WorldWideScience

Sample records for single tumor cells

  1. Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Erica L Carpenter

    2014-07-01

    Full Text Available Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells. Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control white blood cells. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples from patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients.

  2. Advances of Single-Cell Sequencing Technique in Tumors

    Directory of Open Access Journals (Sweden)

    Ji-feng FENG

    2017-03-01

    Full Text Available With the completion of human genome project (HGP and the international HapMap project as well as rapid development of high-throughput biochip technology, whole genomic sequencing-targeted analysis of genomic structures has been primarily finished. Application of single cell for the analysis of the whole genomics is not only economical in material collection, but more importantly, the cell will be more purified, and the laboratory results will be more accurate and reliable. Therefore, exploration and analysis of hereditary information of single tumor cells has become the dream of all researchers in the field of basic research of tumors. At present, single-cell sequencing (SCS on malignancies has been widely used in the studies of pathogeneses of multiple malignancies, such as glioma, renal cancer and hematologic neoplasms, and in the studies of the metastatic mechanism of breast cancer by some researchers. This study mainly reviewed the SCS, the mechanisms and the methods of SCS in isolating tumor cells, and application of SCS technique in tumor-related basic research and clinical treatment.

  3. Single cells from human primary colorectal tumors exhibit polyfunctional heterogeneity in secretions of ELR+ CXC chemokines.

    Science.gov (United States)

    Adalsteinsson, Viktor A; Tahirova, Narmin; Tallapragada, Naren; Yao, Xiaosai; Campion, Liam; Angelini, Alessandro; Douce, Thomas B; Huang, Cindy; Bowman, Brittany; Williamson, Christina A; Kwon, Douglas S; Wittrup, K Dane; Love, J Christopher

    2013-10-01

    Cancer is an inflammatory disease of tissue that is largely influenced by the interactions between multiple cell types, secreted factors, and signal transduction pathways. While single-cell sequencing continues to refine our understanding of the clonotypic heterogeneity within tumors, the complex interplay between genetic variations and non-genetic factors ultimately affects therapeutic outcome. Much has been learned through bulk studies of secreted factors in the tumor microenvironment, but the secretory behavior of single cells has been largely uncharacterized. Here we directly profiled the secretions of ELR+ CXC chemokines from thousands of single colorectal tumor and stromal cells, using an array of subnanoliter wells and a technique called microengraving to characterize both the rates of secretion of several factors at once and the numbers of cells secreting each chemokine. The ELR+ CXC chemokines are highly redundant, pro-angiogenic cytokines that signal via the CXCR1 and CXCR2 receptors, influencing tumor growth and progression. We find that human primary colorectal tumor and stromal cells exhibit polyfunctional heterogeneity in the combinations and magnitudes of secretions for these chemokines. In cell lines, we observe similar variance: phenotypes observed in bulk can be largely absent among the majority of single cells, and discordances exist between secretory states measured and gene expression for these chemokines among single cells. Together, these measures suggest secretory states among tumor cells are complex and can evolve dynamically. Most importantly, this study reveals new insight into the intratumoral phenotypic heterogeneity of human primary tumors.

  4. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors.

    Science.gov (United States)

    Mitra, A K; Mukherjee, U K; Harding, T; Jang, J S; Stessman, H; Li, Y; Abyzov, A; Jen, J; Kumar, S; Rajkumar, V; Van Ness, B

    2016-05-01

    Multiple myeloma (MM) is characterized by significant genetic diversity at subclonal levels that have a defining role in the heterogeneity of tumor progression, clinical aggressiveness and drug sensitivity. Although genome profiling studies have demonstrated heterogeneity in subclonal architecture that may ultimately lead to relapse, a gene expression-based prediction program that can identify, distinguish and quantify drug response in sub-populations within a bulk population of myeloma cells is lacking. In this study, we performed targeted transcriptome analysis on 528 pre-treatment single cells from 11 myeloma cell lines and 418 single cells from 8 drug-naïve MM patients, followed by intensive bioinformatics and statistical analysis for prediction of proteasome inhibitor sensitivity in individual cells. Using our previously reported drug response gene expression profile signature at the single-cell level, we developed an R Statistical analysis package available at https://github.com/bvnlabSCATTome, SCATTome (single-cell analysis of targeted transcriptome), that restructures the data obtained from Fluidigm single-cell quantitative real-time-PCR analysis run, filters missing data, performs scaling of filtered data, builds classification models and predicts drug response of individual cells based on targeted transcriptome using an assortment of machine learning methods. Application of SCATT should contribute to clinically relevant analysis of intratumor heterogeneity, and better inform drug choices based on subclonal cellular responses.

  5. Radiosensitivity evaluation of Human tumor cell lines by single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Zhang Yipei; Cao Jia; Wang Yan; Du Liqing; Li Jin; Wang Qin; Fan Feiyue; Liu Qiang

    2011-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using single cell gel electrophoresis (SCGE). Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction (SF) and DNA damage were detected by MTT assay, nested PCR technique and comet assay respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4 and 8 Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. SCGE: The difference of radiosensitivity among these three tumor cell lines was significant after 8 Gy γ-ray irradiation. Conclusion: The multi-utilization of many biological parameter is hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  6. Identification of tumor associated single-chain Fv by panning and screening antibody phage library using tumor cells

    Science.gov (United States)

    Nie, Yong-Zhan; He, Feng-Tian; Li, Zhi-Kui; Wu, Kai-Chun; Cao, Yun-Xin; Chen, Bao-Jun; Fan, Dai-Ming

    2002-01-01

    AIM: To study the feasibility of panning and screening phage-displaying recombinant single-chain variable fragment (ScFv) of anti-tumor monoclonal antibodies for fixed whole cells as the carriers of mAb-binding antigens. METHODS: The recombinant phage displaying libraries for anti-colorectal tumor mAb MC3Ab, MC5Ab and anti-gastric tumor mAb MGD1 was constructed. Panning and screening were carried out by means of modified fixation of colorectal and gastric tumor cells expressed the mAb-binding antigens. Concordance of binding specificity to tumor cells between phage clones and parent antibodies was analyzed. The phage of positive clones was identified with competitive ELISA, and infected by E. coli HB2151 to express soluble ScFv. RESULTS: The ratio of positive clones to MC3-ScF-MC5-ScFv and MGD1-ScFv were 60%, 24% and 30%. MC3-ScFv had Mr 32000 confirmed by Western blot. The specificity to antigen had no difference between 4 positive recombinant phage antibodies and MC3Ab. CONCLUSION: The modified process of fixing whole tumor cells is efficient, convenient and feasible to pan and screen the phage-displaying ScFv of anti-tumor monoclonal antibodies. PMID:12174367

  7. Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, Subhash; Parker, Dylan J.; Barth, Rolf F.; Pannullo, Susan C.

    2016-01-01

    Glioblastoma multiforme (GBM) is one of the deadliest forms of human brain tumors. The infiltrative pattern of growth of these tumors includes the spread of individual and/or clusters of tumor cells at some distance from the main tumor mass in parts of the brain protected by an intact blood-brain-barrier. Pathophysiological studies of GBM could be greatly enhanced by analytical techniques capable of in situ single-cell resolution measurements of infiltrating tumor cells. Magnesium homeostasis is an area of active investigation in high grade gliomas. In the present study, we have used the F98 rat glioma as a model of human GBM and an elemental/isotopic imaging technique of secondary ion mass spectrometry (SIMS), a CAMECA IMS-3f ion microscope, for studying Mg distributions with single-cell resolution in freeze-dried brain tissue cryosections. Quantitative observations were made on tumor cells in the main tumor mass, contiguous brain tissue, and infiltrating tumor cells in adjacent normal brain. The brain tissue contained a significantly lower total Mg concentration of 4.70 ± 0.93 mmol/Kg wet weight (mean ± SD) in comparison to 11.64 ± 1.96 mmol/Kg wet weight in tumor cells of the main tumor mass and 10.72 ± 1.76 mmol/Kg wet weight in infiltrating tumor cells (p<0.05). The nucleus of individual tumor cells contained elevated levels of bound Mg. These observations demonstrate enhanced Mg-influx and increased binding of Mg in tumor cells and provide strong support for further investigation of GBMs for altered Mg homeostasis and activation of Mg-transporting channels as possible therapeutic targets. PMID:26703785

  8. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Che K

    2017-02-01

    Full Text Available Keying Che,1,* Yang Zhao,2,3,* Xiao Qu,1 Zhaofei Pang,1 Yang Ni,4 Tiehong Zhang,4 Jiajun Du,1,5 Hongchang Shen4 1Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 2Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 4Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 5Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Purpose: Gastric carcinoma (GC is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma.Materials and methods: Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS was statistically analyzed.Results: Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145 of them. Single cell invasion and large cell invasion were observed in 62.8% (186 and 16.9% (50 of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, P<0

  9. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Directory of Open Access Journals (Sweden)

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  10. Pancreatic islet cell tumor

    Science.gov (United States)

    ... cell tumors; Islet of Langerhans tumor; Neuroendocrine tumors; Peptic ulcer - islet cell tumor; Hypoglycemia - islet cell tumor ... stomach acid. Symptoms may include: Abdominal pain Diarrhea ... and small bowel Vomiting blood (occasionally) Glucagonomas make ...

  11. The effects of single-walled carbon nanotubes on cancer cell migration using a pancreatic tumor model

    Science.gov (United States)

    Layton, Elivia; McNamar, Rachel; Hasanjee, Aamr M.; McNair, Cayman; Stevens, Brianna; Vaughan, Melville; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Non-invasive laser immunotherapy (NLIT) is a viable alternative to traditional cancer treatment because it combines the photothermal and immunological effects of non-invasive laser irradiation and single-walled carbon nanotubes (SWNT) with an immunoadjuvant, glycated chitosan (GC). This combination forms SWNT-GC, a photosensitive immunoadjuvant, which creates a tumor-specific immunity that targets both the primary tumor and any metastasis. It is known that NLIT induces anti-tumor as well as anti-metastatic immune responses, but its immunological mechanism is not clear. The objective of this study is to clarify the role of SWNT-GC in cancer cell migration. Panc02 (non-metastatic) and Panc02-H7 (metastatic) pancreatic cancer cells were used in two-dimensional elastomer plug assays to observe the restriction of cell migration induced by SWNT, GC, and SWNT-GC individually. To replicate a three-dimensional in vivo study, a similar assay was repeated using embedded collagen lattices. Both the 2D and the 3D studies confirmed previous results indicating that GC inhibits cancer cell motility. The 2D and 3D studies also showed that SWNT-GC inhibited the migration of cancer cells, but a discrepancy was observed regarding the effect of SWNT alone. The 2D model concluded that SWNT inhibited migration while the 3D model determined that SWNT promoted migration. The results of this study will guide future work to determine the mechanism behind NLIT, including how metastases are eradicated and how the tumor specific immunity is created.

  12. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data.

    Science.gov (United States)

    Fan, Jean; Lee, Hae-Ock; Lee, Soohyun; Ryu, Da-Eun; Lee, Semin; Xue, Catherine; Kim, Seok Jin; Kim, Kihyun; Barkas, Nikolas; Park, Peter J; Park, Woong-Yang; Kharchenko, Peter V

    2018-06-13

    Characterization of intratumoral heterogeneity is critical to cancer therapy, as presence of phenotypically diverse cell populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intratumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the relative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised a computational approach called HoneyBADGER to identify copy number variation and loss-of-heterozygosity in individual cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct underlying subclonal architecture. Examining several tumor types, we show that HoneyBADGER is effective at identifying deletion, amplifications, and copy-neutral loss-of-heterozygosity events, and is capable of robustly identifying subclonal focal alterations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple myeloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer progression. Surprisingly, other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal structure, and were likely driven by alternative, non-clonal mechanisms. These results highlight the need for integrative analysis to understand the molecular and phenotypic heterogeneity in cancer. Published by Cold Spring Harbor Laboratory Press.

  13. Improved Tumor Penetration and Single-Cell Targeting of Antibody-Drug Conjugates Increases Anticancer Efficacy and Host Survival.

    Science.gov (United States)

    Cilliers, Cornelius; Menezes, Bruna; Nessler, Ian; Linderman, Jennifer; Thurber, Greg M

    2018-02-01

    Current antibody-drug conjugates (ADC) have made advances in engineering the antibody, linker, conjugation site, small-molecule payload, and drug-to-antibody ratio (DAR). However, the relationship between heterogeneous intratumoral distribution and efficacy of ADCs is poorly understood. Here, we compared trastuzumab and ado-trastuzumab emtansine (T-DM1) to study the impact of ADC tumor distribution on efficacy. In a mouse xenograft model insensitive to trastuzumab, coadministration of trastuzumab with a fixed dose of T-DM1 at 3:1 and 8:1 ratios dramatically improved ADC tumor penetration and resulted in twice the improvement in median survival compared with T-DM1 alone. In this setting, the effective DAR was lowered, decreasing the amount of payload delivered to each targeted cell but increasing the number of cells that received payload. This result is counterintuitive because trastuzumab acts as an antagonist in vitro and has no single-agent efficacy in vivo , yet improves the effectiveness of T-DM1 in vivo Novel dual-channel fluorescence ratios quantified single-cell ADC uptake and metabolism and confirmed that the in vivo cellular dose of T-DM1 alone exceeded the minimum required for efficacy in this model. In addition, this technique characterized cellular pharmacokinetics with heterogeneous delivery after 1 day, degradation and payload release by 2 days, and in vitro cell killing and in vivo tumor shrinkage 2 to 3 days later. This work demonstrates that the intratumoral distribution of ADC, independent of payload dose or plasma clearance, plays a major role in ADC efficacy. Significance: This study shows how lowering the drug-to-antibody ratio during treatment can improve the intratumoral distribution of a antibody-drug conjugate, with implications for improving the efficacy of this class of cancer drugs. Cancer Res; 78(3); 758-68. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression.

    Science.gov (United States)

    Wang, Lixin; Brugge, Joan S; Janes, Kevin A

    2011-10-04

    Gene expression networks are complicated by the assortment of regulatory factors that bind DNA and modulate transcription combinatorially. Single-cell measurements can reveal biological mechanisms hidden by population averages, but their value has not been fully explored in the context of mRNA regulation. Here, we adapted a single-cell expression profiling technique to examine the gene expression program downstream of Forkhead box O (FOXO) transcription factors during 3D breast epithelial acinar morphogenesis. By analyzing patterns of mRNA fluctuations among individual matrix-attached epithelial cells, we found that a subset of FOXO target genes was jointly regulated by the transcription factor Runt-related transcription factor 1 (RUNX1). Knockdown of RUNX1 causes hyperproliferation and abnormal morphogenesis, both of which require normal FOXO function. Down-regulating RUNX1 and FOXOs simultaneously causes widespread oxidative stress, which arrests proliferation and restores normal acinar morphology. In hormone-negative breast cancers lacking human epidermal growth factor receptor 2 (HER2) amplification, we find that RUNX1 down-regulation is strongly associated with up-regulation of FOXO1, which may be required to support growth of RUNX1-negative tumors. The coordinate function of these two tumor suppressors may provide a failsafe mechanism that inhibits cancer progression.

  15. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    1986-01-01

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author) [pt

  16. Single Cell Oncogenesis

    Science.gov (United States)

    Lu, Xin

    It is believed that cancer originates from a single cell that has gone through generations of evolution of genetic and epigenetic changes that associate with the hallmarks of cancer. In some cancers such as various types of leukemia, cancer is clonal. Yet in other cancers like glioblastoma (GBM), there is tremendous tumor heterogeneity that is likely to be caused by simultaneous evolution of multiple subclones within the same tissue. It is obvious that understanding how a single cell develops into a clonal tumor upon genetic alterations, at molecular and cellular levels, holds the key to the real appreciation of tumor etiology and ultimate solution for therapeutics. Surprisingly very little is known about the process of spontaneous tumorigenesis from single cells in human or vertebrate animal models. The main reason is the lack of technology to track the natural process of single cell changes from a homeostatic state to a progressively cancerous state. Recently, we developed a patented compound, photoactivatable (''caged'') tamoxifen analogue 4-OHC and associated technique called optochemogenetic switch (OCG switch), which we believe opens the opportunity to address this urgent biological as well as clinical question about cancer. We propose to combine OCG switch with genetically engineered mouse models of head and neck squamous cell carcinoma and high grade astrocytoma (including GBM) to study how single cells, when transformed through acute loss of tumor suppressor genes PTEN and TP53 and gain of oncogenic KRAS, can develop into tumor colonies with cellular and molecular heterogeneity in these tissues. The abstract is for my invited talk in session ``Beyond Darwin: Evolution in Single Cells'' 3/18/2016 11:15 AM.

  17. Tumor cell surface proteins

    International Nuclear Information System (INIS)

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  18. The Viability of Single Cancer Cells after Exposure to Hydrodynamic Shear Stresses in a Spiral Microchannel: A Canine Cutaneous Mast Cell Tumor Model

    Directory of Open Access Journals (Sweden)

    Dettachai Ketpun

    2017-12-01

    Full Text Available Our laboratory has the fundamental responsibility to study cancer stem cells (CSC in various models of human and animal neoplasms. However, the major impediments that spike our accomplishment are the lack of universal biomarkers and cellular heterogeneity. To cope with these restrictions, we have tried to apply the concept of single cell analysis, which has hitherto been recommended throughout the world as an imperative solution pack for resolving such dilemmas. Accordingly, our first step was to utilize a predesigned spiral microchannel fabricated by our laboratory to perform size-based single cell separation using mast cell tumor (MCT cells as a model. However, the impact of hydrodynamic shear stresses (HSS on mechanical cell injury and viability in a spiral microchannel has not been fully investigated so far. Intuitively, our computational fluid dynamics (CFD simulation has strongly revealed the formations of fluid shear stress (FSS and extensional fluid stress (EFS in the sorting system. The panel of biomedical assays has also disclosed cell degeneration and necrosis in the model. Therefore, we have herein reported the combinatorically detrimental effect of FSS and EFS on the viability of MCT cells after sorting in our spiral microchannel, with discussion on the possibly pathogenic mechanisms of HSS-induced cell injury in the study model.

  19. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining

    International Nuclear Information System (INIS)

    Campton, Daniel E; Ramirez, Arturo B; Nordberg, Joshua J; Drovetto, Nick; Clein, Alisa C; Varshavskaya, Paulina; Friemel, Barry H; Quarre, Steve; Breman, Amy; Dorschner, Michael; Blau, Sibel; Blau, C Anthony; Sabath, Daniel E; Stilwell, Jackie L; Kaldjian, Eric P

    2015-01-01

    Circulating tumor cells (CTCs) are malignant cells that have migrated from solid cancers into the blood, where they are typically present in rare numbers. There is great interest in using CTCs to monitor response to therapies, to identify clinically actionable biomarkers, and to provide a non-invasive window on the molecular state of a tumor. Here we characterize the performance of the AccuCyte® – CyteFinder® system, a comprehensive, reproducible and highly sensitive platform for collecting, identifying and retrieving individual CTCs from microscopic slides for molecular analysis after automated immunofluorescence staining for epithelial markers. All experiments employed a density-based cell separation apparatus (AccuCyte) to separate nucleated cells from the blood and transfer them to microscopic slides. After staining, the slides were imaged using a digital scanning microscope (CyteFinder). Precisely counted model CTCs (mCTCs) from four cancer cell lines were spiked into whole blood to determine recovery rates. Individual mCTCs were removed from slides using a single-cell retrieval device (CytePicker™) for whole genome amplification and subsequent analysis by PCR and Sanger sequencing, whole exome sequencing, or array-based comparative genomic hybridization. Clinical CTCs were evaluated in blood samples from patients with different cancers in comparison with the CellSearch® system. AccuCyte – CyteFinder presented high-resolution images that allowed identification of mCTCs by morphologic and phenotypic features. Spike-in mCTC recoveries were between 90 and 91%. More than 80% of single-digit spike-in mCTCs were identified and even a single cell in 7.5 mL could be found. Analysis of single SKBR3 mCTCs identified presence of a known TP53 mutation by both PCR and whole exome sequencing, and confirmed the reported karyotype of this cell line. Patient sample CTC counts matched or exceeded CellSearch CTC counts in a small feasibility cohort. The AccuCyte

  20. Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics

    NARCIS (Netherlands)

    Orth, James D; Kohler, Rainer H; Foijer, Floris; Sorger, Peter K; Weissleder, Ralph; Mitchison, Timothy J

    2011-01-01

    Cancer relies upon frequent or abnormal cell division, but how the tumor microenvironment affects mitotic processes in vivo remains unclear, largely due to the technical challenges of optical access, spatial resolution, and motion. We developed high-resolution in vivo microscopy methods to visualize

  1. Tumors of germinal cells

    International Nuclear Information System (INIS)

    Plazas, Ricardo; Avila, Andres

    2002-01-01

    The tumors of germinal cells (TGC) are derived neoplasia of the primordial germinal cells that in the life embryonic migrant from the primitive central nervous system until being located in the gonads. Their cause is even unknown and they represent 95% of the testicular tumors. In them, the intention of the treatment is always healing and the diagnostic has improved thanks to the results of the handling multidisciplinary. The paper includes topics like their incidence and prevalence, epidemiology and pathology, clinic and diagnoses among other topics

  2. Allogeneic tumor cell vaccines

    Science.gov (United States)

    Srivatsan, Sanjay; Patel, Jaina M; Bozeman, Erica N; Imasuen, Imade E; He, Sara; Daniels, Danielle; Selvaraj, Periasamy

    2014-01-01

    The high mortality rate associated with cancer and its resistance to conventional treatments such as radiation and chemotherapy has led to the investigation of a variety of anti-cancer immunotherapies. The development of novel immunotherapies has been bolstered by the discovery of tumor-associated antigens (TAAs), through gene sequencing and proteomics. One such immunotherapy employs established allogeneic human cancer cell lines to induce antitumor immunity in patients through TAA presentation. Allogeneic cancer immunotherapies are desirable in a clinical setting due to their ease of production and availability. This review aims to summarize clinical trials of allogeneic tumor immunotherapies in various cancer types. To date, clinical trials have shown limited success due potentially to extensive degrees of inter- and intra-tumoral heterogeneity found among cancer patients. However, these clinical results provide guidance for the rational design and creation of more effective allogeneic tumor immunotherapies for use as monotherapies or in combination with other therapies. PMID:24064957

  3. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  4. RNAi High-Throughput Screening of Single- and Multi-Cell-Type Tumor Spheroids: A Comprehensive Analysis in Two and Three Dimensions.

    Science.gov (United States)

    Fu, Jiaqi; Fernandez, Daniel; Ferrer, Marc; Titus, Steven A; Buehler, Eugen; Lal-Nag, Madhu A

    2017-06-01

    The widespread use of two-dimensional (2D) monolayer cultures for high-throughput screening (HTS) to identify targets in drug discovery has led to attrition in the number of drug targets being validated. Solid tumors are complex, aberrantly growing microenvironments that harness structural components from stroma, nutrients fed through vasculature, and immunosuppressive factors. Increasing evidence of stromally-derived signaling broadens the complexity of our understanding of the tumor microenvironment while stressing the importance of developing better models that reflect these interactions. Three-dimensional (3D) models may be more sensitive to certain gene-silencing events than 2D models because of their components of hypoxia, nutrient gradients, and increased dependence on cell-cell interactions and therefore are more representative of in vivo interactions. Colorectal cancer (CRC) and breast cancer (BC) models composed of epithelial cells only, deemed single-cell-type tumor spheroids (SCTS) and multi-cell-type tumor spheroids (MCTS), containing fibroblasts were developed for RNAi HTS in 384-well microplates with flat-bottom wells for 2D screening and round-bottom, ultra-low-attachment wells for 3D screening. We describe the development of a high-throughput assay platform that can assess physiologically relevant phenotypic differences between screening 2D versus 3D SCTS, 3D SCTS, and MCTS in the context of different cancer subtypes. This assay platform represents a paradigm shift in how we approach drug discovery that can reduce the attrition rate of drugs that enter the clinic.

  5. Identification of Hürthle cell tumor by single-injection, double-phase scintigraphy with technetium-99m-sestamibi.

    Science.gov (United States)

    Vattimo, A; Bertelli, P; Cintorino, M; Burroni, L; Volterrani, D; Vella, A

    1995-05-01

    Early and late (double-phase) scintigraphy with 99mTc-MIBI was used in a comparative study of the scintigraphic aspects of Hürthle cell tumors and other thyroid tumors. Single-injection, dual-phase (15-30 min and 3-4 hr) thyroid scintigraphy with 99mTc-sestamibi (MIBI) was performed on 41 patients who displayed a cold nodule on previous 99mTc scintigraphy. Visual scoring of nodular uptake was done to compare thyroidal and background tracer uptake. In addition, the nodular-to-thyroid (N/T) uptake ratio in the early and late images and the washout rate from the nodule (WON) and thyroidal tissue (WOT) were measured. Cytologic results were obtained for all patients; histopathologic results were obtained for the 20 patients who had surgery. In eight patients (Group A), the nodule displayed intense and persistent uptake of MIBI (N/T = 1.77 +/- 0.46 and 3.20 +/- 1.37; WON = 17.2% +/- 6.3%; WOT = 24.6% +/- 7.5%); histopathology revealed Hürthle cell tumors (two carcinomas and three adenomas) in five surgical patients. In 15 patients (Group B), the nodule displayed intense uptake in the early image with fading activity in the late image (N/T = 1.45 +/- 0.54 and 0.84 +/- 0.30; WON = 30.0% +/- 7.3%; WOT = 24.5% +/- 6.8%); histopathology revealed a colloid nodule (n = 1), papillary carcinoma (n = 4) and follicular carcinoma (n = 5) in 10 surgical patients. In the remaining 18 patients (Group C), the nodule was cold and late images were not acquired. Histopathology revealed colloid nodules (n = 2) and follicular adenoma (n = 3) in five surgical patients. Single-injection, dual-phase MIBI scintigraphy of the thyroid can identify Hürthle cell tumors because these tumors have intense, persistent tracer uptake in contrast to other thyroid tumors.

  6. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Gordon M Cann

    Full Text Available Circulating tumor cells (CTC mediate metastatic spread of many solid tumors and enumeration of CTCs is currently used as a prognostic indicator of survival in metastatic prostate cancer patients. Some evidence suggests that it is possible to derive additional information about tumors from expression analysis of CTCs, but the technical difficulty of isolating and analyzing individual CTCs has limited progress in this area. To assess the ability of a new generation of MagSweeper to isolate intact CTCs for downstream analysis, we performed mRNA-Seq on single CTCs isolated from the blood of patients with metastatic prostate cancer and on single prostate cancer cell line LNCaP cells spiked into the blood of healthy donors. We found that the MagSweeper effectively isolated CTCs with a capture efficiency that matched the CellSearch platform. However, unlike CellSearch, the MagSweeper facilitates isolation of individual live CTCs without contaminating leukocytes. Importantly, mRNA-Seq analysis showed that the MagSweeper isolation process did not have a discernible impact on the transcriptional profile of single LNCaPs isolated from spiked human blood, suggesting that any perturbations caused by the MagSweeper process on the transcriptional signature of isolated cells are modest. Although the RNA from patient CTCs showed signs of significant degradation, consistent with reports of short half-lives and apoptosis amongst CTCs, transcriptional signatures of prostate tissue and of cancer were readily detectable with single CTC mRNA-Seq. These results demonstrate that the MagSweeper provides access to intact CTCs and that these CTCs can potentially supply clinically relevant information.

  7. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer.

    Science.gov (United States)

    Cann, Gordon M; Gulzar, Zulfiqar G; Cooper, Samantha; Li, Robin; Luo, Shujun; Tat, Mai; Stuart, Sarah; Schroth, Gary; Srinivas, Sandhya; Ronaghi, Mostafa; Brooks, James D; Talasaz, Amirali H

    2012-01-01

    Circulating tumor cells (CTC) mediate metastatic spread of many solid tumors and enumeration of CTCs is currently used as a prognostic indicator of survival in metastatic prostate cancer patients. Some evidence suggests that it is possible to derive additional information about tumors from expression analysis of CTCs, but the technical difficulty of isolating and analyzing individual CTCs has limited progress in this area. To assess the ability of a new generation of MagSweeper to isolate intact CTCs for downstream analysis, we performed mRNA-Seq on single CTCs isolated from the blood of patients with metastatic prostate cancer and on single prostate cancer cell line LNCaP cells spiked into the blood of healthy donors. We found that the MagSweeper effectively isolated CTCs with a capture efficiency that matched the CellSearch platform. However, unlike CellSearch, the MagSweeper facilitates isolation of individual live CTCs without contaminating leukocytes. Importantly, mRNA-Seq analysis showed that the MagSweeper isolation process did not have a discernible impact on the transcriptional profile of single LNCaPs isolated from spiked human blood, suggesting that any perturbations caused by the MagSweeper process on the transcriptional signature of isolated cells are modest. Although the RNA from patient CTCs showed signs of significant degradation, consistent with reports of short half-lives and apoptosis amongst CTCs, transcriptional signatures of prostate tissue and of cancer were readily detectable with single CTC mRNA-Seq. These results demonstrate that the MagSweeper provides access to intact CTCs and that these CTCs can potentially supply clinically relevant information.

  8. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells.

    Science.gov (United States)

    Li, Aifen; Xing, Jieyu; Li, Li; Zhou, Changhua; Dong, Bin; He, Ping; Li, Qing; Wang, Zhong

    2016-12-01

    Her2, which is frequently overexpressed in breast cancer, is one of the most studied tumor-associated antigens for cancer therapy. Anti-HER2 monoclonal antibody, trastuzumab, has achieved significant clinical benefits in metastatic breast cancer. In this study, we describe a novel bispecific antibody Her2-S-Fab targeting Her2 by linking a single domain anti-CD16 VHH to the trastuzumab Fab. The Her2-S-Fab antibody can be efficiently expressed and purified from Escherichia coli, and drive potent cancer cell killing in HER2-overexpressing cancer cells. In xenograft model, the Her2-S-Fab suppresses tumor growth in the presence of human immune cells. Our results suggest that the bispecific Her2-S-Fab may provide a valid alternative to Her2 positive cancer therapy.

  9. Misonidazole cytotoxicity in vivo: a comparison of large single doses with smaller doses and extended contact of the drug with tumor cells

    International Nuclear Information System (INIS)

    Conroy, P.J.; Sutherland, R.M.; Passalacqua, W.

    1980-01-01

    Experiments were performed to determine the kinetics and magnitude of misonidazole cytotoxicity in EMT6/Ro tumors using an in vivo-in vitro clonogenicity assay. A comparison was made between the cytotoxic effects of large single doses with smaller doses of misonidazole administered ip and those produced on extended contact of the drug with tumor cells using a continuous iv drug infusion system. After a single ip dose of 1 mg/g, cytotoxicity was maximum at 18 to 24 h; by 72 h the clonogenic cells per tumor had returned to control levels. The maximum cytotoxicity was greater (a decrease of 10 times) if the animals were kept at 37 0 C compared with ambient conditions (a decrease of 4.5 times) where the body temperature would decrease due to the drug. A dose-response curve performed with the animals at 37 0 C showed no significant cytotoxicity at 18 h after single ip doses of 0.5 mg/g or less. Other experiments were carried out at 37 0 C using a drug continuous infusion system. Two profiles were studied: (a) continuous constant rate infusion over 3 days of constant serum and tumor levels of both 100 and 200 μg/ml and (b) continuous variable rate infusion where the maximum serum levels reached 80 or 200 μg/ml after 2 to 4 h and decayed with a half-life of 12 h as in humans. Significant cytotoxicity was obtained under both of these conditions. Maximum cytotoxicity occurred at about 24 h in both types of experiments and amounted to decreases of clonogenic tumor cells of 4.5 and 7 times for 100 and 200 μg/ml, respectively, after constant rate infusion and 2 to 4 times for 80 and 200 μg/ml, respectively, after variable rate infusion. Because of the relatively rapid recovery in the number of clonogenic tumor cells by 72 h, the cytotoxic effects were not reflected as changes in tumor size even when the animals were maintained at 37 0 C

  10. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...

  11. Granulosa cell tumors of the ovary : The clinical value of serum inhibin A and B levels in a large single center cohort

    NARCIS (Netherlands)

    Mom, C. H.; Engelen, M. J. A.; Willemse, P. H. B.; Gietema, J. A.; ten Hoor, K. A.; de Vries, E. G. E.; van der Zee, A. G. J.

    Objectives. In patients with a granulosa cell tumor of the ovary, the value of serum inhibin A and B concentrations for the assessment of disease status was investigated. Methods. In 30 consecutive patients with a stage I-III granulosa cell tumor, inhibin A and B concentrations were measured in pre-

  12. Single and 30 fraction tumor control doses correlate in xenografted tumor models: implications for predictive assays

    International Nuclear Information System (INIS)

    Gerweck, Leo E.; Dubois, Willum; Baumann, Michael; Suit, Herman D.

    1995-01-01

    Purpose/Objective: In a previous publication we reported that laboratory assays of tumor clonogen number, in combination with intrinsic radiosensitivity measured in-vitro, accurately predicted the rank-order of single fraction 50% tumor control doses, in six rodent and xenografted human tumors. In these studies, tumor hypoxia influenced the absolute value of the tumor control doses across tumor types, but not their rank-order. In the present study we hypothesize that determinants of the single fraction tumor control dose, may also strongly influence the fractionaled tumor control doses, and that knowledge of tumor clonogen number and their sensitivity to fractionated irradiation, may be useful for predicting the relative sensitivity of tumors treated by conventional fractionated irradiation. Methods/Materials: Five tumors of human origin were used for these studies. Special care was taken to ensure that all tumor control dose assays were performed over the same time frame, i.e., in-vitro cells of a similar passage were used to initiate tumor sources which were expanded and used in the 3rd or 4th generation. Thirty fraction tumor control doses were performed in air breathing mice, under normal blood flow conditions (two fractions/day). The results of these studies have been previously published. For studies under uniformly (clamp) hypoxic conditions, tumors arising from the same transplantation were randomized into single or fractionated dose protocols. For estimation of the fractionated TCD50 under hypoxic conditions, tumors were exposed to six 5.4 Gy fractions (∼ 2 Gy equivalent under air), followed by graded 'top-up' dose irradiation for determination of the TCD50; the time interval between doses was 6-9 hours. The single dose equivalent of the six 5.4 Gy doses was used to calculate an extrapolated 30 fraction hypoxic TCD50. Results: Fractionation substantially increased the dose required for tumor control in 4 of the 5 tumors investigated. For these 4 tumors

  13. Monoclonal TCR-redirected tumor cell killing.

    Science.gov (United States)

    Liddy, Nathaniel; Bossi, Giovanna; Adams, Katherine J; Lissina, Anna; Mahon, Tara M; Hassan, Namir J; Gavarret, Jessie; Bianchi, Frayne C; Pumphrey, Nicholas J; Ladell, Kristin; Gostick, Emma; Sewell, Andrew K; Lissin, Nikolai M; Harwood, Naomi E; Molloy, Peter E; Li, Yi; Cameron, Brian J; Sami, Malkit; Baston, Emma E; Todorov, Penio T; Paston, Samantha J; Dennis, Rebecca E; Harper, Jane V; Dunn, Steve M; Ashfield, Rebecca; Johnson, Andy; McGrath, Yvonne; Plesa, Gabriela; June, Carl H; Kalos, Michael; Price, David A; Vuidepot, Annelise; Williams, Daniel D; Sutton, Deborah H; Jakobsen, Bent K

    2012-06-01

    T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.

  14. A novel anti-alpha-fetoprotein single-chain variable fragment displays anti-tumor effects in HepG2 cells as a single agent or in combination with paclitaxel.

    Science.gov (United States)

    Ji, Xiaonan; Shen, Yanli; Sun, Hao; Gao, Xiangdong

    2016-08-01

    Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival time. The function of alpha-fetoprotein (AFP) as a regulatory factor in the growth of HCC cells has been well defined. The aim of this study was to investigate the use of a novel AFP-specific single-chain variable fragment that blocked AFP and inhibited HCC cell growth. The results indicated that the anti-AFP single-chain variable fragment (scFv) induced growth inhibition of AFP-expressing HCC cell lines in vitro through induction of G1 cell cycle arrest and apoptosis. The mechanism of apoptosis probably involved with blocking AFP internalization and regulation of the PTEN/PI3K/Akt signaling network. Moreover, the anti-AFP-scFv also effectively sensitized the HepG2 cells to paclitaxel (PTX) at a lower concentration. The combination effect of PTX and anti-AFP-scFv displayed a synergistic effect on HepG2 cells both in vitro and in vivo. Our results demonstrated that targeting AFP by specific antibodies has potential immunotherapeutic efficacy in human HCC.

  15. Sertoli-Leydig cell tumor

    Science.gov (United States)

    Sertoli-Leydig cell tumor (SLCT) is a rare cancer of the ovaries. The cancer cells produce and release a male sex hormone ... lead to cancer. SLCT starts in the female ovaries. The cancer cells release a male sex hormone. As a ...

  16. Natural single amino acid polymorphism (F19Y) in human galectin-8: detection of structural alterations and increased growth-regulatory activity on tumor cells.

