WorldWideScience

Sample records for single unstained viruses

  1. Whole slide imaging of unstained tissue using lensfree microscopy

    Morel, Sophie Nhu An; Hervé, Lionel; Bordy, Thomas; Cioni, Olivier; Delon, Antoine; Fromentin, Catherine; Dinten, Jean-Marc; Allier, Cédric

    2016-04-01

    Pathologist examination of tissue slides provides insightful information about a patient's disease. Traditional analysis of tissue slides is performed under a binocular microscope, which requires staining of the sample and delays the examination. We present a simple cost-effective lensfree imaging method to record 2-4μm resolution wide-field (10 mm2 to 6 cm2) images of unstained tissue slides. The sample processing time is reduced as there is no need for staining. A wide field of view (10 mm2) lensfree hologram is recorded in a single shot and the image is reconstructed in 2s providing a very fast acquisition chain. The acquisition is multispectral, i.e. multiple holograms are recorded simultaneously at three different wavelengths, and a dedicated holographic reconstruction algorithm is used to retrieve both amplitude and phase. Whole tissue slides imaging is obtained by recording 130 holograms with X-Y translation stages and by computing the mosaic of a 25 x 25 mm2 reconstructed image. The reconstructed phase provides a phase-contrast-like image of the unstained specimen, revealing structures of healthy and diseased tissue. Slides from various organs can be reconstructed, e.g. lung, colon, ganglion, etc. To our knowledge, our method is the first technique that enables fast wide-field lensfree imaging of such unlabeled dense samples. This technique is much cheaper and compact than a conventional phase contrast microscope and could be made portable. In sum, we present a new methodology that could quickly provide useful information when a rapid diagnosis is needed, such as tumor margin identification on frozen section biopsies during surgery.

  2. Single virus genomics: a new tool for virus discovery.

    Lisa Zeigler Allen

    Full Text Available Whole genome amplification and sequencing of single microbial cells has significantly influenced genomics and microbial ecology by facilitating direct recovery of reference genome data. However, viral genomics continues to suffer due to difficulties related to the isolation and characterization of uncultivated viruses. We report here on a new approach called 'Single Virus Genomics', which enabled the isolation and complete genome sequencing of the first single virus particle. A mixed assemblage comprised of two known viruses; E. coli bacteriophages lambda and T4, were sorted using flow cytometric methods and subsequently immobilized in an agarose matrix. Genome amplification was then achieved in situ via multiple displacement amplification (MDA. The complete lambda phage genome was recovered with an average depth of coverage of approximately 437X. The isolation and genome sequencing of uncultivated viruses using Single Virus Genomics approaches will enable researchers to address questions about viral diversity, evolution, adaptation and ecology that were previously unattainable.

  3. Investigation of autofocus algorithms for brightfield microscopy of unstained cells

    Wu, Shu Yu; Dugan, Nazim; Hennelly, Bryan M.

    2014-05-01

    In the past decade there has been significant interest in image processing for brightfield cell microscopy. Much of the previous research on image processing for microscopy has focused on fluorescence microscopy, including cell counting, cell tracking, cell segmentation and autofocusing. Fluorescence microscopy provides functional image information that involves the use of labels in the form of chemical stains or dyes. For some applications, where the biochemical integrity of the cell is required to remain unchanged so that sensitive chemical testing can later be applied, it is necessary to avoid staining. For this reason the challenge of processing images of unstained cells has become a topic of increasing attention. These cells are often effectively transparent and appear to have a homogenous intensity profile when they are in focus. Bright field microscopy is the most universally available and most widely used form of optical microscopy and for this reason we are interested in investigating image processing of unstained cells recorded using a standard bright field microscope. In this paper we investigate the application of a range of different autofocus metrics applied to unstained bladder cancer cell lines using a standard inverted bright field microscope with microscope objectives that have high magnification and numerical aperture. We present a number of conclusions on the optimum metrics and the manner in which they should be applied for this application.

  4. Single Assay Detection of Acute Bee Paralysis Virus, Kashmir Bee Virus and Israeli Acute Paralysis Virus

    Francis, Roy Mathew; Kryger, Per

    2012-01-01

    A new RT-PCR primer pair designed to identify Acute Bee Paralysis Virus (ABPV), Kashmir Bee Virus (KBV) or Israeli Acute Bee Paralysis Virus (IAPV) of honey bees (Apis mellifera L.) in a single assay is described. These primers are used to screen samples for ABPV, KBV, or IAPV in a single RT-PCR ......-PCR reaction saving time and money. The primers are located in the predicted overlapping gene (pog/ORFX) which is highly conserved across ABPV, KBV, IAPV and other dicistroviruses of social insects. This study has also identified the first case of IAPV in Denmark....

  5. F F1-ATPase as biosensor to detect single virus

    Liu, XiaoLong; Zhang, Yun; Yue, JiaChang; Jiang, PeiDong; Zhang, ZhenXi

    2006-01-01

    F F 1 -ATPase within chromatophore was constructed as a biosensor (immuno-rotary biosensor) for the purpose of capturing single virus. Capture of virus was based on antibody-antigen reaction. The detection of virus based on proton flux change driven by ATP-synthesis of F F 1 -ATPase, which was indicated by F1300, was directly observed by a fluorescence microscope. The results demonstrate that the biosensor loading of virus particles has remarkable signal-to-noise ratio (3.8:1) compared to its control at single molecular level, and will be convenient, quick, and even super-sensitive for detecting virus particles

  6. Wavelet-SVM classification and automatic recognition of unstained viable cells in phase-contrast microscopy

    Skoczylas, M.; Rakowski, W.; Cherubini, R.; Gerardi, S.

    2011-01-01

    Irradiation of individual cultured mammalian cells with a pre-selected number of ions down to one ion per single cell is a useful experimental approach to investigating the low-dose ionising radiation exposure effects and thus contributing to a more realistic human cancer risk assessment. One of the crucial tasks of all the microbeam apparatuses is the visualisation, recognition and positioning of every individual cell of the cell culture to be irradiated. Before irradiations, mammalian cells (specifically, Chinese hamster V79 cells) are seeded and grown as a monolayer on a mylar surface used as the bottom of a specially designed holder. Manual recognition of unstained cells in a bright-field microscope is a time-consuming procedure; therefore, a parallel algorithm has been conceived and developed in order to speed up this irradiation protocol step. Many technical problems have been faced to overcome the complexity of the images to be analysed: cell discrimination in an inhomogeneous background, among many disturbing bodies mainly due to the mylar surface roughness and culture medium bodies; cell shapes, depending on how they attach to the surface, which phase of the cell cycle they are in and on cell density. Preliminary results of the recognition and classification based on a method of wavelet kernels for the support vector machine classifier will be presented. (authors)

  7. Microcavity single virus detection and sizing with molecular sensitivity

    Dantham, V. R.; Holler, S.; Kolchenko, V.; Wan, Z.; Arnold, S.

    2013-02-01

    We report the label-free detection and sizing of the smallest individual RNA virus, MS2 by a spherical microcavity. Mass of this virus is ~6 ag and produces a theoretical resonance shift ~0.25 fm upon adsorbing an individual virus at the equator of the bare microcavity, which is well below the r.m.s background noise of 2 fm. However, detection was accomplished with ease (S/N = 8, Q = 4x105) using a single dipole stimulated plasmonic-nanoshell as a microcavity wavelength shift enhancer. Analytical expressions based on the "reactive sensing principle" are developed to extract the radius of the virus from the measured signals. Estimated limit of detection for these experiments was ~0.4 ag or 240 kDa below the size of all known viruses, largest globular and elongated proteins [Phosphofructokinase (345 kDa) and Fibrinogen (390 kDa), respectively].

  8. Rational Variety Mapping for Contrast-Enhanced Nonlinear Unsupervised Segmentation of Multispectral Images of Unstained Specimen

    Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej

    2011-01-01

    A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. PMID:21708116

  9. Cowpea viruses: Effect of single and mixed infections on symptomatology and virus concentration

    Nsa Imade Y

    2007-09-01

    Full Text Available Abstract Natural multiple viral infections of cultivated cowpeas have been reported in Nigeria. In this study, three Nigerian commercial cowpea cultivars ("Olo 11", "Oloyin" and "White" and two lines from the IITA (IT86D- 719 and TVU 76 were mechanically inoculated with Cowpea aphid-borne mosaic virus (CABMV, Bean southern mosaic virus (SBMV and Cowpea mottle virus (CMeV singly, as well as in all possible combinations at 10, 20 and 30 days after planting (DAP. Samples of leaves or stems were collected at 10, 20 and 30 days after inoculation (DAI and analyzed for relative virus concentration by Enzyme-Linked Immunosrbent Assay. All the cultivars and lines {CVS/L} were susceptible to the viruses but the commercial CVS showed more severe symptoms and had relatively higher viral concentration. In single virus infections, CABMV which induced the most severe symptoms had absorbance values (at 405 nm of 0.11 to 0.46 while SBMV and CMeV which induced moderate symptoms had virus titre of 0.74 to 1.99 and 0.11 to 0.90 respectively. Plants inoculated 10 DAP had significantly higher virus concentration than those inoculated 30 DAP. In mixed infections involving CABMV (10 DAP apical necrosis and death were observed in commercial cultivars "Olo 11" and "White". Enhancement of CMeV titers were observed in plants infected with CMeV + CABMV. Multiple viral infections of cowpeas may result in complete yield loss, hence, the availability of seeds of cultivars with a high level of multiple virus resistance is recommended as a means of control.

  10. Viruses and Tetraspanins: Lessons from Single Molecule Approaches

    Dahmane, Selma; Rubinstein, Eric; Milhiet, Pierre-Emmanuel

    2014-01-01

    Tetraspanins are four-span membrane proteins that are widely distributed in multi-cellular organisms and involved in several infectious diseases. They have the unique property to form a network of protein-protein interaction within the plasma membrane, due to the lateral associations with one another and with other membrane proteins. Tracking tetraspanins at the single molecule level using fluorescence microscopy has revealed the membrane behavior of the tetraspanins CD9 and CD81 in epithelial cell lines, providing a first dynamic view of this network. Single molecule tracking highlighted that these 2 proteins can freely diffuse within the plasma membrane but can also be trapped, permanently or transiently, in tetraspanin-enriched areas. More recently, a similar strategy has been used to investigate tetraspanin membrane behavior in the context of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infection. In this review we summarize the main results emphasizing the relationship in terms of membrane partitioning between tetraspanins, some of their partners such as Claudin-1 and EWI-2, and viral proteins during infection. These results will be analyzed in the context of other membrane microdomains, stressing the difference between raft and tetraspanin-enriched microdomains, but also in comparison with virus diffusion at the cell surface. New advanced single molecule techniques that could help to further explore tetraspanin assemblies will be also discussed. PMID:24800676

  11. Reconstructing an icosahedral virus from single-particle diffraction experiments

    Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.

    2011-08-01

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  12. A novel single virus infection system reveals that influenza virus preferentially infects cells in g1 phase.

    Ryuta Ueda

    Full Text Available BACKGROUND: Influenza virus attaches to sialic acid residues on the surface of host cells via the hemagglutinin (HA, a glycoprotein expressed on the viral envelope, and enters into the cytoplasm by receptor-mediated endocytosis. The viral genome is released and transported in to the nucleus, where transcription and replication take place. However, cellular factors affecting the influenza virus infection such as the cell cycle remain uncharacterized. METHODS/RESULTS: To resolve the influence of cell cycle on influenza virus infection, we performed a single-virus infection analysis using optical tweezers. Using this newly developed single-virus infection system, the fluorescence-labeled influenza virus was trapped on a microchip using a laser (1064 nm at 0.6 W, transported, and released onto individual H292 human lung epithelial cells. Interestingly, the influenza virus attached selectively to cells in the G1-phase. To clarify the molecular differences between cells in G1- and S/G2/M-phase, we performed several physical and chemical assays. Results indicated that: 1 the membranes of cells in G1-phase contained greater amounts of sialic acids (glycoproteins than the membranes of cells in S/G2/M-phase; 2 the membrane stiffness of cells in S/G2/M-phase is more rigid than those in G1-phase by measurement using optical tweezers; and 3 S/G2/M-phase cells contained higher content of Gb3, Gb4 and GlcCer than G1-phase cells by an assay for lipid composition. CONCLUSIONS: A novel single-virus infection system was developed to characterize the difference in influenza virus susceptibility between G1- and S/G2/M-phase cells. Differences in virus binding specificity were associated with alterations in the lipid composition, sialic acid content, and membrane stiffness. This single-virus infection system will be useful for studying the infection mechanisms of other viruses.

  13. Localization and force analysis at the single virus particle level using atomic force microscopy

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian; Hsieh, Chung-Fan; Tseng, You-Chen; Lin, Shiming

    2012-01-01

    Highlights: ► Localization of single virus particle. ► Force measurements. ► Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  14. Toward unstained cytology and complete blood counts at the point of care (Conference Presentation)

    Zuluaga, Andres F.; Pierce, Mark C.; MacAulay, Calum E.

    2017-02-01

    Cytology tests, whether performed on body fluids, aspirates, or scrapings are commonly used to detect, diagnose, and monitor a wide variety of health conditions. Complete blood counts (CBCs) quantify the number of red and white blood cells in a blood volume, as well as the different types of white blood cells. There is a critical unmet need for an instrument that can perform CBCs at the point of care (POC), and there is currently no product in the US that can perform this test at the bedside. We have developed a system that is capable of tomographic images with sub-cellular resolution with consumer-grade broadband (LED) sources and CMOS detectors suitable for POC implementation of CBC tests. The systems consists of cascaded static Michelson and Sagnac interferometers that map phase (encoding depth) and a transverse spatial dimension onto a two-dimensional output plane. Our approach requires a 5 microliter sample, can be performed in 5 minutes or less, and does not require staining or other processing as it relies on intrinsic contrast. We will show results directly imaging and differentiating unstained blood cells using supercontinuum fiber lasers and LEDs as sources and CMOS cameras as sensors. We will also lay out the follow up steps needed, including image segmentation, analysis and classification, to verify performance and advance toward CBCs that can be performed bedside and do not require CLIA-certified laboratories.

  15. Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct.

    Lin, Ching-Yi; Ku, Hsin-Mei; Chiang, Yi-Hua; Ho, Hsiu-Yin; Yu, Tsong-Ann; Jan, Fuh-Jyh

    2012-10-01

    Watermelon, an important fruit crop worldwide, is prone to attack by several viruses that often results in destructive yield loss. To develop a transgenic watermelon resistant to multiple virus infection, a single chimeric transgene comprising a silencer DNA from the partial N gene of Watermelon silver mottle virus (WSMoV) fused to the partial coat protein (CP) gene sequences of Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV) and Watermelon mosaic virus (WMV) was constructed and transformed into watermelon (cv. Feeling) via Agrobacterium-mediated transformation. Single or multiple transgene copies randomly inserted into various locations in the genome were confirmed by Southern blot analysis. Transgenic watermelon R(0) plants were individually challenged with CMV, CGMMV or WMV, or with a mixture of these three viruses for resistance evaluation. Two lines were identified to exhibit resistance to CMV, CGMMV, WMV individually, and a mixed inoculation of the three viruses. The R(1) progeny of the two resistant R(0) lines showed resistance to CMV and WMV, but not to CGMMV. Low level accumulation of transgene transcripts in resistant plants and small interfering (si) RNAs specific to CMV and WMV were readily detected in the resistant R(1) plants by northern blot analysis, indicating that the resistance was established via RNA-mediated post-transcriptional gene silencing (PTGS). Loss of the CGMMV CP-transgene fragment in R1 progeny might be the reason for the failure to resistant CGMMV infection, as shown by the absence of a hybridization signal and no detectable siRNA specific to CGMMV in Southern and northern blot analyses. In summary, this study demonstrated that fusion of different viral CP gene fragments in transgenic watermelon contributed to multiple virus resistance via PTGS. The construct and resistant watermelon lines developed in this study could be used in a watermelon breeding program for resistance to multiple viruses.

  16. Single-Domain Antibodies as Tools to Perturb and Study RNA Viruses

    Hanke, Leo

    2017-01-01

    In this thesis, I describe the generation and characterization of alpaca-derived, antiviral, single-domain antibody fragments (VHHs). The antiviral targets of the described VHHs are the nuclear proteins of influenza A virus (IAV) and vesicular stomatitis virus (VSV). The described VHHs protect cells

  17. Detecting the Presence of Nora Virus in "Drosophila" Utilizing Single Fly RT-PCR

    Munn, Bethany; Ericson, Brad; Carlson, Darby J.; Carlson, Kimberly A.

    2015-01-01

    A single fly RT-PCR protocol has recently been developed to detect the presence of the persistent, horizontally transmitted Nora virus in "Drosophila." Wild-caught flies from Ohio were tested for the presence of the virus, with nearly one-fifth testing positive. The investigation presented can serve as an ideal project for biology…

  18. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses

    Simon Roux

    2016-12-01

    Full Text Available Background Viruses strongly influence microbial population dynamics and ecosystem functions. However, our ability to quantitatively evaluate those viral impacts is limited to the few cultivated viruses and double-stranded DNA (dsDNA viral genomes captured in quantitative viral metagenomes (viromes. This leaves the ecology of non-dsDNA viruses nearly unknown, including single-stranded DNA (ssDNA viruses that have been frequently observed in viromes, but not quantified due to amplification biases in sequencing library preparations (Multiple Displacement Amplification, Linker Amplification or Tagmentation. Methods Here we designed mock viral communities including both ssDNA and dsDNA viruses to evaluate the capability of a sequencing library preparation approach including an Adaptase step prior to Linker Amplification for quantitative amplification of both dsDNA and ssDNA templates. We then surveyed aquatic samples to provide first estimates of the abundance of ssDNA viruses. Results Mock community experiments confirmed the biased nature of existing library preparation methods for ssDNA templates (either largely enriched or selected against and showed that the protocol using Adaptase plus Linker Amplification yielded viromes that were ±1.8-fold quantitative for ssDNA and dsDNA viruses. Application of this protocol to community virus DNA from three freshwater and three marine samples revealed that ssDNA viruses as a whole represent only a minor fraction (<5% of DNA virus communities, though individual ssDNA genomes, both eukaryote-infecting Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA viruses and bacteriophages from the Microviridae family, can be among the most abundant viral genomes in a sample. Discussion Together these findings provide empirical data for a new virome library preparation protocol, and a first estimate of ssDNA virus abundance in aquatic systems.

  19. Localization and force analysis at the single virus particle level using atomic force microscopy

    Liu, Chih-Hao [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Horng, Jim-Tong [Department of Biochemistry, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Chang, Jeng-Shian [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Hsieh, Chung-Fan [Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Tseng, You-Chen [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Lin, Shiming, E-mail: til@ntu.edu.tw [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Center for Optoelectronic Biomedicine, College of Medicine, Nation Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  20. A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage.

    Shan, Chao; Muruato, Antonio E; Jagger, Brett W; Richner, Justin; Nunes, Bruno T D; Medeiros, Daniele B A; Xie, Xuping; Nunes, Jannyce G C; Morabito, Kaitlyn M; Kong, Wing-Pui; Pierson, Theodore C; Barrett, Alan D; Weaver, Scott C; Rossi, Shannan L; Vasconcelos, Pedro F C; Graham, Barney S; Diamond, Michael S; Shi, Pei-Yong

    2017-09-22

    Zika virus infection during pregnancy can cause congenital abnormities or fetal demise. The persistence of Zika virus in the male reproductive system poses a risk of sexual transmission. Here we demonstrate that live-attenuated Zika virus vaccine candidates containing deletions in the 3' untranslated region of the Zika virus genome (ZIKV-3'UTR-LAV) prevent viral transmission during pregnancy and testis damage in mice, as well as infection of nonhuman primates. After a single-dose vaccination, pregnant mice challenged with Zika virus at embryonic day 6 and evaluated at embryonic day 13 show markedly diminished levels of viral RNA in maternal, placental, and fetal tissues. Vaccinated male mice challenged with Zika virus were protected against testis infection, injury, and oligospermia. A single immunization of rhesus macaques elicited a rapid and robust antibody response, conferring complete protection upon challenge. Furthermore, the ZIKV-3'UTR-LAV vaccine candidates have a desirable safety profile. These results suggest that further development of ZIKV-3'UTR-LAV is warranted for humans.Zika virus infection can result in congenital disorders and cause disease in adults, and there is currently no approved vaccine. Here Shan et al. show that a single dose of a live-attenuated Zika vaccine prevents infection, testis damage and transmission to the fetus during pregnancy in different animal models.

  1. Imaging and manipulation of single viruses by atomic force microscopy

    Baclayon, M.; Wuite, G. J. L.; Roos, W. H.

    2010-01-01

    The recent developments in virus research and the application of functional viral particles in nanotechnology and medicine rely on sophisticated imaging and manipulation techniques at nanometre resolution in liquid, air and vacuum. Atomic force microscopy (AFM) is a tool that combines these

  2. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection.

    Remy Froissart

    2005-03-01

    Full Text Available Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment-based on data on the timing of coat protein detection-the per base and replication cycle recombination rate was on the order of 2 x 10(-5 to 4 x 10(-5. This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus.

  3. Single-virus tracking approach to reveal the interaction of Dengue virus with autophagy during the early stage of infection

    Chu, Li-Wei; Huang, Yi-Lung; Lee, Jin-Hui; Huang, Long-Ying; Chen, Wei-Jun; Lin, Ya-Hsuan; Chen, Jyun-Yu; Xiang, Rui; Lee, Chau-Hwang; Ping, Yueh-Hsin

    2014-01-01

    Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.

  4. Ammonia disinfection of hatchery waste for elimination of single-stranded RNA viruses.

    Emmoth, Eva; Ottoson, Jakob; Albihn, Ann; Belák, Sándor; Vinnerås, Björn

    2011-06-01

    Hatchery waste, an animal by-product of the poultry industry, needs sanitation treatment before further use as fertilizer or as a substrate in biogas or composting plants, owing to the potential presence of opportunistic pathogens, including zoonotic viruses. Effective sanitation is also important in viral epizootic outbreaks and as a routine, ensuring high hygiene standards on farms. This study examined the use of ammonia at different concentrations and temperatures to disinfect hatchery waste. Inactivation kinetics of high-pathogenic avian influenza virus H7N1 and low-pathogenic avian influenza virus H5N3, as representatives of notifiable avian viral diseases, were determined in spiked hatchery waste. Bovine parainfluenza virus type 3, feline coronavirus, and feline calicivirus were used as models for other important avian pathogens, such as Newcastle disease virus, infectious bronchitis virus, and avian hepatitis E virus. Bacteriophage MS2 was also monitored as a stable indicator. Coronavirus was the most sensitive virus, with decimal reduction (D) values of 1.2 and 0.63 h after addition of 0.5% (wt/wt) ammonia at 14 and 25°C, respectively. Under similar conditions, high-pathogenic avian influenza H7N1 was the most resistant, with D values of 3.0 and 1.4 h. MS2 was more resistant than the viruses to all treatments and proved to be a suitable indicator of viral inactivation. The results indicate that ammonia treatment of hatchery waste is efficient in inactivating enveloped and naked single-stranded RNA viruses. Based on the D values and confidence intervals obtained, guidelines for treatment were proposed, and one was successfully validated at full scale at a hatchery, with MS2 added to hatchery waste.

  5. Elucidation of hepatitis C virus transmission and early diversification by single genome sequencing.

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Blair, Lily M; Giorgi, Elena E; Parrish, Erica H; Learn, Gerald H; Hraber, Peter; Goepfert, Paul A; Saag, Michael S; Denny, Thomas N; Haynes, Barton F; Hahn, Beatrice H; Ribeiro, Ruy M; Perelson, Alan S; Korber, Bette T; Bhattacharya, Tanmoy; Shaw, George M

    2012-01-01

    A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures.

  6. Diffraction-unlimited optical imaging of unstained living cells in liquid by electron beam scanning of luminescent environmental cells.

    Miyazaki, Hideki T; Kasaya, Takeshi; Takemura, Taro; Hanagata, Nobutaka; Yasuda, Takeshi; Miyazaki, Hiroshi

    2013-11-18

    An environmental cell with a 50-nm-thick cathodoluminescent window was attached to a scanning electron microscope, and diffraction-unlimited near-field optical imaging of unstained living human lung epithelial cells in liquid was demonstrated. Electrons with energies as low as 0.8 - 1.2 kV are sufficiently blocked by the window without damaging the specimens, and form a sub-wavelength-sized illumination light source. A super-resolved optical image of the specimen adhered to the opposite window surface was acquired by a photomultiplier tube placed below. The cells after the observation were proved to stay alive. The image was formed by enhanced dipole radiation or energy transfer, and features as small as 62 nm were resolved.

  7. A virus-based single-enzyme nanoreactor

    Comellas Aragones, M.; Engelkamp, H.; Claessen, V.I.; Sommerdijk, N.A.J.M.; Rowan, A.E.; Christianen, P.C.M.; Maan, J.C.; Verduin, B.J.M.; Cornelissen, J.J.L.M.; Nolte, R.J.M.

    2007-01-01

    Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties. To this end, enzymes have been chemically or

  8. Long-Term Single-Dose Efficacy of a Vesicular Stomatitis Virus-Based Andes Virus Vaccine in Syrian Hamsters

    Joseph Prescott

    2014-01-01

    Full Text Available Andes virus (ANDV is highly pathogenic in humans and is the primary etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in South America. Case-fatality rates are as high as 50% and there are no approved vaccines or specific therapies for infection. Our laboratory has recently developed a replication-competent recombinant vesicular stomatitis virus (VSV-based vaccine that expressed the glycoproteins of Andes virus in place of the native VSV glycoprotein (G. This vaccine is highly efficacious in the Syrian hamster model of HCPS when given 28 days before challenge with ANDV, or when given around the time of challenge (peri-exposure, and even protects when administered post-exposure. Herein, we sought to test the durability of the immune response to a single dose of this vaccine in Syrian hamsters. This vaccine was efficacious in hamsters challenged intranasally with ANDV 6 months after vaccination (p = 0.025, but animals were not significantly protected following 1 year of vaccination (p = 0.090. The decrease in protection correlated with a reduction of measurable neutralizing antibody responses, and suggests that a more robust vaccination schedule might be required to provide long-term immunity.

  9. Detecting single viruses and nanoparticles using whispering gallery microlasers.

    He, Lina; Ozdemir, Sahin Kaya; Zhu, Jiangang; Kim, Woosung; Yang, Lan

    2011-06-26

    There is a strong demand for portable systems that can detect and characterize individual pathogens and other nanoscale objects without the use of labels, for applications in human health, homeland security, environmental monitoring and diagnostics. However, most nanoscale objects of interest have low polarizabilities due to their small size and low refractive index contrast with the surrounding medium. This leads to weak light-matter interactions, and thus makes the label-free detection of single nanoparticles very difficult. Micro- and nano-photonic devices have emerged as highly sensitive platforms for such applications, because the combination of high quality factor Q and small mode volume V leads to significantly enhanced light-matter interactions. For example, whispering gallery mode microresonators have been used to detect and characterize single influenza virions and polystyrene nanoparticles with a radius of 30 nm (ref. 12) by measuring in the transmission spectrum either the resonance shift or mode splitting induced by the nanoscale objects. Increasing Q leads to a narrower resonance linewidth, which makes it possible to resolve smaller changes in the transmission spectrum, and thus leads to improved performance. Here, we report a whispering gallery mode microlaser-based real-time and label-free detection method that can detect individual 15-nm-radius polystyrene nanoparticles, 10-nm gold nanoparticles and influenza A virions in air, and 30 nm polystyrene nanoparticles in water. Our approach relies on measuring changes in the beat note that is produced when an ultra-narrow emission line from a whispering gallery mode microlaser is split into two modes by a nanoscale object, and these two modes then interfere. The ultimate detection limit is set by the laser linewidth, which can be made much narrower than the resonance linewidth of any passive resonator. This means that microlaser sensors have the potential to detect objects that are too small to be

  10. The Antiviral Mechanism of an Influenza A Virus Nucleoprotein-Specific Single-Domain Antibody Fragment

    Hanke, Leo; Knockenhauer, Kevin E.; Brewer, R. Camille; van Diest, Eline; Schmidt, Florian I.; Schwartz, Thomas U.; Ploegh, Hidde L. (Whitehead); (MIT)

    2016-12-13

    Alpaca-derived single-domain antibody fragments (VHHs) that target the influenza A virus nucleoprotein (NP) can protect cells from infection when expressed in the cytosol. We found that one such VHH, αNP-VHH1, exhibits antiviral activity similar to that of Mx proteins by blocking nuclear import of incoming viral ribonucleoproteins (vRNPs) and viral transcription and replication in the nucleus. We determined a 3.2-Å crystal structure of αNP-VHH1 in complex with influenza A virus NP. The VHH binds to a nonconserved region on the body domain of NP, which has been associated with binding to host factors and serves as a determinant of host range. Several of the NP/VHH interface residues determine sensitivity of NP to antiviral Mx GTPases. The structure of the NP/αNP-VHH1 complex affords a plausible explanation for the inhibitory properties of the VHH and suggests a rationale for the antiviral properties of Mx proteins. Such knowledge can be leveraged for much-needed novel antiviral strategies.

    IMPORTANCEInfluenza virus strains can rapidly escape from protection afforded by seasonal vaccines or acquire resistance to available drugs. Additional ways to interfere with the virus life cycle are therefore urgently needed. The influenza virus nucleoprotein is one promising target for antiviral interventions. We have previously isolated alpaca-derived single-domain antibody fragments (VHHs) that protect cells from influenza virus infection if expressed intracellularly. We show here that one such VHH exhibits antiviral activities similar to those of proteins of the cellular antiviral defense (Mx proteins). We determined the three-dimensional structure of this VHH in complex with the influenza virus nucleoprotein and identified the interaction site, which overlaps regions that determine sensitivity of the virus to Mx proteins. Our data define a new vulnerability of influenza virus, help us to better understand the cellular antiviral mechanisms, and

  11. Packaging signals in single-stranded RNA viruses: nature's alternative to a purely electrostatic assembly mechanism.

    Stockley, Peter G; Twarock, Reidun; Bakker, Saskia E; Barker, Amy M; Borodavka, Alexander; Dykeman, Eric; Ford, Robert J; Pearson, Arwen R; Phillips, Simon E V; Ranson, Neil A; Tuma, Roman

    2013-03-01

    The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative theory, which recognizes the important cooperative roles played by RNA-coat protein interactions, at sites we have termed packaging signals. The hypothesis is that multiple copies of packaging signals, repeated according to capsid symmetry, aid formation of the required capsid protein conformers at defined positions, resulting in significantly enhanced assembly efficiency. The precise mechanistic roles of packaging signal interactions may vary between viruses, as we have demonstrated for MS2 and STNV. We quantify the impact of packaging signals on capsid assembly efficiency using a dodecahedral model system, showing that heterogeneous affinity distributions of packaging signals for capsid protein out-compete those of homogeneous affinities. These insights pave the way to a new anti-viral therapy, reducing capsid assembly efficiency by targeting of the vital roles of the packaging signals, and opens up new avenues for the efficient construction of protein nanocontainers in bionanotechnology.

  12. Near-Complete Genome Sequence of a Novel Single-Stranded RNA Virus Discovered in Indoor Air.

    Rosario, Karyna; Fierer, Noah; Breitbart, Mya

    2018-03-22

    Viral metagenomic analysis of heating, ventilation, and air conditioning (HVAC) filters recovered the near-complete genome sequence of a novel virus, named HVAC-associated R NA v irus 1 (HVAC-RV1). The HVAC-RV1 genome is most similar to those of picorna-like viruses identified in arthropods but encodes a small domain observed only in negative-sense single-stranded RNA viruses. Copyright © 2018 Rosario et al.

  13. Single-particle cryo-electron microscopy of Rift Valley fever virus

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human veterinary pathogen causing acute hepatitis in ruminants and has the potential to Single-particle cryo-EM reconstruction of RVFV MP-12 hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on...

  14. Quantification of African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV-UG) in single and mixed infected Cassava (Manihot esculenta Crantz) using quantitative PCR.

    Naseem, Saadia; Winter, Stephan

    2016-01-01

    The quantity of genomic DNA-A and DNA-B of African cassava mosaic virus (ACMV) and East African cassava mosaic virus Uganda (Uganda variant, EACMV-UG) was analysed using quantitative PCR to assess virus concentrations in plants from susceptible and tolerant cultivars. The concentrations of genome components in absolute and relative quantification experiments in single and mixed viral infections were determined. Virus concentration was much higher in symptomatic leaf tissues compared to non-symptomatic leaves and corresponded with the severity of disease symptoms. In general, higher titres were recorded for EACMV-UG Ca055 compared to ACMV DRC6. The quantitative assessment also showed that the distribution of both viruses in the moderately resistant cassava cv. TMS 30572 was not different from the highly susceptible cv. TME 117. Natural mixed infections with both viruses gave severe disease symptoms. Relative quantification of virus genomes in mixed infections showed higher concentrations of EACMV-UG DNA-A compared to ACMV DNA-A, but a marked reduction of EACMV-UG DNA-B. The higher concentrations of EACMV-UG DNA-B compared to EACMV DNA-A accumulation in single infections were consistent. Since DNA-B is implicated in virus cell-to-cell spread and systemic movement, the abundance of the EACMV-UG DNA-B may be an important factor driving cassava mosaic disease epidemic. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Etiology and Clinical Characteristics of Single and Multiple Respiratory Virus Infections Diagnosed in Croatian Children in Two Respiratory Seasons

    Sunčanica Ljubin-Sternak

    2016-01-01

    Full Text Available The aim of this study was to determine the causative agent of acute respiratory infection (ARI in hospitalized children, as well as investigate the characteristics of ARIs with single and multiple virus detection in two respiratory seasons. In 2010 and 2015, nasopharyngeal and pharyngeal swabs from a total of 134 children, admitted to the hospital due to ARI, were tested using multiplex PCR. Viral etiology was established in 81.3% of the patients. Coinfection with two viruses was diagnosed in 27.6% of the patients, and concurrent detection of three or more viruses was diagnosed in 12.8% of the patients. The most commonly diagnosed virus in both seasons combined was respiratory syncytial virus (RSV (28.6%, followed by parainfluenza viruses (PIVs types 1–3 (18.4%, rhinovirus (HRV (14.3%, human metapneumovirus (10.1%, adenovirus (AdV (7.1%, influenza viruses types A and B (4.8%, and coronaviruses (4.2%. In 2015, additional pathogens were investigated with the following detection rate: enterovirus (13.2%, bocavirus (HBoV (10.5%, PIV-4 (2.6%, and parechovirus (1.3%. There were no statistical differences between single and multiple virus infection regarding patients age, localization of infection, and severity of disease (P>0.05. AdV, HRV, HBoV, and PIVs were significantly more often detected in multiple virus infections compared to the other respiratory viruses (P<0.001.

  16. Novel Single-Stranded DNA Virus Genomes Recovered from Chimpanzee Feces Sampled from the Mambilla Plateau in Nigeria

    Walters, Matthew; Bawuro, Musa; Christopher, Alfred; Knight, Alexander; Kraberger, Simona; Stainton, Daisy; Chapman, Hazel

    2017-01-01

    ABSTRACT Metagenomic approaches are rapidly expanding our knowledge of the diversity of viruses. In the fecal matter of Nigerian chimpanzees we recovered three gokushovirus genomes, one circular replication-associated protein encoding single-stranded DNA virus (CRESS), and a CRESS DNA molecule. PMID:28254982

  17. Packaging signals in single-stranded RNA viruses: nature?s alternative to a purely electrostatic assembly mechanism

    Stockley, Peter G.; Twarock, Reidun; Bakker, Saskia E.; Barker, Amy M.; Borodavka, Alexander; Dykeman, Eric; Ford, Robert J.; Pearson, Arwen R.; Phillips, Simon E. V.; Ranson, Neil A.; Tuma, Roman

    2013-01-01

    The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule fluorescence experiments that recapitulate the RNA packaging specificity seen in vivo for two model viruses, we present an alternative the...

  18. Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype

    Kimberly A. Dowd

    2016-08-01

    Full Text Available Recent epidemics of Zika virus (ZIKV have been associated with congenital malformation during pregnancy and Guillain-Barré syndrome. There are two ZIKV lineages (African and Asian that share >95% amino acid identity. Little is known regarding the ability of neutralizing antibodies elicited against one lineage to protect against the other. We investigated the breadth of the neutralizing antibody response following ZIKV infection by measuring the sensitivity of six ZIKV strains to neutralization by ZIKV-confirmed convalescent human serum or plasma samples. Contemporary Asian and early African ZIKV strains were similarly sensitive to neutralization regardless of the cellular source of virus. Furthermore, mouse immune serum generated after infection with African or Asian ZIKV strains was capable of neutralizing homologous and heterologous ZIKV strains equivalently. Because our study only defines a single ZIKV serotype, vaccine candidates eliciting robust neutralizing antibody responses should inhibit infection of both ZIKV lineages, including strains circulating in the Americas.

  19. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments.

    Paul J Wichgers Schreur

    2016-08-01

    Full Text Available The bunyavirus genome comprises a small (S, medium (M, and large (L RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging. Accumulating evidence suggests that genomes of viruses with eight or more genome segments are incorporated into virions by highly selective processes. Remarkably, little is known about the genome packaging process of the tri-segmented bunyaviruses. Here, we evaluated, by single-molecule RNA fluorescence in situ hybridization (FISH, the intracellular spatio-temporal distribution and replication kinetics of the Rift Valley fever virus (RVFV genome and determined the segment composition of mature virions. The results reveal that the RVFV genome segments start to replicate near the site of infection before spreading and replicating throughout the cytoplasm followed by translocation to the virion assembly site at the Golgi network. Despite the average intracellular S, M and L genome segments approached a 1:1:1 ratio, major differences in genome segment ratios were observed among cells. We also observed a significant amount of cells lacking evidence of M-segment replication. Analysis of two-segmented replicons and four-segmented viruses subsequently confirmed the previous notion that Golgi recruitment is mediated by the Gn glycoprotein. The absence of colocalization of the different segments in the cytoplasm and the successful rescue of a tri-segmented variant with a codon shuffled M-segment suggested that inter-segment interactions are unlikely to drive the copackaging of the different segments into a single virion. The latter was confirmed by direct visualization of RNPs inside mature virions which showed that the majority of virions lack one or more genome segments. Altogether, this study suggests that RVFV genome packaging is a non-selective process.

  20. Optical redox imaging of fixed unstained tissue slides to identify biomarkers for breast cancer diagnosis/prognosis: feasibility study

    Xu, He N.; Tchou, Julia; Li, Yusheng; Feng, Min; Zhang, Paul; Quinn, William J.; Baur, Joseph A.; Li, Lin Z.

    2018-02-01

    We previously showed that optical redox imaging (ORI) of snap-frozen breast biopsies by the Chance redox scanner readily discriminates cancer from normal tissue. Moreover, indices of redox heterogeneity differentiate among tumor xenografts with different metastatic potential. These observations suggest that ORI of fluorescence of NADH and oxidized flavoproteins (Fp) may provide diagnostic/prognostic value for clinical applications. In this work, we investigate whether ORI of formalin-fixed-paraffin-embedded (FFPE) unstained clinical tissue slides of breast tumors is feasible and comparable to ORI of snap-frozen tumors. If ORI of FFPE is validated, it will enhance the versatility of ORI as a novel diagnostic/prognostic assay as FFPE samples are readily available. ORI of fixed tissue slides was performed using a fluorescence microscope equipped with a precision automated stage and appropriate optical filters. We developed a vignette correction algorithm to remove the tiling effect of stitched-images. The preliminary data from imaging fixed slides of breast tumor xenografts showed intratumor redox heterogeneity patterns similar to that of the frozen tissues imaged by the Chance redox scanner. From ORI of human breast tissue slides we identified certain redox differences among normal, ductal carcinoma in situ, and invasive carcinoma. We found paraformaldehyde fixation causes no change in NADH signals but enhances Fp signals of fresh muscle fibers. We also investigated the stability of the fluorescence microscope and reproducibility of tissue slide fluorescence signals. We plan to validate the diagnostic/prognostic value of ORI using clinically annotated breast cancer sample set from patients with long-term follow-up data.

  1. Single Endemic Genotype of Measles Virus Continuously Circulating in China for at Least 16 Years

    Wang, Huiling; Zhu, Zhen; Ji, Yixin; Liu, Chunyu; Zhang, Xiaojie; Sun, Liwei; Zhou, Jianhui; Lu, Peishan; Hu, Ying; Feng, Daxing; Zhang, Zhenying; Wang, Changyin; Fang, Xueqiang; Zheng, Huanying; Liu, Leng; Sun, Xiaodong; Tang, Wei; Wang, Yan; Liu, Yan; Gao, Hui; Tian, Hong; Ma, Jiangtao; Gu, Suyi; Wang, Shuang; Feng, Yan; Bo, Fang; Liu, Jianfeng; Si, Yuan; Zhou, Shujie; Ma, Yuyan; Wu, Shengwei; Zhou, Shunde; Li, Fangcai; Ding, Zhengrong; Yang, Zhaohui; Rota, Paul A.; Featherstone, David; Jee, Youngmee; Bellini, William J.; Xu, Wenbo

    2012-01-01

    The incidence of measles in China from 1991 to 2008 was reviewed, and the nucleotide sequences from 1507 measles viruses (MeV) isolated during 1993 to 2008 were phylogenetically analyzed. The results showed that measles epidemics peaked approximately every 3 to 5 years with the range of measles cases detected between 56,850 and 140,048 per year. The Chinese MeV strains represented three genotypes; 1501 H1, 1 H2 and 5 A. Genotype H1 was the predominant genotype throughout China continuously circulating for at least 16 years. Genotype H1 sequences could be divided into two distinct clusters, H1a and H1b. A 4.2% average nucleotide divergence was found between the H1a and H1b clusters, and the nucleotide sequence and predicted amino acid homologies of H1a viruses were 92.3%–100% and 84.7%–100%, H1b were 97.1%–100% and 95.3%–100%, respectively. Viruses from both clusters were distributed throughout China with no apparent geographic restriction and multiple co-circulating lineages were present in many provinces. Cluster H1a and H1b viruses were co-circulating during 1993 to 2005, while no H1b viruses were detected after 2005 and the transmission of that cluster has presumably been interrupted. Analysis of the nucleotide and predicted amino acid changes in the N proteins of H1a and H1b viruses showed no evidence of selective pressure. This study investigated the genotype and cluster distribution of MeV in China over a 16-year period to establish a genetic baseline before MeV elimination in Western Pacific Region (WPR). Continuous and extensive MeV surveillance and the ability to quickly identify imported cases of measles will become more critical as measles elimination goals are achieved in China in the near future. This is the first report that a single endemic genotype of measles virus has been found to be continuously circulating in one country for at least 16 years. PMID:22532829

  2. Single endemic genotype of measles virus continuously circulating in China for at least 16 years.

    Yan Zhang

    Full Text Available The incidence of measles in China from 1991 to 2008 was reviewed, and the nucleotide sequences from 1507 measles viruses (MeV isolated during 1993 to 2008 were phylogenetically analyzed. The results showed that measles epidemics peaked approximately every 3 to 5 years with the range of measles cases detected between 56,850 and 140,048 per year. The Chinese MeV strains represented three genotypes; 1501 H1, 1 H2 and 5 A. Genotype H1 was the predominant genotype throughout China continuously circulating for at least 16 years. Genotype H1 sequences could be divided into two distinct clusters, H1a and H1b. A 4.2% average nucleotide divergence was found between the H1a and H1b clusters, and the nucleotide sequence and predicted amino acid homologies of H1a viruses were 92.3%-100% and 84.7%-100%, H1b were 97.1%-100% and 95.3%-100%, respectively. Viruses from both clusters were distributed throughout China with no apparent geographic restriction and multiple co-circulating lineages were present in many provinces. Cluster H1a and H1b viruses were co-circulating during 1993 to 2005, while no H1b viruses were detected after 2005 and the transmission of that cluster has presumably been interrupted. Analysis of the nucleotide and predicted amino acid changes in the N proteins of H1a and H1b viruses showed no evidence of selective pressure. This study investigated the genotype and cluster distribution of MeV in China over a 16-year period to establish a genetic baseline before MeV elimination in Western Pacific Region (WPR. Continuous and extensive MeV surveillance and the ability to quickly identify imported cases of measles will become more critical as measles elimination goals are achieved in China in the near future. This is the first report that a single endemic genotype of measles virus has been found to be continuously circulating in one country for at least 16 years.

  3. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  4. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus

    2012-01-01

    Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be incorporated into the forensic

  5. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus.

    Rogers, Stephanie M; Payton, Mark; Allen, Robert W; Melcher, Ulrich; Carver, Jesse; Fletcher, Jacqueline

    2012-05-17

    The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough

  6. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-01-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100

  7. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics.

    Roux, Simon; Hawley, Alyse K; Torres Beltran, Monica; Scofield, Melanie; Schwientek, Patrick; Stepanauskas, Ramunas; Woyke, Tanja; Hallam, Steven J; Sullivan, Matthew B

    2014-08-29

    Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks, specific virus-host interaction dynamics remain cryptic. In this study, we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a model marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ∼1/3 of SUP05 bacteria is viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186 microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together, these results demonstrate closely coupled SUP05 virus-host co-evolutionary dynamics with the potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.

  8. Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking

    van der Schaar, Hilde M.; Rust, Michael J.; Waarts, Barry-Lee; van der Ende-Metselaarl, Heidi; Kuhn, Richard J.; Wilschut, Jan; Zhuang, Xiaowei; Smit, Jolanda M.

    In this study, we investigated the cell entry characteristics of dengue virus (DENV) type 2 strain SI on mosquito, BHK-15, and BS-C-1 cells. The concentration of virus particles measured by biochemical assays was found to be substantially higher than the number of infectious particles determined by

  9. Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking

    van der Schaar, Hilde M.; Rust, Michael J.; Waarts, Barry-Lee; van der Ende-Metselaarl, Heidi; Kuhn, Richard J.; Wilschut, Jan; Zhuang, Xiaowei; Smit, Jolanda M.

    2007-01-01

    In this study, we investigated the cell entry characteristics of dengue virus (DENV) type 2 strain SI on mosquito, BHK-15, and BS-C-1 cells. The concentration of virus particles measured by biochemical assays was found to be substantially higher than the number of infectious particles determined by

  10. Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus.

    Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Shi, Linqing; Zhang, Renxia; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2017-04-28

    The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and halflife. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.

  11. Targeted sorting of single virus-infected cells of the coccolithophore Emiliania huxleyi.

    Joaquín Martínez Martínez

    Full Text Available Discriminating infected from healthy cells is the first step to understanding the mechanisms and ecological implications of viral infection. We have developed a method for detecting, sorting, and performing molecular analysis of individual, infected cells of the important microalga Emiliania huxleyi, based on known physiological responses to viral infection. Of three fluorescent dyes tested, FM 1-43 (for detecting membrane blebbing gave the most unequivocal and earliest separation of cells. Furthermore, we were able to amplify the genomes of single infected cells using Multiple Displacement Amplification. This novel method to reliably discriminate infected from healthy cells in cultures will allow researchers to answer numerous questions regarding the mechanisms and implications of viral infection of E. huxleyi. The method may be transferable to other virus-host systems.

  12. Targeted sorting of single virus-infected cells of the coccolithophore Emiliania huxleyi.

    Martínez Martínez, Joaquín; Poulton, Nicole J; Stepanauskas, Ramunas; Sieracki, Michael E; Wilson, William H

    2011-01-01

    Discriminating infected from healthy cells is the first step to understanding the mechanisms and ecological implications of viral infection. We have developed a method for detecting, sorting, and performing molecular analysis of individual, infected cells of the important microalga Emiliania huxleyi, based on known physiological responses to viral infection. Of three fluorescent dyes tested, FM 1-43 (for detecting membrane blebbing) gave the most unequivocal and earliest separation of cells. Furthermore, we were able to amplify the genomes of single infected cells using Multiple Displacement Amplification. This novel method to reliably discriminate infected from healthy cells in cultures will allow researchers to answer numerous questions regarding the mechanisms and implications of viral infection of E. huxleyi. The method may be transferable to other virus-host systems.

  13. Single-photon emission computed tomography in human immunodeficiency virus encephalopathy: A preliminary report

    Masdeu, J.C.; Yudd, A.; Van Heertum, R.L.; Grundman, M.; Hriso, E.; O'Connell, R.A.; Luck, D.; Camli, U.; King, L.N.

    1991-01-01

    Depression or psychosis in a previously asymptomatic individual infected with the human immunodeficiency virus (HIV) may be psychogenic, related to brain involvement by the HIV or both. Although prognosis and treatment differ depending on etiology, computed tomography (CT) and magnetic resonance imaging (MRI) are usually unrevealing in early HIV encephalopathy and therefore cannot differentiate it from psychogenic conditions. Thirty of 32 patients (94%) with HIV encephalopathy had single-photon emission computed tomography (SPECT) findings that differed from the findings in 15 patients with non-HIV psychoses and 6 controls. SPECT showed multifocal cortical and subcortical areas of hypoperfusion. In 4 cases, cognitive improvement after 6-8 weeks of zidovudine (AZT) therapy was reflected in amelioration of SPECT findings. CT remained unchanged. SPECT may be a useful technique for the evaluation of HIV encephalopathy

  14. De novo Genome Assembly and Single Nucleotide Variations for Soybean Mosaic Virus Using Soybean Seed Transcriptome Data

    Yeonhwa Jo

    2017-10-01

    Full Text Available Soybean is the most important legume crop in the world. Several diseases in soybean lead to serious yield losses in major soybean-producing countries. Moreover, soybean can be infected by diverse viruses. Recently, we carried out a large-scale screening to identify viruses infecting soybean using available soybean transcriptome data. Of the screened transcriptomes, a soybean transcriptome for soybean seed development analysis contains several virus-associated sequences. In this study, we identified five viruses, including soybean mosaic virus (SMV, infecting soybean by de novo transcriptome assembly followed by blast search. We assembled a nearly complete consensus genome sequence of SMV China using transcriptome data. Based on phylogenetic analysis, the consensus genome sequence of SMV China was closely related to SMV isolates from South Korea. We examined single nucleotide variations (SNVs for SMVs in the soybean seed transcriptome revealing 780 SNVs, which were evenly distributed on the SMV genome. Four SNVs, C-U, U-C, A-G, and G-A, were frequently identified. This result demonstrated the quasispecies variation of the SMV genome. Taken together, this study carried out bioinformatics analyses to identify viruses using soybean transcriptome data. In addition, we demonstrated the application of soybean transcriptome data for virus genome assembly and SNV analysis.

  15. Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes.

    Pietilä, Maija K; Roine, Elina; Sencilo, Ana; Bamford, Dennis H; Oksanen, Hanna M

    2016-01-01

    Viruses infecting archaea show a variety of virion morphotypes, and they are currently classified into more than ten viral families or corresponding groups. A pleomorphic virus morphotype is very common among haloarchaeal viruses, and to date, several such viruses have been isolated. Here, we propose the classification of eight such viruses and formation of a new family, Pleolipoviridae (from the Greek pleo for more or many and lipos for lipid), containing three genera, Alpha-, Beta-, and Gammapleolipovirus. The proposal is currently under review by the International Committee on Taxonomy of Viruses (ICTV). The members of the proposed family Pleolipoviridae infect halophilic archaea and are nonlytic. They share structural and genomic features and differ from any other classified virus. The virion of pleolipoviruses is composed of a pleomorphic membrane vesicle enclosing the genome. All pleolipoviruses have two major structural protein species, internal membrane and spike proteins. Although the genomes of the pleolipoviruses are single- or double-stranded, linear or circular DNA molecules, they share the same genome organization and gene synteny and show significant similarity at the amino acid level. The canonical features common to all members of the proposed family Pleolipoviridae show that they are closely related and thus form a new viral family.

