subduction-related arc. Normal faults and linear groups of vents are evidence of widespread crustal extension throughout most of the Lassen region. NNW alignments of these features indicate NNW orientation of maximum horizontal stress (ENE extension), which is similar to the stress regime in the adjacent northwestern Basin and Range and northern Sierra Nevada provinces. The large, long-lived volcanic centers developed just west of a zone of closely spaced NNW trending normal faults. Within that zone of faulting, pervasive ENE extension has precluded growth of large, long-lived crustal magma systems. We interpret the western limit of the zone of NNW trending normal faults as the western boundary of the Basin and Range province where it overlaps

  12. 32-channel time-correlated-single-photon-counting system for high-throughput lifetime imaging.

    Science.gov (United States)

    Peronio, P; Labanca, I; Acconcia, G; Ruggeri, A; Lavdas, A A; Hicks, A A; Pramstaller, P P; Ghioni, M; Rech, I

    2017-08-01

    Time-Correlated Single Photon Counting (TCSPC) is a very efficient technique for measuring weak and fast optical signals, but it is mainly limited by the relatively "long" measurement time. Multichannel systems have been developed in recent years aiming to overcome this limitation by managing several detectors or TCSPC devices in parallel. Nevertheless, if we look at state-of-the-art systems, there is still a strong trade-off between the parallelism level and performance: the higher the number of channels, the poorer the performance. In 2013, we presented a complete and compact 32 × 1 TCSPC system, composed of an array of 32 single-photon avalanche diodes connected to 32 time-to-amplitude converters, which showed that it was possible to overcome the existing trade-off. In this paper, we present an evolution of the previous work that is conceived for high-throughput fluorescence lifetime imaging microscopy. This application can be addressed by the new system thanks to a centralized logic, fast data management and an interface to a microscope. The new conceived hardware structure is presented, as well as the firmware developed to manage the operation of the module. Finally, preliminary results, obtained from the practical application of the technology, are shown to validate the developed system.

  13. 32-channel time-correlated-single-photon-counting system for high-throughput lifetime imaging

    Science.gov (United States)

    Peronio, P.; Labanca, I.; Acconcia, G.; Ruggeri, A.; Lavdas, A. A.; Hicks, A. A.; Pramstaller, P. P.; Ghioni, M.; Rech, I.

    2017-08-01

    Time-Correlated Single Photon Counting (TCSPC) is a very efficient technique for measuring weak and fast optical signals, but it is mainly limited by the relatively "long" measurement time. Multichannel systems have been developed in recent years aiming to overcome this limitation by managing several detectors or TCSPC devices in parallel. Nevertheless, if we look at state-of-the-art systems, there is still a strong trade-off between the parallelism level and performance: the higher the number of channels, the poorer the performance. In 2013, we presented a complete and compact 32 × 1 TCSPC system, composed of an array of 32 single-photon avalanche diodes connected to 32 time-to-amplitude converters, which showed that it was possible to overcome the existing trade-off. In this paper, we present an evolution of the previous work that is conceived for high-throughput fluorescence lifetime imaging microscopy. This application can be addressed by the new system thanks to a centralized logic, fast data management and an interface to a microscope. The new conceived hardware structure is presented, as well as the firmware developed to manage the operation of the module. Finally, preliminary results, obtained from the practical application of the technology, are shown to validate the developed system.

  14. Task-oriented control of Single-Master Multi-Slave Manipulator System

    International Nuclear Information System (INIS)

    Kosuge, Kazuhiro; Ishikawa, Jun; Furuta, Katsuhisa; Hariki, Kazuo; Sakai, Masaru.