    Science.gov (United States)

    Ruiz, Federico M; Scholz, Barbara A; Buzamet, Eliza; Kopitz, Jürgen; André, Sabine; Menéndez, Margarita; Romero, Antonio; Solís, Dolores; Gabius, Hans-Joachim

    2014-03-01

    Natural amino acid substitution by single-site nucleotide polymorphism can become a valuable tool for structure-activity correlations, especially if evidence for association to disease parameters exists. Focusing on the F19Y change in human galectin-8, connected clinically to rheumatoid arthritis, we here initiate the study of consequences of a single-site substitution in the carbohydrate recognition domain of this family of cellular effectors. We apply a strategically combined set of structural and cell biological techniques for comparing properties of the wild-type and variant proteins. The overall hydrodynamic behavior of the full-length protein and of the separate N-domain is not noticeably altered, but displacements in the F0 β-strand of the β-sandwich fold in the N-domain are induced, as evidenced by protein crystallography. Analysis of thermal stability by circular dichroism spectroscopy revealed perceptible differences for the full-length proteins, pointing to an impact of the substitution beyond the N-domain. In addition, small differences in thermodynamic parameters of carbohydrate binding are detected. On the level of two types of tumor cells, characteristics of binding appeared rather similar. In further comparison of the influence on proliferation, the variant proved to be more active as growth regulator in the six tested lines of neuroblastoma, erythroleukemia and colon adenocarcinoma. The seemingly subtle structural change identified here thus has functional implications in vitro, encouraging further analysis in autoimmune regulation and, in a broad context, in work with other natural single-site variants, using the documented combined strategy. The atomic coordinates and structure factors (codes 4BMB, 4BME) have been deposited in the Protein Data Bank. © 2014 FEBS.

  17. Prognostic Importance of Circulating Tumor Cells in Nonsmall Cell ...

    African Journals Online (AJOL)

    Purpose: To investigate the prognostic value of circulating tumor cells (CTCs) and to predict the treatment response in a non-small cell lung cancer (NSCLC). Methodology: A single-center prospective study involving 93 patients with NSCLC was conducted. Blood samples were analyzed for CTC count before and after ...

  18. Single Cell Chemical Cytometry of Akt Activity in Rheumatoid Arthritis and Normal Fibroblast-like Synoviocytes in Response to Tumor Necrosis Factor α.

    Science.gov (United States)

    Mainz, Emilie R; Serafin, D Stephen; Nguyen, Tuong T; Tarrant, Teresa K; Sims, Christopher E; Allbritton, Nancy L

    2016-08-02

    The etiology of rheumatoid arthritis (RA) is poorly understood, and 30% of patients are unresponsive to established treatments targeting tumor necrosis factor α (TNFα). Akt kinase is implicated in TNFα signaling and may act as a barometer of patient responses to biologic therapies. Fluorescent peptide sensors and chemical cytometry were employed to directly measure Akt activity as well as proteolytic activity in individual fibroblast-like synoviocytes (FLS) from RA and normal subjects. The specificity of the peptide reporter was evaluated and shown to be a valid measure of Akt activity in single cells. The effect of TNFα treatment on Akt activity was highly heterogeneous between normal and RA subjects, which was not observable in bulk analyses. In 2 RA subjects, a bimodal distribution of Akt activity was observed, primarily due to a subpopulation (21.7%: RA Subject 5; 23.8%: RA Subject 6) of cells in which >60% of the reporter was phosphorylated. These subjects also possessed statistically elevated proteolytic cleavage of the reporter relative to normal subjects, suggesting heterogeneity in Akt and protease activity that may play a role in the RA-affected joint. We expect that chemical cytometry studies pairing peptide reporters with capillary electrophoresis will provide valuable data regarding aberrant kinase activity from small samples of clinical interest.

  19. Effect of Blood Collection Tube Type and Time to Processing on the Enumeration and High-Content Characterization of Circulating Tumor Cells Using the High-Definition Single-Cell Assay.

    Science.gov (United States)

    Rodríguez-Lee, Mariam; Kolatkar, Anand; McCormick, Madelyn; Dago, Angel D; Kendall, Jude; Carlsson, Nils Anders; Bethel, Kelly; Greenspan, Emily J; Hwang, Shelley E; Waitman, Kathryn R; Nieva, Jorge J; Hicks, James; Kuhn, Peter

    2018-02-01

    - As circulating tumor cell (CTC) assays gain clinical relevance, it is essential to address preanalytic variability and to develop standard operating procedures for sample handling in order to successfully implement genomically informed, precision health care. - To evaluate the effects of blood collection tube (BCT) type and time-to-assay (TTA) on the enumeration and high-content characterization of CTCs by using the high-definition single-cell assay (HD-SCA). - Blood samples of patients with early- and advanced-stage breast cancer were collected into cell-free DNA (CfDNA), EDTA, acid-citrate-dextrose solution, and heparin BCTs. Time-to-assay was evaluated at 24 and 72 hours, representing the fastest possible and more routine domestic shipping intervals, respectively. - We detected the highest CTC levels and the lowest levels of negative events in CfDNA BCT at 24 hours. At 72 hours in this BCT, all CTC subpopulations were decreased with the larger effect observed in high-definition CTCs and cytokeratin-positive cells smaller than white blood cells. Overall cell retention was also optimal in CfDNA BCT at 24 hours. Whole-genome copy number variation profiles were generated from single cells isolated from all BCT types and TTAs. Cells from CfDNA BCT at 24-hour TTA exhibited the least noise. - Circulating tumor cells can be identified and characterized under a variety of collection, handling, and processing conditions, but the highest quality can be achieved with optimized conditions. We quantified performance differences of the HD-SCA for specific preanalytic variables that may be used as a guide to develop best practices for implementation into patient care and/or research biorepository processes.

  20. Granular Cell Tumor

    African Journals Online (AJOL)

    1). Her packed cell volume was 40%, she was system, gastro-intestinal tract, brain, heart, and negative to human immunodeficiency virus. 2 female reproductive . ... histocytes and neurons at various times. They granules. The granules are probably of lysosmal were consequently termed granular cell origin and contain ...

  1. Solid KHT tumor dispersal for flow cytometric cell kinetic analysis

    International Nuclear Information System (INIS)

    Pallavicini, M.G.; Folstad, L.J.; Dunbar, C.

    1981-01-01

    A bacterial neutral protease was used to disperse KHT solid tumors into single cell suspensions suitable for routine cell kinetic analysis by flow cytometry and for clonogenic cell survival. Neutral protease disaggregation under conditions which would be suitable for routine tumor dispersal was compared with a trypsin/DNase procedure. Cell yield, clonogenic cell survival, DNA distributions of untreated and drug-perturbed tumors, rates of radioactive precursor incorporation during the cell cycle, and preferential cell cycle phase-specific cell loss were investigated. Tumors dispersed with neutral protease yielded approximately four times more cells than those dispersed with trypsin/DNase and approximately a 1.5-fold higher plating efficiency in a semisolid agar system. Quantitative analysis of DNA distributions obtained from untreated and cytosine-arabinoside-perturbed tumors produced similar results with both dispersal procedures. The rates of incorporation of tritiated thymidine during the cell cycle were also similar with neutral protease and trypsin/DNase dispersal. Preferential phase-specific cell loss was not obseved with either technique. We find that neutral protease provides good single cell suspensions of the KHT tumor for cell survival measurements and for cell kinetic analysis of drug-induced perturbations by flow cytometry. In addition, the high cell yields facilitate electronic cell sorting where large numbers of cells are often required

  2. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor; Kong, Say Li; Sengupta, Debarka; Tan, Iain B; Phyo, Wai Min; Lee, Daniel; Hu, Min; Iliescu, Ciprian; Alexander, Irina; Goh, Wei Lin; Rahmani, Mehran; Suhaimi, Nur-Afidah Mohamed; Vo, Jess H; Tai, Joyce A; Tan, Joanna H; Chua, Clarinda; Ten, Rachel; Lim, Wan Jun; Chew, Min Hoe; Hauser, Charlotte; van Dam, Rob M; Lim, Wei-Yen; Prabhakar, Shyam; Lim, Bing; Koh, Poh Koon; Robson, Paul; Ying, Jackie Y; Hillmer, Axel M; Tan, Min-Han

    2016-01-01

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  3. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  4. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  5. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  6. Single cell metabolomics

    NARCIS (Netherlands)

    Heinemann, Matthias; Zenobi, Renato

    Recent discoveries suggest that cells of a clonal population often display multiple metabolic phenotypes at the same time. Motivated by the success of mass spectrometry (MS) in the investigation of population-level metabolomics, the analytical community has initiated efforts towards MS-based single

  7. Peripheral dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Sushant S Kamat

    2013-01-01

    Full Text Available Dentinogenic ghost cell tumors (DGCT are uncommon lesions mainly with rare peripheral types. This report presents a case of peripheral DGCT on the left side of the mandibular alveolar ridge of a heavy smoker, a 68-year-old man, with main presenting feature as a mild pain. Submandibular lymphadenopathy and radiological "saucerization" were evident. Differential diagnosis included fibroma, neurofibroma, peripheral ameloblastoma, peripheral odontogenic fibroma, and peripheral giant cell granuloma. Histologically, ameloblastoma-like epithelial elements were seen in association with grouped ghost cells. Proliferating polyhedral cells and stellate reticulum-like cells with various densities were spread over a wide range of the field. The lesion was curetted and after 2 years of follow up, it did not recur.

  8. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  9. Tumor stem cells: A new approach for tumor therapy (Review)

    Science.gov (United States)

    MENG, MIN; ZHAO, XIN-HAN; NING, QIAN; HOU, LEI; XIN, GUO-HONG; LIU, LI-FENG

    2012-01-01

    Recent studies have demonstrated the existence of a minority of tumor cells possessing the stem cell properties of self-renewal and differentiation in leukemia and several solid tumors. However, these cells do not possess the normal regulatory mechanisms of stem cells. Following transplantation, they are capable of initiating tumorigenesis and are therefore known as ‘tumor stem cells’. Cellular origin analysis of tumor stem cells has resulted in three hypotheses: Embryonal rest hypothesis, anaplasia and maturation arrest. Several signaling pathways which are involved in carcinogenesis, including Wnt/β-catenin, Notch and Oct-4 signaling pathways are crucial in normal stem cell self-renewal decisions, suggesting that breakdown in the regulation of self-renewal may be a key event in the development of tumors. Thus, tumors can be regarded as an abnormal organ in which stem cells have escaped from the normal constraints on self-renewal, thus, leading to abnormally differentiated tumor cells that lose the ability to form tumors. This new model for maligancies has significance for clinical research and treatment. PMID:22844351

  10. Experimental rat lung tumor model with intrabronchial tumor cell implantation.

    Science.gov (United States)

    Gomes Neto, Antero; Simão, Antônio Felipe Leite; Miranda, Samuel de Paula; Mourão, Lívia Talita Cajaseiras; Bezerra, Nilfácio Prado; Almeida, Paulo Roberto Carvalho de; Ribeiro, Ronaldo de Albuquerque

    2008-01-01

    The objective of this study was to develop a rat lung tumor model for anticancer drug testing. Sixty-two female Wistar rats weighing 208 +/- 20 g were anesthetized intraperitoneally with 2.5% tribromoethanol (1 ml/100 g live weight), tracheotomized and intubated with an ultrafine catheter for inoculation with Walker's tumor cells. In the first step of the experiment, a technique was established for intrabronchial implantation of 10(5) to 5 x 10(5) tumor cells, and the tumor take rate was determined. The second stage consisted of determining tumor volume, correlating findings from high-resolution computed tomography (HRCT) with findings from necropsia and determining time of survival. The tumor take rate was 94.7% for implants with 4 x 10(5) tumor cells, HRCT and necropsia findings matched closely (r=0.953; p<0.0001), the median time of survival was 11 days, and surgical mortality was 4.8%. The present rat lung tumor model was shown to be feasible: the take rate was high, surgical mortality was negligible and the procedure was simple to perform and easily reproduced. HRCT was found to be a highly accurate tool for tumor diagnosis, localization and measurement and may be recommended for monitoring tumor growth in this model.

  11. Determinates of tumor response to radiation: Tumor cells, tumor stroma and permanent local control

    International Nuclear Information System (INIS)

    Li, Wende; Huang, Peigen; Chen, David J.; Gerweck, Leo E.

    2014-01-01

    Background and purpose: The causes of tumor response variation to radiation remain obscure, thus hampering the development of predictive assays and strategies to decrease resistance. The present study evaluates the impact of host tumor stromal elements and the in vivo environment on tumor cell kill, and relationship between tumor cell radiosensitivity and the tumor control dose. Material and methods: Five endpoints were evaluated and compared in a radiosensitive DNA double-strand break repair-defective (DNA-PKcs −/− ) tumor line, and its DNA-PKcs repair competent transfected counterpart. In vitro colony formation assays were performed on in vitro cultured cells, on cells obtained directly from tumors, and on cells irradiated in situ. Permanent local control was assessed by the TCD 50 assay. Vascular effects were evaluated by functional vascular density assays. Results: The fraction of repair competent and repair deficient tumor cells surviving radiation did not substantially differ whether irradiated in vitro, i.e., in the absence of host stromal elements and factors, from the fraction of cells killed following in vivo irradiation. Additionally, the altered tumor cell sensitivity resulted in a proportional change in the dose required to achieve permanent local control. The estimated number of tumor cells per tumor, their cloning efficiency and radiosensitivity, all assessed by in vitro assays, were used to predict successfully, the measured tumor control doses. Conclusion: The number of clonogens per tumor and their radiosensitivity govern the permanent local control dose

  12. Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis

    Science.gov (United States)

    Garcia-Barros, Monica; Paris, Francois; Cordon-Cardo, Carlos; Lyden, David; Rafii, Shahin; Haimovitz-Friedman, Adriana; Fuks, Zvi; Kolesnick, Richard

    2003-05-01

    About 50% of cancer patients receive radiation therapy. Here we investigated the hypothesis that tumor response to radiation is determined not only by tumor cell phenotype but also by microvascular sensitivity. MCA/129 fibrosarcomas and B16F1 melanomas grown in apoptosis-resistant acid sphingomyelinase (asmase)-deficient or Bax-deficient mice displayed markedly reduced baseline microvascular endothelial apoptosis and grew 200 to 400% faster than tumors on wild-type microvasculature. Thus, endothelial apoptosis is a homeostatic factor regulating angiogenesis-dependent tumor growth. Moreover, these tumors exhibited reduced endothelial apoptosis upon irradiation and, unlike tumors in wild-type mice, they were resistant to single-dose radiation up to 20 grays (Gy). These studies indicate that microvascular damage regulates tumor cell response to radiation at the clinically relevant dose range.

  13. Periurethral granular cell tumor: a case report

    International Nuclear Information System (INIS)

    Kim, Jeong Kon; Choi, Hyo Gyeong; Cho, Kyoung Sik

    1998-01-01

    Granular cell tumors are uncommon soft tissue tumors which arise as solitary or multiple masses. Lesions commonly arise in the head, neck, and chest wall, but can occur in any part of the body. To our knowledge, periurethral granular cell tumor has not been previously reported. We report one such case

  14. Interaction of tumor cells with the microenvironment

    Directory of Open Access Journals (Sweden)

    Lehnert Hendrik

    2011-09-01

    Full Text Available Abstract Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT, migration, invasion (i.e. migration through connective tissue, metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.

  15. Granular cell tumor: An uncommon benign neoplasm

    Directory of Open Access Journals (Sweden)

    Tirthankar Gayen

    2015-01-01

    Full Text Available Granular cell tumor is a distinctly rare neoplasm of neural sheath origin. It mainly presents as a solitary asymptomatic swelling in the oral cavity, skin, and rarely internal organs in the middle age. Histopathology is characteristic, showing polyhedral cells containing numerous fine eosinophilic granules with indistinct cell margins. We present a case of granular cell tumor on the back of a 48-year-old woman which was painful, mimicking an adnexal tumor.

  16. [Circulating tumor cells: cornerstone of personalized medicine].

    Science.gov (United States)

    Rafii, A; Vidal, F; Rathat, G; Alix-Panabières, C

    2014-11-01

    Cancer treatment has evolved toward personalized medicine. It is mandatory for clinicians to ascertain tumor biological features in order to optimize patients' treatment. Identification and characterization of circulating tumor cells demonstrated a prognostic value in many solid tumors. Here, we describe the main technologies for identification and characterization of circulating tumor cells and their clinical application in gynecologic and breast cancers. Copyright © 2014. Published by Elsevier Masson SAS.

  17. Factors Affecting the Recurrence of Giant Cell Tumor of Bone After Surgery: A Clinicopathological Study of 80 Cases from a Single Center

    Directory of Open Access Journals (Sweden)

    Dong-dong Cheng

    2015-07-01

    Full Text Available Background/Aims: This aim of the present study was to identify specific markers determining the recurrence of the giant cell tumor of bone (GCTB. Methods: This study involved the clinicopathological analysis of 80 cases. All of the clinical features, pathological fracture, Campanacci grade, histological features and surgical methods were reviewed. Immunohistochemistry was used to detect the expression of Ki-67, CD147, mutant p53 and p63 in GCTB. Comparisons between different groups were performed using the Chi-square test. The risk factors affecting recurrence were analyzed using a binary logistic model. Kaplan-Meier analysis was employed for the survival analysis between the groups. Cell proliferation assays, migration and invasion assays were used to detect the function of CD147 on GCTB in vitro. Results: The univariate analysis showed that Ki-67 and CD147 expression, pathological fracture, Campanacci grade and surgical method were associated with recurrence. The multivariate analysis revealed that CD147 expression, Campanacci grade and surgical method were the factors affecting GCTB recurrence. In addition, the Kaplan-Meier analysis revealed that these factors affected tumor-free survival time. In vitro study revealed that the CD147 knockdown by small interfering RNA (siRNA technique dramatically reduced the proliferation, migration and invasion of GCTB. Conclusion: Our results suggest that CD147 may serve as an adequate marker for GCTB recurrence. Campanacci grade is a risk factor for GCTB recurrence, which is also affected by the surgical method used.

  18. Vindesine in plasma cell tumors.

    Science.gov (United States)

    Salvagno, L; Paccagnella, A; Chiarion Sileni, V; De Besi, P; Frizzarin, M; Casara, D; Fiorentino, M V

    1985-12-31

    Twenty-one patients with plasma cell tumors received vindesine (VDS) at the dose of 3 mg/m2 i.v. on day 1 plus prednisone at the dose of 100 mg p.o. from day 1 to 5, recycling every 8 days 3 times and then every 10-12 days. In 3 patients with gastric or duodenal ulcer prednisone was not administered. All but one patient were heavily pretreated and resistant to M-2 regimen. Overall there were 4 objective responses (19%): 2 among 15 patients (13%) with multiple myeloma and 2 among 6 patients (33%) with extramedullary plasmacytoma (EMP). The responses lasted for 2, 12, 15 and 48+ months. One previously untreated EMP patient received VDS without prednisone and obtained a complete long-lasting remission. The association of VDS with high-dose prednisone seems to have some activity in plasma cell tumors; probably in multiple myeloma the objective responses are due to the high dose of cortisone rather than to VDS. On the contrary, in EMP patients, VDS may be an active agent, even if administered without cortisone.

  19. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells.

    Science.gov (United States)

    Payne, Kyle K; Keim, Rebecca C; Graham, Laura; Idowu, Michael O; Wan, Wen; Wang, Xiang-Yang; Toor, Amir A; Bear, Harry D; Manjili, Masoud H

    2016-09-01

    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy. © The Author(s).

  20. Role of Axumin PET Scan in Germ Cell Tumor

    Science.gov (United States)

    2018-05-01

    Testis Cancer; Germ Cell Tumor; Testicular Cancer; Germ Cell Tumor of Testis; Germ Cell Tumor, Testicular, Childhood; Testicular Neoplasms; Testicular Germ Cell Tumor; Testicular Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Diseases; Germ Cell Cancer Metastatic; Germ Cell Neoplasm of Retroperitoneum; Germ Cell Cancer, Nos

  1. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Moulder, J.E.

    1989-01-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance

  2. Treatment of Advanced Malignant Uterine Perivascular Epithelioid Cell Tumor with mTOR Inhibitors: Single-institution Experience and Review of the Literature.

    Science.gov (United States)

    Starbuck, Kristen D; Drake, Richard D; Budd, G Thomas; Rose, Peter G

    2016-11-01

    Uterine perivascular epithelioid cell tumors (PEComas) are rare mesenchymal tumors. Many have malignant behavior, and no successful treatment strategy has been established. Identification of mutations in the tuberous sclerosis 1 (TSC1) and TSC2 genes producing constitutive activation of the mammalian target of rapamycin (mTOR) pathway presents an opportunity for targeted therapy. Patients with advanced malignant uterine PEComa treated with mTOR inhibitors were identified and records were retrospectively reviewed for treatment response based on radiographic assessment. Three patients with advanced uterine PEComas underwent debulking surgery followed by mTOR inhibitor therapy; two had a complete response to therapy and disease in one patient progressed. Given the absence of effective therapies for malignant uterine PEComas, targeting the mTOR pathway is a logical strategy to pursue given the known pathobiology involving the Tuberous Sclerosis complex. Treatment of malignant uterine PEComas with mTOR inhibitors was effective in two out of three patients after surgical resection, with durable response. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Stages of Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... tumors: Yolk sac tumors make a hormone called alpha-fetoprotein (AFP). They can form in the ovary, testicle, ... are used to detect extracranial germ cell tumors: Alpha-fetoprotein (AFP). Beta-human chorionic gonadotropin (β-hCG). For ...

  4. Intracranial germ-cell tumors

    International Nuclear Information System (INIS)

    Baker, L.L.; Kollias, S.S.; Cogen, P.H.; Barkovich, A.J.

    1991-01-01

    This paper reports on the MR characteristics together with the clinical and histologic features of cerebral germ-cell tumors were investigated to augment data regarding this rare, diverse class of neoplasms. Germinomas were homogeneous or heterogeneous masses, predominantly isointense to normal brain on T1-weighted images, and hyperintense and heterogeneous on T2-weighted images; three showed adjacent brain edema. Enhancement was prominent, either homogeneous or heterogeneous. One had spinal drop metastases. Teratomas, more common in young patients, were more heterogeneous than germinomas on T1-weighted and T2-weighted images. Five showed hyper- and hypointense foci on T1-weighted images that corresponded to fat and calcium, respectively, at CT. Teratomas did not enhance or enhanced heterogeneously. Two had intratumoral hemorrhage; there were no metastases. Both patients with choriocarcinoma had hemorrhagic masses

  5. The lifetime of hypoxic human tumor cells

    International Nuclear Information System (INIS)

    Durand, Ralph E.; Sham, Edward

    1998-01-01

    Purpose: For hypoxic and anoxic cells in solid tumors to be a therapeutic problem, they must live long enough to be therapeutically relevant, or else be rapidly recruited into the proliferating compartment during therapy. We have, therefore, estimated lifetime and recruitment rate of hypoxic human tumor cells in multicell spheroids in vitro, or in xenografted tumors in SCID mice. Materials and Methods: Cell turnover was followed by flow cytometry techniques, using antibodies directed at incorporated halogenated pyrimidines. The disappearance of labeled cells was quantified, and verified to be cell loss rather than label dilution. Repopulation was studied in SiHa tumor xenografts during twice-daily 2.5-Gy radiation exposures. Results: The longevity of hypoxic human tumor cells in spheroids or xenografts exceeded that of rodent cell lines, and cell turnover was slower in xenografts than under static growth as spheroids. Human tumor cells remained viable in the hypoxic regions of xenografts for 4-10 days, compared to 3-5 days in spheroids, and 1-3 days for most rodent cells in spheroids. Repopulation was observed within the first few radiation treatments for the SiHa xenografts and, with accumulated doses of more than 10 Gy, virtually all recovered cells had progressed through at least one S-phase. Conclusion: Our results suggest an important difference in the ability of human vs. rodent tumor cells to withstand hypoxia, and raise questions concerning the increased longevity seen in vivo relative to the steady-state spheroid system

  6. Microfluidics for single cell analysis

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant

    Isolation and manipulation of single cells have gained an increasing interest from researchers because of the heterogeneity of cells from the same cell culture. Single cell analysis can ensure a better understanding of differences between individual cells and potentially solve a variety of clinical...... problems. In this thesis lab on a chip systems for rare single cell analysis are investigated. The focus was to develop a commercial, disposable device for circulating tumour cell (CTC) analysis. Such a device must be able to separate rare cells from blood samples and subsequently capture the specific...... cells, and simultaneously be fabricated and operated at low costs and be user-friendly. These challenges were addressed through development of two microfluidic devices, one for rare cell isolation based on pinched flow fractionation (PFF) and one for single cell capture based on hydrodynamic trapping...

  7. NKT cells as an ideal anti-tumor immunotherapeutic.

    Science.gov (United States)

    Fujii, Shin-Ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-12-02

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon

  8. [Isolation and identification of brain tumor stem cells from human brain neuroepithelial tumors].

    Science.gov (United States)

    Fang, Jia-sheng; Deng, Yong-wen; Li, Ming-chu; Chen, Feng-Hua; Wang, Yan-jin; Lu, Ming; Fang, Fang; Wu, Jun; Yang, Zhuan-yi; Zhou, Xang-yang; Wang, Fei; Chen, Cheng

    2007-01-30

    To establish a simplified culture system for the isolation of brain tumor stem cells (BTSCs) from the tumors of human neuroepithelial tissue, to observe the growth and differentiation pattern of BTSCs, and to investigate their expression of the specific markers. Twenty-six patients with brain neuroepithelial tumors underwent tumor resection. Two pieces of tumor tissues were taken from each tumor to be dissociated, triturated into single cells in sterile DMEM-F12 medium, and then filtered. The tumor cells were seeded at a concentration of 200,000 viable cells per mL into serum-free DMEM-F12 medium simply supplemented with B27, human basic fibroblast growth factor (20 microg/L), human epidermal growth factor (20 microg /L), insulin (4 U/L), L-glutamine, penicillin and streptomycin. After the primary brain tumor spheres (BTSs) were generated, they were triturated again and passed in fresh medium. Limiting dilution assay was performed to observe the monoclone formation. 5-bromodeoxyuridine (BrdU) incorporation test was performed to observe the proliferation of the BTS. The BTSCs were cultured in mitogen-free DMEM-F12 medium supplemented with 10% fetal bovine serum to observe their differentiation. Immunocytochemistry was used to examine the expression of CD133 and nestin, specific markers of BTSC, and the rate of CD133 positive cells. Only a minority of subsets of cells from the tumors of neuroepithelial tissue had the capacity to survive, proliferate, and generate free-floating neurosphere-like BTSs in the simplified serum-free medium. These cells attached to the poly-L-lysine coated coverslips in the serum-supplemented medium and differentiated. The BTSCs were CD133 and nestin positive. The rate of CD133 positive cells in the tumor specimens was (21 +/- 6.2)% - (38 +/- 7.0)%. A new simplified culture system for the isolation of BTSCs is established. The tumors of human neuroepithelial tissue contain CD133 and nestin positive tumor stem cells which can be isolated

  9. Treatment Option Overview (Ovarian Germ Cell Tumors)

    Science.gov (United States)

    ... Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview Go to Health Professional Version Key Points ... and restore) the body’s blood cells. New treatment options Combination chemotherapy (the use of more than one ...

  10. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    Science.gov (United States)

    ... Cell Tumors Treatment Testicular Cancer Treatment Age and gender can affect the risk of extragonadal germ cell ... Headache. Change in bowel habits. Feeling very tired. Trouble walking. Trouble in seeing or moving the eyes. ...

  11. General Information about Extragonadal Germ Cell Tumors

    Science.gov (United States)

    ... Cell Tumors Treatment Testicular Cancer Treatment Age and gender can affect the risk of extragonadal germ cell ... Headache. Change in bowel habits. Feeling very tired. Trouble walking. Trouble in seeing or moving the eyes. ...

  12. Immune Cells in Blood Recognize Tumors

    Science.gov (United States)

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  13. Molecular markers for tumor cell dissemination in female cancers

    International Nuclear Information System (INIS)

    Obermayr, E.

    2009-01-01

    In the fight against cancer many advances have been made in early detection and treatment of the disease during the last few decades. Nevertheless, many patients still die of cancer due to metastatic spreading of the disease. Tumor cell dissemination may occur very early and usually is not discovered at the time of initial diagnosis. In these cases, the mere excision of the primary tumor is an insufficient treatment. Microscopic tumor residues will remain in the blood, lymph nodes, or the bone marrow and will cause disease recurrence. To improve the patient's prognosis, a sensitive tool for the detection of single tumor cells supplementing conventional diagnostic procedures is required. As the blood is more easily accessible than the bone marrow or tissue biopsies, we intended to identify gene markers for the detection of circulating tumor cells in the blood of cancer patients. We focused on patients with breast, ovarian, endometrial or cervical cancer. Starting from a genome-wide gene expression analysis of tumor cells and blood cells, we found six genes higher expression levels in cancer patients compared to healthy women. These findings suggest that an increased expression of these genes in the blood indicates the presence of circulating tumor cells inducing future metastases and thus the need for adjuvant therapy assisting the primary treatment. Measuring the expression levels of these six genes in the blood may supplement conventional diagnostic tests and improve the patient's prognosis. (author) [de

  14. Biophysical force regulation in 3D tumor cell invasion

    Science.gov (United States)

    Wu, Mingming

    When embedded within 3D extracellular matrices (ECM), animal cells constantly probe and adapt to the ECM locally (at cell length scale) and exert forces and communicate with other cells globally (up to 10 times of cell length). It is now well accepted that mechanical crosstalk between animal cells and their microenvironment critically regulate cell function such as migration, proliferation and differentiation. Disruption of the cell-ECM crosstalk is implicated in a number of pathologic processes including tumor progression and fibrosis. Central to the problem of cell-ECM crosstalk is the physical force that cells generate. By measuring single cell generated force within 3D collagen matrices, we revealed a mechanical crosstalk mechanism between the tumor cells and the ECM. Cells generate sufficient force to stiffen collagen fiber network, and stiffer matrix, in return promotes larger cell force generation. Our work highlights the importance of fibrous nonlinear elasticity in regulating tumor cell-ECM interaction, and results may have implications in the rapid tissue stiffening commonly found in tumor progression and fibrosis. This work is partially supported by NIH Grants R21RR025801 and R21GM103388.

  15. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  16. Enrichment of tumor cells for cell kinetic analysis in human tumor biopsies using cytokeratin gating

    International Nuclear Information System (INIS)

    Haustermans, K.; Hofland, I.; Ramaekers, M.; Ivanyi, D.; Balm, A.J.M.; Geboes, K.; Lerut, T.; Schueren, E. van der; Begg, A.C.

    1996-01-01

    Purpose: To determine the feasibility of using cytokeratin antibodies to distinguish normal and malignant cells in human tumors using flow cytometry. The goal was ultimately to increase the accuracy of cell kinetic measurements on human tumor biopsies. Material and methods: A panel of four antibodies was screened on a series of 48 tumors from two centres; 22 head and neck tumors (Amsterdam) and 26 esophagus carcinomas (Leuven). First, screening was carried out by immunohistochemistry on frozen sections to test intensity of staining and the fraction of cytokeratin-positive tumor cells. The antibody showing the most positive staining was then used for flow cytometry on the same tumor. Results: The two broadest spectrum antibodies (AE1/AE3, E3/C4) showed overall the best results with immunohistochemical staining, being positive in over 95% of tumors. Good cell suspensions for DNA flow cytometry could be made from frozen material by a mechanical method, whereas enzymatic methods with trypsin or collagenase were judged failures in almost all cases. >From fresh material, both collagenase and trypsin produced good suspensions for flow cytometry, although the fraction of tumor cells, judged by proportion aneuploid cells, was markedly higher for trypsin. Using the best cytokeratin antibody for each tumor, two parameter flow cytometry was done (cytokeratin versus DNA content). Enrichment of tumor cells was then tested by measuring the fraction of aneuploid cells (the presumed malignant population) of cytokeratin-positive cells versus all cells. An enrichment factor ranging between 0 (no enrichment) and 1 (perfect enrichment, tumor cells only) was then calculated. The average enrichment was 0.60 for head and neck tumors and 0.59 for esophagus tumors. Conclusions: We conclude that this method can substantially enrich the proportion of tumor cells in biopsies from carcinomas. Application of this method could significantly enhance accuracy of tumor cell kinetic measurements

  17. Retrotransposon Targeting of Tumor Cells

    National Research Council Canada - National Science Library

    Wu, Dongdong; DeVaux, George

    2005-01-01

    .... Cancer gene therapy techniques include oncogene inactivation, tumor suppressor gene replacement, inhibition of angiogenesis, immunopotentiation, molecular chemotherapy, and transfer of drug resistance genes...

  18. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  19. POSTTREATMENT NEUROBLASTOMA MATURATION TO GANGLIONIC CELL TUMOR

    Directory of Open Access Journals (Sweden)

    M. V. Ryzhova

    2012-01-01

    Full Text Available Tumor cells can differentiate into more mature forms in undifferentiated or poorly differentiated tumors, such as medulloblastomas with increased nodularity, as well as neuroblastomas. The authors describe 2 cases of neuroblastoma maturation into ganglioneuroblastoma 5 months after chemotherapy in a 2-year-old girl and 3 years after radiotherapy in a 16-year-old girl.

  20. Characterization of cell suspensions from solid tumors

    International Nuclear Information System (INIS)

    Pallavicini, M.

    1985-01-01

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs

  1. Single Cell Isolation and Analysis

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2016-10-01

    Full Text Available Increasing evidence shows that the heterogeneity of individual cells within a genetically identical population can be critical to their peculiar function and fate. Conventional cell based assays mainly analysis the average responses from a population cells, while the difference within individual cells may often be masked. The cell size, RNA transcripts and protein expression level are quite different within individual cells and these variations are key point to answer the problems in cancer, neurobiology, stem cell biology, immunology and developmental biology. To better understand the cell-to-cell variations, the single cell analysis can provide much more detailed information which may be helpful for therapeutic decisions in an increasingly personalized medicine. In this review, we will focus on the recent development in single cell analysis, including methods used in single cell isolation, analysis and some application examples. The review provides the historical background to single cell analysis, discusses limitations, and current and future possibilities in this exciting field of research.

  2. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Science.gov (United States)

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  3. Radiation Therapy of Suprasellar Germ Cell Tumors

    International Nuclear Information System (INIS)

    Park, Woo Yoon; Choi, Doo Ho; Choi, Eun Kyung; Kim, Il Han; Ha, Sung Whan; Park, Charn Il

    1988-01-01

    A retrospective study was performed on 15 patients with suprasellar germ cell tumors treated by megavoltage external beam irradiation between Feb. 1979 and Dec. 1985. Follow-up period of survivors was 30 to 91 months. Histologic diagnosis was obtained before radiation therapy in 10 patients (9 germinomas and 1 mixed). Five patients were treated without histologic verification. In 9 patients with biopsy-proven germinomas radiation therapy was delivered to the craniospinal axis in 6, to the whole brain in 3. In 5 patients with mixed germ cell tumor or elevated tumor marker, irradiation was delivered to the craniospinal axis in 2, to the whole brain in 2, and to the primary site only in 1. Total doses ranged from 5,000 to 5,500 cGy to the primary site, 3,000 to 4,400 cGy to the whole brain, and 1,300 to 3,000 cGy to the spine. In these 14, local tumor was controlled and primary or spinal failure was not observed. One patient without elevated tumor marker was treated to the whole brain, The tumor was not controlled and he had spinal recurrence. It is proven that radiation therapy is an effective treatment for suprasellar germ cell tumors. The neuroendocrinologic presentation, tumor marker status, early response to radiation measured on CT seem to be useful means for selecting patients for radiation therapy when tissue diagnosis is not available

  4. Energy and Redox Homeostasis in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Marcus Fernandes de Oliveira

    2012-01-01

    Full Text Available Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1. The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg’s original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.

  5. Immunotherapy with neuraminidase-treated tumor cells after radiotherapy

    International Nuclear Information System (INIS)

    Song, C.W.; Levitt, S.H.

    1975-01-01

    The effect of active immunotherapy with Vibrio cholerae neuraminidase-treated syngeneic tumor cells (VCN-cells) following radiotherapy has been studied with 3-methylcholanthrene-induced fibrosarcoma, M-79, transplanted to the thigh of C3H/HeJ mice. When the tumors reached 4 to 8 mm in diameter, various treatments were started. X-irradiation with 2000 rad in a single dose induced a complete regression of 24 out of 103 tumors (23.3 percent). The inoculation of 1 x 10 6 of VCN-cells to the tumor-bearing animals, every other day for a total of three doses, caused a complete regression of 6 out of 57 tumors (10.5 percent). Treatments of animals with the immunotherapy starting 1 day after X-irradiation of tumors with 2000 rad resulted in a complete regression of 22 out of 58 tumors (37.9 percent). The median survival time of animals that received combined radiotherapy and immunotherapy was longer than that observed after either treatment alone

  6. Measuring single-cell density.

    Science.gov (United States)

    Grover, William H; Bryan, Andrea K; Diez-Silva, Monica; Suresh, Subra; Higgins, John M; Manalis, Scott R

    2011-07-05

    We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of approximately 500 cells per hour with a density precision of 0.001 g mL(-1). We observe that the intrinsic cell-to-cell variation in density is nearly 100-fold smaller than the mass or volume variation. As a result, we can measure changes in cell density indicative of cellular processes that would be otherwise undetectable by mass or volume measurements. Here, we demonstrate this with four examples: identifying Plasmodium falciparum malaria-infected erythrocytes in a culture, distinguishing transfused blood cells from a patient's own blood, identifying irreversibly sickled cells in a sickle cell patient, and identifying leukemia cells in the early stages of responding to a drug treatment. These demonstrations suggest that the ability to measure single-cell density will provide valuable insights into cell state for a wide range of biological processes.