  16. Role of electrostatics in the assembly pathway of a single-stranded RNA virus.

    Garmann, Rees F; Comas-Garcia, Mauricio; Koay, Melissa S T; Cornelissen, Jeroen J L M; Knobler, Charles M; Gelbart, William M

    2014-09-01

    We have recently discovered (R. D. Cadena-Nava et al., J. Virol. 86:3318-3326, 2012, doi:10.1128/JVI.06566-11) that the in vitro packaging of RNA by the capsid protein (CP) of cowpea chlorotic mottle virus is optimal when there is a significant excess of CP, specifically that complete packaging of all of the RNA in solution requires sufficient CP to provide charge matching of the N-terminal positively charged arginine-rich motifs (ARMS) of the CPs with the negatively charged phosphate backbone of the RNA. We show here that packaging results from the initial formation of a charge-matched protocapsid consisting of RNA decorated by a disordered arrangement of CPs. This protocapsid reorganizes into the final, icosahedrally symmetric nucleocapsid by displacing the excess CPs from the RNA to the exterior surface of the emerging capsid through electrostatic attraction between the ARMs of the excess CP and the negative charge density of the capsid exterior. As a test of this scenario, we prepare CP mutants with extra and missing (relative to the wild type) cationic residues and show that a correspondingly smaller and larger excess, respectively, of CP is needed for complete packaging of RNA. Cowpea chlorotic mottle virus (CCMV) has long been studied as a model system for the assembly of single-stranded RNA viruses. While much is known about the electrostatic interactions within the CCMV virion, relatively little is known about these interactions during assembly, i.e., within intermediate states preceding the final nucleocapsid structure. Theoretical models and coarse-grained molecular dynamics simulations suggest that viruses like CCMV assemble by the bulk adsorption of CPs onto the RNA driven by electrostatic attraction, followed by structural reorganization into the final capsid. Such a mechanism facilitates assembly by condensing the RNA for packaging while simultaneously concentrating the local density of CP for capsid nucleation. We provide experimental evidence of

  17. Penerapan Metode Diagnosis Cepat Virus Avian Influenza H5N1 dengan Metode Single Step Multiplex RT-PCR

    Aris Haryanto

    2010-12-01

    Full Text Available Avian influenza (AI virus is a segmented single stranded (ss RNA virus with negative polarity andbelong to the Orthomyxoviridae family. Diagnose of AI virus can be performed using conventional methodsbut it has low sensitivity and specificity. The objective of the research was to apply rapid, precise, andaccurate diagnostic method for AI virus and also to determine its type and subtype based on the SingleStep Multiplex Reverse Transcriptase-Polymerase Chain Reaction targeting M, H5, and N1 genes. In thismethod M, H5 and NI genes were simultaneously amplified in one PCR tube. The steps of this researchconsist of collecting viral RNAs from 10 different AI samples originated from Maros Disease InvestigationCenter during 2007. DNA Amplification was conducted by Simplex RT-PCR using M primer set. Then, bysingle step multiplex RT-PCR were conducted simultaneously using M, H5 and N1 primers set. The RTPCRproducts were then separated on 1.5% agarose gel, stained by ethidum bromide and visualized underUV transilluminator. Results showed that 8 of 10 RNA virus samples could be amplified by Simplex RTPCRfor M gene which generating a DNA fragment of 276 bp. Amplification using multiplex RT-PCRmethod showed two of 10 samples were AI positive using multiplex RT-PCR, three DNA fragments weregenerated consisting of 276 bp for M gene, 189 bp for H5 gene, and 131 bp for N1. In this study, rapid andeffective diagnosis method for AI virus can be conducted by using simultaneous Single Step Multiplex RTPCR.By this technique type and subtype of AI virus, can also be determined, especially H5N1.

  18. Single Dose of Consensus Hemagglutinin-Based Virus-Like Particles Vaccine Protects Chickens against Divergent H5 Subtype Influenza Viruses

    Peipei Wu

    2017-11-01

    Full Text Available The H5 subtype highly pathogenic avian influenza (HPAI virus is one of the greatest threats to global poultry industry. To develop broadly protective H5 subunit vaccine, a recombinant consensus HA sequence (rHA was constructed and expressed in virus-like particles (rHA VLPs in the baculovirus-insect cell system. The efficacy of the rHA VLPs vaccine with or without immunopotentiator (CVCVA5 was assessed in chickens. Compared to the commercial Re6 or Re6-CVCVA5 vaccines, single dose immunization of chickens with rHA VLPs or rHA-CVCVA5 vaccines induced higher levels of serum hemagglutinin inhibition titers and neutralization titers, mucosal antibodies, IFN-γ and IL-4 cytokines in sera, and cytotoxic T lymphocyte responses. The rHA VLPs vaccine was superior to the commercial Re6 vaccine in conferring cross-protection against different clades of H5 subtype viruses. This study reports that H5 subtype consensus HA VLP single dose vaccination provides broad protection against HPAI virus in chickens.

  19. MERS-CoV: Middle East respiratory syndrome corona virus: Can radiology be of help? Initial single center experience

    Ahmed Hamimi

    2016-03-01

    Conclusions: MERS CoV virus may have a specific pattern in chest X-ray and CT developing a single or multiple opacities progressing into a widespread multifocal bilateral patches of ground glass opacities or confluent consolidation resembling organizing pneumonia.

  20. A Single Amino Acid Change in the Marburg Virus Glycoprotein Arises during Serial Cell Culture Passages and Attenuates the Virus in a Macaque Model of Disease.

    Alfson, Kendra J; Avena, Laura E; Delgado, Jenny; Beadles, Michael W; Patterson, Jean L; Carrion, Ricardo; Griffiths, Anthony

    2018-01-01

    Marburg virus (MARV) causes disease with high case fatality rates, and there are no approved vaccines or therapies. Licensing of MARV countermeasures will likely require approval via the FDA's Animal Efficacy Rule, which requires well-characterized animal models that recapitulate human disease. This includes selection of the virus used for exposure and ensuring that it retains the properties of the original isolate. The consequences of amplification of MARV for challenge studies are unknown. Here, we serially passaged and characterized MARV through 13 passes from the original isolate. Surprisingly, the viral genome was very stable, except for a single nucleotide change that resulted in an amino acid substitution in the hydrophobic region of the signal peptide of the glycoprotein (GP). The particle/PFU ratio also decreased following passages, suggesting a role for the amino acid in viral infectivity. To determine if amplification introduces a phenotype in an animal model, cynomolgus macaques were exposed to either 100 or 0.01 PFU of low- and high-passage-number MARV. All animals succumbed when exposed to 100 PFU of either passage 3 or 13 viruses, although animals exposed to the high-passage-number virus survived longer. However, none of the passage 13 MARV-exposed animals succumbed to 0.01-PFU exposure compared to 75% of passage 3-exposed animals. This is consistent with other filovirus studies that show some particles that are unable to yield a plaque in cell culture can cause lethal disease in vivo . These results have important consequences for the design of experiments that investigate MARV pathogenesis and that test the efficacy of MARV countermeasures. IMPORTANCE Marburg virus (MARV) causes disease with a high case fatality rate, and there are no approved vaccines or therapies. Serial amplification of viruses in cell culture often results in accumulation of mutations, but the effect of such cell culture passage on MARV is unclear. Serial passages of MARV

  1. Single-particle fusion of influenza viruses reveals complex interactions with target membranes

    van der Borg, Guus; Braddock, Scarlett; Blijleven, Jelle S.; van Oijen, Antoine M.; Roos, Wouter H.

    2018-05-01

    The first step in infection of influenza A virus is contact with the host cell membrane, with which it later fuses. The composition of the target bilayer exerts a complex influence on both fusion efficiency and time. Here, an in vitro, single-particle approach is used to study this effect. Using total internal reflection fluorescence (TIRF) microscopy and a microfluidic flow cell, the hemifusion of single virions is visualized. Hemifusion efficiency and kinetics are studied while altering target bilayer cholesterol content and sialic-acid donor. Cholesterol ratios tested were 0%, 10%, 20%, and 40%. Sialic-acid donors GD1a and GYPA were used. Both cholesterol ratio and sialic-acid donors proved to have a significant effect on hemifusion efficiency. Furthermore, comparison between GD1a and GYPA conditions shows that the cholesterol dependence of the hemifusion time is severely affected by the sialic-acid donor. Only GD1a shows a clear increasing trend in hemifusion efficiency and time with increasing cholesterol concentration of the target bilayer with maximum rates for GD1A and 40% cholesterol. Overall our results show that sialic acid donor and target bilayer composition should be carefully chosen, depending on the desired hemifusion time and efficiency in the experiment.

  2. Experimental Treatment of Ebola Virus Disease with TKM-130803: A Single-Arm Phase 2 Clinical Trial

    Dunning, Jake; Sahr, Foday; Rojek, Amanda

    2016-01-01

    BACKGROUND: TKM-130803, a small interfering RNA lipid nanoparticle product, has been developed for the treatment of Ebola virus disease (EVD), but its efficacy and safety in humans has not been evaluated. METHODS AND FINDINGS: In this single-arm phase 2 trial, adults with laboratory-confirmed EVD...... of admission. After 14 adults with EVD had received TKM-130803, the pre-specified futility boundary was reached, indicating a probability of survival to day 14 of ≤0.55, and enrolment was stopped. Pre-treatment geometric mean Ebola virus load in the 14 TKM-130803 recipients was 2.24 × 109 RNA copies/ml plasma...

  3. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    Junmin Li

    Full Text Available Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi which generates viral-derived small interfering RNAs (siRNAs. However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus was infected by Rice black-streaked dwarf virus (RBSDV (Reoviridae; Fijivirus, more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV, a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.

  4. SNPer: an R library for quantitative variant analysis on single nucleotide polymorphisms among influenza virus populations.

    Unitsa Sangket

    Full Text Available Influenza virus (IFV can evolve rapidly leading to genetic drifts and shifts resulting in human and animal influenza epidemics and pandemics. The genetic shift that gave rise to the 2009 influenza A/H1N1 pandemic originated from a triple gene reassortment of avian, swine and human IFVs. More minor genetic alterations in genetic drift can lead to influenza drug resistance such as the H274Y mutation associated with oseltamivir resistance. Hence, a rapid tool to detect IFV mutations and the potential emergence of new virulent strains can better prepare us for seasonal influenza outbreaks as well as potential pandemics. Furthermore, identification of specific mutations by closely examining single nucleotide polymorphisms (SNPs in IFV sequences is essential to classify potential genetic markers associated with potentially dangerous IFV phenotypes. In this study, we developed a novel R library called "SNPer" to analyze quantitative variants in SNPs among IFV subpopulations. The computational SNPer program was applied to three different subpopulations of published IFV genomic information. SNPer queried SNPs data and grouped the SNPs into (1 universal SNPs, (2 likely common SNPs, and (3 unique SNPs. SNPer outperformed manual visualization in terms of time and labor. SNPer took only three seconds with no errors in SNP comparison events compared with 40 hours with errors using manual visualization. The SNPer tool can accelerate the capacity to capture new and potentially dangerous IFV strains to mitigate future influenza outbreaks.

  5. Detection of hepatitis A virus by hybridization with single-stranded RNA probes

    Xi, J.; Estes, M.K.; Metcalf, T.G.

    1987-01-01

    An improved method of dot-blot hybridization to detect hepatitis A virus (HAV) was developed with single-stranded RNA (ssRNA) probes. Radioactive and nonradioactive ssRNA probes were generated by in vitro transcription of HAV templates inserted into the plasmid pGEM-1. 32 P-labeled ssRNA probes were at least eightfold more sensitive than the 32 P-labeled double-stranded cDNA counterparts, whereas biotin-labeled ssRNA probes showed a sensitivity comparable with that of the 32 P-labeled double-stranded cDNA counterparts. Hybridization of HAV with the ssRNA probes at high stringency revealed specific reactions with a high signal-to-noise ratio. The differential hybridization reactions seen with probes of positive and negative sense (compared with HAV genomic RNA) were used to detect HAV in clinical and field samples. A positive/negative ratio was introduced as an indicator that permitted an semiquantitative expression of a positive HAV reaction. Good agreement of this indicator was observed with normal stool samples and with HAV-seeded samples. By using this system, HAV was detected in estuarine and freshwater samples collected from a sewage-polluted bayou in Houston and a saltwater tributary of Galveston Bay

  6. Varicella-zoster virus infections in immunocompromised patients - a single centre 6-years analysis

    Liese Johannes

    2011-05-01

    Full Text Available Abstract Background Infection with varicella-zoster virus (VZV contemporaneously with malignant disease or immunosuppression represents a particular challenge and requires individualized decisions and treatment. Although the increasing use of varicella-vaccines in the general population and rapid initiation of VZV-immunoglobulins and acyclovir in case of exposure has been beneficial for some patients, immunocompromised individuals are still at risk for unfavourable courses. Methods In this single center, 6-year analysis we review incidence, hospitalization and complication rates of VZV-infections in our center and compare them to published data. Furthermore, we report three instructive cases. Results Hospitalization rate of referred children with VZV-infections was 45%, among these 17% with malignancies and 9% under immunosuppressive therapy. Rate of complications was not elevated in these two high-risk cohorts, but one ALL-patient died due to VZV-related complications. We report one 4-year old boy with initial diagnosis of acute lymphoblastic leukemia who showed a rapidly fatal outcome of his simultaneous varicella-infection, one 1.8-year old boy with an identical situation but a mild course of his disease, and an 8.5-year old boy with a steroid-dependent nephrotic syndrome. This boy developed severe hepatic involvement during his varicella-infection but responded to immediate withdrawl of steroids and administration of acyclovir plus single-dose cidofovir after nonresponse to acyclovir after 48 h. Conclusion Our data show that patients with malignant diseases or immunosuppressive therapy should be hospitalized and treated immediately with antiviral agents. Despite these measures the course of VZV-infections can be highly variable in these patients. We discuss aids to individual decision-making for these difficult situations.

  7. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    David Metzgar

    Full Text Available For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based or remarkably insensitive (antibody-based. Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A

  8. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    Metzgar, David; Myers, Christopher A; Russell, Kevin L; Faix, Dennis; Blair, Patrick J; Brown, Jason; Vo, Scott; Swayne, David E; Thomas, Colleen; Stenger, David A; Lin, Baochuan; Malanoski, Anthony P; Wang, Zheng; Blaney, Kate M; Long, Nina C; Schnur, Joel M; Saad, Magdi D; Borsuk, Lisa A; Lichanska, Agnieszka M; Lorence, Matthew C; Weslowski, Brian; Schafer, Klaus O; Tibbetts, Clark

    2010-02-03

    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence

  9. Isolation of Panels of Llama Single-Domain Antibody Fragments Binding All Nine Neuraminidase Subtypes of Influenza A Virus

    Guus Koch

    2013-04-01

    Full Text Available Avian influenza A virus comprises sixteen hemagglutinin (HA and nine neuraminidase (NA subtypes (N1–N9. To isolate llama single-domain antibody fragments (VHHs against all N subtypes, four llamas were immunized with mixtures of influenza viruses. Selections using influenza virus yielded predominantly VHHs binding to the highly immunogenic HA and nucleoprotein. However, selection using enzymatically active recombinant NA (rNA protein enabled us to isolate NA binding VHHs. Some isolated VHHs cross-reacted to other N subtypes. These were subsequently used for the capture of N subtypes that could not be produced as recombinant protein (rN6 or were enzymatically inactive (rN1, rN5 in phage display selection, yielding novel VHHs. In total we isolated 188 NA binding VHHs, 64 of which were expressed in yeast. Most VHHs specifically recognize a single N subtype, but some VHHs cross-react with other N-subtypes. At least one VHH bound to all N subtypes, except N4, identifying a conserved antigenic site. Thus, this work (1 describes methods for isolating NA binding VHHs, (2 illustrates the suitability of llama immunization with multiple antigens for retrieving many binders against different antigens and (3 describes 64 novel NA binding VHHs, including a broadly reactive VHH, which can be used in various assays for influenza virus subtyping, detection or serology.

  10. A single intranasal administration of virus-like particle vaccine induces an efficient protection for mice against human respiratory syncytial virus.

    Jiao, Yue-Ying; Fu, Yuan-Hui; Yan, Yi-Fei; Hua, Ying; Ma, Yao; Zhang, Xiu-Juan; Song, Jing-Dong; Peng, Xiang-Lei; Huang, Jiaqiang; Hong, Tao; He, Jin-Sheng

    2017-08-01

    Human respiratory syncytial virus (RSV) is an important pediatric pathogen causing acute viral respiratory disease in infants and young children. However, no licensed vaccines are currently available. Virus-like particles (VLPs) may bring new hope to producing RSV VLP vaccine with high immunogenicity and safety. Here, we constructed the recombinants of matrix protein (M) and fusion glycoprotein (F) of RSV, respectively into a replication-deficient first-generation adenoviral vector (FGAd), which were used to co-infect Vero cells to assemble RSV VLPs successfully. The resulting VLPs showed similar immunoreactivity and function to RSV virion in vitro. Moreover, Th1 polarized response, and effective mucosal virus-neutralizing antibody and CD8 + T-cell responses were induced by a single intranasal (i.n.) administration of RSV VLPs rather than intramuscular (i.m.) inoculation, although the comparable RSV F-specific serum IgG and long-lasting RSV-specific neutralizing antibody were detected in the mice immunized by both routes. Upon RSV challenge, VLP-immunized mice showed increased viral clearance but decreased signs of enhanced lung pathology and fewer eosinophils compared to mice immunized with formalin-inactivated RSV (FI-RSV). In addition, a single i.n. RSV VLP vaccine has the capability to induce RSV-specific long-lasting neutralizing antibody responses observable up to 15 months. Our results demonstrate that the long-term and memory immune responses in mice against RSV were induced by a single i.n. administration of RSV VLP vaccine, suggesting a successful approach of RSV VLPs as an effective and safe mucosal vaccine against RSV infection, and an applicable and qualified platform of FGAd-infected Vero cells for VLP production. Copyright © 2017. Published by Elsevier B.V.

  11. Development and evaluation of one step single tube multiplex RT-PCR for rapid detection and typing of dengue viruses

    Parida Manmohan; Shrivastava Ambuj; Santhosh SR; Dash Paban; Saxena Parag; Rao PV

    2008-01-01

    Abstract Background Dengue is emerging as a major public health concern in many parts of the world. The development of a one-step, single tube, rapid, and multiplex reverse transcription polymerase chain reaction (M-RT-PCR) for simultaneous detection and typing of dengue virus using serotype specific primers during acute phase of illness is reported. Results An optimal assay condition with zero background was established having no cross-reaction with closely related members of flavivirus (Jap...

  12. Evaluation of the genetic diversity of Plum pox virus in a single plum tree.

    Predajňa, Lukáš; Šubr, Zdeno; Candresse, Thierry; Glasa, Miroslav

    2012-07-01

    Genetic diversity of Plum pox virus (PPV) and its distribution within a single perennial woody host (plum, Prunus domestica) has been evaluated. A plum tree was triply infected by chip-budding with PPV-M, PPV-D and PPV-Rec isolates in 2003 and left to develop untreated under open field conditions. In September 2010 leaf and fruit samples were collected from different parts of the tree canopy. A 745-bp NIb-CP fragment of PPV genome, containing the hypervariable region encoding the CP N-terminal end was amplified by RT-PCR from each sample and directly sequenced to determine the dominant sequence. In parallel, the PCR products were cloned and a total of 105 individual clones were sequenced. Sequence analysis revealed that after 7 years of infection, only PPV-M was still detectable in the tree and that the two other isolates (PPV-Rec and PPV-D) had been displaced. Despite the fact that the analysis targeted a relatively short portion of the genome, a substantial amount of intra-isolate variability was observed for PPV-M. A total of 51 different haplotypes could be identified from the 105 individual sequences, two of which were largely dominant. However, no clear-cut structuration of the viral population by the tree architecture could be highlighted although the results obtained suggest the possibility of intra-leaf/fruit differentiation of the viral population. Comparison of the consensus sequence with the original source isolate showed no difference, suggesting within-plant stability of this original isolate under open field conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Single Amino Acid Modification of Adeno-Associated Virus Capsid Changes Transduction and Humoral Immune Profiles

    Diprimio, Nina; Bowles, Dawn E.; Hirsch, Matthew L.; Monahan, Paul E.; Asokan, Aravind; Rabinowitz, Joseph; Agbandje-McKenna, Mavis

    2012-01-01

    Adeno-associated virus (AAV) vectors have the potential to promote long-term gene expression. Unfortunately, humoral immunity restricts patient treatment and in addition provides an obstacle to the potential option of vector readministration. In this study, we describe a comprehensive characterization of the neutralizing antibody (NAb) response to AAV type 1 (AAV1) through AAV5 both in vitro and in vivo. These results demonstrated that NAbs generated from one AAV type are unable to neutralize the transduction of other types. We extended this observation by demonstrating that a rationally engineered, muscle-tropic AAV2 mutant containing 5 amino acid substitutions from AAV1 displayed a NAb profile different from those of parental AAV2 and AAV1. Here we found that a single insertion of Thr from AAV1 into AAV2 capsid at residue 265 preserved high muscle transduction, while also changing the immune profile. To better understand the role of Thr insertion at position 265, we replaced all 20 amino acids and evaluated both muscle transduction and the NAb response. Of these variants, 8 mutants induced higher muscle transduction than AAV2. Additionally, three classes of capsid NAb immune profile were defined based on the ability to inhibit transduction from AAV2 or mutants. While no relationship was found between transduction, amino acid properties, and NAb titer or its cross-reactivity, these studies map a critical capsid motif involved in all steps of AAV infectivity. Our results suggest that AAV types can be utilized not only as templates to generate mutants with enhanced transduction efficiency but also as substrates for repeat administration. PMID:22593151

  14. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  15. Viral recombination blurs taxonomic lines: examination of single-stranded DNA viruses in a wastewater treatment plant

    Victoria M. Pearson

    2016-10-01

    Full Text Available Understanding the structure and dynamics of microbial communities, especially those of economic concern, is of paramount importance to maintaining healthy and efficient microbial communities at agricultural sites and large industrial cultures, including bioprocessors. Wastewater treatment plants are large bioprocessors which receive water from multiple sources, becoming reservoirs for the collection of many viral families that infect a broad range of hosts. To examine this complex collection of viruses, full-length genomes of circular ssDNA viruses were isolated from a wastewater treatment facility using a combination of sucrose-gradient size selection and rolling-circle amplification and sequenced on an Illumina MiSeq. Single-stranded DNA viruses are among the least understood groups of microbial pathogens due to genomic biases and culturing difficulties, particularly compared to the larger, more often studied dsDNA viruses. However, the group contains several notable well-studied examples, including agricultural pathogens which infect both livestock and crops (Circoviridae and Geminiviridae, and model organisms for genetics and evolution studies (Microviridae. Examination of the collected viral DNA provided evidence for 83 unique genotypic groupings, which were genetically dissimilar to known viral types and exhibited broad diversity within the community. Furthermore, although these genomes express similarities to known viral families, such as Circoviridae, Geminiviridae, and Microviridae, many are so divergent that they may represent new taxonomic groups. This study demonstrated the efficacy of the protocol for separating bacteria and large viruses from the sought after ssDNA viruses and the ability to use this protocol to obtain an in-depth analysis of the diversity within this group.

  16. Single-Genome Sequencing of Hepatitis C Virus in Donor-Recipient Pairs Distinguishes Modes and Models of Virus Transmission and Early Diversification.

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Giorgi, Elena E; Blair, Lily M; Learn, Gerald H; Hahn, Beatrice H; Alter, Harvey J; Busch, Michael P; Fierer, Daniel S; Ribeiro, Ruy M; Perelson, Alan S; Bhattacharya, Tanmoy; Shaw, George M

    2016-01-01

    Despite the recent development of highly effective anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and development of an effective vaccine. A precise molecular identification of transmitted/founder (T/F) HCV genomes that lead to productive clinical infection could play a critical role in vaccine research, as it has for HIV-1. However, the replication schema of these two RNA viruses differ substantially, as do viral responses to innate and adaptive host defenses. These differences raise questions as to the certainty of T/F HCV genome inferences, particularly in cases where multiple closely related sequence lineages have been observed. To clarify these issues and distinguish between competing models of early HCV diversification, we examined seven cases of acute HCV infection in humans and chimpanzees, including three examples of virus transmission between linked donors and recipients. Using single-genome sequencing (SGS) of plasma vRNA, we found that inferred T/F sequences in recipients were identical to viral sequences in their respective donors. Early in infection, HCV genomes generally evolved according to a simple model of random evolution where the coalescent corresponded to the T/F sequence. Closely related sequence lineages could be explained by high multiplicity infection from a donor whose viral sequences had undergone a pretransmission bottleneck due to treatment, immune selection, or recent infection. These findings validate SGS, together with mathematical modeling and phylogenetic analysis, as a novel strategy to infer T/F HCV genome sequences. Despite the recent development of highly effective, interferon-sparing anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and the development of an effective

  17. Development and evaluation of one step single tube multiplex RT-PCR for rapid detection and typing of dengue viruses

    Parida Manmohan

    2008-01-01

    Full Text Available Abstract Background Dengue is emerging as a major public health concern in many parts of the world. The development of a one-step, single tube, rapid, and multiplex reverse transcription polymerase chain reaction (M-RT-PCR for simultaneous detection and typing of dengue virus using serotype specific primers during acute phase of illness is reported. Results An optimal assay condition with zero background was established having no cross-reaction with closely related members of flavivirus (Japanese encephalitis, West Nile, Yellow fever and alphavirus (Chikungunya. The feasibility of M-RT-PCR assay for clinical diagnosis was validated with 620 acute phase dengue patient sera samples of recent epidemics in India. The comparative evaluation vis a vis conventional virus isolation revealed higher sensitivity. None of the forty healthy serum samples screened in the present study revealed any amplification, thereby establishing specificity of the reported assay for dengue virus only. Conclusion These findings clearly suggested that M-RT-PCR assay reported in the present study is the rapid and cost-effective method for simultaneous detection as well as typing of the dengue virus in acute phase patient serum samples. Thus, the M-RT-PCR assay developed in this study will serve as a very useful tool for rapid diagnosis and typing of dengue infections in endemic areas.

  18. A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus.

    Yoshimi Tsuda

    2011-08-01

    Full Text Available Human outbreaks of Ebola virus (EBOV are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees are an important source of EBOV transmission to humans due to increased hunting of wildlife including the 'bush-meat' trade. Cytomegalovirus (CMV is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes.We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a 'proof-of-concept' for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV vector expressing a CD8+ T cell epitope from the nucleoprotein (NP of Zaire ebolavirus (ZEBOV (MCMV/ZEBOV-NP(CTL. MCMV/ZEBOV-NP(CTL induced high levels of long-lasting (>8 months CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection.This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for 'disseminating' CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.

  19. Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle tracking.

    Xiaoyun Yang

    Full Text Available Pseudorabies virus (PRV initially replicates in the porcine upper respiratory tract. It easily invades the mucosae and submucosae for subsequent spread throughout the body via blood vessels and nervous system. In this context, PRV developed ingenious processes to overcome different barriers such as epithelial cells and the basement membrane. Another important but often overlooked barrier is the substantial mucus layer which coats the mucosae. However, little is known about how PRV particles interact with porcine respiratory mucus. We therefore measured the barrier properties of porcine tracheal respiratory mucus, and investigated the mobility of nanoparticles including PRV in this mucus. We developed an in vitro model utilizing single particle tracking microscopy. Firstly, the mucus pore size was evaluated with polyethylene glycol coupled (PEGylated nanoparticles and atomic force microscope. Secondly, the mobility of PRV in porcine tracheal respiratory mucus was examined and compared with that of negative, positive and PEGylated nanoparticles. The pore size of porcine tracheal respiratory mucus ranged from 80 to 1500 nm, with an average diameter of 455±240 nm. PRV (zeta potential: -31.8±1.5 mV experienced a severe obstruction in porcine tracheal respiratory mucus, diffusing 59-fold more slowly than in water. Similarly, the highly negatively (-49.8±0.6 mV and positively (36.7±1.1 mV charged nanoparticles were significantly trapped. In contrast, the nearly neutral, hydrophilic PEGylated nanoparticles (-9.6±0.8 mV diffused rapidly, with the majority of particles moving 50-fold faster than PRV. The mobility of the particles measured was found to be related but not correlated to their surface charge. Furthermore, PEGylated PRV (-13.8±0.9 mV was observed to diffuse 13-fold faster than native PRV. These findings clearly show that the mobility of PRV was significantly hindered in porcine tracheal respiratory mucus, and that the obstruction of PRV

  20. Packaging signals in two single-stranded RNA viruses imply a conserved assembly mechanism and geometry of the packaged genome.

    Dykeman, Eric C; Stockley, Peter G; Twarock, Reidun

    2013-09-09

    The current paradigm for assembly of single-stranded RNA viruses is based on a mechanism involving non-sequence-specific packaging of genomic RNA driven by electrostatic interactions. Recent experiments, however, provide compelling evidence for sequence specificity in this process both in vitro and in vivo. The existence of multiple RNA packaging signals (PSs) within viral genomes has been proposed, which facilitates assembly by binding coat proteins in such a way that they promote the protein-protein contacts needed to build the capsid. The binding energy from these interactions enables the confinement or compaction of the genomic RNAs. Identifying the nature of such PSs is crucial for a full understanding of assembly, which is an as yet untapped potential drug target for this important class of pathogens. Here, for two related bacterial viruses, we determine the sequences and locations of their PSs using Hamiltonian paths, a concept from graph theory, in combination with bioinformatics and structural studies. Their PSs have a common secondary structure motif but distinct consensus sequences and positions within the respective genomes. Despite these differences, the distributions of PSs in both viruses imply defined conformations for the packaged RNA genomes in contact with the protein shell in the capsid, consistent with a recent asymmetric structure determination of the MS2 virion. The PS distributions identified moreover imply a preferred, evolutionarily conserved assembly pathway with respect to the RNA sequence with potentially profound implications for other single-stranded RNA viruses known to have RNA PSs, including many animal and human pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Exposure to hepatitis E virus, hepatitis A virus and Borrelia spp. infections in forest rangers from a single forest district in western Poland.

    Bura, Maciej; Bukowska, Alicja; Michalak, Michał; Bura, Aleksandra; Nawrocki, Mariusz J; Karczewski, Marek; Mozer-Lisewska, Iwona

    2018-03-13

    Hepatitis E virus (HEV) infection is an emerging problem in developed countries. At least 2 zoonotic genotypes of the virus (HEV-3 and HEV-4) infect human beings. There are some data suggesting that forest rangers (FRs) can be at a higher risk of contact with HEV. The aim of this study was to assess the prevalence of HEV exposure markers in FRs from a single forest district in Greater Poland in relation to anti-HAV (hepatitis A virus) IgG, and anti-Borrelia spp. IgM and IgG antibodies. In total, 138 participants (48 FRs and 90 blood donors - BDs) were tested for anti-HEV IgM and IgG (EUROIMMUN Medizinische Labordiagnostika AG, Luebeck, Germany) and 96 individuals (48 FRs and 48 BDs) were tested for anti-HAV IgG (ARCHITECT immunoassays, Abbott Laboratories, Wiesbaden, Germany); anti-Borrelia IgM and IgG (EUROIMMUN kits) were assessed in FRs only. Anti-HEV markers were detected in 3 participants (2.2%; IgM in 1 FR, IgG in 2 BDs), less frequently than anti-HAV (16 out of 96 individuals, about 17%; FRs 19% vs BDs 15%) or anti-Borrelia antibodies (18 out of 48 individuals, 37.5%) (p < 0.0001 for both). Older study participants (≥45 years of age) were more frequently HAV-seropositive (29% vs 4% of the younger individuals; p = 0.0012). We failed to unequivocally prove HEV exposure in FRs. The HAV seroprevalence in this study paralleled the situation in the general population. Exposure to Borrelia spp. in FRs was common.

  2. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments

    Wichgers Schreur, Paul J.; Kortekaas, Jeroen

    2016-01-01

    The bunyavirus genome comprises a small (S), medium (M), and large (L) RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging.

  3. Role of Electrostatics in the assembly pathway of a single-stranded RNA virus

    Garmann, R.F.; Comas-Garcia, M.; Koay, M.S.T.; Cornelissen, Jeroen Johannes Lambertus Maria; Knobler, C.M.; Gelbart, W.M.

    2014-01-01

    We have recently discovered (R. D. Cadena-Nava et al., J. Virol. 86:3318–3326, 2012, doi:10.1128/JVI.06566-11) that the in vitro packaging of RNA by the capsid protein (CP) of cowpea chlorotic mottle virus is optimal when there is a significant excess of CP, specifically that complete packaging of

  4. Chikungunya virus fusion properties elucidated by single-particle and bulk approaches

    van Duijl-Richter, Mareike K. S.; Blijleven, Jelle S.; van Oijen, Antoine M.; Smit, Jolanda M.

    Chikungunya virus (CHIKV) is a rapidly spreading, enveloped alphavirus causing fever, rash and debilitating polyarthritis. No specific treatment or vaccines are available to treat or prevent infection. For the rational design of vaccines and antiviral drugs, it is imperative to understand the

  5. Sensitive detection of multiple hepatitis A virus genotypes with a single polony-based assay

    Hepatitis A virus (HAV) is one of the major causes of non-bacterial gastroenteritis in humans worldwide. HAV is mostly transmitted via direct person-to-person contact, or by consumption of contaminated foods and water. Since only a few viral particles may cause disease, detection of low levels of HA...

  6. A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice

    Li Jianwei; Faber, Milosz; Papaneri, Amy; Faber, Marie-Luise; McGettigan, James P.; Schnell, Matthias J.; Dietzschold, Bernhard

    2006-01-01

    Rabies vaccines based on live attenuated rabies viruses or recombinant pox viruses expressing the rabies virus (RV) glycoprotein (G) hold the greatest promise of safety and efficacy, particularly for oral immunization of wildlife. However, while these vaccines induce protective immunity in foxes, they are less effective in other animals, and safety concerns have been raised for some of these vaccines. Because canine adenovirus 2 (CAV2) is licensed for use as a live vaccine for dogs and has an excellent efficacy and safety record, we used this virus as an expression vector for the RVG. The recombinant CAV2-RV G produces virus titers similar to those produced by wild-type CAV2, indicating that the RVG gene does not affect virus replication. Comparison of RVG expressed by CAV2-RV G with that of vaccinia-RV G recombinant virus (V-RG) revealed similar amounts of RV G on the cell surface. A single intramuscular or intranasal immunization of mice with CAV2-RVG induced protective immunity in a dose-dependent manner, with no clinical signs or discomfort from the virus infection regardless of the route of administration or the amount of virus

  7. Development of a novel method for simultaneous concentration of viruses and protozoa from a single water sample.

    Haramoto, Eiji; Katayama, Hiroyuki; Asami, Mari; Akiba, Michihiro

    2012-06-01

    A novel method, electronegative membrane-vortex (EMV) method, was developed for simultaneous concentration of viruses and protozoa from a single water sample. Viruses and protozoa in a water sample were mixed with a cation solution and adsorbed on an electronegative membrane. Concentrated virus and protozoa samples were obtained as supernatant and pellet fractions, respectively, by vigorous vortex mixing of the membrane and centrifugation of the eluted material. The highest recovery efficiencies of model microbes from river water and tap water by this EMV method were obtained using a mixed cellulose ester membrane with a pore size of 0.45 μm (Millipore) as the electronegative membrane and MgCl(2) as the cation solution. The recovery was 27.7-86.5% for poliovirus, 25.7-68.3% for coliphage Qβ, 28.0-60.0% for Cryptosporidium oocysts, and 35.0-53.0% for Giardia cysts. The EMV method detected successfully indigenous viruses and protozoa in wastewater and river water samples from the Kofu basin, Japan, showing an overall positive rate of 100% (43/43) for human adenovirus, 79% (34/43) for norovirus GI, 65% (28/43) for norovirus GII, 23% (10/43) for Cryptosporidium oocysts, and 60% (26/43) for Giardia cysts. By direct DNA sequencing, a total of four genotypes (AI, AII, B, and G) of Giardia intestinalis were identified in the water samples, indicating that the river water was contaminated with feces from various mammals, including humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A single amino acid substitution in the core protein of West Nile virus increases resistance to acidotropic compounds.

    Miguel A Martín-Acebes

    Full Text Available West Nile virus (WNV is a worldwide distributed mosquito-borne flavivirus that naturally cycles between birds and mosquitoes, although it can infect multiple vertebrate hosts including horses and humans. This virus is responsible for recurrent epidemics of febrile illness and encephalitis, and has recently become a global concern. WNV requires to transit through intracellular acidic compartments at two different steps to complete its infectious cycle. These include fusion between the viral envelope and the membrane of endosomes during viral entry, and virus maturation in the trans-Golgi network. In this study, we followed a genetic approach to study the connections between viral components and acidic pH. A WNV mutant with increased resistance to the acidotropic compound NH4Cl, which blocks organelle acidification and inhibits WNV infection, was selected. Nucleotide sequencing revealed that this mutant displayed a single amino acid substitution (Lys 3 to Glu on the highly basic internal capsid or core (C protein. The functional role of this replacement was confirmed by its introduction into a WNV infectious clone. This single amino acid substitution also increased resistance to other acidification inhibitor (concanamycin A and induced a reduction of the neurovirulence in mice. Interestingly, a naturally occurring accompanying mutation found on prM protein abolished the resistant phenotype, supporting the idea of a genetic crosstalk between the internal C protein and the external glycoproteins of the virion. The findings here reported unveil a non-previously assessed connection between the C viral protein and the acidic pH necessary for entry and proper exit of flaviviruses.

  9. A single amino acid substitution in the core protein of West Nile virus increases resistance to acidotropic compounds.

    Martín-Acebes, Miguel A; Blázquez, Ana-Belén; de Oya, Nereida Jiménez; Escribano-Romero, Estela; Shi, Pei-Yong; Saiz, Juan-Carlos

    2013-01-01

    West Nile virus (WNV) is a worldwide distributed mosquito-borne flavivirus that naturally cycles between birds and mosquitoes, although it can infect multiple vertebrate hosts including horses and humans. This virus is responsible for recurrent epidemics of febrile illness and encephalitis, and has recently become a global concern. WNV requires to transit through intracellular acidic compartments at two different steps to complete its infectious cycle. These include fusion between the viral envelope and the membrane of endosomes during viral entry, and virus maturation in the trans-Golgi network. In this study, we followed a genetic approach to study the connections between viral components and acidic pH. A WNV mutant with increased resistance to the acidotropic compound NH4Cl, which blocks organelle acidification and inhibits WNV infection, was selected. Nucleotide sequencing revealed that this mutant displayed a single amino acid substitution (Lys 3 to Glu) on the highly basic internal capsid or core (C) protein. The functional role of this replacement was confirmed by its introduction into a WNV infectious clone. This single amino acid substitution also increased resistance to other acidification inhibitor (concanamycin A) and induced a reduction of the neurovirulence in mice. Interestingly, a naturally occurring accompanying mutation found on prM protein abolished the resistant phenotype, supporting the idea of a genetic crosstalk between the internal C protein and the external glycoproteins of the virion. The findings here reported unveil a non-previously assessed connection between the C viral protein and the acidic pH necessary for entry and proper exit of flaviviruses.

  10. Single-particle cryo-electron microscopy of Rift Valley fever virus.

    Sherman, Michael B; Freiberg, Alexander N; Holbrook, Michael R; Watowich, Stanley J

    2009-04-25

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T=12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.

  11. Single-particle cryo-electron microscopy of Rift Valley fever virus

    Sherman, Michael B.; Freiberg, Alexander N.; Holbrook, Michael R.; Watowich, Stanley J.

    2009-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae; Phlebovirus) is an emerging human and veterinary pathogen causing acute hepatitis in ruminants and has the potential to cause hemorrhagic fever in humans. We report a three-dimensional reconstruction of RVFV vaccine strain MP-12 (RVFV MP-12) by cryo-electron microcopy using icosahedral symmetry of individual virions. Although the genomic core of RVFV MP-12 is apparently poorly ordered, the glycoproteins on the virus surface are highly symmetric and arranged on a T = 12 icosahedral lattice. Our RVFV MP-12 structure allowed clear identification of inter-capsomer contacts and definition of possible glycoprotein arrangements within capsomers. This structure provides a detailed model for phleboviruses, opens new avenues for high-resolution structural studies of the bunyavirus family, and aids the design of antiviral diagnostics and effective subunit vaccines.

  12. Characterization of viruses infecting potato plants from a single location in Shetland, an isolated scottish archipelago

    Mortensen, R.J.; Shen, Xinyi; Reid, Alex

    2010-01-01

    , as were 29 Scottish mainland isolates of the same four potato virus species, and these 58 isolates were compared to previously published sequence data. This has allowed the characterization of viruses from a relatively isolated location, where there is little production of ware potatoes and no seed potato...... production. Phylogenetic homogeneity of the Shetland isolates of PVS and PVV was apparent. PVX was more heterogeneous, and Shetland isolates cluster with the Scottish isolates in a group which includes Asian and European isolates. For PVA, the majority of the Shetland and Scottish mainland isolates formed...... a predominantly Scottish grouping, with the remaining Shetland and Scottish mainland isolates clustering with a previously characterized Scottish isolate. There were three main groups of PVA, of which the Scottish grouping was the only one which did not have a fully characterized representative. To extend...

  13. Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

    Harms, Zachary D.; Mogensen, Klaus Bo; Rodrigues de Sousa Nunes, Pedro André

    2011-01-01

    We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching....... The two nanopores are 50-nm wide, 50-nm deep, and 40-nm long and are spaced 2.0-μm apart. The nanochannel that brackets the two pores is 20 wider (1 μm) to reduce the electrical resistance adjacent to the two pores and to ensure the current returns to its baseline value between resistive-pulse events...

  14. How to replace the oil droplet in Millikan's experiment with a single virus

    Faez, Sanli

    A highly sensitive optical capillary electrophoresis measurement method based on a nanofluidic optical fiber platform is presented. By using scaling arguments and considering realistic instrument limitations, I underline the feasibility of measuring the electrophoretic mobility of a single

  15. Isolation and characterization of subgenomic DNAs encapsidated in 'single' T = 1 isometric particles of Maize streak virus

    Casado, Carolina G.; Javier Ortiz, G.; Padron, Eric; Bean, Samantha J.; McKenna, Robert; Agbandje-McKenna, Mavis; Boulton, Margaret I.

    2004-01-01

    'Single' T = 1 isometric particles of Maize streak virus (MSV) have been isolated from infected maize leaves. Biochemical and genetic characterizations show that these particles contain subgenomic (sg) MSV DNA encapsidated by the MSV coat protein. The largest sg DNA is 1.56 kb, slightly larger than half genome size, although sg DNAs as small as 0.2 kb were also cloned. The sg DNAs are not infectious, and they do not appear to play a role in the pathogenicity of MSV. This is the first report of sg DNAs for MSV and, to our knowledge, the first time that encapsidated sg DNAs have been characterized at the sequence level for any geminivirus. These data will assist in our investigations into the role of genomic DNA in the formation of the unique geminate capsid architecture of the Geminiviridae

  16. Disabled infectious single cycle-herpes simplex virus (DISC-HSV) as a vector for immunogene therapy of cancer.

    Rees, Robert C; McArdle, Stephanie; Mian, Shahid; Li, Geng; Ahmad, Murrium; Parkinson, Richard; Ali, Selman A

    2002-02-01

    Disabled infectious single cycle-herpes simplex viruses (DISC-HSV) have been shown to be safe for use in humans and may be considered efficacious as vectors for immunogene therapy in cancer. Preclinical studies show that DISC-HSV is an efficient delivery system for cytokine genes and antigens. DISC-HSV infects a high proportion of cells, resulting in rapid gene expression for at least 72 h. The DISC-HSV-mGM-CSF vector, when inoculated into tumors, induces tumor regression in a high percentage of animals, concomitant with establishing a cytotoxic T-cell response, which is MHC class I restricted and directed against peptides of known tumor antigens. The inherent properties of DISC-HSV makes it a suitable vector for consideration in human immunogene therapy trials.

  17. Viral meningitis epidemics and a single, recent, recombinant and anthroponotic origin of swine vesicular disease virus

    Bruhn, Christian Anders Wathne; Nielsen, Sandra Cathrine Abel; Samaniego Castruita, Jose Alfredo

    2015-01-01

    BACKGROUND AND OBJECTIVES: Swine vesicular disease virus (SVDV) is a close relative of the human Enterovirus B serotype, coxsackievirus B5. As the etiological agent of a significant emergent veterinary disease, several studies have attempted to explain its origin. However, several key questions...... and non-coding regions supports that SVDV has a recombinant origin between coxsackievirus B5 and another Enterovirus B serotype, most likely coxsackievirus A9. Extensive Bayesian sequence-based analysis of the time of the most recent common ancestor of all analysed sequences places this within a few years...... around 1961. Epidemiological evidence points to China as an origin, but there are no available samples to test this conclusively. CONCLUSIONS AND IMPLICATIONS: Historical investigation and the clinical aspects of the involved Enterovirus B serotypes, makes the current results consistent with a hypothesis...

  18. TH-EF-207A-06: High-Resolution Optical-CT/ECT Imaging of Unstained Mice Femur, Brain, Spleen, and Tumor

    Yoon, S; Dewhirst, M; Oldham, M; Boss, M; Birer, S

    2016-01-01

    Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm 3 ) ex vivo tissue samples at a resolution of 12.9µm 3 per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10, 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied

  19. Novel Positive-Sense, Single-Stranded RNA (+ssRNA) Virus with Di-Cistronic Genome from Intestinal Content of Freshwater Carp (Cyprinus carpio)

    Pankovics, Péter; Simmonds, Peter

    2011-01-01

    A novel positive-sense, single-stranded RNA (+ssRNA) virus (Halastavi árva RNA virus, HalV; JN000306) with di-cistronic genome organization was serendipitously identified in intestinal contents of freshwater carps (Cyprinus carpio) fished by line-fishing from fishpond “Lőrinte halastó” located in Veszprém County, Hungary. The complete nucleotide (nt) sequence of the genomic RNA is 9565 nt in length and contains two long - non-in-frame - open reading frames (ORFs), which are separated by an intergenic region. The ORF1 (replicase) is preceded by an untranslated sequence of 827 nt, while an untranslated region of 139 nt follows the ORF2 (capsid proteins). The deduced amino acid (aa) sequences of the ORFs showed only low (less than 32%) and partial similarity to the non-structural (2C-like helicase, 3C-like cystein protease and 3D-like RNA dependent RNA polymerase) and structural proteins (VP2/VP4/VP3) of virus families in Picornavirales especially to members of the viruses with dicistronic genome. Halastavi árva RNA virus is present in intestinal contents of omnivorous freshwater carps but the origin and the host species of this virus remains unknown. The unique viral sequence and the actual position indicate that Halastavi árva RNA virus seems to be the first member of a new di-cistronic ssRNA virus. Further studies are required to investigate the specific host species (and spectrum), ecology and role of Halastavi árva RNA virus in the nature. PMID:22195010

  20. A highly sensitive single-tube nested PCR assay for the detection of Pineapple mealybug wilt associated virus-2 (PMWaV-2)

    An assay was developed for the detection of Pineapple mealybug wilt associated virus-2 (PMWaV-2), an important factor in the etiology of mealybug wilt of pineapple. The assay combines reverse transcription of RNA isolated from pineapple with a specific and very sensitive, single, closed-tube nested ...

  1. Hepatitis C Virus Antibodies in Dialysis Patients in Tunisia: A Single Center Study

    Sassi F

    2000-01-01

    Full Text Available Fifty-eight patients on maintenance hemodialysis in a dialysis unit at Tunis, Tunisia were tested for anti-hepatitis C virus (anti-HCV antibodies by second generation ELISA test, and for HCV-RNA by nested reverse transcriptase polymerase chain reaction (RT-PCR of 5′ non-coding region. Specificity of the antibodies was confirmed by immunoblot test. HCV genotype was defined using INNO-LIPA test. Twenty-seven out of 58 patients (46.5% were reactive by ELISA. Transaminase levels were assessed over a six-month period and showed normal average values. Fourteen of the 27 anti-HCV positive patients (51% were positive by RT-PCR. Type 1b HCV genotype was the most prevalent, seen in all the dialysis patients and one patient in addition, was co-infected with genotype 4. There was a significant correlation between the duration on dialysis (over five years and the prevalence of anti-HCV-positive patients (P< 0.005 while no correlation existed between the number of blood transfusions and the presence of anti-HCV antibodies. The present study illustrates the high prevalence of HCV infection among Tunisian dialysis patients (51% and indicates that the spread may be nosocomial rather than transfusion-related.

  2. Interaction between single-dose Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus vaccines on dually infected pigs.

    Park, Su-Jin; Seo, Hwi Won; Park, Changhoon; Chae, Chanhee

    2014-06-01

    The objective of this study was to determine the effects of Mycoplasma hyopneumoniae and/or porcine reproductive and respiratory syndrome virus (PRRSV) vaccination on dually infected pigs. In total, 72 pigs were randomly divided into nine groups (eight pigs per group), as follows: five vaccinated and challenged groups, three non-vaccinated and challenged groups, and a negative control group. Single-dose vaccination against M. hyopneumoniae alone decreased the levels of PRRSV viremia and PRRSV-induced pulmonary lesions, whereas single-dose vaccination against PRRSV alone did not decrease nasal shedding of M. hyopneumoniae and mycoplasma-induced pulmonary lesions in the dually infected pigs. The M. hyopneumoniae challenge impaired the protective cell-mediated immunity induced by the PRRSV vaccine, whereas the PRRSV challenge did not impair the protective cell-mediated immunity induced by the M. hyopneumoniae vaccine. The present study provides swine practitioners and producers with efficient vaccination regimes; vaccination against M. hyopneumoniae is the first step in protecting pigs against co-infection with M. hyopneumoniae and PRRSV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Single Amino Acid Insertion in Loop 4 Confers Amphotropic Murine Leukemia Virus Receptor Function upon Murine Pit1

    Lundorf, Mikkel D.; Pedersen, Finn Skou; O'Hara, Bryan

    1998-01-01

    Pit1 is the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related human protein Pit2 is a receptor for amphotropic murine leukemia virus (A-MuLV). The A-MuLV-related isolate 10A1 can utilize both Pit1 and Pit2 as receptors. A stretch...

  4. A single mutation in the E2 glycoprotein important for neurovirulence influences binding of Sindbis virus to neuroblastoma cells

    Lee, PY; Knight, R; Smit, JM; Wilschut, J; Griffin, DE

    The amino acid at position 55 of the E2 glycoprotein (E2(55)) of Sindbis virus (SV) is a critical determinant of SV neurovirulence in mice. Recombinant virus strain TE (E2(55) = histidine) differs only at this position from virus strain 633 (E2(55) = glutamine), yet TE is considerably more

  5. Experimental Treatment of Ebola Virus Disease with TKM-130803: A Single-Arm Phase 2 Clinical Trial.

    Dunning, Jake; Sahr, Foday; Rojek, Amanda; Gannon, Fiona; Carson, Gail; Idriss, Baimba; Massaquoi, Thomas; Gandi, Regina; Joseph, Sebatu; Osman, Hassan K; Brooks, Timothy J G; Simpson, Andrew J H; Goodfellow, Ian; Thorne, Lucy; Arias, Armando; Merson, Laura; Castle, Lyndsey; Howell-Jones, Rebecca; Pardinaz-Solis, Raul; Hope-Gill, Benjamin; Ferri, Mauricio; Grove, Jennifer; Kowalski, Mark; Stepniewska, Kasia; Lang, Trudie; Whitehead, John; Olliaro, Piero; Samai, Mohammed; Horby, Peter W

    2016-04-01

    TKM-130803, a small interfering RNA lipid nanoparticle product, has been developed for the treatment of Ebola virus disease (EVD), but its efficacy and safety in humans has not been evaluated. In this single-arm phase 2 trial, adults with laboratory-confirmed EVD received 0.3 mg/kg of TKM-130803 by intravenous infusion once daily for up to 7 d. On days when trial enrolment capacity was reached, patients were enrolled into a concurrent observational cohort. The primary outcome was survival to day 14 after admission, excluding patients who died within 48 h of admission. After 14 adults with EVD had received TKM-130803, the pre-specified futility boundary was reached, indicating a probability of survival to day 14 of ≤0.55, and enrolment was stopped. Pre-treatment geometric mean Ebola virus load in the 14 TKM-130803 recipients was 2.24 × 109 RNA copies/ml plasma (95% CI 7.52 × 108, 6.66 × 109). Two of the TKM-130803 recipients died within 48 h of admission and were therefore excluded from the primary outcome analysis. Of the remaining 12 TKM-130803 recipients, nine died and three survived. The probability that a TKM-130803 recipient who survived for 48 h will subsequently survive to day 14 was estimated to be 0.27 (95% CI 0.06, 0.58). TKM-130803 infusions were well tolerated, with 56 doses administered and only one possible infusion-related reaction observed. Three patients were enrolled in the observational cohort, of whom two died. Administration of TKM-130803 at a dose of 0.3 mg/kg/d by intravenous infusion to adult patients with severe EVD was not shown to improve survival when compared to historic controls. Pan African Clinical Trials Registry PACTR201501000997429.

  6. A Single Amino Acid Substitution in the NS2A Protein of Japanese Encephalitis Virus Affects Virus Propagation In Vitro but Not In Vivo.