    1994-01-01

    A master-slave manipulator system, in general, consists of a master arm manipulated by a human and a slave arm used for real tasks. Some tasks, such as manipulation of a heavy object, etc., require two or more slave arms operated simultaneously. A Single-Master Multi-Slave Manipulator System consists of a master arm with six degrees of freedom and two or more slave arms, each of which has six or more degrees of freedom. In this system, a master arm controls the task-oriented variables using Virtual Internal Model (VIM) based on the concept of 'Task-Oriented Control'. VIM is a reference model driven by sensory information and used to describe the desired relation between the motion of a master arm and task-oriented variables. The motion of slave arms are controlled based on the task oriented variables generated by VIM and tailors the system to meet specific tasks. A single-master multi-slave manipulator system, having two slave arms, is experimentally developed and illustrates the concept. (author)

  15. Simulation Performance of Multiple-Input Multiple-Output Systems Employing Single-Carrier Modulation and Orthogonal Frequency Division Multiplexing

    National Research Council Canada - National Science Library

    Saglam, Halil D

    2004-01-01

    ...) systems utilizing Alamouti-based space-time block coding (STBC) technique. The MIMO communication systems using STBC technique employing both single-carrier modulation and orthogonal frequency division multiplexing (OFDM...

  16. Embedding the dynamics of a single delay system into a feed-forward ring

    Science.gov (United States)

    Klinshov, Vladimir; Shchapin, Dmitry; Yanchuk, Serhiy; Wolfrum, Matthias; D'Huys, Otti; Nekorkin, Vladimir

    2017-10-01

    We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example, we demonstrate how the complex bifurcation scenario of simultaneously emerging multijittering solutions can be transferred from a single oscillator with delayed pulse feedback to multijittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type.

  17. External Periodic Force Control of a Single-Degree-of-Freedom Vibroimpact System

    Directory of Open Access Journals (Sweden)

    Jingyue Wang

    2013-01-01

    Full Text Available A single-degree-of-freedom mechanical model of vibro-impact system is established. Bifurcation and chaos in the system are revealed with the time history diagram, phase trajectory map, and Poincaré map. According to the bifurcation and chaos of the actual vibro-impact system, the paper puts forward external periodic force control strategy. The method of controlling chaos by external periodic force feedback controller is developed to guide chaotic motions towards regular motions. The stability of the control system is also analyzed especially by theory. By selecting appropriate feedback coefficients, the unstable periodic orbits of the original chaotic orbit can be stabilized to the stable periodic orbits. The effectiveness of this control method is verified by numerical simulation.

  18. Installation guidelines for solar heating system, single-family residence at New Castle, Pennsylvania

    Science.gov (United States)

    1980-01-01

    The solar heating system installer guidelines are presented for each subsystem. This single family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: (1) liquid cooled flat plate collectors; (2) water storage tank; (3) passive solar-fired domestic water preheater; (4) electric hot water heater; (5) heat pump with electric backup; (6) solar hot water coil unit; (7) tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; (8) control system; and (9) air-cooled heat purge unit. Information is provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance in the form of written descriptions, schematics, detail drawings, pictures, and manufacturer's component data.

  19. The financial viability of an SOFC cogeneration system in single-family dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Alanne, Kari; Saari, Arto [Department of Civil and Environmental Engineering, Laboratory of Construction Economics and Management, Helsinki University of Technology, P.O. Box 2100, 02015 TKK (Finland); Ugursal, V. Ismet [Department of Mechanical Engineering, University of Victoria, Victoria, BC (Canada); Good, Joel [Department of Environmental Engineering, Dalhousie University, Halifax, Nova Scotia (Canada)

    2006-07-14

    In the near future, fuel cell-based residential micro-CHP systems will compete with traditional methods of energy supply. A micro-CHP system may be considered viable if its incremental capital cost compared to its competitors equals to cumulated savings during a given period of time. A simplified model is developed in this study to estimate the operation of a residential solid oxide fuel cell (SOFC) system. A comparative assessment of the SOFC system vis-a-vis heating systems based on gas, oil and electricity is conducted using the simplified model for a single-family house located in Ottawa and Vancouver. The energy consumption of the house is estimated using the HOT2000 building simulation program. A financial analysis is carried out to evaluate the sensitivity of the maximum allowable capital cost with respect to system sizing, acceptable payback period, energy price and the electricity buyback strategy of an energy utility. Based on the financial analysis, small (1-2kW{sub e}) SOFC systems seem to be feasible in the considered case. The present study shows also that an SOFC system is especially an alternative to heating systems based on oil and electrical furnaces. (author)