  7. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...

  8. Application of single-cell technology in cancer research.

    Science.gov (United States)

    Liang, Shao-Bo; Fu, Li-Wu

    2017-07-01

    In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  10. Osteoclastic giant cell tumor of the pancreas: an immunohistochemical study

    DEFF Research Database (Denmark)

    Dizon, M A; Multhaupt, H A; Paskin, D L

    1996-01-01

    A case of an osteoclastic giant cell tumor of the pancreas is presented. Immunohistochemical studies were performed, which showed keratin (CAM, AE1) and epithelial membrane antigen positivity in the tumor cells. The findings support an epithelial origin for this tumor.......A case of an osteoclastic giant cell tumor of the pancreas is presented. Immunohistochemical studies were performed, which showed keratin (CAM, AE1) and epithelial membrane antigen positivity in the tumor cells. The findings support an epithelial origin for this tumor....

  11. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  12. Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model

    Directory of Open Access Journals (Sweden)

    Ferrone Soldano

    2007-06-01

    Full Text Available Abstract Background The anti-tumor efficacy of human immune effector cells, such as cytolytic T lymphocytes (CTLs, has been difficult to study in lung cancer patients in the clinical setting. Improved experimental models for the study of lung tumor-immune cell interaction as well as for evaluating the efficacy of adoptive transfer of immune effector cells are needed. Methods To address questions related to the in vivo interaction of human lung tumor cells and immune effector cells, we obtained an HLA class I + lung tumor cell line from a fresh surgical specimen, and using the infiltrating immune cells, isolated and characterized tumor antigen-specific, CD8+ CTLs. We then established a SCID mouse-human tumor xenograft model with the tumor cell line and used it to study the function of the autologous CTLs provided via adoptive transfer. Results The tumor antigen specific CTLs isolated from the tumor were found to have an activated memory phenotype and able to kill tumor cells in an antigen specific manner in vitro. Additionally, the tumor antigen-specific CTLs were fully capable of homing to and killing autologous tumors in vivo, and expressing IFN-γ, each in an antigen-dependent manner. A single injection of these CTLs was able to provide significant but temporary control of the growth of autologous tumors in vivo without the need for IL-2. The timing of injection of CTLs played an essential role in the outcome of tumor growth control. Moreover, immunohistochemical analysis of surviving tumor cells following CTL treatment indicated that the surviving tumor cells expressed reduced MHC class I antigens on their surface. Conclusion These studies confirm and extend previous studies and provide additional information regarding the characteristics of CTLs which can be found within a patient's tumor. Moreover, the in vivo model described here provides a unique window for observing events that may also occur in patients undergoing adoptive cellular

  13. Molecular biology of testicular germ cell tumors.

    Science.gov (United States)

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.

  14. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  15. Perivascular Epithelioid Cell Tumor in the Stomach

    Directory of Open Access Journals (Sweden)

    Sun Ah Shin

    2017-07-01

    Full Text Available Perivascular epithelioid cell tumors or PEComas can arise in any location in the body. However, a limited number of cases of gastric PEComa have been reported. We present two cases of gastric PEComas. The first case involved a 62-year-old woman who presented with a 4.2 cm gastric subepithelial mass in the prepyloric antrum, and the second case involved a 67-year-old man with a 5.0 cm mass slightly below the gastroesophageal junction. Microscopic examination revealed that both tumors were composed of perivascular epithelioid cells that were immunoreactive for melanocytic and smooth muscle markers. Prior to surgery, the clinical impression of both tumors was gastrointestinal stromal tumor (GIST, and the second case was erroneously diagnosed as GIST even after microscopic examination. Although gastric PEComa is a very rare neoplasm, it should be considered in the differential diagnosis of gastric submucosal lesions.

  16. Adenomatoid odontogenic tumor with clear cell changes

    Directory of Open Access Journals (Sweden)

    Neeta Mohanty

    2014-01-01

    Full Text Available Adenomatoid odontogenic tumor (AOT has a limited biological profile and been an attention-grabbing tumor for a century for its origin. Though described earlier, it was widely accepted after Harbitz from Norway reported about this uncommon benign tumor in 1915. There has been a long debate as whether this tumor is a hamartoma or a neoplasm. Here, we present a case of AOT in a 20-year-old female with details of clinical, radiological and histological features along with clear cell changes, signifying AOT to be more aggressive in nature than assessed from earlier literature. Thus, we did an extensive search of PubMed literature on AOT with all its histopathological features associated until date to find the report of clear cell changes yet.

  17. The Human Cell Surfaceome of Breast Tumors

    Science.gov (United States)

    da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José

    2013-01-01

    Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083

  18. Malignant Solitary Fibrous Tumor Metastatic to Widely Invasive Hurthle Cell Thyroid Carcinoma: A Distinct Tumor-to-Tumor Metastasis.

    Science.gov (United States)

    Kolson Kokohaare, Eva; Riva, Francesco M G; Bernstein, Jonathan M; Miah, Aisha B; Thway, Khin

    2018-04-01

    We illustrate a case of synchronous malignant solitary fibrous tumor of the thoracic cavity, and widely invasive thyroid Hurthle cell carcinoma. The Hurthle cell carcinoma was found to harbor distinct areas of malignant solitary fibrous tumor. This is a unique case of tumor-to-tumor metastasis that, to the best of our knowledge, has not been previously reported.

  19. Single-chain antibody-based gene therapy: Inhibition of tumor growth by in situ production of phage-derived antibodies blocking functionally active sites of cell-associated matrices

    DEFF Research Database (Denmark)

    Sanz, Laura; Kristensen, Peter; Blanco, Belén

    2002-01-01

    Experimental evidence suggests that blocking the interactions between endothelial cells and extracellular matrix (ECM) components may provide a potent and general strategy to inhibit tumor neovascularization. Based on these considerations, we have focused our efforts on laminin, component of the ...

  20. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Schmalz, Philip G.R.; Shen, Michael J.; Park, John K.

    2011-01-01

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  1. Oriented collagen fibers direct tumor cell intravasation

    KAUST Repository

    Han, Weijing

    2016-09-24

    In this work, we constructed a Collagen I-Matrigel composite extracellular matrix (ECM). The composite ECM was used to determine the influence of the local collagen fiber orientation on the collective intravasation ability of tumor cells. We found that the local fiber alignment enhanced cell-ECM interactions. Specifically, metastatic MDA-MB-231 breast cancer cells followed the local fiber alignment direction during the intravasation into rigid Matrigel (∼10 mg/mL protein concentration).

  2. Giant cell tumor of bone: Multimodal approach

    Directory of Open Access Journals (Sweden)

    Gupta A

    2007-01-01

    Full Text Available Background: The clinical behavior and treatment of giant cell tumor of bone is still perplexing. The aim of this study is to clarify the clinico-pathological correlation of tumor and its relevance in treatment and prognosis. Materials and Methods: Ninety -three cases of giant cell tumor were treated during 1980-1990 by different methods. The age of the patients varied from 18-58 yrs with male and female ratio as 5:4. The upper end of the tibia was most commonly involved (n=31, followed by the lower end of the femur(n=21, distal end of radius(n=14,upper end of fibula (n=9,proximal end of femur(n=5, upper end of the humerus(n=3, iliac bone(n=2,phalanx (n=2 and spine(n=1. The tumors were also encountered on uncommon sites like metacarpals (n=4 and metatarsal(n=1. Fifty four cases were treated by curettage and bone grafting. Wide excision and reconstruction was performed in twenty two cases . Nine cases were treated by wide excision while primary amputation was performed in four cases. One case required only curettage. Three inaccessible lesions of ilium and spine were treated by radiotherapy. Results: 19 of 54 treated by curettage and bone grafting showed a recurrence. The repeat curettage and bone grafting was performed in 18 cases while amputation was done in one. One each out of the cases treated by wide excision and reconstruction and wide excision alone recurred. In this study we observed that though curettage and bone grafting is still the most commonly adopted treatment, wide excision of tumor with reconstruction has shown lesser recurrence. Conclusion: For radiologically well-contained and histologically typical tumor, curettage and autogenous bone grafting is the treatment of choice . The typical tumors with radiologically deficient cortex, clinically aggressive tumors and tumors with histological Grade III should be treated by wide excision and reconstruction.

  3. Radiotherapy of patients with germ cell tumor

    International Nuclear Information System (INIS)

    Inomata, Taisuke; Maeda, Tomoho; Yoshida, Shoji; Ogawa, Yasuhiro; Hamada, Fumio; Imajo, Yoshinari; Gose, Kyuhei; Fujiwara, Kiyoshi.

    1986-01-01

    Twenty-one patients with germ cell tumor who received radiotherapy were discussed. There were eight patients with germinoma, two patients with malignant teratoma, three patients with pineocytoma (out of category of germ cell tumor today) and eight unverified patients. Irradiated dose was mostly from 50 Gy to 60 Gy and local irradiation was performed after whole brain irradiation in many cases. The effect of radiotherapy was not so good in patients with malignant teratoma. On the contrary, it was relatively good in patients with germinoma and five out of eight patients are alive with no symptoms of recurrence. Six out of eight unverified patients are also alive. Among them, several patients with germinoma are considered to be included. Germinoma occupies many cases of germ cell tumor and has a good response to radiotherapy. Against spinal cord metastasis and late recurrence, additional therapy, such as chemotherapy, seems to be useful to improve cure ratio. (author)

  4. High-dimensional single-cell cancer biology.

    Science.gov (United States)

    Irish, Jonathan M; Doxie, Deon B

    2014-01-01

    Cancer cells are distinguished from each other and from healthy cells by features that drive clonal evolution and therapy resistance. New advances in high-dimensional flow cytometry make it possible to systematically measure mechanisms of tumor initiation, progression, and therapy resistance on millions of cells from human tumors. Here we describe flow cytometry techniques that enable a "single-cell " view of cancer. High-dimensional techniques like mass cytometry enable multiplexed single-cell analysis of cell identity, clinical biomarkers, signaling network phospho-proteins, transcription factors, and functional readouts of proliferation, cell cycle status, and apoptosis. This capability pairs well with a signaling profiles approach that dissects mechanism by systematically perturbing and measuring many nodes in a signaling network. Single-cell approaches enable study of cellular heterogeneity of primary tissues and turn cell subsets into experimental controls or opportunities for new discovery. Rare populations of stem cells or therapy-resistant cancer cells can be identified and compared to other types of cells within the same sample. In the long term, these techniques will enable tracking of minimal residual disease (MRD) and disease progression. By better understanding biological systems that control development and cell-cell interactions in healthy and diseased contexts, we can learn to program cells to become therapeutic agents or target malignant signaling events to specifically kill cancer cells. Single-cell approaches that provide deep insight into cell signaling and fate decisions will be critical to optimizing the next generation of cancer treatments combining targeted approaches and immunotherapy.

  5. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    International Nuclear Information System (INIS)

    Helbig, Linda; Koi, Lydia; Brüchner, Kerstin; Gurtner, Kristin; Hess-Stumpp, Holger; Unterschemmann, Kerstin; Pruschy, Martin

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD 50 ) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P 50 , with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD 50 . Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of radiation response. Whether this mechanism contributes to the improved outcome of fractionated chemoradiation therapy warrants further investigation

  6. Granular cells Tumor in the gastrointestinal tract

    International Nuclear Information System (INIS)

    Castano LL, Rodrigo; Gaitan B, Maria H; Juliao E, Fabian

    2005-01-01

    Granular cells tumors are ubiquitous lesions in the gastrointestinal tract, are rare and asymptomatic and they are generally an incidental discovery at gastroduodenoscopy or colonoscopy. In the gastrointestinal tract they are more frequently located in the esophagus, right colon and rectum, stomach, appendix, small intestine or biliopancreatic tract. This article describes three patients with four tumors of granular cells in rectum, esophagus (2 lesions) and appendix. It becomes special emphasis in their neural origin, their benign behavior that justifies the endoscopic resections or limited surgical excisions and the necessity of a pursuit for the possibility, although little, of malignant transformation

  7. Escape from Tumor Cell Dormancy

    Science.gov (United States)

    2012-10-01

    for metastatic cell arrest in distant organs. Neoplasia, 7(5), 522-7 (2005) 170. K. A . Paschos, D. Canovas and N. C. Bird : The role of cell adhesion...overnight in a 608C oven . Polymerized PDMS micropatterned stamps were peeled off the silicon master and used for patterning the PEG–fibrinogen...to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE

  8. Innate Lymphoid Cells in Tumor Immunity.

    Science.gov (United States)

    van Beek, Jasper J P; Martens, Anne W J; Bakdash, Ghaith; de Vries, I Jolanda M

    2016-02-25

    Innate lymphoid cells (ILCs) are a group of immune cells of the lymphoid lineage that do not possess antigen specificity. The group includes natural killer (NK) cells, lymphoid tissue inducer (LTi) cells and the recently identified ILC1s, ILC2s and ILC3s. Although the role of NK cells in the context of cancer has been well established, the involvement of other ILC subsets in cancer progression and resistance is just emerging. Here, we review the literature on the role of the different ILC subsets in tumor immunity and discuss its implications for cancer treatment and monitoring.

  9. Granulosa cell tumor of ovary: US findings

    International Nuclear Information System (INIS)

    Jin, Yong Hyun; Jeon, Hae Jeong; Lee, Chang Dea; Cho, Young Kwon; Kang, Chang Ho; Park, Yong Hyun; Kim, Myung Gyu; Lee, Yeon Hee; Kim, Young Hwa; Lee, Hye Kyung

    1999-01-01

    To describe ultrasonographic findings of ovarian granulosa cell tumor (GCT) and to determine their possible value in the differential diagnosis of ovarian tumors. Sonographic appearances of ten cases of pathologically proven GC Ts were retrospectively reviewed regarding their location, size, outer margin, the echo pattern of the tumor, endometrial thickness, presence of ascites, and metastasis to adjacent tissue or distant sites. 3.0-3.5 MHz trans-abdominal US or 5.0-6.5 MHz transvaginal US were used. The sonographic features could be classified as follows: unilocular cystic mass without nodule or septation (type 1), multilocular cystic mass (type 2), and solid mass (type 3). Pathologically nine cases were adult type granulosa cell tumors (GCT) and one was a juvenile type. All cases were unilateral. GCT arising from left ovary were seven, right, three. The largest diameter of the tumors ranged from 6.8 to 24 cm (mean: 11.9 cm). All had well-defined margins. Ascites was seen in four cases. Among ten cases of GCT, six were mainly solid (type 3). One case manifested as a unilocular cystic mass without mural nodule or septation. Three were multilocular cystic masses and no mural nodule was found in all three cases. Metastases to peritoneum and lymph nodes was seen in one case. The ultrasonographic findings of GCT are various but combined with clinical and laboratory findings they could be helpful in the differential diagnosis of ovarian tumors.

  10. Granulosa cell tumor of ovary: US findings

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yong Hyun; Jeon, Hae Jeong; Lee, Chang Dea; Cho, Young Kwon [Kun Kuk University School of Medicine, Seoul (Korea, Republic of); Kang, Chang Ho; Park, Yong Hyun [Korea University School of Medicine, Seoul (Korea, Republic of); Kim, Myung Gyu [Korea University School of Medicine, Seoul (Korea, Republic of); Lee, Yeon Hee [Kang Nam Cha General Hospital, Seoul (Korea, Republic of); Kim, Young Hwa; Lee, Hye Kyung [Dan Kuk University School of Medicine (Korea, Republic of)

    1999-06-15

    To describe ultrasonographic findings of ovarian granulosa cell tumor (GCT) and to determine their possible value in the differential diagnosis of ovarian tumors. Sonographic appearances of ten cases of pathologically proven GC Ts were retrospectively reviewed regarding their location, size, outer margin, the echo pattern of the tumor, endometrial thickness, presence of ascites, and metastasis to adjacent tissue or distant sites. 3.0-3.5 MHz trans-abdominal US or 5.0-6.5 MHz transvaginal US were used. The sonographic features could be classified as follows: unilocular cystic mass without nodule or septation (type 1), multilocular cystic mass (type 2), and solid mass (type 3). Pathologically nine cases were adult type granulosa cell tumors (GCT) and one was a juvenile type. All cases were unilateral. GCT arising from left ovary were seven, right, three. The largest diameter of the tumors ranged from 6.8 to 24 cm (mean: 11.9 cm). All had well-defined margins. Ascites was seen in four cases. Among ten cases of GCT, six were mainly solid (type 3). One case manifested as a unilocular cystic mass without mural nodule or septation. Three were multilocular cystic masses and no mural nodule was found in all three cases. Metastases to peritoneum and lymph nodes was seen in one case. The ultrasonographic findings of GCT are various but combined with clinical and laboratory findings they could be helpful in the differential diagnosis of ovarian tumors.

  11. Transfer of allogeneic CD4+ T cells rescues CD8+ T cells in anti-PD-L1–resistant tumors leading to tumor eradication

    Science.gov (United States)

    Arina, Ainhoa; Karrison, Theodore; Galka, Eva; Schreiber, Karin; Weichselbaum, Ralph R.; Schreiber, Hans

    2017-01-01

    Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T cell–mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the “exhaustion” markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. PMID:28077434

  12. Developmental tumors and adjacent cortical dysplasia: single or dual pathology?

    Science.gov (United States)

    Palmini, André; Paglioli, Eliseu; Silva, Vinicius Duval

    2013-12-01

    Developmental tumors often lead to refractory partial seizures and constitute a well-defined, surgically remediable epilepsy syndrome. Dysplastic features are often associated with these tumors, and their significance carries both practical and conceptual relevance. If associated focal cortical dysplasia (FCD) relates to the extent of the epileptogenic tissue, then presurgical evaluation and surgical strategies should target both the tumor and the surrounding dyslaminated cortex. Furthermore, the association has been included in the recently revised classification of FCD and the epileptogenicity of this associated dysplastic tissue is crucial to validate such revision. In addition to the possibility of representing dual pathology, the association of developmental tumors and adjacent dysplasia may instead represent a single developmental lesion with distinct parts distributed along a histopathologic continuum. Moreover, the possibility that this adjacent dyslamination is of minor epileptogenic relevance should also be entertained. Surgical data show that complete resection of the solid tumors and immediately adjacent tissue harboring satellites may disrupt epileptogenic networks and lead to high rates of seizure freedom, challenging the epileptogenic relevance of more extensive adjacent dyslaminated cortex. Whether the latter is a primary or secondary abnormality and whether dyslaminated cortex in the context of a second lesion may produce seizures after complete resection of the main lesion is still to be proven. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  13. Peculiarities in the CT findings of germ cell tumors in various tumor localizations

    International Nuclear Information System (INIS)

    Tazoe, Makoto; Miyagami, Mitsusuke; Tsubokawa, Takashi

    1991-01-01

    The CT findings of 17 germ cell tumors were studied in relation to the locations of the tumor, the pathological diagnoses, and the tumor markers (AFP and HCG). Generally, the CT findings of germ cell tumors depended on the pathological diagnoses more strongly than on the location of the tumors. On plain CT of 7 germ cell tumors in the pineal region, all of them demonstrated heterogeneous findings. Hydrocephalus was seen in 6 cases (86%) and calcification in 6 cases (86%) of the germ cell tumors in the pineal region. Calcification and hydrocephalus that appeared more often than in other regions were characteristic of germ cell tumors of the pineal region. The germ cell tumors in the basal ganglia had a slightly homogenous high density, with small cysts and calcification in most of them on plain CT. On enhanced CT, the tumors were moderately enhanced in all cases located in the basal ganglia. Four cases of germ cell tumors located in the basal ganglia revealed the dilatation of lateral ventricle due to hemispheric atrophy in the tumor side. The germ cell tumors showing an increase in the tumor markers such as AFP and HCG, which were usually malignant germ cell tumors, were strongly enhanced on enhanced CT. (author)

  14. Ovarian Germ Cell Tumors Treatment

    Science.gov (United States)

    ... diagnosed, tests are done to find out if cancer cells have spread within the ovary or to other parts of the body. The process used to find out whether cancer has spread within the ovary or to other parts of the body is ...

  15. Circulating tumor cells: utopia or reality?

    Science.gov (United States)

    Conteduca, Vincenza; Zamarchi, Rita; Rossi, Elisabetta; Condelli, Valentina; Troiani, Laura; Aieta, Michele

    2013-09-01

    Circulating tumor cells (CTCs) could be considered a sign of tumor aggressiveness, but highly sensitive and specific methods of CTC detection are necessary owing to the rarity and heterogeneity of CTCs in peripheral blood. This review summarizes recent studies on tumor biology, with particular attention to the metastatic cascade, and the molecular characterization and clinical significance of CTCs. Recent technological approaches to enrich and detect these cells and challenges of CTCs for individualized cancer treatment are also discussed. This review also provides an insight into the positive and negative features of the future potential applications of CTC detection, which sometimes remains still a 'utopia', but its actual utility remains among the fastest growing research fields in oncology.

  16. Tumor of granular cells of esophagus

    International Nuclear Information System (INIS)

    Gonzalez Fabian, Licet; Diaz Anaya, Amnia; Perez de la Torre, Georgina

    2010-01-01

    Granular cells tumors are rare and asymptomatic lesions and by general, it is an incidental finding en high or low endoscopy. They were described for the first time by Abrikossoff in 1926. The more frequent locations are the buccal mucosa, dermis and subcutaneous cellular tissue, most of these tumors has a benign origin. This is the case of a woman aged 44 with a pyrosis history from a year ago; by high endoscopy it is noted a 8 mm lesion distal to esophagus and confirmed by histological study of granular cells tumor. Elective treatment of this lesion is the endoscopic polypectomy. Despite that the malign potential is low; we suggested a close clinical and endoscopic follow-up.

  17. Circulating Tumor Cells in Prostate Cancer

    International Nuclear Information System (INIS)

    Hu, Brian; Rochefort, Holly; Goldkorn, Amir

    2013-01-01

    Circulating tumor cells (CTCs) can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management

  18. Optical detection and virotherapy of live metastatic tumor cells in body fluids with vaccinia strains.

    Directory of Open Access Journals (Sweden)

    Huiqiang Wang

    Full Text Available Metastatic tumor cells in body fluids are important targets for treatment, and critical surrogate markers for evaluating cancer prognosis and therapeutic response. Here we report, for the first time, that live metastatic tumor cells in blood samples from mice bearing human tumor xenografts and in blood and cerebrospinal fluid samples from patients with cancer were successfully detected using a tumor cell-specific recombinant vaccinia virus (VACV. In contrast to the FDA-approved CellSearch system, VACV detects circulating tumor cells (CTCs in a cancer biomarker-independent manner, thus, free of any bias related to the use of antibodies, and can be potentially a universal system for detection of live CTCs of any tumor type, not limited to CTCs of epithelial origin. Furthermore, we demonstrate for the first time that VACV was effective in preventing and reducing circulating tumor cells in mice bearing human tumor xenografts. Importantly, a single intra-peritoneal delivery of VACV resulted in a dramatic decline in the number of tumor cells in the ascitic fluid from a patient with gastric cancer. Taken together, these results suggest VACV to be a useful tool for quantitative detection of live tumor cells in liquid biopsies as well as a potentially effective treatment for reducing or eliminating live tumor cells in body fluids of patients with metastatic disease.

  19. Single-cell intracellular nano-pH probes†

    OpenAIRE

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular p...

  20. Single-cell magnetic imaging using a quantum diamond microscope.

    Science.gov (United States)

    Glenn, D R; Lee, K; Park, H; Weissleder, R; Yacoby, A; Lukin, M D; Lee, H; Walsworth, R L; Connolly, C B

    2015-08-01

    We apply a quantum diamond microscope for detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and a field of view (∼1 mm(2)) two orders of magnitude larger than that of previous NV imaging technologies, enabling practical applications. To illustrate, we quantified cancer biomarkers expressed by rare tumor cells in a large population of healthy cells.

  1. Radiologic findings of ovarian granulosa cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Chul [Chungnam National Univ. College of Medicine, Taejon (Korea, Republic of)

    1997-10-01

    To determine, through an analysis of radiologic findings, whether the findings of granulosa cell tumors (GCTs) of the ovary are specific. The radiologic findings (ultrasonography, computed tomography, and magnetic resonance imaging) of 16 pathologically proven ovarian GCTs in 15 patients were retrospectively analysed for the site of origin, staging, largest diameter, margin, solid and/or cystic components, degree of enhancement, and associated endometrial hyperplasia, ascites, and local and/or distant metastasis. Unilateral ovarian GCTs were found in 14 patients, and bilateral tumors in one. Of a total of 16 tumors, 13 were of the adult type, and three were juvenile; their largest diameter ranged from 1 to 26(mean, 15.6)cm. Eleven tumors were well-defined, two were cystic, and one small tumor was solid. Of 13 mixed tumors, three had hemorrhagic portions, and five had multilocular cystic portions. Metastases to the uterus, tubes, rectum, lymph nodes, or liver were found in six patients, and associated endometrial hyperplasia in two. Radiologically, ovarian GCTs showed well-defined or encapsulated soft tissue masses with some hemorrhagic, multilocular or focal cystic components, as well as associated endometrial thickening and local or distant metastasis. These and clinical findings may be useful in the diagnosis of ovarian GCTs.

  2. Microfluidic Platform for Circulating Tumor Cells Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Figueras-Mari, I.; Rodriguez-Trujillo, L.; Samitier-Marti, J.

    2016-07-01

    Circulating tumor cells (CTCs) are released from primary tumors into the bloodstream and transported to distant organs, promoting metastasis, which is known to be responsible for most cancer‐related deaths. Currently tumors are not found until symptoms appear or by chance when the patient undergoes a medical test, which in both situations can be too late. Once a tumor is found it is studied from tissue samples obtained directly from the patient in an invasive way. This invasive procedure is known as biopsy and apart from being invasive, it is costly, time consuming and can sometimes be painful and even risky for the patients’ health condition. Therefore, CTCs detection in blood also addressed as “liquid biopsy” would be very useful because by running routine blood analysis CTCs could be detected and collected suggesting tumor presence. However, due to the scarce presence in blood of these cells and to the huge amount of contamination from other cellular components a perfect method providing good capture and purity of CTCs has not been developed yet. In this project, a spiral size sorter microfluidic device has been manufactured and tested in order to determine its performance and limitations. Device performance was tested with different dilutions of healthy donor blood samples mixed with 30 micron particles simulating CTCs. The results obtained from these experiments show very good CTC recovery of up to 100% and the depletion of blood cellular components is around 99.9%. (Author)

  3. Single-level dynamic spiral CT of hepatocellular carcinoma: correlation between imaging features and tumor angiogenesis

    International Nuclear Information System (INIS)

    Chen Weixia; Min Pengqiu; Song Bin; Xiao Bangliang; Liu Yan; Wang Wendong; Chen Xian; Xu Jianying

    2001-01-01

    Objective: To investigate the correlation of the enhancement imaging features of hepatocellular carcinoma (HCC) and relevant parameters revealed by single-level dynamic spiral CT scanning with tumor microvessel counting (MVC). Methods: The study included 26 histopathologically proven HCC patients. Target-slice dynamic scanning and portal venous phase scanning were performed for all patients. The time-density curves were generated with measurement of relevant parameters including: peak value (PV) and contrast enhancement ratio (CER), and the gross enhancement morphology analyzed. Histopathological slides were carefully prepared for the standard F8RA and VEGF immunohistochemical staining and tumor microvessel counting and calculation of VEGF expression percentage of tumor cells. The enhancement imaging features of HCC lesions were correlatively studied with tumor MVC and VEGF expression. Results: Peak value of HCC lesions were 7.9 to 75.2 HU, CER were 3.8% to 36.0%. MVC were 6 to 91, and the VEGF expression percentage were 32.1% to 78.3%. The PV and CER were significantly correlated with tumor tissue MVC (r = 0.508 and 0.423, P < 0.01 and 0.05 respectively). There were no correlations between PV and CER and VEGF expression percentage. Both the patterns of time-density curve and the gross enhancement morphology of HCC lesions were also correlated with tumor MVC, and reflected the distribution characteristics of tumor microvessels within HCC lesions. A close association was found between the likelihood of intrahepatic metastasis of HCC lesions with densely enhanced pseudo capsules and the presence of rich tumor microvessels within these pseudo capsules. Conclusion: The parameters and the enhancement imaging features of HCC lesions on target-slice dynamic scanning are correlated with tumor MVC, and can reflect the distribution characteristics of tumor microvessels within HCC lesions. Dynamic spiral CT scanning is a valuable means to assess the angiogenic activity and

  4. Single-cell photoacoustic thermometry

    Science.gov (United States)

    Gao, Liang; Wang, Lidai; Li, Chiye; Liu, Yan; Ke, Haixin; Zhang, Chi

    2013-01-01

    Abstract. A novel photoacoustic thermometric method is presented for simultaneously imaging cells and sensing their temperature. With three-seconds-per-frame imaging speed, a temperature resolution of 0.2°C was achieved in a photo-thermal cell heating experiment. Compared to other approaches, the photoacoustic thermometric method has the advantage of not requiring custom-developed temperature-sensitive biosensors. This feature should facilitate the conversion of single-cell thermometry into a routine lab tool and make it accessible to a much broader biological research community. PMID:23377004

  5. Skin metastasis from conventional giant cell tumor of bone: conceptual significance

    International Nuclear Information System (INIS)

    Tyler, W.; Barrett, T.; Frassica, F.; McCarthy, E.

    2002-01-01

    A conventional giant cell tumor of the proximal femur recurred twice locally and developed pulmonary nodules. The lung lesions were felt to be an example of ''benign'' metastases. Eight months after the initial presentation, the patient developed a single skin nodule on the contralateral leg. Histologic features of the skin nodule showed conventional giant cell tumor identical to the bone lesion. This nodule is a manifestation of arterial metastasis typical of any malignant tumor and seemingly contradicts the concept of ''benign '' metastasis. (orig.)

  6. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors

    Science.gov (United States)

    Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.

    2014-01-01

    Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744

  7. Intravital imaging of cancer stem cell plasticity in mammary tumors

    NARCIS (Netherlands)

    Zomer, A.; Ellenbroek, S.I.; Ritsma, L.; Beerling, E.; Vrisekoop, N.; van Rheenen, J.

    2013-01-01

    It is widely debated whether all tumor cells in mammary tumors have the same potential to propagate and maintain tumor growth or whether there is a hierarchical organization. Evidence for the latter theory is mainly based on the ability or failure of transplanted tumor cells to produce detectable

  8. In Vitro Efficient Expansion of Tumor Cells Deriving from Different Types of Human Tumor Samples

    Directory of Open Access Journals (Sweden)

    Ilaria Turin

    2014-03-01

    Full Text Available Obtaining human tumor cell lines from fresh tumors is essential to advance our understanding of antitumor immune surveillance mechanisms and to develop new ex vivo strategies to generate an efficient anti-tumor response. The present study delineates a simple and rapid method for efficiently establishing primary cultures starting from tumor samples of different types, while maintaining the immuno-histochemical characteristics of the original tumor. We compared two different strategies to disaggregate tumor specimens. After short or long term in vitro expansion, cells analyzed for the presence of malignant cells demonstrated their neoplastic origin. Considering that tumor cells may be isolated in a closed system with high efficiency, we propose this methodology for the ex vivo expansion of tumor cells to be used to evaluate suitable new drugs or to generate tumor-specific cytotoxic T lymphocytes or vaccines.

  9. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  10. Bone single photon emission computed tomography (SPECT in a patient with Pancoast tumor: a case report

    Directory of Open Access Journals (Sweden)

    Hamid Javadi

    Full Text Available CONTEXT: Non-small cell lung carcinomas (NSCLCs of the superior sulcus are considered to be the most challenging type of malignant thoracic disease. In this disease, neoplasms originating mostly from the extreme apex of the lung expand to the chest wall and thoracic inlet structures. Multiple imaging procedures have been applied to identify tumors and to stage and predict tumor resectability in surgical operations. Clinical examinations to localize pain complaints in shoulders and down the arms, and to screen for Horner's syndrome and abnormalities seen in paraclinical assessments, have been applied extensively for differential diagnosis of superior sulcus tumors. Although several types of imaging have been utilized for diagnosing and staging Pancoast tumors, there have been almost no reports on the efficiency of whole-body bone scans (WBBS for detecting the level of abnormality in cases of superior sulcus tumors. CASE REPORT: We describe a case of Pancoast tumor in which technetium-99m methylene diphosphonate (Tc-99m MDP bone single-photon emission-computed tomography (SPECT was able to accurately detect multiple areas of abnormality in the vertebrae and ribs. In describing this case, we stress the clinical and diagnostic points, in the hope of stimulating a higher degree of suspicion and thereby facilitating appropriate diagnosis and treatment. From the results of this study, further clinical trials to evaluate the potential of SPECT as an efficient imaging tool for the work-up on cases of Pancoast tumor are recommended.

  11. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Helbig, Linda [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Koi, Lydia [OncoRay–National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Deutsches Konsortium für Translationale Krebsforschung, Site Dresden, Dresden (Germany); Brüchner, Kerstin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Institute of Radiooncology Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Gurtner, Kristin [Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden (Germany); Hess-Stumpp, Holger; Unterschemmann, Kerstin [Global Drug Discovery, Bayer Pharma, Berlin (Germany); Pruschy, Martin [Radiation Oncology, University of Zurich, Zurich (Switzerland); and others

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD{sub 50}) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD{sub 50}, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD{sub 50}. Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of

  12. Cells competition in tumor growth poroelasticity

    Science.gov (United States)

    Fraldi, Massimiliano; Carotenuto, Angelo R.

    2018-03-01

    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  13. Are Breast Tumor Stem Cells Responsible for Metastasis and Angiogenesis?

    National Research Council Canada - National Science Library

    Pan, Quintin

    2005-01-01

    .... The current dogma of metastasis is that most primary tumor cells have low metastatic potential, but rare cells, less than one in ten million, within large primary tumors acquire metastatic capacity...

  14. Granular cell tumors of the urinary bladder

    Directory of Open Access Journals (Sweden)

    Kayani Naila

    2007-03-01

    Full Text Available Abstract Background Granular cell tumors (GCTs are extremely rare lesions of the urinary bladder with only nine cases being reported in world literature of which one was malignant. Generally believed to be of neural origin based on histochemical, immunohistochemical, and ultrastructural studies; they mostly follow a clinically benign course but are commonly mistaken for malignant tumors since they are solid looking, ulcerated tumors with ill-defined margins. Materials and methods We herein report two cases of GCTs, one benign and one malignant, presenting with gross hematuria in a 14- and a 47-year-old female, respectively. Results Histopathology revealed characteristic GCTs with positive immunostaining for neural marker (S-100 and negative immunostaining for epithelial (cytokeratin, Cam 5.2, AE/A13, neuroendocrine (neuron specific enolase, chromogranin A, and synaptophysin and sarcoma (desmin, vimentin markers. The benign tumor was successfully managed conservatively with transurethral resection alone while for the malignant tumor, radical cystectomy, hysterectomy with bilateral salpingo-oophorectomy, anterior vaginectomy, plus lymph node dissection was done. Both cases show long-term disease free survival. Conclusion We recommend careful pathologic assessment for establishing the appropriate diagnosis and either a conservative or aggressive surgical treatment for benign or localized malignant GCT of the urinary bladder, respectively.

  15. Does Royal jelly affect tumor cells?

    Directory of Open Access Journals (Sweden)

    Shirzad Maryam

    2013-04-01

    Full Text Available Introduction: Royal jelly is a substance that appears to be effective on immune system and it appears to be effective on both prevention and growth of cancer cells. In this study, we aimed to carry out a research to investigate the effect of royal jelly on the growth of WEHI-164 fibrosarcoma cell in syngenic Balb/c mice. Methods: In an experimental study, 28 male Balb/c mice were designated into four equal groups. The mice were subcutaneously injected with 5x105 WEHI-164 tumor cells on the day zero in the chest area of the animal. Animals in groups 1 to 4 were orally given 100, 200, 300 mg/kg of royal jelly or vehicle, respectively. In every individual mouse, the tumour size was measured every 2 days from day 5 (days 5, 7, 9, 11, 13, 15 and 17. Data were statistically analyzed using Kruskal-Wallis and Mann Whitney-U tests. Result: Our results showed that the mean size of tumor in case group was significantly smaller than the control group in days 11, 13, 15 and 17 (P<0.05. No metastasis was seen in test and control groups. Conclusion: With emphasize on antitumor effect of royal jelly, it seems that royal jelly has important role in control and regression of fibrosarcoma cells. Since royal jelly showed a delayed effect in control of fibrosarcoma, we suggest that royal jelly be used at least 10 days before tumor inoculation.