    Takamatsu, Yuki; Morita, Kouichi; Hayasaka, Daisuke

    2015-06-01

    We identified a unique amino acid of NS2A113, phenylalanine, that affects the efficient propagation of two Japanese encephalitis virus strains, JaTH160 and JaOArS982, in neuroblastoma Neuro-2a cells but not in cell lines of extraneural origin. This amino acid did not affect viral loads in the brain or survival curves in mice. These findings suggest that virus propagation in vitro may not reflect the level of virus neuroinvasiveness in vivo. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Pegylated interferon monotherapy for hepatitis C virus infection in patients on hemodialysis: A single center study

    S K Agarwal

    2016-01-01

    Full Text Available There is no published study from India on hepatitis C virus (HCV treatment in dialysis patients. Patients on dialysis with HCV infection treated with pegylated interferon (Peg-INF monotherapy were studied. All patients were subjected to HCV-polymerase chain reaction, viral load, genotype, and liver biopsy. Quantitative HCV-RNA was performed monthly. Patients with genotype 1 and 4 were given 12 month therapy while those with genotypes 2 and 3 were given 6 months therapy. Response was classified as per standard criteria of rapid virological response (RVR, early virological response (EVR, end of treatment response (ETR, and sustained virological response (SVR. A total of 85 patients were treated. Mean age was 35.2 ± 10.5 (range 15–67 years, and 77.6% were males. HCV genotypes were 1 in 40.9%, 2 in 12%, 3 in 36.1%, 4 in 3.6%, and others in 7.2%. Mean viral load was 106 copies/mL. Mean liver biopsy grade was 4 ± 1.7 and stage 0.8 ± 0.8. Mean time from diagnosis of HCV infection and the treatment start was 10.7 ± 14.3 months. One patient died of unrelated illness, one was lost to follow-up, and three could not sustain treatment due to cost. Forty-three of the 80 (54% patients had RVR while 49 (61% patients had EVR and ETR. There was no difference in term of RVR related to genotype. Fifty -four percentage had SVR. Mild flu-like symptoms were seen in all patients. Sixty-four (80% patients required increase in erythropoietin doses. Twenty-eight (35% patients developed leukopenia (three treatment-limiting and 16 (20% developed thrombocytopenia (one treatment-limiting. Five patients developed tuberculosis, five bacterial pneumonia, and one bacterial knee monoarthritis. None of the patients developed depression. Our study concludes that Peg-INF monotherapy resulted in 54% RVR and SVR in dialysis patients with HCV infection. Therapy was well-tolerated with minimal side effects. There was no effect of viral genotype on response to therapy.

  8. Data for increase of Lymantria dispar male survival after topical application of single-stranded RING domain fragment of IAP-3 gene of its nuclear polyhedrosis virus

    Oberemok, Volodymyr V.; Laikova, Kateryna V.; Zaitsev, Aleksei S.; Gushchin, Vladimir A.; Skorokhod, Oleksii A.

    2016-01-01

    This data article is related to the research article entitled “The RING for gypsy moth control: topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide” [1]. This article reports on significantly higher survival of gypsy moth Lymantria dispar male individuals in response to topical application of single-stranded DNA, based on RING (really interesting new gene) domain fragment of LdMNPV (L. dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene and acted as DNA insecticide. PMID:27054151

  9. Isolation and characterization of Nylanderia fulva virus 1, a positive-sense, single-stranded RNA virus infecting the tawny crazy ant, Nylanderia fulva

    Valles, Steven M., E-mail: steven.valles@ars.usda.gov [Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608 (United States); Oi, David H.; Becnel, James J. [Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608 (United States); Wetterer, James K. [Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 (United States); LaPolla, John S. [Department of Biological Sciences, Towson University, 8000 York Road, Towson, MD 21252 (United States); Firth, Andrew E. [Department of Pathology, University of Cambridge, Cambridge CB2 1QP (United Kingdom)

    2016-09-15

    We report the discovery of Nylanderia fulva virus 1 (NfV-1), the first virus identified and characterized from the ant, Nylanderia fulva. The NfV-1 genome (GenBank accession KX024775) is 10,881 nucleotides in length, encoding one large open reading frame (ORF). Helicase, protease, RNA-dependent RNA polymerase, and jelly-roll capsid protein domains were recognized within the polyprotein. Phylogenetic analysis placed NfV-1 in an unclassified clade of viruses. Electron microscopic examination of negatively stained samples revealed particles with icosahedral symmetry with a diameter of 28.7±1.1 nm. The virus was detected by RT-PCR in larval, pupal, worker and queen developmental stages. However, the replicative strand of NfV-1 was only detected in larvae. Vertical transmission did not appear to occur, but horizontal transmission was facile. The inter-colonial field prevalence of NfV-1 was 52±35% with some local infections reaching 100%. NfV-1 was not detected in limited samples of other Nylanderia species or closely related ant species. - Highlights: • A new positive-strand RNA virus was discovered in the ant, Nylanderia fulva. • The Nylanderia fulva virus 1 genome was comprised of 10,881 nucleotides. • NfV-1 was detected in larval, pupal, queen and worker ants, but not eggs. • Replication of NfV-1 appeared to be limited to the larval stage.

  10. Isolation and characterization of Nylanderia fulva virus 1, a positive-sense, single-stranded RNA virus infecting the tawny crazy ant, Nylanderia fulva

    Valles, Steven M.; Oi, David H.; Becnel, James J.; Wetterer, James K.; LaPolla, John S.; Firth, Andrew E.

    2016-01-01

    We report the discovery of Nylanderia fulva virus 1 (NfV-1), the first virus identified and characterized from the ant, Nylanderia fulva. The NfV-1 genome (GenBank accession KX024775) is 10,881 nucleotides in length, encoding one large open reading frame (ORF). Helicase, protease, RNA-dependent RNA polymerase, and jelly-roll capsid protein domains were recognized within the polyprotein. Phylogenetic analysis placed NfV-1 in an unclassified clade of viruses. Electron microscopic examination of negatively stained samples revealed particles with icosahedral symmetry with a diameter of 28.7±1.1 nm. The virus was detected by RT-PCR in larval, pupal, worker and queen developmental stages. However, the replicative strand of NfV-1 was only detected in larvae. Vertical transmission did not appear to occur, but horizontal transmission was facile. The inter-colonial field prevalence of NfV-1 was 52±35% with some local infections reaching 100%. NfV-1 was not detected in limited samples of other Nylanderia species or closely related ant species. - Highlights: • A new positive-strand RNA virus was discovered in the ant, Nylanderia fulva. • The Nylanderia fulva virus 1 genome was comprised of 10,881 nucleotides. • NfV-1 was detected in larval, pupal, queen and worker ants, but not eggs. • Replication of NfV-1 appeared to be limited to the larval stage.

  11. Evaluation of a single-tube fluorogenic RT-PCR assay for detection of bovine respiratory syncytial virus in clinical samples

    Hakhverdyan, Mikhayil; Hägglund, Sara; Larsen, Lars Erik

    2005-01-01

    understanding of the virus. In this study, a BRSV fluorogenic reverse transcription PCR (fRT-PCR) assay, based on TaqMan principle, was developed and evaluated on a large number of clinical samples, representing various cases of natural and experimental BRSV infections. By using a single-step closed-tube format......, the turn-around time was shortened drastically and results were obtained with minimal risk for cross-contamination. According to comparative analyses, the detection limit of the fRT-PCR was on the same level as that of a nested PCR and the sensitivity relatively higher than that of a conventional PCR......, antigen ELISA (Ag-ELISA) and virus isolation (VI). Interspersed negative control samples, samples from healthy animals and eight symptomatically or genetically related viruses were all negative, confirming a high specificity of the assay. Taken together, the data indicated that the fRT-PCR assay can...

  12. Single-dose and steady-state pharmacokinetics of tenofovir disoproxil fumarate in human immunodeficiency virus-infected children.

    Hazra, Rohan; Balis, Frank M; Tullio, Antonella N; DeCarlo, Ellen; Worrell, Carol J; Steinberg, Seth M; Flaherty, John F; Yale, Kitty; Poblenz, Marianne; Kearney, Brian P; Zhong, Lijie; Coakley, Dion F; Blanche, Stephane; Bresson, Jean Louis; Zuckerman, Judith A; Zeichner, Steven L

    2004-01-01

    Tenofovir disoproxil fumarate (DF) is a potent nucleotide analog reverse transcriptase inhibitor approved for the treatment of human immunodeficiency virus (HIV)-infected adults. The single-dose and steady-state pharmacokinetics of tenofovir were evaluated following administration of tenofovir DF in treatment-experienced HIV-infected children requiring a change in antiretroviral therapy. Using increments of tenofovir DF 75-mg tablets, the target dose was 175 mg/m(2); the median administered dose was 208 mg/m(2). Single-dose pharmacokinetics were evaluated in 18 subjects, and the geometric mean area under the concentration-time curve from 0 h to infinity (AUC(0- infinity )) was 2,150 ng. h/ml and the geometric mean maximum concentration (C(max)) was 266 ng/ml. Subsequently, other antiretrovirals were added to each patient's regimen based upon treatment history and baseline viral resistance results. Steady-state pharmacokinetics were evaluated in 16 subjects at week 4. The steady-state, geometric mean AUC for the 24-h dosing interval was 2,920 ng. h/ml and was significantly higher than the AUC(0- infinity ) after the first dose (P = 0.0004). The geometric mean C(max) at steady state was 302 ng/ml. Tenofovir DF was generally very well tolerated. Steady-state tenofovir exposures in children receiving tenofovir DF-containing combination antiretroviral therapy approached values seen in HIV-infected adults (AUC, approximately 3,000 ng. h/ml; C(max), approximately 300 ng/ml) treated with tenofovir DF at 300 mg.

  13. Comparison of the protective efficacy between single and combination of recombinant adenoviruses expressing complete and truncated glycoprotein, and nucleoprotein of the pathogenic street rabies virus in mice.

    Kim, Ha-Hyun; Yang, Dong-Kun; Nah, Jin-Ju; Song, Jae-Young; Cho, In-Soo

    2017-06-24

    Rabies is an important viral zoonosis that causes acute encephalitis and death in mammals. To date, several recombinant vaccines have been developed based on G protein, which is considered to be the main antigen, and these vaccines are used for rabies control in many countries. Most recombinant viruses expressing RABV G protein retain the G gene from attenuated RABV. Not enough is currently known about the protective effect against RABV of a combination of recombinant adenoviruses expressing the G and N proteins of pathogenic street RABV. We constructed a recombinant adenovirus (Ad-0910Gsped) expressing the signal peptide and ectodomain (sped) of G protein of the Korean street strain, and evaluated the immunological protection conferred by a single and combination of three kinds of recombinant adenoviruses (Ad-0910Gsped and Ad-0910G with or without Ad-0910 N) in mice. A combination of Ad-0910G and Ad-0910 N conferred improved immunity against intracranial challenge compared to single administration of Ad-0910G. The Ad-0910G virus, expressing the complete G protein, was more immunogenic than Ad-0910Gsped, which expressed a truncated G protein with the transmembrane and cytoplasmic domains removed. Additionally, oral vaccination using a combination of viruses led to complete protection. Our results suggest that this combination of viruses is a viable new intramuscular and oral vaccine candidate.

  14. A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses

    Rui eZhang

    2014-07-01

    Full Text Available Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10 of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1. A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A tail. The genome possesses two non-overlapping open reading frames (ORFs: a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5'-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1. Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1and FgV1.

  15. Single-cycle immunodeficiency viruses provide strategies for uncoupling in vivo expression levels from viral replicative capacity and for mimicking live-attenuated SIV vaccines

    Kuate, Seraphin; Stahl-Hennig, Christiane; Haaft, Peter ten; Heeney, Jonathan; Ueberla, Klaus

    2003-01-01

    To reduce the risks associated with live-attenuated immunodeficiency virus vaccines, single-cycle immunodeficiency viruses (SCIVs) were developed by primer complementation and production of the vaccine in the absence of vif in a vif-independent cell line. After a single intravenous injection of SCIVs into rhesus monkeys, peak viral RNA levels of 10 3 to 10 4 copies/ml plasma were observed, indicating efficient expression of SCIV in the vaccinee. After booster immunizations with SCIVs, SIV-specific humoral and cellular immune responses were observed. Although the vaccine doses used in this pilot study could not protect vaccinees from subsequent intravenous challenge with pathogenic SIVmac239, our results demonstrate that the novel SCIV approach allows us to uncouple in vivo expression levels from the viral replicative capacity facilitating the analysis of the relationship between viral expression levels or viral genes and immune responses induced by SIV

  16. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs

    Sullivan, Nancy J.; Geisbert, Thomas W.; Geisbert, Joan B.; Shedlock, Devon J.; Xu, Ling; Lamoreaux, Laurie; Custers, Jerome H. H. V.; Popernack, Paul M.; Yang, Zhi-Yong; Pau, Maria G.; Roederer, Mario; Koup, Richard A.; Goudsmit, Jaap; Jahrling, Peter B.; Nabel, Gary J.

    2006-01-01

    BACKGROUND: Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or

  17. Data mining cDNAs reveals three new single stranded RNA viruses in Nasonia (Hymenopetera:Pteromalidae)

    Hymenopteran viruses may provide insights into colony collapse disorder in honey bees and other insect species. Three novel small RNA viruses were discovered during the genomics effort for the beneficial parasitoid of flies in the genus Nasonia (Hymenoptera). Genomics provides a great deal of inform...

  18. Efficacy of single dose of a bivalent vaccine containing inactivated Newcastle disease virus and reassortant highly pathogenic avian influenza H5N1 virus against lethal HPAI and NDV infection in chickens.

    Dong-Hun Lee

    Full Text Available Highly pathogenic avian influenza (HPAI and Newcastle disease (ND are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6:2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1 virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.

  19. Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9.

    Roche-Molina, Marta; Sanz-Rosa, David; Cruz, Francisco M; García-Prieto, Jaime; López, Sergio; Abia, Rocío; Muriana, Francisco J G; Fuster, Valentín; Ibáñez, Borja; Bernal, Juan A

    2015-01-01

    Patients with mutations in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene have hypercholesterolemia and are at high risk of adverse cardiovascular events. We aimed to stably express the pathological human D374Y gain-of-function mutant form of PCSK9 (PCSK9(DY)) in adult wild-type mice to generate a hyperlipidemic and proatherogenic animal model, achieved with a single systemic injection with adeno-associated virus (AAV). We constructed an AAV-based vector to support targeted transfer of the PCSK9(DY) gene to liver. After injection with 3.5×10(10) viral particles, mice in the C57BL/6J, 129/SvPasCrlf, or FVB/NCrl backgrounds developed long-term hyperlipidemia with a strong increase in serum low-density lipoprotein. Macroscopic and histological analysis showed atherosclerotic lesions in the aortas of AAV-PCSK9(DY) mice fed a high-fat-diet. Advanced lesions in these high-fat-diet-fed mice also showed evidence of macrophage infiltration and fibrous cap formation. Hepatic AAV-PCSK9(DY) infection did not result in liver damage or signs of immunologic response. We further tested the use of AAV-PCSK9(DY) to study potential genetic interaction with the ApoE gene. Histological analysis of ApoE(-/-) AAV-PCSK9(DY) mice showed a synergistic response to ApoE deficiency, with aortic lesions twice as extensive in ApoE(-/-) AAV-PCSK9(DY)-transexpressing mice as in ApoE(-/-) AAV-Luc controls without altering serum cholesterol levels. Single intravenous AAV-PCSK9(DY) injection is a fast, easy, and cost-effective approach, resulting in rapid and long-term sustained hyperlipidemia and atherosclerosis. We demonstrate as a proof of concept the synergy between PCSK9(DY) gain-of-function and ApoE deficiency. This methodology could allow testing of the genetic interaction of several mutations without the need for complex and time-consuming backcrosses. © 2014 American Heart Association, Inc.

  20. Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C virus

    Russell, Rodney S; Meunier, Jean-Christophe; Takikawa, Shingo

    2008-01-01

    mutations that were selected during serial passage in Huh-7.5 cells were studied. Recombinant genomes containing all five mutations produced 3-4 logs more infectious virions than did wild type. Neither a coding mutation in NS5A nor a silent mutation in E2 was adaptive, whereas coding mutations in E2, p7......The JFH1 strain of hepatitis C virus (HCV) is unique among HCV isolates, in that the wild-type virus can traverse the entire replication cycle in cultured cells. However, without adaptive mutations, only low levels of infectious virus are produced. In the present study, the effects of five...

  1. Single treatment with ethanol hand rub is ineffective against human rhinovirus--hand washing with soap and water removes the virus efficiently.

    Savolainen-Kopra, Carita; Korpela, Terttu; Simonen-Tikka, Marja-Leena; Amiryousefi, Ali; Ziegler, Thedi; Roivainen, Merja; Hovi, Tapani

    2012-03-01

    Ethanol-containing hand rubs are used frequently as a substitute for hand washing with water and soap. However, not all viruses are inactivated by a short term rubbing with alcohol. The capacity of a single round of instructed and controlled hand cleaning with water and soap or ethanol-containing hand rub, respectively, was tested for removal of human rhinovirus administered onto the skin of healthy volunteers on the back of the hands. Hand washing with soap and water appeared to be much more efficient for removing rhinoviruses from skin than rubbing hands with an ethanol-containing disinfectant. After washing with soap and water the virus was detected in 3/9 (33.3%) test persons from the left hand and 1/9 (11.1%) cases from the right hand, whereas the virus was detected invariably by real-time RT-PCR from both hands after cleaning with alcohol hand rub (P-value soap can clean efficiently hands contaminated with the virus responsible for an extensive share of common cold episodes. Copyright © 2012 Wiley Periodicals, Inc.

  2. A single site for N-linked glycosylation in the envelope glycoprotein of feline immunodeficiency virus modulates the virus-receptor interaction

    Samman Ayman

    2008-08-01

    Full Text Available Abstract Feline immunodeficiency virus (FIV targets helper T cells by attachment of the envelope glycoprotein (Env to CD134, a subsequent interaction with CXCR4 then facilitating the process of viral entry. As the CXCR4 binding site is not exposed until CD134-binding has occurred then the virus is protected from neutralising antibodies targeting the CXCR4-binding site on Env. Prototypic FIV vaccines based on the FL4 strain of FIV contain a cell culture-adapted strain of FIV Petaluma, a CD134-independent strain of FIV that interacts directly with CXCR4. In addition to a characteristic increase in charge in the V3 loop homologue of FIVFL4, we identified two mutations in potential sites for N-linked glycosylation in the region of FIV Env analogous to the V1–V2 region of HIV and SIV Env, T271I and N342Y. When these mutations were introduced into the primary GL8 and CPG41 strains of FIV, the T271I mutation was found to alter the nature of the virus-CD134 interaction; primary viruses carrying the T271I mutation no longer required determinants in cysteine-rich domain (CRD 2 of CD134 for viral entry. The T271I mutation did not confer CD134-independent infection upon GL8 or CPG41, nor did it increase the affinity of the CXCR4 interaction, suggesting that the principal effect was targeted at reducing the complexity of the Env-CD134 interaction.

  3. Kinetics of single and dual infection of calves with an Asian atypical bovine pestivirus and a highly virulent strain of bovine viral diarrhoea virus 1

    Larskaa, Magdalena; Polak, Mirosław P.; Riitho, Victor

    2012-01-01

    . Co-infection with both viruses led to prolonged fever in comparison to singlestrain inoculated groups and simultaneous replication of concurrent viruses in blood and in the upper respiratory tract. Following the infections all the calves seroconverted against homologous strains. Atypical pestiviruses......) and an Asianatypicalbovinepestivirus (Th/04_KhonKaen) in naïve calves, in comparison to singleinfections. Milder clinical signs were observed in the animals infected with single Th/04_KhonKaen strain. Leukocytopenia and lymphocytopenia were observed in all infected groups at a similar level which correlated with the onset of viraemia...... pose a serious threat to livestock health and BVDV eradication, since they may have the potential to be widely spread in cattle populations without being detected and differentiated from other BVDV infections....

  4. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles.

    Juana M Sánchez-Puig

    Full Text Available Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.

  5. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles.

    Sánchez-Puig, Juana M; Lorenzo, María M; Blasco, Rafael

    2013-01-01

    Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV) are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV) are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.

  6. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein.

    George P Anderson

    Full Text Available Single-domain antibodies derived from the unique New Antigen Receptor found in sharks have numerous potential applications, ranging from diagnostic reagents to therapeutics. Shark-derived single-domain antibodies possess the same characteristic ability to refold after heat denaturation found in single-domain antibodies derived from camelid heavy-chain-only antibodies. Recently, two shark derived single-domain antibodies specific for the nucleoprotein of Ebola virus were described. Our evaluation confirmed their high affinity for the nucleoprotein, but found their melting temperatures to be low relative to most single-domain antibodies. Our first approach towards improving their stability was grafting antigen-binding regions (complementarity determining regions of one of these single-domain antibodies onto a high melting temperature shark single-domain antibody. This resulted in two variants: one that displayed excellent affinity with a low melting temperature, while the other had poor affinity but a higher melting temperature. These new proteins, however, differed in only 3 amino acids within the complementarity determining region 2 sequence. In shark single-domain antibodies, the complementarity determining region 2 is often referred to as hypervariable region 2, as this segment of the antibody domain is truncated compared to the sequence in camelid single-domain antibodies and conventional heavy chain variable domains. To elucidate which of the three amino acids or combinations thereof were responsible for the affinity and stability we made the 6 double and single point mutants that covered the intermediates between these two clones. We found a single amino acid change that achieved a 10°C higher melting temperature while maintaining sub nM affinity. This research gives insights into the impact of the shark sdAb hypervariable 2 region on both stability and affinity.

  7. Peste des petits ruminants in Benin: Persistence of a single virus genotype in the country for over 42 years

    Adombi, C.M.; Waqas, A.; Dundon, W.G.; Li, S.; Daojin, Y.; Kakpo, L.; Aplogan, G.L.; Diop, M.; Lo, M.M.; Silber, R.; Loitsch, A.; Diallo, A.

    2016-01-01

    Full text: Peste des petits ruminants (PPR) is a contagious and often fatal disease affecting sheep and goats. Currently, it is endemic in Africa, the Middle and Near East, the Indian subcontinent and China. Understanding the molecular epidemiology and evolution of PPR virus (PPRV) can assist in the control of the transboundary spread of this economically important disease. We isolated PPRV from pathological and swab samples collected 42 years apart (1969 and 2011) in Benin, West Africa, and sequenced the full genome of two isolates (Benin/B1/1969 and Benin/ 10/2011). Phylogenetic analysis showed that all of the characterized isolates clustered within viral lineage II and that the 2011 isolates fell into two distinct subgroups. Comparison of the full genome sequences revealed a 95.3% identity at the nucleotide level, while at the protein level, the matrix protein was the most conserved between the two viruses with an identity of 99.7% and only one amino acid substitution over the 42-year sampling period. An analysis of specific amino acid residues of known or putative function did not identify any significant changes between the two viruses. A molecular clock analysis of complete PPRV genomes revealed that the lineage II viruses sampled here arose in the early 1960s and that these viruses have likely persisted in Benin since this time. (author)

  8. The molecular epidemiology of respiratory viruses associated with asthma attacks: A single-center observational study in Japan.

    Saraya, Takeshi; Kimura, Hirokazu; Kurai, Daisuke; Ishii, Haruyuki; Takizawa, Hajime

    2017-10-01

    Few reports have described the significance of viral respiratory infections (VRIs) in exacerbation of asthma in adult patients. The aim of this study was to elucidate the profiles of VRIs in adult patients with asthma along with their molecular epidemiology.A cross-sectional observational study was conducted at Kyorin University Hospital from August 2012 to May 2015. To identify respiratory pathogens in inpatients and outpatients suffering from asthma attacks, RT-PCR/sequencing/phylogenetic analysis methods were applied alongside conventional microbiological methods. Phylogenetic and pairwise distance analyses of 10 viruses were performed.A total of 106 asthma attack patients enrolled in this study in both inpatient (n = 49) and outpatient (n = 57) settings. The total 106 respiratory samples were obtained from nasopharyngeal swab (n = 68) or sputum (n = 38). Among these, patients with virus alone (n = 39), virus and bacterial (n = 5), and bacterial alone (n = 5) were identified. The ratio of virus-positive patients in inpatient or outpatient to the total cases were 31.1% (n = 33) and 10.4% (n = 11), respectively. The frequency of virus-positive patients was significantly higher in inpatients (75.3%, n = 33) than in outpatients (19.3%, n = 11). Major VRIs included human rhinovirus (HRV) (n = 24), human metapneumovirus (hMPV) (n = 9), influenza virus (Inf-V) (n = 8), and respiratory syncytial virus (RSV) (n = 3) infections with seasonal variations. HRV-A and HRV-C were the most commonly detected viruses, with wide genetic divergence on phylogenetic analysis.Asthmatic exacerbations in adults are highly associated with VRIs such as HRV-A or HRV-C, hMPV, RSV, and Inf-V infections with seasonal variations and genetic divergence, but similar frequencies of VRIs occurred in asthma attack patients throughout the seasons.

  9. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  10. Single Assay for Simultaneous Detection and Differential Identification of Human and Avian Influenza Virus Types, Subtypes, and Emergent Variants

    2010-02-01

    peptide biomarker loci will increasingly fail, through false-positive and/or false-negative results. This will adversely impact critical decision...and field specimen isolates of avian influenza virus represented subtypes A/H10N7 (4), A/H7N7 (2), A/H11 (1) or A/ H13 (1). In marked contrast to

  11. Novel bluetongue vaccine platform : NS3/NS3a knockout virus as Disabled Infectious Single Animal (DISA) vaccine

    Feenstra, F.

    2016-01-01

    Bluetongue (BT) is a disease of ruminants caused by the bluetongue virus (BTV) transmitted by bites of Culicoides midges. Bluetongue has a worldwide prevalence and mortality in sheep varies from 0 to 30%. There are at least 27 BTV serotypes showing no or little cross protection. In 2006, BTV has

  12. Characterization of Posa and Posa-like virus genomes in fecal samples from humans, pigs, rats, and bats collected from a single location in Vietnam

    Oude Munnink, Bas B.; Phan, My V. T.; Simmonds, Peter; Koopmans, Marion P. G.; Kellam, Paul; van der Hoek, Lia; Cotten, Matthew

    2017-01-01

    Porcine stool-associated RNA virus (posavirus), and Human stool-associated RNA virus (husavirus) are viruses in the order Picornavirales recently described in porcine and human fecal samples. The tentative group (Posa and Posa-like viruses: PPLVs) also includes fish stool-associated RNA virus

  13. Novel Insect-Specific Eilat Virus-Based Chimeric Vaccine Candidates Provide Durable, Mono- and Multivalent, Single-Dose Protection against Lethal Alphavirus Challenge.

    Erasmus, Jesse H; Seymour, Robert L; Kaelber, Jason T; Kim, Dal Y; Leal, Grace; Sherman, Michael B; Frolov, Ilya; Chiu, Wah; Weaver, Scott C; Nasar, Farooq

    2018-02-15

    Most alphaviruses are mosquito borne and exhibit a broad host range, infecting many different vertebrates, including birds, rodents, equids, humans, and nonhuman primates. Recently, a host-restricted, mosquito-borne alphavirus, Eilat virus (EILV), was described with an inability to infect vertebrate cells based on defective attachment and/or entry, as well as a lack of genomic RNA replication. We investigated the utilization of EILV recombinant technology as a vaccine platform against eastern (EEEV) and Venezuelan equine encephalitis viruses (VEEV), two important pathogens of humans and domesticated animals. EILV chimeras containing structural proteins of EEEV or VEEV were engineered and successfully rescued in Aedes albopictus cells. Cryo-electron microscopy reconstructions at 8 and 11 Å of EILV/VEEV and EILV/EEEV, respectively, showed virion and glycoprotein spike structures similar to those of VEEV-TC83 and other alphaviruses. The chimeras were unable to replicate in vertebrate cell lines or in brains of newborn mice when injected intracranially. Histopathologic examinations of the brain tissues showed no evidence of pathological lesions and were indistinguishable from those of mock-infected animals. A single-dose immunization of either monovalent or multivalent EILV chimera(s) generated neutralizing antibody responses and protected animals against lethal challenge 70 days later. Lastly, a single dose of monovalent EILV chimeras generated protective responses as early as day 1 postvaccination and partial or complete protection by day 6. These data demonstrate the safety, immunogenicity, and efficacy of novel insect-specific EILV-based chimeras as potential EEEV and VEEV vaccines. IMPORTANCE Mostly in the last decade, insect-specific viruses have been discovered in several arbovirus families. However, most of these viruses are not well studied and largely have been ignored. We explored the use of the mosquito-specific alphavirus EILV as an alphavirus vaccine

  14. A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs.

    Wang, Zeng; Yang, Huanliang; Chen, Yan; Tao, Shiyu; Liu, Liling; Kong, Huihui; Ma, Shujie; Meng, Fei; Suzuki, Yasuo; Qiao, Chuanling; Chen, Hualan

    2017-11-01

    Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains. IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by

  15. A single method for recovery and concentration of enteric viruses and bacteria from fresh-cut vegetables.

    Sánchez, G; Elizaquível, P; Aznar, R

    2012-01-03

    Fresh-cut vegetables are prone to be contaminated with foodborne pathogens during growth, harvest, transport and further processing and handling. As most of these products are generally eaten raw or mildly treated, there is an increase in the number of outbreaks caused by viruses and bacteria associated with fresh vegetables. Foodborne pathogens are usually present at very low levels and have to be concentrated (i.e. viruses) or enriched (i.e. bacteria) to enhance their detection. With this aim, a rapid concentration method has been developed for the simultaneous recovery of hepatitis A virus (HAV), norovirus (NV), murine norovirus (MNV) as a surrogate for NV, Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica. Initial experiments focused on evaluating the elution conditions suitable for virus release from vegetables. Finally, elution with buffered peptone water (BPW), using a Pulsifier, and concentration by polyethylene glycol (PEG) precipitation were the methods selected for the elution and concentration of both, enteric viruses and bacteria, from three different types of fresh-cut vegetables by quantitative PCR (qPCR) using specific primers. The average recoveries from inoculated parsley, spinach and salad, were ca. 9.2%, 43.5%, and 20.7% for NV, MNV, and HAV, respectively. Detection limits were 132 RT-PCR units (PCRU), 1.5 50% tissue culture infectious dose (TCID₅₀), and 6.6 TCID₅₀ for NV, MNV, and HAV, respectively. This protocol resulted in average recoveries of 57.4%, 64.5% and 64.6% in three vegetables for E. coli O157:H7, L. monocytogenes and Salmonella with corresponding detection limits of 10³, 10² and 10³ CFU/g, respectively. Based on these results, it can be concluded that the procedure herein is suitable to recover, detect and quantify enteric viruses and foodborne pathogenic bacteria within 5 h and can be applied for the simultaneous detection of both types of foodborne pathogens in fresh-cut vegetables. Copyright

  16. Sequence polymorphism in an insect RNA virus field population: A snapshot from a single point in space and time reveals stochastic differences among and within individual hosts

    Stenger, Drake C., E-mail: drake.stenger@ars.usda.gov [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States); Krugner, Rodrigo [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States); Nouri, Shahideh; Ferriol, Inmaculada; Falk, Bryce W. [Department of Plant Pathology, University of California, Davis, CA 95616 (United States); Sisterson, Mark S. [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States)

    2016-11-15

    Population structure of Homalodisca coagulata Virus-1 (HoCV-1) among and within field-collected insects sampled from a single point in space and time was examined. Polymorphism in complete consensus sequences among single-insect isolates was dominated by synonymous substitutions. The mutant spectrum of the C2 helicase region within each single-insect isolate was unique and dominated by nonsynonymous singletons. Bootstrapping was used to correct the within-isolate nonsynonymous:synonymous arithmetic ratio (N:S) for RT-PCR error, yielding an N:S value ~one log-unit greater than that of consensus sequences. Probability of all possible single-base substitutions for the C2 region predicted N:S values within 95% confidence limits of the corrected within-isolate N:S when the only constraint imposed was viral polymerase error bias for transitions over transversions. These results indicate that bottlenecks coupled with strong negative/purifying selection drive consensus sequences toward neutral sequence space, and that most polymorphism within single-insect isolates is composed of newly-minted mutations sampled prior to selection. -- Highlights: •Sampling protocol minimized differential selection/history among isolates. •Polymorphism among consensus sequences dominated by negative/purifying selection. •Within-isolate N:S ratio corrected for RT-PCR error by bootstrapping. •Within-isolate mutant spectrum dominated by new mutations yet to undergo selection.

  17. Morphological changes in cultured bovine lymphoid cell lines associated with bovine viral diarrhea virus (BVDV) single and dual infections with bovine leukemia virus (BLV)

    Currently, American Type Culture Collection (ATCC) makes available two cell lines derived from the same lymphoblast-like suspension cell that have been confirmed by next-generation sequencing and RT-PCR to have either a single contaminate of BVDV2a (CRL-8037) or dual contaminates of both BVDV and BL...

  18. Immune Protection of Nonhuman Primates against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

    Geisbert, Joan B; Shedlock, Devon J; Xu, Ling; Lamoreaux, Laurie; Custers, Jerome H. H. V; Popernack, Paul M; Yang, Zhi-Yong; Pau, Maria G; Roederer, Mario; Koup, Richard A; Goudsmit, Jaap; Jahrling, Peter B; Nabel, Gary J

    2006-01-01

    Background Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. Methods and Findings To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 1010 particles, two logs lower than that used previously. Conclusions Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 1010 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate. PMID:16683867

  19. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs.

    Nancy J Sullivan

    2006-06-01

    Full Text Available Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd encoding the Ebola glycoprotein (GP and nucleoprotein (NP has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine.To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 10(10 particles, two logs lower than that used previously.Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 10(10 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate.

  20. Vesicular stomatitis virus modified with single chain IL-23 exhibits oncolytic activity against tumor cells in vitro and in vivo

    Reiss, Carol Shoshkes

    2010-01-01

    James M Miller1, Sarah McNulty Bidula1,5, Troels Mygind Jensen1,6, Carol Shoshkes Reiss1,2,3,41Department of Biology, New York University, New York, NY, USA; 2Center for Neural Science, NYU; 3NYU Cancer Institute; 4Departments of Microbiology, NYU School of Medicine and Mt Sinai School of Medicine, New York, NY, USA; 5Present address Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA,USA 6Present address: Univercity of Copenhagen, Copenhagen, DenmarkAbstract: Viruse...

  1. A single polymerase (L) mutation in avian metapneumovirus increased virulence and partially maintained virus viability at an elevated temperature.

    Brown, Paul A; Lupini, Caterina; Catelli, Elena; Clubbe, Jayne; Ricchizzi, Enrico; Naylor, Clive J

    2011-02-01

    Previously, a virulent avian metapneumovirus, farm isolate Italy 309/04, was shown to have been derived from a live vaccine. Virulence due to the five nucleotide mutations associated with the reversion to virulence was investigated by their addition to the genome of the vaccine strain using reverse genetics. Virulence of these recombinant viruses was determined by infection of 1-day-old turkeys. Disease levels resulting from the combined two matrix mutations was indistinguishable from that produced by the recombinant vaccine, whereas the combined three L gene mutations increased disease to a level (P<0.0001) that was indistinguishable from that caused by the revertant Italy 309/04 virus. Testing of the L mutations individually showed that two mutations did not increase virulence, while the third mutation, corresponding to an asparagine to aspartic acid substitution, produced virulence indistinguishable from that caused by Italy 309/04. In contrast to the vaccine, the virulent mutant also showed increased viability at temperatures typical of turkey core tissues. The notion that increased viral virulence resulted from enhanced ability to replicate in tissues away from the cool respiratory tract, cannot be discounted.

  2. Analysis of single-nucleotide polymorphisms in the APOBEC3H gene of domestic cats (Felis catus) and their association with the susceptibility to feline immunodeficiency virus and feline leukemia virus infections.

    de Castro, Fernanda Luz; Junqueira, Dennis Maletich; de Medeiros, Rúbia Marília; da Silva, Tailene Rabello; Costenaro, Jamile Girardi; Knak, Marcus Braga; de Matos Almeida, Sabrina Esteves; Campos, Fabrício Souza; Roehe, Paulo Michel; Franco, Ana Cláudia

    2014-10-01

    Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are widely distributed retroviruses that infect domestic cats (Felis catus). Restriction factors are proteins that have the ability to hamper retroviruses' replication and are part of the conserved mechanisms of anti-viral immunity of mammals. The APOBEC3 protein family is the most studied class of restriction factors; they are cytidine deaminases that generate hypermutations in provirus DNA during reverse transcription, thus causing hypermutations in the viral genome, hindering virus replication. One of the feline APOBEC3 genes, named APOBEC3H, encodes two proteins (APOBEC3H and APOBEC3CH). In other mammals, APOBEC3H single-nucleotide polymorphisms (SNPs) can alter the stability and cellular localization of the encoded protein, thus influencing its subcellular localization and reducing its anti-viral effect. In cats, the association of APOBEC3H SNPs with susceptibility to retroviral infections was not yet demonstrated. Therefore, this study aimed the investigation on the variability of APOBEC3H and the possible association with FIV/FeLV infections. DNA obtained from whole blood of fifty FIV- and/or FeLV-infected cats and fifty-nine FIV- and/or FeLV-uninfected cats were used as templates to amplify two different regions of the APOBEC3H, with subsequent sequencing and analysis. The first region was highly conserved among all samples, while in the second, six single-nucleotide variation points were identified. One of the SNPs, A65S (A65I), was significantly correlated with the susceptibility to FIV and/or FeLV infections. On the other hand, the haplotype analysis showed that the combination "GGGGCC" was positively correlated with the lack of FIV and/or FeLV infections. Our results indicate that, as previously shown in other mammals, variability of restriction factors may contribute to susceptibility of domestic cats to retroviral infections; however, these results should be confirmed by more

  3. MVA-based H5N1 vaccine affords cross-clade protection in mice against influenza A/H5N1 viruses at low doses and after single immunization.

    Joost H C M Kreijtz

    Full Text Available Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing strategies would increase the number of people that can be vaccinated when the amount of vaccine preparations that can be produced is limited. Furthermore, protective immunity is induced ideally after a single immunization. Therefore the minimal requirements for induction of protective immunity with a MVA-based H5N1 vaccine were assessed in mice. To this end, mice were vaccinated once or twice with descending doses of a recombinant MVA expressing the HA gene of influenza virus A/Vietnam/1194/04. The protective efficacy was determined after challenge infection with the homologous clade 1 virus and a heterologous virus derived from clade 2.1, A/Indonesia/5/05 by assessing weight loss, virus replication and histopathological changes. It was concluded that MVA-based vaccines allowed significant dose-sparing and afford cross-clade protection, also after a single immunization, which are favorable properties for an H5N1 vaccine candidate.

  4. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin

    Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.

    1997-01-01

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128

  5. Comparison of 2 commercial single-dose Mycoplasma hyopneumoniae vaccines and porcine reproductive and respiratory syndrome virus (PRRSV) vaccines on pigs dually infected with M. hyopneumoniae and PRRSV.

    Park, Changhoon; Kang, Ikjae; Seo, Hwi Won; Jeong, Jiwoon; Choi, Kyuhyung; Chae, Chanhee

    2016-04-01

    The objective of this study was to compare the efficacy of 2 different commercial Mycoplasma hyopneumoniae vaccines and porcine reproductive and respiratory syndrome virus (PRRSV) vaccines in regard to growth performance, microbiological and immunological analyses, and pathological observation from wean to finish (175 d of age). Pigs were administered M. hyopneumoniae and PRRSV vaccines at 7 and 21 d of age, respectively, or both at 21 d old and then challenged with both M. hyopneumoniae and PRRSV at 49 d old. Significant (P hyopneumoniae, M. hyopneumoniae-specific interferon-γ secreting cells, and macroscopic and microscopic lung lesions. Induction of interleukin-10 following PRRSV vaccination does not interfere with the immune responses induced by M. hyopneumoniae vaccine. The present study demonstrated that the single-dose vaccination regimen for M. hyopneumoniae and PRRSV vaccine is efficacious for controlling coinfection with M. hyopneumoniae and PRRSV based on clinical, microbiological, immunological, and pathological evaluation.

  6. Restriction map of the single-stranded DNA genome of Kilham rat virus strain 171, a nondefective parvovirus

    Banerjee, P.T.; Rathrock, R.; Mitra, S.

    1981-01-01

    A physical map of Kilham rat virus strain 171 DNA was constructed by analyzing the sizes and locations of restriction endonuclease-generated fragments of the replicative-form viral DNA synthesized in vitro. BglI, KpnI, BamHI, SmaI, XhoI, and XorII did not appear to have any cleavage sites, whereas 11 other enzymes cleaved the genome at one to eight sites, and AluI generated more than 12 distinct fragments. The 30 restriction sites that were mapped were distributed randomly in the viral genome. A comparison of the restriction fragments of in vivo- and in vitro-replicated replicative-form DNAs showed that these DNAs were identical except in the size or configuration of the terminal fragments

  7. Development of single step RT-PCR for detection of Kyasanur forest disease virus from clinical samples

    Gouri Chaubal

    2018-02-01

    Discussion and conclusion: The previously published sensitive real time RT-PCR assay requires higher cost in terms of reagents and machine setup and technical expertise has been the primary reason for development of this assay. A single step RT-PCR is relatively easy to perform and more cost effective than real time RT-PCR in smaller setups in the absence of Biosafety Level-3 facility. This study reports the development and optimization of single step RT-PCR assay which is more sensitive and less time-consuming than nested RT-PCR and cost effective for rapid diagnosis of KFD viral RNA.

  8. The administration of a single dose of a multivalent (DHPPiL4R vaccine prevents clinical signs and mortality following virulent challenge with canine distemper virus, canine adenovirus or canine parvovirus

    Stephen Wilson

    2014-01-01

    In conclusion, we demonstrated that a single administration of a minimum titre, multivalent vaccine to dogs of six weeks of age is efficacious and prevents clinical signs and mortality caused by CAV-1 and CDV; prevents clinical signs and significantly reduces virus shedding caused by CAV-2; and prevents clinical signs, leucopoenia and viral excretion caused by CPV.

  9. ACVP-05: Virus Genetic Analysis from Cell-Free Plasma, Virally Infected Cells or Tissues and Cultured Supernatant Via Single Genome Amplification and Direct Sequencing | Frederick National Laboratory for Cancer Research

    The Viral Evolution Core within the AIDS and Cancer Virus Program will extract viral RNA/DNA from cell-free or cell-associated samples. Complementary (cDNA) will be generated as needed, and cDNA or DNA will be diluted to a single copy prior to nested

  10. Epstein-Barr Virus-Negative Post-Transplant Lymphoproliferative Diseases: Three Distinct Cases from a Single Center

    Şule Mine Bakanay

    2014-03-01

    Full Text Available Three cases of Epstein-Barr virus (EBV-negative post-transplant lymphoproliferative disease that occurred 6 to 8 years after renal transplantation are reported. The patients respectively had gastric mucosa-associated lymphoid tissue lymphoma, gastric diffuse large B-cell lymphoma, and atypical Burkitt lymphoma. Absence of EBV in the tissue samples was demonstrated by both in situ hybridization for EBV early RNA and polymerase chain reaction for EBV DNA. Patients were treated with reduction in immunosuppression and combined chemotherapy plus an anti-CD20 monoclonal antibody, rituximab. Despite the reduction in immunosuppression, patients had stable renal functions without loss of graft functions. The patient with atypical Burkitt lymphoma had an abnormal karyotype, did not respond to treatment completely, and died due to disease progression. The other patients are still alive and in remission 5 and 3 years after diagnosis, respectively. EBV-negative post-transplant lymphoproliferative diseases are usually late-onset and are reported to have poor prognosis. Thus, reduction in immunosuppression is usually not sufficient for treatment and more aggressive approaches like rituximab with combined chemotherapy are required.

  11. Epstein-Barr virus infection and breast invasive ductal carcinoma in Egyptian women: A single center experience.

    El-Naby, Noha Ed Hassab; Hassan Mohamed, Hameda; Mohamed Goda, Asmaa; El Sayed Mohamed, Ahmed

    2017-06-01

    A controversy of the role of Epstein-Barr virus (EBV) infection in breast carcinomas has been reported in the literature. We carried on this research to explore possible association between EBV infection and breast invasive ductal carcinoma (IDC) in Egyptian women attending our center. This study carried out at Sohag university hospital on 84 paraffin embedded samples of breast tissue, of them 42 breast IDC as the case group and 42 breast fibroadenomas as the control group. Nested PCRand immunohistochemistry (IHC) done separately for all samples to identify the Epstein-Barr nuclear antigen-1 (EBNA-1) gene and EBV latent membrane protein-1 (LMP-1) respectively, in breast cancer cells and controls. Specimen considered positive when both (EBNA-1) gene and LMP-1 were detected using PCR and IHC separately for the same sample, this was achieved by 10/42 (23.81%) of breast IDC (case group) and 6/42 (14.29%) of breast fibro-adenomas (control group) (P-value=0.4). Nodal involvement was the only parameter that demonstrated a significant statistical relationship with EBV presence in cancerous tissue with p-value=0.003. Our research could not find a significant statistical association between EBV infection and breast IDC in Egyptian women attending our center, but, there might be an association between the existence of EBV and tumor aggressiveness. Copyright © 2017 National Cancer Institute, Cairo University. Production and hosting by Elsevier B.V. All rights reserved.

  12. Lanthanum-Based Metal-Organic Frameworks for Specific Detection of Sudan Virus RNA Conservative Sequences down to Single-Base Mismatch.

    Yang, Shui-Ping; Zhao, Wei; Hu, Pei-Pei; Wu, Ke-Yang; Jiang, Zhi-Hong; Bai, Li-Ping; Li, Min-Min; Chen, Jin-Xiang

    2017-12-18

    Reactions of La(NO 3 ) 3 ·6H 2 O with the polar, tritopic quaternized carboxylate ligands N-carboxymethyl-3,5-dicarboxylpyridinium bromide (H 3 CmdcpBr) and N-(4-carboxybenzyl)-3,5-dicarboxylpyridinium bromide (H 3 CbdcpBr) afford two water-stable metal-organic frameworks (MOFs) of {[La 4 (Cmdcp) 6 (H 2 O) 9 ]} n (1, 3D) and {[La 2 (Cbdcp) 3 (H 2 O) 10 ]} n (2, 2D). MOFs 1 and 2 absorb the carboxyfluorescein (FAM)-tagged probe DNA (P-DNA) and quench the fluorescence of FAM via a photoinduced electron transfer (PET) process. The nonemissive P-DNA@MOF hybrids thus formed in turn function as sensing platforms to distinguish conservative linear, single-stranded RNA sequences of Sudan virus with high selectivity and low detection limits of 112 and 67 pM, respectively (at a signal-to-noise ratio of 3). These hybrids also exhibit high specificity and discriminate down to single-base mismatch RNA sequences.

  13. A single point mutation in Tomato spotted wilt virus NSs protein is sufficient to overcome Tsw-gene-mediated resistance in pepper.

    Almási, Asztéria; Nemes, Katalin; Csömör, Zsófia; Tóbiás, István; Palkovics, László; Salánki, Katalin

    2017-06-01

    The nonstructural protein (NSs) of Tomato spotted wilt virus (TSWV) was previously identified as an avirulence determinant for Tsw-based resistance on pepper. The NSs of wild-type (WT) and resistance-breaking (RB) TSWV strains isolated in Hungary had only two amino acid substitutions (104, 461). We have analysed the ability of the NSs and their point mutant variants to trigger Tsw-mediated hypersensitive responses and RNA silencing suppressor (RSS) activity in patch assays. We identified a single amino acid change at position 104 (T-A) that was responsible for the necrosis induction or loss, while a significant difference was not detected in the RSS activity of the two parental strains. We have successfully complemented the infection of the WT strain on resistant pepper cultivar with the infectious S RNA transcript of the RB strain and the WT-T104A point mutant. Our work provides direct evidence that a single amino acid change can induce an RB phenotype.

  14. A single-center epidemiological study of BK virus infection and analysis of risk factors in patients with renal transplantation

    Ji-gang LI

    2014-10-01

    Full Text Available Objective To investigate the epidemiological characteristics of BK virus (BKV infection in living renal transplantation patients, and analyze the risk factors of BKV infection and BKV nephropathy (BKVN. Methods The BKV DNA load in urine and blood samples of 43 renal transplant recipients, who had received renal transplantation in 309 Hospital from Feb. 2012 to Feb. 2013, was determined at preoperative period and 0.5, 1, 3, 6, 9, 12 and 15 months after transplantation. Meanwhile, the biopsy of grafted kidney was performed in those patients with continuously elevated serum creatinine and those with higher BKV DNA load. Patients were divided into 3 groups as follows according to the test results: BK viruria group, BK viremia group and pathologically diagnosed BKVN group. Data of each group were then recorded, including gender, age, postoperative diabetes (PTDM, acute rejection (AR, delayed recovery of graft function (DGF, postoperative pulmonary infection, preoperative immune induction therapy, postoperative immunosuppressive regimen, and other information. The risk factors for postoperative BKV infection and BKVN were analyzed. Results After an average of 15-month follow-up, it was found that the incidence of BKV viruria was 46.5%, that of BKV viremia was 14.0%, and that of BKVN was 2.3%. Sixth month after transplantation was found to be the peak time of viruria and viremia. FK506 was significantly associated with viremia in living donor renal transplantation. The immunosuppressive regimen was the immune related independent risk factor for BK viremia developing BKVN after living renal transplantation. Conclusion The incidence of BK viremia and BKVN is lower in living donor renal transplantation than in cadaver renal transplantation, but that of viruria is similar in both groups. Immunosuppressive scheme based on FK506 is an immune related independent risk factor leading to BK viremia proceeding to BKVN in living donor kidney

  15. Isolation of Single-Domain Antibody Fragments That Preferentially Detect Intact (146S Particles of Foot-and-Mouth Disease Virus for Use in Vaccine Quality Control

    Michiel M. Harmsen

    2017-08-01

    Full Text Available Intact (146S foot-and-mouth disease virus (FMDVs can dissociate into specific (12S viral capsid degradation products. FMD vaccines normally consist of inactivated virions. Vaccine quality is dependent on 146S virus particles rather than 12S particles. We earlier isolated two llama single-domain antibody fragments (VHHs that specifically recognize 146S particles of FMDV strain O1 Manisa and shown their potential use in quality control of FMD vaccines during manufacturing. These 146S-specific VHHs were specific for particular O serotype strains and did not bind strains from other FMDV serotypes. Here, we describe the isolation of 146S-specific VHHs against FMDV SAT2 and Asia 1 strains by phage display selection from llama immune libraries. VHHs that bind both 12S and 146S particles were readily isolated but VHHs that bind specifically to 146S particles could only be isolated by phage display selection using prior depletion for 12S particles. We obtained one 146S-specific VHH—M332F—that binds to strain Asia 1 Shamir and several VHHs that preferentially bind 146S particles of SAT2 strain SAU/2/00, from which we selected VHH M379F for further characterization. Both M332F and M379F did not bind FMDV strains from other serotypes. In a sandwich enzyme-linked immunosorbent assay (ELISA employing unlabeled and biotinylated versions of the same VHH M332F showed high specificity for 146S particles but M379F showed lower 146S-specificity with some cross-reaction with 12S particles. These ELISAs could detect 146S particle concentrations as low as 2.3–4.6 µg/l. They can be used for FMD vaccine quality control and research and development, for example, to identify virion stabilizing excipients.

  16. Single-dose mucosal immunization with a candidate universal influenza vaccine provides rapid protection from virulent H5N1, H3N2 and H1N1 viruses.

    Graeme E Price

    2010-10-01

    Full Text Available The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, "universal" vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd expressing the conserved influenza virus antigens matrix 2 and nucleoprotein.In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals.Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic.

  17. Ebola Virus and Marburg Virus

    Ebola virus and Marburg virus Overview Ebola virus and Marburg virus are related viruses that cause hemorrhagic fevers — illnesses marked by severe bleeding (hemorrhage), organ failure and, in many ...

  18. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors.

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki

    2017-01-01

    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Virus-Clip: a fast and memory-efficient viral integration site detection tool at single-base resolution with annotation capability.

    Ho, Daniel W H; Sze, Karen M F; Ng, Irene O L

    2015-08-28

    Viral integration into the human genome upon infection is an important risk factor for various human malignancies. We developed viral integration site detection tool called Virus-Clip, which makes use of information extracted from soft-clipped sequencing reads to identify exact positions of human and virus breakpoints of integration events. With initial read alignment to virus reference genome and streamlined procedures, Virus-Clip delivers a simple, fast and memory-efficient solution to viral integration site detection. Moreover, it can also automatically annotate the integration events with the corresponding affected human genes. Virus-Clip has been verified using whole-transcriptome sequencing data and its detection was validated to have satisfactory sensitivity and specificity. Marked advancement in performance was detected, compared to existing tools. It is applicable to versatile types of data including whole-genome sequencing, whole-transcriptome sequencing, and targeted sequencing. Virus-Clip is available at http://web.hku.hk/~dwhho/Virus-Clip.zip.