  20. Atmospheric dispersion simulations of volcanic gas from Miyake Island by SPEEDI

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Furuno, Akiko; Terada, Hiroaki; Umeyama, Nobuaki; Yamazawa, Hiromi; Chino, Masamichi

    2001-03-01

    Japan Atomic Energy Research Institute is advancing the study for prediction of material circulation in the environment to cope with environmental pollution, based on SPEEDI (System for Prediction of Environmental Emergency Dose Information) and WSPEEDI (Worldwide version of SPEEDI), which are originally developed aiming at real-time prediction of atmospheric dispersion of radioactive substances accidentally released from nuclear facility. As a part of this study, dispersion simulation of volcanic gas erupted from Miyake Island is put into practice. After the stench incident at the west Kanto District on 28 August 2000 caused by volcanic gas from Miyake Island, the following simulations dealing with atmospheric dispersion of volcanic gas from Miyake Island have been carried out. (1) Retrospective simulation to analyze examine the mechanism of the transport of high concentration volcanic gas to the west Kanto District on 28 August and to estimate the release amount of volcanic gas. (2) Retrospective simulation to analyze the mechanism of the transport of volcanic gas to Tokai and Kansai districts in a case of stench incident on 13 September. (3) Automated real-time simulation from the acquisition of meteorological data to the output of figures for operational prediction of the transport of volcanic gas to Tokai and Kanto districts. This report describes the details of these studies. (author)

  1. Comparison of digital intraoral scanners by single-image capture system and full-color movie system.

    Science.gov (United States)

    Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi

    2017-01-01

    The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.

  2. Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes

    Directory of Open Access Journals (Sweden)

    Euripides P. Kantzas

    2011-06-01

    Full Text Available Measurements of volcanic SO2 emission rates have been the mainstay of remote-sensing volcanic gas geochemistry for almost four decades, and they have contributed significantly to our understanding of volcanic systems and their impact upon the atmosphere. The last ten years have brought step-change improvements in the instrumentation applied to these observations, which began with the application of miniature ultraviolet spectrometers that were deployed in scanning and traverse configurations, with differential optical absorption spectroscopy evaluation routines. This study catalogs the more recent empirical developments, including: ultraviolet cameras; wide-angle field-of-view differential optical absorption spectroscopy systems; advances in scanning operations, including tomography; and improved understanding of errors, in particular concerning radiative transfer. Furthermore, the outcomes of field deployments of sensors during the last decade are documented, with respect to improving our understanding of volcanic dynamics and degassing into the atmosphere.

  3. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

    Science.gov (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.

    2017-01-01

    emissions. Initial response plans developed by county and state agencies in response to the volcanic unrest began with “The Mono County Volcano Contingency Plan” and “Plan Caldera” by the California Office of Emergency Services in 1982–84. They subsequently became integrated in the regularly updated County Emergency Operation Plan. The alert level system employed by the USGS also evolved from the three-level “Notice-Watch-Warning” system of the early 1980s through a five level color-code to the current “Normal-Advisory-Watch-Warning” ground-based system in conjunction with the international 4-level aviation color-code for volcanic ash hazards. Field trips led by the scientists proved to be a particularly effective means of acquainting local residents and officials with the geologically active environment in which they reside. Relative caldera quiescence from 2000 through 2011 required continued efforts to remind an evolving population that the hazards posed by the 1980–2000 unrest persisted. Renewed uplift of the resurgent dome from 2011 to 2014 was accompanied by an increase in low-level earthquake activity in the caldera and beneath Mammoth Mountain and continues through May 2016. As unrest levels continue to wax and wane, so will the communication challenges.

  4. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the

  5. Design architecture for multi-zone HVAC control systems from existing single-zone systems using wireless sensor networks

    Science.gov (United States)

    Redfern, Andrew; Koplow, Michael; Wright, Paul

    2007-01-01

    Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.

  6. Selection rules for single-chain-magnet behaviour in non-collinear Ising systems

    International Nuclear Information System (INIS)

    Vindigni, Alessandro; Pini, Maria Gloria

    2009-01-01

    The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.