  16. Circulating Tumor Cells Measurements in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Franck Chiappini

    2012-01-01

    Full Text Available Liver cancer is the fifth most common cancer in men and the seventh in women. During the past 20 years, the incidence of HCC has tripled while the 5-year survival rate has remained below 12%. The presence of circulating tumor cells (CTC reflects the aggressiveness nature of a tumor. Many attempts have been made to develop assays that reliably detect and enumerate the CTC during the development of the HCC. In this case, the challenges are (1 there are few markers specific to the HCC (tumor cells versus nontumor cells and (2 they can be used to quantify the number of CTC in the bloodstream. Another technical challenge consists of finding few CTC mixed with million leukocytes and billion erythrocytes. CTC detection and identification can be used to estimate prognosis and may serve as an early marker to assess antitumor activity of treatment. CTC can also be used to predict progression-free survival and overall survival. CTC are an interesting source of biological information in order to understand dissemination, drug resistance, and treatment-induced cell death. Our aim is to review and analyze the different new methods existing to detect, enumerate, and characterize the CTC in the peripheral circulation of patients with HCC.

  17. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells.

    Science.gov (United States)

    Testa, Ugo; Pelosi, Elvira; Castelli, Germana

    2018-04-13

    Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.

  18. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    Science.gov (United States)

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  19. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  20. Circulating tumor cells: clinical validity and utility.

    Science.gov (United States)

    Cabel, Luc; Proudhon, Charlotte; Gortais, Hugo; Loirat, Delphine; Coussy, Florence; Pierga, Jean-Yves; Bidard, François-Clément

    2017-06-01

    Circulating tumor cells (CTCs) are rare tumor cells and have been investigated as diagnostic, prognostic and predictive biomarkers in many types of cancer. Although CTCs are not currently used in clinical practice, CTC studies have accumulated a high level of clinical validity, especially in breast, lung, prostate and colorectal cancers. In this review, we present an overview of the current clinical validity of CTCs in metastatic and non-metastatic disease, and the main concepts and studies investigating the clinical utility of CTCs. In particular, this review will focus on breast, lung, colorectal and prostate cancer. Three major topics concerning the clinical utility of CTC are discussed-(1) treatment based on CTCs used as liquid biopsy, (2) treatment based on CTC count or CTC variations, and (3) treatment based on CTC biomarker expression. A summary of published or ongoing phase II and III trials is also presented.

  1. Repair in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Wanna-Nakamura, S.S.

    1981-01-01

    Unscheduled DNA synthesis (UDS), an indicator of excision repair, was induced in freshly drawn Ehrlich ascites tumor cells (EAT), using ionizing radiation, far ultraviolet light (254 nm) or near uv light (365 nm) in combination with 8-methoxypsoralen. UDS was scored by grain counts in autoradiographs following the incorporation of tritium-labelled thymidine. The amount of UDS after each of these agents was expressed in terms of two parameters, viz. numer of cells showing repair and the mean number of grains per nucleus. The influence of radiation dose and of the duration of radioactive thymidine incubation were also examined. To test for a possible relationship between low mitotic index and repair capability, EAT cells were incubated in buffered salt media to lower the mitotic index. Cells kept in a buffered salt solution for 7 h show a marked drop in mitotic index compared to those incubated in minimal medium containing 15% fetal calf serum (MEM + FCS). This drop in mitotic index was reversible for up to 5 h, if cells were returned to MEM + FCS. Cells incubated in MEM + FCS also showed a decrease in mitotic activity compared to freshly drawn cells. This reduced mitotic index is approximately constant for up to 24 h. With the drop in mitotic index, EAT cells also show a drop in repair compared to freshly drawn cells. The repair capability of cells incubated in buffer can be restored by returning cells to MEM + FCS

  2. Relationship between laminin binding capacity and laminin expression on tumor cells sensitive or resistant to natural cell-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Laybourn, K.A.; Varani, J.; Fligiel, S.E.G.; Hiserodt, J.C.

    1986-01-01

    Previous studies have identified the presence of laminin binding sites on murine NK and NC sensitive tumor cells by 125 I-laminin binding and laminin induced cell-cell aggregation. The finding that the addition of exogenous laminin inhibits NK/NC binding to sensitive tumor cells suggests laminin binding sites may serve as target antigens for NK cells. The present study extends earlier reports by analyzing a large panel of tumor cells for laminin binding capacity, laminin expression and sensitivity to NK/NC killing. The data indicate that all tumor cells which bind to NK/NC cells (8 lines tested) express laminin binding sites. All of these tumor cells were capable of competing for NK lysis of YAC-1 cells in cold target competition assays, and all bound enriched NK cells in direct single cell binding assays. In contrast, tumor cells expressing high levels of surface laminin (B16 melanomas, C57B1/6 fibrosarcomas, and RAS transfected 3T3 fibroblasts) but low levels of laminin binding capacity did not bind NK/NC cells and were resistant to lysis. These data support the hypothesis that expression of laminin/laminin binding sites may contribute to tumor cell sensitivity to NK/NC binding and/or killing

  3. Genetic instability in nerve sheath cell tumors

    DEFF Research Database (Denmark)

    Rogatto, Silvia Regina; Casartelli, Cacilda; Rainho, Claudia Aparecida

    1995-01-01

    After in vitro culture, we analyzed cytogenetically four acoustic nerve neurinomas, one intraspinal neurinoma and one neurofibroma obtainedfrom unrelated patients. Monosomy of chromosomes 22 and 16 was an abnormality common to all cases, followed in frequency by loss of chromosomes 18 (three cases...... by the presence of polyploid cells with inconsistent abnormalities, endoreduplications and telomeric associations resulting in dicentric chromosomes. It is probable that these cytogenetic abnormalities represent some kind of evolutionary advantage for the in vitro progression of nerve sheath tumors....

  4. Mast cells: potential positive and negative roles in tumor biology.

    Science.gov (United States)

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  5. Experimental induction of ovarian Sertoli cell tumors in rats by N-nitrosoureas.

    Science.gov (United States)

    Maekawa, A; Onodera, H; Tanigawa, H; Furuta, K; Kanno, J; Ogiu, T; Hayashi, Y

    1987-01-01

    Spontaneous ovarian tumors are very rare in ACI, Wistar, F344 and Donryu rats; the few neoplasms found are of the granulosa/theca cell type. Ovarian tumors were also rare in these strains of rats when given high doses of N-alkyl-N-nitrosoureas continuously in the drinking water for their life-span; however, relatively high incidences of Sertoli cell tumors or Sertoli cell tumors mixed with granulosa cell tumors were induced in Donryu rats after administration of either a 400 ppm N-ethyl-N-nitrosourea solution in the drinking water for 4 weeks or as a single dose of 200 mg N-propyl-N-nitrosourea per kg body weight by stomach tube. Typical Sertoli cell tumors consisted of solid areas showing tubular formation. The tubules were lined by tall, columnar cells, with abundant, faintly eosinophilic, often vacuolated cytoplasm, and basally oriented, round nuclei, resembling seminiferous tubules in the testes. In some cases, Sertoli cell tumor elements were found mixed with areas of granulosa cells. The induction of ovarian Sertoli cell tumors in Donryu rats by low doses of nitrosoureas may provide a useful model for these tumors in man. Images PLATE 1. PLATE 2. PLATE 3. PLATE 4. PLATE 5. PLATE 6. PLATE 7. PLATE 8. PLATE 9. PLATE 10. PLATE 11. PLATE 12. PLATE 13. PLATE 14. PLATE 15. PLATE 16. PMID:3665856

  6. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    International Nuclear Information System (INIS)

    Streeter, P.R.; Fortner, G.W.

    1986-01-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes

  7. Giant Cell Tumors of the Axial Skeleton

    Directory of Open Access Journals (Sweden)

    Maurice Balke

    2012-01-01

    Full Text Available Background. We report on 19 cases of giant cell tumor of bone (GCT affecting the spine or sacrum and evaluate the outcome of different treatment modalities. Methods. Nineteen patients with GCT of the spine (=6 or sacrum (=13 have been included in this study. The mean followup was 51.6 months. Ten sacral GCT were treated by intralesional procedures of which 4 also received embolization, and 3 with irradiation only. All spinal GCT were surgically treated. Results. Two (15.4% patients with sacral and 4 (66.7% with spinal tumors had a local recurrence, two of the letter developed pulmonary metastases. One local recurrence of the spine was successfully treated by serial arterial embolization, a procedure previously described only for sacral tumors. At last followup, 9 patients had no evidence of disease, 8 had stable disease, 1 had progressive disease, 1 died due to disease. Six patients had neurological deficits. Conclusions. GCT of the axial skeleton have a high local recurrence rate. Neurological deficits are common. En-bloc spondylectomy combined with embolization is the treatment of choice. In case of inoperability, serial arterial embolization seems to be an alternative not only for sacral but also for spinal tumors.

  8. Vertebral bony tumor of giant cells

    International Nuclear Information System (INIS)

    Jaramillo Carling, Eduardo

    2005-01-01

    This is a report of a 37 years old, masculine patient, in whom a unique primary bone injury was demonstrated, located at T-11, diagnosed as a giant cells tumor (osteoclastoma). Location is described in the literature as unusual. The clinical presentation of the injury is described, as the initial radiological studies and magnetic resonance images 8 years after surgical treatment, with no neoplasic recurrences. The medical literature of these primary bone injuries and its treatment was also reviewed. Objectives: to present a patient with an unusual extramedullar tumor injury, of primary bone origin, benign, treated surgically and who has a post surgical follow-up of 8 years. Local tumor recurrence and not pulmonary metastasis was demonstrated. The medical literature of this bone pathology that affects the spine in an infrequent manner, was also reviewed, specially the related to medical, surgical and radio-therapeutic treatments. Methodology: the clinical history of the patient is described, who was successfully operated, because the expansive tumor was totally drawn out, without neurological injury; inter operating or post-operating vertebral instability was not observed or diagnosed. The patient was controlled in periodic form, with last medical checkup and of magnetic resonance 8 years after the surgery. The medical publications existing are reviewed

  9. Littoral cell angioma mimicking metastatic tumors

    Directory of Open Access Journals (Sweden)

    Szumilo Justyna

    2015-12-01

    Full Text Available Littoral cell angioma is a rare primary, vascular tumor thought to originate from the endothelial cells lining the sinuses of the splenic red pulp (the “littoral cells”. It is a benign, usually asymptomatic lesion diagnosed incidentally. Ultrasound and tomography appearance is not characteristic and histopathological examination is required. This work provides a case-study of littoral cell angioma which was seen in a 55-year-old female who complained of non-specific upper abdominal pain. Computed tomography revealed multiple hypo-attenuated splenic lesions suggestive for metastasis. A splenectomy was performed and routine microscopic examination supported by immunohistochemistry reactions with CD68, CD34 and CD31 showed littoral cell angioma.

  10. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.

    Science.gov (United States)

    Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2016-01-01

    The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    OpenAIRE

    Baay, Marc; Brouwer, Anja; Pauwels, Patrick; Peeters, Marc; Lardon, Filip

    2011-01-01

    Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages pro...

  12. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Peter R. C. Gascoyne

    2014-03-01

    Full Text Available Dielectrophoresis (DEP is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a the principles of DEP; (b the biological basis for the dielectric differences between CTCs and blood cells; (c why such differences are expected to be present for all types of tumors; and (d instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  13. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, Peter R. C., E-mail: pgascoyn@mdanderson.org [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Shim, Sangjo [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712 (United States); Present address: Micro & Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, 208 North Wright Street, Urbana, IL 61801 (United States)

    2014-03-12

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  14. Isolation of Circulating Tumor Cells by Dielectrophoresis

    International Nuclear Information System (INIS)

    Gascoyne, Peter R. C.; Shim, Sangjo

    2014-01-01

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies

  15. Circulating Tumor Cells, Enumeration and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jian-Mei [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Krebs, Matthew [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Christie Hospital Foundation NHS Trust, Manchester M20 4BX (United Kingdom); Ward, Tim; Morris, Karen; Sloane, Robert [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Blackhall, Fiona [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); School of Cancer and Enabling Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, Manchester M20 4BX (United Kingdom); Christie Hospital Foundation NHS Trust, Manchester M20 4BX (United Kingdom); Dive, Caroline, E-mail: cdive@picr.man.ac.uk [Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); School of Cancer and Enabling Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, Manchester M20 4BX (United Kingdom)

    2010-06-09

    The detection and enumeration of circulating tumor cells (CTCs) has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology.

  16. Circulating tumor cells in breast cancer.

    Science.gov (United States)

    Bidard, Francois-Clement; Proudhon, Charlotte; Pierga, Jean-Yves

    2016-03-01

    Over the past decade, technically reliable circulating tumor cell (CTC) detection methods allowed the collection of large datasets of CTC counts in cancer patients. These data can be used either as a dynamic prognostic biomarker or as tumor material for "liquid biopsy". Breast cancer appears to be the cancer type in which CTC have been the most extensively studied so far, with level-of-evidence-1 studies supporting the clinical validity of CTC count in both early and metastatic stage. This review summarizes and discusses the clinical results obtained in breast cancer patients, the issues faced by the molecular characterization of CTC and the biological findings about cancer biology and metastasis that were obtained from CTC. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Circulating Tumor Cells, Enumeration and Beyond

    International Nuclear Information System (INIS)

    Hou, Jian-Mei; Krebs, Matthew; Ward, Tim; Morris, Karen; Sloane, Robert; Blackhall, Fiona; Dive, Caroline

    2010-01-01

    The detection and enumeration of circulating tumor cells (CTCs) has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology

  18. Circulating Tumor Cells, Enumeration and Beyond

    Directory of Open Access Journals (Sweden)

    Jian-Mei Hou

    2010-06-01

    Full Text Available The detection and enumeration of circulating tumor cells (CTCs has shown significant clinical utility with respect to prognosis in breast, colorectal and prostate cancers. Emerging studies show that CTCs can provide pharmacodynamic information to aid therapy decision making. CTCs as a ‘virtual and real-time biopsy’ have clear potential to facilitate exploration of tumor biology, and in particular, the process of metastasis. The challenge of profiling CTC molecular characteristics and generating CTC signatures using current technologies is that they enrich rather than purify CTCs from whole blood; we face the problem of looking for the proverbial ‘needle in the haystack’. This review summarizes the current methods for CTC detection and enumeration, focuses on molecular characterization of CTCs, unveils some aspects of CTC heterogeneity, describes attempts to purify CTCs and scans the horizon for approaches leading to comprehensive dissection of CTC biology.

  19. The role of granulocyte macrophage colony stimulating factor (GM-CSF) in radiation-induced tumor cell migration.

    Science.gov (United States)

    Vilalta, Marta; Brune, Jourdan; Rafat, Marjan; Soto, Luis; Graves, Edward E

    2018-03-13

    Recently it has been observed in preclinical models that that radiation enhances the recruitment of circulating tumor cells to primary tumors, and results in tumor regrowth after treatment. This process may have implications for clinical radiotherapy, which improves control of a number of tumor types but which, despite continued dose escalation and aggressive fractionation, is unable to fully prevent local recurrences. By irradiating a single tumor within an animal bearing multiple lesions, we observed an increase in tumor cell migration to irradiated and unirradiated sites, suggesting a systemic component to this process. Previous work has identified the cytokine GM-CSF, produced by tumor cells following irradiation, as a key effector of this process. We evaluated the ability of systemic injections of a PEGylated form of GM-CSF to stimulate tumor cell migration. While increases in invasion and migration were observed for tumor cells in a transwell assay, we found that daily injections of PEG-GM-CSF to tumor-bearing animals did not increase migration of cells to tumors, despite the anticipated changes in circulating levels of granulocytes and monocytes produced by this treatment. Combination of PEG-GM-CSF treatment with radiation also did not increase tumor cell migration. These findings suggest that clinical use of GM-CSF to treat neutropenia in cancer patients will not have negative effects on the aggressiveness of residual cancer cells. However, further work is needed to characterize the mechanism by which GM-CSF facilitates systemic recruitment of trafficking tumor cells to tumors.

  20. Tumor Cells Express FcγRl Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    Directory of Open Access Journals (Sweden)

    M. Bud Nelson

    2001-01-01

    Full Text Available High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRl expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, and sequence analysis. Immune complexes containing shed tumor antigen and anti-shed tumor antigen Ab cross-linked FcγRl-expressing tumor cells, which resulted in an induction of tumor cell proliferation and of shed tumor antigen production. Use of selective tyrosine kinase inhibitors demonstrated that tumor cell proliferation induced by immune complex cross-linking of FcγRl is dependent on the tyrosine kinase signal transduction pathway. A selective inhibitor of phosphatidylinositol-3 kinase also inhibited this induction of tumor cell proliferation. These findings support a role for immune complexes and FcγRl expression by tumor cells in augmentation of tumor growth and a metastatic phenotype.

  1. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  2. Novel radiosensitizers for locally advanced epithelial tumors: inhibition of the PI3K/Akt survival pathway in tumor cells and in tumor-associated endothelial cells as a novel treatment strategy?

    International Nuclear Information System (INIS)

    Riesterer, Oliver; Tenzer, Angela; Zingg, Daniel; Hofstetter, Barbara; Vuong, Van; Pruschy, Martin; Bodis, Stephan

    2004-01-01

    In locally advanced epithelial malignancies, local control can be achieved with high doses of radiotherapy (RT). Concurrent chemoradiotherapy can improve tumor control in selected solid epithelial adult tumors; however, treatment-related toxicity is of major concern and the therapeutic window often small. Therefore, novel pharmacologic radiosensitizers with a tumor-specific molecular target and a broad therapeutic window are attractive. Because of clonal heterogeneity and the high mutation rate of these tumors, combined treatment with single molecular target radiosensitizers and RT are unlikely to improve sustained local tumor control substantially. Therefore, radiosensitizers modulating entire tumor cell survival pathways in epithelial tumors are of potential clinical use. We discuss the preclinical efficacy and the mechanism of three different, potential radiosensitizers targeting the PTEN/PI3K/Akt survival pathway. These compounds were initially thought to act as single-target agents against growth factor receptors (PKI 166 and PTK 787) or protein kinase C isoforms (PKC 412). We describe an additional target for these compounds. PKI 166 (an epidermal growth factor [EGF] receptor inhibitor) and PKC 412, target the PTEN/PI3K/Akt pathway mainly in tumor cells, and PTK 787 (a vascular endothelial growth factor [VEGF] receptor inhibitor) in endothelial cells. Even for these broader range molecular radiosensitizers, the benefit could be restricted to human epithelial tumor cell clones with a distinct molecular profile. Therefore, these potential radiosensitizers have to be carefully tested in specific model systems before introduction in early clinical trials

  3. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Li, Yingrui; Xu, Xun; Song, Luting

    2012-01-01

    sequencing of 66 individual tumor cells from a muscle-invasive bladder transitional cell carcinoma (TCC). Analyses of the somatic mutant allele frequency spectrum and clonal structure revealed that the tumor cells were derived from a single ancestral cell, but that subsequent evolution occurred, leading...... to two distinct tumor cell subpopulations. By analyzing recurrently mutant genes in an additional cohort of 99 TCC tumors, we identified genes that might play roles in the maintenance of the ancestral clone and in the muscle-invasive capability of subclones of this bladder cancer, respectively...

  4. Childhood Central Nervous System Germ Cell Tumors Treatment

    Science.gov (United States)

    ... make hormones. Yolk sac tumors make the hormone alpha-fetoprotein (AFP). Mixed germ cell tumors are made of ... used to diagnose some CNS germ cell tumors: Alpha-fetoprotein (AFP). Beta-human chorionic gonadotropin (β-hCG). Blood ...

  5. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent

    Directory of Open Access Journals (Sweden)

    Hou L

    2015-07-01

    Full Text Available Lin Hou,* Huijuan Zhang,* Yating Wang, Lili Wang, Xiaomin Yang, Zhenzhong ZhangSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China*These authors contributed equally to this workAbstract: A tumor-targeting carrier, hyaluronic acid (HA-functionalized single-walled carbon nanotubes (SWCNTs, was explored to deliver magnetic resonance imaging (MRI contrast agents (CAs targeting to the tumor cells specifically. In this system, HA surface modification for SWCNTs was simply accomplished by amidation process and could make this nanomaterial highly hydrophilic. Cellular uptake was performed to evaluate the intracellular transport capabilities of HA-SWCNTs for tumor cells and the uptake rank was HA-SWCNTs> SWCNTs owing to the presence of HA, which was also evidenced by flow cytometry. The safety evaluation of this MRI CAs was investigated in vitro and in vivo. It revealed that HA-SWCNTs could stand as a biocompatible nanocarrier and gadolinium (Gd/HA-SWCNTs demonstrated almost no toxicity compared with free GdCl3. Moreover, GdCl3 bearing HA-SWCNTs could significantly increase the circulation time for MRI. Finally, to investigate the MRI contrast enhancing capabilities of Gd/HA-SWCNTs, T1-weighted MR images of tumor-bearing mice were acquired. The results suggested Gd/HA-SWCNTs had the highest tumor-targeting efficiency and T1-relaxivity enhancement, indicating HA-SWCNTs could be developed as a tumor-targeting carrier to deliver the CAs, GdCl3, for the identifiable diagnosis of tumor.Keywords: gadolinium, magnetic resonance, SWCNTs, hyaluronic acid, contrast agent

  6. Genetic dissection of histone deacetylase requirement in tumor cells

    Science.gov (United States)

    Haberland, Michael; Johnson, Aaron; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylase inhibitors (HDACi) represent a new group of drugs currently being tested in a wide variety of clinical applications. They are especially effective in preclinical models of cancer where they show antiproliferative action in many different types of cancer cells. Recently, the first HDACi was approved for the treatment of cutaneous T cell lymphomas. Most HDACi currently in clinical development act by unspecifically interfering with the enzymatic activity of all class I HDACs (HDAC1, 2, 3, and 8), and it is widely believed that the development of isoform-specific HDACi could lead to better therapeutic efficacy. The contribution of the individual class I HDACs to different disease states, however, has so far not been fully elucidated. Here, we use a genetic approach to dissect the involvement of the different class I HDACs in tumor cells. We show that deletion of a single HDAC is not sufficient to induce cell death, but that HDAC1 and 2 play redundant and essential roles in tumor cell survival. Their deletion leads to nuclear bridging, nuclear fragmentation, and mitotic catastrophe, mirroring the effects of HDACi on cancer cells. These findings suggest that pharmacological inhibition of HDAC1 and 2 may be sufficient for anticancer activity, providing an experimental framework for the development of isoform-specific HDAC inhibitors. PMID:19416910

  7. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    International Nuclear Information System (INIS)

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G.

    1989-01-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity

  8. Radiocolloid Uptake in the Pancreas Islet Cell Tumor: Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. J.; Chung, S. K.; Yeon, S. K.; Shinn, K. S.; Bahk, Y. W. [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1994-03-15

    Colloid uptake in various hepatic conditions such as focal nodular hyperplasia, regenerating nodular in the cirrhotic liver, hamartoma, hemangioma and rarely hepatoma has been documented. Extrahepatic tumors may show colloid uptake and they include splenic hemangioma, malignant fibrous histiocytoma, breast carcinoma and Kaposi's sarcoma. The mechanism of colloid uptake in those lesions is associated with phagocytic activity in or around the tumors. We report a pancreas islet cell tumor that showed colloid uptake on {sup 99m}Tc-phytate liver scan without histologic evidence of phagocytosis by tumor cells or infiltration of phagocytes in the tumor. Microscopically the tumor was highly vascular and showed diffuse hemorrhage throughout the tumor. We postulated that extravasation of the colloid into the tumor interstitium caused nonspecific colloid uptake in this tumor. It is expected that hemorrhagic tumor may show nonspecific colloid uptake without phagocytosis in or about the lesion.

  9. Radiocolloid Uptake in the Pancreas Islet Cell Tumor: Case Report

    International Nuclear Information System (INIS)

    Yang, W. J.; Chung, S. K.; Yeon, S. K.; Shinn, K. S.; Bahk, Y. W.

    1994-01-01

    Colloid uptake in various hepatic conditions such as focal nodular hyperplasia, regenerating nodular in the cirrhotic liver, hamartoma, hemangioma and rarely hepatoma has been documented. Extrahepatic tumors may show colloid uptake and they include splenic hemangioma, malignant fibrous histiocytoma, breast carcinoma and Kaposi's sarcoma. The mechanism of colloid uptake in those lesions is associated with phagocytic activity in or around the tumors. We report a pancreas islet cell tumor that showed colloid uptake on 99m Tc-phytate liver scan without histologic evidence of phagocytosis by tumor cells or infiltration of phagocytes in the tumor. Microscopically the tumor was highly vascular and showed diffuse hemorrhage throughout the tumor. We postulated that extravasation of the colloid into the tumor interstitium caused nonspecific colloid uptake in this tumor. It is expected that hemorrhagic tumor may show nonspecific colloid uptake without phagocytosis in or about the lesion.

  10. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  11. Circulating tumor cells in melanoma patients.

    Directory of Open Access Journals (Sweden)

    Gary A Clawson

    Full Text Available Circulating tumor cells (CTCs are of recognized importance for diagnosis and prognosis of cancer patients. With melanoma, most studies do not show any clear relationship between CTC levels and stage of disease. Here, CTCs were enriched (∼400X from blood of melanoma patients using a simple centrifugation device (OncoQuick, and 4 melanocyte target RNAs (TYR, MLANA, MITF, and MIF were quantified using QPCR. Approximately one-third of melanoma patients had elevated MIF and MLANA transcripts (p<0.0001 and p<0.001, respectively compared with healthy controls. In contrast, healthy controls had uniformly higher levels of TYR and MITF than melanoma patients (p<0.0001. There was a marked shift of leukocytes into the CTC-enriched fractions (a 430% increase in RNA recovery, p<0.001, and no relationship between CTC levels and stage of disease was found. CTCs were captured on microfabricated filters and cultured. Captured melanoma CTCs were large cells, and consisted of 2 subpopulations, based on immunoreactivity. One subpopulation (∼50% stained for both pan-cytokeratin (KRT markers and the common leukocyte marker CD-45, whereas the second subpopulation stained for only KRT. Since similar cells are described in many cancers, we also examined blood from colorectal and pancreatic cancer patients. We observed analogous results, with most captured CTCs staining for both CD-45/KRT markers (and for the monocyte differentiation marker CD-14. Our results suggest that immature melanocyte-related cells (expressing TYR and MITF RNA may circulate in healthy controls, although they are not readily detectable without considerable enrichment. Further, as early-stage melanomas develop, immature melanocyte migration into the blood is somehow curtailed, whereas a significant proportion of patients develop elevated CTC levels (based on MIF and MLANA RNAs. The nature of the captured CTCs is consistent with literature describing leukocyte/macrophage-tumor cell fusion hybrids

  12. Granular cell tumor of the esophagus. Report of three cases.

    Science.gov (United States)

    Cohle, S D; McKechnie, J C; Truong, L; Jurco, S

    1981-06-01

    Granular cell tumors, (formerly called myoblastomas) involving the esophagus were encountered in three patients. In all three the tumors were asymptomatic and in two they were multiple. The first published endoscopic photographs of such a tumor are presented. The successful total removal of this neoplasm using the endoscope is described. The pathologic, radiologic and therapeutic aspects of previously reported cases of granular cell tumor of the esophagus are reviewed and compared with the three reported herein.

  13. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system

    DEFF Research Database (Denmark)

    Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori

    2017-01-01

    , an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood...... a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice....

  14. Tumor cell culture on collagen–chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies

    Directory of Open Access Journals (Sweden)

    Aziz Mahmoudzadeh

    2016-07-01

    Full Text Available Tumor cells naturally live in three-dimensional (3D microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen–chitosan scaffold compared with 2D plate cultures. Collagen–chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen–chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies.

  15. Tumor cell culture on collagen-chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies.

    Science.gov (United States)

    Mahmoudzadeh, Aziz; Mohammadpour, Hemn

    2016-07-01

    Tumor cells naturally live in three-dimensional (3D) microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D) plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen-chitosan scaffold compared with 2D plate cultures. Collagen-chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen-chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies. Copyright © 2016. Published by Elsevier B.V.

  16. N-cadherin Expression in Testicular Germ Cell and Gonadal Stromal Tumors

    Directory of Open Access Journals (Sweden)

    Daniel J. Heidenberg, Joel H. Barton, Denise Young, Michael Grinkemeyer, Isabell A. Sesterhenn

    2012-01-01

    Full Text Available Neural-cadherin is a member of the cadherin gene family encoding the N-cadherin protein that mediates cell adhesion. N-cadherin is a marker of Sertoli cells and is also expressed in germ cells of varying stages of maturation. The purpose of this study was to determine the presence and distribution of this protein by immunohistochemistry in 105 germ cell tumors of both single and mixed histological types and 12 gonadal stromal tumors. Twenty-four germ cell tumors consisted of one cell type and the remaining were mixed. Of the 23 seminomas in either pure or mixed tumors, 74% were positive. Two spermatocytic seminomas were positive. Of the 83 cases with yolk sac tumor, 99% were positive for N-cadherin. The teratomas were positive in 73% in neuroectodermal and / or glandular components. In contrast, 87% of embryonal carcinomas did not express N-cadherin. Only 17% of the syncytiotrophoblastic cells were positive for N-cadherin. In conclusion, N-cadherin expression is very helpful in the identification of yolk sac tumors. In addition to glypican-3 and Sal-like protein 4, N-cadherin can be beneficial for the diagnosis and classification of this subtype of testicular germ cell tumor. Nine of the 12 gonadal stromal tumors were positive to a variable extent.

  17. Repair of potentially lethal and sublethal radiation damage in x-irradiated ascites tumor cells

    International Nuclear Information System (INIS)

    Tsuboi, Atsushi; Okamoto, Mieko; Tsuchiya, Takehiko.

    1985-01-01

    The ability of cells to repair cellular radiation damage during the growth of TMT-3 ascites tumor and the effect of host reaction on the repair ability were examined by using an in vitro assay of cell clonogenicity after in situ irradiation of tumor cells. In single-dose experiments, the repair of potentially lethal radiation damage (PLD) was observed in stationary phase cells (12-day tumor) of the unirradiated host, but not in exponential phase cells (3-day tumor) of the unirradiated host animals. However, if previously irradiated host animals were used, even the exponentially growing tumor cells showed repair of PLD. In two-dose experiments, the ability to repair sublethal radiation damage (SLD) in exponential phase tumor cells was less than that of stationary phase cells in the unirradiated host. In the pre-irradiated host, the extent of the repair in exponential phase cells was somewhat enhanced. These results suggest that irradiation of host animals might suppress a factor that inhibits repair, resulting in enhancement of the repair capability of tumor cells. (author)

  18. Single Cell Assay for Analyzing Single Cell Exosome and Endocrine Secretion and Cancer Markers

    Science.gov (United States)

    Chiu, Yu-Jui

    To understand the inhomogeneity of cells in biological systems, there is a growing demand for the capability to characterize the properties of individual single cells. Since single cell studies require continuous monitoring of the cell behaviors instead of a snapshot test at a single time point, an effective single-cell assay that can support time lapsed studies in a high throughput manner is desired. Most currently available single-cell technologies cannot provide proper environments to sustain cell growth and cannot provide, for appropriate cell types, proliferation of single cells and convenient, non-invasive tests of single cell behaviors from molecular markers. In this dissertation, I present a highly versatile single-cell assay that can accommodate different cellular types, enable easy and efficient single cell loading and culturing, and be suitable for the study of effects of in-vitro environmental factors in combination with drug screening. The salient features of the assay are the non-invasive collection and surveying of single cell secretions at different time points and massively parallel translocation of single cells by user defined criteria, producing very high compatibility to the downstream process such as single cell qPCR and sequencing. Above all, the acquired information is quantitative -- for example, one of the studies is measured by the number of exosomes each single cell secretes for a given time period. Therefore, our single-cell assay provides a convenient, low-cost, and enabling tool for quantitative, time lapsed studies of single cell properties.

  19. Non-cell autonomous or secretory tumor suppression.

    Science.gov (United States)

    Chua, Christelle En Lin; Chan, Shu Ning; Tang, Bor Luen

    2014-10-01

    Many malignancies result from deletions or loss-of-function mutations in one or more tumor suppressor genes, the products of which curb unrestrained growth or induce cell death in those with dysregulated proliferative capacities. Most tumor suppressors act in a cell autonomous manner, and only very few proteins are shown to exert a non-cell autonomous tumor suppressor function on other cells. Examples of these include members of the secreted frizzled-related protein (SFRP) family and the secreted protein acidic and rich in cysteine (SPARC)-related proteins. Very recent findings have, however, considerably expanded our appreciation of non-cell autonomous tumor suppressor functions. Broadly, this may occur in two ways. Intracellular tumor suppressor proteins within cells could in principle inhibit aberrant growth of neighboring cells by conditioning an antitumor microenvironment through secreted factors. This is demonstrated by an apparent non-cell autonomous tumor suppressing property of p53. On the other hand, a tumor suppressor produced by a cell may be secreted extracellularly, and taken up by another cell with its activity intact. Intriguingly, this has been recently shown to occur for the phosphatase and tensin homolog (PTEN) by both conventional and unconventional modes of secretion. These recent findings would aid the development of therapeutic strategies that seek to reinstate tumor suppression activity in therapeutically recalcitrant tumor cells, which have lost it in the first place. © 2014 Wiley Periodicals, Inc.

  20. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth.

    Science.gov (United States)

    Golubovskaya, Vita; Berahovich, Robert; Zhou, Hua; Xu, Shirley; Harto, Hizkia; Li, Le; Chao, Cheng-Chi; Mao, Mike Ming; Wu, Lijun

    2017-10-21

    CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  1. Studies on cross-immunity among syngeneic tumors by immunization with gamma-irradiated tumor cells

    International Nuclear Information System (INIS)

    Ito, Izumi

    1977-01-01

    In order to clarify whether cross-immunity among 3-methyl-cholanthrene (MCA)-induced sarcomas in C3H/He mice can be established or not, transplantations of syngeneic tumors were carried out in mice immunized with gamma-irradiated (13,000 rad 60 Co) tumor cells and in those immunized with living tumor cells thereafter. The following results were obtained. By using immunizing procedure with only gamma-irradiated tumor cells, a pair of tumors originating from one and the same mouse showed cross-resistance to each other. However, no such evidence was seen among tumors originating from different mice. Cross-immunity among syngeneic tumors originating from different mice could be clearly observed, when immunizing procedure using living tumor cells was added after the treatment with gamma-irradiated tumor cells. It was considered that common antigenicity among MCA-induced sarcoma cells was decreased by gamma-irradiation and that individual differences of tumor antigenecity were shown distinctly under such conditions. (auth.)

  2. Elucidate the Mechanism of Telomere Maintenance in STAG2 Mutated Tumor Cells

    Science.gov (United States)

    2017-12-01

    normal human cells.; Cancer Research; 2017. Nothing to report. Tumor and Stem Cell Biology Loss of Tumor Suppressor STAG2 Promotes Telomere...total G- strand telomeric DNA. Themean telomere lengthwas determinedusing Telometric (Fox Chase Cancer Center). C-circle assay The C-circle assay was...bodies (APB; ref. 36) and partially single- stranded telomeric extrachromosomal (CCCTAA) DNA circles (C-circles; ref. 27), and the absence of telomerase

  3. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    2017-05-01

    Full Text Available ABSTRACT The generation of T cells with maximal anti-tumor activities will significantly impact the field of T-cell-based adoptive immunotherapy. In this report, we found that OKT3/IL-2-stimulated T cells were phenotypically more heterogeneous, with enhanced anti-tumor activity in vitro and when locally administered in a solid tumor mouse model. To further improve the OKT3/IL-2-based T cell manufacturing procedure, we developed a novel T cell stimulation and expansion method in which peripheral blood mononuclear cells were electroporated with mRNA encoding a chimeric membrane protein consisting of a single-chain variable fragment against CD3 and the intracellular domains of CD28 and 4-1BB (OKT3-28BB. The expanded T cells were phenotypically and functionally similar to T cells expanded by OKT3/IL-2. Moreover, co-electroporation of CD86 and 4-1BBL could further change the phenotype and enhance the in vivo anti-tumor activity. Although T cells expanded by the co-electroporation of OKT3-28BB with CD86 and 4-1BBL showed an increased central memory phenotype, the T cells still maintained tumor lytic activities as potent as those of OKT3/IL-2 or OKT3-28BB-stimulated T cells. In different tumor mouse models, T cells expanded by OKT3-28BB RNA electroporation showed anti-tumor activities superior to those of OKT3/IL-2 T cells. Hence, T cells with both a less differentiated phenotype and potent tumor killing ability can be generated by RNA electroporation, and this T cell manufacturing procedure can be further optimized by simply co-delivering other splices of RNA, thus providing a simple and cost-effective method for generating high-quality T cells for adoptive immunotherapy.