  20. A Single Amino Acid Change in the Marburg Virus Matrix Protein VP40 Provides a Replicative Advantage in a Species-Specific Manner

    Koehler, Alexander; Kolesnikova, Larissa; Welzel, Ulla; Schudt, Gordian; Herwig, Astrid

    2015-01-01

    ABSTRACT Marburg virus (MARV) induces severe hemorrhagic fever in humans and nonhuman primates but only transient nonlethal disease in rodents. However, sequential passages of MARV in rodents boosts infection leading to lethal disease. Guinea pig-adapted MARV contains one mutation in the viral matrix protein VP40 at position 184 (VP40D184N). The contribution of the D184N mutation to the efficacy of replication in a new host is unknown. In the present study, we demonstrated that recombinant MARV containing the D184N mutation in VP40 [rMARVVP40(D184N)] grew to higher titers than wild-type recombinant MARV (rMARVWT) in guinea pig cells. Moreover, rMARVVP40(D184N) displayed higher infectivity in guinea pig cells. Comparative analysis of VP40 functions indicated that neither the interferon (IFN)-antagonistic function nor the membrane binding capabilities of VP40 were affected by the D184N mutation. However, the production of VP40-induced virus-like particles (VLPs) and the recruitment of other viral proteins to the budding site was improved by the D184N mutation in guinea pig cells, which resulted in the higher infectivity of VP40D184N-induced infectious VLPs (iVLPs) compared to that of VP40-induced iVLPs. In addition, the function of VP40 in suppressing viral RNA synthesis was influenced by the D184N mutation specifically in guinea pig cells, thus allowing greater rates of transcription and replication. Our results showed that the improved viral fitness of rMARVVP40(D184N) in guinea pig cells was due to the better viral assembly function of VP40D184N and its lower inhibitory effect on viral transcription and replication rather than modulation of the VP40-mediated suppression of IFN signaling. IMPORTANCE The increased virulence achieved by virus passaging in a new host was accompanied by mutations in the viral genome. Analyzing how these mutations affect the functions of viral proteins and the ability of the virus to grow within new host cells helps in the understanding

  1. Expression of Two N1 Clones with Single Amino Acid Dissimilarity of Avian Influenza H5N1 Virus

    RISZA HARTAWAN

    2012-12-01

    Full Text Available Two clones of N1 gene derived from isolate A/Dk/Tangerang/Bbalitvet-ACIAR-TE11/2007 (H5N1 exhibit single mismatch of amino acid sequence at position 242 that is threonine and methionine for the clone #3 and #5, respectively. In order to evaluate the effect of the amino acid substitution, these clones were inserted into two different expression vectors that are pEGFP-C1 and pcDNA-3.3 TOPO® TA cloning. Subsequently, the respective recombinant clones were transfected into eukaryotic cells, including CEF, RK13 and VERO using Lipofectamine ‘plus’ reagent. As a result, the clone #3 retaining atypical sequence showed lower expression level rather than the clone #15 in both vectors and all type of cells. The 3D conformational modelling revealed that the mutation occurs in the inner part of glycoprotein embedded within envelope or matrix. Therefore, the missense mutation seems has no effect on the antigenic properties of neuraminidase but this substitution by any means causes lethal mutagenesis in the individual gene expression by reducing level of protein transcript.

  2. Impact of Nevirapine (NVP) Plasma Concentration on Selection of Resistant Virus in Mothers Who Received Single-Dose NVP To Prevent Perinatal Human Immunodeficiency Virus Type 1 Transmission and Persistence of Resistant Virus in Their Infected Children▿

    Chaix, Marie-Laure; Ekouevi, Didier Koumavi; Peytavin, Gilles; Rouet, François; Tonwe-Gold, Besigin; Viho, Ida; Bequet, Laurence; Amani-Bosse, Clarisse; Menan, Hervé; Leroy, Valériane; Rouzioux, Christine; Dabis, François

    2006-01-01

    Nonnucleoside reverse transcriptase inhibitor resistance following the use of single-dose nevirapine (sdNVP) for the prevention of mother-to-child transmission (PMTCT) remains a concern. In the ANRS-1201/1202 Ditrame study, conducted in Abidjan, Côte d'Ivoire, a short-course regimen of zidovudine was associated with sdNVP for PMTCT. In this study, we estimate the frequency of NVP resistance and its relationship with NVP concentration in mothers. Genotypic resistance analysis was performed on ...

  3. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells

    Andrea Pecora

    2015-03-01

    Full Text Available Bovine viral diarrhea virus (BVDV is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2 was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 µg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

  4. Characterization of three porcine reproductive and respiratory syndrome virus isolates from a single swine farm bearing strong homology to a vaccine strain.

    Jiang, Yi-feng; Xia, Tian-qi; Zhou, Yan-jun; Yu, Ling-xue; Yang, Shen; Huang, Qin-feng; Li, Li-wei; Gao, Fei; Qu, Ze-hui; Tong, Wu; Tong, Guang-zhi

    2015-09-30

    Three porcine reproductive and respiratory syndrome viruses (PRRSV), NT1, NT2, and NT3, were isolated from three dying piglets from a single pig farm in Jiangsu Province, China. Whole genome sequencing revealed that the three isolates share the highest homology with JXA1-P80, an attenuated vaccine strain developed by serial passage of highly pathogenic PRRSV JXA1 in MARC-145 cells. More than ten amino acids residues in ORF1a, ORF1b, GP4, and GP5 that were thought to be unique to JXA1 attenuated on MARC-145 cells were each found in the corresponding locations of NT1, NT2, and NT3. In virulence assays, piglets infected with NT1, NT2, or NT3 exhibited clinical signs of disease, including high fever, anorexia, and respiratory distress, leading to the death of the majority of the piglets within two weeks. Collectively, these data indicate that NT1, NT2, and NT3 are highly pathogenic PRRSVs and they are likely to be revertants of the vaccine strain JXA1-P80. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Comparison between single PCR and nested PCR in detection of human papilloma viruses in paraffin-embedded OSCC and fresh oral mucosa.

    Jalouli, Miranda; Jalouli, Jamshid; Ibrahim, Salah O; Hirsch, Jan-Michaél; Sand, Lars

    2015-01-01

    Infection with human papilloma virus (HPV) has been implicated as one of the risk factors for the development of oropharyngeal cancer. Many different HPV tests exist, and information regarding their specific technical, analytical, and clinical properties is increasing. This study aimed to compare the level of detection of HPV using two reliable polymerase chain reaction (PCR) methods, nested PCR (NPCR) and single PCR (SPCR), in archival paraffin-embedded oral squamous cell carcinoma (OSCC) samples and fresh oral mucosa specimens. The presence of HPV genome in two groups of tissue samples was analyzed: (i) 57 paraffin-embedded OSCC samples from Sudan and (ii) eight healthy fresh oral mucosal samples from Swedish volunteers. The specimens were tested by SPCR with primer pair MY9/MY11 and NPCR using GP5+/GP6+ primer sets. Eighteen (32%) out of the 57 paraffin-embedded OSCC samples, and five (62%) out of the eight fresh clinically healthy samples were found to be HPV-positive with NPCR. With SPCR, four (7%) out of the paraffin-embedded OSCC samples were HPV-positive. A statistically significant difference between HPV-positive and -negative samples was found when comparing NPCR and SPCR in OSCC and fresh oral mucosa (pnested PCR increased the positivity rate, efficiency rate and sensitivity of HPV detection in oral samples significantly and should be considered as the method of choice. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Ability of Aphis gossypii and Myzus persicae to Transmit Cucumber mosaic virus in Single and Mixed Infection with Two Potyviruses to Zucchini Squash Eficiência dos afídeos Aphis gossypii e Myzus persicae na transmissão do Cucumber mosaic virus em infecção simples e mista com dois Potyvirus para abobrinha de moita

    Zayame Vegette Pinto

    2008-06-01

    Full Text Available The main objective of this work was to investigate the ability of Aphis gossypii and Myzus persicae to transmit Cucumber mosaic virus (CMV singly and mixed with two potyviruses (Papaya ringspot virus - type W, PRSV-W and Zucchini yellow mosaic virus, ZYMV, to zucchini squash plants (Cucurbita pepo. The results showed that the potyviruses in general were more efficiently transmitted by both species of aphids as compared to CMV. The transmission of PRSV-W, ZYMV and CMV separately was more efficient than in mixture.O objetivo desse trabalho foi estudar a eficiência de Aphis gossypii e Myzus persicae na transmissão do vírus do mosaico do pepino (Cucumber mosaic virus, CMV, isoladamente e em mistura com duas espécies de potyvirus (Vírus do mosaico do mamoeiro = Papaya ringspot virus - type W, PRSV-W e Vírus do mosaico amarelo da abobrinha = Zucchini yellow mosaic virus, ZYMV, para planta-testes de abobrinha de moita (Cucurbita pepo. Os dois potyvirus em geral foram transmitidos com mais eficiência pelas duas espécies de afídeos do que o CMV. A transmissão do PRSV-W, ZYMV e CMV, separadamente, foi mais eficiente do que em mistura.

  8. A single tube PCR assay for simultaneous amplification of HSV-1/-2, VZV, CMV, HHV-6A/-6B, and EBV DNAs in cerebrospinal fluid from patients with virus-related neurological diseases.

    Yamamoto, T; Nakamura, Y

    2000-10-01

    Cerebrospinal fluid (CSF) specimens from 27 patients with encephalitis, meningitis, and other neurological diseases were studied for the presence of herpes simplex virus types 1 and 2 (HSV-1/-2), varicella-zoster virus (VZV), cytomegalovirus (CMV), human herpesviruses 6A and 6B (HHV-6A/-6B) and Epstein-Barr virus (EBV) DNA using the polymerase chain reaction (PCR) method. The DNAs were amplified using two sets of consensus primer pairs in a single tube, bringing simultaneous amplification of the herpesviruses. The PCR products were analyzed by agarose gel electrophoresis, and Southern blot hybridization with virus-type specific probes, thus allowing discrimination between the different types of herpesviruses to be made. Each virus-specific probe was highly specific for identifying the PCR product. Thirty CSF specimens from 13 patients with encephalitis and 10 specimens from 10 patients with meningitis, respectively, were examined using this method. Eight patients with encephalitis and six with meningitis were positive for different herpesviruses, including patients with coinfections (HSV-1/-2 and VZV, VZV and CMV). Among four CSF specimens from four patients with other neurological disorders, dual amplification of CMV and EBV was present. Since identification of the types of herpesviruses in this system requires a very small amount of CSF, and is completed with one PCR, it is useful for routine diagnosis of herpesvirus infections in diagnostic laboratories. The viruses responsible for central nervous system infection are easily detected with various coinfection and serial patterns of herpesviruses, by this consensus primer-based PCR method. This may give an insight into the relationship between virus-related neurological diseases (VRNDS) and herpesvirus infections.

  9. SARS – virus jumps species

    SARS – virus jumps species. Coronavirus reshuffles genes; Rotteir et al, Rotterdam showed the virus to jump from cats to mouse cells after single gene mutation ? Human disease due to virus jumping from wild or domestic animals; Present favourite animal - the cat; - edible or domestic.

  10. Determinants of antibody persistence across doses and continents after single-dose rVSV-ZEBOV vaccination for Ebola virus disease: an observational cohort study.

    Huttner, Angela; Agnandji, Selidji Todagbe; Combescure, Christophe; Fernandes, José F; Bache, Emmanuel Bache; Kabwende, Lumeka; Ndungu, Francis Maina; Brosnahan, Jessica; Monath, Thomas P; Lemaître, Barbara; Grillet, Stéphane; Botto, Miriam; Engler, Olivier; Portmann, Jasmine; Siegrist, Denise; Bejon, Philip; Silvera, Peter; Kremsner, Peter; Siegrist, Claire-Anne

    2018-04-04

    The recombinant vesicular stomatitis virus (rVSV) vaccine expressing the Zaire Ebola virus (ZEBOV) glycoprotein is efficacious in the weeks following single-dose injection, but duration of immunity is unknown. We aimed to assess antibody persistence at 1 and 2 years in volunteers who received single-dose rVSV-ZEBOV in three previous trials. In this observational cohort study, we prospectively followed-up participants from the African and European phase 1 rVSV-ZEBOV trials, who were vaccinated once in 2014-15 with 300 000 (low dose) or 10-50 million (high dose) plaque-forming units (pfu) of rVSV-ZEBOV vaccine to assess ZEBOV glycoprotein (IgG) antibody persistence. The primary outcome was ZEBOV glycoprotein-specific IgG geometric mean concentrations (GMCs) measured yearly by ELISA compared with 1 month (ie, 28 days) after immunisation. We report GMCs up to 2 years (Geneva, Switzerland, including neutralising antibodies up to 6 months) and 1 year (Lambaréné, Gabon; Kilifi, Kenya) after vaccination and factors associated with higher antibody persistence beyond 6 months, according to multivariable analyses. Trials and the observational study were registered at ClinicalTrials.gov (Geneva: NCT02287480 and NCT02933931; Kilifi: NCT02296983) and the Pan-African Clinical Trials Registry (Lambaréné PACTR201411000919191). Of 217 vaccinees from the original studies (102 from the Geneva study, 75 from the Lambaréné study, and 40 from the Kilifi study), 197 returned and provided samples at 1 year (95 from the Geneva study, 63 from the Lambaréné, and 39 from the Kilifi study) and 90 at 2 years (all from the Geneva study). In the Geneva group, 44 (100%) of 44 participants who had been given a high dose (ie, 10-50 million pfu) of vaccine and who were seropositive at day 28 remained seropositive at 2 years, whereas 33 (89%) of 37 who had been given the low dose (ie, 300 000 pfu) remained seropositive for 2 years (p=0·042). In participants who had received a high dose

  11. Deep sequencing of H7N8 avian influenza viruses from surveillance zone supports H7N8 high pathogenicity avian influenza was limited to a single outbreak farm in Indiana during 2016.

    Lee, Dong-Hun; Torchetti, Mia Kim; Killian, Mary Lea; Swayne, David E

    2017-07-01

    In mid-January 2016, an outbreak of H7N8 high-pathogenicity avian influenza virus (HPAIV) in commercial turkeys occurred in Indiana. Surveillance within the 10km control zone identified H7N8 low-pathogenicity avian influenza virus (LPAIV) in nine surrounding turkey flocks but no other HPAIV-affected premises. We sequenced four of the H7N8 HPAIV isolated from the single farm and nine LPAIV identified during control zone surveillance. Evaluation included phylogenetic network analysis indicating close relatedness across the HPAIV and LPAIV, and that the progenitor H7N8 LPAIV spread among the affected turkey farms in Indiana, followed by spontaneous mutation to HPAIV on a single premise through acquisition of three basic amino acids at the hemagglutinin cleavage site. Deep sequencing of the available viruses failed to identify subpopulations in either the HPAIV or LPAIV suggesting mutation to HPAIV likely occurred on a single farm and the HPAIV did not spread to epidemiologically linked LPAIV-affected farms. Published by Elsevier Inc.

  12. A novel variable antibody fragment dimerized by leucine zippers with enhanced neutralizing potency against rabies virus G protein compared to its corresponding single-chain variable antibody fragment.

    Li, Zhuang; Cheng, Yue; Xi, Hualong; Gu, Tiejun; Yuan, Ruosen; Chen, Xiaoxu; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2015-12-01

    Fatal rabies can be prevented effectively by post-exposure prophylactic (PEP) with rabies immunoglobulin (RIG). Single-chain variable fragments (scFv), which are composed of a variable heavy chain (VH) and a variable light chain (VL) connected by a peptide linker, can potentially be used to replace RIG. However, in our previous study, a scFv (scFV57S) specific for the rabies virus (RV) G protein showed a lower neutralizing potency than that of its parent IgG due to lower stability and altered peptide assembly pattern. In monoclonal antibodies, the VH and VL interact non-covalently, while in scFvs the VH is connected covalently with the VL by the artificial linker. In this study, we constructed and expressed two peptides 57VL-JUN-HIS and 57VH-FOS-HA in Escherichia coli. The well-known Fos and Jun leucine zippers were utilized to dimerize VH and VL similarly to the IgG counterpart. The two peptides assembled to form zipFv57S in vitro. Due to the greater similarity in structure with IgG, the zipFv57S protein showed a higher binding ability and affinity resulting in notable improvement of in vitro neutralizing activity over its corresponding scFv. The zipFv57S protein was also found to be more stable and showed similar protective rate as RIG in mice challenged with a lethal dose of RV. Our results not only indicated zipFv57S as an ideal alternative for RIG in PEP but also offered a novel and efficient hetero-dimerization pattern of VH and VL leading to enhanced neutralizing potency. Copyright © 2015. Published by Elsevier Ltd.

  13. A single intranasal immunization with a subunit vaccine formulation induces higher mucosal IgA production than live respiratory syncytial virus

    Garg, Ravendra; Theaker, Michael; Martinez, Elisa C.; Drunen Littel-van den Hurk, Sylvia van

    2016-01-01

    Respiratory syncytial virus (RSV) causes serious respiratory illness in infants and elderly. RSV infection induces short-lived immunity, which leaves people prone to re-infection. In contrast, the RSV fusion (F) protein formulated with a novel adjuvant (∆F/TriAdj) elicits long term protective immunity. A comparison of RSV-immunized mice to mice vaccinated with a single dose of ∆F/TriAdj showed no difference in IgG1 and IgG2a production; however, local IgA secreting memory B cell development and B cell IgA production were significantly lower in RSV vaccinated mice than in ∆F/TriAdj-immunized mice. This indicates a potential reason as to why long-term immunity is not induced by RSV infection. The comparison also revealed that germinal center lymphocyte populations were higher in ∆F/TriAdj-vaccinated mice. Furthermore, ∆F/TriAdj induced higher gene expression of activation-induced cytidine deaminase (AID), as well as IL-6, IL-21, TGF-β cytokines, which are key players in IgA class switch recombination, ultimately leading to a sustained long-term memory response. - Highlights: •Immune responses to adjuvanted RSV F protein, ∆F/TriAdj, and RSV were compared. •∆F/TriAdj stimulates more local IgA production than RSV. •∆F/TriAdj induces more local IgA secreting memory B cells than RSV. •Germinal center lymphocyte populations are higher in ∆F/TriAdj-vaccinated mice. •∆F/TriAdj induces higher gene expression of AID, IL-6, IL-21, and TGF-β than RSV.

  14. A single intranasal immunization with a subunit vaccine formulation induces higher mucosal IgA production than live respiratory syncytial virus

    Garg, Ravendra [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Theaker, Michael [Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Martinez, Elisa C. [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Microbiology & Immunology, University of Saskatchewan, Saskatoon, Canada SK S7N 5E3 (Canada); Drunen Littel-van den Hurk, Sylvia van, E-mail: sylvia.vandenhurk@usask.ca [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada)

    2016-12-15

    Respiratory syncytial virus (RSV) causes serious respiratory illness in infants and elderly. RSV infection induces short-lived immunity, which leaves people prone to re-infection. In contrast, the RSV fusion (F) protein formulated with a novel adjuvant (∆F/TriAdj) elicits long term protective immunity. A comparison of RSV-immunized mice to mice vaccinated with a single dose of ∆F/TriAdj showed no difference in IgG1 and IgG2a production; however, local IgA secreting memory B cell development and B cell IgA production were significantly lower in RSV vaccinated mice than in ∆F/TriAdj-immunized mice. This indicates a potential reason as to why long-term immunity is not induced by RSV infection. The comparison also revealed that germinal center lymphocyte populations were higher in ∆F/TriAdj-vaccinated mice. Furthermore, ∆F/TriAdj induced higher gene expression of activation-induced cytidine deaminase (AID), as well as IL-6, IL-21, TGF-β cytokines, which are key players in IgA class switch recombination, ultimately leading to a sustained long-term memory response. - Highlights: •Immune responses to adjuvanted RSV F protein, ∆F/TriAdj, and RSV were compared. •∆F/TriAdj stimulates more local IgA production than RSV. •∆F/TriAdj induces more local IgA secreting memory B cells than RSV. •Germinal center lymphocyte populations are higher in ∆F/TriAdj-vaccinated mice. •∆F/TriAdj induces higher gene expression of AID, IL-6, IL-21, and TGF-β than RSV.

  15. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.

    Emma-Jo Hayton

    Full Text Available HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported.Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination.Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1 and predominantly transient (<48 hours. Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range of 633 (231-1533 post-vaccination, which is of no safety concern.These data demonstrate safety and good tolerability of the pSG2

  16. Singled out?

    Waller, Frank

    2004-03-01

    The increasing use of single use medical devices is being driven by a growing awareness of iatrogenic (from the Greek; caused by the doctor) and nosocomial infections. Public health perceptions relating to transmissible spongiform encephalopathies, specifically variant Creutzfeldt-Jakob disease (vCJD), the Human Immunodeficiency Virus (HIV) and Hepatitis B are high on the political agenda and a matter of concern to healthcare professionals.

  17. Yeast for virus research

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  18. Replication kinetics and shedding of very virulent Marek's disease virus and vaccinal Rispens/CVI988 virus during single and mixed infections varying in order and interval between infections.

    Islam, Tanzila; Walkden-Brown, Stephen W; Renz, Katrin G; Islam, A F M Fakhrul; Ralapanawe, Sithara

    2014-10-10

    Vaccination is thought to contribute to an evolution in virulence of the Marek's disease virus (MDV) as vaccines prevent disease but not infection. We investigated the effects of co-infections at various intervals between Rispens/CVI988 vaccine virus (Rispens) and very virulent MDV (vvMDV) on the replication and shedding of each virus. The experiment used 600 ISA Brown layer chickens in 24 isolators with all treatments replicated in two isolators. Chickens were vaccinated with Rispens and/or challenged with the vvMDV isolate 02LAR on days 0, 5, or 10 post hatching providing vaccination to challenge intervals (VCI) of -10, -5, 0, 5 or 10 days with the negative values indicating challenge prior to vaccination. Peripheral blood lymphocytes (PBL), feathers and isolator exhaust dust were sampled between 7 and 56 days post infection (dpi) and subjected to quantitative real-time polymerase chain reaction (qPCR) to differentiate the two viruses. Overall Rispens significantly reduced the viral load of vvMDV in PBL and feather cells and shedding in dust. Similarly vvMDV significantly reduced the viral load of Rispens in PBL and feather cells but not in dust. VCI significantly influenced these relationships having strong positive and negative associations with load of vvMDV and Rispens respectively. Differences between the two viruses and their effects on each other were greatest in PBL and feathers, and least in dust. This study expands our understanding of the interaction between pathogenic and vaccinal viruses following vaccination with imperfect vaccines and has implications for selection of appropriate samples to test for vaccination success. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A single amino acid of human immunodeficiency virus type 2 capsid protein affects conformation of two external loops and viral sensitivity to TRIM5α.

    Tadashi Miyamoto

    Full Text Available We previously reported that human immunodeficiency virus type 2 (HIV-2 carrying alanine or glutamine but not proline at position 120 of the capsid protein (CA could grow in the presence of anti-viral factor TRIM5α of cynomolgus monkey (CM. To elucidate details of the interaction between the CA and TRIM5α, we generated mutant HIV-2 viruses, each carrying one of the remaining 17 possible amino acid residues, and examined their sensitivity to CM TRIM5α-mediated restriction. Results showed that hydrophobic residues or those with ring structures were associated with sensitivity, while those with small side chains or amide groups conferred resistance. Molecular dynamics simulation study revealed a structural basis for the differential TRIM5α sensitivities. The mutations at position 120 in the loop between helices 6 and 7 (L6/7 affected conformation of the neighboring loop between helices 4 and 5 (L4/5, and sensitive viruses had a common L4/5 conformation. In addition, the common L4/5 structures of the sensitive viruses were associated with a decreased probability of hydrogen bond formation between the 97th aspartic acid in L4/5 and the 119th arginine in L6/7. When we introduced aspartic acid-to-alanine substitution at position 97 (D97A of the resistant virus carrying glutamine at position 120 to disrupt hydrogen bond formation, the resultant virus became moderately sensitive. Interestingly, the virus carrying glutamic acid at position 120 showed resistance, while its predicted L4/5 conformation was similar to those of sensitive viruses. The D97A substitution failed to alter the resistance of this particular virus, indicating that the 120th amino acid residue itself is also involved in sensitivity regardless of the L4/5 conformation. These results suggested that a hydrogen bond between the L4/5 and L6/7 modulates the overall structure of the exposed surface of the CA, but the amino acid residue at position 120 is also directly involved in CM TRIM5

  20. ECHO virus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that can lead ...

  1. A single amino acid substitution within the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein renders simian-human immunodeficiency virus (SHIVKU-1bMC33) susceptible to rimantadine

    Hout, David R.; Gomez, Lisa M.; Pacyniak, Erik; Miller, Jean-Marie; Hill, M. Sarah; Stephens, Edward B.

    2006-01-01

    Previous studies from our laboratory have shown that the transmembrane domain (TM) of the Vpu protein of human immunodeficiency virus type 1 (HIV-1) contributes to the pathogenesis of SHIV KU-1bMC33 in macaques and that the TM domain of Vpu could be replaced with the M2 protein viroporin from influenza A virus. Recently, we showed that the replacement of the TM domain of Vpu with that of the M2 protein of influenza A virus resulted in a virus (SHIV M2 ) that was sensitive to rimantadine [Hout, D.R., Gomez, M.L., Pacyniak, E., Gomez, L.M., Inbody, S.H., Mulcahy, E.R., Culley, N., Pinson, D.M., Powers, M.F., Wong, S.W., Stephens, E.B., 2006. Substitution of the transmembrane domain of Vpu in simian human immunodeficiency virus (SHIV KU-1bMC33 ) with that of M2 of influenza A results in a virus that is sensitive to inhibitors of the M2 ion channel and is pathogenic for pig-tailed macaques. Virology 344, 541-558]. Based on previous studies of the M2 protein which have shown that the His-X-X-X-Trp motif within the M2 is essential to the function of the M2 proton channel, we have constructed a novel SHIV in which the alanine at position 19 of the TM domain was replaced with a histidine residue resulting in the motif His-Ile-Leu-Val-Trp. The SHIV VpuA19H replicated with similar kinetics as the parental SHIV KU-1bMC33 and pulse-chase analysis revealed that the processing of viral proteins was similar to SHIV KU-1bMC33 . This SHIV VpuA19H virus was found to be more sensitive to the M2 ion channel blocker rimantadine than SHIV M2 . Electron microscopic examination of SHIV VpuA19H -infected cells treated with rimantadine revealed an accumulation of viral particles at the cell surface and within intracellular vesicles, which was similar to that previously observed to SHIV M2 -infected cells treated with rimantadine. These data indicate that the Vpu protein of HIV-1 can be converted into a rimantadine-sensitive ion channel with the alteration of one amino acid and provide

  2. One lesion, one virus: individual components of high-grade anal intraepithelial neoplasia in HIV-positive men contain a single HPV type

    Richel, Olivier; Quint, Koen D.; Lindeman, Jan; van Noesel, Carel J. M.; de Koning, Maurits N. C.; van den Munckhof, Henk A. M.; de Vries, Henry J. C.; Prins, Jan M.; Quint, Wim G. V.

    2014-01-01

    High-grade anal intraepithelial neoplasia (AIN) is present in many human immunodeficiency virus (HIV)-positive men who have sex with men. The major etiologic factor is infection with an oncogenic human papillomavirus (HPV) genotype. We investigated whether individual components of high-grade AIN are

  3. Identification of single amino acid substitutions (SAAS) in neuraminidase from influenza a virus (H1N1) via mass spectrometry analysis coupled with de novo peptide sequencing.

    Peng, Qisheng; Wang, Zijian; Wu, Donglin; Li, Xiaoou; Liu, Xiaofeng; Sun, Wanchun; Liu, Ning

    2016-08-01

    Amino acid substitutions in the neuraminidase of the influenza virus are the main cause of the emergence of resistance to zanamivir or oseltamivir during seasonal influenza treatment; they are the result of non-synonymous mutations in the viral genome that can be successfully detected by polymer chain reaction (PCR)-based approaches. There is always an urgent need to detect variation in amino acid sequences directly at the protein level. Mass spectrometry coupled with de novo sequencing has been explored as an alternative and straightforward strategy for detecting amino acid substitutions, as well - this approach is the primary focus of the present study. Influenza virus (A/Puerto Rico/8/1934 H1N1) propagated in embryonated chicken eggs was purified by ultracentrifugation, followed by PNGase F treatment. The deglycosylated virion was lysed and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The gel band corresponding to neuraminidase was picked up and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. LC-MS/MS analyses, coupled with manual de novo sequencing, allowed the determination of three amino acid substitutions: R346K, S349 N, and S370I/L, in the neuraminidase from the influenza virus (A/Puerto Rico/8/1934 H1N1), which were located in three mutated peptides of the neuraminidase: YGNGVWIGK, TKNHSSR, and PNGWTETDI/LK, respectively. We found that the amino acid substitutions in the proteins of RNA viruses (including influenza A virus) resulting from non-synonymous gene mutations can indeed be directly analyzed via mass spectrometry, and that manual interpretation of the MS/MS data may be beneficial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Role of a single amino acid substitution of VP3 H142D for increased acid resistance of foot-and-mouth disease virus serotype A.

    Biswal, Jitendra K; Das, Biswajit; Sharma, Gaurav K; Khulape, Sagar A; Pattnaik, Bramhadev

    2016-04-01

    Foot-and-mouth disease virus (FMDV) particles lose infectivity due to their dissociation into pentamers at pH value below 6.5. After the uptake of FMDV by receptor-mediated endocytosis, the acid-dependent dissociation process is required for the release of FMDV genome inside endosomes. Nevertheless, dissociation of FMDV particles in mildly acidic conditions renders the inactivated FMD vaccine less effective. To improve the acid stability of inactivated FMD vaccine during the manufacturing process, a serotype A IND 40/2000 (in-use vaccine strain) mutant with increased resistance to acid inactivation was generated through reverse genetics approach. Based upon the earlier reports, the crucial amino acid residue, H142 of VP3 capsid protein was substituted separately to various amino acid residues Arg (R), Phe (F), Ala (A), and Asp (D) on the full-genome length cDNA clone. While the H142 → R or H142 → F or H142 → A substitutions resulted in non-infectious FMDV, H142 → D mutation on VP3 protein (H3142D) resulted in the generation of mutant virus with enhanced resistance to acid-induced inactivation. In addition, H3142D substitution did not alter the replication ability and antigenicity of mutant as compared to the parental virus. However, the virus competition experiments revealed that the H3142D substitution conferred a loss of fitness for the mutant virus. Results from this study demonstrate that the H3142D substitution is the molecular determinant of acid-resistant phenotype in FMDV serotype A.

  5. Altered specificity of single-chain antibody fragments bound to pandemic H1N1-2009 influenza virus after conversion of the phage-bound to the soluble form

    Kaku Yoshihiro

    2012-09-01

    Full Text Available Abstract Background In 2009, a novel influenza A/H1N1 virus (H1N1pdm quickly spread worldwide and co-circulated with then-existing seasonal H1N1 virus (sH1N1. Distinguishing between these 2 viruses was necessary to better characterize the epidemiological properties of the emergent virus, including transmission patterns, pathogenesis, and anti-influenza drug resistance. This situation prompted us to develop a point-of-care virus differentiation system before entering the 2009–2010 influenza season. Aiming to establish H1N1pdm-specific detection tools rapidly, we employed phage display libraries to select H1N1pdm-specific single-chain variable fragments (scFvs. Findings Human single-fold scFv libraries (Tomlinson I + J underwent selection for the ability to bind H1N1pdm virus particles. Three rounds of panning brought 1152 phage-bound scFvs, of which 58 clones reacted with H1N1pdm specifically or preferentially over sH1N1 in an enzyme-linked immunosorbent assay (ELISA. After conversion of the scFvs to soluble form, 7 clones demonstrating high/stable expression were finally obtained. However, all the soluble scFvs except No. 29 were found to have lost their specificity/preference for H1N1pdm in ELISA. The specificity/preference of No. 29 was also confirmed by immunofluorescence assay and immunoprecipitation, and the viral nucleoprotein was identified by ELISA as its target protein. The change in specificity associated with scFv conversion from phage-bound to soluble form could be due to loss of phage scaffold pIII protein, which likely provides structural support for the scFv antigen-binding site. It is also possible that the similar antigenic properties of H1N1pdm and sH1N1 led to the observed alterations in scFv specificity. Discussion Using a phage display library, we obtained 7 soluble scFv clones reactive against H1N1pdm; however, only 1 showed specificity/preference toward H1N1pdm. Our results confirmed that using phage display

  6. RNA viruses in the sea.

    Lang, Andrew S; Rise, Matthew L; Culley, Alexander I; Steward, Grieg F

    2009-03-01

    Viruses are ubiquitous in the sea and appear to outnumber all other forms of marine life by at least an order of magnitude. Through selective infection, viruses influence nutrient cycling, community structure, and evolution in the ocean. Over the past 20 years we have learned a great deal about the diversity and ecology of the viruses that constitute the marine virioplankton, but until recently the emphasis has been on DNA viruses. Along with expanding knowledge about RNA viruses that infect important marine animals, recent isolations of RNA viruses that infect single-celled eukaryotes and molecular analyses of the RNA virioplankton have revealed that marine RNA viruses are novel, widespread, and genetically diverse. Discoveries in marine RNA virology are broadening our understanding of the biology, ecology, and evolution of viruses, and the epidemiology of viral diseases, but there is still much that we need to learn about the ecology and diversity of RNA viruses before we can fully appreciate their contributions to the dynamics of marine ecosystems. As a step toward making sense of how RNA viruses contribute to the extraordinary viral diversity in the sea, we summarize in this review what is currently known about RNA viruses that infect marine organisms.

  7. Chikungunya virus

    Chikungunya virus infection; Chikungunya ... Where Chikungunya is Found Before 2013, the virus was found in Africa, Asia, Europe, and the Indian and Pacific oceans. In late 2013, outbreaks occurred for the first time in the ...

  8. Zika Virus

    ... through blood transfusions. There have been outbreaks of Zika virus in the United States, Africa, Southeast Asia, the ... not travel to areas where there is a Zika virus outbreak. If you do decide to travel, first ...

  9. Zika Virus

    ... Funding CDC Activities For Healthcare Providers Clinical Evaluation & Disease Sexual Transmission HIV Infection & Zika Virus Testing for Zika Test Specimens – At Time of Birth Diagnostic Tests Understanding Zika Virus Test Results ...

  10. Expression of a single siRNA against a conserved region of NP gene strongly inhibits in vitro replication of different Influenza A virus strains of avian and swine origin.

    Stoppani, Elena; Bassi, Ivan; Dotti, Silvia; Lizier, Michela; Ferrari, Maura; Lucchini, Franco

    2015-08-01

    Influenza A virus is the principal agent responsible of the respiratory tract's infections in humans. Every year, highly pathogenic and infectious strains with new antigenic assets appear, making ineffective vaccines so far developed. The discovery of RNA interference (RNAi) opened the way to the progress of new promising drugs against Influenza A virus and also to the introduction of disease resistance traits in genetically modified animals. In this paper, we show that Madin-Darby Canine Kidney (MDCK) cell line expressing short hairpin RNAs (shRNAs) cassette, designed on a specific conserved region of the nucleoprotein (NP) viral genome, can strongly inhibit the viral replication of four viral strains sharing the target sequence, reducing the viral mRNA respectively to 2.5×10(-4), 7.5×10(-5), 1.7×10(-3), 1.9×10(-4) compared to the control, as assessed by real-time PCR. Moreover, we demonstrate that during the challenge with a viral strain bearing a single mismatch on the target sequence, although a weaker inhibition is observed, viral mRNA is still lowered down to 1.2×10(-3) folds in the shRNA-expressing clone compared to the control, indicating a broad potential use of this approach. In addition, we developed a highly predictive and fast screening test of siRNA sequences based on dual-luciferase assay, useful for the in vitro prediction of the potential effect of viral inhibition. In conclusion, these findings reveal new siRNA sequences able to inhibit Influenza A virus replication and provide a basis for the development of siRNAs as prophylaxis and therapy for influenza infection both in humans and animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. ICTV virus taxonomy profile

    García, María Laura; Bó, Dal Elena; Graça, da John V.; Gago-Zachert, Selma; Hammond, John; Moreno, Pedro; Natsuaki, Tomohide; Pallás, Vicente; Navarro, Jose A.; Reyes, Carina A.; Luna, Gabriel Robles; Sasaya, Takahide; Tzanetakis, Ioannis E.; Vaira, Anna María; Verbeek, Martin; Lefkowitz, Elliot J.; Davison, Andrew J.; Siddell, Stuart G.; Simmonds, Peter; Adams, Michael J.; Smith, Donald B.; Orton, Richard J.; Sanfaçon, Hélène

    2017-01-01

    The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3-12.5 kb divided into 3-4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour

  12. Monitoring virus entry into living cells using DiD-labeled dengue virus particles

    Ayala Nunez, Vanesa; Wilschut, Jan; Smit, Jolanda M.

    2011-01-01

    A variety of approaches can be applied to investigate the multiple steps and interactions that occur during virus entry into the host cell. Single-virus tracking is a powerful real-time imaging technique that offers the possibility to monitor virus-cell binding, internalization, intracellular

  13. Viruses and Multiple Sclerosis

    Virtanen, Jussi Oskari; Jacobson, Steve

    2016-01-01

    Multiple sclerosis (MS) is a heterogeneous disease that develops as an interplay between the immune system and environmental stimuli in genetically susceptible individuals. There is increasing evidence that viruses may play a role in MS pathogenesis acting as these environmental triggers. However, it is not known if any single virus is causal, or rather several viruses can act as triggers in disease development. Here, we review the association of different viruses to MS with an emphasis on two herpesviruses, Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6). These two agents have generated the most impact during recent years as possible co-factors in MS disease development. The strongest argument for association of EBV with MS comes from the link between symptomatic infectious mononucleosis and MS and from seroepidemiological studies. In contrast to EBV, HHV-6 has been found significantly more often in MS plaques than in MS normal appearing white matter or non-MS brains and HHV-6 re-activation has been reported during MS clinical relapses. In this review we also suggest new strategies, including the development of new infectious animal models of MS and antiviral MS clinical trials, to elucidate roles of different viruses in the pathogenesis of this disease. Furthermore, we introduce the idea of using unbiased sequence-independent pathogen discovery methodologies, such as next generation sequencing, to study MS brain tissue or body fluids for detection of known viral sequences or potential novel viral agents. PMID:22583435

  14. The Genetic and Molecular Studies of Hepatitis C Virus: A Review ...

    The role of Hepatitis viruses, particularly Hepatitis c virus (HCV) as human pathogen and their transmission have been of interest over the years. The virus is a small (55-65nm in size), included in Group IV, enveloped, positive sense, single stranded RNA virus, the family Flaviviridae, genus Hepacivirus, and Hepatitis c virus ...

  15. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens

    Wallny, Hans-Joachim; Avila, David; Hunt, Lawrence G.

    2006-01-01

    Compared with the MHC of typical mammals, the chicken MHC is smaller and simpler, with only two class I genes found in the B12 haplotype. We make five points to show that there is a single-dominantly expressed class I molecule that can have a strong effect on MHC function. First, we find only one...

  16. Field investigation of Foot and Mouth Disease (FMD) virus infection ...

    Prof. Ogunji

    Foot and Mouth Disease Virus (FMDV) is a non-enveloped, single stranded RNA virus ... continents of Asia, Africa, and some regions in the South America. .... FCT = Federal Capital Territory; NE = North East, NC = North Central; NW =.

  17. RECOVIR Software for Identifying Viruses

    Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui

    2013-01-01

    Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.

  18. Long-term outcomes of liver transplant patients with human immunodeficiency virus infection and end-stage-liver-disease: single center experience

    Vernadakis S

    2011-08-01

    Full Text Available Abstract Objective Orthotopic-liver-transplantation (OLT in patients with Human-Immunodeficiency-Virus infection (HIV and end-stage-liver-disease (ESDL is rarely reported. The purpose of this study is to describe our institutional experience on OLT for HIV positive patients. Material and methods This is a retrospective study of all HIV-infected patients who underwent OLT at the University Hospital of Essen, from January 1996 to December 2009. Age, sex, HIV transmission-way, CDC-stage, etiology of ESDL, concomitant liver disease, last CD4cell count and HIV-viral load prior to OLT were collected and analysed. Standard calcineurin-inhibitors-based immunosuppression was applied. All patients received anti-fungal and anti-pneumocystis carinii pneumonia prophylaxis post-OLT. Results Eight transplanted HIV-infected patients with a median age of 46 years (range 35-61 years were included. OLT indications were HCV (n = 5, HBV (n = 2, HCV/HBV/HDV-related cirrhosis (n = 1 and acute liver-failure (n = 1. At OLT, CD4 cell-counts ranged from 113-621 cells/μl, and HIV viral-loads from Conclusions OLT in HIV-infected patients and ESLD is an acceptable therapeutic option in selected patients. Long-term survival can be achieved without HIV disease-progression under antiretroviral therapy and management of the viral hepatitis co-infection.

  19. Construction, expression, purification and biotin labeling of a single recombinant multi-epitope antigen for double-antigen sandwich ELISA to detect hepatitis C virus antibody.

    He, Jing; Xiu, Bingshui; Wang, Guohua; Chen, Kun; Feng, Xiaoyan; Song, Xiaoguo; Zhu, Cuixia; Yang, Xiqin; Bai, Guanzhong; Ling, Shigan; Zhang, Heqiu

    2011-08-01

    Based on B cell epitope predictions, a recombinant antigen with multiple epitopes from four Hepatitis C Virus fragments (C, NS3, NS4 and NS5) were engineered. The recombinant gene was then highly expressed in E. coli. The non-modified and C-terminal-modified recombinant proteins were used for coating and biotin labeling, respectively, to establish the double-antigen sandwich ELISA. Ten positive reference samples confirmed by the CHIRON RIBA HCV 3.0 SIA kit were detected positive, Forty one plasma samples were positive among samples from 441 volunteers, which indicated that the recombinant antigen could readily react well with plasma HCV antibody. As critical reagents of double-antigen sandwich ELISA, the recombinant multi-epitope antigen and the C-terminal-modified and biotin-conjugated antigen show good antigenicity. In this study, we provide a simple approach to produce multiple epitopes within one recombinant protein in order to avoid the costly expression of less-effective pools of multiple proteins, which is the conventional strategy of diagnostic antigen production for HCV antibody detection.

  20. Changes in the seroprevalence of IgG anti-hepatitis A virus between 2001 and 2013: experience at a single center in Korea

    Chung, Sung Jun; Kim, Sun Min; Roh, Min; Yu, Mi Yeon; Lee, Jung Hoon; Oh, ChangKyo; Lee, Eun Young; Lee, Seung; Jeon, Yong Cheol; Yoo, Kyo-Sang; Sohn, Joo Hyun

    2014-01-01

    Background/Aims The incidence of symptomatic hepatitis A reportedly increased among 20- to 40-year-old Korean during the late 2000s. Vaccination against hepatitis A was commenced in the late 1990s and was extended to children aged <10 years. In the present study we analyzed the changes in the seroprevalence of IgG anti-hepatitis A virus (HAV) over the past 13 years. Methods Overall, 4903 subjects who visited our hospital between January 2001 and December 2013 were studied. The seroprevalence of IgG anti-HAV was analyzed according to age and sex. In addition, the seroprevalence of IgG anti-HAV was compared among 12 age groups and among the following time periods: early 2000s (2001-2003), mid-to-late 2000s (2006-2008), and early 2010s (2011-2013). The chi-square test for trend was used for statistical analysis. Results The seroprevalence of IgG anti-HAV did not differ significantly between the sexes. Furthermore, compared to the seroprevalence of IgG anti-HAV in the early 2000s and mid-to-late 2000s, that in the early 2010s was markedly increased among individuals aged 1-14 years and decreased among those aged 25-44 years (P<0.01). We also found that the seroprevalence of IgG anti-HAV in individuals aged 25-44 years in the early 2010s was lower than that in the early 2000s and mid-to-late 2000s. Conclusions The number of symptomatic HAV infection cases in Korea is decreasing, but the seroprevalence of IgG anti-HAV is low in the active population. PMID:25032182

  1. Changes in the seroprevalence of IgG anti-hepatitis A virus between 2001 and 2013: experience at a single center in Korea

    Sung Jun Chung

    2014-06-01

    Full Text Available Background/AimsThe incidence of symptomatic hepatitis A reportedly increased among 20- to 40-year-old Korean during the late 2000s. Vaccination against hepatitis A was commenced in the late 1990s and was extended to children aged <10 years. In the present study we analyzed the changes in the seroprevalence of IgG anti-hepatitis A virus (HAV over the past 13 years.MethodsOverall, 4903 subjects who visited our hospital between January 2001 and December 2013 were studied. The seroprevalence of IgG anti-HAV was analyzed according to age and sex. In addition, the seroprevalence of IgG anti-HAV was compared among 12 age groups and among the following time periods: early 2000s (2001-2003, mid-to-late 2000s (2006-2008, and early 2010s (2011-2013. The chi-square test for trend was used for statistical analysis.ResultsThe seroprevalence of IgG anti-HAV did not differ significantly between the sexes. Furthermore, compared to the seroprevalence of IgG anti-HAV in the early 2000s and mid-to-late 2000s, that in the early 2010s was markedly increased among individuals aged 1-14 years and decreased among those aged 25-44 years (P<0.01. We also found that the seroprevalence of IgG anti-HAV in individuals aged 25-44 years in the early 2010s was lower than that in the early 2000s and mid-to-late 2000s.ConclusionsThe number of symptomatic HAV infection cases in Korea is decreasing, but the seroprevalence of IgG anti-HAV is low in the active population.

  2. Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea

    Sissoko, Daouda; Laouenan, Cedric; Folkesson, Elin; M’Lebing, Abdoul-Bing; Beavogui, Abdoul-Habib; Baize, Sylvain; Camara, Alseny-Modet; Maes, Piet; Shepherd, Susan; Danel, Christine; Carazo, Sara; Conde, Mamoudou N.; Gala, Jean-Luc; Colin, Géraldine; Savini, Hélène; Bore, Joseph Akoi; Le Marcis, Frederic; Koundouno, Fara Raymond; Petitjean, Frédéric; Lamah, Marie-Claire; Diederich, Sandra; Tounkara, Alexis; Poelart, Geertrui; Berbain, Emmanuel; Dindart, Jean-Michel; Duraffour, Sophie; Lefevre, Annabelle; Leno, Tamba; Peyrouset, Olivier; Irenge, Léonid; Bangoura, N’Famara; Palich, Romain; Hinzmann, Julia; Kraus, Annette; Barry, Thierno Sadou; Berette, Sakoba; Bongono, André; Camara, Mohamed Seto; Chanfreau Munoz, Valérie; Doumbouya, Lanciné; Souley Harouna; Kighoma, Patient Mumbere; Koundouno, Fara Roger; Réné Lolamou; Loua, Cécé Moriba; Massala, Vincent; Moumouni, Kinda; Provost, Célia; Samake, Nenefing; Sekou, Conde; Soumah, Abdoulaye; Arnould, Isabelle; Komano, Michel Saa; Gustin, Lina; Berutto, Carlotta; Camara, Diarra; Camara, Fodé Saydou; Colpaert, Joliene; Delamou, Léontine; Jansson, Lena; Kourouma, Etienne; Loua, Maurice; Malme, Kristian; Manfrin, Emma; Maomou, André; Milinouno, Adele; Ombelet, Sien; Sidiboun, Aboubacar Youla; Verreckt, Isabelle; Yombouno, Pauline; Bocquin, Anne; Carbonnelle, Caroline; Carmoi, Thierry; Frange, Pierre; Mely, Stéphane; Nguyen, Vinh-Kim; Pannetier, Delphine; Taburet, Anne-Marie; Treluyer, Jean-Marc; Kolie, Jacques; Moh, Raoul; Gonzalez, Minerva Cervantes; Kuisma, Eeva; Liedigk, Britta; Ngabo, Didier; Rudolf, Martin; Thom, Ruth; Kerber, Romy; Gabriel, Martin; Di Caro, Antonino; Wölfel, Roman; Badir, Jamal; Bentahir, Mostafa; Deccache, Yann; Dumont, Catherine; Durant, Jean-François; El Bakkouri, Karim; Gasasira Uwamahoro, Marie; Smits, Benjamin; Toufik, Nora; Van Cauwenberghe, Stéphane; Ezzedine, Khaled; Dortenzio, Eric; Pizarro, Louis; Etienne, Aurélie; Guedj, Jérémie; Fizet, Alexandra; Barte de Sainte Fare, Eric; Murgue, Bernadette; Tran-Minh, Tuan; Rapp, Christophe; Piguet, Pascal; Poncin, Marc; Draguez, Bertrand; Allaford Duverger, Thierry; Barbe, Solenne; Baret, Guillaume; Defourny, Isabelle; Carroll, Miles; Raoul, Hervé; Augier, Augustin; Eholie, Serge P.; Yazdanpanah, Yazdan; Levy-Marchal, Claire; Antierrens, Annick; Van Herp, Michel; Günther, Stephan; de Lamballerie, Xavier; Keïta, Sakoba; Mentre, France

    2016-01-01

    Background Ebola virus disease (EVD) is a highly lethal condition for which no specific treatment has proven efficacy. In September 2014, while the Ebola outbreak was at its peak, the World Health Organization released a short list of drugs suitable for EVD research. Favipiravir, an antiviral developed for the treatment of severe influenza, was one of these. In late 2014, the conditions for starting a randomized Ebola trial were not fulfilled for two reasons. One was the perception that, given the high number of patients presenting simultaneously and the very high mortality rate of the disease, it was ethically unacceptable to allocate patients from within the same family or village to receive or not receive an experimental drug, using a randomization process impossible to understand by very sick patients. The other was that, in the context of rumors and distrust of Ebola treatment centers, using a randomized design at the outset might lead even more patients to refuse to seek care. Therefore, we chose to conduct a multicenter non-randomized trial, in which all patients would receive favipiravir along with standardized care. The objectives of the trial were to test the feasibility and acceptability of an emergency trial in the context of a large Ebola outbreak, and to collect data on the safety and effectiveness of favipiravir in reducing mortality and viral load in patients with EVD. The trial was not aimed at directly informing future guidelines on Ebola treatment but at quickly gathering standardized preliminary data to optimize the design of future studies. Methods and Findings Inclusion criteria were positive Ebola virus reverse transcription PCR (RT-PCR) test, age ≥ 1 y, weight ≥ 10 kg, ability to take oral drugs, and informed consent. All participants received oral favipiravir (day 0: 6,000 mg; day 1 to day 9: 2,400 mg/d). Semi-quantitative Ebola virus RT-PCR (results expressed in “cycle threshold” [Ct]) and biochemistry tests were performed at day 0

  3. Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial: A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea.

    Daouda Sissoko

    2016-03-01

    Full Text Available Ebola virus disease (EVD is a highly lethal condition for which no specific treatment has proven efficacy. In September 2014, while the Ebola outbreak was at its peak, the World Health Organization released a short list of drugs suitable for EVD research. Favipiravir, an antiviral developed for the treatment of severe influenza, was one of these. In late 2014, the conditions for starting a randomized Ebola trial were not fulfilled for two reasons. One was the perception that, given the high number of patients presenting simultaneously and the very high mortality rate of the disease, it was ethically unacceptable to allocate patients from within the same family or village to receive or not receive an experimental drug, using a randomization process impossible to understand by very sick patients. The other was that, in the context of rumors and distrust of Ebola treatment centers, using a randomized design at the outset might lead even more patients to refuse to seek care. Therefore, we chose to conduct a multicenter non-randomized trial, in which all patients would receive favipiravir along with standardized care. The objectives of the trial were to test the feasibility and acceptability of an emergency trial in the context of a large Ebola outbreak, and to collect data on the safety and effectiveness of favipiravir in reducing mortality and viral load in patients with EVD. The trial was not aimed at directly informing future guidelines on Ebola treatment but at quickly gathering standardized preliminary data to optimize the design of future studies.Inclusion criteria were positive Ebola virus reverse transcription PCR (RT-PCR test, age ≥ 1 y, weight ≥ 10 kg, ability to take oral drugs, and informed consent. All participants received oral favipiravir (day 0: 6,000 mg; day 1 to day 9: 2,400 mg/d. Semi-quantitative Ebola virus RT-PCR (results expressed in "cycle threshold" [Ct] and biochemistry tests were performed at day 0, day 2, day 4, end

  4. Combined Cytolytic Effects of a Vaccinia Virus Encoding a Single Chain Trimer of MHC-I with a Tax-Epitope and Tax-Specific CTLs on HTLV-I-Infected Cells in a Rat Model

    Takashi Ohashi

    2014-01-01

    Full Text Available Adult T cell leukemia (ATL is a malignant lymphoproliferative disease caused by human T cell leukemia virus type I (HTLV-I. To develop an effective therapy against the disease, we have examined the oncolytic ability of an attenuated vaccinia virus (VV, LC16m8Δ (m8Δ, and an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL line, 4O1/C8, against an HTLV-I-infected rat T cell line, FPM1. Our results demonstrated that m8Δ was able to replicate in and lyse tumorigenic FPM1 cells but was incompetent to injure 4O1/C8 cells, suggesting the preferential cytolytic activity toward tumor cells. To further enhance the cytolysis of HTLV-I-infected cells, we modified m8Δ and obtained m8Δ/RT1AlSCTax180L, which can express a single chain trimer (SCT of rat major histocompatibility complex class I with a Tax-epitope. Combined treatment with m8Δ/RT1AlSCTax180L and 4O1/C8 increased the cytolysis of FPM1V.EFGFP/8R cells, a CTL-resistant subclone of FPM1, compared with that using 4O1/C8 and m8Δ presenting an unrelated peptide, suggesting that the activation of 4O1/C8 by m8Δ/RT1AlSCTax180L further enhanced the killing of the tumorigenic HTLV-I-infected cells. Our results indicate that combined therapy of oncolytic VVs with SCTs and HTLV-I-specific CTLs may be effective for eradication of HTLV-I-infected cells, which evade from CTL lysis and potentially develop ATL.