  7. A throttle-less single-rod hydraulic cylinder positioning system: Design and experimental evaluation

    Directory of Open Access Journals (Sweden)

    Ehsan Jalayeri

    2015-05-01

    Full Text Available Modern industrial tote dumpers and lifters are equipped with long-stroke single-rod hydraulic cylinders. For years, valve-controlled cylinders have been used in tote dumpers. Valve-controlled actuators are highly inefficient due to huge power losses in throttling valves. They also need a cooling system to remove the wasted heat energy from the hydraulic oil. This article introduces a low-cost throttle-less hydraulic circuit to control the single-rod cylinder of a tote dumper. The system consists of a motor-driven gear pump, an On/Off solenoid valve, to redirect the differential flow of the single-rod hydraulic cylinder and a counterbalance valve, which makes the circuit controllable for assisting loads and keeps the load in position with no effort from the hydraulic pump. Experimental results demonstrate the performance of the circuit. A test rig has been designed to simulate a lifting load. The energy efficiency of the circuit is determined by comparing a valve-controlled circuit with the proposed circuit. The proposed circuit composition is not only efficient and simple but is also accurate in terms of position response using a proportional controller. The circuit is easy to control since the only needed measurement is the displacement of the actuator. The circuit, however, does not recycle energy.

  8. Clinical application of single-tooth replacement with ankylos implant system

    International Nuclear Information System (INIS)

    Yang Xu; Liu Xue; Zhang Heng; Deng Yan; Guo Zhaozhong; Zhang Yufeng

    2011-01-01

    Objective: To evaluate the clinical effects of Ankylos implant system to restore the loss of single-tooth. Methods: 90 cases with loss of single-tooth were selected and treated with routinely two-stage surgery. When the patients presented with deficient alveolar ridge, guided bone regeneration (GBR), osteotome sinus floor elevation, lateral antrostomy surgery with simultaneous placement of implant were applied. They were restored with platinum ceramic crown. All the implants were followed up, and the records were kept about stability of the implant and abutment, the status of surrounding soft tissue, sealability of implant abutment junction and the marginal bone lossing through X-ray checking,and satisfaction of the patients to mastication and aspect of the restorations. The follow-up time was 1-2.5 years. Results: Among the cases,one case had peri-implant inflammation, and one case had porcelain dropped. No loosening occurred in the other implants and abuments. Implant abutment junction was sealed well. The marginal bone loss 1 year after final restoration was less than 1 mm. Soft tissue surrounding implants was healthy. The satisfaction rate was 98.9% (89/90). According to standard of implant success, 88 cases were successful, the 2.5-year cumulative success rate was 97.8%, 2 cases failed, and the failure rate was 2.2 %. Conclusion: A satisfactory treatment effects could be gotten by using Ankylos implant system to restore the loss of single-tooth. (authors)

  9. Selection rules for single-chain-magnet behaviour in non-collinear Ising systems

    Energy Technology Data Exchange (ETDEWEB)

    Vindigni, Alessandro [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Pini, Maria Gloria [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)], E-mail: vindigni@phys.ethz.ch

    2009-06-10

    The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.

  10. NONLINEAR SYSTEM MODELING USING SINGLE NEURON CASCADED NEURAL NETWORK FOR REAL-TIME APPLICATIONS

    Directory of Open Access Journals (Sweden)

    S. Himavathi

    2012-04-01

    Full Text Available Neural Networks (NN have proved its efficacy for nonlinear system modeling. NN based controllers and estimators for nonlinear systems provide promising alternatives to the conventional counterpart. However, NN models have to meet the stringent requirements on execution time for its effective use in real time applications. This requires the NN model to be structurally compact and computationally less complex. In this paper a parametric method of analysis is adopted to determine the compact and faster NN model among various neural network architectures. This work proves through analysis and examples that the Single Neuron Cascaded (SNC architecture is distinct in providing compact and simpler models requiring lower execution time. The unique structural growth of SNC architecture enables automation in design. The SNC Network is shown to combine the advantages of both single and multilayer neural network architectures. Extensive analysis on selected architectures and their models for four benchmark nonlinear theoretical plants and a practical application are tested. A performance comparison of the NN models is presented to demonstrate the superiority of the single neuron cascaded architecture for online real time applications.

  11. Regeneration and reuse of a seaweed-based biosorbent in single and multi-metal systems