  4. Single cell enzyme diagnosis on the chip

    DEFF Research Database (Denmark)

    Jensen, Sissel Juul; Harmsen, Charlotte; Nielsen, Mette Juul

    2013-01-01

    Conventional diagnosis based on ensemble measurements often overlooks the variation among cells. Here, we present a droplet-microfluidics based platform to investigate single cell activities. Adopting a previously developed isothermal rolling circle amplification-based assay, we demonstrate...... detection of enzymatic activities down to the single cell level with small quantities of biological samples, which outcompetes existing techniques. Such a system, capable of resolving single cell activities, will ultimately have clinical applications in diagnosis, prediction of drug response and treatment...

  5. Ovarian granulosa cell tumors : histopathology, immunopathology and prognosis

    NARCIS (Netherlands)

    S. Chadha-Ajwani (Savi)

    1987-01-01

    textabstractGranulosa cell tumors (GCT) of the ovary account for 2% of all ovarian tumors. As the name indicates, they are composed of granulosa cells but may also contain an admixture of theca cells. They are potentially malignant but, except for extraovarian spread, which is generally agreed

  6. Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern

    Science.gov (United States)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.

  7. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death.

    Science.gov (United States)

    Yadav, Saveg; Kujur, Praveen Kumar; Pandey, Shrish Kumar; Goel, Yugal; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra

    2018-01-15

    Evidences demonstrate that metabolic inhibitor 3-bromopyruvate (3-BP) exerts a potent antitumor action against a wide range of malignancies. However, the effect of 3-BP on progression of the tumors of thymic origin remains unexplored. Although, constituents of tumor microenvironment (TME) plays a pivotal role in regulation of tumor progression, it remains unclear if 3-BP can alter the composition of the crucial tumor growth regulatory components of the external surrounding of tumor cells. Thus, the present investigation attempts to understand the effect of 3-BP administration to a host bearing a progressively growing tumor of thymic origin on tumor growth regulatory soluble, cellular and biophysical components of tumor milieu vis-à-vis understanding its association with tumor progression, accompanying cell cycle events and mode of cell death. Further, the expression of cell survival regulatory molecules and hemodynamic characteristics of the tumor milieu were analysed to decipher mechanisms underlying the antitumor action of 3-BP. Administration of 3-BP to tumor-bearing hosts retarded tumor progression accompanied by induction of tumor cell death, cell cycle arrest, declined metabolism, inhibited mitochondrial membrane potential, elevated release of cytochrome c and altered hemodynamics. Moreover, 3-BP reconstituted the external milieu, in concurrence with deregulated glucose and pH homeostasis and increased tumor infiltration by NK cells, macrophages, and T lymphocytes. Further, 3-BP administration altered the expression of key regulatory molecules involved in glucose uptake, intracellular pH and tumor cell survival. The outcomes of this study will help in optimizing the therapeutic application of 3-BP by targeting crucial tumor growth regulatory components of tumor milieu. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Clinical relevance and biology of circulating tumor cells

    Science.gov (United States)

    2011-01-01

    Most breast cancer patients die due to metastases, and the early onset of this multistep process is usually missed by current tumor staging modalities. Therefore, ultrasensitive techniques have been developed to enable the enrichment, detection, isolation and characterization of disseminated tumor cells in bone marrow and circulating tumor cells in the peripheral blood of cancer patients. There is increasing evidence that the presence of these cells is associated with an unfavorable prognosis related to metastatic progression in the bone and other organs. This review focuses on investigations regarding the biology and clinical relevance of circulating tumor cells in breast cancer. PMID:22114869

  9. Individual motile CD4+ T cells can participate in efficient multi-killing through conjugation to multiple tumor cells

    Science.gov (United States)

    Liadi, Ivan; Singh, Harjeet; Romain, Gabrielle; Rey-Villamizar, Nicolas; Merouane, Amine; Adolacion, Jay R T.; Kebriaei, Partow; Huls, Helen; Qiu, Peng; Roysam, Badrinath; Cooper, Laurence J.N.; Varadarajan, Navin

    2015-01-01

    T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy In Nanowell Grids (TIMING) to provide direct evidence that CD4+CAR+ T cells (CAR4 cells) can engage in multi-killing via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8+CAR+ T cells (CAR8 cells) demonstrate that while CAR4 cells can participate in killing and multi-killing, they do so at slower rates, likely due to the lower Granzyme B content. Significantly, in both sets of T cells, a minor sub-population of individual T cells identified by their high motility, demonstrated efficient killing of single tumor cells. By comparing both the multi-killer and single killer CAR+ T cells it appears that the propensity and kinetics of T-cell apoptosis was modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR+ T cells to participate in multi-killing should be evaluated in the context of their ability to resist activation induced cell death (AICD). We anticipate that TIMING may be utilized to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR+ T cells with improved efficacy. PMID:25711538

  10. Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells.

    Science.gov (United States)

    Wang, Jianyu; Sun, Zhiwei; Liu, Yongli; Kong, Liangsheng; Zhou, Shixia; Tang, Junlin; Xing, Hongmei Rosie

    2017-11-14

    Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.

  11. The use of bispecific antibodies in tumor cell and tumor vasculature directed immunotherapy

    NARCIS (Netherlands)

    Molema, G; Kroesen, BJ; Helfrich, W; Meijer, DKF; de Leij, LFMH

    2000-01-01

    To overcome dose limiting toxicities and to increase efficacy of immunotherapy of cancer, a number of strategies are under development for selectively redirecting effector cells/molecules towards tumor cells. Many of these strategies exploit the specificity of tumor associated antigen recognition by

  12. Treatment Options for Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... tumors: Yolk sac tumors make a hormone called alpha-fetoprotein (AFP). They can form in the ovary, testicle, ... are used to detect extracranial germ cell tumors: Alpha-fetoprotein (AFP). Beta-human chorionic gonadotropin (β-hCG). For ...

  13. General Information about Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... tumors: Yolk sac tumors make a hormone called alpha-fetoprotein (AFP). They can form in the ovary, testicle, ... are used to detect extracranial germ cell tumors: Alpha-fetoprotein (AFP). Beta-human chorionic gonadotropin (β-hCG). For ...

  14. Flow cytometric DNA ploidy analysis of ovarian granulosa cell tumors

    NARCIS (Netherlands)

    D. Chadha; C.J. Cornelisse; A. Schabert (A.)

    1990-01-01

    textabstractAbstract The nuclear DNA content of 50 ovarian tumors initially diagnosed as granulosa cell tumors was measured by flow cytometry using paraffin-embedded archival material. The follow-up period of the patients ranged from 4 months to 19 years. Thirty-eight tumors were diploid or

  15. Distribution of 99Tcm-rh-Annexin vin tumor and expression relationship of bcl-2, bax after a single dose of chemotherapy

    International Nuclear Information System (INIS)

    Zhang Xin; Li Yaming; Zhang Yanjun; Tao Li; Zhu Yi; Yang Chun; Ji Xiaopeng; Zhao Ming; Tian Aijuan; Zhang Jianying; Zhao Zhenzhen

    2007-01-01

    The expression of bcl-2 and bax after the single dose of chemotherapy with 99 Tc m -rh-Annexin V as the tracer of tumor apoptosis imaging is studied. tumor cell apoptosis is examined by TUNEL methods, and the expression of bcl-2 and bax in tumor are determined by immunohistochemical methods. Single dose of chemotherapy significantly increased the tumor uptake of 99 Tc m -rh-annexin V and the positive number of TUNEL, as well as the expression of bax (P 99 Tc m -rh-annexin V in tumor reflectes not only the degree of apoptosis of tumor cells, but also the change of bax expression after the single dose of chemotherapy. (authors)

  16. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma

    Directory of Open Access Journals (Sweden)

    Spyros Darmanis

    2017-10-01

    Full Text Available Summary: Glioblastoma (GBM is the most common primary brain cancer in adults and is notoriously difficult to treat because of its diffuse nature. We performed single-cell RNA sequencing (RNA-seq on 3,589 cells in a cohort of four patients. We obtained cells from the tumor core as well as surrounding peripheral tissue. Our analysis revealed cellular variation in the tumor’s genome and transcriptome. We were also able to identify infiltrating neoplastic cells in regions peripheral to the core lesions. Despite the existence of significant heterogeneity among neoplastic cells, we found that infiltrating GBM cells share a consistent gene signature between patients, suggesting a common mechanism of infiltration. Additionally, in investigating the immunological response to the tumors, we found transcriptionally distinct myeloid cell populations residing in the tumor core and the surrounding peritumoral space. Our data provide a detailed dissection of GBM cell types, revealing an abundance of information about tumor formation and migration. : Darmanis et al. perform single-cell transcriptomic analyses of neoplastic and stromal cells within and proximal to primary glioblastomas. The authors describe a population of neoplastic-infiltrating glioblastoma cells as well as a putative role of tumor-infiltrating immune cells in supporting tumor growth. Keywords: single cell, RNA-seq, glioma, glioblastoma, GBM, brain, heterogeneity, infiltrating, diffuse, checkpoint

  17. Ultrasonic three-dimensional on-chip cell culture for dynamic studies of tumor immune surveillance by natural killer cells.

    Science.gov (United States)

    Christakou, Athanasia E; Ohlin, Mathias; Önfelt, Björn; Wiklund, Martin

    2015-08-07

    We demonstrate a simple method for three-dimensional (3D) cell culture controlled by ultrasonic standing waves in a multi-well microplate. The method gently arranges cells in a suspension into a single aggregate in each well of the microplate and, by this, nucleates 3D tissue-like cell growth for culture times between two and seven days. The microplate device is compatible with both high-resolution optical microscopy and maintenance in a standard cell incubator. The result is a scaffold- and coating-free method for 3D cell culture that can be used for controlling the cellular architecture, as well as the cellular and molecular composition of the microenvironment in and around the formed cell structures. We demonstrate the parallel production of one hundred synthetic 3D solid tumors comprising up to thousands of human hepatocellular carcinoma (HCC) HepG2 cells, we characterize the tumor structure by high-resolution optical microscopy, and we monitor the functional behavior of natural killer (NK) cells migrating, docking and interacting with the tumor model during culture. Our results show that the method can be used for determining the collective ability of a given number of NK cells to defeat a solid tumor having a certain size, shape and composition. The ultrasound-based method itself is generic and can meet any demand from applications where it is advantageous to monitor cell culture from production to analysis of 3D tissue or tumor models using microscopy in one single microplate device.

  18. Tumor cells and memory T cells converge at glycolysis

    Science.gov (United States)

    Karthikeyan, Swathi; Geschwind, Jean-Francois; Ganapathy-Kanniappan, Shanmugasundaram

    2014-01-01

    In the immune system, activation of naïve T (Tn) cells into effector T cells (Teff) involves a metabolic switch to glycolysis to promote rapid proliferation and differentiation. In the October issue of The Journal of Clinical Investigation, Sukumar et al. have demonstrated that in CD8+ memory T (Tems) cells glycolytic phenotype contributes to the shortened lifespan of Tems. Conversely, inhibition of glycolysis in Tems not only extended their viability but also augmented desirable properties. Notably, they also demonstrate that glycolytic inhibition during the ex vivo clonal expansion of tumor-specific Tems enhanced their antitumor function. Overall, the data suggest that an antiglycolytic strategy targeting the Tems could enhance antitumor immune response. On the other hand, cancer cells have long been known to exhibit metabolic reprogramming which involves a shift toward glycolysis (the conversion of glucose into lactate) to facilitate uninterrupted growth. Interestingly, antiglycolytic treatment of cancer cells has been known to trigger antitumor immune response as well. Taken together, it is probable that a strategy involving concurrent inhibition of glycolysis in tumor cells and Tems could promote a dual attack on cancer by inducing an effective antitumor immune response and an immunogenic chemotherapy. PMID:24556820

  19. Bone marrow micrometastases and circulating tumor cells: current aspects and future perspectives

    International Nuclear Information System (INIS)

    Müller, Volkmar; Pantel, Klaus

    2004-01-01

    Early tumor cell dissemination at the single-cell level can be revealed in patients with breast cancer by using sensitive immunocytochemical and molecular assays. Recent clinical studies involving more than 4000 breast cancer patients demonstrated that the presence of disseminated tumor cells in bone marrow at primary diagnosis is an independent prognostic factor. In addition, various assays for the detection of circulating tumor cells in the peripheral blood have recently been developed and some studies also suggest a potential clinical relevance of this measure. These findings provide the basis for the potential use of disseminated tumor cells in bone marrow or blood as markers for the early assessment of therapeutic response in prospective clinical trials

  20. Glycan Markers as Potential Immunological Targets in Circulating Tumor Cells.

    Science.gov (United States)

    Wang, Denong; Wu, Lisa; Liu, Xiaohe

    2017-01-01

    We present here an experimental approach for exploring a new class of tumor biomarkers that are overexpressed by circulating tumor cells (CTCs) and are likely targetable in immunotherapy against tumor metastasis. Using carbohydrate microarrays, anti-tumor monoclonal antibodies (mAbs) were scanned against a large panel of carbohydrate antigens to identify potential tumor glycan markers. Subsequently, flow cytometry and fiber-optic array scanning technology (FAST) were applied to determine whether the identified targets are tumor-specific cell-surface markers and are, therefore, likely suitable for targeted immunotherapy. Finally, the tumor glycan-specific antibodies identified were validated using cancer patients' blood samples for their performance in CTC-detection and immunotyping analysis. In this article, identifying breast CTC-specific glycan markers and targeting mAbs serve as examples to illustrate this tumor biomarker discovery strategy.

  1. Single-cell proteomics: potential implications for cancer diagnostics.

    Science.gov (United States)

    Gavasso, Sonia; Gullaksen, Stein-Erik; Skavland, Jørn; Gjertsen, Bjørn T

    2016-01-01

    Single-cell proteomics in cancer is evolving and promises to provide more accurate diagnoses based on detailed molecular features of cells within tumors. This review focuses on technologies that allow for collection of complex data from single cells, but also highlights methods that are adaptable to routine cancer diagnostics. Current diagnostics rely on histopathological analysis, complemented by mutational detection and clinical imaging. Though crucial, the information gained is often not directly transferable to defined therapeutic strategies, and predicting therapy response in a patient is difficult. In cancer, cellular states revealed through perturbed intracellular signaling pathways can identify functional mutations recurrent in cancer subsets. Single-cell proteomics remains to be validated in clinical trials where serial samples before and during treatment can reveal excessive clonal evolution and therapy failure; its use in clinical trials is anticipated to ignite a diagnostic revolution that will better align diagnostics with the current biological understanding of cancer.

  2. CT and MRI of germ-cell tumors with metastasis or multi-located tumors

    International Nuclear Information System (INIS)

    Miyagami, Mitsusuke; Tazoe, Makoto; Tsubokawa, Takashi

    1989-01-01

    Twenty-seven cases of germ-cell tumors were examined with a CT scan in our clinic. In the 11 cases of metastasis or multi-localized tumors, the CT findings were studied in connection with the MRI findings. There were 6 cases of germ-cell tumors which had broad infiltrating tumors with multiple lesions on first admission. Their tumor sites were different from that in cases of malignant glioma, being frequently localized in the pineal and/or the suprasellar region, on the wall of the third and/or lateral ventricle, and in the region of the basal ganglia. Five of the cases of germ-cell tumors had metastasis with various patterns connected to a remote area - that is, to spinal cords, to the ventricular wall and basal cistern of the brain stem by CSF dissemination, to a lung by hematogeneous metastasis, and to the peritoneal wall or organs by a V-P shunt. The CT findings of germ-cell tumors were correlated mainly with the results of the histological diagnosis; they were found not to differ with the tumor site. The germinoma in the suprasellar region had less calcification than in the pineal region. Cysts, calcification, and an enlargement of the lateral ventricle on the tumor side were frequently seen in the germinoma of the basal ganglia. On the MRI of 5 cases of germinoma, the T 1 -weighted image revealed a slightly low or iso signal intensity, while the T 2 -weighted image showed a high signal intensity. In the case of multiple tumor lesions, some cases demonstrated different CT findings and radiosensitivities for each tumor. The possibility of a multicentric origin for the tumors is thus suggested in some cases of germ-cell tumors. (author)

  3. Anti-tumor therapy with macroencapsulated endostatin producer cells.

    Science.gov (United States)

    Rodrigues, Danielle B; Chammas, Roger; Malavasi, Natália V; da Costa, Patrícia L N; Chura-Chambi, Rosa M; Balduino, Keli N; Morganti, Ligia

    2010-03-02

    Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. This study indicates that immunoisolation devices containing endostatin

  4. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  5. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  6. Malignant primary germ-cell tumor of the brain

    International Nuclear Information System (INIS)

    Yamamoto, Toyoshiro; Sato, Shinichi; Nakao, Satoshi; Ban, Sadahiko; Namba, Koh

    1983-01-01

    The unusual case of a 15 year old boy with three discrete paraventricular germ-cell tumors is reported.FThe first tumor was located just lateral to the left thalamus and included a massive cystic part around it, the second tumor in the paraventricular region above the head of the left caudate nucleus and the third tumor in the medial part of the left parietal lobe.FTotal removal of all tumors was successfully accomplished in stages at four separate operations, namely, the first tumor was removed through the left transsylvian approach, the second tumor via left superior frontal gyrus and the third tumor via left superior frontal gyrus and left superior parietal lobule.FHistological examination revealed that the first tumor was teratoma, the second was choriocarcinoma and the third was germinoma.FPrimary germ-cell tumors of the brain can be divided into 5 groups: 1) germinoma; 2) embryonal carcinoma; 3) choriocarcinoma; 4) yolk-sac tumor; or 5) teratoma.FIn this case, a combination of three different histological patterns was seen. If malignant germ-cell tumor is supected on CT, aggressive extirpation should be done, not only to determine the exact diagnosis, but also to provide the basis for subsequent adjunctive therapy. (author)

  7. Migratory neighbors and distant invaders: tumor-associated niche cells

    Science.gov (United States)

    Wels, Jared; Kaplan, Rosandra N.; Rafii, Shahin; Lyden, David

    2008-01-01

    The cancer environment is comprised of tumor cells as well as a wide network of stromal and vascular cells participating in the cellular and molecular events necessary for invasion and metastasis. Tumor secretory factors can activate the migration of host cells, both near to and far from the primary tumor site, as well as promote the exodus of cells to distant tissues. Thus, the migration of stromal cells and tumor cells among specialized microenvironments takes place throughout tumor and metastatic progression, providing evidence for the systemic nature of a malignancy. Investigations of the tumor–stromal and stromal–stromal cross-talk involved in cellular migration in cancer may lead to the design of novel therapeutic strategies. PMID:18316475

  8. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    Science.gov (United States)

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  9. Multifocal tenosynovial giant cell tumors in a child with Noonan syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Arthur B. [Children' s Hospital of Wisconsin, Department of Radiology, Milwaukee, WI (United States); Nemours Children' s Health System/Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States); Awomolo, Agboola O. [Children' s Hospital of Wisconsin, Department of Radiology, Milwaukee, WI (United States); Szabo, Sara [Medical College of Wisconsin and Children' s Hospital of Wisconsin, Department of Pathology, Milwaukee, WI (United States); Cincinnati Children' s Hospital Medical Center, Division of Pathology and Laboratory Medicine, Cincinnati, OH (United States)

    2017-03-15

    Noonan syndrome is a genetic disorder with variable expression of distinctive facial features, webbed neck, chest deformity, short stature, cryptorchidism and congenital heart disease. The association of Noonan syndrome and giant cell granulomas of the mandible is widely reported. However, Noonan syndrome may also be associated with single or multifocal tenosynovial giant cell tumors, also referred to as pigmented villonodular synovitis. We report a child with Noonan syndrome, giant cell granulomas of the mandible and synovial and tenosynovial giant cell tumors involving multiple joints and tendon sheaths who was initially misdiagnosed with juvenile idiopathic arthritis. It is important for radiologists to be aware of the association of Noonan syndrome and multifocal giant cell lesions, which can range from the more commonly described giant cell granulomas of the mandible to isolated or multifocal intra- or extra-articular tenosynovial giant cell tumors or a combination of all of these lesions. (orig.)

  10. Multifocal tenosynovial giant cell tumors in a child with Noonan syndrome.

    Science.gov (United States)

    Meyers, Arthur B; Awomolo, Agboola O; Szabo, Sara

    2017-03-01

    Noonan syndrome is a genetic disorder with variable expression of distinctive facial features, webbed neck, chest deformity, short stature, cryptorchidism and congenital heart disease. The association of Noonan syndrome and giant cell granulomas of the mandible is widely reported. However, Noonan syndrome may also be associated with single or multifocal tenosynovial giant cell tumors, also referred to as pigmented villonodular synovitis. We report a child with Noonan syndrome, giant cell granulomas of the mandible and synovial and tenosynovial giant cell tumors involving multiple joints and tendon sheaths who was initially misdiagnosed with juvenile idiopathic arthritis. It is important for radiologists to be aware of the association of Noonan syndrome and multifocal giant cell lesions, which can range from the more commonly described giant cell granulomas of the mandible to isolated or multifocal intra- or extra-articular tenosynovial giant cell tumors or a combination of all of these lesions.

  11. Multifocal tenosynovial giant cell tumors in a child with Noonan syndrome

    International Nuclear Information System (INIS)

    Meyers, Arthur B.; Awomolo, Agboola O.; Szabo, Sara

    2017-01-01

    Noonan syndrome is a genetic disorder with variable expression of distinctive facial features, webbed neck, chest deformity, short stature, cryptorchidism and congenital heart disease. The association of Noonan syndrome and giant cell granulomas of the mandible is widely reported. However, Noonan syndrome may also be associated with single or multifocal tenosynovial giant cell tumors, also referred to as pigmented villonodular synovitis. We report a child with Noonan syndrome, giant cell granulomas of the mandible and synovial and tenosynovial giant cell tumors involving multiple joints and tendon sheaths who was initially misdiagnosed with juvenile idiopathic arthritis. It is important for radiologists to be aware of the association of Noonan syndrome and multifocal giant cell lesions, which can range from the more commonly described giant cell granulomas of the mandible to isolated or multifocal intra- or extra-articular tenosynovial giant cell tumors or a combination of all of these lesions. (orig.)

  12. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Science.gov (United States)

    Baay, Marc; Brouwer, Anja; Pauwels, Patrick; Peeters, Marc; Lardon, Filip

    2011-01-01

    Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention. PMID:22162712

  13. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Marc Baay

    2011-01-01

    Full Text Available Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs, which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention.

  14. Residual tumor cells that drive disease relapse after chemotherapy do not have enhanced tumor initiating capacity.

    Directory of Open Access Journals (Sweden)

    Ganapati V Hegde

    Full Text Available Although chemotherapy is used to treat most advanced solid tumors, recurrent disease is still the major cause of cancer-related mortality. Cancer stem cells (CSCs have been the focus of intense research in recent years because they provide a possible explanation for disease relapse. However, the precise role of CSCs in recurrent disease remains poorly understood and surprisingly little attention has been focused on studying the cells responsible for re-initiating tumor growth within the original host after chemotherapy treatment. We utilized both xenograft and genetically engineered mouse models of non-small cell lung cancer (NSCLC to characterize the residual tumor cells that survive chemotherapy treatment and go on to cause tumor regrowth, which we refer to as tumor re-initiating cells (TRICs. We set out to determine whether TRICs display characteristics of CSCs, and whether assays used to define CSCs also provide an accurate readout of a cell's ability to cause tumor recurrence. We did not find consistent enrichment of CSC marker positive cells or enhanced tumor initiating potential in TRICs. However, TRICs from all models do appear to be in EMT, a state that has been linked to chemoresistance in numerous types of cancer. Thus, the standard CSC assays may not accurately reflect a cell's ability to drive disease recurrence.

  15. The role of telomeres in Etoposide induced tumor cell death.

    Science.gov (United States)

    Jeyapalan, Jessie; Leake, Alan; Ahmed, Shaheda; Saretzki, Gabriele; Tilby, Michael; von Zglinicki, Thomas

    2004-09-01

    Etoposide, a topoisomerase II poison is used in the treatment of a number of solid tumors. Contradictory data exist on the role of the telomere/telomerase complex in etoposide induced apoptosis. Therefore we examined the effects of etoposide treatment in the neuroblastoma cell line SHSY5Y, with very short telomeres and the acute lymphoblastic T cell line 1301, which displays extremely long telomeres. Both short-term and continuous exposure to the drug were examined. Etoposide induced widespread DNA damage followed by DNA damage foci formation and ultimately growth arrest and apoptosis in a concentration-dependent manner. However, length of telomeres and of single stranded telomeric G rich overhangs did not change significantly under the treatments in any cell line. There was no significant induction of single-strand breaks in the G-rich strand of telomeres. Telomerase activity was transiently upregulated under low concentrations of etoposide, while high concentrations resulted in decreased telomerase activity only after onset of apoptosis. Telomerase overexpression protected against etoposide induced apoptosis in fibroblasts. The data suggest that telomeres are not major signal transducers towards growth arrest or apoptosis after etoposide treatment. However, upregulation of telomerase might be part of an attempted adaptative response, which protects cells by a mechanism that might be independent of telomere length maintenance.

  16. An Effective Approach for Immunotherapy Using Irradiated Tumor Cells

    International Nuclear Information System (INIS)

    Mostafa, D.M.B.

    2011-01-01

    This study has been aimed to investigate the effect of injection of Irradiated Ehrlich tumor cells alone or concurrent with immunomodulator in mice before and after challenge with viable Ehrlich tumor cells for enhancement of immune system. This study includes the estimation of survival, tumor size, lymphocyte count, LDH, MTT, granzyme B, and DNA fragmentation. In order to fulfill the target of this study, a total of 120 female swiss albino mice were used. They were divided into two classes vaccinated (injection of vaccine before challenge) and therapeutic class (injection of vaccine after challenge). Each class was divided into four groups, group (1) mice injected with viable Ehrlich tumor cells (G1), group (2) mice injected with irradiated tumor cells (G2), group (3) mice injected with immunomodulator (G3), and group (4) mice injected with irradiated tumor cells + immunomodulator (G4). Results obtained from this study demonstrated that, the lymphocyte count and granzyme B activity were increased in both the vaccinated and therapeutic classes compared with control group. LDH activity was decreased in all groups of vaccinated class and also in G2 and G4 groups of therapeutic class compared with control group. There was a significant increase in percent apoptosis of tumor cells cultured with spleenocytes of the groups of vaccinated class as compared with control group. Cellular DNA from Ehrlich tumor cell line cultured with spleenocytes of immunized groups was fragmented into discrete bands of approximate multiples of 200 bp. Revealing significant apoptosis in tumor cells due to vaccination. It is concluded that, vaccination with irradiated tumor cells is an effective approach in stimulation of immune system against viable tumor cells.

  17. Antigen localization controls T cell-mediated tumor immunity.

    Science.gov (United States)

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  18. A Rare Cause of Prepubertal Gynecomastia: Sertoli Cell Tumor

    Directory of Open Access Journals (Sweden)

    Fatma Dursun

    2015-01-01

    Full Text Available Prepubertal gynecomastia due to testis tumors is a very rare condition. Nearly 5% of the patients with testicular mass present with gynecomastia. Sertoli cell tumors are sporadic in 60% of the reported cases, while the remaining is a component of multiple neoplasia syndromes such as Peutz-Jeghers syndrome and Carney complex. We present a 4-year-old boy with gynecomastia due to Sertoli cell tumor with no evidence of Peutz-Jeghers syndrome or Carney complex.

  19. Treatment Options By Stage (Ovarian Germ Cell Tumors)

    Science.gov (United States)

    ... Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview Go to Health Professional Version Key Points ... and restore) the body’s blood cells. New treatment options Combination chemotherapy (the use of more than one ...

  20. Selective Killing of Prostate Tumor Cells by Cytocidal Viruses

    National Research Council Canada - National Science Library

    Lyles, Douglas

    2003-01-01

    .... The novelty in our approach is our ability to enhance the selectivity of killing of tumor cells versus normal cells by manipulating the viral genes that control the antiviral interferon response...

  1. Selective Killing of Prostate Tumor Cells by Cytocidal Viruses

    National Research Council Canada - National Science Library

    Lyles, Douglas

    2004-01-01

    .... The novelty in our approach is our ability to enhance the selectivity of killing of tumor cells versus normal cells by manipulating the viral genes that control the antiviral interferon response...

  2. Selective Killing of Prostate Tumor Cells by Cytocidal Viruses

    National Research Council Canada - National Science Library

    Lyles, Douglas S

    2005-01-01

    ...). The novelty in our approach is our ability to enhance the selectivity of VSV-induced killing of tumor cells versus normal cells by manipulating the viral genes that control the antiviral interferon response...

  3. Effect of expression of P-glycoprotein on technetium-99m methoxyisobutylisonitrile single photon emission computed tomography of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Yasushi; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-08-01

    The expression of P-glycoprotein was investigated imunohistochemically in 26 brain tumor tissues and compared with the findings of technetium-99m methoxyisobutylisonitrile single photon emission computed tomography ({sup 99m}Tc-MIBI SPECT) to clarify the effect of P-glycoprotein on the diagnostic accuracy. P-glycoprotein labeling index of both tumor cells and vascular endothelial cells showed no clear relationship with the findings of {sup 99m}Tc-MIBI SPECT imaging. Expression of P-glycoprotein has no effect on the diagnostic accuracy of {sup 99m}Tc-MIBI SPECT. (author)

  4. Large mid-esophageal granular cell tumor: benign versus malignant

    Directory of Open Access Journals (Sweden)

    Prarthana Roselil Christopher

    2015-06-01

    Full Text Available Granular cell tumors are rare soft tissue neoplasms, among which only 2% are malignant, arising from nervous tissue. Here we present a case of a large esophageal granular cell tumor with benign histopathological features which metastasized to the liver, but showing on positron emission tomography-computerized tomography standardized uptake value suggestive of a benign lesion.

  5. Maternal smoking and testicular germ cell tumors.

    Science.gov (United States)

    McGlynn, Katherine A; Zhang, Yawei; Sakoda, Lori C; Rubertone, Mark V; Erickson, Ralph L; Graubard, Barry I

    2006-10-01

    Testicular germ cell tumors (TGCT) are the most common cancer among men ages 15 to 35 years in the United States. The well-established TGCT risk factors cryptorchism, prior diagnosis of TGCT, and family history of testicular cancer indicate that exposures in early life and/or in the familial setting may be critical to determining risk. Previous reports of familial clustering of lung cancer in mothers and testicular cancers in sons suggest that passive smoking in childhood may be such an exposure. To clarify the relationship of passive smoking exposure to TGCT risk, data from 754 cases and 928 controls enrolled in the Servicemen's Testicular Tumor Environmental and Endocrine Determinants study were analyzed. Data from 1,086 mothers of the cases and controls were also examined. Overall, there was no relationship between maternal [odds ratio (OR), 1.1; 95% confidence interval (95% CI), 0.9-1.3] or paternal smoking (OR, 1.0; 95% CI, 0.8-1.3) and TGCT risk. Although living with a non-parent smoker was marginally related to risk (OR, 1.4; 95% CI, 1.0-2.1), there was no relationship with number of smokers, amount smoked, or duration of smoking. Responses from both case-control participants and mothers also revealed no relationship between either maternal smoking while pregnant or while breast-feeding. Results did not differ by TGCT histology (seminoma, non-seminoma). These results do not support the hypothesis that passive smoking, either in utero or in childhood, is related to risk of TGCT. Other early life exposures, however, may explain the familial clustering of lung cancer in mothers and TGCT in sons.

  6. Effect of misonidazole on radiosensitivity of Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi

    1986-01-01

    The effect of Misonidazole on radiosensitivity of Ehrlich ascites tumor cells was studied in vivo. Ehrlich ascites tumor cells growing intraperitoneally (ICR/SIC mice) for either 1, 4, 6 or 10 days were irradiated in vivo (whole body irradiation) with or without Misonidazole. Immediately after irradiation tumor cells were transplanted intraperitoneally into new animals. Four days later, the propagated surviving cells were removed and counted for analyses. Enhancement ratio of Misonidazole at the surviving fraction of 0.1 were 1.0 (for 1-day-old), 1.3 (for 4-day-old), 1.9 (for 6-day-old), 1.9 (for 10-day-old) and 2.8 (for anoxic cells) respectively. The gradual increase of the enhancement ratio of the ascites tumore cells during intraperitoneal growth from 1 through 10 days might be attributed to an increase of hypoxic tumor cells. Cytotoxicity was not observed at 0.1 mg per gram body weight of Misonidazole but was at 1 mg per gram body weight of Misonidazole in 6-day-old and 10-day-old Ehrlich ascites tumor cells which were supposed to contain hypoxic cells. These results suggest that Misonidazole may prove an effective radiosensitizer for hypoxic tumor cells. (author)

  7. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Xiaonan Zhang

    2015-11-01

    Full Text Available The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.

  8. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression.

    Science.gov (United States)

    Han, Yanmei; Liu, Qiuyan; Hou, Jin; Gu, Yan; Zhang, Yi; Chen, Zhubo; Fan, Jia; Zhou, Weiping; Qiu, Shuangjian; Zhang, Yonghong; Dong, Tao; Li, Ning; Jiang, Zhengping; Zhu, Ha; Zhang, Qian; Ma, Yuanwu; Zhang, Lianfeng; Wang, Qingqing; Yu, Yizhi; Li, Nan; Cao, Xuetao

    2018-04-19

    Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119 + CD45 - CD71 + phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor β (TGF-β) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Cell fusion in tumor progression: the isolation of cell fusion products by physical methods

    Directory of Open Access Journals (Sweden)

    Vincitorio Massimo

    2011-09-01

    Full Text Available Abstract Background Cell fusion induced by polyethylene glycol (PEG is an efficient but poorly controlled procedure for obtaining somatic cell hybrids used in gene mapping, monoclonal antibody production, and tumour immunotherapy. Genetic selection techniques and fluorescent cell sorting are usually employed to isolate cell fusion products, but both procedures have several drawbacks. Results Here we describe a simple improvement in PEG-mediated cell fusion that was obtained by modifying the standard single-step procedure. We found that the use of two PEG undertreatments obtains a better yield of cell fusion products than the standard method, and most of these products are bi- or trinucleated polykaryocytes. Fusion rate was quantified using fluorescent cell staining microscopy. We used this improved cell fusion and cell isolation method to compare giant cells obtained in vitro and giant cells obtained in vivo from patients with Hodgkin's disease and erythroleukemia. Conclusions In the present study we show how to improve PEG-mediated cell fusion and that cell separation by velocity sedimentation offers a simple alternative for the efficient purification of cell fusion products and to investigate giant cell formation in tumor development.

  10. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity.

    Science.gov (United States)

    Albini, Adriana; Bruno, Antonino; Gallo, Cristina; Pajardi, Giorgio; Noonan, Douglas M; Dallaglio, Katiuscia

    2015-01-01

    Tumor cells able to recapitulate tumor heterogeneity have been tracked, isolated and characterized in different tumor types, and are commonly named Cancer Stem Cells or Cancer Initiating Cells (CSC/CIC). CSC/CIC are disseminated in the tumor mass and are resistant to anti-cancer therapies and adverse conditions. They are able to divide into another stem cell and a "proliferating" cancer cell. They appear to be responsible for disease recurrence and metastatic dissemination even after apparent eradication of the primary tumor. The modulation of CSC/CIC activities by the tumor microenvironment (TUMIC) is still poorly known. CSC/CIC may mutually interact with the TUMIC in a special and unique manner depending on the TUMIC cells or proteins encountered. The TUMIC consists of extracellular matrix components as well as cellular players among which endothelial, stromal and immune cells, providing and responding to signals to/from the CSC/CIC. This interplay can contribute to the mechanisms through which CSC/CIC may reside in a dormant state in a tissue for years, later giving rise to tumor recurrence or metastasis in patients. Different TUMIC components, including the connective tissue, can differentially activate CIC/CSC in different areas of a tumor and contribute to the generation of cancer heterogeneity. Here, we review possible networking activities between the different components of the tumor microenvironment and CSC/CIC, with a focus on its role in tumor heterogeneity and progression. We also summarize novel therapeutic options that could target both CSC/CIC and the microenvironment to elude resistance mechanisms activated by CSC/CIC, responsible for disease recurrence and metastases.

  11. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  12. Relationship between α/β and radiosensitivity and biologic effect of fractional irradiation of tumor cells

    International Nuclear Information System (INIS)

    Guo Chuanling; Chinese Academy of Sciences, Beijing; Wang Jufang; Jin Xiaodong; Li Wenjian

    2006-01-01

    Five kinds of malignant human tumor cells, i.e. SMMC-7721, HeLa, A549, HT29 and PC3 cell lines, were irradiated by 60 Co γ-rays to 1-6 Gy in a single irradiation or two irradiations of half dose. The radiosensitivity was compared with the dose-survival curves and D 50 and D 10 values. Differences in the D 50 and D 10 between the single and fractional irradiation groups showed the effect of fractional irradiation. Except for PC3 cells, all the cell lines showed obvious relationship between radiosensitivity and biologic effect of fractional irradiation and the α/β value. A cell line with bigger α/β was more radiation sensitive, with less obvious effect of fractional irradiation. The results indicate that there were obvious differences in radiosensitivity, repair ability and biologic effect of fractional irradiation between tumor cells from different tissues. To some tumor cell lines, the relationship between radiosensitivity, biologic effect of fractional irradiation and repair ability was attested. The α/β value of single irradiation can be regarded as a parameter to investigate the radiosensitivity and biologic effect of fractional irradiation of tumor cells. (authors)

  13. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer

    International Nuclear Information System (INIS)

    Karamitopoulou, Eva

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial–mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  14. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer.