  5. A single dose of a MIV-150/Zinc acetate gel provides 24 h of protection against vaginal simian human immunodeficiency virus reverse transcriptase infection, with more limited protection rectally 8-24 h after gel use.

    Kenney, Jessica; Singer, Rachel; Derby, Nina; Aravantinou, Meropi; Abraham, Ciby J; Menon, Radhika; Seidor, Samantha; Zhang, Shimin; Gettie, Agegnehu; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Fernández-Romero, José A; Zydowsky, Thomas M; Robbiani, Melissa

    2012-11-01

    Previously we showed that repeated vaginal application of a MIV-150/zinc acetate carrageenan (MIV-150/ZA/CG) gel and a zinc acetate carrageenan (ZA/CG) gel significantly protected macaques from vaginal simian human immunodeficiency virus reverse transcriptase (SHIV-RT) infection. Gels were applied either daily for 2 weeks or every other day for 4 weeks, and the animals were challenged 4-24 h later. Herein, we examined the effects of a single vaginal dose administered either before or after virus challenge. Encouraged by the vaginal protection seen with MIV-150/ZA/CG, we also tested it rectally. Vaginal applications of MIV-150/ZA/CG, ZA/CG, and CG gel were performed once 8-24 h before, 1 h after, or 24 h before and 1 h after vaginal challenge. Rectal applications of MIV-150/ZA/CG and CG gel were performed once 8 or 24 h before rectal challenge. While vaginal pre-challenge and pre/post-challenge application of MIV-150/ZA/CG gel offered significant protection (88%, pinfection prechallenge, but not significantly, and the effect was completely lost post-challenge. Rectal application of MIV-150/ZA/CG gel afforded limited protection against rectal challenge when applied 8-24 h before challenge. Thus, MIV-150/ZA/CG gel is a highly effective vaginal microbicide that demonstrates 24 h of protection from vaginal infection and may demonstrate efficacy against rectal infection when given close to the time of HIV exposure.

  6. A G-C-rich palindromic structural motif and a stretch of single-stranded purines are required for optimal packaging of Mason-Pfizer monkey virus (MPMV) genomic RNA.

    Jaballah, Soumeya Ali; Aktar, Suriya J; Ali, Jahabar; Phillip, Pretty Susan; Al Dhaheri, Noura Salem; Jabeen, Aayesha; Rizvi, Tahir A

    2010-09-03

    During retroviral RNA packaging, two copies of genomic RNA are preferentially packaged into the budding virus particles whereas the spliced viral RNAs and the cellular RNAs are excluded during this process. Specificity towards retroviral RNA packaging is dependent upon sequences at the 5' end of the viral genome, which at times extend into Gag sequences. It has earlier been suggested that the Mason-Pfizer monkey virus (MPMV) contains packaging sequences within the 5' untranslated region (UTR) and Gag. These studies have also suggested that the packaging determinants of MPMV that lie in the UTR are bipartite and are divided into two regions both upstream and downstream of the major splice donor. However, the precise boundaries of these discontinuous regions within the UTR and the role of the intervening sequences between these dipartite sequences towards MPMV packaging have not been investigated. Employing a combination of genetic and structural prediction analyses, we have shown that region "A", immediately downstream of the primer binding site, is composed of 50 nt, whereas region "B" is composed of the last 23 nt of UTR, and the intervening 55 nt between these two discontinuous regions do not contribute towards MPMV RNA packaging. In addition, we have identified a 14-nt G-C-rich palindromic sequence (with 100% autocomplementarity) within region A that has been predicted to fold into a structural motif and is essential for optimal MPMV RNA packaging. Furthermore, we have also identified a stretch of single-stranded purines (ssPurines) within the UTR and 8 nt of these ssPurines are duplicated in region B. The native ssPurines or its repeat in region B when predicted to refold as ssPurines has been shown to be essential for RNA packaging, possibly functioning as a potential nucleocapsid binding site. Findings from this study should enhance our understanding of the steps involved in MPMV replication including RNA encapsidation process. Copyright (c) 2010 Elsevier Ltd

  7. Tumor regression induced by intratumor therapy with a disabled infectious single cycle (DISC) herpes simplex virus (HSV) vector, DISC/HSV/murine granulocyte-macrophage colony-stimulating factor, correlates with antigen-specific adaptive immunity.

    Ali, Selman A; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Rojas, José M; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2002-04-01

    Direct intratumor injection of a disabled infectious single cycle HSV-2 virus encoding the murine GM-CSF gene (DISC/mGM-CSF) into established murine colon carcinoma CT26 tumors induced a significant delay in tumor growth and complete tumor regression in up to 70% of animals. Pre-existing immunity to HSV did not reduce the therapeutic efficacy of DISC/mGM-CSF, and, when administered in combination with syngeneic dendritic cells, further decreased tumor growth and increased the incidence of complete tumor regression. Direct intratumor injection of DISC/mGM-CSF also inhibited the growth of CT26 tumor cells implanted on the contralateral flank or seeded into the lungs following i.v. injection of tumor cells (experimental lung metastasis). Proliferation of splenocytes in response to Con A was impaired in progressor and tumor-bearer, but not regressor, mice. A potent tumor-specific CTL response was generated from splenocytes of all mice with regressing, but not progressing tumors following in vitro peptide stimulation; this response was specific for the gp70 AH-1 peptide SPSYVYHQF and correlated with IFN-gamma, but not IL-4 cytokine production. Depletion of CD8(+) T cells from regressor splenocytes before in vitro stimulation with the relevant peptide abolished their cytolytic activity, while depletion of CD4(+) T cells only partially inhibited CTL generation. Tumor regression induced by DISC/mGM-CSF virus immunotherapy provides a unique model for evaluating the immune mechanism(s) involved in tumor rejection, upon which tumor immunotherapy regimes may be based.

  8. Frequency of thyroid dysfunctions during interferon alpha treatment of single and combination therapy in hepatitis C virus-infected patients: a systematic review based analysis.

    Chandrasekharan Nair Kesavachandran

    Full Text Available Thyroid dysfunction is the commonest endocrinopathy associated with HCV infection due to interferon-based treatment. This comprehensive and systematic review presents the available evidence for newly developed thyroid antibodies and dysfunctions during interferon treatment (both single and combination in HCV patients.This systematic review was conducted in accordance with the PRISMA guidelines. The data generated were used to analyze the risk for thyroid dysfunctions during interferon (IFN treatment in HCV patients. There was a wide range in the incidence of newly developed thyroid dysfunctions and thyroid antibodies in HCV patients during IFN treatment (both single and combination. The wide range of incidence also denoted the possibility of factors other than IFN treatment for thyroid-related abnormalities in HCV patients. These other factors include HCV viral factors, genetic predisposition, environmental factors, and patho-physiological factors. Variations in IFN dosage, treatment duration of IFN, definition/criteria followed in each study for thyroid dysfunction and irregular thyroid function testing during treatment in different studies influence the outcome of the single studies and jeopardise the validity of a pooled risk estimate of side effects of thyroid dysfunction. Importantly, reports differ as to whether the thyroid-related side effects disappear totally after withdrawal of the IFN treatment.The present review shows that there is a wide range in the incidence of newly developed thyroid dysfunctions and thyroid antibodies in IFN treated HCV patients. This is a comprehensive attempt to collate relevant data from 56 publications across several nations about IFN (both mono and combination therapy related thyroid dysfunction among HCV patients. The role of each factor in causing thyroid dysfunctions in HCV patients treated with IFN should be analyzed in detail in future studies, for a better understanding of the problem and sounder

  9. A single center, open label study of intradermal administration of an inactivated purified chick embryo cell culture rabies virus vaccine in adults.

    Recuenco, Sergio; Warnock, Eli; Osinubi, Modupe O V; Rupprecht, Charles E

    2017-08-03

    In the USA, rabies vaccines (RVs) are licensed for intramuscular (IM) use only, although RVs are licensed for use by the intradermal (ID) route in many other countries. Recent limitations in supplies of RV in the USA reopened discussions on the more efficient use of available biologics, including utilization of more stringent risk assessments, and potential ID RV administration. A clinical trial was designed to compare the immunogenic and adverse effects of a purified chicken embryo cell (PCEC) RV administered ID or IM. Enrollment was designed in four arms, ID Pre-Exposure Prophylaxis (Pre-EP), IM Pre-EP, ID Booster, and IM Booster vaccination. Enrollment included 130 adult volunteers. The arms with IM administration received vaccine according to the current ACIP recommendations: Pre-EP, three 1mL (2.5 I.U.) RV doses, each on day 0, 7, and 21; or a routine Booster, one 1ml dose. The ID groups received the same schedule, but doses administered were in a volume of 0.1mL (0.25 I.U.). The rate of increase in rabies virus neutralizing antibody titers 14-21days after vaccination were similar in the ID and correspondent IM groups. The GMT values for ID vaccination were slightly lower than those for IM vaccination, for both naïve and booster groups, and these differences were statistically significant by t-test. Fourteen days after completing vaccination, all individuals developed RV neutralizing antibody titers over the minimum arbitrary value obtained with the rapid fluorescent focus inhibition test (RFFIT). Antibodies were over the set threshold until the end of the trial, 160days after completed vaccination. No serious adverse reactions were reported. Most frequent adverse reactions were erythema, induration and tenderness, localized at the site of injection. Multi use of 1mL rabies vaccine vials for ID doses of 0.1 was demonstrated to be both safe and inmunogenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Phytophthora viruses.

    Cai, Guohong; Hillman, Bradley I

    2013-01-01

    Phytophthora sp. is a genus in the oomycetes, which are similar to filamentous fungi in morphology and habitat, but phylogenetically more closely related to brown algae and diatoms and fall in the kingdom Stramenopila. In the past few years, several viruses have been characterized in Phytophthora species, including four viruses from Phytophthora infestans, the late blight pathogen, and an endornavirus from an unnamed Phytophthora species from Douglas fir. Studies on Phytophthora viruses have revealed several interesting systems. Phytophthora infestans RNA virus 1 (PiRV-1) and PiRV-2 are likely the first members of two new virus families; studies on PiRV-3 support the establishment of a new virus genus that is not affiliated with established virus families; PiRV-4 is a member of Narnaviridae, most likely in the genus Narnavirus; and Phytophthora endornavirus 1 (PEV1) was the first nonplant endornavirus at the time of reporting. Viral capsids have not been found in any of the above-mentioned viruses. PiRV-1 demonstrated a unique genome organization that requires further examination, and PiRV-2 may have played a role in late blight resurgence in 1980s-1990s. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Schmallenberg Virus

    IAS Admin

    explore the potential of this infection crossing the species barrier and thereby .... The virus targets mainly the brain of the unborn animal resulting in neurological ... The virus is located in the blood of the adult infected animal or in the central ...

  12. Zika Virus

    ... with facebook share with twitter share with linkedin Zika Virus Credit: NIAID A female Aedes mosquito. This type of mosquito can transmit Zika, ... transmitted to humans through the bite of infected Aedes aegypti mosquitoes. Zika virus can be transmitted from an infected pregnant woman ...

  13. CHANDIPURA VIRUS

    First page Back Continue Last page Overview Graphics. CHANDIPURA VIRUS. First isolated from a village called Chandipura near Nagpur in 1965 in India. Belongs to rhabdoviridae family. Used as a Model System to study RNA virus multiplication in the infected cell at molecular level. Notes:

  14. Switch to Rilpivirine/Emtricitabine/Tenofovir Single-Tablet Regimen of Human Immunodeficiency Virus-1 RNA-Suppressed Patients, Agence Nationale de Recherches sur le SIDA et les Hépatites Virales CO3 Aquitaine Cohort, 2012-2014.

    Cazanave, Charles; Reigadas, Sandrine; Mazubert, Cyril; Bellecave, Pantxika; Hessamfar, Mojgan; Le Marec, Fabien; Lazaro, Estibaliz; Peytavin, Gilles; Bruyand, Mathias; Fleury, Hervé; Dabis, François; Neau, Didier

    2015-01-01

    Background.  The purpose of this study was to assess the efficacy and tolerability of combined antiretroviral therapy (cART) in human immunodeficiency virus (HIV)-1 virologically suppressed patients who switched to rilpivirine (RPV)/tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) as a single-tablet regimen (STR). Methods.  A retrospective multicenter cohort study was performed between September 2012 and February 2014 in Bordeaux University Hospital-affiliated clinics. Patients with a plasma HIV viral load (VL) lower than 50 copies/mL and switching to STR were evaluated at baseline, 3, 6, 9, and 12 months from switch time (M3, M6, M9, M12) for VL and other biological parameters. Change from baseline in CD4 cell counts was evaluated at M6 and M12. Virological failure (VF) was defined as 2 consecutive VL >50 copies/mL. Results.  Three hundred four patients were included in the analysis. Single-tablet regimen switch was proposed to 116 patients with adverse events, mostly efavirenz (EFV)-based (n = 59), and to 224 patients for cART simplification. Thirty of 196 patients with available genotype resistance test results displayed virus with ≥1 drug resistance mutation on reverse-transcriptase gene. After 12 months of follow-up, 93.4% (95.5% confidence interval, 89.9-96.2) of patients remained virologically suppressed. There was no significant change in CD4 cell count. During the study period, 5 patients experienced VF, one of them harboring RPV resistance mutation. Clinical cART tolerability improved in 79 patients overall (29.9%) at M6, especially neurological symptoms related to EFV. Fasting serum lipid profiles improved, but a significant estimated glomerular function rate decrease (-11 mL/min/1.73 m(2); P < 10(-4)) was observed. Conclusions.  Overall, virologic suppression was maintained in patients after switching to RPV/TDF/ FTC. This STR strategy was associated with improved tolerability.

  15. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana-propagated Plum pox virus C isolates to either host.

    Calvo, María; Malinowski, Tadeusz; García, Juan Antonio

    2014-02-01

    Plum pox virus (PPV) C is one of the less common PPV strains and specifically infects cherry trees in nature. Making use of two PPV-C isolates that display different pathogenicity features, i.e., SwCMp, which had been adapted to Nicotiana species, and BY101, which had been isolated from cherry rootstock L2 (Prunus lannesiana) and propagated only in cherry species, we have generated two infective full-length cDNA clones in order to determine which viral factors are involved in the adaptation to each host. According to our results, the C-P3(PIPO)/6K1/N-CI (cylindrical inclusion) region contains overlapping but not coincident viral determinants involved in symptoms development, local viral amplification, and systemic movement capacity. Amino acid changes in this region promoting the adaptation to N. benthamiana or P. avium have trade-off effects in the alternative host. In both cases, adaptation can be achieved through single amino acid changes in the NIapro protease recognition motif between 6K1 and CI or in nearby sequences. Thus, we hypothesize that the potyvirus polyprotein processing could depend on specific host factors and the adaptation of PPV-C isolates to particular hosts relies on a fine regulation of the proteolytic cleavage of the 6K1-CI junction.

  16. Analysis of the overdispersed clock in the short-term evolution of hepatitis C virus: Using the E1/E2 gene sequences to infer infection dates in a single source outbreak.

    Wróbel, Borys; Torres-Puente, Manuela; Jiménez, Nuria; Bracho, María Alma; García-Robles, Inmaculada; Moya, Andrés; González-Candelas, Fernando

    2006-06-01

    The assumption of a molecular clock for dating events from sequence information is often frustrated by the presence of heterogeneity among evolutionary rates due, among other factors, to positively selected sites. In this work, our goal is to explore methods to estimate infection dates from sequence analysis. One such method, based on site stripping for clock detection, was proposed to unravel the clocklike molecular evolution in sequences showing high variability of evolutionary rates and in the presence of positive selection. Other alternatives imply accommodating heterogeneity in evolutionary rates at various levels, without eliminating any information from the data. Here we present the analysis of a data set of hepatitis C virus (HCV) sequences from 24 patients infected by a single individual with known dates of infection. We first used a simple criterion of relative substitution rate for site removal prior to a regression analysis. Time was regressed on maximum likelihood pairwise evolutionary distances between the sequences sampled from the source individual and infected patients. We show that it is indeed the fastest evolving sites that disturb the molecular clock and that these sites correspond to positively selected codons. The high computational efficiency of the regression analysis allowed us to compare the site-stripping scheme with random removal of sites. We demonstrate that removing the fast-evolving sites significantly increases the accuracy of estimation of infection times based on a single substitution rate. However, the time-of-infection estimations improved substantially when a more sophisticated and computationally demanding Bayesian method was used. This method was used with the same data set but keeping all the sequence positions in the analysis. Consequently, despite the distortion introduced by positive selection on evolutionary rates, it is possible to obtain quite accurate estimates of infection dates, a result of especial relevance for

  17. ICTV Virus Taxonomy Profile: Rhabdoviridae.

    Walker, Peter J; Blasdell, Kim R; Calisher, Charles H; Dietzgen, Ralf G; Kondo, Hideki; Kurath, Gael; Longdon, Ben; Stone, David M; Tesh, Robert B; Tordo, Noël; Vasilakis, Nikos; Whitfield, Anna E; Nbsp Ictv Report Consortium

    2018-04-01

    The family Rhabdoviridae comprises viruses with negative-sense (-) single-stranded RNA genomes of 10.8-16.1 kb. Virions are typically enveloped with bullet-shaped or bacilliform morphology but can also be non-enveloped filaments. Rhabdoviruses infect plants and animals including mammals, birds, reptiles and fish, as well as arthropods which serve as single hosts or act as biological vectors for transmission to animals or plants. Rhabdoviruses include important pathogens of humans, livestock, fish and agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of Rhabdoviridae, which is available at www.ictv.global/report/rhabdoviridae.

  18. Transmission and pathogenesis of vesicular stomatitis viruses

    Vesicular Stomatitis (VS) is caused by the Vesicular Stomatitis Virus (VSV), a negative single stranded RNA arthropod-borne virus member of the Family Rhabdoviridae. The virion is composed of the host derived plasma membrane, the envelope, and an internal ribonucleoprotein core. The envelope contain...

  19. New Taastrup-Like virus, Rhabdoviridae, lethal to leafhoppers

    A new viral pathogen (‘Taastrup Virus’) of leafhoppers was discovered. The unclassified virus is a negative sense, single-stranded RNA virus which appears to be a new member of the order Mononegavirales in the family Rhabdoviridae, and thus far it is only the second report of a Taastrup-like virus m...

  20. The prevalence of transfusion-transmitted virus (TTV) infection in ...

    Transfusion-transmitted virus (TTV) is an unenveloped circular single-stranded DNA virus with a diameter of 30 to 32 nm that was first described in 1997 in Japan. TTV was detected in various populations without proven pathology, including blood donors and in patients with chronic hepatitis B virus (HBV) and hepatitis C ...

  1. Zika Virus-Associated Cognitive Impairment in Adolescent, 2016.

    Zucker, Jason; Neu, Natalie; Chiriboga, Claudia A; Hinton, Veronica J; Leonardo, Marc; Sheikh, Arif; Thakur, Kiran

    2017-06-01

    Incidence of neurologic manifestations associated with Zika virus infection has been increasing. In 2016, neuropsychological and cognitive changes developed in an adolescent after travel to a Zika virus-endemic area. Single-photon emission computed tomography and neuropsychological testing raised the possibility that Zika virus infection may lead to neuropsychiatric and cognitive symptoms.

  2. Ganjam virus.

    Sudeep, A B; Jadi, R S; Mishra, A C

    2009-11-01

    Ganjam virus (GANV), a member of genus Nairovirus of family Bunyavirdae is of considerable veterinary importance in India. Though, predominantly tick borne, GANV was also isolated from mosquitoes, man and sheep. Neutralizing and complement fixing antibodies to GANV have been detected in animal and human sera collected from different parts of the country. Thirty three strains of GANV have been isolated from India, mainly from Haemaphysalis ticks. The virus replicated in certain vertebrate and mosquito cell lines and found pathogenic to laboratory animals. One natural infection and five laboratory-acquired infections in men were also reported. GANV is antigenically related to Nairobi sheep disease virus (NSDV) of Africa, which is highly pathogenic for sheep and goats causing 70-90 per cent mortality among the susceptible population. Recent molecular studies have demonstrated that GANV is an Asian variant of NSDV and both these viruses are related to the dreaded Crimean Congo haemorrhagic fever (CCHF) group viruses. The versatility of the virus to replicate in different arthropod species, its ability to infect sheep, goat and man makes it an important zoonotic agent.

  3. Powassan (POW) Virus Basics

    ... Health Professionals Related Topics For International Travelers Powassan Virus Disease Basics Download this fact sheet formatted for ... Virus Disease Fact Sheet (PDF) What is Powassan virus? Powassan virus is a tickborne flavivirus that is ...

  4. Temperature and development of Zika virus infection: an Indonesian case

    Ramadhan Tosepu

    2017-01-01

    Distribution of Zika virus has spread throughout the world. WHO has announced that Zika virus disease is a global health problem. As a tropical country, Indonesia has the potential to spread Zika virus. This letter is to report that there was a single case of zika in Jambi province published by the Eijkman Institute for Molecular Biology. This case was analyzed with the temperature in the scene, which is considered as an appropriate factor to development of Zika virus.

  5. Hepatitis B virus DNA quantification with the three-in-one (3io) method allows accurate single-step differentiation of total HBV DNA and cccDNA in biopsy-size liver samples.

    Taranta, Andrzej; Tien Sy, Bui; Zacher, Behrend Johan; Rogalska-Taranta, Magdalena; Manns, Michael Peter; Bock, Claus Thomas; Wursthorn, Karsten

    2014-08-01

    Hepatitis B virus (HBV) replicates via reverse transcription converting its partially double stranded genome into the covalently closed circular DNA (cccDNA). The long-lasting cccDNA serves as a replication intermediate in the nuclei of hepatocytes. It is an excellent, though evasive, parameter for monitoring the course of liver disease and treatment efficiency. To develop and test a new approach for HBV DNA quantification in serum and small-size liver samples. The p3io plasmid contains an HBV fragment and human β-actin gene (hACTB) as a standard. Respective TaqMan probes were labeled with different fluorescent dyes. A triplex real-time PCR for simultaneous quantification of total HBV DNA, cccDNA and hACTB could be established. Three-in-one method allows simultaneous analysis of 3 targets with a lower limit of quantification of 48 copies per 20 μl PCR reaction and a wide range of linearity (R(2)>0.99, pDNA samples from HBV infected patients. Total HBV DNA and cccDNA could be quantified in 32 and 22 of 33 FFPE preserved liver specimens, respectively. Total HBV DNA concentrations quantified by the 3io method remained comparable with Cobas TaqMan HBV Test v2.0. The three-in-one protocol allows the single step quantification of viral DNA in samples from different sources. Therefore lower sample input, faster data acquisition, a lowered error and significantly lower costs are the advantages of the method. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Ebola Virus

    Anusha Rangare Lakshman

    2015-09-01

    Full Text Available The disease Ebola takes its name from the Ebola River situated near a village in the Democratic Republic of Congo, where the disease first appeared in 1976. It is caused by a virus from the Filoviridae family (filovirus. The present outbreak of Ebola Virus Disease (EVD concerns four countries in West Africa, namely Guinea, Liberia, Sierra Leone and Nigeria till date. Further to widespread transmission of the disease, it has been declared as a Public Health Emergency of International Concern by the World Health Organisation on 8 August 2014. As of 4 August 2014, countries have reported 1,711 cases (1,070 confirmed, 436 probable, 205 suspect, including 932 deaths. This review paper enlightens about the awareness of Ebola virus and its preventive measures. [Archives Medical Review Journal 2015; 24(3.000: 296-305

  7. ICTV virus taxonomy profile: Baculoviridae

    The Baculoviridae is a family of large viruses with circular dsDNA genomes ranging from 80 to 180 kbp. Virions consist of enveloped rod-shaped nucleocapsids and are embedded in distinctive occlusion bodies measuring 0.15 to 15 µm. The occlusion bodies consist of a matrix composed of a single viral...

  8. Zika Virus: An Emergent Neuropathological Agent

    White, Martyn K.; Wollebo, Hassen S.; Beckham, J. David; Tyler, Kenneth L.; Khalili, Kamel

    2016-01-01

    The emergence of Zika virus in the Americas has followed a pattern that is familiar from earlier epidemics of other viruses, where a new disease is introduced into a human population and then spreads rapidly with important public health consequences. In the case of Zika virus, an accumulating body of recent evidence implicates the virus in the etiology of serious pathologies of the human nervous system, that is, the occurrence of microcephaly in neonates and Guillain–Barré syndrome in adults. Zika virus is an arbovirus (arthropod-borne virus) and a member of the family Flaviviridae, genus Flavivirus. Zika virions are enveloped and icosahedral, and contain a nonsegmented, single-stranded, positive-sense RNA genome, which encodes 3 structural and 7 nonstructural proteins that are expressed as a single polyprotein that undergoes cleavage. Zika genomic RNA replicates in the cytoplasm of infected host cells. Zika virus was first detected in 1947 in the blood of a febrile monkey in Uganda’s Zika Forest and in crushed suspensions of the Aedes mosquito, which is one of the vectors for Zika virus. The virus remained obscure, with a few human cases confined to Africa and Asia. There are two lineages of the Zika virus, African and Asian, with the Asian strain causing outbreaks in Micronesia in 2007 and French Polynesia in 2013–2014. From here, the virus spread to Brazil with the first report of autochthonous Zika transmission in the Americas in March 2015. The rapid advance of the virus in the Americas and its likely association with microcephaly and Guillain–Barré syndrome make Zika an urgent public health concern. PMID:27464346

  9. SARS virus

    ... consequence.Protein spike similar. HE gene absent. 2787 nucleotides. Largest genome. Jumps species by genetic deletion. < 300 compounds screened. Glycyrrhizin (liquorics/mullatha) seems attractive. Antivirals not effective. Vaccines – animal model only in monkeys. Killed corona or knockout weakened virus as targets.

  10. Novel RNA viruses within plant parasitic cyst nematodes.

    Ruark, Casey L; Gardner, Michael; Mitchum, Melissa G; Davis, Eric L; Sit, Tim L

    2018-01-01

    The study of invertebrate-and particularly nematode-viruses is emerging with the advancement of transcriptome sequencing. Five single-stranded RNA viruses have now been confirmed within the economically important soybean cyst nematode (SCN; Heterodera glycines). From previous research, we know these viruses to be widespread in greenhouse and field populations of SCN. Several of the SCN viruses were also confirmed within clover (H. trifolii) and beet (H. schachtii) cyst nematodes. In the presented study, we sequenced the transcriptomes of several inbred SCN populations and identified two previously undiscovered viral-like genomes. Both of these proposed viruses are negative-sense RNA viruses and have been named SCN nyami-like virus (NLV) and SCN bunya-like virus (BLV). Finally, we analyzed publicly available transcriptome data of two potato cyst nematode (PCN) species, Globodera pallida and G. rostochiensis. From these data, a third potential virus was discovered and called PCN picorna-like virus (PLV). PCN PLV is a positive-sense RNA virus, and to the best of our knowledge, is the first virus described within PCN. The presence of these novel viruses was confirmed via qRT-PCR, endpoint PCR, and Sanger sequencing with the exception of PCN PLV due to quarantine restrictions on the nematode host. While much work needs to be done to understand the biological and evolutionary significance of these viruses, they offer insight into nematode ecology and the possibility of novel nematode management strategies.

  11. Purification and crystallization of Kokobera virus helicase

    De Colibus, Luigi; Speroni, Silvia; Coutard, Bruno; Forrester, Naomi L.; Gould, Ernest; Canard, Bruno; Mattevi, Andrea

    2007-01-01

    Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method and exhibit a diffraction limit of 2.3 Å. Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. The flavivirus genus is characterized by a positive-sense single-stranded RNA genome. The unique open reading frame of the viral RNA is transcribed and translated as a single polyprotein which is post-translationally cleaved to yield three structural and seven nonstructural proteins, one of which is the NS3 gene that encodes a C-terminal helicase domain consisting of 431 amino acids. Helicase inhibitors are potential antiviral drugs as the helicase is essential to viral replication. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P3 1 21 (or P3 2 21), with unit-cell parameters a = 88.6, c = 138.6 Å, and exhibit a diffraction limit of 2.3 Å

  12. Purification and crystallization of Kokobera virus helicase

    De Colibus, Luigi; Speroni, Silvia [Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia (Italy); Coutard, Bruno [Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Université Aix-Marseille I et II, ESIL, Campus de Luminy, 13288 Marseille CEDEX 09 (France); Forrester, Naomi L.; Gould, Ernest [Centre for Ecology and Hydrology (formerly Institute of Virology), Mansfield Road, Oxford OX1 3SR (United Kingdom); Canard, Bruno [Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Université Aix-Marseille I et II, ESIL, Campus de Luminy, 13288 Marseille CEDEX 09 (France); Mattevi, Andrea, E-mail: mattevi@ipvgen.unipv.it [Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia (Italy)

    2007-03-01

    Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method and exhibit a diffraction limit of 2.3 Å. Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. The flavivirus genus is characterized by a positive-sense single-stranded RNA genome. The unique open reading frame of the viral RNA is transcribed and translated as a single polyprotein which is post-translationally cleaved to yield three structural and seven nonstructural proteins, one of which is the NS3 gene that encodes a C-terminal helicase domain consisting of 431 amino acids. Helicase inhibitors are potential antiviral drugs as the helicase is essential to viral replication. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P3{sub 1}21 (or P3{sub 2}21), with unit-cell parameters a = 88.6, c = 138.6 Å, and exhibit a diffraction limit of 2.3 Å.

  13. Detection of sweet potato virus C, sweet potato virus 2 and sweet potato feathery mottle virus in Portugal.

    Varanda, Carla M R; Santos, Susana J; Oliveira, Mônica D M; Clara, Maria Ivone E; Félix, Maria Rosário F

    2015-06-01

    Field sweet potato plants showing virus-like symptoms, as stunting, leaf distortion, mosaic and chlorosis, were collected in southwest Portugal and tested for the presence of four potyviruses, sweet potato virus C (SPVC), sweet potato virus 2 (SPV2), sweet potato feathery mottle virus (SPFMV), sweet potato virus G (SPVG), and the crinivirus sweet potato chlorotic stunt virus (SPCSV). DsRNA fractions were extracted from symptomatic leaves and used as templates in single and multiplex RT-PCR assays using previously described specific primers for each analyzed virus. The amplified reaction products for SPVC, SPV2 and SPFMV were of expected size, and direct sequencing of PCR products revealed that they correspond to the coat protein gene (CP) and showed 98%, 99% and 99% identity, respectively, to those viruses. Comparison of the CP genomic and amino acid sequences of the Portuguese viral isolates recovered here with those of ten other sequences of isolates obtained in different countries retrieved from the GenBank showed very few differences. The application of the RT-PCR assays revealed for the first time the presence of SPVC and SPFMV in the sweet potato crop in Portugal, the absence of SPVG and SPCSV in tested plants, as well as the occurrence of triple virus infections under field conditions.

  14. Understanding Zika virus.

    Murray, John S

    2017-01-01

    This article describes what pediatric healthcare professionals should know about Zika virus (ZIKV). ZIKV is classified as an arthropod-borne, single-stranded RNA virus of the Flaviviridae family and genus Flavivirus. ZIKV is not new. The virus was first discovered almost 70 years ago in Uganda. The first isolate of the virus was found in rhesus monkeys in the Zika Forrest, hence the nomenclature. The primary route of ZIKV transmission to humans is through the bite of an infected Aedes species mosquito-primarily Aedes aegypti. When the mosquito bites individuals infected with the virus, mosquitos then become the vector of transmitting the infection to others. Women can also pass ZIKV to their fetus during pregnancy and at the time of delivery. ZIKV can also be transmitted through sexual activity from an individual who is infected with the virus to his or her partners. It is estimated that approximately 18% of individuals infected with ZIKV will go on to develop symptoms. When symptoms develop, it is usually within 3-12 days, although this may vary. Most often, symptoms are mild and self-limited. The most common symptoms are fever, arthralgia, maculopapular rash, and conjunctivitis lasting up to seven days. Less frequent symptoms include headache, vertigo, myalgia, vomiting, and diarrhea. At present, there is no vaccine available to prevent ZIKV and no specific antiviral treatment. Supportive care consisting of rest, hydration, analgesics, antihistamines, and antipyretics is recommended as needed. Given that there is no vaccine or treatment for ZIKV, considerable efforts must be focused on prevention. One of the most effective ways of preventing ZIKV infection is through avoiding mosquito bites, especially when traveling to or residing in areas where transmission is present. Precautions should include wearing appropriate attire with the objective of having as little skin exposed as possible, use of screens for windows and doors, and use of insect repellent. What is

  15. Additive interactions of unrelated viruses in mixed infections of cowpea.

    Imade Yolanda Nsa

    2015-10-01

    Full Text Available This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar White and 2 IITA lines; IT81D-985 and TVu76. The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV, genus Potyvirus, Cowpea mottle virus (CMeV, genus Carmovirus and Southern bean mosaic virus (SBMV, genus Sobemovirus singly and in mixture (double and triple at 10, 20 and 30 days after planting (DAP. The treated plants were assessed for susceptibility to the viruses, growth and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10DAP; only cultivar White produced some seeds at 30DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30DAP with a reduction of 80%. Overall, the commercial cultivar White was the least susceptible to the virus treatments and produced the most yield (flowers, pods and seeds. CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures.

  16. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments.

    Díaz-Muñoz, Samuel L

    2017-01-01

    Infection of more than one virus in a host, coinfection, is common across taxa and environments. Viral coinfection can enable genetic exchange, alter the dynamics of infections, and change the course of viral evolution. Yet, a systematic test of the factors explaining variation in viral coinfection across different taxa and environments awaits completion. Here I employ three microbial data sets of virus-host interactions covering cross-infectivity, culture coinfection, and single-cell coinfection (total: 6,564 microbial hosts, 13,103 viruses) to provide a broad, comprehensive picture of the ecological and biological factors shaping viral coinfection. I found evidence that ecology and virus-virus interactions are recurrent factors shaping coinfection patterns. Host ecology was a consistent and strong predictor of coinfection across all three data sets: cross-infectivity, culture coinfection, and single-cell coinfection. Host phylogeny or taxonomy was a less consistent predictor, being weak or absent in the cross-infectivity and single-cell coinfection models, yet it was the strongest predictor in the culture coinfection model. Virus-virus interactions strongly affected coinfection. In the largest test of superinfection exclusion to date, prophage sequences reduced culture coinfection by other prophages, with a weaker effect on extrachromosomal virus coinfection. At the single-cell level, prophage sequences eliminated coinfection. Virus-virus interactions also increased culture coinfection with ssDNA-dsDNA coinfections >2× more likely than ssDNA-only coinfections. The presence of CRISPR spacers was associated with a ∼50% reduction in single-cell coinfection in a marine bacteria, despite the absence of exact spacer matches in any active infection. Collectively, these results suggest the environment bacteria inhabit and the interactions among surrounding viruses are two factors consistently shaping viral coinfection patterns. These findings highlight the role of

  17. Influenza (Flu) Viruses

    ... Types Seasonal Avian Swine Variant Pandemic Other Influenza (Flu) Viruses Language: English (US) Español Recommend on Facebook ... influenza circulate and cause illness. More Information about Flu Viruses Types of Influenza Viruses Influenza A and ...

  18. Zika Virus and Pregnancy

    Full Text Available ... Management Education & Events Advocacy For Patients About ACOG Zika Virus and Pregnancy Home For Patients Zika Virus ... Patient Education Pamphlets - Spanish Share: PEV002, September 2016 Zika Virus and Pregnancy There are risks to your ...

  19. Zika Virus and Pregnancy

    Full Text Available ... Education & Events Advocacy For Patients About ACOG Zika Virus and Pregnancy Home For Patients Zika Virus and ... Education Pamphlets - Spanish Share: PEV002, September 2016 Zika Virus and Pregnancy There are risks to your fetus ...

  20. Zika Virus and Pregnancy

    ... Management Education & Events Advocacy For Patients About ACOG Zika Virus and Pregnancy Home For Patients Zika Virus and ... Patient Education Pamphlets - Spanish Share: PEV002, September 2016 Zika Virus and Pregnancy There are risks to your fetus ...

  1. Zika Virus and Pregnancy

    Full Text Available ... Management Education & Events Advocacy For Patients About ACOG Zika Virus and Pregnancy Home For Patients Zika Virus and ... Patient Education Pamphlets - Spanish Share: PEV002, September 2016 Zika Virus and Pregnancy There are risks to your fetus ...

  2. Zika Virus and Pregnancy

    Full Text Available ... Advocacy For Patients About ACOG Zika Virus and Pregnancy Home For Patients Zika Virus and Pregnancy Page ... Spanish Share: PEV002, September 2016 Zika Virus and Pregnancy There are risks to your fetus if you ...

  3. Computer Viruses: An Overview.

    Marmion, Dan

    1990-01-01

    Discusses the early history and current proliferation of computer viruses that occur on Macintosh and DOS personal computers, mentions virus detection programs, and offers suggestions for how libraries can protect themselves and their users from damage by computer viruses. (LRW)

  4. Hepatitis E Virus and Related Viruses in Animals.

    Thiry, D; Mauroy, A; Pavio, N; Purdy, M A; Rose, N; Thiry, E; de Oliveira-Filho, E F

    2017-02-01

    Hepatitis E is an acute human liver disease in healthy individuals which may eventually become chronic. It is caused by the hepatitis E virus (HEV) and can have a zoonotic origin. Nearly 57,000 people die yearly from hepatitis E-related conditions. The disease is endemic in both developing and developed countries with distinct epidemiologic profiles. In developing countries, the disease is associated with inadequate water treatment, while in developed countries, transmission is associated with animal contact and the ingestion of raw or uncooked meat, especially liver. All human HEV are grouped into at least four genotypes, while HEV or HEV-related viruses have been identified in an increasing number of domestic and wild animal species. Despite a high genetic diversity, only one single HEV serotype has been described to date for HEV genotypes 1-4. The discovery of new HEV or HEV-related viruses leads to a continuing increase in the number of genotypes. In addition, the genome organization of all these viruses is variable with overlapping open reading frames (ORF) and differences in the location of ORF3. In spite of the role of some domestic and wild animals as reservoir, the origin of HEV and HEV-related viruses in humans and animals is still unclear. This review discusses aspects of the detection, molecular virology, zoonotic transmission and origin of HEV and HEV-related viruses in the context of 'One Health' and establishes a link between the previous and the new taxonomy of this growing virus family. © 2015 Blackwell Verlag GmbH.

  5. A Glimpse of the genomic diversity of haloarchaeal tailed viruses

    Ana eSencilo

    2014-03-01

    Full Text Available Tailed viruses are the most common isolates infecting prokaryotic hosts residing hypersaline environments. Archaeal tailed viruses represent only a small portion of all characterized tailed viruses of prokaryotes. But even this small dataset revealed that archaeal tailed viruses have many similarities to their counterparts infecting bacteria, the bacteriophages. Shared functional homologues and similar genome organizations suggested that all microbial tailed viruses have common virion architectural and assembly principles. Recent structural studies have provided evidence justifying this thereby grouping archaeal and bacterial tailed viruses into a single lineage. Currently there are 17 haloarchaeal tailed viruses with entirely sequenced genomes. Nine viruses have at least one close relative among the 17 viruses and, according to the similarities, can be divided into three groups. Two other viruses share some homologues and therefore are distantly related, whereas the rest of the viruses are rather divergent (or singletons. Comparative genomics analysis of these viruses offers a glimpse into the genetic diversity and structure of haloarchaeal tailed virus communities.

  6. A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans

    Law, John Lok Man; Chen, Chao; Wong, Jason

    2013-01-01

    of genotype 1a). Cross neutralization was tested in Huh-7.5 human hepatoma cell cultures using infectious recombinant HCV (HCVcc) expressing structural proteins of heterologous HCV strains from all known major genotypes, 1-7. Vaccination induced significant neutralizing antibodies against heterologous HCV...... genotype 1a virus which represents the most common genotype in North America. Of the 16 vaccinees tested, 3 were selected on the basis of strong 1a virus neutralization for testing of broad cross-neutralizing responses. At least 1 vaccinee was shown to elicit broad cross-neutralization against all HCV...

  7. Dengue virus receptor

    Hidari, Kazuya I.P.J.; Suzuki, Takashi

    2011-01-01

    Dengue virus is an arthropod-borne virus transmitted by Aedes mosquitoes. Dengue virus causes fever and hemorrhagic disorders in humans and non-human primates. Direct interaction of the virus introduced by a mosquito bite with host receptor molecule(s) is crucial for virus propagation and the pathological progression of dengue diseases. Therefore, elucidation of the molecular mechanisms underlying the interaction between dengue virus and its receptor(s) in both humans and mosquitoes is essent...

  8. Computer Virus and Trends

    Tutut Handayani; Soenarto Usna,Drs.MMSI

    2004-01-01

    Since its appearance the first time in the mid-1980s, computer virus has invited various controversies that still lasts to this day. Along with the development of computer systems technology, viruses komputerpun find new ways to spread itself through a variety of existing communications media. This paper discusses about some things related to computer viruses, namely: the definition and history of computer viruses; the basics of computer viruses; state of computer viruses at this time; and ...

  9. Immunogenicity of a modified-live virus vaccine against bovine viral diarrhea virus types 1 and 2, infectious bovine rhinotracheitis virus, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus when administered intranasally in young calves.

    Xue, Wenzhi; Ellis, John; Mattick, Debra; Smith, Linda; Brady, Ryan; Trigo, Emilio

    2010-05-14

    The immunogenicity of an intranasally-administered modified-live virus (MLV) vaccine in 3-8 day old calves was evaluated against bovine viral diarrhea virus (BVDV) types 1 and 2, infectious bovine rhinotracheitis (IBR) virus, parainfluenza-3 (PI-3) virus and bovine respiratory syncytial virus (BRSV). Calves were intranasally vaccinated with a single dose of a multivalent MLV vaccine and were challenged with one of the respective viruses three to four weeks post-vaccination in five separate studies. There was significant sparing of diseases in calves intranasally vaccinated with the MLV vaccine, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding, greater white blood cell and platelet counts, and less severe pulmonary lesions than control animals. This was the first MLV combination vaccine to demonstrate efficacy against BVDV types 1 and 2, IBR, PI-3 and BRSV in calves 3-8 days of age. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Phomopsis longicolla RNA virus 1 - Novel virus at the edge of myco- and plant viruses.

    Hrabáková, Lenka; Koloniuk, Igor; Petrzik, Karel

    2017-06-01

    The complete nucleotide sequence of a new RNA mycovirus in the KY isolate of Phomopsis longicolla Hobbs 1985 and its protoplasts subcultures p5, p9, and ME711 was discovered. The virus, provisionally named Phomopsis longicolla RNA virus 1 (PlRV1), was localized in mitochondria and was determined to have a genome 2822 nucleotides long. A single open reading frame could be translated in silico by both standard and mitochondrial genetic codes into a product featuring conservative domains for an RNA-dependent RNA polymerase (RdRp). The RdRp of PlRV1 has no counterpart among mycoviruses, but it is about 30% identical with the RdRp of plant ourmiaviruses. Recently, new mycoviruses related to plant ourmiaviruses and forming one clade with PlRV1 have been discovered. This separate clade could represent the crucial link between plant and fungal viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Hepatitis C Virus and Hepatocellular Carcinoma

    Masao Omata

    2013-01-01

    Full Text Available Hepatitis C virus (HCV, a hepatotropic virus, is a single stranded-positive RNA virus of ~9,600 nt. length belonging to the Flaviviridae family. HCV infection causes acute hepatitis, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC. It has been reported that HCV-coding proteins interact with host-cell factors that are involved in cell cycle regulation, transcriptional regulation, cell proliferation and apoptosis. Severe inflammation and advanced liver fibrosis in the liver background are also associated with the incidence of HCV-related HCC. In this review, we discuss the mechanism of hepatocarcinogenesis in HCV-related liver diseases.

  12. Transcriptional mapping of rabies virus in vivo

    Flamand, A.; Delagneau, J.F.

    1978-01-01

    Synthesis of the proteins of rabies virus was studied in hamster cell infected with uv-irradiated virus. The uv target size of genes L, N, M 1 , and M 2 was measured during primary transcription. Except for N, the target size of the remaining genes was considerably larger than that of their physical sizes. The data fit the hypothesis that four genes occupy a single transcriptional unit and that transcription of rabies virus proceeds in the order N, M 1 , M 2 , and L

  13. Human Respiratory Syncytial Virus and Human Metapneumovirus

    Luciana Helena Antoniassi da Silva; Fernando Rosado Spilki; Adriana Gut Lopes Riccetto; Emilio Elias Baracat; Clarice Weis Arns

    2009-01-01

    The human respiratory syncytial virus (hRSV) and the human metapneumovírus (hMPV) are main etiological agents of acute respiratory infections (ARI). The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV) is the best characterized agent viral of this group, associated with respiratory diseases in...

  14. Astrovirology: Viruses at Large in the Universe.

    Berliner, Aaron J; Mochizuki, Tomohiro; Stedman, Kenneth M

    2018-02-01

    Viruses are the most abundant biological entities on modern Earth. They are highly diverse both in structure and genomic sequence, play critical roles in evolution, strongly influence terran biogeochemistry, and are believed to have played important roles in the origin and evolution of life. However, there is yet very little focus on viruses in astrobiology. Viruses arguably have coexisted with cellular life-forms since the earliest stages of life, may have been directly involved therein, and have profoundly influenced cellular evolution. Viruses are the only entities on modern Earth to use either RNA or DNA in both single- and double-stranded forms for their genetic material and thus may provide a model for the putative RNA-protein world. With this review, we hope to inspire integration of virus research into astrobiology and also point out pressing unanswered questions in astrovirology, particularly regarding the detection of virus biosignatures and whether viruses could be spread extraterrestrially. We present basic virology principles, an inclusive definition of viruses, review current virology research pertinent to astrobiology, and propose ideas for future astrovirology research foci. Key Words: Astrobiology-Virology-Biosignatures-Origin of life-Roadmap. Astrobiology 18, 207-223.

  15. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2015-01-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  16. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 (United States); Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu [Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 (United States); Krupovic, Mart, E-mail: krupovic@pasteur.fr [Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015 (France)

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  17. Characterization of Nora Virus Structural Proteins via Western Blot Analysis.

    Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses.

  18. Successful topical respiratory tract immunization of primates against Ebola virus.

    Bukreyev, Alexander; Rollin, Pierre E; Tate, Mallory K; Yang, Lijuan; Zaki, Sherif R; Shieh, Wun-Ju; Murphy, Brian R; Collins, Peter L; Sanchez, Anthony

    2007-06-01

    Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.

  19. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses.

    Rensen, Elena Ilka; Mochizuki, Tomohiro; Quemin, Emmanuelle; Schouten, Stefan; Krupovic, Mart; Prangishvili, David

    2016-03-01

    Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Here, we describe a filamentous hyperthermophilic archaeal virus, Pyrobaculum filamentous virus 1 (PFV1), with a type of virion organization not previously observed in DNA viruses. The PFV1 virion, 400 ± 20 × 32 ± 3 nm, contains an envelope and an inner core consisting of two structural units: a rod-shaped helical nucleocapsid formed of two 14-kDa major virion proteins and a nucleocapsid-encompassing protein sheath composed of a single major virion protein of 18 kDa. The virion organization of PFV1 is superficially similar to that of negative-sense RNA viruses of the family Filoviridae, including Ebola virus and Marburg virus. The linear dsDNA of PFV1 carries 17,714 bp, including 60-bp-long terminal inverted repeats, and contains 39 predicted ORFs, most of which do not show similarities to sequences in public databases. PFV1 is a lytic virus that completely disrupts the host cell membrane at the end of the infection cycle.

  20. A Heterogeneous Nuclear Ribonucleoprotein A/B-Related Protein Binds to Single-Stranded DNA near the 5′ End or within the Genome of Feline Parvovirus and Can Modify Virus Replication

    Wang, Dai; Parrish, Colin R.

    1999-01-01

    Phage display of cDNA clones prepared from feline cells was used to identify host cell proteins that bound to DNA-containing feline panleukopenia virus (FPV) capsids but not to empty capsids. One gene found in several clones encoded a heterogeneous nuclear ribonucleoprotein (hnRNP)-related protein (DBP40) that was very similar in sequence to the A/B-type hnRNP proteins. DBP40 bound specifically to oligonucleotides representing a sequence near the 5′ end of the genome which is exposed on the outside of the full capsid but did not bind most other terminal sequences. Adding purified DBP40 to an in vitro fill-in reaction using viral DNA as a template inhibited the production of the second strand after nucleotide (nt) 289 but prior to nt 469. DBP40 bound to various regions of the viral genome, including a region between nt 295 and 330 of the viral genome which has been associated with transcriptional attenuation of the parvovirus minute virus of mice, which is mediated by a stem-loop structure of the DNA and cellular proteins. Overexpression of the protein in feline cells from a plasmid vector made them largely resistant to FPV infection. Mutagenesis of the protein binding site within the 5′ end viral genome did not affect replication of the virus. PMID:10438866

  1. Epstein - Barr Virus

    Štorkánová, Lenka

    2011-01-01

    Epstein-Barr virus Bachelor thesis summarizes the findings of Epstein-Barr virus (EBV), its general characteristics, transmission and spread of the virus, symptoms of disease and subsequent therapy and recovery. More specifically, it focuses on infectious mononucleosis, as well as more generally to other diseases, which the Epstein-Barr virus causes. It includes details of the vaccine against EB virus. There are the statistics on the incidence of infectious mononucleosis.

  2. Presence and Distribution of Economically Important Potato Viruses in Montenegro

    Jelena Zindović

    2011-01-01

    Full Text Available The research was carried out, in the period 2002-2004 in order to determine the presence and distribution of potato viruses at 12 different locations and on 9 different potato varieties grown in Montenegro. The research included collecting of samples in seed potato crops and testing of six economically important potato viruses: Potato leaf roll virus (PLRV, Potato virus Y (PVY, Potato virus X (PVX, Potato virus S (PVS, Potato virus A (PVA i Potato virus M (PVM. Using the direct enzyme-linked immunosorbent assay (DAS-ELISA and commercial antisera specific for six potato viruses, it was found that PVY was the most frequent virus during the three-year research period. The second frequent virus was PVS, followed by PVA, PLRV, PVM and PVX. Single and mixed infections were detected, and the most prevalent were the single infections of PVY. Also, in the period 2002-2004, PVY had the highest distribution and the number of present viruses was different at different localities and on different potato varieties. Further investigations were related to detailed characterization of the most prevalent virus (PVY, which is at the same time economically the most important one. Serological characterization of PVY was performed utilizing DAS-ELISA kit with commercial monoclonal antibodies specific for detection of the three strain groups of PVY, and the two straingroups - necrotic (PVYN/PVYNTN and common (PVYO, were identified. Necrotic strains were prevalent in 2002 and 2004, while in 2003 PVYO was the most frequent strain in virus population. The presence of stipple streak strain (PVYC was not detected in any of the testedsamples.

  3. Electrostatics and the assembly of an RNA virus

    Schoot, van der P.P.A.M.; Bruinsma, R.

    2005-01-01

    Electrostatic interactions play a central role in the assembly of single-stranded RNA viruses. Under physiological conditions of salinity and acidity, virus capsid assembly requires the presence of genomic material that is oppositely charged to the core proteins. In this paper we apply basic polymer

  4. Biology of human respiratory syncytial virus: a review | Aliyu | Bayero ...

    Acute lower respiratory tract infection is one of the major causes of mortality and morbidity in young children worldwide. Respiratory syncytial virus (RSV) is the single most important viral cause of lower respiratory tract infection during infancy and early childhood worldwide. Respiratory syncytial virus belongs to the ...

  5. Complete genome sequence of pronghorn virus, a pestivirus

    The complete genome sequence of Pronghorn virus, a member of the Pestivirus genus of the Flaviviridae, was determined. The virus, originally isolated from a pronghorn antelope, had a genome of 12,287 nucleotides with a single open reading frame of 11,694 bases encoding 3898 amino acids....

  6. Virus-Vectored Influenza Virus Vaccines

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  7. Viruses infecting reptiles.

    Marschang, Rachel E

    2011-11-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch's postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  8. Viruses Infecting Reptiles

    Rachel E. Marschang

    2011-11-01

    Full Text Available A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  9. Recombination in hepatitis C virus.

    González-Candelas, Fernando; López-Labrador, F Xavier; Bracho, María Alma

    2011-10-01

    Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus.

  10. Mutants of alfalfa mosaic virus

    Roosien, J.