    Science.gov (United States)

    Karamitopoulou, Eva

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  15. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  16. Limited utility of tissue micro-arrays in detecting intra-tumoral heterogeneity in stem cell characteristics and tumor progression markers in breast cancer.

    Science.gov (United States)

    Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna

    2018-05-08

    Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the

  17. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    Science.gov (United States)

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  18. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Grasieli de Oliveira Ramos

    Full Text Available Cell migration is regulated by adhesion to the extracellular matrix (ECM through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC. We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad, plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization.

  19. General Information about Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... also called nuclear magnetic resonance imaging (NMRI). Somatostatin receptor scintigraphy : A type of radionuclide scan that may ...

  20. Treatment Option Overview (Pancreatic Neuroendocrine Tumors / Islet Cell Tumors)

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... also called nuclear magnetic resonance imaging (NMRI). Somatostatin receptor scintigraphy : A type of radionuclide scan that may ...

  1. X-ray sensitivity of human tumor cells in vitro

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Nove, J.; Little, J.B.

    1980-01-01

    Clonally-derived cells from ten human malignant tumors considered radiocurable (breast, neuroblastoma, medulloblastoma) or non-radiocurable (osteosarcoma, hypernephroma, glioblastoma, melanoma) were studied in cell culture and their in vitro x-ray survival curve parameters determined (anti n, D 0 ). There were no significant differences among the tumor cell lines suggesting that survival parameters in vitro do not explain differences in clinical radiocurability. Preliminary investigation with density inhibited human tumor cells indicate that such an approach may yield information regarding inherent cellular differences in radiocurability

  2. Reduction of irradiated tumor cells viability under effect of hyperglycemia

    International Nuclear Information System (INIS)

    Meshcherikova, V.V.; Voloshina, E.A.

    1983-01-01

    On Ehrlich carcinoma cells adapted to growth in vivo and in vitro, cellular mechanisms of short-term hyperglycemia effect have been studied. It has been found that SH by itself leads to the loss of viability of a part of cells of ELD solid tumors manifesting during the first 24 hours upon irradiation according to the interphase death type. Tumor cell radiation injuries arising under the effect of irradiation, usually non realized up to the first division, under SH conditions potentiate its injury effect. The phenomena observed explain partially selective injury of tumoral cells in the course of irradiation under SH conditions which testifies to the prospects of its use in clinics

  3. Hypoxic cell turnover in different solid tumor lines

    International Nuclear Information System (INIS)

    Ljungkvist, Anna S.E.; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-01-01

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h

  4. Baldness, acne and testicular germ cell tumors

    Science.gov (United States)

    Trabert, Britton; Sigurdson, Alice J.; Sweeney, Anne M.; Amato, Robert J.; Strom, Sara S.; McGlynn, Katherine A.

    2013-01-01

    Androgen levels during critical periods of testicular development may be involved in the etiology of testicular germ cell tumors (TGCT). We evaluated the roles of adolescent and early adult life correlates of androgen exposure and TGCT in a hospital-based case control study. TGCT cases (n=187) and controls (n=148), matched on age, race and state of residence, participated in the study. Unconditional logistic regression was used to estimate associations between TGCT and male pattern baldness, severe acne, markers of puberty onset and body size. Cases were significantly less likely to report hair loss than controls (OR, 0.6; 95% CI, 0.4, 1.0). Amount of hair loss, increasing age at onset and increasing rate of loss were all inversely associated with TGCT (rate of hair loss: p-trend=0.03; age at onset: p-trend=0.03; amount of hair loss: p-trend=0.01). History of severe acne was inversely associated with TGCT (OR, 0.5; 95% CI, 0.3, 0.9) and height was positively associated with TGCT (p-trend=0.02). Increased endogenous androgen levels during puberty and early adulthood may be associated with decreased risk of TGCT. Additional studies of endogenous hormone levels during puberty and early adult life are warranted, especially studies evaluating the role of androgen synthesis, metabolism and uptake. PMID:21128977

  5. Circulating tumor cells in lung cancer.

    Science.gov (United States)

    Young, Rachel; Pailler, Emma; Billiot, Fanny; Drusch, Françoise; Barthelemy, Amélie; Oulhen, Marianne; Besse, Benjamin; Soria, Jean-Charles; Farace, Françoise; Vielh, Philippe

    2012-01-01

    Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment. Copyright © 2012 S. Karger AG, Basel.

  6. Desmoplastic Small Round Cell Tumor of Stomach

    Directory of Open Access Journals (Sweden)

    Ahmed Abu-Zaid

    2013-01-01

    Full Text Available Desmoplastic small round cell tumor (DSRCT is an extremely uncommon, highly aggressive, and malignant mesenchymal neoplasm of undetermined histogenesis. Less than 200 case reports have been documented in literature so far. Herein, we report a 26-year-old otherwise healthy female patient who presented with a 1-month history of epigastric pain. On physical examination, a palpable, slightly mobile, and tender epigastric mass was detected. All laboratory tests were normal. A chest, abdominal, and pelvic contrast-enhanced computed tomography (CT scans showed a 3.8 × 7.2 × 8.7 cm ill-defined mass, involving gastric fundus and extending into gastric cardia and lower gastroesophageal junction. It was associated with multiple enlarged gastrohepatic lymph nodes; the largest measured 1.2 cm. There was no evidence of ascites or retroperitoneal or mesenteric lymphatic metastases. Patient underwent total gastrectomy with D2 lymphadenectomy, splenectomy, and antecolic Roux-en-Y esophagojejunal anastomosis. Histopathological examination revealed coexpression of mesenchymal, epithelial, and neural markers. The characteristic chromosomal translocation (t(11; 22(p13; q12 was demonstrated on fluorescence in situ hybridization (FISH technique. Diagnosis of DSRCT of stomach was confirmed. Patient received no postoperative radiotherapy or chemotherapy. A postoperative 3-month followup failed to show any recurrence. In addition, a literature review on DSRCT is included.

  7. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  8. Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells

    DEFF Research Database (Denmark)

    Zhang, Wen; Bao, Li; Yang, Shaoxing

    2016-01-01

    Detection of circulating tumor cells remains a significant challenge due to their vast physical and biological heterogeneity. We developed a cell-surface-marker-independent technology based on telomerase-specific, replication-selective oncolytic herpes-simplex-virus-1 that targets telomerase......-reverse-transcriptase-positive cancer cells and expresses green-fluorescent-protein that identifies viable CTCs from a broad spectrum of malignancies. Our method recovered 75.5-87.2% of tumor cells spiked into healthy donor blood, as validated by different methods, including single cell sequencing. CTCs were detected in 59-100% of 326...

  9. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  10. Radiologic findings of granulosa cell tumor of the ovary

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jung Eun; Kim, Kie Hwan; Yoo, Ji Young; Lee, Eun Chun; Lee, Tae Hyun; Chin, Soo Il [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1997-08-01

    To evaluate the radiologic findings of granulosa cell tumor of the ovary. Fourteen cases(fifteen tumors) of pathologically confirmed ovarian granulosa cell tumor were retrospectively analyzed on the basis of CT(n=10), MR imaging(n=4), and ultrasound(n=7) findings. The patients' mean age was 44.3(range, 5-71)years. The mean diameter of the tumors was 12.1(range, 5-26.5)cm. Thirteen cases were unilateral, and one was bilateral. Eleven tumors(ten cases) were mainly solid and eight of these had focal cystic components. Multilocular cysts accounted for three cases, and in two of these, mural nodules were present. One case was a unilocular cyst with no mural nodule. Ten cases were well demarcated. All the solid tumors were enhanced on postcontrast CT and MR imaging. Endometrial thickening was seen in five cases, ascites in six, and peritoneal implants or omental fat infiltration in five. One was associated with lymph node metastasis. All the postmenopausal patients had solid tumors, whereas 66.7%(4 of 6 cases) of young adults and children had cystic tumors. Granulosa cell tumors of the ovary were solid or cystic;the former were more common. There were no characteristic findings which permitted definitive differentiation from other ovarian tumors.

  11. Tumor and Endothelial Cell Hybrids Participate in Glioblastoma Vasculature

    Directory of Open Access Journals (Sweden)

    Soufiane El Hallani

    2014-01-01

    Full Text Available Background. Recently antiangiogenic therapy with bevacizumab has shown a high but transient efficacy in glioblastoma (GBM. Indeed, GBM is one of the most angiogenic human tumors and endothelial proliferation is a hallmark of the disease. We therefore hypothesized that tumor cells may participate in endothelial proliferation of GBM. Materials and Methods. We used EGFR FISH Probe to detect EGFR amplification and anti-CD31, CD105, VE-cadherin, and vWF to identify endothelial cells. Endothelial and GBM cells were grown separately, labeled with GFP and DsRed lentiviruses, and then cocultured with or without contact. Results. In a subset of GBM tissues, we found that several tumor endothelial cells carry EGFR amplification, characteristic of GBM tumor cells. This observation was reproduced in vitro: when tumor stem cells derived from GBM were grown in the presence of human endothelial cells, a fraction of them acquired endothelial markers (CD31, CD105, VE-cadherin, and vWF. By transduction with GFP and DsRed expressing lentiviral vectors, we demonstrate that this phenomenon is due to cell fusion and not transdifferentiation. Conclusion. A fraction of GBM stem cells thus has the capacity to fuse with endothelial cells and the resulting hybrids may participate in tumor microvascular proliferation and in treatment resistance.

  12. Epigenetics reloaded: the single-cell revolution.

    Science.gov (United States)

    Bheda, Poonam; Schneider, Robert

    2014-11-01

    Mechanistically, how epigenetic states are inherited through cellular divisions remains an important open question in the chromatin field and beyond. Defining the heritability of epigenetic states and the underlying chromatin-based mechanisms within a population of cells is complicated due to cell heterogeneity combined with varying levels of stability of these states; thus, efforts must be focused toward single-cell analyses. The approaches presented here constitute the forefront of epigenetics research at the single-cell level using classic and innovative methods to dissect epigenetics mechanisms from the limited material available in a single cell. This review further outlines exciting future avenues of research to address the significance of epigenetic heterogeneity and the contributions of microfluidics technologies to single-cell isolation and analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Mobilization of Viable Tumor Cells Into the Circulation During Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga A. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); Anderson, Robin L. [The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); Metastasis Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Russell, Prudence A. [Department of Anatomical Pathology, St. Vincent Hospital, Fitzroy, VIC (Australia); Ashley Cox, R. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Ivashkevich, Alesia [Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Laboratory of DNA Repair and Genomics, Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, VIC (Australia); Swierczak, Agnieszka; Doherty, Judy P. [Metastasis Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Jacobs, Daphne H.M. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Smith, Jai [Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Siva, Shankar; Daly, Patricia E. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Ball, David L. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); and others

    2014-02-01

    Purpose: To determine whether radiation therapy (RT) could mobilize viable tumor cells into the circulation of non-small cell lung cancer (NSCLC) patients. Methods and Materials: We enumerated circulating tumor cells (CTCs) by fluorescence microscopy of blood samples immunostained with conventional CTC markers. We measured their DNA damage levels using γ-H2AX, a biomarker for radiation-induced DNA double-strand breaks, either by fluorescence-activated cell sorting or by immunofluorescence microscopy. Results: Twenty-seven RT-treated NSCLC patients had blood samples analyzed by 1 or more methods. We identified increased CTC numbers after commencement of RT in 7 of 9 patients treated with palliative RT, and in 4 of 8 patients treated with curative-intent RT. Circulating tumor cells were also identified, singly and in clumps in large numbers, during RT by cytopathologic examination (in all 5 cases studied). Elevated γ-H2AX signal in post-RT blood samples signified the presence of CTCs derived from irradiated tumors. Blood taken after the commencement of RT contained tumor cells that proliferated extensively in vitro (in all 6 cases studied). Circulating tumor cells formed γ-H2AX foci in response to ex vivo irradiation, providing further evidence of their viability. Conclusions: Our findings provide a rationale for the development of strategies to reduce the concentration of viable CTCs by modulating RT fractionation or by coadministering systemic therapies.

  14. Mobilization of Viable Tumor Cells Into the Circulation During Radiation Therapy

    International Nuclear Information System (INIS)

    Martin, Olga A.; Anderson, Robin L.; Russell, Prudence A.; Ashley Cox, R.; Ivashkevich, Alesia; Swierczak, Agnieszka; Doherty, Judy P.; Jacobs, Daphne H.M.; Smith, Jai; Siva, Shankar; Daly, Patricia E.; Ball, David L.

    2014-01-01

    Purpose: To determine whether radiation therapy (RT) could mobilize viable tumor cells into the circulation of non-small cell lung cancer (NSCLC) patients. Methods and Materials: We enumerated circulating tumor cells (CTCs) by fluorescence microscopy of blood samples immunostained with conventional CTC markers. We measured their DNA damage levels using γ-H2AX, a biomarker for radiation-induced DNA double-strand breaks, either by fluorescence-activated cell sorting or by immunofluorescence microscopy. Results: Twenty-seven RT-treated NSCLC patients had blood samples analyzed by 1 or more methods. We identified increased CTC numbers after commencement of RT in 7 of 9 patients treated with palliative RT, and in 4 of 8 patients treated with curative-intent RT. Circulating tumor cells were also identified, singly and in clumps in large numbers, during RT by cytopathologic examination (in all 5 cases studied). Elevated γ-H2AX signal in post-RT blood samples signified the presence of CTCs derived from irradiated tumors. Blood taken after the commencement of RT contained tumor cells that proliferated extensively in vitro (in all 6 cases studied). Circulating tumor cells formed γ-H2AX foci in response to ex vivo irradiation, providing further evidence of their viability. Conclusions: Our findings provide a rationale for the development of strategies to reduce the concentration of viable CTCs by modulating RT fractionation or by coadministering systemic therapies

  15. Human tumor cell proliferation evaluated using manganese-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Rod D Braun

    Full Text Available Tumor cell proliferation can depend on calcium entry across the cell membrane. As a first step toward the development of a non-invasive test of the extent of tumor cell proliferation in vivo, we tested the hypothesis that tumor cell uptake of a calcium surrogate, Mn(2+ [measured with manganese-enhanced MRI (MEMRI], is linked to proliferation rate in vitro.Proliferation rates were determined in vitro in three different human tumor cell lines: C918 and OCM-1 human uveal melanomas and PC-3 prostate carcinoma. Cells growing at different average proliferation rates were exposed to 1 mM MnCl(2 for one hour and then thoroughly washed. MEMRI R(1 values (longitudinal relaxation rates, which have a positive linear relationship with Mn(2+ concentration, were then determined from cell pellets. Cell cycle distributions were determined using propidium iodide staining and flow cytometry. All three lines showed Mn(2+-induced increases in R(1 compared to cells not exposed to Mn(2+. C918 and PC-3 cells each showed a significant, positive correlation between MEMRI R(1 values and proliferation rate (p≤0.005, while OCM-1 cells showed no significant correlation. Preliminary, general modeling of these positive relationships suggested that pellet R(1 for the PC-3 cells, but not for the C918 cells, could be adequately described by simply accounting for changes in the distribution of the cell cycle-dependent subpopulations in the pellet.These data clearly demonstrate the tumor-cell dependent nature of the relationship between proliferation and calcium influx, and underscore the usefulness of MEMRI as a non-invasive method for investigating this link. MEMRI is applicable to study tumors in vivo, and the present results raise the possibility of evaluating proliferation parameters of some tumor types in vivo using MEMRI.

  16. Diffusion weighted MR imaging of pancreatic islet cell tumors

    International Nuclear Information System (INIS)

    Bakir, Baris; Salmaslioglu, Artur; Poyanli, Arzu; Rozanes, Izzet; Acunas, Bulent

    2010-01-01

    Purpose: The aim of our study is to demonstrate the feasibility of body diffusion weighted (DW) MR imaging in the evaluation of pancreatic islet cell tumors (ICTs) and to define apparent diffusion coefficient (ADC) values for these tumors. Materials and methods: 12 normal volunteers and 12 patients with histopathologically proven pancreatic ICT by surgery were included in the study. DW MR images were obtained by a body-phased array coil using a multisection single-shot echo planar sequence on the axial plane without breath holding. In addition, the routine abdominal imaging protocol for pancreas was applied in the patient group. We measured the ADC value within the normal pancreas in control group, pancreatic ICT, and surrounding pancreas parenchyma. Mann-Whitney U-test has been used to compare ADC values between tumoral tissues and normal pancreatic tissues of the volunteers. Wilcoxon Signed Ranks Test was preferred to compare ADC values between tumoral tissues and surrounding pancreatic parenchyma of the patients. Results: In 11 patients out of 12, conventional MR sequences were able to demonstrate ICTs successfully. In 1 patient an indistinct suspicious lesion was noted at the pancreatic tail. DW sequence was able to demonstrate the lesions in all of the 12 patients. On the DW images, all ICTs demonstrated high signal intensity relative to the surrounding pancreatic parenchyma. The mean and standard deviations of the ADC values (x10 -3 mm 2 /s) were as follows: ICT (n = 12), 1.51 ± 0.35 (0.91-2.11), surrounding parenchyma (n = 11) 0.76 ± 0.15 (0.51-1.01) and normal pancreas in normal volunteers (n = 12), 0.80 ± 0.06 (0.72-0.90). ADC values of the ICT were significantly higher compared with those of surrounding parenchyma (p < 0.01) and normal pancreas (p < 0.001). Conclusion: DW MR imaging does not appear to provide significant contribution to routine MR imaging protocol in the evaluation of pancreatic islet cell tumors. But it can be added to MR imaging

  17. Enhanced Radiosensitivity of Tumor Cells Treated with Vanadate in Vitro

    International Nuclear Information System (INIS)

    Lee, Myung Za; Lee, Won Young

    1994-01-01

    Intracellular ions which have a major role in cellular function have been reported to affect repair of radiation damage. Recently it has been reported that ouabain sensitizes A549 tumor cells hut not CCL-120 normal cells to radiation. Ouabain inhibits the Na+-K+-pump rapidly thus it increases intracellular Na concentration. Vanadate which is distributed extensively in almost all living organisms in known to be a Na+-K+-ATPase inhibitors. This study was performed to see any change in radiosensitivity of tumor cell by vanadate and any role of Na+-K+-ATPase in radiosensitization. Experiments have been carried out by pretreatment with vanadate in human cell line(A549, JMG) and mouse cell line(L1210, spleen). For the cell survival MTT assay was performed for A549 and JMG cell and trypan blue dye exclusion test for L120, and spleen cells. Measurements of Na+-K+-ATPase activity in control, vanadate treated cell, radiation treated cell (9 Gy for A549 and JMG, 2 Gy for L1201, spleen), and combined 10-6 M vanadate and radiation treated cells were done. The results were summarized as follows. 1. L1210 cell was most radiosensitive, and spleen cell and JMG cell were intermediate, and A549 cell was least radiosensitive. 2. Minimum or cytotoxicity was seen with vanadate below concentration of 10-6 M. 3. In A549 cells there was a little change in radiosensitivity with treatment of vanadate. However radiation sensitization was shown in low dose level of radiation i. E. 2-Gy. In JMG cells no change in radiosensitivity was noted. Both L1210 and spleen cell had radiosensitization but change was greater in tumor cell. 4. Na+-K+-ATPase activity was inhibited significantly in tumor cell by treatment of vanadate. 5. Radiation itself inhibited Na+-K+-ATPase activity of tumor cell with high Na+- K+-ATPase concention. Increase in radiosensitivity by vanadate was closely associated with original Na+-K+-ATPase contents. From the above results vanadate had little cytotoxicity and it sensitized

  18. Cell Competition Drives the Formation of Metastatic Tumors in a Drosophila Model of Epithelial Tumor Formation

    DEFF Research Database (Denmark)

    Eichenlaub, Teresa; Cohen, Stephen M; Herranz, Héctor

    2016-01-01

    . The mechanisms that allow for ongoing cell competition during adult life could, in principle, contribute to tumorigenesis. However, direct evidence supporting this hypothesis has been lacking. Here, we provide evidence that cell competition drives tumor formation in a Drosophila model of epithelial cancer. Cells...

  19. Single-cell intracellular nano-pH probes†

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2016-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution. PMID:27708772

  20. Single-cell intracellular nano-pH probes.

    Science.gov (United States)

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

  1. Genome wide single cell analysis of chemotherapy resistant metastatic cells in a case of gastroesophageal adenocarcinoma

    International Nuclear Information System (INIS)

    Hjortland, Geir Olav; Fodstad, Oystein; Smeland, Sigbjorn; Hovig, Eivind; Meza-Zepeda, Leonardo A; Beiske, Klaus; Ree, Anne H; Tveito, Siri; Hoifodt, Hanne; Bohler, Per J; Hole, Knut H; Myklebost, Ola

    2011-01-01

    Metastatic progression due to development or enrichment of therapy-resistant tumor cells is eventually lethal. Molecular characterization of such chemotherapy resistant tumor cell clones may identify markers responsible for malignant progression and potential targets for new treatment. Here, in a case of stage IV adenocarcinoma of the gastroesophageal junction, we report the successful genome wide analysis using array comparative genomic hybridization (CGH) of DNA from only fourteen tumor cells using a bead-based single cell selection method from a bone metastasis progressing during chemotherapy. In a case of metastatic adenocarcinoma of the gastroesophageal junction, the progression of bone metastasis was observed during a chemotherapy regimen of epirubicin, oxaliplatin and capecitabine, whereas lung-, liver and lymph node metastases as well as the primary tumor were regressing. A bone marrow aspirate sampled at the site of progressing metastasis in the right iliac bone was performed, and single cell molecular analysis using array-CGH of Epithelial Specific Antigen (ESA)-positive metastatic cells, and revealed two distinct regions of amplification, 12p12.1 and 17q12-q21.2 amplicons, containing the KRAS (12p) and ERBB2 (HER2/NEU) (17q) oncogenes. Further intrapatient tumor heterogeneity of these highlighted gene copy number changes was analyzed by fluorescence in situ hybridization (FISH) in all available primary and metastatic tumor biopsies, and ErbB2 protein expression was investigated by immunohistochemistry. ERBB2 was heterogeneously amplified by FISH analysis in the primary tumor, as well as liver and bone metastasis, but homogenously amplified in biopsy specimens from a progressing bone metastasis after three initial cycles of chemotherapy, indicating a possible enrichment of erbB2 positive tumor cells in the progressing bone marrow metastasis during chemotherapy. A similar amplification profile was detected for wild-type KRAS, although more heterogeneously

  2. Targeting Tumor Oct4 to Deplete Prostate Tumor and Metastasis Initiating Cells

    Science.gov (United States)

    2017-12-01

    is associated with androgen receptor (AR). We detected Oct4 protein expression in prostate cancer cells as well as in tumor tissue specimens...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Identification of genes driving prostate carcinogenesis will lead to new cancer treatment. The human...a pseudogene of embryonic Oct4 (POU5F1). A recent study found that tumor Oct4 found in prostate cancer cells is due to the gene expression of POU5F1B

  3.  An Uncommon Presentation of Giant Cell Tumor

    Directory of Open Access Journals (Sweden)

    Gopal Malhotra

    2011-09-01

    Full Text Available  Giant Cell Tumors commonly occur at the ends of long bones. However in rare cases, they can occur in the bones of the hands and feet. Tumors in these locations occur in younger patients; in addition, these tumors are more commonly multifocal and are associated with a higher risk for local recurrence than tumors at the ends of long bones. Since lesions in the small bones may be multifocal, a patient with a giant cell tumor of the small bones should undergo a skeletal survey to exclude similar lesions elsewhere. Primary surgical treatment ranges from curettage or excision with or without bone grafting to amputation. The success of surgical treatment depends on the completeness with which the tumor was removed. We are presenting a case report of a 34 year old female, who presented with a swelling in the right hand, following trauma. X-ray of the hand showed an osteolytic expansile lesion at the base of the 1st metacarpal bone. The lesion was initially curetted and then treated by local resection with bone grafting. Histological examination revealed a typical benign giant cell tumor composed of closely packed stromal cells with a variable admixture of giant cells. Follow up at the end of one year did not reveal any recurrence of the tumor.

  4. A conjugate of an anti-midkine single-chain variable fragment to doxorubicin inhibits tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuli [Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Nanjing Affiliated First Hospital, Nanjing Medical University, Nanjing (China); Zhao, Guangfeng; Xie, Hao; Huang, Yahong [Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Hou, Yayi [Immunology and Reproductive Biology Laboratory, Medical School & State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing (China)

    2012-01-27

    Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex){sub 1.3}(DOX){sub 20}. In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers.

  5. A conjugate of an anti-midkine single-chain variable fragment to doxorubicin inhibits tumor growth

    International Nuclear Information System (INIS)

    Zhao, Shuli; Zhao, Guangfeng; Xie, Hao; Huang, Yahong; Hou, Yayi

    2012-01-01

    Doxorubicin (DOX) was conjugated to a single-chain variable fragment (scFv) against human midkine (MK), and the conjugate (scFv-DOX) was used to target the chemotherapeutic agent to a mouse solid tumor model in which the tumor cells expressed high levels of human MK. The His-tagged recombinant scFv was expressed in bacteria, purified by metal affinity chromatography, and then conjugated to DOX using oxidative dextran (Dex) as a linker. The molecular formula of this immunoconjugate was scFv(Dex) 1.3 (DOX) 20 . In vitro apoptosis assays showed that the scFv-DOX conjugate was more cytotoxic against MK-transfected human adenocarcinoma cells (BGC823-MK) than untransfected cells (55.3 ± 2.4 vs 22.4 ± 3.8%) for three independent experiments. Nude mice bearing BGC823-MK solid tumors received scFv-DOX or equivalent doses of scFv + DOX for 2 weeks and tumor growth was more effectively inhibited by the scFv-DOX conjugate than by scFv + DOX (51.83% inhibition vs 40.81%). Histological analysis of the tumor tissues revealed that the highest levels of DOX accumulated in tumors from mice treated with scFv-DOX and this resulted in more extensive tumor cell death than in animals treated with the equivalent dose of scFv + DOX. These results show that the scFv-DOX conjugate effectively inhibited tumor growth in vivo and suggest that antigen-specific scFv may be competent drug-carriers

  6. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    International Nuclear Information System (INIS)

    Addison, Christina L; Belperio, John A; Burdick, Marie D; Strieter, Robert M

    2004-01-01

    The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

  7. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system.

    Directory of Open Access Journals (Sweden)

    Krishna Das

    Full Text Available In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY, were transfected with an expression plasmid encoding a β2m-specific single guide (sgRNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO clones did not give rise to tumors in syngeneic mice (C57BL/6N, unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor.

  8. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  9. Parallel single-cell analysis microfluidic platform

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Gool, Elmar; Frimat, Jean-Philippe; Bomer, Johan G.; van den Berg, Albert; le Gac, Severine

    2011-01-01

    We report a PDMS microfluidic platform for parallel single-cell analysis (PaSCAl) as a powerful tool to decipher the heterogeneity found in cell populations. Cells are trapped individually in dedicated pockets, and thereafter, a number of invasive or non-invasive analysis schemes are performed.

  10. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Joana Maia

    2018-02-01

    Full Text Available Tumors are not isolated entities, but complex systemic networks involving cell-cell communication between transformed and non-transformed cells. The milieu created by tumor-associated cells may either support or halt tumor progression. In addition to cell-cell contact, cells communicate through secreted factors via a highly complex system involving characteristics such as ligand concentration, receptor expression and integration of diverse signaling pathways. Of these, extracellular vesicles, such as exosomes, are emerging as novel cell-cell communication mediators in physiological and pathological scenarios. Exosomes, membrane vesicles of endocytic origin released by all cells (both healthy and diseased, ranging in size from 30 to 150 nm, transport all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and perform intercellular transfer of components, locally and systemically. By acting not only in tumor cells, but also in tumor-associated cells such as fibroblasts, endothelium, leukocytes and progenitor cells, tumor- and non-tumor cells-derived exosomes have emerged as new players in tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and immunologic remodeling. In addition, due to their property of carrying molecules from their cell of origin to the peripheral circulation, exosomes have been increasingly studied as sources of tumor biomarkers in liquid biopsies. Here we review the current literature on the participation of exosomes in the communication between tumor and tumor-associated cells, highlighting the role of this process in the setup of tumor microenvironments that modulate tumor initiation and metastasis.

  11. The expression and regulation of glucose transporters in tumor cells

    Directory of Open Access Journals (Sweden)

    Pengfei Zhao

    2016-12-01

    Full Text Available Glucose transporter proteins are involved in many physiological and biochemical processes. In particular, the high expressions of sodium-glucose cotransporter and glucose transporter proteins in tumor cells show that these two transporters play a key role in tumor cell metabolism. Studying the crystal structure and conformation of human glucose transporter proteins has enabled the development of drugs based on specific binding sites, opening up a new path towards more effective cancer treatments. This mini review serves to summarize our existing understanding of the metabolic pathways of tumor cells, focusing on the roles of glucose transporter proteins.

  12. Selected Alkylating Agents Can Overcome Drug Tolerance of G0-like Tumor Cells and Eradicate BRCA1-Deficient Mammary Tumors in Mice.

    Science.gov (United States)

    Pajic, Marina; Blatter, Sohvi; Guyader, Charlotte; Gonggrijp, Maaike; Kersbergen, Ariena; Küçükosmanoğlu, Aslι; Sol, Wendy; Drost, Rinske; Jonkers, Jos; Borst, Piet; Rottenberg, Sven

    2017-11-15

    Purpose: We aimed to characterize and target drug-tolerant BRCA1-deficient tumor cells that cause residual disease and subsequent tumor relapse. Experimental Design: We studied responses to various mono- and bifunctional alkylating agents in a genetically engineered mouse model for BRCA1/p53 -mutant breast cancer. Because of the large intragenic deletion of the Brca1 gene, no restoration of BRCA1 function is possible, and therefore, no BRCA1-dependent acquired resistance occurs. To characterize the cell-cycle stage from which Brca1 -/- ;p53 -/- mammary tumors arise after cisplatin treatment, we introduced the fluorescent ubiquitination-based cell-cycle indicator (FUCCI) construct into the tumor cells. Results: Despite repeated sensitivity to the MTD of platinum drugs, the Brca1 -mutated mammary tumors are not eradicated, not even by a frequent dosing schedule. We show that relapse comes from single-nucleated cells delaying entry into the S-phase. Such slowly cycling cells, which are present within the drug-naïve tumors, are enriched in tumor remnants. Using the FUCCI construct, we identified nonfluorescent G 0 -like cells as the population most tolerant to platinum drugs. Intriguingly, these cells are more sensitive to the DNA-crosslinking agent nimustine, resulting in an increased number of multinucleated cells that lack clonogenicity. This is consistent with our in vivo finding that the nimustine MTD, among several alkylating agents, is the most effective in eradicating Brca1 -mutated mouse mammary tumors. Conclusions: Our data show that targeting G 0 -like cells is crucial for the eradication of BRCA1/p53-deficient tumor cells. This can be achieved with selected alkylating agents such as nimustine. Clin Cancer Res; 23(22); 7020-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Adriana Albini

    2018-04-01

    Full Text Available The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.

  14. T cells enhance gold nanoparticle delivery to tumors in vivo

    Science.gov (United States)

    Kennedy, Laura C.; Bear, Adham S.; Young, Joseph K.; Lewinski, Nastassja A.; Kim, Jean; Foster, Aaron E.; Drezek, Rebekah A.

    2011-12-01

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  15. "Mixed germ cell testicular tumor" in an adult female

    Directory of Open Access Journals (Sweden)

    Udasimath Shivakumarswamy

    2012-01-01

    Full Text Available The androgen insensitivity (testicular feminization syndrome was described by Morris in phenotypic females with 46XY karyotype, presenting with primary amenorrhea, adequate breast development, and absent or scanty pubic or axillary hair. Gonads consist usually of seminiferous tubules without spermatogenesis. These patients have a 5-10% risk of developing germ cell tumors, usually after the complete development of secondary female sexual characteristics. We hereby report a case considered as a female with married life of 15 years, who was operated for severe abdominal pain. Phenotype characters were that of female. Microscopic examination of the tumor from the abdomen revealed germinoma and yolk sac tumor with adjacent seminiferous tubules. Karyotyping showed 46XY. Final diagnosis of malignant mixed germ cell tumor in androgen insensitivity syndrome was made. Surveillance may be the most appropriate option when these conditions are initially diagnosed in adulthood to prevent development of germ cell tumors.

  16. Bilateral giant cell tumor of tendon sheath of tendoachilles

    Directory of Open Access Journals (Sweden)

    Soma Datta

    2014-01-01

    Full Text Available Giant cell tumor of tendon sheath arises from the synovium of tendon sheaths, joints, or bursae, mostly affects adults between 30 and 50 years of age, and is slightly more common in females. We report the case of a 32-years-old male presenting with pain in both ankles without any history of trauma. On clinical examination, tenderness on both tendoachilles and local thickening were observed. Ultrasonography showed thickening of local tendinous area with increase in anteroposterior diameter, and Doppler demonstrated increased flow in peritendinous area. MRI findings showed that most of the tumor had intermediate signal intensity and portions of the tumor had low signal intensity. Fine needle aspiration cytology confirmed the diagnosis of giant cell tumor of tendon sheath. Excision biopsy was done with no recurrence on five month follow-up. Review of literature did not reveal any similar result; so, bilateral giant cell tumor of tendon sheath of tendoachilles is a rare presentation.

  17. Recent discoveries concerning the tumor - mesenchymal stem cell interactions.

    Science.gov (United States)

    Lazennec, Gwendal; Lam, Paula Y

    2016-12-01

    Tumor microenvironment plays a crucial role in coordination with cancer cells in the establishment, growth and dissemination of the tumor. Among cells of the microenvironment, mesenchymal stem cells (MSCs) and their ability to evolve into cancer associated fibroblasts (CAFs) have recently generated a major interest in the field. Numerous studies have described the potential pro- or anti-tumorigenic action of MSCs. The goal of this review is to synthesize recent and emerging discoveries concerning the mechanisms by which MSCs can be attracted to tumor sites, how they can generate CAFs and by which way MSCs are able to modulate the growth, response to treatments, angiogenesis, invasion and metastasis of tumors. The understanding of the role of MSCs in tumor development has potential and clinical applications in terms of cancer management. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Immunogenicity of ascites tumor cells following in vitro hyperthermia

    International Nuclear Information System (INIS)

    Dickson, J.A.; Jasiewicz, M.L.; Simpson, A.C.

    1982-01-01

    The concept that host immunization may be achieved by heat-induced antigenic modifications of cancer cells and/or the release of immunogenic products by dead or dying tumor cells following in vitro heating was examined. Ehrlich ascites cells were used, inasmuch as it was claimed that in vitro hyperthermia increased the immunogenicity of these cells. Tumor cell populations of different viability were obtained by heating Ehrlich cells at 42.5 degrees, 45 degrees, or 60 degrees C. Viable and nonviable cells were separated by Ficoll-Hypaque density centrifugation; viable nonreplicating cells were obtained by treatment with mitomycin C. Cell populations of different viability after heating were left to die slowly over 3 days at 37 degrees C. Swiss TO mice were then given injections of the treated cells and/or medium. No survival benefit occurred in mice inoculated with any of these different components and then challenged with viable tumor cells. Injection of irradiated cells, however, did produce host immunity. Similarly, D23 rat hepatoma ascites cells produced host immunity after 15,000 rad but not after heating. The claim that in vitro hyperthermia increases the immunogenicity of tumor cells was not confirmed

  19. Turnover rate of hypoxic cells in solid tumors

    International Nuclear Information System (INIS)

    Ljungkvist, A.S.E.; Bussink, J.; Rijken, P.F.J.W.; Van Der Kogel, A.J.

    2003-01-01

    Most solid tumors contain hypoxic cells, and both the amount and duration of tumor hypoxia has been shown to influence the effect of radiation treatment negatively. It is important to understand the dynamic processes within the hypoxic cell population in non-treated tumors, and the effect of different treatment modalities on the kinetics of hypoxic cells to be able to design optimal combined modality treatments. The turnover rate of hypoxic cells was analyzed in three different solid tumor models with a double bio-reductive hypoxic marker assay with sequential injection of the two hypoxic markers. Previously it was shown that this assay could be used to detect both a decrease and an increase of tumor hypoxia in relation to the tumor vasculature with high spatial resolution. In this study the first hypoxic marker, pimonidazole, was administered at variable times relative to tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. The hypoxic cell turnover rate was calculated as the loss of pimonidazole positive cells relative to CCI-103F. The murine C38 line had the fastest hypoxic turnover rate of 60% /24h and the human xenograft line SCCNij3 had the slowest hypoxic turnover rate of 30% /24 h. The hypoxic turnover rate was most heterogeneous in the SCCNij3 line that even contained viable groups of cells that had been hypoxic for at least 5 days. The human xenograft line MEC82 fell in between with a hypoxic turnover rate of 50% /24 h. The hypoxic cell turnover was related to the potential tumor volume doubling time (Tpot) with a Tpot of 26h in C38 and 103h in SCCNij3. The dynamics of hypoxic cells, quantified with a double hypoxic marker method, showed large differences in hypoxic cell turnover rate and were related to Tpot

  20. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas; Gojobori, Takashi

    2015-01-01

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  1. Single-cell technologies in environmental omics

    KAUST Repository

    Kodzius, Rimantas

    2015-10-22

    Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.

  2. Automated Single Cell Data Decontamination Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Tennessen, Kristin [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Pati, Amrita [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  3. Multifocal Abrikossoff's granular cell tumor of the oesophagus: Case report

    Directory of Open Access Journals (Sweden)

    Ranđelović Tomislav D.

    2008-01-01

    Full Text Available INTRODUCTION Granular cell tumors, relatively uncommon soft tissue tumors, have been a matter of debate among pathologists regarding histogenesis for a long time. Less common locations are in the aerodigestive tract including the oesophagus. CASE OUTLINE We have recently treated a rare case, a 37-year old male, who was admitted due to dysphagia and a painful swallow with occasional pharyngo-nasal regurgitation followed with a mild loss of weight. Standard clinical examination including X-ray chest, ECG and laboratory tests did not show pathological findings. Barium contrast oesophagography demonstrated multiple ovoid defects in the wall of the oesophagus. CT scan of the chest confirmed luminal narrowing owing to the tumor of the upper oesophagus. Upper endoscopy showed unusual multifocal nodular lesions alongside the oesophageal axis covered by smooth mucosa. A primary biopsy specimen taken from the largest nodules confirmed an unusual pathological finding of the granular cell tumor. Subtotal, transpleural oesophagectomy was performed and reconstruction was derived by long colon segment interposition through the posterior mediastinum. The postoperative course was uneventful. The operative specimen consisted of four ovoid tumors alongside the oesophagus (the greatest diameter 0.5-1.8, average 1.25. All verified tumors histologicaly consisted of a spindle-shaped or polygonal cells containing small and large eosinophilic granules and central nuclei. Most tumor cells showed strongly positive immunohistochemical staining for S-100 protein. These tumor cells were partially positive for p-53 and Ki-67. No lymph node metastases were detected histologically. CONCLUSION Multifocal granular cell tumor of the oesophagus is an unusual finding with low incidence, and rarely caused symptoms. Pathological features and multiplicity of such tumors emphasized malignant predisposition requiring surgical resection of the oesophagus.

  4. Multifocal Synchronous Granular Cell Tumors of the Gastrointestinal Tract

    OpenAIRE

    Lipkin-Moore, Zachary; Thomas, Rebecca M.; Rothstein, Robin D.

    2014-01-01

    Granular cell tumors (GCT) are rare and unusual tumors, which are usually benign and asymptomatic. Only 5?10% of cases involve the gastrointestinal tract, most commonly as singular, non-cancerous lesions in the esophagus. We report a rare case of symptomatic, multifocal, synchronous GCT involving the esophagus, stomach, and cecum.

  5. TANTIGEN: a comprehensive database of tumor T cell antigens

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Tongchusak, Songsak; Lin, Honghuang

    2017-01-01

    Tumor T cell antigens are both diagnostically and therapeutically valuable molecules. A large number of new peptides are examined as potential tumor epitopes each year, yet there is no infrastructure for storing and accessing the results of these experiments. We have retroactively cataloged more ...

  6. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  7. Open-Label, Multicenter, Phase 1/2 Study of Tazemetostat (EZH2 Histone Methyl Transferase [HMT] Inhibitor) as a Single Agent in Subjects With Adv. Solid Tumors or With B-cell Lymphomas and Tazemetostat in Combination With Prednisolone in Subjects With DLBCL

    Science.gov (United States)

    2018-04-12

    B-cell Lymphomas (Phase 1); Advanced Solid Tumors (Phase 1); Diffuse Large B-cell Lymphoma (Phase 2); Follicular Lymphoma (Phase 2); Transformed Follicular Lymphoma; Primary Mediastinal Large B-Cell Lymphoma

  8. Influence of the Tumor Microenvironment on Cancer Cells Metabolic Reprogramming

    Directory of Open Access Journals (Sweden)

    Victoire Gouirand

    2018-04-01

    Full Text Available As with castles, tumor cells are fortified by surrounding non-malignant cells, such as cancer-associated fibroblasts, immune cells, but also nerve fibers and extracellular matrix. In most cancers, this fortification creates a considerable solid pressure which limits oxygen and nutrient delivery to the tumor cells and causes a hypoxic and nutritional stress. Consequently, tumor cells have to adapt their metabolism to survive and proliferate in this harsh microenvironment. To satisfy their need in energy and biomass, tumor cells develop new capacities to benefit from metabolites of the microenvironment, either by their uptake through the macropinocytosis process or through metabolite transporters, or by a cross-talk with stromal cells and capture of extracellular vesicles that are released by the neighboring cells. However, the microenvironments of primary tumor and metastatic niches differ tremendously in their cellular/acellular components and available nutrients. Therefore, cancer cells must develop a metabolic flexibility conferring on them the ability to satisfy their biomass and energetic demands at both primary and metastasis sites. In this review, we propose a brief overview of how proliferating cancer cells take advantage of their surrounding microenvironment to satisfy their high metabolic demand at both primary and metastasis sites.

  9. In vivo imaging of tumor vascular endothelial cells

    Science.gov (United States)

    Zhao, Dawen; Stafford, Jason H.; Zhou, Heling; Thorpe, Philip E.

    2013-02-01

    Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable (non-apoptotic) endothelial cells in tumor blood vessels, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we optically imaged exposed PS on tumor vasculature in vivo using PGN635, a novel human monoclonal antibody that targets PS. PGN635 F(ab')2 was labeled with the near infrared (NIR) dye, IRDye 800CW. Human glioma U87 cells or breast cancer MDA-MB-231 cells were implanted subcutaneously or orthotopically into nude mice. When the tumors reached ~5 mm in diameter, 800CW- PGN635 was injected via a tail vein and in vivo dynamic NIR imaging was performed. For U87 gliomas, NIR imaging allowed clear detection of tumors as early as 4 h later, which improved over time to give a maximal tumor/normal ratio (TNR = 2.9 +/- 0.5) 24 h later. Similar results were observed for orthotopic MDA-MB-231 breast tumors. Localization of 800CW-PGN635 to tumors was antigen specific since 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and pre-administration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive tumor vascular endothelium. Our studies suggest that tumor vasculature can be successfully imaged in vivo to provide sensitive tumor detection.

  10. Chimeric antigen receptor T-cell therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Kheng Newick

    2016-01-01

    Full Text Available Chimeric antigen receptor (CAR T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias. This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment.

  11. Perspective on Cancer Therapeutics Utilizing Analysis of Circulating Tumor Cells

    Directory of Open Access Journals (Sweden)

    Keun-Yeong Jeong

    2018-04-01

    Full Text Available Various methods are available for cancer screening, and the methods are performed depending on the origin site of cancer. Among these methods, biopsy followed by medical imaging is the most common. After cancer progression is determined, an optimal treatment—such as surgery, chemotherapy, and/or radiation therapy—is selected. A new assay has been developed that detects circulating tumor cells (CTCs. Tracking changes in CTCs may reveal important tumoral sensitivity information or resistance patterns to specific regimens and prompt changes in therapy on a personalized basis. Characterization of CTCs at the DNA, RNA, and protein levels is important for gaining insight for clinical applications. A small number of CTCs can be analyzed to obtain genome information such as the progression of cancer including metastasis, even in a single cluster. Although many clinical studies, particularly CTC enumeration and detection of specific oncogene expression, have increased the success rate of diagnosis and predicting prognosis, there is no consensus regarding the technical approaches and various aspects of the methodology, making it difficult to standardize optimal methods for CTC analysis. However, ongoing technological advances are currently being achieved and large-scale clinical studies are being conducted. Applying CTC analysis in the clinic would be very useful for advancing diagnosis, prognosis prediction, and therapeutics.

  12. Reliable single cell array CGH for clinical samples.

    Directory of Open Access Journals (Sweden)

    Zbigniew T Czyż

    Full Text Available BACKGROUND: Disseminated cancer cells (DCCs and circulating tumor cells (CTCs are extremely rare, but comprise the precursors cells of distant metastases or therapy resistant cells. The detailed molecular analysis of these cells may help to identify key events of cancer cell dissemination, metastatic colony formation and systemic therapy escape. METHODOLOGY/PRINCIPAL FINDINGS: Using the Ampli1™ whole genome amplification (WGA technology and high-resolution oligonucleotide aCGH microarrays we optimized conditions for the analysis of structural copy number changes. The protocol presented here enables reliable detection of numerical genomic alterations as small as 0.1 Mb in a single cell. Analysis of single cells from well-characterized cell lines and single normal cells confirmed the stringent quantitative nature of the amplification and hybridization protocol. Importantly, fixation and staining procedures used to detect DCCs showed no significant impact on the outcome of the analysis, proving the clinical usability of our method. In a proof-of-principle study we tracked the chromosomal changes of single DCCs over a full course of high-dose chemotherapy treatment by isolating and analyzing DCCs of an individual breast cancer patient at four different time points. CONCLUSIONS/SIGNIFICANCE: The protocol enables detailed genome analysis of DCCs and thereby assessment of the clonal evolution during the natural course of the disease and under selection pressures. The results from an exemplary patient provide evidence that DCCs surviving selective therapeutic conditions may be recruited from a pool of genomically less advanced cells, which display a stable subset of specific genomic alterations.

  13. Androgen - secreting steroid cell tumor of the ovary

    Directory of Open Access Journals (Sweden)

    Paras Ratilal Udhreja

    2014-01-01

    Full Text Available Steroid cell tumors (SCTs, not otherwise specified of the ovary are rare subgroup of sex cord tumors, which account for less than 0.1% of all ovarian tumors and also that will present at any age. The majority of these tumors produce steroids with testosterone being the most common. A case of a 28-year-old woman who presented with symptoms of virilization is reported. Although SCTs are generally benign, there is a risk for malignant transformation. Surgery is the most important and hallmark treatment.

  14. Dutasteride and enzalutamide synergistically suppress prostate tumor cell proliferation

    NARCIS (Netherlands)

    Hamid, A.R.; Verhaegh, G.W.C.T.; Smit, F.P.; RIjt-van de Westerlo, C.; Armandari, I.; Brandt, A.; Sweep, F.C.; Sedelaar, J.P.M.; Schalken, J.A.

    2015-01-01

    PURPOSE: Dihydrotestosterone is the main active androgen in the prostate and it has a role in prostate cancer progression. After androgen deprivation therapy androgen receptor signaling is still active in tumor cells. Persistent intratumor steroidogenesis and androgen receptor changes are

  15. Technologies for Single-Cell Isolation.

    Science.gov (United States)

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-07-24

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  16. Technologies for Single-Cell Isolation

    Science.gov (United States)

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-01-01

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field. PMID:26213926

  17. Technologies for Single-Cell Isolation

    Directory of Open Access Journals (Sweden)

    Andre Gross

    2015-07-01

    Full Text Available The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting respectively Flow cytometry (33% usage, laser microdissection (17%, manual cell picking (17%, random seeding/dilution (15%, and microfluidics/lab-on-a-chip devices (12% are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  18. Training stem cells for treatment of malignant brain tumors

    Institute of Scientific and Technical Information of China (English)

    Shengwen; Calvin; Li; Mustafa; H; Kabeer; Long; T; Vu; Vic; Keschrumrus; Hong; Zhen; Yin; Brent; A; Dethlefs; Jiang; F; Zhong; John; H; Weiss; William; G; Loudon

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for pa-tients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution(i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  19. Single-cell measurement of red blood cell oxygen affinity

    OpenAIRE

    Caprio, Di; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system....

  20. Anti-tumor therapy with macroencapsulated endostatin producer cells

    Directory of Open Access Journals (Sweden)

    Balduino Keli N

    2010-03-01

    Full Text Available Abstract Background Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Results Mice were inoculated subcutaneously with melanoma (B16F10 cells or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. Conclusions This study indicates that

  1. Localized tenosynovial giant cell tumor in both knee joints

    International Nuclear Information System (INIS)

    Kim, Hyun Su; Kwon, Jong Won; Ahn, Jin Hwan; Chang, Moon Jong; Cho, Eun Yoon

    2010-01-01

    Tenosynovial giant cell tumor, previously called pigmented villonodular synovitis (PVNS), is a rare benign neoplastic process that may involve the synovium of the joint. The disorder is usually monoarticular and only a few cases have been reported on polyarticular involvement. Herein, we present a case of localized intra-articular tenosynovial giant cell tumor in a 29-year-old man involving both knee joints with a description of the MR imaging and histological findings. (orig.)

  2. Ultrastructure and pathology of desmoplastic small round cell tumor

    International Nuclear Information System (INIS)

    Xu Bin; Wang Bo; Gu Junlian; Li Xin; Li Yang

    2010-01-01

    Objective: To observe the change of ultrastructure and pathology of desmoplastic small round cell tumor (DSRCT) and recognize the characteristics of DSRCT and improve the standard of diagnosis. Methods: One case of primary DSRCT in right leg was observed by light microscope, immunohistochemical method and electron microscope and analyzed with review of the literatures. Results: The size of tumor was 3.2 cm x 2.4 cm x 1.3 cm with gray-yellow on cross-section. Foci of hemorrhage and necrosis were noted. Under light microscope, the tumor was composed of sharply demarcated nests of small rounded or oval cells. The cellular aggregates were surrounded and separated by abundant fibrous connective tissue. The tumor cells were uniform in size and shape, and showed small to moderate amounts of pale cytoplasm with indistinct cell borders. The nuclei were round to oval, with clumped chromatin and marked hyperchromasia. Some cells had one or two indistinct nucleoli. Numerous mitotic figures and areas of necrosis were dentified. The immunohistochemical results showed that the tumor cells were strongly positive for CK, EMA and NSE. There was focal positive staining for desmin with a perinuclear dot-like pattern. However, the tumor cells were negative for CgA, Myogenin, Syn, LCA, SMA, S-100, NF, GFAP, HMB45, HHF-35, CD3, CD10, Actin, CD99, and CD20. Under electron microscope, the tumor cells showed paranuclear cytoplasmic intermediate filaments arranging in globular or whorl array. Conclusion: DSRCT occurs both in the abdomen and at other sites. The patients with DSRCT range widely in age. DSRCT has distinctive histopathologic and ultrastructural features. This tumor shows immunohistochemical feature of epithelial, mesenchymal as well as neural multidirectional differentiation. RT-PCR may be served as an important diagnostic adjunct for DSRAT. The prognosis of the patients with DSRCT is very poor. (authors)

  3. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4

    NARCIS (Netherlands)

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B.; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-01-01

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The

  4. NK cell-released exosomes: Natural nanobullets against tumors.

    Science.gov (United States)

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool.

  5. uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors.

    Science.gov (United States)

    Sobrevals, Luciano; Mato-Berciano, Ana; Urtasun, Nerea; Mazo, Adela; Fillat, Cristina

    2014-01-01

    Pancreatic tumors contain cancer stem cells highly resistant to chemotherapy. The identification of therapies that can eliminate this population of cells might provide with more effective treatments. In the current work we evaluated the potential of oncolytic adenoviruses to act against pancreatic cancer stem cells (PCSC). PCSC from two patient-derived xenograft models were isolated from orthotopic pancreatic tumors treated with saline, or with the chemotherapeutic agent gemcitabine. An enrichment in the number of PCSC expressing the cell surface marker CD133 and a marked enhancement on tumorsphere formation was observed in gemcitabine treated tumors. No significant increase in the CD44, CD24, and epithelial-specific antigen (ESA) positive cells was observed. Neoplastic sphere-forming cells were susceptible to adenoviral infection and exposure to oncolytic adenoviruses resulted in elevated cytotoxicity with both Adwt and the tumor specific AduPARE1A adenovirus. In vivo, intravenous administration of a single dose of AduPARE1A in human-derived pancreatic xenografts led to a remarkable anti-tumor effect. In contrast to gemcitabine AduPARE1A treatment did not result in PCSC enrichment. No enrichment on tumorspheres neither on the CD133(+) population was detected. Therefore our data provide evidences of the relevance of uPAR-controlled oncolytic adenoviruses for the elimination of pancreatic cancer stem cells. © 2013.

  6. A medaka model of cancer allowing direct observation of transplanted tumor cells in vivo at a cellular-level resolution.

    Science.gov (United States)

    Hasegawa, Sumitaka; Maruyama, Kouichi; Takenaka, Hikaru; Furukawa, Takako; Saga, Tsuneo

    2009-08-18

    The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells "as seen in a culture dish" and would be useful for in vivo tumor cell biology.

  7. BRE enhances in vivo growth of tumor cells

    International Nuclear Information System (INIS)

    Chan, Ben Chung-Lap; Li Qing; Chow, Stephanie Ka-Yee; Ching, Arthur Kar-Keung; Liew, Choong Tsek; Lim, Pak-Leong; Lee, Kenneth Ka-Ho; Chan, John Yeuk-Hon; Chui, Y.-L.

    2005-01-01

    Human BRE, a death receptor-associating intracellular protein, attenuates apoptotic response of human and mouse tumor cell lines to death receptor stimuli in vitro. In this report, we addressed whether the in vitro antiapoptotic effect of BRE could impact on tumor growth in vivo. We have shown that the mouse Lewis lung carcinoma D122 stable transfectants of human BRE expression vector developed into local tumor significantly faster than the stable transfectants of empty vector and parental D122, in both the syngeneic C57BL/6 host and nude mice. In vitro growth of the BRE stable transfectants was, however, not accelerated. No significant difference in metastasis between the transfectants and the parental D122 was detected. Thus, overexpression of BRE promotes local tumor growth but not metastasis. We conclude that the enhanced tumor growth is more likely due to the antiapoptotic activity of BRE than any direct effect of the protein on cell proliferation

  8. Toward single cell traction microscopy within 3D collagen matrices

    International Nuclear Information System (INIS)

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels

  9. Toward single cell traction microscopy within 3D collagen matrices

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  10. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Mutvei, Anders Peter; Fredlund, Erik; Lendahl, Urban

    2015-01-01

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  11. Efficacy of ONC201 in Desmoplastic Small Round Cell Tumor.

    Science.gov (United States)

    Hayes-Jordan, Andrea A; Ma, Xiao; Menegaz, Brian A; Lamhamedi-Cherradi, Salah-Eddine; Kingsley, Charles V; Benson, Jalen A; Camacho, Pamela E; Ludwig, Joseph A; Lockworth, Cynthia R; Garcia, Gloria E; Craig, Suzanne L

    2018-05-01

    Desmoplastic Small Round Cell Tumor (DSRCT) is a rare sarcoma tumor of adolescence and young adulthood, which harbors a recurrent chromosomal translocation between the Ewing's sarcoma gene (EWSR1) and the Wilms' tumor suppressor gene (WT1). Patients usually develop multiple abdominal tumors with liver and lymph node metastasis developing later. Survival is poor using a multimodal therapy that includes chemotherapy, radiation and surgical resection, new therapies are needed for better management of DSRCT. Triggering cell apoptosis is the scientific rationale of many cancer therapies. Here, we characterized for the first time the expression of pro-apoptotic receptors, tumor necrosis-related apoptosis-inducing ligand receptors (TRAILR1-4) within an established human DSRCT cell line and clinical samples. The molecular induction of TRAIL-mediated apoptosis using agonistic small molecule, ONC201 in vitro cell-based proliferation assay and in vivo novel orthotopic xenograft animal models of DSRCT, was able to inhibit cell proliferation that was associated with caspase activation, and tumor growth, indicating that a cell-based delivery of an apoptosis-inducing factor could be relevant therapeutic agent to control DSRCT. Copyright © 2018. Published by Elsevier Inc.

  12. Efficacy of ONC201 in Desmoplastic Small Round Cell Tumor

    Directory of Open Access Journals (Sweden)

    Andrea A. Hayes-Jordan

    2018-05-01

    Full Text Available Desmoplastic Small Round Cell Tumor (DSRCT is a rare sarcoma tumor of adolescence and young adulthood, which harbors a recurrent chromosomal translocation between the Ewing’s sarcoma gene (EWSR1 and the Wilms’ tumor suppressor gene (WT1. Patients usually develop multiple abdominal tumors with liver and lymph node metastasis developing later. Survival is poor using a multimodal therapy that includes chemotherapy, radiation and surgical resection, new therapies are needed for better management of DSRCT. Triggering cell apoptosis is the scientific rationale of many cancer therapies. Here, we characterized for the first time the expression of pro-apoptotic receptors, tumor necrosis-related apoptosis-inducing ligand receptors (TRAILR1-4 within an established human DSRCT cell line and clinical samples. The molecular induction of TRAIL-mediated apoptosis using agonistic small molecule, ONC201 in vitro cell-based proliferation assay and in vivo novel orthotopic xenograft animal models of DSRCT, was able to inhibit cell proliferation that was associated with caspase activation, and tumor growth, indicating that a cell-based delivery of an apoptosis-inducing factor could be relevant therapeutic agent to control DSRCT.

  13. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  14. Iatrogenic giant cell tumor at bone graft harvesting site

    Directory of Open Access Journals (Sweden)

    Zile S Kundu

    2013-01-01

    Full Text Available 30 year old female patient with giant cell tumor of the distal tibia initially treated at a peripheral nononcological center by curettage and autologous bone grafting from the ipsilateral iliac crest reported to us with local recurrence and an implantation giant cell tumor at the graft harvesting site which required extensive surgeries at both sites. The risk of iatrogenic direct implantation of tumor, often attributable to inadequate surgical planning or poor surgical techniques, and the steps to prevent such complication is reported here.

  15. Tumor-educated myeloid cells: impact the micro- and macroenvironment.

    Science.gov (United States)

    Becker, Jürgen C

    2014-03-01

    Immune escape mechanisms of cancers include some of the mechanisms normally used for immune homeostasis, particular those preventing autoimmunity; one of these is the polarisation of myeloid cells. Thereby, tumors, i.e. the cancerous and stromal cells, also condition distant sites like spleen and bone marrow via soluble factors and membrane vesicles such as exosomes in order to create a tumor-educated macroenvironment. Albeit these mechanisms are currently in the focus of (tumor-)immunologic research, the first evidence had been published almost 40 years ago. One of these early reports will be discussed here. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Active targeting of tumor cells using light emitting bacteria

    International Nuclear Information System (INIS)

    Moon, Sung Min; Min, Jung Joon; Hong, Yeong Jin; Kim, Hyun Ju; Le, Uuenchi N.; Rhee, Joon Haeng; Song, Ho Chun; Heo, Young Jun; Bom, Hee Seung; Choy, Hyon E

    2004-01-01

    The presence of bacteria and viruses in human tumors has been recognized for more than 50 years. Today, with the discovery of bacterial strains that specifically target tumors, and aided by genomic sequencing and genetic engineering, there is new interest in the use of bacteria as tumor vectors. Here, we show that bacteria injected intravenously into live animals entered and replicated in solid tumors and metastases using the novel imaging technology of biophotonics. Bioluminescence operon (LuxCDABE) or fluorescence protein, GFP) has been cloned into pUC19 plasmid to engineer pUC19lux or pUC19gfp. Engineered plasmid was transformed into different kinds of wild type (MG1655) or mutant E. coli (DH5, ppGpp, fnr, purE, crpA, flagella, etc.) strains to construct light emitting bacteria. Xenograft tumor model has been established using CT26 colon cancer cell line. Light emitting bacteria was injected via tail vein into tumor bearing mouse. In vivo bioluminescence imaging has been done after 20 min to 14 days of bacterial injection. We observed localization of tumors by light-emitting E. coli in tumor (CT-26) bearing mice. We confirmed the presence of light-emitting bacteria under the fluorescence microscope with E. coli expressing GFP. Althoug varying mutants strain with deficient invading function has been found in tumor tissues, mutant strains of movement (flagella) couldn't show any light signal from the tumor tissue under the cooled CCD camera, indicating bacteria may actively target the tumor cells. Based on their 'tumor-finding' nature, bacteria may be designed to carry multiple genes or drugs for detection and treatment of cancer, such as prodrug-converting enzymes, toxins, angiogenesis inhibitors and cytokines

  17. Review of juxtaglomerular cell tumor with focus on pathobiological aspect

    Directory of Open Access Journals (Sweden)

    Pan Chin-Chen

    2011-08-01

    Full Text Available Abstract Juxtaglomerular cell tumor (JGCT generally affects adolescents and young adults. The patients experience symptoms related to hypertension and hypokalemia due to renin-secretion by the tumor. Grossly, the tumor is well circumscribed with fibrous capsule and the cut surface shows yellow or gray-tan color with frequent hemorrhage. Histologically, the tumor is composed of monotonous polygonal cells with entrapped normal tubules. Immunohistochemically, tumor cells exhibit a positive reactivity for renin, vimentin and CD34. Ultrastructurally, neoplastic cells contain rhomboid-shaped renin protogranules. Genetically, losses of chromosomes 9 and 11 were frequently observed. Clinically, the majority of tumors showed a benign course, but rare tumors with vascular invasion or metastasis were reported. JGCT is a curable cause of hypertensive disease if it is discovered early and surgically removed, but may cause a fatal outcome usually by a cerebrovascular attack or may cause fetal demise in pregnancy. Additionally, pathologists and urologists need to recognize that this neoplasm in most cases pursues a benign course, but aggressive forms may develop in some cases.

  18. Immune selection of tumor cells in TCR β-chain transgenic mice.

    Science.gov (United States)

    Silaeva, Yulia Yu; Grinenko, Tatyana S; Vagida, Murad S; Kalinina, Anastasia A; Khromykh, Ludmila M; Kazansky, Dmitry B

    2014-10-01

    The concept of immunological surveillance implies that immunogenic variants of tumor cells arising in the organism can be recognized by the immune system. Tumor progression is provided by somatic evolution of tumor cells under the pressure of the immune system. The loss of MHC Class I molecules on the surface of tumor cells is one of the most known outcomes of immune selection. This study developed a model of immune selection based on the immune response of TCR 1d1 single β-chain transgenic B10.D2(R101) (K(d)I(d)D(b)) mice to allogeneic EL4 (H-2(b)) thymoma cells. In wild-type B10.D2(R101) mice, immunization with EL4 cells induced a vigorous CTL response targeted to the H-2K(b) molecule and results in full rejection of the tumor cells. In contrast, transgenic mice developed a compromised proliferative response in mixed-lymphocyte response assays and were unable to reject transplanted allogeneic EL4 cells. During the immune response to EL4 cells, CD8(+) T-lymphocytes with endogenous β-chains accumulated predominantly in the spleen of transgenic mice and only a small part of the T-lymphocytes expressing transgenic β-chains became CD8(+)CD44(+)CD62L(-) effectors. Then, instead of a full elimination of tumor cells as in wild-type mice, a reproducible prolonged equilibrium phase and subsequent escape was observed in transgenic mice that resulted in death of 90% of the mice in 40-60 days after grafting. Prolonged exposure of tumor cells to the pressure of the immune system in transgenic mice in vivo resulted in a stable loss of H-2K(b) molecules on the EL4 cell surface. Genetic manipulation of the T-lymphocyte repertoire was sufficient to reproduce the classic pattern of interactions between tumor cells and the immune system, usually observed in reliable syngeneic models of anti-tumor immunity. This newly-developed model could be used in further studies of immunoregulatory circuits common for transplantational and anti-tumor immune responses.

  19. A rare ovarian tumor, leydig stromal cell tumor, presenting with virilization: a case report

    Directory of Open Access Journals (Sweden)

    Soheila Aminimoghaddam

    2012-11-01

    Full Text Available  Abstract Leydig stromal cell tumor is a rare ovarian tumor that belongs to the group of sex-cord stromal tumors. They produce testosterone leading to hyperandrogenism. We present a 41yr old woman with symptoms of virilization and a mass of right adenex via ultra Sonography, and a rise of total and free serum testosterone. An ovarian source of androgen was suspected and a surgery performed. A diagnosis of leydig-stromal cell tumor was confirmed. Our report is a reminder that although idiopathic hirsutism and other benign androgen excess disorder like Polycystic Ovarian Syndrome (PCOs are common, ovarian mass should be considered in differential diagnosis. 

  20. Tumor vaccine composed of C-class CpG oligodeoxynucleotides and irradiated tumor cells induces long-term antitumor immunity

    Directory of Open Access Journals (Sweden)

    Cerkovnik Petra

    2010-09-01

    Full Text Available Abstract Background An ideal tumor vaccine should activate both effector and memory immune response against tumor-specific antigens. Beside the CD8+ T cells that play a central role in the generation of a protective immune response and of long-term memory, dendritic cells (DCs are important for the induction, coordination and regulation of the adaptive immune response. The DCs can conduct all of the elements of the immune orchestra and are therefore a fundamental target and tool for vaccination. The present study was aimed at assessing the ability of tumor vaccine composed of C-class CpG ODNs and irradiated melanoma tumor cells B16F1 followed by two additional injections of CpG ODNs to induce the generation of a functional long-term memory response in experimental tumor model in mice (i.p. B16F1. Results It has been shown that the functional memory response in vaccinated mice persists for at least 60 days after the last vaccination. Repeated vaccination also improves the survival of experimental animals compared to single vaccination, whereas the proportion of animals totally protected from the development of aggressive i.p. B16F1 tumors after vaccination repeated three times varies between 88.9%-100.0%. Additionally, the long-term immune memory and tumor protection is maintained over a prolonged period of time of at least 8 months. Finally, it has been demonstrated that following the vaccination the tumor-specific memory cells predominantly reside in bone marrow and peritoneal tissue and are in a more active state than their splenic counterparts. Conclusions In this study we demonstrated that tumor vaccine composed of C-class CpG ODNs and irradiated tumor cells followed by two additional injections of CpG ODNs induces a long-term immunity against aggressive B16F1 tumors.

  1. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  2. Single cell elemental analysis using nuclear microscopy

    International Nuclear Information System (INIS)

    Ren, M.Q.; Thong, P.S.P.; Kara, U.; Watt, F.

    1999-01-01

    The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS)

  3. Single cell time-lapse analysis reveals that podoplanin enhances cell survival and colony formation capacity of squamous cell carcinoma cells.

    Science.gov (United States)

    Miyashita, Tomoyuki; Higuchi, Youichi; Kojima, Motohiro; Ochiai, Atsushi; Ishii, Genichiro

    2017-01-06

    Tumor initiating cells (TICs) are characterized by high clonal expansion capacity. We previously reported that podoplanin is a TIC-specific marker for the human squamous cell carcinoma cell line A431. The aim of this study is to explore the molecular mechanism underlying the high clonal expansion potential of podoplanin-positive A431cells using Fucci imaging. Single podoplanin-positive cells created large colonies at a significantly higher frequency than single podoplanin-negative cells, whereas no difference was observed between the two types of cells with respect to cell cycle status. Conversely, the cell death ratio of progenies derived from podoplanin-positive single cell was significantly lower than that of cells derived from podoplanin-negative cells. Single A431 cells, whose podoplanin expression was suppressed by RNA interference, exhibited increased cell death ratios and decreased frequency of large colony forming. Moreover, the frequency of large colony forming decreased significantly when podoplanin-positive single cells was treated with a ROCK (Rho-associated coiled-coil kinase) inhibitor, whereas no difference was observed in single podoplanin-negative cells. Our current study cleared that high clonal expansion capacity of podoplanin-positive TICs populations was the result of reduced cell death by podoplanin-mediated signaling. Therefore, podoplanin activity may be a therapeutic target in the treatment of squamous cell carcinomas.

  4. New frontiers in single-cell analysis

    OpenAIRE

    Templer, Richard H.; Ces, Oscar

    2008-01-01

    For this special issue of J. R. Soc. Interface we present an overview of the driving forces behind technological advances in the field of single-cell analysis. These range from increasing our understanding of cellular heterogeneity through to the study of rare cells, areas of research that cannot be tackled effectively using current high-throughput population-based averaging techniques.

  5. Pharmacological doses of daily ascorbate protect tumors from radiation damage after a single dose of radiation in an intracranial mouse glioma model.

    Science.gov (United States)

    Grasso, Carole; Fabre, Marie-Sophie; Collis, Sarah V; Castro, M Leticia; Field, Cameron S; Schleich, Nanette; McConnell, Melanie J; Herst, Patries M

    2014-01-01

    Pharmacological ascorbate is currently used as an anti-cancer treatment, potentially in combination with radiation therapy, by integrative medicine practitioners. In the acidic, metal-rich tumor environment, ascorbate acts as a pro-oxidant, with a mode of action similar to that of ionizing radiation; both treatments kill cells predominantly by free radical-mediated DNA damage. The brain tumor, glioblastoma multiforme (GBM), is very resistant to radiation; radiosensitizing GBM cells will improve survival of GBM patients. Here, we demonstrate that a single fraction (6 Gy) of radiation combined with a 1 h exposure to ascorbate (5 mM) sensitized murine glioma GL261 cells to radiation in survival and colony-forming assays in vitro. In addition, we report the effect of a single fraction (4.5 Gy) of whole brain radiation combined with daily intraperitoneal injections of ascorbate (1 mg/kg) in an intracranial GL261 glioma mouse model. Tumor-bearing C57BL/6 mice were divided into four groups: one group received a single dose of 4.5 Gy to the brain 8 days after tumor implantation, a second group received daily intraperitoneal injections of ascorbate (day 8-45) after implantation, a third group received both treatments and a fourth control group received no treatment. While radiation delayed tumor progression, intraperitoneal ascorbate alone had no effect on tumor progression. Tumor progression was faster in tumor-bearing mice treated with radiation and daily ascorbate than in those treated with radiation alone. Histological analysis showed less necrosis in tumors treated with both radiation and ascorbate, consistent with a radio-protective effect of ascorbate in vivo. Discrepancies between our in vitro and in vivo results may be explained by differences in the tumor microenvironment, which determines whether ascorbate remains outside the cell, acting as a pro-oxidant, or whether it enters the cells and acts as an anti-oxidant.

  6. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  7. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Science.gov (United States)

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  8. Pre-Clinical Studies of Dendritic Cell-Tumor Cell Fusion Vaccines to Treat Breast Cancer

    National Research Council Canada - National Science Library

    Akporiaye, Emmanuel

    2002-01-01

    ...+ T-helper cells, CD8+ cytotoxic T lymphocytes (CTLs), NK and NKT cells (1,2). Because DC have the capacity to take up various types of molecules, the cells can be loaded with tumor-associated antigens (TAAs...

  9. Selective tumor cell targeting by the disaccharide moiety of bleomycin.

    Science.gov (United States)

    Yu, Zhiqiang; Schmaltz, Ryan M; Bozeman, Trevor C; Paul, Rakesh; Rishel, Michael J; Tsosie, Krystal S; Hecht, Sidney M

    2013-02-27

    In a recent study, the well-documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells but not the "normal" breast cell line MCF-10A. Furthermore, it was found that the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, did not target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study were the issues of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting and the possible cellular uptake of the disaccharide. In the present study, we conjugated BLM, deglycoBLM, and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreatic cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells and comparable to that of BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.

  10. Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment

    International Nuclear Information System (INIS)

    Bathe, Oliver F; Dalyot-Herman, Nava; Malek, Thomas R

    2003-01-01

    Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several

  11. TumorBoost: Normalization of allele-specific tumor copy numbers from a single pair of tumor-normal genotyping microarrays

    Directory of Open Access Journals (Sweden)

    Neuvial Pierre

    2010-05-01

    Full Text Available Abstract Background High-throughput genotyping microarrays assess both total DNA copy number and allelic composition, which makes them a tool of choice for copy number studies in cancer, including total copy number and loss of heterozygosity (LOH analyses. Even after state of the art preprocessing methods, allelic signal estimates from genotyping arrays still suffer from systematic effects that make them difficult to use effectively for such downstream analyses. Results We propose a method, TumorBoost, for normalizing allelic estimates of one tumor sample based on estimates from a single matched normal. The method applies to any paired tumor-normal estimates from any microarray-based technology, combined with any preprocessing method. We demonstrate that it increases the signal-to-noise ratio of allelic signals, making it significantly easier to detect allelic imbalances. Conclusions TumorBoost increases the power to detect somatic copy-number events (including copy-neutral LOH in the tumor from allelic signals of Affymetrix or Illumina origin. We also conclude that high-precision allelic estimates can be obtained from a single pair of tumor-normal hybridizations, if TumorBoost is combined with single-array preprocessing methods such as (allele-specific CRMA v2 for Affymetrix or BeadStudio's (proprietary XY-normalization method for Illumina. A bounded-memory implementation is available in the open-source and cross-platform R package aroma.cn, which is part of the Aroma Project (http://www.aroma-project.org/.

  12. Antitumor Cell-Complex Vaccines Employing Genetically Modified Tumor Cells and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Antonio Miguel

    2014-02-01

    Full Text Available The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok and a low producer (p2F. Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01. When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05. Significant survival (40% was only observed in the groups vaccinated with free transfected B16 cells.

  13. Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    Directory of Open Access Journals (Sweden)

    Alessandra M. Welker

    2016-02-01

    Full Text Available Glioblastoma (GBM is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a

  14. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship.