    1983-01-01

    In this thesis the isolation and characterization of a number of mutants of alfalfa mosaic virus, a plant virus with a coat protein dependent genome, is described. Thermo-sensitive (ts) mutants were selected since, at least theoretically, ts mutations can be present in all virus coded functions. It was found that a high percentage of spontaneous mutants, isolated because of their aberrant symptoms, were ts. The majority of these isolates could grow at the non-permissive temperature in the presence of a single wild type (wt) component. To increase the mutation rate virus preparations were treated with several mutagens. After nitrous acid treatment or irradiation with ultraviolet light, an increase in the level of mutations was observed. UV irradiation was preferred since it did not require large amounts of purified viral components. During the preliminary characterization of potential ts mutants the author also obtained one structural and several symptom mutants which were analysed further (chapter 7, 8 and 9). The properties of the ts mutants are described in chapter 3-7. (Auth.)

  11. Reactivation of herpes simplex virus in a cell line inducible for simian virus 40 synthesis

    Zamansky, G.B.; Kleinman, L.F.; Black, P.H.; Kaplan, J.C.

    1980-01-01

    The reactivation of UV-irradiated herpes simplex virus (HSV) was investigated in irradiated and unirradiated transformed hamster cells in which infectious simian virus 40(SV40) can be induced. Reactivation was enhanced when the cells were treated with UV light or mitomycin C prior to infection with HSV. The UV dose-response curve of this enhanced reactivation was strikingly similar to that found for induction of SV40 virus synthesis in cells treated under identical conditions. This is the first time that two SOS functions described in bacteria have been demonstrated in a single mammalian cell line. (orig.)

  12. Physical mode of bacteria and virus coevolution

    Han, Pu; Niestemski, Liang; Deem, Michael

    2013-03-01

    Single-cell hosts such as bacteria or archaea possess an adaptive, heritable immune system that protects them from viral invasion. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences from viruses or plasmids. The sequences form what are called ``spacers'' in the CRISPR. Spacers in the CRISPR loci provide a record of the host and predator coevolution history. We develop a physical model to study the dynamics of this coevolution due to immune pressure. Hosts and viruses reproduce, die, and evolve due to viral infection pressure, host immune pressure, and mutation. We will discuss the differing effects of point mutation and recombination on CRISPR evolution. We will also discuss the effect of different spacer deletion mechanisms. We will describe population structure of hosts and viruses, how spacer diversity depends on position within CRISPR, and match of the CRISPR spacers to the virus population.

  13. Comparison of the structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus.

    Crowther, R A; Berriman, J A; Curran, W L; Allan, G M; Todd, D

    2003-12-01

    Circoviruses are small, nonenveloped icosahedral animal viruses characterized by circular single-stranded DNA genomes. Their genomes are the smallest possessed by animal viruses. Infections with circoviruses, which can lead to economically important diseases, frequently result in virus-induced damage to lymphoid tissue and immunosuppression. Within the family Circoviridae, different genera are distinguished by differences in genomic organization. Thus, Chicken anemia virus is in the genus Gyrovirus, while porcine circoviruses and Beak and feather disease virus belong to the genus CIRCOVIRUS: Little is known about the structures of circoviruses. Accordingly, we investigated the structures of these three viruses with a view to determining whether they are related. Three-dimensional maps computed from electron micrographs showed that all three viruses have a T=1 organization with capsids formed from 60 subunits. Porcine circovirus type 2 and beak and feather disease virus show similar capsid structures with flat pentameric morphological units, whereas chicken anemia virus has stikingly different protruding pentagonal trumpet-shaped units. It thus appears that the structures of viruses in the same genus are related but that those of viruses in different genera are unrelated.

  14. Photodynamic inactivation of rubella virus enhances recombination with a latent virus of a baby hamster kidney cell line BHK21

    Yamamoto, Nobuto; Urade, Masahiro

    1989-01-01

    Rubella virus is very sensitive to photodynamic action. When tested with 1.2 x 10 -5 M toluidine blue and 8 W fluorescent lamp at a fluence of 11 W/m 2 , inactivation kinetics showed a linear single hit curve with a k value of 1.48 min -1 . Photodynamic inactivation of rubella virus greatly enhanced recombination with a latent virus (R-virus) of baby hamster kidney BHK21 cells. In contrast, no hybrids were detected in lysates of the cells infected with either UV-treated or untreated rubella virus. Therefore, hybrid viruses were readily detected only in lysates of BHK21 cells infected with photodynamically treated rubella virus. Photodynamic damage of rubella virus genomes generated a new hybrid type (hybrid type 3) in addition to a previously described type 2 hybrid (formerly designated as HPV-RV variant). Although both of these hybrid types carry the CF antigens of rubella virus, plaque forming ability of type 3 hybrid is neutralized neither by anti-rubella serum nor by anti-latent virus serum while type 2 hybrid is neutralized by anti-latent virus serum. (author)

  15. Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques.

    Sexton, Amy; De Rose, Robert; Reece, Jeanette C; Alcantara, Sheilajen; Loh, Liyen; Moffat, Jessica M; Laurie, Karen; Hurt, Aeron; Doherty, Peter C; Turner, Stephen J; Kent, Stephen J; Stambas, John

    2009-08-01

    There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.

  16. A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.

    Jeffrey W Koehler

    Full Text Available For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III based on the protein sequence and structure. For Rift Valley fever virus (RVFV, the glycoprotein Gc (Class II fusion protein mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus, Class II (Andes virus, or Class III (vesicular stomatitis virus fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.

  17. Influenza A and B Virus Intertypic Reassortment through Compatible Viral Packaging Signals

    Baker, Steven F.; Nogales, Aitor; Finch, Courtney; Tuffy, Kevin M.; Domm, William; Perez, Daniel R.; Topham, David J.

    2014-01-01

    ABSTRACT Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or

  18. Zika virus disease

    Adel I Al-Afaleq

    2017-01-01

    Full Text Available The Zika virus is an arbovirus belonging to the virus family Flaviviridae. The virus was isolated in 1947 from a rhesus monkey in the Zika Forest of Uganda. The virus causes sporadic mild human infections in Africa and later in Asia. However, by 2007 a major shift in its infection pattern was noticed and thousands of human infections were reported in the State of Yap and Federated States of Micronesia. In the last 3 years, major outbreaks have continued to occur and the virus has spread to several Pacific and American countries. These outbreaks were mostly asymptomatic; however, there were more severe clinical signs associated with the infections. Those signs included microcephaly and Guillain–Barre syndrome. It is believed that various species of mosquitoes can biologically transmit the virus. However, Aedes aegypti is most widely associated with the Zika virus. Recently, new modes of virus transmission have been reported, including mother-to-fetus, sexual, blood transfusion, animal bites, laboratory exposure and breast milk. Differential diagnosis is very important as some other arboviruses such as yellow fever virus, West Nile virus, dengue virus, and chikungunya virus have similar clinical manifestations to the Zika virus infection as well as relating serologically to some of these viruses. Established laboratory diagnostic tests to detect the Zika virus are limited, with reverse transcription polymerase chain reaction being the most widely used test. Taking into consideration the quickness of the spread of infection, size of the infected population and change of the infection severity pattern, the Zika virus infection merits collective efforts on all levels to prevent and control the disease. Limited research work and data, concurrent infection with other arboviruses, involvement of biological vectors, mass crowd events, human and trade movements and lack of vaccines are some of the challenges that we face in our efforts to prevent and

  19. Single-Domain Antibodies As Therapeutics against Human Viral Diseases

    Yanling Wu

    2017-12-01

    Full Text Available In full-size formats, monoclonal antibodies have been highly successful as therapeutics against cancer and immune diseases. However, their large size leads to inaccessibility of some epitopes and relatively high production costs. As an alternative, single-domain antibodies (sdAbs offer special advantages compared to full-size antibodies, including smaller size, larger number of accessible epitopes, relatively low production costs and improved robustness. Currently, sdAbs are being developed against a number of viruses, including human immunodeficiency virus-1 (HIV-1, influenza viruses, hepatitis C virus (HCV, respiratory syncytial virus (RSV, and enteric viruses. Although sdAbs are very potent inhibitors of viral infections, no sdAbs have been approved for clinical use against virial infection or any other diseases. In this review, we discuss the current state of research on sdAbs against viruses and their potential as therapeutics against human viral diseases.

  20. Ebola (Ebola Virus Disease)

    ... Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is not ... gov . Recommend on Facebook Tweet Share Compartir Ebola Virus Disease (EVD) is a rare and deadly disease ...

  1. Hepatitis virus panel

    ... page: //medlineplus.gov/ency/article/003558.htm Hepatitis virus panel To use the sharing features on this page, please enable JavaScript. The hepatitis virus panel is a series of blood tests used ...

  2. Viruses and Breast Cancer

    Lawson, James S.; Heng, Benjamin

    2010-01-01

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix. PMID:24281093

  3. Zika virus disease

    ... May 2015, the virus was discovered for the first time in Brazil. It has now spread to many territories, states, and countries in: Caribbean Islands Central America Mexico South America Pacific Islands Africa The virus ...

  4. Respiratory Syncytial Virus

    ... with facebook share with twitter share with linkedin Respiratory Syncytial Virus (RSV) Credit: CDC This is the ... the United States. Why Is the Study of Respiratory Syncytial Virus (RSV) a Priority for NIAID? In ...

  5. Respiratory syncytial virus (RSV)

    RSV; Palivizumab; Respiratory syncytial virus immune globulin; Bronchiolitis - RSV ... Crowe JE. Respiratory syncytial virus. In: Kliegman RM, Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ...

  6. Viruses and Breast Cancer

    Lawson, James S.; Heng, Benjamin

    2010-01-01

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix

  7. Viruses and Breast Cancer

    Lawson, James S., E-mail: james.lawson@unsw.edu.au; Heng, Benjamin [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney (Australia)

    2010-04-30

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix.

  8. Zika Virus - Multiple Languages

    ... Are Here: Home → Multiple Languages → All Health Topics → Zika Virus URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Zika Virus - Multiple Languages To use the sharing features on ...

  9. VIRUS FAMILIES – contd

    First page Back Continue Last page Overview Graphics. VIRUS FAMILIES – contd. Minus strand RNA viruses. Rhabdovirus e.g. rabies. Paramyxovirus e.g. measles, mumps. Orthomyxovirus e.g. influenza. Retroviruses. RSV, HTLV, MMTV, HIV. Notes:

  10. Human Parainfluenza Viruses

    ... Search Form Controls Cancel Submit Search The CDC Human Parainfluenza Viruses (HPIVs) Note: Javascript is disabled or ... CDC.gov . Recommend on Facebook Tweet Share Compartir Human parainfluenza viruses (HPIVs) commonly cause respiratory illnesses in ...

  11. Zika Virus and Pregnancy

    Full Text Available ... Guidance & Publications Practice Management Education & Events Advocacy For Patients About ACOG Zika Virus and Pregnancy Home For Patients Zika Virus and Pregnancy Page Navigation ▼ ACOG Pregnancy ...

  12. Zika Virus and Pregnancy

    Full Text Available ... My ACOG ACOG Departments Donate Shop Career Connection Home Clinical Guidance & Publications Practice Management Education & Events Advocacy For Patients About ACOG Zika Virus and Pregnancy Home For Patients Zika Virus and Pregnancy Page Navigation ▼ ...

  13. [Mumps vaccine virus transmission].

    Otrashevskaia, E V; Kulak, M V; Otrashevskaia, A V; Karpov, I A; Fisenko, E G; Ignat'ev, G M

    2013-01-01

    In this work we report the mumps vaccine virus shedding based on the laboratory confirmed cases of the mumps virus (MuV) infection. The likely epidemiological sources of the transmitted mumps virus were children who were recently vaccinated with the mumps vaccine containing Leningrad-Zagreb or Leningrad-3 MuV. The etiology of the described cases of the horizontal transmission of both mumps vaccine viruses was confirmed by PCR with the sequential restriction analysis.

  14. Nairobi sheep disease virus/Ganjam virus.

    M D, Baron; B, Holzer

    2015-08-01

    Nairobi sheep disease virus (NSDV) is a tick-borne virus which causes a severe disease in sheep and goats, and has been responsible for several outbreaks of disease in East Africa. The virus is also found in the Indian subcontinent, where it is known as Ganjam virus. The virus only spreads through the feeding of competent infected ticks, and is therefore limited in its geographic distribution by the distribution of those ticks, Rhipicephalus appendiculata in Africa and Haemaphysalis intermedia in India. Animals bred in endemic areas do not normally develop disease, and the impact is therefore primarily on animals being moved for trade or breeding purposes. The disease caused by NSDV has similarities to several other ruminant diseases, and laboratory diagnosis is necessary for confirmation. There are published methods for diagnosis based on polymerase chain reaction, for virus growth in cell culture and for other simple diagnostic tests, though none has been commercialised. There is no established vaccine against NSDV, although cell-culture attenuated strains have been developed which show promise and could be put into field trials if it were deemed necessary. The virus is closely related to Crimean-Congo haemorrhagic fever virus, and studies on NSDV may therefore be useful in understanding this important human pathogen.

  15. What's West Nile Virus?

    ... for Educators Search English Español What's West Nile Virus? KidsHealth / For Kids / What's West Nile Virus? Print en español ¿Qué es el Virus del Nilo Occidental? What exactly is the West ...

  16. Characteristic of pandemic virus

    First page Back Continue Last page Graphics. Characteristic of pandemic virus. The virus was highly transmissible. Risk of hospitalization was 2X and risk of death was about 11X more in comparison to seasonal influenza. Virus continues to be susceptible to Osaltamivir, the only drug available. Vaccines are available but ...

  17. Zika Virus Fact Sheet

    ... is caused by a virus transmitted primarily by Aedes mosquitoes. People with Zika virus disease can have symptoms including mild fever, skin ... framework. Q&A: Zika virus and complication ... mosquito from the Aedes genus, mainly Aedes aegypti in tropical regions. Aedes ...

  18. Characterization of hepatitis C virus recombinants with chimeric E1/E2 envelope proteins and identification of single amino acids in the E2 stem region important for entry

    Carlsen, Thomas H R; Scheel, Troels K H; Ramirez, Santseharay

    2013-01-01

    The hepatitis C virus (HCV) envelope proteins E1 and E2 play a key role in host cell entry and represent important targets for vaccine and drug development. Here, we characterized HCV recombinants with chimeric E1/E2 complexes in vitro. Using genotype 1a/2a JFH1-based recombinants expressing 1a....../release. Studies of E1/E2 heterodimerization showed no differences in intracellular E1/E2 interaction for chimeric constructs with or without E2 stem region mutations. Interestingly, the E2 stem region mutations allowed efficient entry, which was verified in 1a-E1/1b-E2 HCV pseudoparticle assays. A CD81 inhibition...

  19. Zika virus: a new arboviral public health problem.

    Demir, Tulin; Kilic, Selcuk

    2016-11-01

    Zika virus (ZIKV) is a single-stranded RNA virus in the Flaviviridae family and transmitted to human through infected mosquitos (Aedes aegypti and Aedes albopictus). Virus is closely related with other flaviviruses; dengue virus, yellow fever virus, West Nile virus, and Japanese encephalitis virus phylogenetically. Due to the possible relationship between virus and clinical features including microcephaly, ventricule, and eye deformities, Guillain-Barre syndrome increases the interest on this virus gradually. Along with the vector-borne transmission, exposure via blood transfusion and sexual contact are further concerns. Since December 2015, CDC reported 440.000-1.300.000 possible cases in Brazil and as of 19 January 2016, El Salvador, Venezuela, Colombia, Brazil, Surinam, French Guana, Honduras, Mexico, and Panama are the countries with active epidemic. CDC recommends ZIKV screening for all pregnants including asymptomatic cases those living in the active epidemic areas. Recently, virus is detected in the USA and most European countries including UK, Netherlands, Denmark, Switzerland, and Italy as a travel-associated infection. Owing to the changing world with increased capabilities for transportation globally, this vector-borne infection represents a valuable marker for the ability of spreading of any infection from its original area that it was first seen. In this review, we summarized the up-to-date data and reports in terms of the importance of the ZIKV infection in the public health.

  20. T T virus in chronic hepatitis B, C patients

    Abd Rabo, L.A.

    2007-01-01

    In 1997, in Japan, a non-enveloped single stranded circular DNA virus was recovered from a patient. Who developed post transfusion hepatitis not related to any of the know hepatitis viruses . The virus owes its name (T T) virus to the initials of the patient in whom the virus was first identified . Although this acronym might also stand for transfusion - transmitted virus, however, this name would emphasize only one, and certainly not the most frequent mode of this virus transmission. The taxonomy of the virus is uncertain but it is believed now that it may belong to a new family called paracircoviridae. TTDNA has been detected in liver, bone marrow, lung, spleen, pancreas, kidney, lymph nodes, skeletal muscles and thyroid gland as well as in saliva, tear, stool, bile, throat swabs, breast milk and semen while could not be detected in urine and sweat. TTV infection is transmitted parenterally by feco-oral or droplet routes, or sexual intercourse. These properties of virus influence its high prevalence in general population whether intrauterine transmission of virus is possible remains uncertain. The aim of this work is viewing the prevalence of TTV infection, mode of transmission, pathogenicity, diagnosis and management among chronic hepatitis B and C patients and control group

  1. Molecular structures of viruses from Raman optical activity

    Blanch, Ewan W.; Hecht, Lutz; Syme, Christopher D.

    2002-01-01

    A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity to chira......A vibrational Raman optical activity (ROA) study of a range of different structural types of virus exemplified by filamentous bacteriophage fd, tobacco mosaic virus, satellite tobacco mosaic virus, bacteriophage MS2 and cowpea mosaic virus has revealed that, on account of its sensitivity...... (top component) of cowpea mosaic virus from those of the intact middle and bottom-upper components separated by means of a caesium chloride density gradient, the ROA spectrum of the viral RNA was obtained, which revealed that the RNA takes up an A-type single-stranded helical conformation...... and that the RNA conformations in the middle and bottom-upper components are very similar. This information is not available from the X-ray crystal structure of cowpea mosaic virus since no nucleic acid is visible....

  2. Human papilloma virus prevalence in laryngeal squamous cell carcinoma.

    Gungor, A; Cincik, H; Baloglu, H; Cekin, E; Dogru, S; Dursun, E

    2007-08-01

    To determine the prevalence and type of human papilloma virus deoxyribonucleic acid (DNA) in cases of laryngeal squamous cell carcinoma. We analysed the prevalence of human papilloma virus infection in archived paraffin block specimens taken from 99 cases of laryngeal squamous cell carcinoma between 1990 and 2005, using polymerase chain reaction techniques. Biopsy specimens from five proven verrucous skin lesions were used as positive controls, and peripheral blood samples from five healthy volunteers were used as negative controls. Four test samples were found to have inadequate deoxyribonucleic acid purity and were therefore excluded from the study. Human papilloma virus deoxyribonucleic acid was detected in seven of 95 cases of laryngeal squamous cell carcinoma (7.36 per cent). Human papilloma virus genotyping revealed double human papilloma virus infection in three cases and single human papilloma virus infection in the remaining four cases. The human papilloma virus genotypes detected were 6, 11 and 16 (the latter detected in only one case). In our series, a very low human papilloma virus prevalence was found among laryngeal squamous cell carcinoma cases. The human papilloma virus genotypes detected were mostly 6 and/or 11, and 16 in only one case. To the best of our knowledge, this is the first report of human papilloma virus prevalence in laryngeal squamous cell carcinoma, based on polymerase chain reaction genotyping in a Turkish population.

  3. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    Glukhov, S; Berestovoy, M; Nabiev, I; Sukhanova, A; Chames, P; Baty, D

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or 'nanobodies') conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD–sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis. (paper)

  4. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    Glukhov, S.; Berestovoy, M.; Chames, P.; Baty, D.; Nabiev, I.; Sukhanova, A.

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or "nanobodies") conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD-sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis.

  5. Single particle tracking and single molecule energy transfer

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  6. Blueberry (Vaccinium corymbosum)-Virus Diseases

    At least six viruses have been found in highbush blueberry plantings in the Pacific Northwest: Blueberry mosaic virus, Blueberry red ringspot virus, Blueberry scorch virus, Blueberry shock virus, Tobacco ringspot virus, and Tomato ringspot virus. Six other virus and virus-like diseases of highbush b...

  7. Production of a phage-displayed single chain variable fragment ...

    Purpose: To develop specific single chain variable fragments (scFv) against infectious bursal disease virus (IBDV) via phage display technology. Methods: Purified viruses were initially applied for iterative panning rounds of scFv phage display libraries. The binding ability of the selected scFv antibody fragments against the ...

  8. Viruses of asparagus.

    Tomassoli, Laura; Tiberini, Antonio; Vetten, Heinrich-Josef

    2012-01-01

    The current knowledge on viruses infecting asparagus (Asparagus officinalis) is reviewed. Over half a century, nine virus species belonging to the genera Ilarvirus, Cucumovirus, Nepovirus, Tobamovirus, Potexvirus, and Potyvirus have been found in this crop. The potyvirus Asparagus virus 1 (AV1) and the ilarvirus Asparagus virus 2 (AV2) are widespread and negatively affect the economic life of asparagus crops reducing yield and increasing the susceptibility to biotic and abiotic stress. The main properties and epidemiology of AV1 and AV2 as well as diagnostic techniques for their detection and identification are described. Minor viruses and control are briefly outlined. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Understanding Ebola Virus Transmission

    Seth Judson

    2015-02-01

    Full Text Available An unprecedented number of Ebola virus infections among healthcare workers and patients have raised questions about our understanding of Ebola virus transmission. Here, we explore different routes of Ebola virus transmission between people, summarizing the known epidemiological and experimental data. From this data, we expose important gaps in Ebola virus research pertinent to outbreak situations. We further propose experiments and methods of data collection that will enable scientists to fill these voids in our knowledge about the transmission of Ebola virus.

  10. Human Respiratory Syncytial Virus and Human Metapneumovirus

    Luciana Helena Antoniassi da Silva

    2009-08-01

    Full Text Available The human respiratory syncytial virus (hRSV and the human metapneumovírus (hMPV are main etiological agents of acute respiratory infections (ARI. The ARI is an important cause of childhood morbidity and mortality worldwide.  hRSV and hMPV are members of the Paramyxoviridae. They are enveloped, non-segmented viruses, with negative-sense single stranded genomes. Respiratory syncytial virus (hRSV is the best characterized agent viral of this group, associated with respiratory diseases in lower respiratory tract. Recently, a new human pathogen belonging to the subfamily Pneumovirinae was identified, the human metapneumovirus (hMPV, which is structurally similar to the hRSV, in genomic organization, viral structure, antigenicity and clinical symptoms.  The subfamily Pneumovirinae contains two genera: genus Pneumovirus contains hRSV, the bovine (bRSV, as well as the ovine and caprine respiratory syncytial virus and pneumonia virus of mice, the second genus Metapneumovirus, consists of avian metapneumovirus (aMPV and human metapneumovirus (hMPV. In this work, we present a brief narrative review of the literature on important aspects of the biology, epidemiology and clinical manifestations of infections by two respiratory viruses.

  11. Protoplasts and plant viruses

    Murakishi, H.; Lesney, M.S.; Carlson, P.

    1984-01-01

    The use of protoplasts in the study of plant viruses has attracted considerable attention since its inception in the late 1960s. This article is an attempt to assess the current status of protoplasts (primarily) and all cell cultures (in some instances) in studies of virus infection, virus replication, cytopathology, cross-protection, virus resistance, and the use of in vitro methods and genetic engineering to recover virus-resistant plants. These areas of study proved difficult to do entirely with whole plants or plant parts. However, because protoplasts could be synchronously infected with virus, they provided a valuable alternative means of following biochemical and cytological events in relation to the virus growth cycle in a more precise manner than previously possible

  12. Engineering Molecular Immunity Against Plant Viruses

    Zaidi, Syed Shan-e-Ali

    2017-04-26

    Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections.

  13. Engineering Molecular Immunity Against Plant Viruses

    Zaidi, Syed Shan-e-Ali; Tashkandi, Manal; Mahfouz, Magdy M.

    2017-01-01

    Genomic engineering has been used to precisely alter eukaryotic genomes at the single-base level for targeted gene editing, replacement, fusion, and mutagenesis, and plant viruses such as Tobacco rattle virus have been developed into efficient vectors for delivering genome-engineering reagents. In addition to altering the host genome, these methods can target pathogens to engineer molecular immunity. Indeed, recent studies have shown that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems that target the genomes of DNA viruses can interfere with viral activity and limit viral symptoms in planta, demonstrating the utility of this system for engineering molecular immunity in plants. CRISPR/Cas9 can efficiently target single and multiple viral infections and confer plant immunity. Here, we discuss the use of site-specific nucleases to engineer molecular immunity against DNA and RNA viruses in plants. We also explore how to address the potential challenges encountered when producing plants with engineered resistance to single and mixed viral infections.

  14. [The great virus comeback].

    Forterre, Patrick

    2013-01-01

    Viruses have been considered for a long time as by-products of biological evolution. This view is changing now as a result of several recent discoveries. Viral ecologists have shown that viral particles are the most abundant biological entities on our planet, whereas metagenomic analyses have revealed an unexpected abundance and diversity of viral genes in the biosphere. Comparative genomics have highlighted the uniqueness of viral sequences, in contradiction with the traditional view of viruses as pickpockets of cellular genes. On the contrary, cellular genomes, especially eukaryotic ones, turned out to be full of genes derived from viruses or related elements (plasmids, transposons, retroelements and so on). The discovery of unusual viruses infecting archaea has shown that the viral world is much more diverse than previously thought, ruining the traditional dichotomy between bacteriophages and viruses. Finally, the discovery of giant viruses has blurred the traditional image of viruses as small entities. Furthermore, essential clues on virus history have been obtained in the last ten years. In particular, structural analyses of capsid proteins have uncovered deeply rooted homologies between viruses infecting different cellular domains, suggesting that viruses originated before the last universal common ancestor (LUCA). These studies have shown that several lineages of viruses originated independently, i.e., viruses are polyphyletic. From the time of LUCA, viruses have coevolved with their hosts, and viral lineages can be viewed as lianas wrapping around the trunk, branches and leaves of the tree of life. Although viruses are very diverse, with genomes encoding from one to more than one thousand proteins, they can all be simply defined as organisms producing virions. Virions themselves can be defined as infectious particles made of at least one protein associated with the viral nucleic acid, endowed with the capability to protect the viral genome and ensure its

  15. Predominance of hepatitis C virus Q80K among NS3 baseline-resistance-associated amino acid variants in direct-antiviral-agent-naïve patients with chronic hepatitis: single-centre experience.

    Ruggiero, Tina; Proietti, Alex; Boglione, Lucio; Milia, Maria Grazia; Allice, Tiziano; Burdino, Elisa; Orofino, Giancarlo; Bonora, Stefano; Di Perri, Giovanni; Ghisetti, Valeria

    2015-11-01

    In the era of direct-acting antiviral agents (DAAs), hepatitis C virus (HCV) genotyping tests at baseline are controversial. The HCV NS3-Q80K polymorphism is associated with resistance to the recently approved NS3 inhibitor simeprevir (SMV) when combined with PEG-interferon and ribavirin (PEG-IFN/RBV) and alternative therapy should be considered for patients with baseline Q80K. The aim of this study was to provide an estimate of Q80K prevalence at baseline in a study group of 205 DAA-naïve patients (21% of them with HIV coinfection) using NS3 full-population direct sequencing to detect resistance-associated amino acid variants (RAVs). NS3 RAVs were identified in 56 patients (27.3%). Q80K was the most frequently reported one (41%), in both HIV/HCV-coinfected and HCV-monoinfected patients, but it was only detectable in cases of HCV-subtype 1a infection. Therefore, in clinical practice, an NS3-Q80K genotyping test prior to simeprevir plus PEG-IFN/RBV treatment is highly recommended.

  16. Pseudothrombocytopenia or platelet clumping as a possible cause of low platelet count in patients with viral infection: a case series from single institution focusing on hepatitis A virus infection.

    Choe, W-H; Cho, Y-U; Chae, J-D; Kim, S-H

    2013-02-01

    Pseudothrombocytopenia (PTCP) is the phenomenon of ethylenediaminetetraacetic acid anticoagulant-activated platelet clumping, which results in artificially low platelet counts. Other investigators have reported a few cases of PTCP associated with viral infections. The objective of this study was to demonstrate the association of viral infection with PTCP. Medical records of patients with thrombocytopenia who were tested for peripheral blood smear examination between March 2009 and February 2011 were reviewed for platelet clumping and viral infection. Thrombocytopenic patients with viral infection had a higher frequency of platelet clumping than those with other diseases, which was statistically significant (13.8% vs. 6.5%, respectively: P = 0.003). Among the 18 cases where PTCP or platelet clumping was related to viral infection, hepatitis A virus infection (72.2%) was most common, followed by cytomegalovirus (11.1%) and influenza A H1N1 infections (5.6%). A third (33.3%) of the patients had platelet counts viral infection, particularly if the platelet count is unexpectedly low, because failure to recognize PTCP may lead to unnecessary diagnostic tests and patient mismanagement. © 2012 Blackwell Publishing Ltd.

  17. Postmortem stability of Ebola virus.

    Prescott, Joseph; Bushmaker, Trenton; Fischer, Robert; Miazgowicz, Kerri; Judson, Seth; Munster, Vincent J

    2015-05-01

    The ongoing Ebola virus outbreak in West Africa has highlighted questions regarding stability of the virus and detection of RNA from corpses. We used Ebola virus-infected macaques to model humans who died of Ebola virus disease. Viable virus was isolated <7 days posteuthanasia; viral RNA was detectable for 10 weeks.

  18. Additive interactions of unrelated viruses in mixed infections of cowpea (Vigna unguiculata L. Walp).

    Nsa, Imade Y; Kareem, Kehinde T

    2015-01-01

    This study was carried out to determine the effects of single infections and co-infections of three unrelated viruses on three cowpea cultivars (one commercial cowpea cultivar "White" and 2 IITA lines; IT81D-985 and TVu 76). The plants were inoculated with Cowpea aphid-borne mosaic virus (CABMV), genus Potyvirus, Cowpea mottle virus (CMeV), genus Carmovirus and Southern bean mosaic virus (SBMV), genus Sobemovirus singly and in mixture (double and triple) at 10, 20, and 30 days after planting (DAP). The treated plants were assessed for susceptibility to the viruses, growth, and yield. In all cases of infection, early inoculation resulted in higher disease severity compared with late infection. The virus treated cowpea plants were relatively shorter than buffer inoculated control plants except the IT81D-985 plants that were taller and produced more foliage. Single infections by CABMV, CMeV, and SBMV led to a complete loss of seeds in the three cowpea cultivars at 10 DAP; only cultivar White produced some seeds at 30 DAP. Double and triple virus infections led to a total loss of seeds in all three cowpea cultivars. None of the virus infected IITA lines produced any seeds except IT81D-985 plants co-infected with CABMV and SBMV at 30 DAP with a reduction of 80%. Overall, the commercial cultivar "White" was the least susceptible to the virus treatments and produced the most yield (flowers, pods, and seeds). CABMV was the most aggressive of these viruses and early single inoculations with this virus resulted in the premature death of some of the seedlings. The presence of the Potyvirus, CABMV in the double virus infections did not appear to increase disease severity or yield loss. There was no strong evidence for synergistic interactions between the viruses in the double virus mixtures.

  19. Nucleotide sequence and taxonomy of Cycas necrotic stunt virus. Brief report.

    Han, S S; Karasev, A V; Ieki, H; Iwanami, T

    2002-11-01

    Cycas necrotic stunt virus (CNSV) is the only well-characterized virus from gymnosperm. cDNA segments corresponding to the bipartite genome RNAs (RNA1, RNA2) were synthesized and sequenced. Each RNA encoded a single polyprotein, flanked by the 5' and 3' non-coding regions (NCR) and followed by a poly (A) tail. The putative polyproteins encoded by RNA1 and RNA2 had sets of motifs, which were characteristic of viruses in the genus Nepovirus. The polyproteins showed higher sequence identities to Artichoke Italian latent virus, Grapevine chrome mosaic virus and Tomato black ring virus, all of which belong to subgroup b of the genus Nepovirus, than to other nepoviruses. Phylogenetic analysis of RNA dependent RNA polymerase and coat protein also showed closer relationships with these viruses than other viruses. The data obtained supported the taxonomical status of CNSV as a definitive member of the genus Nepovirus, subgroup b.

  20. Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Highly Protective, Non-infectious Vaccine Against Ebola Virus Challenge

    2016-07-01

    Single-Injection Trivalent Filovirus 428 Vaccine: Proof of Concept Study in Outbred Guinea Pigs . J Infect Dis. 429 29. Murin, C. D., M. L. Fusco, Z...Jahrling, and J. F. Smith. 2000. Recombinant RNA replicons derived from attenuated 442 Venezuelan equine encephalitis virus protect guinea pigs and...platform, 65 including ease of production and characterization, absence of virus replication concerns and the 66 robust immune stimulatory activity

  1. The administration of a single dose of a multivalent (DHPPiL4R) vaccine prevents clinical signs and mortality following virulent challenge with canine distemper virus, canine adenovirus or canine parvovirus

    Stephen Wilson; Joanna Illambas; Elisabeth Siedek; Anne Thomas; Vickie King; Catrina Stirling; Edita Plevová; Jeremy Salt; Gordon Sture

    2014-01-01

    Four challenge studies following vaccination of dogs with a multivalent vaccine containing canine parvovirus (CPV-2b), adenovirus (CAV-1/-2) and distemper (CDV) are described. Six week old puppies received a single vaccination while non-vaccinated control dogs received water. In each respective trial, groups of dogs were challenged 21 days after vaccination with heterologous viral isolates. Clinical observations, rectal temperature measurements, and blood and swab samples for analysis were co...

  2. Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses.

    George G Daaboul

    Full Text Available Light microscopy is a powerful tool in the detection and analysis of parasites, fungi, and prokaryotes, but has been challenging to use for the detection of individual virus particles. Unlabeled virus particles are too small to be visualized using standard visible light microscopy. Characterization of virus particles is typically performed using higher resolution approaches such as electron microscopy or atomic force microscopy. These approaches require purification of virions away from their normal millieu, requiring significant levels of expertise, and can only enumerate small numbers of particles per field of view. Here, we utilize a visible light imaging approach called Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS that allows automated counting and sizing of thousands of individual virions. Virions are captured directly from complex solutions onto a silicon chip and then detected using a reflectance interference imaging modality. We show that the use of different imaging wavelengths allows the visualization of a multitude of virus particles. Using Violet/UV illumination, the SP-IRIS technique is able to detect individual flavivirus particles (~40 nm, while green light illumination is capable of identifying and discriminating between vesicular stomatitis virus and vaccinia virus (~360 nm. Strikingly, the technology allows the clear identification of filamentous infectious ebolavirus particles and virus-like particles. The ability to differentiate and quantify unlabeled virus particles extends the usefulness of traditional light microscopy and can be embodied in a straightforward benchtop approach allowing widespread applications ranging from rapid detection in biological fluids to analysis of virus-like particles for vaccine development and production.

  3. How hepatitis D virus can hinder the control of hepatitis B virus.

    Maria Xiridou

    Full Text Available BACKGROUND: Hepatitis D (or hepatitis delta virus is a defective virus that relies on hepatitis B virus (HBV for transmission; infection with hepatitis D can occur only as coinfection with HBV or superinfection of an existing HBV infection. Because of the bond between the two viruses, control measures for HBV may have also affected the spread of hepatitis D, as evidenced by the decline of hepatitis D in recent years. Since the presence of hepatitis D is associated with suppressed HBV replication and possibly infectivity, it is reasonable to speculate that hepatitis D may facilitate the control of HBV. METHODOLOGY AND PRINCIPAL FINDINGS: We introduced a mathematical model for the transmission of HBV and hepatitis D, where individuals with dual HBV and hepatitis D infection transmit both viruses. We calculated the reproduction numbers of single HBV infections and dual HBV and hepatitis D infections and examined the endemic prevalences of the two viruses. The results show that hepatitis D virus modulates not only the severity of the HBV epidemic, but also the impact of interventions for HBV. Surprisingly we find that the presence of hepatitis D virus may hamper the eradication of HBV. Interventions that aim to reduce the basic reproduction number of HBV below one may not be sufficient to eradicate the virus, as control of HBV depends also on the reproduction numbers of dual infections. CONCLUSIONS AND SIGNIFICANCE: For populations where hepatitis D is endemic, plans for control programs ignoring the presence of hepatitis D may underestimate the HBV epidemic and produce overoptimistic results. The current HBV surveillance should be augmented with monitoring of hepatitis D, in order to improve accuracy of the monitoring and the efficacy of control measures.

  4. Disabled infectious single cycle herpes simplex virus (DISC-HSV) is a candidate vector system for gene delivery/expression of GM-CSF in human prostate cancer therapy.

    Parkinson, Richard J; Mian, Shahid; Bishop, Michael C; Gray, Trevor; Li, Geng; McArdle, Stephanie E B; Ali, Selman; Rees, Robert C

    2003-06-15

    DISC-HSV is a replication incompetent herpes simplex virus that is a highly efficient vector for the transduction of genes in vivo and in vitro. We examine the ability of DISC-HSV to infect human prostate cancer cell-lines and xenograft tumor models, and induce expression of reporter and therapeutic cytokine genes. Infection was confirmed by cellular staining for the beta-galactosidase reporter gene product, and by EM. Human GM-CSF production following DISC-hGMCSF infection was measured using ELISA. The metabolic activity of infected cells was determined by NADP/NADPH assay. Cell death was estimated by cell-cycle analysis using flow cytometry with propidium iodide staining. Infection of DU145, PC3 and LNCaP cells with DISC-HSV was dose dependent. Cells infected with DISC-hGM-CSF released significant levels of hGM-CSF for 3 days. NADP/NADPH assay suggested that infected cells continued to be metabolically active for 3 days post-infection, which was consistent with flow cytometry findings that cell death did not occur within 7 days of infection. Tumor xenografts injected with DISC-HSV expressed beta-galactosidase, and intracellular viral particles were demonstrated using EM. We have previously reported the rejection of established tumors following intra-tumoral injection of DISC-GMCSF. This study demonstrates the ability of DISC-HSV to infect prostate cancer and express GMCSF at significant levels. We suggest that prostate cancer is a potential target for therapy using DISC-HSV containing GM-CSF. Copyright 2003 Wiley-Liss, Inc.

  5. single crystals

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  6. Topical imiquimod before intradermal trivalent influenza vaccine for protection against heterologous non-vaccine and antigenically drifted viruses: a single-centre, double-blind, randomised, controlled phase 2b/3 trial.

    Hung, Ivan Fan-Ngai; Zhang, Anna Jinxia; To, Kelvin Kai-Wang; Chan, Jasper Fuk-Woo; Li, Patrick; Wong, Tin-Lun; Zhang, Ricky; Chan, Tuen-Ching; Chan, Brian Chun-Yuan; Wai, Harrison Ho; Chan, Lok-Wun; Fong, Hugo Pak-Yiu; Hui, Raymond Kar-Ching; Kong, Ka-Lun; Leung, Arthur Chun-Fung; Ngan, Abe Ho-Ting; Tsang, Louise Wing-Ki; Yeung, Alex Pat-Chung; Yiu, Geo Chi-Ngo; Yung, Wing; Lau, Johnson Y-N; Chen, Honglin; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2016-02-01

    Pretreatment with topical imiquimod, a synthetic agonist of toll-like receptor 7, significantly improved the immunogenicity of influenza vaccination in elderly people. We aimed to clarify its effect in a younger age group. In this double-blind, randomised controlled trial, we enrolled healthy volunteers aged 18-30 years in early 2014 to receive the 2013-14 northern-hemisphere winter trivalent influenza vaccine at the Queen Mary Hospital, (Hong Kong, China). Eligible participants were randomly assigned (1:1:1:1) to one of the four vaccination groups: the study group, topical imiquimod-cream followed by intradermal trivalent influenza vaccine (INF-Q-ID), or one of three control groups, topical aqueous-cream control followed by intradermal trivalent influenza vaccine (INF-C-ID), topical aqueous-cream control followed by intramuscular trivalent influenza vaccine (INF-C-IM), and topical imiquimod-cream followed by intradermal normal-saline injection (SAL-Q-ID). Randomisation was by computer-generated lists in blocks of four. The type of topical treatment was masked from volunteers and investigators, although not from the study nurse. Serum haemagglutination-inhibition and microneutralisation-antibody titres were assayed. The primary outcome was seroconversion at day 7 after treatment for three vaccine strains of influenza (A/California/07/2009 H1N1-like virus [A/California/H1N1], A/Victoria/361/2011 H3N2-like virus [A/Victoria/H3N2], and B/Massachusetts/2/2012-like virus [B/Yamagata lineage]) and four non-vaccine strains (A/HK/485197/14 [H3N2 Switzerland-like lineage], prototype A/WSN/1933 [H1N1], A/HK/408027/09 [prepandemic seasonal H1N1], and B/HK/418078/11 [Victoria lineage]). Analysis was done on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov, number NCT02103023. We enrolled 160 healthy volunteers between March 1 and May 31, 2014, and 40 participants were randomly assigned to each study group. For the A/California/H1N1 strain

  7. Zika virus infection.

    Pougnet, Laurence; Thill, Chloé; Pougnet, Richard; Auvinet, Henri; Giacardi, Christophe; Drouillard, Isabelle

    2016-12-01

    A 21-year old woman from New-Caledonia had 40 ̊C fever with vomiting, arthralgia, myalgia, and measles-like rash. Etiological analyses showed primary infection with Zika virus. Because of severe clinical presentation, she was hospitalized in the intensive care unit of the Brest military Hospital. Zika virus is mainly transmitted by Aedes mosquitoes. If they settle in Metropolitan France, Zika virus might also spread there.

  8. Molecular Characterization of Viruses from Clinical Respiratory Samples Producing Unidentified Cytopathic Effects in Cell Culture

    Guy Boivin

    2009-07-01

    Full Text Available The sequence-independent single primer amplification (SISPA method was performed to identify a virus in 17 clinical respiratory samples producing uncharacterized cytopathic effects in LLC-MK2 cells. Sequence analysis of 600-1600 bp amplicons allowed the identification of six viruses (one influenza C, two parechovirus-3 and three cardioviruses. Genomic sequences of the cardioviruses showed similarities with those of the recently-described Saffold virus strain although significant variation was present in the viral surface EF and CD loops. These results demonstrate the usefulness of SISPA for identifying emerging viruses and also known viruses not easily identified by standard virological methods.

  9. Ebola (Ebola Virus Disease): Diagnosis

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  10. Ebola (Ebola Virus Disease): Transmission

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  11. Ebola (Ebola Virus Disease): Treatment

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) What is Ebola Virus Disease? ...

  12. Viruses infecting marine molluscs.

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-07-01

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established.

    Nigel J Dimmock

    Full Text Available Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter, and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on defective interfering (DI influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have cloned one such highly active DI RNA derived from segment 1 (244 DI virus and shown earlier that intranasal administration protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 µg 244 RNA delivered as A/PR/8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1. Specifically, 244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease. Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI virus is a highly effective antiviral with activity potentially against all influenza A subtypes.

  14. The Mutational Robustness of Influenza A Virus.

    Elisa Visher

    2016-08-01

    Full Text Available A virus' mutational robustness is described in terms of the strength and distribution of the mutational fitness effects, or MFE. The distribution of MFE is central to many questions in evolutionary theory and is a key parameter in models of molecular evolution. Here we define the mutational fitness effects in influenza A virus by generating 128 viruses, each with a single nucleotide mutation. In contrast to mutational scanning approaches, this strategy allowed us to unambiguously assign fitness values to individual mutations. The presence of each desired mutation and the absence of additional mutations were verified by next generation sequencing of each stock. A mutation was considered lethal only after we failed to rescue virus in three independent transfections. We measured the fitness of each viable mutant relative to the wild type by quantitative RT-PCR following direct competition on A549 cells. We found that 31.6% of the mutations in the genome-wide dataset were lethal and that the lethal fraction did not differ appreciably between the HA- and NA-encoding segments and the rest of the genome. Of the viable mutants, the fitness mean and standard deviation were 0.80 and 0.22 in the genome-wide dataset and best modeled as a beta distribution. The fitness impact of mutation was marginally lower in the segments coding for HA and NA (0.88 ± 0.16 than in the other 6 segments (0.78 ± 0.24, and their respective beta distributions had slightly different shape parameters. The results for influenza A virus are remarkably similar to our own analysis of CirSeq-derived fitness values from poliovirus and previously published data from other small, single stranded DNA and RNA viruses. These data suggest that genome size, and not nucleic acid type or mode of replication, is the main determinant of viral mutational fitness effects.

  15. Virus fitness differences observed between two naturally occurring isolates of Ebola virus Makona variant using a reverse genetics approach.

    Albariño, César G; Guerrero, Lisa Wiggleton; Chakrabarti, Ayan K; Kainulainen, Markus H; Whitmer, Shannon L M; Welch, Stephen R; Nichol, Stuart T

    2016-09-01

    During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays. Published by Elsevier Inc.

  16. OCCURRENCE OF SMALL HOMOLOGOUS AND COMPLEMENTARY FRAGMENTS IN HUMAN VIRUS GENOMES AND THEIR POSSIBLE ROLE

    E. P. Kharchenko

    2017-01-01

    Full Text Available With computer analysis occurrence of small homologous and complementary fragments (21 nucleotides in length has been studied in genomes of 14 human viruses causing most dangerous infections. The sample includes viruses with (+ and (– single stranded RNA and DNA-containing hepatitis A virus. Analysis of occurrence of homologous sequences has shown the existence two extreme situations. On the one hand, the same virus contains homologous sequences to almost all other viruses (for example, Ebola virus, severe acute respiratory syndrome-related coronavirus, and mumps virus, and numerous homologous sequences to the same other virus (especially in severe acute respiratory syndrome-related coronavirus to Dengue virus and in Ebola virus to poliovirus. On the other hand, there are rare occurrence and not numerous homologous sequences in genomes of other viruses (rubella virus, hepatitis A virus, and hepatitis B virus. Similar situation exists for occurrence of complementary sequences. Rubella virus, the genome of which has the high content of guanine and cytosine, has no complementary sequences to almost all other viruses. Most viruses have moderate level of occurrence for homologous and complementary sequences. Autocomplementary sequences are numerous in most viruses and one may suggest that the genome of single stranded RNA viruses has branched secondary structure. In addition to possible role in recombination among strains autocomplementary sequences could be regulators of translation rate of virus proteins and determine its optimal proportion in virion assembly with genome and mRNA folding. Occurrence of small homologous and complementary sequences in RNA- and DNA-containing viruses may be the result of multiple recombinations in the past and the present and determine their adaptation and variability. Recombination may take place in coinfection of human and/or common hosts. Inclusion of homologous and complementary sequences into genome could not

  17. A comparative analysis of measles virus RNA by oligonucleotide fingerprinting

    Stephenson, J.R.; Meulen, V. ter

    1982-01-01

    Isolates from two cases of acute measles, one case of acute measles encephalitis and three patients with subacute sclerosing panencephalitis were compared. This comparison was based upon the electrophoretic analysis of T 1 oligonucleotides from single-stranded, full-length RNA isolated from cytoplasmic nucleocapsids. Although all viruses have oligonucleotides in common, each isolate generated a unique pattern of oligonucleotides. However, no group of oligonucleotides was observed which would allow differentiation between viruses isolated from acute infections and those isolated from CNS diseases; indicating that probably all measles viruses differ in their nucleotide sequence, regardless of origin. (Author)

  18. Pepino mosaic virus

    Vlugt, van der R.A.A.

    2009-01-01

    Pepino mosaic virus (PepMV) is a relatively new plant virus that has become a signifi cant agronomical problem in a relatively short period of time. It is a member of the genus Potexvirus within the family Flexiviridae and is readily mechanically transmissible. It is capable of infecting tomato

  19. Avian influenza virus

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  20. Hepatitis viruses overview

    Hepatitis is major cause of morbidity or mortality worldwide, particularly in the developing world. The major causes of infective hepatitis are hepatitis viruses. A, B, C, D or E. In the acute phase, there are no clinical features that can reliably differentiate between these viruses. Infection may be asymptomatic or can present as.

  1. Viral Haemorrhagic Septicaemia Virus

    Olesen, Niels Jørgen; Skall, Helle Frank

    2013-01-01

    This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus.......This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus....

  2. Tobacco ringspot virus

    Tobacco ringspot virus (TRSV), and its vector, the dagger nematodes (Xiphinema americanum and related species) are widely distributed throughout the world. Cucumber, melon, and watermelon are particularly affected by TRSV. Symptoms can vary with plant age, the strain of the virus, and environment...

  3. Respiratory Syncytial Virus (RSV)

    Respiratory Syncytial Virus, or RSV, causes cold-like symptoms but can be serious for infants and older adults. In this podcast, CDC’s Dr. Eileen Schneider discusses this common virus and offers tips to prevent its spread.

  4. Viruses in reptiles.

    Ariel, Ellen

    2011-09-21

    The etiology of reptilian viral diseases can be attributed to a wide range of viruses occurring across different genera and families. Thirty to forty years ago, studies of viruses in reptiles focused mainly on the zoonotic potential of arboviruses in reptiles and much effort went into surveys and challenge trials of a range of reptiles with eastern and western equine encephalitis as well as Japanese encephalitis viruses. In the past decade, outbreaks of infection with West Nile virus in human populations and in farmed alligators in the USA has seen the research emphasis placed on the issue of reptiles, particularly crocodiles and alligators, being susceptible to, and reservoirs for, this serious zoonotic disease. Although there are many recognised reptilian viruses, the evidence for those being primary pathogens is relatively limited. Transmission studies establishing pathogenicity and cofactors are likewise scarce, possibly due to the relatively low commercial importance of reptiles, difficulties with the availability of animals and permits for statistically sound experiments, difficulties with housing of reptiles in an experimental setting or the inability to propagate some viruses in cell culture to sufficient titres for transmission studies. Viruses as causes of direct loss of threatened species, such as the chelonid fibropapilloma associated herpesvirus and ranaviruses in farmed and wild tortoises and turtles, have re-focused attention back to the characterisation of the viruses as well as diagnosis and pathogenesis in the host itself.

  5. ICTV Virus Taxonomy Profile

    Simmonds, Peter; Becher, Paul; Bukh, Jens

    2017-01-01

    The Flaviviridae is a family of small enveloped viruses with RNA genomes of 9000-13 000 bases. Most infect mammals and birds. Many flaviviruses are host-specific and pathogenic, such as hepatitis C virus in the genus Hepacivirus. The majority of known members in the genus Flavivirus are arthropod...

  6. ICTV virus taxonomy profile

    Purdy, Michael A.; Harrison, Tim J.; Jameel, S.; Meng, X.J.; Okamoto, H.; Poel, Van Der W.H.M.; Smith, Donald B.; Lefkowitz, Elliot J.; Davison, Andrew J.; Siddell, Stuart G.; Simmonds, Peter; Adams, Michael J.; Smith, Donald B.; Orton, Richard J.; Knowles, Nick J.

    2017-01-01

    The family Hepeviridae includes enterically transmitted small non-enveloped positive-sense RNA viruses. It includes the genera Piscihepevirus, whose members infect fish, and Orthohepevirus, whose members infect mammals and birds. Members of the genus Orthohepevirus include hepatitis E virus, which

  7. Viruses of the Archaea

    Prangishvili,, David; Basta, Tamara; Garrett, Roger Antony

    2016-01-01

    Viruses infecting members of Archaea, the third domain of life, constitute an integral, yet unique part of the virosphere. Many of these viruses, specifically the species that infect hyperthermophilic hosts, display morphotypes – for example, bottle shaped, spindle shaped, droplet shaped, coil sh...

  8. Strategy as a Virus

    Obed Madsen, Søren

    This article is based on virus theory (Røvik, 2007, 2011), and proposes to develop a framework that defines technology as a virus that penetrates the organism of an organization. The framework develops a new vocabulary, which can help in analyzing technologies and their negative effects on actors...... and organizations. In this paper, the virus theory is used to analyze a strategy process in an organization as an example of a technology. It shows how the strategy over time creates a memory loss, where the managers who are exposed to the virus forget their critique of the new strategy concept. The article also...... shows how resistant can be understood as being immune to a virus, since the strategy concepts bears resemblance to a former strategy concept. The article also argues that there should be more focus on the negative impacts of management tool and especially how organizations and managers are dealing...

  9. Drosophila Nora virus capsid proteins differ from those of other picorna-like viruses.

    Ekström, Jens-Ola; Habayeb, Mazen S; Srivastava, Vaibhav; Kieselbach, Thomas; Wingsle, Gunnar; Hultmark, Dan

    2011-09-01

    The recently discovered Nora virus from Drosophila melanogaster is a single-stranded RNA virus. Its published genomic sequence encodes a typical picorna-like cassette of replicative enzymes, but no capsid proteins similar to those in other picorna-like viruses. We have now done additional sequencing at the termini of the viral genome, extending it by 455 nucleotides at the 5' end, but no more coding sequence was found. The completeness of the final 12,333-nucleotide sequence was verified by the production of infectious virus from the cloned genome. To identify the capsid proteins, we purified Nora virus particles and analyzed their proteins by mass spectrometry. Our results show that the capsid is built from three major proteins, VP4A, B and C, encoded in the fourth open reading frame of the viral genome. The viral particles also contain traces of a protein from the third open reading frame, VP3. VP4A and B are not closely related to other picorna-like virus capsid proteins in sequence, but may form similar jelly roll folds. VP4C differs from the others and is predicted to have an essentially α-helical conformation. In a related virus, identified from EST database sequences from Nasonia parasitoid wasps, VP4C is encoded in a separate open reading frame, separated from VP4A and B by a frame-shift. This opens a possibility that VP4C is produced in non-equimolar quantities. Altogether, our results suggest that the Nora virus capsid has a different protein organization compared to the order Picornavirales. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Virus diseases of peppers (Capsicum spp.) and their control.

    Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A

    2014-01-01

    The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the

  11. Sour and duke cherry viruses in South-West Europe

    Rodrigo PÉREZ-SÁNCHEZ

    2017-05-01

    Full Text Available This study investigated the phytosanitary status of sour and duke cherry genetic resources in the Iberian Peninsula, and the incidence and leaf symptoms induced by the Prunus necrotic ringspot virus (PNRSV, Prune dwarf virus (PDV and Apple chlorotic leaf spot virus (ACLSV. Young leaf samples were taken from 204 sour and duke cherry trees belonging to ten cultivars, and were assayed by DAS-ELISA. Samples positive for any of the three viruses were also tested by RT-PCR. To associate the leaf symptoms with virus presence, 50 mature leaves from each infected tree were visually inspected during the summer. The ELISA and RT-PCR results indicated that 63% of the cherry trees were infected by at least one of these viruses. PNRSV occurred in all cultivars sampled and presented the highest infection rate (46%, followed by PDV (31% and ACLSV (6%. Many trees, (60 to 100%, were asymptomatic while harbouring single and mixed virus infections. The leaf symptoms associated with the viruses included chlorotic and dark brown necrotic ringspots on secondary veins and interveinal regions, for PNRSV, generalized chlorosis around the midveins, for PDV, chlorotic and reddish necrotic ringspots, for ACLSV, and generalized interveinal chlorosis, for mixed PNRSV and PDVinfections.

  12. A new global threat for the public safety: Zika virus

    Simona Bicheru

    2016-04-01

    Full Text Available Zika virus, the etiological agent of Zika fever, is transmitted by mosquitoes and has been affecting the South American continent starting with 2015. It was reported in several European countries, carried by the people who returned from Latin America, as reported by the health authorities in those countries. Today, according to the World Health Organization (WHO, the virus suspected to cause serious birth defects in the fetus has also been confirmed in 21 of the 55 countries of South America, but also in other states from Europe and North America. Zika virus is a single stranded positive sense RNA virus belonging to Flavivirus genus (family Flaviviridae and was first identified in 1947 in Uganda rainforest Zika. The increased number of cases of microcephaly, in children from northern Brazil, suggested a connection with Zika virus, but it has not yet been proven. Also, the virus can be transmitted sexually and through blood or blood products. Diagnosis of the infection is made using Polymerase Chain Reaction (PCR. So far, there is no specific antiviral treatment or vaccine against the infection with Zika virus. The best form of prevention is to avoid mosquito bites. WHO has estimated that the spread of Zika virus, transmitted through mosquito bite, is “a global public health emergency”. The priority is to protect pregnant women and to control the mosquitoes.

  13. The condensation of water on adsorbed viruses.

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to condensation/evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  14. Immunogenicity of UV-inactivated measles virus

    Zahorska, R.; Mazur, N.; Korbecki, M.

    1978-01-01

    By means of the antigen extinction limit test it was shown that a triple dose vaccination of guinea pigs with UV-inactivated measles virus gave better results, than a single dose vaccination which was proved by the very low immunogenicity index. For both vaccination schemes (single and triple) the immune response was only sligthly influenced by a change of dose from 10 5 to 10 6 HadU 50 /ml or by the addition of aluminum adjuvant. In the antigen extinction limit test the antibody levels were determined by two methods (HIT and NT) the results of which were statistically equivalent. The UV-inactivated measles virus was also found to induce hemolysis-inhibiting antibodies. (orig.) [de

  15. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  16. Computer Viruses: Pathology and Detection.

    Maxwell, John R.; Lamon, William E.

    1992-01-01

    Explains how computer viruses were originally created, how a computer can become infected by a virus, how viruses operate, symptoms that indicate a computer is infected, how to detect and remove viruses, and how to prevent a reinfection. A sidebar lists eight antivirus resources. (four references) (LRW)

  17. Zika virus infection: a public health emergency!

    Qureshi, Muhammad Salman Haider; Qureshi, Bakhtawar Wajeeha; Khan, Ramsha

    2017-01-01

    Zika virus belongs to the family of Flaviviridae. The Flaviviridae family also includes other human pathogens like West Nile virus (WNV), Yellow fever virus (YFV), mosquito transmitted Dengue virus (DENV), Tick borne encephalitic virus (TBEV) and Japanese encephalitis virus (JEV). Zika virus is a mosquito-borne disease and is transmitted by Aedes aegypti mosquito.

  18. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Yang Lijuan; Ward, Jerrold M.; Dorward, David W.; Pickles, Raymond J.; Murphy, Brian R.; Feldmann, Heinz; Collins, Peter L.

    2009-01-01

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/ΔF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/ΔF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/ΔF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV

  19. Hepatitis A virus antibody

    Novak, J.; Kselikova, M.; Urbankova, J.

    1980-01-01

    A description is presented of a radioimmunoassay designed to prove the presence of the antibody against the hepatitis A virus (HA Ab, anti-Ha) using an Abbott HAVAB set. This proof as well as the proof of the antibody against the nucleus of the hepatitis B virus is based on competition between a normal antibody against hepatitis A virus and a 125 I-labelled antibody for the binding sites of a specific antigen spread all over the surface of a tiny ball; this is then indirect proof of the antibody under investigation. The method is described of reading the results from the number of impulses per 60 seconds: the higher the titre of the antibody against the hepatitis A virus in the serum examined, the lower the activity of the specimen concerned. The rate is reported of incidence of the antibody against the hepatitis A virus in a total of 68 convalescents after hepatitis A; the antibody was found in 94.1%. The immunoglobulin made from the convalescents' plasma showed the presence of antibodies in dilutions as high as 1:250 000 while the comparable ratio for normal immunoglobulin Norga was only 1:2500. Differences are discussed in the time incidence of the antibodies against the hepatitis A virus, the antibodies against the surface antigen of hepatitis B, and the antibody against the nucleus of the hepatitis V virus. (author)

  20. First Report of Hepatitis E Virus Infection in Sika Deer in China

    Zhang, Xiao-Xuan; Qin, Si-Yuan; Zhang, Yuan; Meng, Qing-Feng; Jiang, Jing; Yang, Gui-Lian; Zhao, Quan; Zhu, Xing-Quan

    2015-01-01

    Hepatitis E virus (HEV), a single stranded RNA, nonenveloped virus, belongs to the genus Hepevirus, in the family of Hepeviridae. In this study, 46 (5.43%) out of the 847 serum samples from sika deer (Cervus nippon) were detected as seropositive with hepatitis E virus (HEV) by enzyme linked immunosorbent assay (ELISA). These samples were collected from Inner Mongolia and Jilin and Heilongjiang provinces in China, between October 2012 and October 2013. Seroprevalence of HEV infection in male a...

  1. Ocular Tropism of Respiratory Viruses

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  2. A multiplex PCR for detection of six viruses in ducks.

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  3. VHS virus - present situation

    Skall, Helle Frank; Olesen, Niels Jørgen

    2015-01-01

    of the worldwide distribution of the disease will be given. Virus evolution: Recent studies indicate that only a few amino acid changes in the structural proteins of VHSV can change the virulence patterns significantly, thereby coming closer to assessing the risk of none to low virulent viruses becoming high...... virulent. Virulence factors both depend on the ability of VHSV to enter a cell and on the speed and efficiencyof virus replication in the cells. Apparently the viral nucleocapsid protein plays a very important role for the later and seems to be the target for determination of a virulence marker....

  4. Zika virus in Asia

    Veasna Duong

    2017-01-01

    Full Text Available Zika virus (ZIKV is an emerging mosquito-borne virus that was first isolated from a sentinel rhesus monkey in the Zika Forest in Uganda in 1947. In Asia, the virus was isolated in Malaysia from Aedes aegypti mosquitoes in 1966, and the first human infections were reported in 1977 in Central Java, Indonesia. In this review, all reported cases of ZIKV infection in Asia as of September 1, 2016 are summarized and some of the hypotheses that could currently explain the apparently low incidence of Zika cases in Asia are explored.

  5. Zika virus in Asia

    Veasna Duong; Philippe Dussart; Philippe Buchy

    2017-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne virus that was first isolated from a sentinel rhesus monkey in the Zika Forest in Uganda in 1947. In Asia, the virus was isolated in Malaysia from Aedes aegypti mosquitoes in 1966, and the first human infections were reported in 1977 in Central Java, Indonesia. In this review, all reported cases of ZIKV infection in Asia as of September 1, 2016 are summarized and some of the hypotheses that could currently explain the apparently low incidence of...

  6. Zika virus in Asia.

    Duong, Veasna; Dussart, Philippe; Buchy, Philippe

    2017-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne virus that was first isolated from a sentinel rhesus monkey in the Zika Forest in Uganda in 1947. In Asia, the virus was isolated in Malaysia from Aedes aegypti mosquitoes in 1966, and the first human infections were reported in 1977 in Central Java, Indonesia. In this review, all reported cases of ZIKV infection in Asia as of September 1, 2016 are summarized and some of the hypotheses that could currently explain the apparently low incidence of Zika cases in Asia are explored. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Viruses in reptiles

    Ariel Ellen

    2011-09-01

    Full Text Available Abstract The etiology of reptilian viral diseases can be attributed to a wide range of viruses occurring across different genera and families. Thirty to forty years ago, studies of viruses in reptiles focused mainly on the zoonotic potential of arboviruses in reptiles and much effort went into surveys and challenge trials of a range of reptiles with eastern and western equine encephalitis as well as Japanese encephalitis viruses. In the past decade, outbreaks of infection with West Nile virus in human populations and in farmed alligators in the USA has seen the research emphasis placed on the issue of reptiles, particularly crocodiles and alligators, being susceptible to, and reservoirs for, this serious zoonotic disease. Although there are many recognised reptilian viruses, the evidence for those being primary pathogens is relatively limited. Transmission studies establishing pathogenicity and cofactors are likewise scarce, possibly due to the relatively low commercial importance of reptiles, difficulties with the availability of animals and permits for statistically sound experiments, difficulties with housing of reptiles in an experimental setting or the inability to propagate some viruses in cell culture to sufficient titres for transmission studies. Viruses as causes of direct loss of threatened species, such as the chelonid fibropapilloma associated herpesvirus and ranaviruses in farmed and wild tortoises and turtles, have re-focused attention back to the characterisation of the viruses as well as diagnosis and pathogenesis in the host itself. 1. Introduction 2. Methods for working with reptilian viruses 3. Reptilian viruses described by virus families 3.1. Herpesviridae 3.2. Iridoviridae 3.2.1 Ranavirus 3.2.2 Erythrocytic virus 3.2.3 Iridovirus 3.3. Poxviridae 3.4. Adenoviridae 3.5. Papillomaviridae 3.6. Parvoviridae 3.7. Reoviridae 3.8. Retroviridae and inclusion body disease of Boid snakes 3.9. Arboviruses 3.9.1. Flaviviridae 3

  8. BS-virus-finder

    Gao, Shengjie; Hu, Xuesong; Xu, Fengping

    2018-01-01

    Background: DNA methylation plays a key role in the regulation of gene expression and carcinogenesis. Bisulfite sequencing studies mainly focus on calling SNP, DMR, and ASM. Until now, only a few software tools focus on virus integration using bisulfite sequencing data. Findings: We have developed...... a new and easy-to-use software tool, named BS-virus-finder (BSVF, RRID:SCR_015727), to detect viral integration breakpoints in whole human genomes. The tool is hosted at https://github.com/BGI-SZ/BSVF. Conclusions: BS-virus-finder demonstrates high sensitivity and specificity. It is useful in epigenetic...

  9. Identification of a novel virus in pigs--Bungowannah virus: a possible new species of pestivirus.

    Kirkland, P D; Frost, M J; Finlaison, D S; King, K R; Ridpath, J F; Gu, X

    2007-10-01

    In 2003 an outbreak of sudden deaths occurred in 3-4-week-old piglets on a farm in New South Wales, Australia. There was a marked increase in the birth of stillborn foetuses. Pathological changes consisted of a multifocal non-suppurative myocarditis. A viral infection was suspected but a wide range of known agents were excluded. A modified sequence independent single primer amplification (SISPA) method was used to identify a novel virus associated with this outbreak. Conserved 5'UTR motifs, the presence of a putative N(pro) coding region and limited antigenic cross-reactivity with other members of the Pestivirus genus, support the placement of this virus in the Pestivirus genus. Phylogenetic analysis of the 5'UTR, N(pro) and E2 coding regions showed this virus to be the most divergent pestivirus identified to date.

  10. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication

    Wanitchang, Asawin; Wongthida, Phonphimon; Jongkaewwattana, Anan

    2016-01-01

    The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context. Here, we generated single-cycle influenza A viruses (scIAV-ΔHA) carrying various M2-2A-mCherry constructs in the segment 4 (HA) and evaluated their growth in complementing cells. Intriguingly, the scIAV-ΔHA carrying AM2 and that bearing BM2 grew comparably well in MDCK-HA cells. Furthermore, while the virus carrying chimeric B-AM2 in which the BM2 transmembrane fused with the AM2 cytoplasmic tail produced robust infection, the one bearing the AM2 transmembrane fused with the BM2 cytoplasmic tail (A-BM2) exhibited severely impaired growth. Altogether, we demonstrate that AM2 and BM2 are functionally interchangeable and underscore the role of compatibility between transmembrane and cytoplasmic tail of the M2 protein. -- Highlights: •Flu A M2 protein (AM2) can be functionally replaced by that of Flu B (BM2). •Both AM2 and BM2 with extended cytoplasmic tail are functional. •Compatibility between the ion channel and the cytoplasmic tail is critical for M2 function. •M2 with higher ion channel activity may augment influenza virus replication.

  11. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication

    Wanitchang, Asawin; Wongthida, Phonphimon; Jongkaewwattana, Anan, E-mail: anan.jon@biotec.or.th

    2016-11-15

    The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context. Here, we generated single-cycle influenza A viruses (scIAV-ΔHA) carrying various M2-2A-mCherry constructs in the segment 4 (HA) and evaluated their growth in complementing cells. Intriguingly, the scIAV-ΔHA carrying AM2 and that bearing BM2 grew comparably well in MDCK-HA cells. Furthermore, while the virus carrying chimeric B-AM2 in which the BM2 transmembrane fused with the AM2 cytoplasmic tail produced robust infection, the one bearing the AM2 transmembrane fused with the BM2 cytoplasmic tail (A-BM2) exhibited severely impaired growth. Altogether, we demonstrate that AM2 and BM2 are functionally interchangeable and underscore the role of compatibility between transmembrane and cytoplasmic tail of the M2 protein. -- Highlights: •Flu A M2 protein (AM2) can be functionally replaced by that of Flu B (BM2). •Both AM2 and BM2 with extended cytoplasmic tail are functional. •Compatibility between the ion channel and the cytoplasmic tail is critical for M2 function. •M2 with higher ion channel activity may augment influenza virus replication.

  12. Antigenic structure of the capsid protein of rabbit haemorrhagic disease virus

    Martinez-Torrecuadrada, Jorge L.; Cortes, Elena; Vela, Carmen

    1998-01-01

    Rabbit haemorrhagic disease virus (RHDV) causes an important disease in rabbits. The virus capsid is composed of a single 60 kDa protein. The capsid protein gene was cloned in Escherichia coli using the pET3 system, and the antigenic structure of RHDV VP60 was dissected using 11 monoclonal...

  13. Clinical Features and Outcome of Ebola Virus Disease in Pediatric Patients

    Damkjær, Mads; Rudolf, Frauke; Mishra, Sharmistha

    2016-01-01

    Clinical and outcome data on pediatric Ebola virus disease are limited. We report a case-series of 33 pediatric patients with Ebola virus disease in a single Ebola Treatment Center in 2014-2015. The case-fatality rate was 42%, with the majority of deaths occurring within 10 days of admission....

  14. An overview on hepatitis C virus genotypes and its control | Nouroz ...

    Hepatitis C virus (HCV) is a blood borne, circular and positive single stranded virus with high spread rates. With the passage of time the frequency of HCV is increasing in different parts of the world. HCV is a major cause, which may end in liver cirrhosis and hepatocellular carcinoma. HCV has six main genotypes with many ...

  15. Epidemiological, immunological and virological aspects of acute and chronic hepatitis C virus infections

    Thomas, X.V.

    2015-01-01

    Hepatitis C virus (HCV) is a single-stranded positive-sense RNA virus classified as a member of the Hepacivirus genus in the family Flavirviridae, and was first described by Choo et al. in 1989 as the causative agent of non-A-non-B post-transfusion hepatitis. HCV is a major cause of blood-borne

  16. Respiratory innate immune proteins differentially modulate the neutrophil respiratory burst response to influenza A virus

    White, Mitchell R; Crouch, Erika; Vesona, Jenny

    2005-01-01

    of IAV with SP-D in vitro strongly increases neutrophil respiratory burst responses to the virus. Several factors are shown to modify this apparent proinflammatory effect of SP-D. Although multimeric forms of SP-D show dose-dependent augmentation of respiratory burst responses, trimeric, single-arm forms...... of IAV while reducing the respiratory burst response to virus....

  17. Genetic diversity among pandemic 2009 influenza viruses isolated from a transmission chain

    Fordyce, Sarah Louise; Bragstad, Karoline; Pedersen, Svend Stenvang

    2013-01-01

    Influenza viruses such as swine-origin influenza A(H1N1) virus (A(H1N1)pdm09) generate genetic diversity due to the high error rate of their RNA polymerase, often resulting in mixed genotype populations (intra-host variants) within a single infection. This variation helps influenza to rapidly res...

  18. Proteolytic processing of the primary translation products of cowpea mosaic virus RNAs

    Franssen, H.

    1984-01-01

    Cowpea mosaic virus (CPMV) is the type member of a group of plant viruses, the comoviruses, with a genome consisting of two single stranded RNA molecules separately encapsidated in icosahedral particles. A characteristic feature of the two genome RNAs is that they are both polyadenylated at their

  19. Screen-Printed All-Polymer Aptasensor for Impedance Based Detection of Influenza A Virus

    Kirkegaard, Julie; Rozlosnik, Noemi

    2017-01-01

    are made by CO2 laser cutting of Poly(methyl methacrylate) (PMMA) sheets. Influenza A virus specific aptamers are immobilized onto the electrodes by UV cross-linking. Impedance based measurements at a single frequency, measured over time, are used to detect the virus in a buffer solution....

  20. Ebola Virus Disease

    This podcast provides general information about Ebola virus disease and the outbreak in West Africa. The program contains remarks from CDC Director Dr. Tom Frieden, as well as a brief description of CDC’s response efforts.

  1. Zika Virus and Pregnancy

    Full Text Available ... Donate Shop Career Connection Home Clinical Guidance & Publications Practice Management Education & Events Advocacy For Patients About ACOG ... Virus and Pregnancy Infographic Resources & Publications Committee Opinions Practice Bulletins Patient Education Green Journal Clinical Updates Practice ...

  2. Zika Virus and Pregnancy

    Full Text Available ... Dues Follow us: Women's Health Care Physicians Contact Us My ACOG ACOG Departments Donate Shop Career Connection Home Clinical Guidance & Publications Practice Management Education & Events Advocacy For Patients About ACOG Zika Virus ...

  3. Zika Virus and Pregnancy

    Full Text Available ... Departments Donate Shop Career Connection Home Clinical Guidance & Publications Practice Management Education & Events Advocacy For Patients About ... pregnant. Related: Zika Virus and Pregnancy Infographic Resources & Publications Committee Opinions Practice Bulletins Patient Education Green Journal ...

  4. CLASSIFICATION OF VIRUSES

    First page Back Continue Last page Overview Graphics. CLASSIFICATION OF VIRUSES. On basis of morphology. On basis of chemical composition. On basis of structure of genome. On basis of mode of replication. Notes:

  5. Zika Virus and Pregnancy

    Full Text Available ... ACOG Pregnancy Book Patient Education FAQs Patient Education Pamphlets - Spanish Share: PEV002, September 2016 Zika Virus and ... on Patient Safety For Patients Patient FAQs Spanish Pamphlets Teen Health About ACOG About Us Leadership & Governance ...

  6. Zika Virus and Pregnancy

    Full Text Available ... Career Connection Home Clinical Guidance & Publications Practice Management Education & Events Advocacy For Patients About ACOG Zika Virus ... and Pregnancy Page Navigation ▼ ACOG Pregnancy Book Patient Education FAQs Patient Education Pamphlets - Spanish Share: PEV002, September ...

  7. Zika Virus and Pregnancy

    Full Text Available ... Shop Career Connection Home Clinical Guidance & Publications Practice Management Education & Events Advocacy For Patients About ACOG Zika Virus ... Infographic Resources & Publications Committee Opinions Practice ... Coding Health Info Technology Professional Liability Managing Your ...

  8. Hepatitis B virus (image)

    Hepatitis B is also known as serum hepatitis and is spread through blood and sexual contact. It is ... population. This photograph is an electronmicroscopic image of hepatitis B virus particles. (Image courtesy of the Centers for ...

  9. Zika Virus and Pregnancy

    Full Text Available ... Departments Donate Shop Career Connection Home Clinical Guidance & Publications Practice Management Education & Events Advocacy For Patients About ... pregnant. Related: Zika Virus and Pregnancy ... Committee Opinions Practice Bulletins Patient Education Green Journal ...

  10. Hepatitis E Virus

    Before the discovery of hepatitis E virus (HEV), many epidemics of hepatitis in ... HEV was discovered in 1983 in the ... HEV infection is increased by HIV infection in pregnancy. (Caron et al. .... immunosuppressive therapy on the natural history.

  11. Zika Virus and Pregnancy

    Full Text Available ... Pregnancy Book Patient Education FAQs Patient Education Pamphlets - Spanish Share: PEV002, September 2016 Zika Virus and Pregnancy ... Council on Patient Safety For Patients Patient FAQs Spanish Pamphlets Teen Health About ACOG About Us Leadership & ...

  12. Zika Virus and Pregnancy

    Full Text Available ... Login My ACOG Join Pay Dues Follow us: Women's Health Care Physicians Contact Us My ACOG ACOG Departments Donate Shop Career Connection Home Clinical Guidance & Publications Practice Management Education & Events Advocacy For Patients About ACOG Zika Virus ...

  13. VIRUS instrument enclosures

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  14. The virus of management

    Kjær, Peter; Frankel, Christian

    2003-01-01

    The virus metaphor may be used in studies of management knowledge not only as a way ofdescribing diffusion processes but also as a way of thinking about viral elements of knowledgeproduction. In the present article, organizational viruses are viewed as ensembles of basicdistinctions...... that are constitutive of concrete bodies of knowledge and which form mutable enginesof organizational self-descriptions. Organizational viruses, we contend, are both characterized bystability in terms of their basic productive configuration, while at the same time allowing for a highdegree of variation in terms...... of concrete management knowledge and practice. The article isstructured as follows. After the introduction, we first develop the notion of organizational virus asinto an analytical approach. Second, we discern in the work of Frederick Taylor on scientificmanagement and Max Weber on bureaucracy, two quite...

  15. Zika Virus and Pregnancy

    Full Text Available ... Shop Career Connection Home Clinical Guidance & Publications Practice Management Education & Events Advocacy For Patients About ACOG Zika Virus and ... Bulletins Patient Education Green Journal Clinical Updates ... Annual Meeting CME Overview CREOG Meetings Calendar Congressional ...

  16. Respiratory Syncytial Virus (RSV)

    2013-02-04

    Respiratory Syncytial Virus, or RSV, causes cold-like symptoms but can be serious for infants and older adults. In this podcast, CDC’s Dr. Eileen Schneider discusses this common virus and offers tips to prevent its spread.  Created: 2/4/2013 by National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases (DVD).   Date Released: 2/13/2013.

  17. Genome packaging in viruses

    Sun, Siyang; Rao, Venigalla B.; Rossmann, Michael G.

    2010-01-01

    Genome packaging is a fundamental process in a viral life cycle. Many viruses assemble preformed capsids into which the genomic material is subsequently packaged. These viruses use a packaging motor protein that is driven by the hydrolysis of ATP to condense the nucleic acids into a confined space. How these motor proteins package viral genomes had been poorly understood until recently, when a few X-ray crystal structures and cryo-electron microscopy structures became available. Here we discu...

  18. Detection and sequencing of Potato virus Y (PVY and Potato leafroll virus (PLRV in a volunteer plant of Solanum tuberosum L. cv. Diacol-Capiro

    Héctor Camilo Medina Cárdenas

    2017-10-01

    Full Text Available Viral diseases are among the most limiting factors in the production of potato in Colombia and the rest of the world. The best strategy to control plant viruses consists on the use of certified seed tubers, control of arthropod vectors and the use of adequate crop management practices that reduce mechanical transmission and the presence of viral reservoirs like weeds and volun-teer plants. However, the successful implementation of these practices relies on the availability of highly sensitive techniques that allow for the asymptomatic detection of viruses. In this work, we tested the performance of Next-generation sequencing (NGS and real time RT-PCR (RT-qPCR on a single volunteer potato plant (cv. Diacol-Capiro growing naturally in a seed-tuber storage facility in Yarumal (Antioquia. Our NGS results demonstrate a mixed infection with Potato virus Y (PVY and Potato leafroll virus (PLRV. RT-qPCR was performed in roots, main stolons, crown (root collar and upper, middle and lower leaves using specific primers for PVY, PLRV, Potato virus S (PVS, Potato virus V (PVV, Potato virus X (PVX and Potato yellow vein virus (PYVV. Only PVY and PLRV were detected in good agreement with the NGS data. This work demonstrates the use-fulness of both techniques for supporting integrated management of plant viruses in potato, in-cluding virus detection in natural reservoirs such as volunteer plants and weeds.

  19. Transmission of Influenza A Viruses

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  20. Evolutionary ecology of virus emergence.

    Dennehy, John J

    2017-02-01

    The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.

  1. Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial.

    Tapia, Milagritos D; Sow, Samba O; Lyke, Kirsten E; Haidara, Fadima Cheick; Diallo, Fatoumata; Doumbia, Moussa; Traore, Awa; Coulibaly, Flanon; Kodio, Mamoudou; Onwuchekwa, Uma; Sztein, Marcelo B; Wahid, Rezwanul; Campbell, James D; Kieny, Marie-Paule; Moorthy, Vasee; Imoukhuede, Egeruan B; Rampling, Tommy; Roman, Francois; De Ryck, Iris; Bellamy, Abbie R; Dally, Len; Mbaya, Olivier Tshiani; Ploquin, Aurélie; Zhou, Yan; Stanley, Daphne A; Bailer, Robert; Koup, Richard A; Roederer, Mario; Ledgerwood, Julie; Hill, Adrian V S; Ballou, W Ripley; Sullivan, Nancy; Graham, Barney; Levine, Myron M

    2016-01-01

    The 2014 west African Zaire Ebola virus epidemic prompted worldwide partners to accelerate clinical development of replication-defective chimpanzee adenovirus 3 vector vaccine expressing Zaire Ebola virus glycoprotein (ChAd3-EBO-Z). We aimed to investigate the safety, tolerability, and immunogenicity of ChAd3-EBO-Z in Malian and US adults, and assess the effect of boosting of Malians with modified vaccinia Ankara expressing Zaire Ebola virus glycoprotein and other filovirus antigens (MVA-BN-Filo). In the phase 1, single-blind, randomised trial of ChAd3-EBO-Z in the USA, we recruited adults aged 18-65 years from the University of Maryland medical community and the Baltimore community. In the phase 1b, open-label and double-blind, dose-escalation trial of ChAd3-EBO-Z in Mali, we recruited adults 18-50 years of age from six hospitals and health centres in Bamako (Mali), some of whom were also eligible for a nested, randomised, double-blind, placebo-controlled trial of MVA-BN-Filo. For randomised segments of the Malian trial and for the US trial, we randomly allocated participants (1:1; block size of six [Malian] or four [US]; ARB produced computer-generated randomisation lists; clinical staff did randomisation) to different single doses of intramuscular immunisation with ChAd3-EBO-Z: Malians received 1 × 10(10) viral particle units (pu), 2·5 × 10(10) pu, 5 × 10(10) pu, or 1 × 10(11) pu; US participants received 1 × 10(10) pu or 1 × 10(11) pu. We randomly allocated Malians in the nested trial (1:1) to receive a single dose of 2 × 10(8) plaque-forming units of MVA-BN-Filo or saline placebo. In the double-blind segments of the Malian trial, investigators, clinical staff, participants, and immunology laboratory staff were masked, but the study pharmacist (MK), vaccine administrator, and study statistician (ARB) were unmasked. In the US trial, investigators were not masked, but participants were. Analyses were per protocol. The primary outcome was safety, measured

  2. Structure of the Triatoma virus capsid.

    Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S; Costabel, Marcelo D; Marti, Gerardo A; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M A; Rey, Felix A

    2013-06-01

    The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  3. Virus-Like-Vaccines against HIV.

    Andersson, Anne-Marie C; Schwerdtfeger, Melanie; Holst, Peter J

    2018-02-11

    Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8⁺ and CD4⁺ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.

  4. Vaccines in Development against West Nile Virus

    Frederic Tangy

    2013-09-01

    Full Text Available West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine.

  5. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses

    Wahyu eWulan

    2015-06-01

    Full Text Available Most viruses with non-segmented single stranded RNA genomes complete their life cycle in the cytoplasm of infected cells. However, despite undergoing replication in the cytoplasm, the structural proteins of some of these RNA viruses localize to the nucleus at specific times in the virus life cycle, primarily early in infection. Limited evidence suggests that this enhances successful viral replication by interfering with or inhibiting the host antiviral response. Nucleocapsid proteins of RNA viruses have a well-established, essential cytoplasmic role in virus replication and assembly. Intriguingly, nucleocapsid proteins of some RNA viruses also localize to the nucleus/nucleolus of infected cells. Their nuclear function is less well understood although significant advances have been made in recent years. This review will focus on the nucleocapsid protein of cytoplasmic enveloped RNA viruses, including their localization to the nucleus/nucleolus and function therein. A greater understanding of the nuclear localization of nucleocapsid proteins has the potential to enhance therapeutic strategies as it can be a target for the development of live-attenuated vaccines or antiviral drugs.

  6. Overlooking the smallest matter: viruses impact biological invasions.

    Faillace, Cara A; Lorusso, Nicholas S; Duffy, Siobain

    2017-04-01

    Parasites and pathogens have recently received considerable attention for their ability to affect biological invasions, however, researchers have largely overlooked the distinct role of viruses afforded by their unique ability to rapidly mutate and adapt to new hosts. With high mutation and genomic substitution rates, RNA and single-stranded DNA (ssDNA) viruses may be important constituents of invaded ecosystems, and could potentially behave quite differently from other pathogens. We review evidence suggesting that rapidly evolving viruses impact invasion dynamics in three key ways: (1) Rapidly evolving viruses may prevent exotic species from establishing self-sustaining populations. (2) Viruses can cause population collapses of exotic species in the introduced range. (3) Viruses can alter the consequences of biological invasions by causing population collapses and extinctions of native species. The ubiquity and frequent host shifting of viruses make their ability to influence invasion events likely. Eludicating the viral ecology of biological invasions will lead to an improved understanding of the causes and consequences of invasions, particularly as regards establishment success and changes to community structure that cannot be explained by direct interspecific interactions among native and exotic species. © 2017 John Wiley & Sons Ltd/CNRS.

  7. [Zika virus infection during pregnancy].

    Picone, O; Vauloup-Fellous, C; D'Ortenzio, E; Huissoud, C; Carles, G; Benachi, A; Faye, A; Luton, D; Paty, M-C; Ayoubi, J-M; Yazdanpanah, Y; Mandelbrot, L; Matheron, S

    2016-05-01

    A Zika virus epidemic is currently ongoing in the Americas. This virus is linked to congenital infections with potential severe neurodevelopmental dysfunction. However, incidence of fetal infection and whether this virus is responsible of other fetal complications are still unknown. National and international public health authorities recommend caution and several prevention measures. Declaration of Zika virus infection is now mandatory in France. Given the available knowledge on Zika virus, we suggest here a review of the current recommendations for management of pregnancy in case of suspicious or infection by Zika virus in a pregnant woman. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. XMRV: A New Virus in Prostate Cancer?

    Aloia, Amanda L.; Sfanos, Karen S.; Isaacs, William B.; Zheng, Qizhi; Maldarelli, Frank; De Marzo, Angelo M.; Rein, Alan

    2010-01-01

    Several recent papers have reported the presence of a gammaretrovirus, termed “XMRV” (xenotropic murine leukemia virus-related virus) in prostate cancers (PCa). If confirmed, this could have enormous implications for the detection, prevention, and treatment of PCa. However, other papers report failure to detect XMRV in PCa. We tested nearly 800 PCa samples, using a combination of real-time PCR and immunohistochemistry (IHC). The PCR reactions were simultaneously monitored for amplification of a single-copy human gene, in order to confirm the quality of the sample DNA and its suitability for PCR. Controls demonstrated that the PCR assay could detect the XMRV in a single infected cell, even in the presence of a 10,000-fold excess of uninfected human cells. The IHC used two rabbit polyclonal antisera, each prepared against a purified MLV protein. Both antisera always stained XMRV-infected or – transfected cells, but never stained control cells. No evidence for XMRV in PCa was obtained in these experiments. We discuss possible explanations for the discrepancies in the results from different laboratories. It is possible that XMRV is not actually circulating in the human population; even if it is, the data do not seem to support a causal role for this virus in PCa. PMID:20966126

  9. Titration of a cytoplasmic polyhedrosis virus by a tissue microculture assay: some applications.

    Belloncik, S; Chagnon, A

    1980-01-01

    A simple tissue microculture technique was developed for the titration of a cytoplasmic polyhedrosis virus (CPV) from Euxoa scandens. The procedure was similar to the 50% tissue culture infectious dose assay, but a single infected cell, detected by the presence of cytoplasmic polyhedra, was scored rather than the degeneration of cell monolayers. The filtration of CPV suspensions resulted in decreased virus titers under certain conditions. This microculture assay was used to determine the effect of cell disruption methods on virus yields. Sonication of infected cells was more efficient than freeze-thawing for the recovery of nonoccluded virus.

  10. Solenopsis invicta virus 3: mapping of structural proteins, ribosomal frameshifting, and similarities to Acyrthosiphon pisum virus and Kelp fly virus.

    Steven M Valles

    Full Text Available Solenopsis invicta virus 3 (SINV-3 is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the structural proteins map to both ORF2 and the 3' end of ORF1, downstream of the sequence that encodes the RNA-dependent RNA polymerase. The genome organization and structural protein expression strategy resemble those of Acyrthosiphon pisum virus (APV, an aphid virus. The capsid protein that is encoded by the 3' end of ORF1 in SINV-3 and APV is predicted to have a jelly-roll fold similar to the capsid proteins of picornaviruses and caliciviruses. The capsid-extension protein that is produced by frameshifting, includes the jelly-roll fold domain encoded by ORF1 as its N-terminus, while the C-terminus encoded by the 5' half of ORF2 has no clear homology with other viral structural proteins. A third protein, encoded by the 3' half of ORF2, is associated with purified virions at sub-stoichiometric ratios. Although the structural proteins can be translated from the genomic RNA, we show that SINV-3 also produces a subgenomic RNA encoding the structural proteins. Circumstantial evidence suggests that APV may also produce such a subgenomic RNA. Both SINV-3 and APV are unclassified picorna-like viruses distantly related to members of the order Picornavirales and the family Caliciviridae. Within this grouping, features of the genome organization and capsid domain structure of SINV-3 and APV appear more similar to caliciviruses, perhaps suggesting the basis for a "Calicivirales" order.

  11. Tahyna virus genetics, infectivity, and immunogenicity in mice and monkeys

    Whitehead Stephen S

    2011-03-01

    -world viruses, TAHV and INKV. Using immune serum generated in monkeys against TAHV, LACV, and JCV, we have demonstrated cross-neutralization within the CEV serogroup. Such cross reactivity may complicate virus identification, especially following JCV infection which elicited antibodies that cross neutralized both LACV and TAHV. These data also suggest that a single vaccine could generate a cross-neutralizing antibody response which may provide protection against CEV serogroup viruses from a wide geographic range.

  12. Viruses, definitions and reality

    Libia Herrero-Uribe

    2011-09-01

    Full Text Available Viruses are known to be abundant, ubiquitous, and to play a very important role in the health and evolution of life organisms. However, most biologists have considered them as entities separate from the realm of life and acting merely as mechanical artifacts that can exchange genes between different organisms. This article reviews some definitions of life organisms to determine if viruses adjust to them, and additionally, considers new discoveries to challenge the present definition of viruses. Definitions of life organisms have been revised in order to validate how viruses fit into them. Viral factories are discussed since these mini-organelles are a good example of the complexity of viral infection, not as a mechanical usurpation of cell structures, but as a driving force leading to the reorganization and modification of cell structures by viral and cell enzymes. New discoveries such as the Mimivirus, its virophage and viruses that produce filamentous tails when outside of their host cell, have stimulated the scientific community to analyze the current definition of viruses. One way to be free for innovation is to learn from life, without rigid mental structures or tied to the past, in order to understand in an integrated view the new discoveries that will be unfolded in future research. Life processes must be looked from the complexity and trans-disciplinarity perspective that includes and accepts the temporality of the active processes of life organisms, their interdependency and interrelation among them and their environment. New insights must be found to redefine life organisms, especially viruses, which still are defined using the same concepts and knowledge of the fifties. Rev. Biol. Trop. 59 (3: 993-998. Epub 2011 September 01.Los virus son abundantes, ubicuos, y juegan un papel muy importante en la salud y en la evolución de los organismos vivos. Sin embargo, la mayoría de los biólogos los siguen considerado como entidades separadas

  13. Prevalence of human immunodeficiency virus, hepatitis C virus ...

    Background. Human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV) and syphilis remain major infections around the world. In Angola, about 166 000 individuals are living with HIV, representing a prevalence of 1.98% in adults between 15 and 49 years of age. In a 2003 study in Luanda, 4.5% ...

  14. [Viruses and civilization].

    Chastel, C

    1999-01-01

    A few million years ago, when primates moved from the east African forest to the savannah, they were already infected with endogenous viruses and occultly transmitted them to the prime Homo species. However it was much later with the building of the first large cities in Mesopotamia that interhuman viral transmission began in earnest. Spreading was further enhanced with the organization of the Egyptian, Greek, Roman, and Arab empires around the Mediterranean. Discovery of the New World in 1492 led to an unprecedented clash of civilizations and the destruction of pre-Columbian Indian civilizations. It also led to a rapid spread of viruses across the Atlantic Ocean with the emergence of yellow fever and appearance of smallpox and measles throughout the world. However the greatest opportunities for worldwide viral development have been created by our present, modern civilization. This fact is illustrated by epidemic outbreaks of human immunodeficiency virus, Venezuela hemorrhagic fever, Rift valley fever virus, and monkey pox virus. Close analysis underscores the major role of human intervention in producing these events.

  15. Characterisation and Identification of Avian Influenza Virus (AI

    Dyah Ayu Hewajuli

    2008-06-01

    Full Text Available Avian Influenza is caused by Influenza A virus which is a member of Orthomyxoviridae family. Influenza A virus is enveloped single stranded RNA with eight-segmented, negative polarity and filament or oval form, 50 – 120 by 200 – 300 nm diameters. Influenza A viruses have been found to infect birds, human, pig, horse and sometimes in the other mammalian such as seal and whale. The viruses are divided into different subtypes based on the antigenic protein which covers the virus surface i.e. Haemaglutinin (HA and Neuraminidase (NA. In addition, the nomenclature of subtype virus is based on HA and NA i.e HxNx, for example H5N1, H9N2 and the others. According to pathogenic, it could be divided into two distinct groups, they are Highly Pathogenic Avian Influenza (HPAI and Low Pathogenic Avian Influenza (LPAI. The Avian Influenza viruses have been continuously occurred and spread out in some continents such us America, Europe, Africa and Asian countries. The outbreak of Avian Influenza caused high mortality on birds and it has been reported that in human case Avian Influenza subtype H5N1 virus has caused several deaths. To anticipate this condition, an effort to prevent the transmission of Avian Influenza is needed. These strategic attempts include biosecurity, depopulation, vaccination, control of virus movement, monitoring and evaluation. Laboratory diagnostic plays an important role for successful prevention, control and eradication programs of Avian Influenza. Recently, there are two diagnostic methods for Avian Influenza. They are conventional (virological diagnosis and molecular methods. The conventional method is usually used for initial diagnostic of Avian Influenza. The conventional method takes more time and more costly, whereas the molecular method is more effective than conventional method. Based on the available diagnostic technique, basically diagnostic of Avian Influenza is done by serology test, isolation and identification as well

  16. Nipah Virus (NiV)

    ... Form Controls Cancel Submit Search the CDC Nipah Virus (NiV) Note: Javascript is disabled or is not ... gov . Recommend on Facebook Tweet Share Compartir Nipah virus (NiV) is a member of the family Paramyxoviridae , ...

  17. Epstein-Barr virus test

    ... medlineplus.gov/ency/article/003513.htm Epstein-Barr virus antibody test To use the sharing features on this page, please enable JavaScript. Epstein-Barr virus antibody test is a blood test to detect ...

  18. Special Issue: Honey Bee Viruses

    Sebastian Gisder

    2015-10-01

    Full Text Available Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus, or a so far neglected virus species (Apis mellifera filamentous virus, and cutting edge technologies (mass spectrometry, RNAi approach applied in the field.

  19. Special Issue: Honey Bee Viruses

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  20. Ebola (Ebola Virus Disease): Prevention

    ... Search Form Controls Cancel Submit Search the CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is ... message, please visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014- ...

  1. Mechanism of attenuation of a chimeric influenza A/B transfectant virus.

    Luo, G; Bergmann, M; Garcia-Sastre, A; Palese, P

    1992-08-01

    The ribonucleoprotein transfection system for influenza virus allowed us to construct an influenza A virus containing a chimeric neuraminidase (NA) gene in which the noncoding sequence is derived from the NS gene of influenza B virus (T. Muster, E. K. Subbarao, M. Enami, B. P. Murphy, and P. Palese, Proc. Natl. Acad. Sci. USA 88:5177-5181, 1991). This transfectant virus is attenuated in mice and grows to lower titers in tissue culture than wild-type virus. Since such a virus has characteristics desirable for a live attenuated vaccine strain, attempts were made to characterize this virus at the molecular level. Our analysis suggests that the attenuation of the virus is due to changes in the cis signal sequences, which resulted in a reduction of transcription and replication of the chimeric NA gene. The major finding concerns a sixfold reduction in NA-specific viral RNA in the virion, causing a reduction in the ratio of infectious particles to physical particles compared with the ratio in wild-type virus. Although the NA-specific mRNA level is also reduced in transfectant virus-infected cells, it does not appear to contribute to the attenuation characteristics of the virus. The levels of the other RNAs and their expression appear to be unchanged for the transfectant virus. It is suggested that downregulation of the synthesis of one viral RNA segment leads to the generation of defective viruses during each replication cycle. We believe that this represents a general principle for attenuation which may be applied to other segmented viruses containing either single-stranded or double-stranded RNA.

  2. A Clinical Review of Zika Virus (ZIKAV

    Muhammad Hashim Raza

    2017-02-01

    Full Text Available Zika virus (ZIKAV is a flavi-virus, first isolated in 1947 in the Zika Forest of Uganda. ZIKAV is a positive-sense single-stranded RNA virus. ZIKAV is made up of two noncoding regions (5′ and 3′ that verge an open reading frame, which put into code a polyprotein smote into the capsid, precursor of membrane, envelope, and 7 nonstructural proteins. Inoculation of a human host is by Mosquito. After cellular en¬try, the virus enters skin cells through cellular receptors, enabling migration to the lymph nodes and blood circulation. ZIKAV may also enter to skin fibroblasts, keratino¬cytes, and immature dendritic cells. Several entry and adhesion factors enable infection, and cellular autophagy, needed for flaviviral replication. Transmission is by infected mosquito dur¬ing a blood meal. After endorsement, the virus replicates and is pass on to a reservoir animal at the next blood mealtime. ZIKAV is also transmitted via congenital, perinatal, and sexual, possible transmission by blood transfusion, ani¬mal bite and intrauterine transmission. Trans-mission via breast-feeding has not been reported. Incubation period from mosquito bite to symptom commencement is 3–12 days. Infection is likely subclinical in 80% of cases. Symptoms, which last for almost two to seven days include fever, conjunctivitis, arthralgia, myalgia, and pervasive rash, which may be itchy. Headache, retro-orbital pain, peripheral oedema, and gastrointestinal fracas have also been witnessed. Diagnosis is directed by history and consideration. The symptoms and clinical signs do not have adequate positive or negative prognostic value, and therefore laboratory testing is needed for dependable diagnosis. Laboratory testing includes polymerase chain reaction (PCR of ZIKAV RNA. There is formerly no vaccine against ZIKAV, nor definite antiviral for the management of ZIKAV. Treatment is suggestive. Vector control by insecticides and removal of small pools of still water, the breeding

  3. Coinfection with Epstein–Barr Virus (EBV, Human Papilloma Virus (HPV and Polyoma BK Virus (BKPyV in Laryngeal, Oropharyngeal and Oral Cavity Cancer

    Bartłomiej Drop

    2017-12-01

    Full Text Available Most research providing evidence for the role of oncogenic viruses in head and neck squamous cell carcinoma (SCC development is focused on one type of virus without analyzing possible interactions between two or more types of viruses. The aim of this study was to analyse the prevalence of co-infection with human papillomavirus (HPV, Epstein–Barr virus (EBV and polyoma BK virus (BKPyV in oral, oropharyngeal and laryngeal squamous cell carcinomas in Polish patients. The correlations between viral infection, SCC, demographic parameters, evidence of metastases and grading were also investigated. Fresh-frozen tumour tissue samples were collected from 146 patients with laryngeal, oropharyngeal and oral cancer. After DNA extraction, the DNA of the studied viruses was detected using polymerase chain rection (PCR assay. Males (87.7% with a history of smoking (70.6% and alcohol abuse (59.6% prevailed in the studied group. Histological type G2 was recognized in 64.4% cases. The patients were most frequently diagnosed with T2 stage (36.3% and with N1 stage (45.8%. Infection with at least two viruses was detected in 56.2% of patients. In this group, co-infection with HPV/EBV was identified in 34.1% of cases, EBV/BKV in 23.2%, HPV/BKV in 22.0%, and HPV/EBV/BKV in 20.7%. No difference of multiple infection in different locations of cancer was observed. The prevalence of poorly differentiated tumours (G3 was more frequent in co-infection with all three viruses than EBV or BKV alone. A significant correlation was observed between tumour dimensions (T and lymph-node involvement (N in co-infected patients compared to single infection. Further studies are necessary to clarify whether co-infection plays an important role in the initiation and/or progression of oncogenic transformation of oral, oropharyngeal and laryngeal epithelial cells.

  4. Coinfection with Epstein-Barr Virus (EBV), Human Papilloma Virus (HPV) and Polyoma BK Virus (BKPyV) in Laryngeal, Oropharyngeal and Oral Cavity Cancer.

    Drop, Bartłomiej; Strycharz-Dudziak, Małgorzata; Kliszczewska, Ewa; Polz-Dacewicz, Małgorzata

    2017-12-19

    Most research providing evidence for the role of oncogenic viruses in head and neck squamous cell carcinoma (SCC) development is focused on one type of virus without analyzing possible interactions between two or more types of viruses. The aim of this study was to analyse the prevalence of co-infection with human papillomavirus (HPV), Epstein-Barr virus (EBV) and polyoma BK virus (BKPyV) in oral, oropharyngeal and laryngeal squamous cell carcinomas in Polish patients. The correlations between viral infection, SCC, demographic parameters, evidence of metastases and grading were also investigated. Fresh-frozen tumour tissue samples were collected from 146 patients with laryngeal, oropharyngeal and oral cancer. After DNA extraction, the DNA of the studied viruses was detected using polymerase chain rection (PCR) assay. Males (87.7%) with a history of smoking (70.6%) and alcohol abuse (59.6%) prevailed in the studied group. Histological type G2 was recognized in 64.4% cases. The patients were most frequently diagnosed with T2 stage (36.3%) and with N1 stage (45.8%). Infection with at least two viruses was detected in 56.2% of patients. In this group, co-infection with HPV/EBV was identified in 34.1% of cases, EBV/BKV in 23.2%, HPV/BKV in 22.0%, and HPV/EBV/BKV in 20.7%. No difference of multiple infection in different locations of cancer was observed. The prevalence of poorly differentiated tumours (G3) was more frequent in co-infection with all three viruses than EBV or BKV alone. A significant correlation was observed between tumour dimensions (T) and lymph-node involvement (N) in co-infected patients compared to single infection. Further studies are necessary to clarify whether co-infection plays an important role in the initiation and/or progression of oncogenic transformation of oral, oropharyngeal and laryngeal epithelial cells.

  5. Coinfection with Epstein–Barr Virus (EBV), Human Papilloma Virus (HPV) and Polyoma BK Virus (BKPyV) in Laryngeal, Oropharyngeal and Oral Cavity Cancer

    Drop, Bartłomiej; Strycharz-Dudziak, Małgorzata; Kliszczewska, Ewa; Polz-Dacewicz, Małgorzata

    2017-01-01

    Most research providing evidence for the role of oncogenic viruses in head and neck squamous cell carcinoma (SCC) development is focused on one type of virus without analyzing possible interactions between two or more types of viruses. The aim of this study was to analyse the prevalence of co-infection with human papillomavirus (HPV), Epstein–Barr virus (EBV) and polyoma BK virus (BKPyV) in oral, oropharyngeal and laryngeal squamous cell carcinomas in Polish patients. The correlations between viral infection, SCC, demographic parameters, evidence of metastases and grading were also investigated. Fresh-frozen tumour tissue samples were collected from 146 patients with laryngeal, oropharyngeal and oral cancer. After DNA extraction, the DNA of the studied viruses was detected using polymerase chain rection (PCR) assay. Males (87.7%) with a history of smoking (70.6%) and alcohol abuse (59.6%) prevailed in the studied group. Histological type G2 was recognized in 64.4% cases. The patients were most frequently diagnosed with T2 stage (36.3%) and with N1 stage (45.8%). Infection with at least two viruses was detected in 56.2% of patients. In this group, co-infection with HPV/EBV was identified in 34.1% of cases, EBV/BKV in 23.2%, HPV/BKV in 22.0%, and HPV/EBV/BKV in 20.7%. No difference of multiple infection in different locations of cancer was observed. The prevalence of poorly differentiated tumours (G3) was more frequent in co-infection with all three viruses than EBV or BKV alone. A significant correlation was observed between tumour dimensions (T) and lymph-node involvement (N) in co-infected patients compared to single infection. Further studies are necessary to clarify whether co-infection plays an important role in the initiation and/or progression of oncogenic transformation of oral, oropharyngeal and laryngeal epithelial cells. PMID:29257122

  6. Can VHS virus bypass the protective immunity induced by DNA vaccination in rainbow trout?

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability...... and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly...... pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus...

  7. Extensive sequence divergence among bovine respiratory syncytial viruses isolated during recurrent outbreaks in closed herds

    Larsen, Lars Erik; Tjørnehøj, Kirsten; Viuff, B.

    2000-01-01

    and veal calf production units) in different years and from all confirmed outbreaks in Denmark within a short period. The results showed that identical viruses were isolated within a herd during outbreaks and that viruses from recurrent infections varied by up to 11% in sequence even in closed herds......The nucleotides coding for the extracellular part of the G glycoprotein and the full SH protein of bovine respiratory syncytial virus (BRSV) were sequenced from viruses isolated from numerous outbreaks of BRSV infection. The isolates included viruses isolated from the same herd (closed dairy farms....... It is possible that a quasispecies variant swarm of BRSV persisted in some of the calves in each herd and that a new and different highly fit virus type (master and consensus sequence) became dominant and spread from a single animal in connection with each new outbreak. Based on the high level of diversity...

  8. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis

    Wang, Danher; Suhrbier, Andreas; Penn-Nicholson, Adam; Woraratanadharm, Jan; Gardner, Joy; Luo, Min; Le, Thuy T.; Anraku, Itaru; Sakalian, Michael; Einfeld, David; Dong, John Y.

    2011-01-01

    Chikungunya virus, a mosquito-borne alphavirus, recently caused the largest epidemic ever seen for this virus. Chikungunya disease primarily manifests as a painful and debilitating arthralgia/arthritis, and no effective drug or vaccine is currently available. Here we describe a recombinant chikungunya virus vaccine comprising a non-replicating complex adenovirus vector encoding the structural polyprotein cassette of chikungunya virus. A single immunisation with this vaccine consistently induced high titres of anti-chikungunya virus antibodies that neutralised both an old Asian isolate and a Réunion Island isolate from the recent epidemic. The vaccine also completely protected mice against viraemia and arthritic disease caused by both virus isolates. PMID:21320541

  9. Zika virus: An overview

    Gautam Rawal

    2016-01-01

    Full Text Available The Zika virus has been in the news for quite some time due to the ongoing recent outbreak in the Southern America, which started in December 2015. It has been declared a public health emergency by the World Health Organization in February 2016 owing to its association with the congenital deformities, particularly microcephaly in infants borne to the infected mothers. The rapid spread of the virus throughout the United States of America and subsequently to Asia has raised serious international concerns. Its spread to countries neighboring India is a serious threat to the Indian population. This review article gives an overview about the virus, its diagnosis, clinical features, and the management.

  10. Reemerging Sudan Ebola Virus Disease in Uganda, 2011

    Shoemaker, Trevor; Balinandi, Stephen; Campbell, Shelley; Wamala, Joseph Francis; McMullan, Laura K.; Downing, Robert; Lutwama, Julius; Mbidde, Edward; Ströher, Ute; Rollin, Pierre E.; Nichol, Stuart T.

    2012-01-01

    Two large outbreaks of Ebola hemorrhagic fever occurred in Uganda in 2000 and 2007. In May 2011, we identified a single case of Sudan Ebola virus disease in Luwero District. The establishment of a permanent in-country laboratory and cooperation between international public health entities facilitated rapid outbreak response and control activities. PMID:22931687

  11. Effects of RNA branching on the electrostatic stabilization of viruses

    Erdemci-Tandogan, Gonca; Wagner, Jef; Schoot, Paul van der|info:eu-repo/dai/nl/102140618; Podgornik, Rudolf; Zandi, Roya

    2016-01-01

    Many single-stranded (ss) RNA viruses self assemble from capsid protein subunits and the nucleic acid to form an infectious virion. It is believed that the electrostatic interactions between the negatively charged RNA and the positively charged viral capsid proteins drive the encapsidation, although

  12. Food and environmental routes of Hepatitis E virus transmission

    Poel, van der W.H.M.

    2014-01-01

    Abstract Hepatitis E virus (HEV), genus Hepevirus, family hepeviridae is a main cause of epidemic hepatitis in developing countries and single cases of hepatitis in higher income countries. There are at least four HEV genotypes which have different epidemiologic and clinical features. Hepatitis E

  13. How to perform a nanoindentation experiment on a virus

    Roos, Wouter H.

    2011-01-01

    To broaden our knowledge on virus structure and function, a profound insight into their mechanical properties is required. Nanoindentation measurements with an atomic force microscope (AFM) are increasingly being performed to probe such material properties. This single-particle approach allows for

  14. Archaeal virus-host interactions

    Quax, T.E.F.

    2013-01-01

    The work presented in this thesis provides novel insights in several aspects of the molecular

    biology of archaea, bacteria and their viruses.

    Three fundamentally different groups of viruses are associated with the three domains of life.

    Archaeal viruses are

  15. Rhabdomyolysis Associated with Parainfluenza Virus

    Miltiadis Douvoyiannis

    2013-01-01

    Full Text Available Influenza virus is the most frequently reported viral cause of rhabdomyolysis. A 7-year-old child is presented with rhabdomyolysis associated with parainfluenza type 2 virus. Nine cases of rhabdomyolysis associated with parainfluenza virus have been reported. Complications may include electrolyte disturbances, acute renal failure, and compartment syndrome.

  16. Global emergence of Zika virus

    Richard Tjan

    2016-05-01

    Full Text Available Zika virus (ZIKV belongs to the flaviviruses (family Flaviviridae, which includes dengue, yellow fever, West Nile, and Japanese encephalitis viruses. Zika virus was isolated in 1947, in the Zika forest near Kampala, Uganda, from one of the rhesus monkeys used as sentinel animals in a yellow fever research program.

  17. Control of Newcastle disease virus

    Newcastle disease virus (NDV), also know as avian paramyxovirus serotype 1, is an important poultry pathogen worldwide. In naive poultry, the virulent forms of the virus cause high mortality. Because of this the virus is reportable to the World Organization for Animal Health and can be an important ...

  18. An introduction to computer viruses

    Brown, D.R.

    1992-03-01

    This report on computer viruses is based upon a thesis written for the Master of Science degree in Computer Science from the University of Tennessee in December 1989 by David R. Brown. This thesis is entitled An Analysis of Computer Virus Construction, Proliferation, and Control and is available through the University of Tennessee Library. This paper contains an overview of the computer virus arena that can help the reader to evaluate the threat that computer viruses pose. The extent of this threat can only be determined by evaluating many different factors. These factors include the relative ease with which a computer virus can be written, the motivation involved in writing a computer virus, the damage and overhead incurred by infected systems, and the legal implications of computer viruses, among others. Based upon the research, the development of a computer virus seems to require more persistence than technical expertise. This is a frightening proclamation to the computing community. The education of computer professionals to the dangers that viruses pose to the welfare of the computing industry as a whole is stressed as a means of inhibiting the current proliferation of computer virus programs. Recommendations are made to assist computer users in preventing infection by computer viruses. These recommendations support solid general computer security practices as a means of combating computer viruses.

  19. Computer Bytes, Viruses and Vaccines.

    Palmore, Teddy B.

    1989-01-01

    Presents a history of computer viruses, explains various types of viruses and how they affect software or computer operating systems, and describes examples of specific viruses. Available vaccines are explained, and precautions for protecting programs and disks are given. (nine references) (LRW)

  20. Monoclonal antibodies against plant viruses

    Sandler, E.; Dietzgen, R.G.

    1984-01-01

    Ever since antigenic properties of plant viruses were discovered antisera have been raised and used for plant virus diagnosis and for the analysis of virus structure as well. From the early qualitative diagnosis method of precipitating the virus in clarified sap of an infected plant and the first quantitative application of the precipitin test vast progress has been made with regard to the development of highly sensitive and highly quantitative methods for virus detection. Of equal importance was the improvement of methods for separating virus from host cell components since the specificity of antisera raised against a virus could be increased by using an antigen for immunization highly concentrated and largely freed from contaminating host substances. The introduction of the enzyme-linked immunosorbent assay (ELISA) into plant virology allows detection of virus in nanogram quantities. Still, the conventionally raised antisera, no matter how pure an antigen was used for immunization, are polyclonal. They contain products of thousands of different antibody-secreting plasma cell clones which can be directed against all antigenic determinants (epitopes) of the virus, but also against antigens of the host plant that may not have been entirely separated from the immunizing virus during the purification procedure. Even after cross adsorption of polyclonal antisera some residual heterogeneity can be expected to remain. Within these boundaries the information gained with polyclonal antisera on virus structure and on virus diagnosis has to be interpreted

  1. Virus Nilam: Identifikasi, Karakter Biologi dan Fisik, Serta Upaya Pengendaliannya

    Miftakhurohmah, Miftakhurohmah; Noveriza, Rita

    2015-01-01

    Infeksi virus pada tanaman nilam dapat menyebabkan penurunan produksi dan kualitas minyak. Sembilan jenis virus diidentifikasi menginfeksi tanaman nilam, yaitu Patchouli mosaic virus (PatMoV), Patchouli mild mosaic virus (PatMMV), Telosma mosaic virus (TeMV), Peanut stripe virus (PStV), Patchouli yellow mosaic virus (PatYMV), Tobacco necrosis virus (TNV), Broad bean wilt virus 2 (BBWV2), Cucumber mosaic virus (CMV), dan Cymbidium mosaic virus (CymMV). Kesembilan virus tersebut memiliki genom ...

  2. Bovine Virus Diarrhea (BVD)

    Hoar, Bruce R.

    2004-01-01

    Bovine virus diarrhea (BVD) is a complicated disease to discuss as it can result in a wide variety of disease problems from very mild to very severe. BVD can be one of the most devastating diseases cattle encounter and one of the hardest to get rid of when it attacks a herd. The viruses that cause BVD have been grouped into two genotypes, Type I and Type II. The disease syndrome caused by the two genotypes is basically the same, however disease caused by Type II infection is often more severe...

  3. Virus en Endodoncia

    Hernández Vigueras, Scarlette; Salazar Navarrete, Luis; Pérez Tomás, Ricardo; Segura Egea, Juan José; Viñas, Miguel; López-López, José

    2014-01-01

    La infección endodóntica es la infección que afecta al sistema de conductos radiculares y, sin duda, es el principal agente etiológico de las periodontitis apicales. Además, de las bacterias patógenas endodónticas, se ha buscado en los últimos años asociar la presencia de virus en distintos tipos de patología endodóntica. Los virus que más se han buscado y asociado son los pertenecientes a la familia herpesvirus, los cuales se han encontrado presentes en patologías periapicales principalmente...

  4. Sensing of RNA viruses

    Jensen, Søren; Thomsen, Allan Randrup

    2012-01-01

    pathogen-associated molecular patterns have emerged in great detail. This review presents an overview of our current knowledge regarding the receptors used to detect RNA virus invasion, the molecular structures these receptors sense, and the involved downstream signaling pathways.......Our knowledge regarding the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of RNA virus has been rapidly growing over the last decade. Descriptions of the receptors involved and the molecular mechanisms they employ to sense viral...

  5. [ZIKA--VIRUS INFECTION].

    Velev, V

    2016-01-01

    This review summarizes the knowledge of the scientific community for Zika-virus infection. It became popular because of severe congenital damage causes of CNS in newborns whose mothers are infected during pregnancy, as well as the risk of pandemic distribution. Discusses the peculiarities of the biology and ecology of vectors--blood-sucking mosquitoes Aedes; stages in the spread of infection and practical problems which caused during pregnancy. Attention is paid to the recommendations that allow leading national and international medical organizations to deal with the threat Zika-virus infection.

  6. Epidemiology of Zika Virus.

    Younger, David S

    2016-11-01

    Zika virus is an arbovirus belonging to the Flaviviridae family known to cause mild clinical symptoms similar to those of dengue and chikungunya. Zika is transmitted by different species of Aedes mosquitoes. Nonhuman primates and possibly rodents play a role as reservoirs. Direct interhuman transmission has also been reported. Human cases have been reported in Africa and Asia, Easter Island, the insular Pacific region, and Brazil. Its clinical profile is that of a dengue-like febrile illness, but recently associated Guillain-Barre syndrome and microcephaly have appeared. There is neither a vaccine nor prophylactic medications available to prevent Zika virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Viruses in renovated waters

    Nupen, EM

    1974-06-01

    Full Text Available , for permission to present this paper. ?8? References 1. REPORT. CONMITTEE ON ENVIRONMENTAL QUALITY ANAGEMEZIT OF PME SANITARY ENGINEERING DIVISION (1970). Engineering evaluation of virus hazard in water. Jour. Eng. Div. Proc. Am. Soc. Civ. Eng. SA 1, 7112... Water Systems, Austin, Texas, 1974 13. CARESON, G.F., WOODA.RD, F.E., WENTWORTII, D.P. and SPRODI, O.J. (1968) Virus inactivation on clay particles in natural waters. Journ. Wat. Pollut. Cont. Fed., 4Q R39, 7116. 14. MOSJ~EY, J.W. (1967...

  8. Tenosinovitis por virus Chikungunya

    Alfredo Seijo

    2014-12-01

    Full Text Available Se presenta a la consulta un hombre proveniente de la República Dominicana con una tenosinovitis del extensor del dedo medio derecho; en la convalecencia inmediata, segunda curva febril luego de 48 horas de permanecer asintomático de una enfermedad febril aguda, y marcada astenia, exantema pruriginoso, poliartralgias con impotencia funcional y rigidez articular generalizada. Los exámenes bioquímicos no aportaron datos de interés para el diagnóstico. La serología para virus dengue fue negativa. La detección de IgM y de anticuerpos neutralizantes para virus Chikungunya (CHIKV fueron positivos.

  9. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    Dagoberto Sepúlveda

    Full Text Available DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV, an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach, and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach. For the in vitro approach, the virus collected from the last passage (passaged virus was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms.

  10. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    Sparger, Ellen E.; Dubie, Robert A.; Shacklett, Barbara L.; Cole, Kelly S.; Chang, W.L.; Luciw, Paul A.

    2008-01-01

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-γ enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus

  11. Multiplex RT-PCR and Automated Microarray for Detection of Eight Bovine Viruses.

    Lung, O; Furukawa-Stoffer, T; Burton Hughes, K; Pasick, J; King, D P; Hodko, D

    2017-12-01

    Microarrays can be a useful tool for pathogen detection as it allow for simultaneous interrogation of the presence of a large number of genetic sequences in a sample. However, conventional microarrays require extensive manual handling and multiple pieces of equipment for printing probes, hybridization, washing and signal detection. In this study, a reverse transcription (RT)-PCR with an accompanying novel automated microarray for simultaneous detection of eight viruses that affect cattle [vesicular stomatitis virus (VSV), bovine viral diarrhoea virus type 1 and type 2, bovine herpesvirus 1, bluetongue virus, malignant catarrhal fever virus, rinderpest virus (RPV) and parapox viruses] is described. The assay accurately identified a panel of 37 strains of the target viruses and identified a mixed infection. No non-specific reactions were observed with a panel of 23 non-target viruses associated with livestock. Vesicular stomatitis virus was detected as early as 2 days post-inoculation in oral swabs from experimentally infected animals. The limit of detection of the microarray assay was as low as 1 TCID 50 /ml for RPV. The novel microarray platform automates the entire post-PCR steps of the assay and integrates electrophoretic-driven capture probe printing in a single user-friendly instrument that allows array layout and assay configuration to be user-customized on-site. © 2016 Her Majesty the Queen in Right of Canada.

  12. Virus surveys of Capsicum spp. in the Republic of Benin reveal the prevalence of pepper vein yellows virus and the identification of a previously uncharacterised polerovirus species.

    Afouda, Leonard; Kone, Daouda; Zinsou, Valerien; Dossou, Laurence; Kenyon, Lawrence; Winter, Stephan; Knierim, Dennis

    2017-06-01

    Surveys were conducted in 2014 and 2015 in Southern and Northern Benin, respectively, to identify the viruses infecting peppers (Capsicum spp.). The samples were screened by ELISA for cucumber mosaic virus (CMV), pepper veinal mottle virus (PVMV), potato virus Y (PVY) and tomato yellow leaf curl virus (TYLCV). A generic reverse transcription PCR (RT-PCR) was used to test for the presence of poleroviruses. ELISA tests confirmed the prevalence of all viruses, while the RT-PCR detected pepper vein yellows virus (PeVYV) which is reported for the first time in Benin. A further, divergent polerovirus isolate was detected from a single pepper sample originating from southern Benin. Screening of samples collected from solanaceous plants during virus surveys in Mali (conducted in 2009) also detected this divergent polerovirus isolate in two samples from African eggplants. The complete genome sequence was obtained from the Mali isolate using transcriptome sequencing and by conventional Sanger sequencing of overlapping RT-PCR products. Based on the sequence characteristics of this isolate we propose a new polerovirus species, African eggplant yellowing virus (AeYV).

  13. Resistance to Two Heterologous Neurotropic Oncolytic Viruses, Semliki Forest Virus and Vaccinia Virus, in Experimental Glioma

    Le Boeuf, Fabrice; Lemay, Chantal; De Silva, Naomi; Diallo, Jean-Simon; Cox, Julie; Becker, Michelle; Choi, Youngmin; Ananth, Abhirami; Sellers, Clara; Breton, Sophie; Roy, Dominic; Falls, Theresa; Brun, Jan; Hemminki, Akseli; Hinkkanen, Ari; Bell, John C.

    2013-01-01

    Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference. PMID:23221568

  14. Vaccine platform recombinant measles virus.

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  15. Construction and Testing of orfA +/- FIV Reporter Viruses

    Eric M. Poeschla

    2012-01-01

    Full Text Available Single cycle reporter viruses that preserve the majority of the HIV-1 genome, long terminal repeat-promoted transcription and Rev-dependent structural protein expression are useful for investigating the viral life cycle. Reporter viruses that encode the viral proteins in cis in this way have been lacking for feline immunodeficiency virus (FIV, where the field has used genetically minimized transfer vectors with viral proteins supplied in trans. Here we report construction and use of a panel of single cycle FIV reporter viruses that express fluorescent protein markers. The viruses can be produced to high titer using human cell transfection and can transduce diverse target cells. To illustrate utility, we tested versions that are (+ and (- for OrfA, an FIV accessory protein required for replication in primary lymphocytes and previously implicated in down-regulation of the primary FIV entry receptor CD134. We observed CD134 down-regulation after infection with or without OrfA, and equivalent virion production as well. These results suggest a role for FIV proteins besides Env or OrfA in CD134 down-regulation.

  16. Potential role of viruses in white plague coral disease.

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne M S; Smith, Tyler B; Thurber, Rebecca Vega

    2014-02-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.

  17. Zika Virus: An Emerging Worldwide Threat

    Irfan A. Rather; Jameel B. Lone; Vivek K. Bajpai; Woon K. Paek; Jeongheui Lim

    2017-01-01

    ZIKA virus (ZIKV) poses a severe threat to the world. Recent outbreaks of ZIKV after 2007 along with its quick transmission have made this virus a matter of international concern. The virus shows symptoms that are similar to those caused in the wake of dengue virus (DENV) and other flaviviruses, which makes it difficult to discern the viral infection. Diagnosis is further complicated as the virus cross-reacts with antibodies of other viruses. Currently, molecular diagnosis of the virus is bei...

  18. Ebola virus acceptors

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... genome sequencing centre; HSP, High scoring Segment pair;. NHGRI, National ... the genome of the rhesus monkey (rhesus macaque, Macaca mulatta). The sequencing and comparative analysis was funded by the National ... Definition. Accession ..... Marburg virus genomics and association with a large.

  19. Zika virus and placenta

    Beuy Joob; Viroj Wiwanitkit

    2016-01-01

    Zika virus infection is the new arboviral infection problem. The serious outcome of infection and induction of abnormal infant become the big issue in reproductive medicine. The pathogenesis and pathology of the placenta in the affected case is an interesting issue. Here, the authors focus and discuss on this topic in this short article.

  20. Viruses of haloarchaea.

    Luk, Alison W S; Williams, Timothy J; Erdmann, Susanne; Papke, R Thane; Cavicchioli, Ricardo

    2014-11-13

    In hypersaline environments, haloarchaea (halophilic members of the Archaea) are the dominant organisms, and the viruses that infect them, haloarchaeoviruses are at least ten times more abundant. Since their discovery in 1974, described haloarchaeoviruses include head-tailed, pleomorphic, spherical and spindle-shaped morphologies, representing Myoviridae, Siphoviridae, Podoviridae, Pleolipoviridae, Sphaerolipoviridae and Fuselloviridae families. This review overviews current knowledge of haloarchaeoviruses, providing information about classification, morphotypes, macromolecules, life cycles, genetic manipulation and gene regulation, and host-virus responses. In so doing, the review incorporates knowledge from laboratory studies of isolated viruses, field-based studies of environmental samples, and both genomic and metagenomic analyses of haloarchaeoviruses. What emerges is that some haloarchaeoviruses possess unique morphological and life cycle properties, while others share features with other viruses (e.g., bacteriophages). Their interactions with hosts influence community structure and evolution of populations that exist in hypersaline environments as diverse as seawater evaporation ponds, to hot desert or Antarctic lakes. The discoveries of their wide-ranging and important roles in the ecology and evolution of hypersaline communities serves as a strong motivator for future investigations of both laboratory-model and environmental systems.

  1. Viruses of Haloarchaea

    Alison W. S. Luk

    2014-11-01

    Full Text Available In hypersaline environments, haloarchaea (halophilic members of the Archaea are the dominant organisms, and the viruses that infect them, haloarchaeoviruses are at least ten times more abundant. Since their discovery in 1974, described haloarchaeoviruses include head-tailed, pleomorphic, spherical and spindle-shaped morphologies, representing Myoviridae, Siphoviridae, Podoviridae, Pleolipoviridae, Sphaerolipoviridae and Fuselloviridae families. This review overviews current knowledge of haloarchaeoviruses, providing information about classification, morphotypes, macromolecules, life cycles, genetic manipulation and gene regulation, and host-virus responses. In so doing, the review incorporates knowledge from laboratory studies of isolated viruses, field-based studies of environmental samples, and both genomic and metagenomic analyses of haloarchaeoviruses. What emerges is that some haloarchaeoviruses possess unique morphological and life cycle properties, while others share features with other viruses (e.g., bacteriophages. Their interactions with hosts influence community structure and evolution of populations that exist in hypersaline environments as diverse as seawater evaporation ponds, to hot desert or Antarctic lakes. The discoveries of their wide-ranging and important roles in the ecology and evolution of hypersaline communities serves as a strong motivator for future investigations of both laboratory-model and environmental systems.

  2. Apple mosaic virus

    Apple mosaic virus (ApMV), a member of the ilarvirus group, naturally infects Betula, Aesculus, Humulus, and several crop genera in the family Rosaceae (Malus, Prunus, Rosa and Rubus). ApMV was first reported in Rubus in several blackberry and raspberry cultivars in the United States and subsequentl...

  3. Viruses of the Archaea

    Basta, T.; Garrett, Roger Antony; Prangishvili,, David

    2009-01-01

    Double-stranded deoxyribonucleic acid (DNA) viruses that infect members of the third domain of life, the Archaea, are diverse and exceptional in both their morphotypes and their genomic properties. The majority of characterized species infect hyperthermophilic hosts and carry morphological featur...

  4. Animal Models of Zika Virus

    Bradley, Michael P; Nagamine, Claude M

    2017-01-01

    Zika virus has garnered great attention over the last several years, as outbreaks of the disease have emerged throughout the Western Hemisphere. Until quite recently Zika virus was considered a fairly benign virus, with limited clinical severity in both people and animals. The size and scope of the outbreak in the Western Hemisphere has allowed for the identification of severe clinical disease that is associated with Zika virus infection, most notably microcephaly among newborns, and an association with Guillian–Barré syndrome in adults. This recent association with severe clinical disease, of which further analysis strongly suggested causation by Zika virus, has resulted in a massive increase in the amount of both basic and applied research of this virus. Both small and large animal models are being used to uncover the pathogenesis of this emerging disease and to develop vaccine and therapeutic strategies. Here we review the animal-model–based Zika virus research that has been performed to date. PMID:28662753

  5. Archaeal viruses of the sulfolobales

    Erdmann, Susanne; Garrett, Roger Antony

    2015-01-01

    in CRISPR loci of Sulfolobus species from a second coinfecting conjugative plasmid or virus (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012; Erdmann et al. Mol Microbiol 91:900-917, 2014). Here we describe, firstly, the isolation of archaeal virus mixtures from terrestrial hot springs...... with an environmental virus mixture isolated from Yellowstone National Park (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012). Experimental studies of isolated genetic elements from this mixture revealed that SMV1 (S ulfolobus Monocauda Virus 1), a tailed spindle-shaped virus, can induce spacer acquisition...... and the techniques used both to infect laboratory strains with these virus mixtures and to obtain purified virus particles. Secondly, we present the experimental conditions required for activating SMV1-induced spacer acquisition in two different Sulfolobus species....

  6. Multisegment one-step RT-PCR fluorescent labeling of influenza A virus genome for use in diagnostic microarray applications

    Vasin, A V; Plotnikova, M A; Klotchenko, S A; Elpaeva, E A; Komissarov, A B; Egorov, V V; Kiselev, O I [Research Institute of Influenza of the Ministry of Health and Social Development of the Russian Federation, 15/17 Prof. Popova St., St. Petersburg (Russian Federation); Sandybaev, N T; Chervyakova, O V; Strochkov, V M; Taylakova, E T; Koshemetov, J K; Mamadaliev, S M, E-mail: vasin@influenza.spb.ru [Research Institute for Biological Safety Problems of the RK NBC/SC ME and S RK, Gvardeiskiy (Kazakhstan)

    2011-04-01

    Microarray technology is one of the most challenging methods of influenza A virus subtyping, which is based on the antigenic properties of viral surface glycoproteins - hemagglutinin and neuraminidase. On the example of biochip for detection of influenza A/H5N1 virus we showed the possibility of using multisegment RTPCR method for amplification of fluorescently labeled cDNA of all possible influenza A virus subtypes with a single pair of primers in influenza diagnostic microarrays.

  7. Multiple viral infections in Agaricus bisporus - Characterisation of 18 unique RNA viruses and 8 ORFans identified by deep sequencing

    Deakin, Gregory; Dobbs, Edward; Bennett, Julie M.; Jones, Ian M.; Grogan, Helen M.; Burton, Kerry S.

    2017-01-01

    Thirty unique non-host RNAs were sequenced in the cultivated fungus, Agaricus bisporus, comprising 18 viruses each encoding an RdRp domain with an additional 8 ORFans (non-host RNAs with no similarity to known sequences). Two viruses were multipartite with component RNAs showing correlative abundances and common 3′ motifs. The viruses, all positive sense single-stranded, were classified into diverse orders/families. Multiple infections of Agaricus may represent a diverse, dynamic and interact...

  8. An Alphavirus E2 Membrane-Proximal Domain Promotes Envelope Protein Lateral Interactions and Virus Budding

    Emily A. Byrd

    2017-11-01

    Full Text Available Alphaviruses are members of a group of small enveloped RNA viruses that includes important human pathogens such as Chikungunya virus and the equine encephalitis viruses. The virus membrane is covered by a lattice composed of 80 spikes, each a trimer of heterodimers of the E2 and E1 transmembrane proteins. During virus endocytic entry, the E1 glycoprotein mediates the low-pH-dependent fusion of the virus membrane with the endosome membrane, thus initiating virus infection. While much is known about E1 structural rearrangements during membrane fusion, it is unclear how the E1/E2 dimer dissociates, a step required for the fusion reaction. A recent Alphavirus cryo-electron microscopy reconstruction revealed a previously unidentified D subdomain in the E2 ectodomain, close to the virus membrane. A loop within this region, here referred to as the D-loop, contains two highly conserved histidines, H348 and H352, which were hypothesized to play a role in dimer dissociation. We generated Semliki Forest virus mutants containing the single and double alanine substitutions H348A, H352A, and H348/352A. The three D-loop mutations caused a reduction in virus growth ranging from 1.6 to 2 log but did not significantly affect structural protein biosynthesis or transport, dimer stability, virus fusion, or specific infectivity. Instead, growth reduction was due to inhibition of a late stage of virus assembly at the plasma membrane. The virus particles that are produced show reduced thermostability compared to the wild type. We propose the E2 D-loop as a key region in establishing the E1-E2 contacts that drive glycoprotein lattice formation and promote Alphavirus budding from the plasma membrane.

  9. Canine distemper virus (CDV) in another big cat: should CDV be renamed carnivore distemper virus?

    Terio, Karen A; Craft, Meggan E

    2013-09-17

    One of the greatest threats to the conservation of wild cat populations may be dogs or, at least, one of their viruses. Canine distemper virus (CDV), a single-stranded RNA virus in the Paramyxoviridae family and genus Morbillivirus, infects and causes disease in a variety of species, not just canids. An outbreak of CDV in wild lions in the Serengeti, Tanzania, in 1994 was a wake-up call for conservationists, as it demonstrated that an infectious disease could swiftly impact a previously healthy felid population. To understand how this virus causes disease in noncanid hosts, researchers have focused on specific mutations in the binding site of the CDV hemagglutinin gene. Now, Seimon et al. provide information on CDV in its latest feline victim, the endangered wild Amur tiger (Panthera tigris altaica) [T. A. Seimon et al., mBio 4(4):e00410-13, 2013, doi:10.1128/mBio.00410-13]. Their findings of CDV strains infecting tigers, in combination with recent information from other felids, paints a different picture, one in which CDV strains from a variety of geographic lineages and with a variety of amino acid residues in the hemagglutinin gene binding site can infect cats and cause disease. Although CDV has been known as a multihost disease since its discovery in domestic dogs in 1905, perhaps it is time to reconsider whether these noncanid species are not just incidental or "spillover" hosts but, rather, a normal part of the complex ecology of this infectious disease.

  10. Partial characterisation of citrus leaf blotch virus, a new virus from Nagami kumquat.

    Galipienso, L; Vives, M C; Moreno, P; Milne, R G; Navarro, L; Guerri, J

    2001-01-01

    Citrus leaf blotch virus (CLBV) was purified from leaves of Nagami kumquat SRA-153 that showed bud union crease when propagated on Troyer citrange. Virions were filamentous particles (960 x 14 nm) containing a 42 kDa protein and a single-stranded RNA (ssRNA) of about 9,000 nt (Mr 3 x 10(6)). Infected tissue contained three species of double-stranded RNA (dsRNA) of Mr 6, 4.5 and 3.4 x 10(6). The nucleotide sequence of several complementary DNA (cDNA) clones showed significant similarities with replication-related proteins from plant filamentous viruses in several genera. A digoxigenin-labelled probe from one of these cDNA clones hybridised in Northern blots with ssRNA from virions and with the three dsRNA species, suggesting that the ssRNA is the genomic RNA of the virus, the largest dsRNA is its replicative form, and the two smaller dsRNAs probably replicative forms of 5' co-terminal subgenomic RNAs. CLBV was also detected in several citrus cultivars from Spain and Japan including Navelina sweet orange field trees propagated on Troyer citrange showing bud union crease; however, no virus could be detected in other citrus trees with similar symptoms. This indicates that CLBV is not restricted to kumquat SRA-153, but its involvement in causing the bud union disorder remains unclear.

  11. The current incidence of viral disease in korean sweet potatoes and development of multiplex rt-PCR assays for simultaneous detection of eight sweet potato viruses.

    Kwak, Hae-Ryun; Kim, Mi-Kyeong; Shin, Jun-Chul; Lee, Ye-Ji; Seo, Jang-Kyun; Lee, Hyeong-Un; Jung, Mi-Nam; Kim, Sun-Hyung; Choi, Hong-Soo

    2014-12-01

    Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded.

  12. The Current Incidence of Viral Disease in Korean Sweet Potatoes and Development of Multiplex RT-PCR Assays for Simultaneous Detection of Eight Sweet Potato Viruses

    Hae-Ryun Kwak

    2014-12-01

    Full Text Available Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV and sweet potato virus C (SPVC were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1, Sweet potato virus G (SPVG, Sweet potato leaf curl virus (SPLCV, Sweet potato virus 2 ( SPV2, Sweet potato chlorotic fleck virus (SPCFV, and Sweet potato latent virus (SPLV were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1 in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded.

  13. Evolutionary relationship of alfalfa mosaic virus with cucumber mosaic virus and brome mosaic virus

    Savithri, HS; Murthy, MRN

    1983-01-01

    The amino acid sequences of the non-structural protein (molecular weight 35,000; 3a protein) from three plant viruses - cucumber mosaic, brome mosaic and alfalfa mosaic have been systematically compared using the partial genomic sequences for these three viruses already available. The 3a protein of cucumber mosaic virus has an amino acid sequence homology of 33.7% with the corresponding protein of brome mosaic virus. A similar protein from alfalfa mosaic virus has a homology of 18.2% and 14.2...

  14. Hepatitis E virus coinfection with hepatotropic viruses in Egyptian children.

    Zaki, Maysaa El Sayed; Salama, Osama Saad; Mansour, Fathy Awaad; Hossein, Shaimaa

    2008-06-01

    Major hepatotropic viruses continue to be important causes of acute viral hepatitis in developing countries. This work was carried out to detect the seroprevalence of hepatitis E virus (HEV) markers in children with acute viral hepatitis due to hepatotropic viruses (A, B and C) and non-A, non-B, non-C acute hepatitis, and to ascertain the influence of HEV superinfection in individuals infected with hepatitis viruses (A, B and C). We studied prospectively 162 children with sporadic acute hepatitis who reported to our hospital. Thirteen healthy controls were also included in the study. Laboratory investigations were performed, including complete liver function tests. Complete serological profiles for hepatitis viruses A, B, C and E were evaluated. HEV immunoglobulin G was detected with highest percentage among patients with hepatitis B (56.7%), followed by patients with hepatitis C virus (52.0%), hepatitis A virus (34.1%) and combined hepatitis B and C viruses (30.0%). The detection rate among patients with non-A, non-B, non-C hepatitis was 7.1%. HEV immunoglobulin M was found in 4.5% of hepatitis A virus patients and in 3.3% of hepatitis B patients. The prevalence of HEV immunoglobulin G and immunoglobulin M correlated with the levels of hepatic aspartate aminotransferase and alanine aminotransferase in patients with dual markers of infection with hepatitis E and other viruses compared to patients with acute hepatitis due to A and C viruses. HEV serological markers are common among children with acute viral hepatitis, especially from hepatitis C and B viruses. There may be increased sensitivity to HEV coinfection in association with hepatitis B and C infections. Dual infection with HEV and other hepatotropic viruses was associated with greater elevation of aspartate and alanine aminotransferases.

  15. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    Hidajat, Rachmat; Nickols, Brian [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Forrester, Naomi [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Tretyakova, Irina [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Weaver, Scott [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2016-03-15

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  16. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    Hidajat, Rachmat; Nickols, Brian; Forrester, Naomi; Tretyakova, Irina; Weaver, Scott; Pushko, Peter

    2016-01-01

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  17. Radioactive probes as diagnostic tools for rice tungro viruses

    Azzam, O.; Arboleda, M.; Reyes. J. de los

    1996-01-01

    Rice tungro bacilliform (RTBV) and rice tungro spherical viruses (RTSV) are the two viral components responsible for rice tungro disease which has seriously affected the irrigated rice ecosystem in Southeast Asia for the last 30 years. RTBV has an 8 Kb double-stranded DNA circular genome, and it is primarily responsible for induction of symptoms in infected plants. RTSV has a 12 kb single-stranded RNA genome. It does not induce any apparent symptoms in the infected plant, and it is transmitted by greenleafhopper. RTBV depends upon RTSV for its own transmission. The two viruses are limited to the vascular tissue of the rice plant and are present at a low titer. Most of the detection methods used for the identification of these viruses have relied on the virus protein properties and therefore, early detection of the virus activity was not possible. We were interested in evaluating tissue printing, dot blot, and southern techniques for early detection of virus nucleic acids in rice plant using radioactive and non radioactive probes. 32 P-labeled T7 or SP6 RNA polymerase transcripts complementary to the RTBV genome and RTSV coat protein genes were used as probes of the positive stand of both viruses. For nonradioactive probes, RTBV DNA genome was labeled using the ECL detection kit (Amersham). Preliminary results show that viral nucleic acids of RTBV and RTSV could be detected using both labelling systems. Non radioactive probes were comparable in their sensitivity to the radioactive probes. Less than 100 pg of viral DNA was detected in the dot-blot assays. More data will be presented to compare the efficiency and reliability of these two techniques in detecting early virus activity in the rice plant. (author)

  18. Viruses in Marine Animals: Discovery, Detection, and Characterization

    Fahsbender, Elizabeth

    Diseases in marine animals are emerging at an increasing rate. Disease forecasting enabled by virus surveillance presents a proactive solution for managing emerging diseases. Broad viral surveys aid in disease forecasting by providing baseline data on viral diversity associated with various hosts, including many that are not associated with disease. However, these viruses can become pathogens due to expansion in host or geographic range, as well as when changing conditions shift the balance between commensal viruses and the host immune system. Therefore, it is extremely valuable to identify and characterize viruses present in many different hosts in a variety of environments, regardless of whether the hosts are symptomatic or not. The lack of a universal gene shared by all viruses makes virus surveillance difficult, because no single assay exists that can detect the enormous diversity of viruses. Viral metagenomics circumvents this issue by purifying viral particles directly from host tissues and sequencing the nucleic acids, allowing for virus identification. However, virus identification is only the first step, which should ideally be followed by complete sequencing of the viral genome to identify genes of interest and develop assays to reveal viral prevalence, tropism, ecology, and pathogenicity. This dissertation focuses on the discovery of novel viruses in marine animals, characterization of complete viral genomes, and the development of subsequent diagnostic assays for further analysis of virus ecology. First, viral metagenomics was used to explore the viruses present in the healthy Weddell seal (Leptonychotes weddellii) population in Antarctica, which led to the discovery of highly prevalent small, circular single-stranded DNA (ssDNA) viruses. The lack of knowledge regarding the viruses of Antarctic wildlife warrants this study to determine baseline viral communities in healthy animals that can be used to survey changes over time. From the healthy Weddell

  19. Unraveling the web of viroinformatics: computational tools and databases in virus research.

    Sharma, Deepak; Priyadarshini, Pragya; Vrati, Sudhanshu

    2015-02-01

    The beginning of the second century of research in the field of virology (the first virus was discovered in 1898) was marked by its amalgamation with bioinformatics, resulting in the birth of a new domain--viroinformatics. The availability of more than 100 Web servers and databases embracing all or specific viruses (for example, dengue virus, influenza virus, hepatitis virus, human immunodeficiency virus [HIV], hemorrhagic fever virus [HFV], human papillomavirus [HPV], West Nile virus, etc.) as well as distinct applications (comparative/diversity analysis, viral recombination, small interfering RNA [siRNA]/short hairpin RNA [shRNA]/microRNA [miRNA] studies, RNA folding, protein-protein interaction, structural analysis, and phylotyping and genotyping) will definitely aid the development of effective drugs and vaccines. However, information about their access and utility is not available at any single source or on any single platform. Therefore, a compendium of various computational tools and resources dedicated specifically to virology is presented in this article. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Spliced RNA of woodchuck hepatitis virus.

    Ogston, C W; Razman, D G

    1992-07-01

    Polymerase chain reaction was used to investigate RNA splicing in liver of woodchucks infected with woodchuck hepatitis virus (WHV). Two spliced species were detected, and the splice junctions were sequenced. The larger spliced RNA has an intron of 1300 nucleotides, and the smaller spliced sequence shows an additional downstream intron of 1104 nucleotides. We did not detect singly spliced sequences from which the smaller intron alone was removed. Control experiments showed that spliced sequences are present in both RNA and DNA in infected liver, showing that the viral reverse transcriptase can use spliced RNA as template. Spliced sequences were detected also in virion DNA prepared from serum. The upstream intron produces a reading frame that fuses the core to the polymerase polypeptide, while the downstream intron causes an inframe deletion in the polymerase open reading frame. Whereas the splicing patterns in WHV are superficially similar to those reported recently in hepatitis B virus, we detected no obvious homology in the coding capacity of spliced RNAs from these two viruses.

  1. Coinfections of Sudanese dairy cattle with bovine herpes virus 1, bovine viral diarrhea virus, bluetongue virus and bovine herpes virus 4 and their relation to reproductive disorders

    Amira M. Elhassan

    2016-12-01

    Reults: The meta-analysis of the data indicated high seroprevalence of coinfections with various combinations of these agents; only few animals were singly infected. An infection with BHV-1 was observed to be higher than the prevalence of associations between BHV-1 and the other three viral agents. Prevalence of seropositivities to coinfection with BHV-1/BTV; BHV-1/BVD; BHV-1/BTV/BVD were the highest while seropositivities prevalences that involved BHV-4 were much lower. The highest abortion rates were encountered in coinfections with BHV-1/BVD/BTV (31% and BHV-1/BVD/BTV/BHV-4 (30% while most infertility cases were noticed in coinfection with BHV-1/BVD/BTV (44% and BHV-1/BVD/BTV/BHV-4 (21%, and coinfections with the four viruses were encountered in most of the death after birth cases (25%. Overall mixed infections with BHV-1/BVD/BTV (34% and BHV-1/BVD/BTV/BHV-4 (22.5% were involved in the majority of reproductive problems studied. Conclusion: Mixed infections constitutes the vast majority of cases and are involved in the majority of reproductive disorders investigated. The high prevalence of seropositivity to all of the four viruses should call for an intervention strategy to reduce the impact of these viruses. [J Adv Vet Anim Res 2016; 3(4.000: 332-337

  2. Microscale memory characteristics of virus-quantum dot hybrids

    Portney, Nathaniel G.; Tseng, Ricky J.; Destito, Giuseppe; Strable, Erica; Yang, Yang; Manchester, Marianne; Finn, M. G.; Ozkan, Mihrimah

    2007-05-01

    An electrical multi stability effect was observed for a single layer device fabricated, comprising a hybrid virus-semiconducting quantum dot (CdSe /ZnS core/shell Qds) assembled onto icosahedral-mutant-virus template (CPMV-T184C). A substrate based bottom-up pathway was used to conjugate two different color emitting Qds for fluorescence visualization and to insert a charging/decharging factor. Pulsed wave measurements depicted distinct conductive states with repeatable and nonvolatile behavior as a functioning memory element.

  3. Efficacy of Vesicular Stomatitis Virus-Ebola Virus Postexposure Treatment in Rhesus Macaques Infected With Ebola Virus Makona.

    Marzi, Andrea; Hanley, Patrick W; Haddock, Elaine; Martellaro, Cynthia; Kobinger, Gary; Feldmann, Heinz

    2016-10-15

    The Ebola virus (EBOV) epidemic in West Africa increased the focus on vaccine development against this hemorrhagic fever-causing pathogen, and as a consequence human clinical trials for a few selected platforms were accelerated. One of these vaccines is vesicular stomatitis virus (VSV)-EBOV, also known as rVSV-ZEBOV, a fast-acting vaccine against EBOV and so far the only vaccine with reported efficacy against EBOV infections in humans in phase III clinical trials. In this study, we analyzed the potential of VSV-EBOV for postexposure treatment of rhesus macaques infected with EBOV-Makona. We treated groups of animals with 1 dose of VSV-EBOV either in a single injection at 1 or 24 hours after EBOV exposure or with 2 injections, half the dose at each time point; 1 control group received the same dose of the VSV-based Marburg virus vaccine at both time points; another group remained untreated. Although all untreated animals succumbed to EBOV infection, 33%-67% of the animals in each treatment group survived the infection, including the group treated with the VSV-based Marburg virus vaccine. This result suggests that protection from postexposure vaccination may be antigen unspecific and due rather to an early activation of the innate immune system. In conclusion, VSV-EBOV remains a potent and fast-acting prophylactic vaccine but demonstrates only limited efficacy in postexposure treatment. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. METODE PENAPISAN CABAI (CAPSICUM ANNUUM L. UNTUK KETAHANAN TERHADAP CHILLI VEINAL MOTTLE VIRUS (Chi VMV DAN CUCUMBER MOSAIC VIRUS (CMV

    Latifah, Sri Hendrastuti Hidayat, dan Sriani Sujiprihati .

    2011-11-01

    Full Text Available Screening Method for Chilli Veinal Mottle Virus  (Chi VMV and Cucumber Mosaic Virus  (CMV Resistance in Chillipepper.  ChiVMV and CMV have been reported as the causal agents of main diseases in chillipepper in Indonesia and other Asian countries.  Mix infection of this two viruses was commonly occurred in the field, causing severe disease .  The use of resistance varieties has been proposed for dealing with the yield losses causing by  the viruses.  Breeding program is undergoing for development of chillipepper varieties resistant to ChiVMV and CMV.  Methodology for routine screening activity of chillipepper for resistance to both ChiVMV and CMV needs to be established. This research was conducted in Cikabayan Glass House and Plant Virology Laboratory, Plant Protection Department, Bogor Agricultural University from May 2006 to June 2007. Aim of the research was to develop screening method for simultaneous infection by the two viruses, ChiVMV and CMV.  Inoculation of ChiVMV and CMV was done by single inoculation or repetitive inoculation methods.  In both methods, ChiVMV and CMV were inoculated in different sequences, either ChiVMV or CMV first.  The result showed that incubation period was shorter when CMV was inoculated in advance both in single and repetitive inoculation method.  Mosaic, mottle and malformation type symptom was observed in infected plants. Based on disease incidence, infection of ChiVMV was higher compared to CMV in repetitive inoculation as well as in single inoculation.  Repetitive inoculation methods with virus sequence ChiVMV-CMV-ChiVMV-CMV  was selected for resistance evaluation of chillipepper genotypes.

  5. Interrogating Host-virus Interactions and Elemental Transfer Using NanoSIMS

    Pasulka, A.; Thamatrakoln, K.; Poulos, B.; Bidle, K. D.; Sullivan, M. B.; Orphan, V. J.

    2016-02-01

    Marine viruses (bacteriophage and eukaryotic viruses) impact microbial food webs by influencing microbial community structure, carbon and nutrient flow, and serving as agents of gene transfer. While the collective impact of viral activity has become more apparent over the last decade, there is a growing need for single-cell and single-virus level measurements of the associated carbon and nitrogen transfer, which ultimately shape the biogeochemical impact of viruses in the upper ocean. Stable isotopes have been used extensively for understanding trophic relationships and elemental cycling in marine food webs. While single-cell isotope approaches such as nanoscale secondary ion mass spectrometry (nanoSIMS) have been more readily used to study trophic interactions between microorganisms, isotopic enrichment in viruses has not been described. Here we used nanoSIMS to quantify the transfer of stable isotopes (13C and 15N) from host to individual viral particles in two distinct unicellular algal-virus model systems. These model systems represent a eukaryotic phytoplankton (Emiliania huxleyi strain CCMP374) and its 200nm coccolithovirus (EhV207), as well as a cyanobacterial phytoplankton (Synechococcus WH8101) and its 80nm virus (Syn1). Host cells were grown on labeled media for multiple generations, subjected to viral infection, and then viruses were harvested after lysis. In both cases, nanoSIMS measurements were able to detect 13C and 15N in the resulting viral particles significantly above the background noise. The isotopic enrichment in the viral particles mirrored that of the host. Through use of these laboratory model systems, we quantified the sensitivity (ion counts), spatial resolution, and reproducibility, including sources of methodological and biological variability, in stable isotope incorporation into viral particles. Our findings suggest that nanoSIMS can be successfully employed to directly probe virus-host interactions at the resolution of individual

  6. Avian influenza viruses in humans.

    Malik Peiris, J S

    2009-04-01

    Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.

  7. Detection of selected plant viruses by microarrays

    HRABÁKOVÁ, Lenka

    2013-01-01

    The main aim of this master thesis was the simultaneous detection of four selected plant viruses ? Apple mosaic virus, Plum pox virus, Prunus necrotic ringspot virus and Prune harf virus, by microarrays. The intermediate step in the process of the detection was optimizing of multiplex polymerase chain reaction (PCR).

  8. Foot-and-Mouth Disease Virus 2C Is a Hexameric AAA+ Protein with a Coordinated ATP Hydrolysis Mechanism

    Sweeney, Trevor; Cisnetto, Valentina; Bose, Daniel

    2010-01-01

    Foot-and-mouth disease virus (FMDV), a positive sense, single-stranded RNA virus, causes a highly contagious disease in cloven-hoofed livestock. Like other picornaviruses, FMDV has a conserved 2C protein assigned to the superfamily 3 helicases a group of AAA+ ATPases that has a predicted N-termin...

  9. Next Generation Sequencing of Elite Berry Germplasm and Data Analysis Using a Bioinformatics Pipeline for Virus Detection and Discovery

    Berry crops (members of the genera Fragaria, Ribes, Rubus, Sambucus and Vaccinium) are known hosts for more than 70 viruses and new ones are identified continually. In modern berry cultivars, viruses tend to be be asymptomatic in single infections and symptoms only develop after plants accumulate m...

  10. Next-Generation Sequencing of Elite Berry Germplasm and Data Analysis Using a Bioinformatics Pipeline for Virus Detection and Discovery

    Berry crops (members of the genera Fragaria, Ribes, Rubus, Sambucus and Vaccinium) are known hosts for more than 70 viruses and new ones are identified frequently. In modern berry cultivars, viruses tend to be asymptomatic in single infections and symptoms only develop after plants accumulate multip...

  11. Mixed-genotype white spot syndrome virus infections of shrimp are inversely correlated with disease outbreaks in ponds

    Tuyet Hoa, T.T.; Zwart, M.P.; Phuong, N.T.; Oanh, D.T.H.; Jong, de M.C.M.; Vlak, J.M.

    2011-01-01

    Outbreaks of white spot syndrome virus (WSSV) in shrimp culture and its relation to virus virulence are not well understood. Here we provide evidence that the presence of WSSV mixed-genotype infections correlate with lower outbreak incidence and that disease outbreaks correlate with single-genotype

  12. Increased hepatitis E virus seroprevalence correlates with lower CD4+ cell counts in HIV-infected persons in Argentina

    J.D. Debes; Martínez Wassaf, M. (Maribel); Pisano, M.B. (María Belén); Isa, M.B. (María Beatriz); Lotto, M. (Martin); Marianelli, L.G. (Leonardo G.); Frassone, N. (Natalia); Ballari, E. (Estefania); Bohjanen, P.R. (Paul R.); B.E. Hansen (Bettina); Ré, V. (Viviana)

    2016-01-01

    textabstractHepatitis E virus (HEV) is a single-stranded RNA virus that can cause hepatitis in an epidemic fashion. HEV usually causes asymptomatic or limited acute infections in immunocompetent individuals, whereas in immunosuppressed individuals such as transplant recipients, HEV can cause chronic

  13. Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment

    Blank, Thomas; Detje, Claudia N.; Spiess, Alena; Hagemeyer, Nora; Brendecke, Stefanie M.; Wolfart, Jakob; Staszewski, Ori; Zoeller, Tanja; Papageorgiou, Ismini; Schneider, Justus; Paricio-Montesinos, Ricardo; Eisel, Ulrich L. M.; Manahan-Vaughan, Denise; Jansen, Stephan; Lienenklaus, Stefan; Lu, Bao; Imai, Yumiko; Mueller, Marcus; Goelz, Susan E.; Baker, Darren P.; Schwaninger, Markus; Kann, Oliver; Heikenwalder, Mathias; Kalinke, Ulrich; Prinz, Marco

    2016-01-01

    Sickness behavior and cognitive dysfunction occur frequently by unknown mechanisms in virus-infected individuals with malignancies treated with type I interferons (IFNs) and in patients with autoimmune disorders. We found that during sickness behavior, single-stranded RNA viruses, double-stranded

  14. Virus-host interaction in feline immunodeficiency virus (FIV) infection.

    Taniwaki, Sueli Akemi; Figueiredo, Andreza Soriano; Araujo, João Pessoa

    2013-12-01

    Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by Scanning Electron Microscopy

    Hartsuiker, Liesbeth; van Es, Peter; Petersen, Wilhelmina; van Leeuwen, Ton; Terstappen, Leonardus Wendelinus Mathias Marie; Otto, Cornelis

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  16. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy

    Hartsuiker, L.; van Es, P.; Petersen, W.; van Leeuwen, T. G.; Terstappen, L. W. M. M.; Otto, C.

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  17. Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro

    Meyer Adam G

    2009-11-01

    Full Text Available Abstract Background Using a recently described monolayer assay amenable to high throughput screening format for the identification of potential Nipah virus and Hendra virus antivirals, we have partially screened a low molecular weight compound library (>8,000 compounds directly against live virus infection and identified twenty eight promising lead molecules. Initial single blind screens were conducted with 10 μM compound in triplicate with a minimum efficacy of 90% required for lead selection. Lead compounds were then further characterised to determine the median efficacy (IC50, cytotoxicity (CC50 and the in vitro therapeutic index in live virus and pseudotype assay formats. Results While a number of leads were identified, the current work describes three commercially available compounds: brilliant green, gentian violet and gliotoxin, identified as having potent antiviral activity against Nipah and Hendra virus. Similar efficacy was observed against pseudotyped Nipah and Hendra virus, vesicular stomatitis virus and human parainfluenza virus type 3 while only gliotoxin inhibited an influenza A virus suggesting a non-specific, broad spectrum activity for this compound. Conclusion All three of these compounds have been used previously for various aspects of anti-bacterial and anti-fungal therapy and the current results suggest that while unsuitable for internal administration, they may be amenable to topical antiviral applications, or as disinfectants and provide excellent positive controls for future studies.

  18. Structure of the Triatoma virus capsid

    Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S.; Costabel, Marcelo D.; Marti, Gerardo A.; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M. A.; Rey, Felix A.

    2013-01-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed

  19. Structure of the Triatoma virus capsid

    Squires, Gaëlle; Pous, Joan [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Agirre, Jon [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rozas-Dennis, Gabriela S. [U.N.S., San Juan 670 (8000) Bahía Blanca (Argentina); U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Costabel, Marcelo D. [U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Marti, Gerardo A. [Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT, La Plata, CONICET-UNLP), Calle 2 No. 584 (1900) La Plata (Argentina); Navaza, Jorge; Bressanelli, Stéphane [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Guérin, Diego M. A., E-mail: diego.guerin@ehu.es [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rey, Felix A., E-mail: diego.guerin@ehu.es [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France)

    2013-06-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  20. Effect of the deletion of genes encoding proteins of the extracellular virion form of vaccinia virus on vaccine immunogenicity and protective effectiveness in the mouse model.

    Clement A Meseda

    Full Text Available Antibodies to both infectious forms of vaccinia virus, the mature virion (MV and the enveloped virion (EV, as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model.