    Science.gov (United States)

    Netea-Maier, Romana T; Smit, Johannes W A; Netea, Mihai G

    2018-01-28

    In order to adapt to the reduced availability of nutrients and oxygen in the tumor microenvironment and the increased requirements of energy and building blocks necessary for maintaining their high proliferation rate, malignant cells undergo metabolic changes that result in an increased production of lactate, nitric oxide, reactive oxygen species, prostaglandins and other byproducts of arachidonic acid metabolism that influence both the composition of the inflammatory microenvironment and the function of the tumor-associated macrophages (TAMs). In response to cues present in the TME, among which products of altered tumor cell metabolism, TAMs are also required to reprogram their metabolism, with activation of glycolysis, fatty acid synthesis and altered nitrogen cycle metabolism. These changes result in functional reprogramming of TAMs which includes changes in the production of cytokines and angiogenetic factors, and contribute to the tumor progression and metastasis. Understanding the metabolic changes governing the intricate relationship between the tumor cells and the TAMs represents an essential step towards developing novel therapeutic approaches targeting the metabolic reprogramming of the immune cells to potentiate their tumoricidal potential and to circumvent therapy resistance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Multi-region and single-cell sequencing reveal variable genomic heterogeneity in rectal cancer.

    Science.gov (United States)

    Liu, Mingshan; Liu, Yang; Di, Jiabo; Su, Zhe; Yang, Hong; Jiang, Beihai; Wang, Zaozao; Zhuang, Meng; Bai, Fan; Su, Xiangqian

    2017-11-23

    Colorectal cancer is a heterogeneous group of malignancies with complex molecular subtypes. While colon cancer has been widely investigated, studies on rectal cancer are very limited. Here, we performed multi-region whole-exome sequencing and single-cell whole-genome sequencing to examine the genomic intratumor heterogeneity (ITH) of rectal tumors. We sequenced nine tumor regions and 88 single cells from two rectal cancer patients with tumors of the same molecular classification and characterized their mutation profiles and somatic copy number alterations (SCNAs) at the multi-region and the single-cell levels. A variable extent of genomic heterogeneity was observed between the two patients, and the degree of ITH increased when analyzed on the single-cell level. We found that major SCNAs were early events in cancer development and inherited steadily. Single-cell sequencing revealed mutations and SCNAs which were hidden in bulk sequencing. In summary, we studied the ITH of rectal cancer at regional and single-cell resolution and demonstrated that variable heterogeneity existed in two patients. The mutational scenarios and SCNA profiles of two patients with treatment naïve from the same molecular subtype are quite different. Our results suggest each tumor possesses its own architecture, which may result in different diagnosis, prognosis, and drug responses. Remarkable ITH exists in the two patients we have studied, providing a preliminary impression of ITH in rectal cancer.

  16. Multicellular tumor spheroid interactions with bone cells and bone

    International Nuclear Information System (INIS)

    Wezeman, F.H.; Guzzino, K.M.; Waxler, B.

    1985-01-01

    In vitro coculture techniques were used to study HSDM1C1 murine fibrosarcoma multicellular tumor spheroid (HSDM1C1-MTS) interactions with mouse calvarial bone cells having osteoblastic characteristics and mouse bone explants. HSDM1C1-MTS attached to confluent bone cell monolayers and their attachment rate was quantified. HSDM1C1-MTS interaction with bone cells was further demonstrated by the release of 3 H-deoxyuridine from prelabeled bone cells during coculture with multicellular tumor spheroids. HSDM1C1-MTS-induced cytotoxicity was mimicked by the addition of 10(-5) M prostaglandin E2 (PGE2) to 3 H-deoxyuridine-labeled bone cells. The effects of low (10(-9) M) and high (10(-5) M) concentrations of PGE2 on bone cell proliferation were also studied. Higher concentrations of PGE2 inhibited bone cell proliferation. HSDM1C1-MTS resorbed living explants in the presence of indomethacin, suggesting that other tumor cell products may also participate in bone resorption. HSDM1C1-MTS caused direct bone resorption as measured by the significantly elevated release of 45 Ca from prelabeled, devitalized calvaria. However, the growth of a confluent bone cell layer on devitalized, 45 Ca-prelabeled calvaria resulted in a significant reduction in the amount of 45 Ca released subsequent to the seeding of HSDM1C1-MTS onto the explants. Bone cells at the bone surface may act as a barrier against invasion and tumor cell-mediated bone resorption. Violation of this cellular barrier is achieved, in part, by tumor cell products

  17. HAMLET binding to α-actinin facilitates tumor cell detachment.

    Science.gov (United States)

    Trulsson, Maria; Yu, Hao; Gisselsson, Lennart; Chao, Yinxia; Urbano, Alexander; Aits, Sonja; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-03-08

    Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed.

  18. VE-821, an ATR inhibitor, causes radiosensitization in human tumor cells irradiated with high LET radiation

    International Nuclear Information System (INIS)

    Fujisawa, Hiroshi; Nakajima, Nakako Izumi; Sunada, Shigeaki; Lee, Younghyun; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2015-01-01

    High linear energy transfer (LET) radiation such as carbon ion particles is successfully used for treatment of solid tumors. The reason why high LET radiation accomplishes greater tumor-killing than X-rays is still not completely understood. One factor would be the clustered or complex-type DNA damages. We previously reported that complex DNA double-strand breaks produced by high LET radiation enhanced DNA end resection, and this could lead to higher kinase activity of ATR protein recruited to RPA-coated single-stranded DNA. Although the effect of ATR inhibition on cells exposed to low LET gamma-rays has recently been reported, little is known regarding the effect of ATR inhibitor on cells treated with high LET radiation. The purpose of this study is to investigate the effects of the ATR inhibitor VE-821 in human tumor and normal cells irradiated with high LET carbon ions. HeLa, U2OS, and 1BR-hTERT (normal) cells were pre-treated with 1 μM VE-821 for 1 hour and irradiated with either high LET carbon ions or X-rays. Cell survival, cell cycle distribution, cell growth, and micronuclei formation were evaluated. VE-821 caused abrogation of G2/M checkpoint and forced irradiated cells to divide into daughter cells. We also found that carbon ions caused a higher number of multiple micronuclei than X-rays, leading to decreased cell survival in tumor cells when treated with VE-821, while the survival of irradiated normal cells were not significantly affected by this inhibitor. ATR inhibitor would be an effective tumor radiosensitizer with carbon ion irradiation. The online version of this article (doi:10.1186/s13014-015-0464-y) contains supplementary material, which is available to authorized users

  19. Antiangiogenic Agent Might Upgrade tumor Cell Sensitivity to Ionizing Radiation

    International Nuclear Information System (INIS)

    Badr, N.M.S.A.

    2013-01-01

    The understanding of the fundamental role of angiogenesis and metastasis in cancer growth has led to tremendous interest in research regarding its regulatory mechanisms and clinical implications in the management of cancer. The present study was conducted to evaluate the influence of the angiogenic regulators modification on the tumor growth and the cell sensitivity to ionizing radiation targeting the improvement of cancer therapeutic protocols. Accordingly, the antiangiogenic activity of apigenin and selenium was tested in vitro via MTT assay. The action of Apigenin and or Selenium was examined in vivo by using a model of solid tumor carcinoma (EAC). The growth rate of solid tumor in all experimental groups was measured by Caliper. The irradiated mice were exposed to 6.5 Gy of gamma rays. Apigenin 50 mg/kg body weight and selenium 5 μg per mice were daily administrated for 14 consecutive days after tumor volume reached 1mm 3 . The angiogenic activators TNF-α (key cytokine) in spleen, serum MMP 2 and MMP 9, liver and tumor NO, the lipid peroxidation (LPx) and angiogenic inhibitor TIMP-1 in spleen as well as, antioxidant markers (CAT, SOD, GPX) in tumor and liver tissue and DNA fragmentation in splenocytes were estimated to monitor efficacy of Apigenin and selenium in cancer treatment strategy. All parameters were determined as a time course on days 16 and 22 after tumor volume reached 1mm 3 . The using of MTT assay on EAC cells shows inhibition in EAC cell proliferation after the incubation with apigenin and /or selenium. The administration of apigenin and /or selenium to mice bearing tumor and to irradiated mice bearing tumor reduce significantly the TNF-α expression, MMP 2,9 , NO , LPx level and increased the antioxidant enzymes (GPx , SOD and CAT) activities. The DNA fragmentation and the antiangiogenic factors TIMP-1 were significantly increased when compared with their values in mice bearing tumor or in irradiated mice bearing tumor. From the results

  20. Mitochondrial DNA mutations in human tumor cells

    OpenAIRE

    LI, HUI; HONG, ZE-HUI

    2012-01-01

    Mitochondria play significant roles in cellular energy metabolism, free radical generation and apoptosis. The dysfunction of mitochondria is correlated with the origin and progression of tumors; thus, mutations in the mitochondrial genome that affect mitochondrial function may be one of the causal factors of tumorigenesis. Although the role of mitochondrial DNA (mtDNA) mutations in carcinogenesis has been investigated extensively by various approaches, the conclusions remain controversial to ...

  1. The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: blockade of recruitment of CD11b+ Ly6Chi cells to tumor tissue reduces tumor growth

    International Nuclear Information System (INIS)

    Deronic, Adnan; Leanderson, Tomas; Ivars, Fredrik

    2016-01-01

    Previous work has demonstrated immunomodulatory, anti-tumor, anti-metastatic and anti-angiogenic effects of the small molecule quinoline-3-carboxamide tasquinimod in pre-clinical cancer models. To better understand the anti-tumor effects of tasquinimod in transplantable tumor models, we have evaluated the impact of the compound both on recruitment of myeloid cells to tumor tissue and on tumor-induced myeloid cell expansion as these cells are known to promote tumor development. Mice bearing subcutaneous 4 T1 mammary carcinoma tumors were treated with tasquinimod in the drinking water. A BrdU-based flow cytometry assay was utilized to assess the impact of short-term tasquinimod treatment on myeloid cell recruitment to tumors. Additionally, long-term treatment was performed to study the anti-tumor effect of tasquinimod as well as its effects on splenic myeloid cells and their progenitors. Myeloid cell populations were also immune-depleted by in vivo antibody treatment. Short-term tasquinimod treatment did not influence the proliferation of splenic Ly6C hi and Ly6G hi cells, but instead reduced the influx of Ly6C hi cells to the tumor. Treatment with tasquinimod for various periods of time after tumor inoculation revealed that the anti-tumor effect of this compound mainly operated during the first few days of tumor growth. Similar to tasquinimod treatment, antibody-mediated depletion of Ly6C hi cells within that same time frame, caused reduced tumor growth, thereby confirming a significant role for these cells in tumor development. Additionally, long-term tasquinimod treatment reduced the splenomegaly and expansion of splenic myeloid cells during a later phase of tumor development. In this phase, tasquinimod normalized the tumor-induced alterations in myeloerythroid progenitor cells in the spleen but had only limited impact on the same populations in the bone marrow. Our results indicate that tasquinimod treatment reduces tumor growth by operating early after tumor

  2. Oriented collagen fibers direct tumor cell intravasation

    KAUST Repository

    Han, Weijing; Chen, Shaohua; Yuan, Wei; Fan, Qihui; Tian, Jianxiang; Wang, Xiaochen; Chen, Longqing; Zhang, Xixiang; Wei, Weili; Liu, Ruchuan; Qu, Junle; Jiao, Yang; Austin, Robert H.; Liu, Liyu

    2016-01-01

    that the local fiber alignment enhanced cell-ECM interactions. Specifically, metastatic MDA-MB-231 breast cancer cells followed the local fiber alignment direction during the intravasation into rigid Matrigel (∼10 mg/mL protein concentration).

  3. The pattern of distribution of laminin in neurogenic tumors, granular cell tumors, and nevi of the oral mucosa

    DEFF Research Database (Denmark)

    Reibel, J; Wewer, U; Albrechtsen, R

    1985-01-01

    . Accentuated staining was seen in Verocay bodies. In granular cell myoblastomas (GCM), small groups of tumor cells were encircled by laminin-positive material, whereas individual tumor cells were unstained. In nevi, diffusely spread nevus cells were surrounded by a rim of laminin, whereas when arranged...

  4. MRI of islet cell tumors of the pancreas

    International Nuclear Information System (INIS)

    Ohtomo, Kuni; Itai, Yuji; Yoshikawa, Koki; Kokubo, Taka; Yashiro, Naofumi; Iio, Masahiro; Atomi, Yu

    1986-01-01

    Magnetic resonance imaging (MRI) was performed in five patients with islet cell tumors of the pancreas, using 0.35 T and 1.5 T superconductive magnets. MRI identified tumors in 3 patients. The tumors seen in the 3 patients appeared as areas of higher signal intensity than the liver on spin-echo (SE) images with repetition time of 1,600 msec/echo time of 35 or 70 msec, and as areas of similar or lower intensity on SE 400/35 or 70 images. The tumor imaged by SE techniques with 1,600/35 msec, 400/35 msec, and 1,600/35 or 70 msec in one patient was manifested by prolongation of T1 and T2, as compared with the liver. Tumors in the remaining two patients, which were not detected on MRI, were 15 mm or smaller. MRI remains to be improved in the visualization of small lesions. (Namekawa, K.)

  5. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Dudás, József; Fullár, Alexandra; Romani, Angela; Pritz, Christian; Kovalszky, Ilona; Hans Schartinger, Volker; Mathias Sprinzl, Georg; Riechelmann, Herbert

    2013-01-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells

  6. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullár, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Romani, Angela, E-mail: angela.romani@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Pritz, Christian, E-mail: christian.pritz@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Hans Schartinger, Volker, E-mail: volker.schartinger@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Mathias Sprinzl, Georg, E-mail: georg.sprinzl@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: herbert.riechelmann@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2013-04-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.

  7. Molecular aspects of tumor cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Giuseppina Bozzuto

    2010-03-01

    Full Text Available Cell migration and invasion are crucial steps in many physiological events. However, they are also implicated in the physiopathology of many diseases, such as cancer. To spread through the tissues, tumor cells use mechanisms that involve several molecular actors: adhesion receptor families, receptor tyrosine kinases, cytoskeleton proteins, adapter and signalling proteins interplay in a complex scenario. The balance of cellular signals for proliferation and survival responses also regulates migratory behaviours of tumor cells. To complicate the scene of crime drug resistance players can interfere thus worsening this delicate situation. The complete understanding of this molecular jungle is an impossible mission: some molecular aspects are reviewed in this paper.

  8. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells

    Science.gov (United States)

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach. PMID:25949869

  9. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells.

    Science.gov (United States)

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach.

  10. Testicular germ cell tumors: Molecular genetic and clinicomorphological aspects

    Directory of Open Access Journals (Sweden)

    M. V. Nemtsova

    2015-03-01

    Full Text Available Testicular tumors are the most common form of solid cancer in young men. According to the 2004 WHO classification, testicular germ cell tumors (TGCT may present with different histological types. Embryonic cells of varying grade may be a source of TGCT and the occurrence of this type of tumors is directly related to the formation of a pool of male sex cells and gametogenesis. The paper gives information on mo- lecular stages for the process of formation of male sex cells in health, as well as ways of their impairments leading to TGCT. An investigation of the profiles of gene expression and the spectrum of molecular damages revealed genes responsible for a predisposition to the sporadic and hereditary forms of TGCT. The paper presents the current molecular genetic and clinicomorphological characteristics of TGCT. 

  11. Response of the RIF-1 tumor in vitro and in C3H/Km mice to x-radiation (cell survival, regrowth delay, and tumor control), chemotherapeutic agents, and activated macrophages

    International Nuclear Information System (INIS)

    Brown, J.M.; Twentyman, P.R.; Zamvil, S.S.

    1980-01-01

    The radiation response of logarithmic growth phase and fed plateau phase RIF-1 cells in vitro was found to be characterized by D 0 values of 110 and 133 rads and extrapolation numbs of 36 and 28, respectively. The response of the tumor in vivo to X-irradiation in nonanesthetized mice showed a dependence on the tumor implantation site. In the leg muscle, the response indicated that most cells were at an intermediate level of oxygenation, whereas in the subcutaneous tissue of the flank, the response of the tumor indicated that it had a small fraction of hypoxic cells of maximum radioresistance. Misonidazole radiosensitized the leg-implanted tumor as measured both by cell survival and regrowth delay. The tumor was relatively insensitive to a single dose of 1,3-bis(2-chloroethyl)-1-nitrosourea, sensitive to a single dose of cis-platinum, and highly sensitive to a single dose of cyclophosphamide

  12. Wilms’ Tumor Blastemal Stem Cells Dedifferentiate to Propagate the Tumor Bulk

    Science.gov (United States)

    Shukrun, Rachel; Pode-Shakked, Naomi; Pleniceanu, Oren; Omer, Dorit; Vax, Einav; Peer, Eyal; Pri-Chen, Sara; Jacob, Jasmine; Hu, Qianghua; Harari-Steinberg, Orit; Huff, Vicki; Dekel, Benjamin

    2014-01-01

    Summary An open question remains in cancer stem cell (CSC) biology whether CSCs are by definition at the top of the differentiation hierarchy of the tumor. Wilms’ tumor (WT), composed of blastema and differentiated renal elements resembling the nephrogenic zone of the developing kidney, is a valuable model for studying this question because early kidney differentiation is well characterized. WT neural cell adhesion molecule 1-positive (NCAM1+) aldehyde dehydrogenase 1-positive (ALDH1+) CSCs have been recently isolated and shown to harbor early renal progenitor traits. Herein, by generating pure blastema WT xenografts, composed solely of cells expressing the renal developmental markers SIX2 and NCAM1, we surprisingly show that sorted ALDH1+ WT CSCs do not correspond to earliest renal stem cells. Rather, gene expression and proteomic comparative analyses disclose a cell type skewed more toward epithelial differentiation than the bulk of the blastema. Thus, WT CSCs are likely to dedifferentiate to propagate WT blastema. PMID:25068119

  13. Incomplete ovariosalpingectomy and subsequent malignant granulosa cell tumor in a female green iguana (Iguana iguana).

    Science.gov (United States)

    Cruz Cardona, Janice A; Conley, Kenneth J; Wellehan, James F X; Farina, Lisa L; Origgi, Francesco C; Wamsley, Heather L

    2011-07-15

    A 9-year-old spayed female green iguana (Iguana iguana) was evaluated because of a distended coelom and weight loss. History included a single episode of egg binding and subsequent bilateral ovariosalpingectomy. Physical examination revealed a mass within the coelomic cavity. Ultrasonography revealed a large, irregular mass with hypoechoic regions and coelomic effusion. Clinicopathologic derangements included heterophilia, monocytosis, lymphopenia, basophilia, hypocholesterolemia, hypoproteinemia, and hypercalcemia. Results of cytologic evaluation of the mass were suggestive of malignant epithelial neoplasia, but neoplastic cells were not found in the effusion. An ovarian tumor was suspected on the basis of clinical signs, clinicopathologic findings, and results of cytologic evaluation of the mass. Surgical exploration revealed a large left ovary, a normal-appearing contralateral ovary, and a mass in the fat body, all of which were removed and submitted for histologic examination. The histologic diagnosis was granulosa cell tumor with metastasis to the fat body. The patient died 11 months after evaluation, and disseminated granulosa cell tumor was confirmed at necropsy; histologic examination at that time also identified systemic mastocytosis. Granulosa cell tumors are uncommon in reptiles, and this was the first granulosa cell tumor described antemortem cytologically, histologically, and ultrastructurally in an iguana. Findings in this iguana underscored concerns associated with incomplete oophorectomy of iguanas; cytologic and histopathologic findings were similar to those observed in other domestic animals. Oophorectomy should be considered as an alternative to standard ovariosalpingectomy to avoid potential complications in pet reptiles, and use of microsurgical instruments and vascular clips is advised.

  14. Correlation of proliferative and clonogenic tumor cells in multiple myeloma

    International Nuclear Information System (INIS)

    Karp, J.E.; Burke, P.J.; Saylor, P.L.; Humphrey, R.L.

    1984-01-01

    To expand on the findings from previous clinical trials that the growth of residual tumor is increased at a predictable time following initial drug administration, malignant plasma cells from bone marrows of patients with multiple myeloma (MM) were examined for changes in proliferation and clonogenicity induced in vivo by cyclophosphamide and in vitro by drug-induced humoral stimulatory activity. Peak plasma cell [ 3 H]thymidine labeling index (LI) occurred predictably following drug and paralleled changes in agar colony formation by marrow cells obtained during therapy. Colony-forming capacity of pretreatment MM marrow populations was enhanced when those cells were cultured with humoral stimulatory activity, similar to the increased colony formation detected in Day 9 postcyclophosphamide marrows at the time of peak plasma cell LI. To further define a relationship between proliferative plasma cells and colony-forming tumor cells, MM marrows were fractionated by sedimentation on an isokinetic gradient. Enrichment of a proliferative tumor cell cohort was achieved, evidenced by [ 3 H]thymidine LI. Colony-forming cells were also enriched by isokinetic gradient sedimentation, and agar colony formation by MM marrow cell fractions correlated with the kinetic characteristics of the isolated subpopulations. These studies of whole and fractionated human MM marrow cell populations suggest that the kinetically active cells which are induced to proliferate in vivo and in vitro are closely related to the clonogenic tumor cells which produce colonies in agar and which, like those cells measured by [ 3 H]thymidine LI, respond to growth stimulation by drug-induced humoral stimulatory activity

  15. Clinical applications of circulating tumor DNA and circulating tumor cells in pancreatic cancer.

    Science.gov (United States)

    Riva, Francesca; Dronov, Oleksii I; Khomenko, Dmytro I; Huguet, Florence; Louvet, Christophe; Mariani, Pascale; Stern, Marc-Henri; Lantz, Olivier; Proudhon, Charlotte; Pierga, Jean-Yves; Bidard, Francois-Clement

    2016-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the most frequent pancreatic cancer type and is characterized by a dismal prognosis due to late diagnosis, local tumor invasion, frequent distant metastases and poor sensitivity to current therapy. In this context, circulating tumor cells and circulating tumor DNA constitute easily accessible blood-borne tumor biomarkers that may prove their clinical interest for screening, early diagnosis and metastatic risk assessment of PDAC. Moreover these markers represent a tool to assess PDAC mutational landscape. In this review, together with key biological findings, we summarize the clinical results obtained using "liquid biopsies" at the different stages of the disease, for early and metastatic diagnosis as well as monitoring during therapy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Experimental techniques for single cell and single molecule biomechanics

    International Nuclear Information System (INIS)

    Lim, C.T.; Zhou, E.H.; Li, A.; Vedula, S.R.K.; Fu, H.X.

    2006-01-01

    Stresses and strains that act on the human body can arise either from external physical forces or internal physiological environmental conditions. These biophysical interactions can occur not only at the musculoskeletal but also cellular and molecular levels and can determine the health and function of the human body. Here, we seek to investigate the structure-property-function relationship of cells and biomolecules so as to understand their important physiological functions as well as establish possible connections to human diseases. With the recent advancements in cell and molecular biology, biophysics and nanotechnology, several innovative and state-of-the-art experimental techniques and equipment have been developed to probe the structural and mechanical properties of biostructures from the micro- down to picoscale. Some of these experimental techniques include the optical or laser trap method, micropipette aspiration, step-pressure technique, atomic force microscopy and molecular force spectroscopy. In this article, we will review the basic principles and usage of these techniques to conduct single cell and single molecule biomechanics research

  17. Utility of MRI versus tumor markers for post-treatment surveillance of marker-positive CNS germ cell tumors.

    Science.gov (United States)

    Cheung, Victoria; Segal, Devorah; Gardner, Sharon L; Zagzag, David; Wisoff, Jeffrey H; Allen, Jeffrey C; Karajannis, Matthias A

    2016-09-01

    Patients with marker-positive central nervous system (CNS) germ cell tumors are typically monitored for tumor recurrence with both tumor markers (AFP and b-hCG) and MRI. We hypothesize that the recurrence of these tumors will always be accompanied by an elevation in tumor markers, and that surveillance MRI may not be necessary. We retrospectively identified 28 patients with CNS germ cell tumors treated at our institution that presented with an elevated serum or cerebrospinal fluid (CSF) tumor marker at the time of diagnosis. We then identified those who had a tumor recurrence after having been in remission and whether each recurrence was detected via MRI changes, elevated tumor markers, or both. Four patients suffered a tumor recurrence. Only one patient had simultaneously elevated tumor markers and MRI evidence of recurrence. Two patients had evidence of recurrence on MRI without corresponding elevations in serum or CSF tumor markers. One patient had abnormal tumor markers with no evidence of recurrence on MRI until 6 months later. We conclude that in patients with marker-positive CNS germ cell tumors who achieve complete remission, continued surveillance imaging in addition to measurement of tumor markers is indicated to detect recurrences.

  18. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing.

    Science.gov (United States)

    Zheng, Chunhong; Zheng, Liangtao; Yoo, Jae-Kwang; Guo, Huahu; Zhang, Yuanyuan; Guo, Xinyi; Kang, Boxi; Hu, Ruozhen; Huang, Julie Y; Zhang, Qiming; Liu, Zhouzerui; Dong, Minghui; Hu, Xueda; Ouyang, Wenjun; Peng, Jirun; Zhang, Zemin

    2017-06-15

    Systematic interrogation of tumor-infiltrating lymphocytes is key to the development of immunotherapies and the prediction of their clinical responses in cancers. Here, we perform deep single-cell RNA sequencing on 5,063 singlecells isolated from peripheral blood, tumor, and adjacent normal tissues from six hepatocellular carcinoma patients. The transcriptional profiles of these individual cells, coupled with assembled T cell receptor (TCR) sequences, enable us to identify 11 T cell subsets based on their molecular and functional properties and delineate their developmental trajectory. Specific subsets such as exhausted CD8 + T cells and Tregs are preferentially enriched and potentially clonally expanded in hepatocellular carcinoma (HCC), and we identified signature genes for each subset. One of the genes, layilin, is upregulated on activated CD8 + T cells and Tregs and represses the CD8 + T cell functions in vitro. This compendium of transcriptome data provides valuable insights and a rich resource for understanding the immune landscape in cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Diffuse-type giant cell tumor of the subcutaneous thigh

    International Nuclear Information System (INIS)

    Sanghvi, D.A.; Purandare, N.C.; Jambhekar, N.A.; Agarwal, A.; Agarwal, M.G.

    2007-01-01

    Diffuse-type giant cell tumor is an extra-articular form of pigmented villonodular synovitis. The localized form of this lesion (tenosynovial giant cell tumor) is frequent, representing the most common subset arising from the synovium of a joint, bursa or tendon sheath, with 85% of cases occurring in the fingers. The less frequent diffuse-type giant cell tumors are commonly located in the periarticular soft tissues, but on rare occasions these lesions can be purely intramuscular or subcutaneous We report the case of a 26-year-old female with diffuse-type giant cell tumor of the subcutaneous thigh, remote from a joint, bursa or tendon sheath. A review of the literature did not reveal any similar description of a diffuse-type giant cell tumor completely within the subcutaneous thigh, remote from a joint, bursa or tendon sheath. These lesions were initially regarded as inflammatory or reactive processes, but since the identification of clonal abnormalities in these patients, and in view of their capacity for autonomous growth, they are now widely considered to represent benign neoplasms. (orig.)

  20. Treatment of giant cell tumor of bone: Current concepts

    OpenAIRE

    Puri Ajay; Agarwal Manish

    2007-01-01

    Giant cell tumor (GCT) of bone though one of the commonest bone tumors encountered by an orthopedic surgeon continues to intrigue treating surgeons. Usually benign, they are locally aggressive and may occasionally undergo malignant transformation. The surgeon needs to strike a balance during treatment between reducing the incidence of local recurrence while preserving maximal function. Differing opinions pertaining to the use of adjuvants for extension of curettage, the relative role of bone ...

  1. Giant cell tumor of the frontal sinus: case report

    Energy Technology Data Exchange (ETDEWEB)

    Matushita, Joao Paulo, E-mail: jpauloejulieta@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Hospital das Clinicas; Matushita, Julieta S.; Matushita Junior, Joao Paulo Kawaoka [Centro de Diagnostico por Imagem Dr. Matsushita, Belo Horizonte, MG (Brazil); Matushita, Cristina S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Hospital Universitario Clementino Fraga Filho; Simoes, Luiz Antonio Monteiro; Carvalho Neto, Lizando Franco de

    2013-06-15

    The authors report the case of a giant cell tumor of the frontal sinus in a 54-year-old male patient. This tumor location is rare, and this is the third case reported in the literature with radiographic documentation and histopathological confirmation. The patient underwent surgery, with curettage of frontal sinus and placement of a prosthesis. He died because a voluntary abrupt discontinuation of corticosteroids. (author)

  2. Gonadal vein tumor thrombosis due to renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Hamidreza Haghighatkhah

    2015-01-01

    Full Text Available Renal cell carcinoma (RCC had a tendency to extend into the renal vein and inferior vena cava, while extension into the gonadal vein has been rarely reported. Gonadal vein tumor thrombosis appears as an enhancing filling defect within the dilated gonadal vein anterior to the psoas muscle and shows an enhancement pattern identical to that of the original tumor. The possibility of gonadal vein thrombosis should be kept in mind when looking at an imaging study of patients with RCC

  3. Stereotactic radiotherapy for pediatric intracranial germ cell tumors

    International Nuclear Information System (INIS)

    Zissiadis, Yvonne; Dutton, Sharon; Kieran, Mark; Goumnerova, Liliana; Scott, R. Michael; Kooy, Hanne M.; Tarbell, Nancy J.

    2001-01-01

    Purpose: Intracranial germ cell tumors are rare, radiosensitive tumors seen most commonly in the second and third decades of life. Radiotherapy alone has been the primary treatment modality for germinomas, and is used with chemotherapy for nongerminomatous tumors. Stereotactic radiotherapy techniques minimize the volume of surrounding normal tissue irradiated and, hence, the late radiation morbidity. This study reports our experience with stereotactic radiotherapy in this group of tumors. Methods and Materials: Between December 1992 and December 1998, 18 patients with intracranial germ cell tumors were treated with stereotactic radiotherapy. A total of 23 histologically proven tumors were treated. Thirteen patients had a histologic diagnosis of germinoma, and 5 patients had germinoma with nongerminomatous elements. Of those patients with a histologic diagnosis of germinoma, 5 had multiple midline tumors. The median age of the patients was 12.9 years (range, 5.6-17.5 years). Results: A boost using stereotactic radiotherapy was delivered to 19 tumors following whole-brain radiation in 8 cases and craniospinal radiation in 11 cases. Three tumors were treated with stereotactic radiotherapy to the tumor volume alone following chemotherapy, and 1 tumor received a boost using stereotactic radiosurgery following craniospinal radiation. A median dose of 2520 cGy (range, 1500-3600) cGy was given to the whole brain, and a median dose of 2160 (range, 2100-2600) cGy was given to the spinal field. The median boost dose to the tumor was 2600 (range, 2160-3600) cGy, given by stereotactic radiotherapy delivered to the 95% isodose line. At a median follow-up time of 40 (range, 12-73) months, no local or marginal recurrences were reported in patients with germinoma. Two patients with nongerminomatous tumors have relapsed. One had elevation of tumor markers only at 37 months following treatment, and the other had persistent disease following chemotherapy and radiation therapy. Eight

  4. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures.

    Science.gov (United States)

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-08-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  5. Reduction of the radiogenic tumor incidence by stimulation with lyophilized fetal cells

    International Nuclear Information System (INIS)

    Bause, R.; Gros, C.J.; Landsberger, A.; Renner, H.; Klinikum Nuernberg

    1983-01-01

    The effect of an immunization treatment with lyophilized xenogenic fetal cells was studied in 7 months old, female albino rats (strain Wistar). The tumor incidence was measured after a sublethal whole-body irradiation with 600 cGy. Furthermore, the spleen of the individual animals was histologically examined. 3,5 to 6 months after a whole-body irradiation with 600 cGy, the tumor incidence was 55%. The tumors found were tubular adenocarcinomas of the thyroid gland. A significant reduction of the tumor incidence can be achieved by an immunostimulation with xenogenic, lyophilized, fetal cells (connective tissue and bone marrow, respectively) administered twice, namely eight days before and four days after the whole-body irradiation. The tumor incidence measured after 3,5 months was 10% and 15%, respectively, and after 6 months 15% and 25%, respectively. No significant tumor protection is achieved, however, by a single stimulation before whole-body irradiation and by a stimulation performed one or two times after whole-body irradiation. Histologic examinations of the spleen show in the immunostimulized animals a strong regeneration of the immune system with a significantly increased number of follicles and a significant increase of lumphocytes in the red pulp. The authors stress the possible clinical importance for radio-oncology of an immunostimulation with lyophilized, xenogenic, fetal cells. (orig.) [de

  6. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway.

    Science.gov (United States)

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2017-05-11

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.

  7. Migrating glioma cells express stem cell markers and give rise to new tumors upon xenografting

    DEFF Research Database (Denmark)

    Munthe, Sune; Sørensen, Mia D; Thomassen, Mads

    2016-01-01

    Glioblastoma (GBM) is the most frequent and malignant brain tumor with an overall survival of only 14.6 months. Although these tumors are treated with surgery, radiation and chemotherapy, recurrence is inevitable. A critical population of tumor cells in terms of therapy, the so-called cancer stem......-like phenotype is currently lacking. In the present study, the aim was to characterize the phenotype of migrating tumor cells using a novel migration assay based on serum-free stem cell medium and patient-derived spheroid cultures. The results showed pronounced migration of five different GBM spheroid cultures......-related genes and the HOX-gene list in migrating cells compared to spheroids. Determination of GBM molecular subtypes revealed that subtypes of spheroids and migrating cells were identical. In conclusion, migrating tumor cells preserve expression of stem cell markers and functional CSC characteristics. Since...

  8. Senescence from glioma stem cell differentiation promotes tumor growth

    International Nuclear Information System (INIS)

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  9. Anti tumor vaccination with hybrid dendritic-tumour cells

    International Nuclear Information System (INIS)

    Barbuto, Jose Alexandre M.; Neves, Andreia R.; Ensina, Luis Felipe C.; Anselmo, Luciene B.

    2005-01-01

    Dendritic cells are the most potent antigen-presenting cells, and the possibility of their use for cancer vaccination has renewed the interest in this therapeutic modality. Nevertheless, the ideal immunization protocol with these cells has not been described yet. In this paper we describe the preliminary results of a protocol using autologous tumor and allogeneic dendritic hybrid cell vaccination every 6 weeks, for metastatic melanoma and renal cell carcinoma (RCC) patients. Thirty-five patients were enrolled between March 2001 and March 2003. Though all patients included presented with large tumor burdens and progressive diseases, 71% of them experienced stability after vaccination, with durations up to 19 months. Among RCC patients 3/22 (14%) presented objective responses. The median time to progression was 4 months for melanoma and 5.7 months for RCC patients; no significant untoward effects were noted. Furthermore, immune function, as evaluated by cutaneous delayed-type hypersensitivity reactions to recall antigens and by peripheral blood proliferative responses to tumor-specific and nonspecific stimuli, presented a clear tendency to recover in vaccinated patients. These data indicate that dendritic cell-tumor cell hybrid vaccination affects the natural history of advanced cancer and provide support for its study in less advanced patients, who should, more likely, benefit even more from this approach. (author)

  10. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  11. Origins and molecular biology of testicular germ cell tumors.

    Science.gov (United States)

    Reuter, Victor E

    2005-02-01

    Testicular germ cell tumors can be divided into three groups (infantile/prepubertal, adolescent/young adult and spermatocytic seminoma), each with its own constellation of clinical histology, molecular and clinical features. They originate from germ cells at different stages of development. The most common testicular cancers arise in postpubertal men and are characterized genetically by having one or more copies of an isochromosome of the short arm of chromosome 12 [i(12p)] or other forms of 12p amplification and by aneuploidy. The consistent gain of genetic material from chromosome 12 seen in these tumors suggests that it has a crucial role in their development. Intratubular germ cell neoplasia, unclassified type (IGCNU) is the precursor to these invasive tumors. Several factors have been associated with their pathogenesis, including cryptorchidism, elevated estrogens in utero and gonadal dysgenesis. Tumors arising in prepubertal gonads are either teratomas or yolk sac tumors, tend to be diploid and are not associated with i(12p) or with IGCNU. Spermatocytic seminoma (SS) arises in older patients. These benign tumors may be either diploid or aneuploid and have losses of chromosome 9 rather than i(12p). Intratubular SS is commonly encountered but IGCNU is not. The pathogenesis of prepubertal GCT and SS is poorly understood.

  12. Effects of hyperthermia, x-ray irradiation and their combination on ascites tumor cells of mice

    International Nuclear Information System (INIS)

    Kaneko, Itsuo

    1982-01-01

    Fibrosarcoma ascites tumor cells (PB8) from NMRI mice were used to investigate cell loss by hyperthermia and/or x-ray irradiation. The tumor cells were labelled by an injection of 125 I-deoxyuridine to the abdominal cavity of the donors 2 days before the physical treatments. The labelled cells, transfered in test tubes, were heated at 44 0 C for 10-20 min and/or irradiated by x-ray at 250-1612 rad, and were transplanted in the recipient abdominal cavity as soon as possible after the treatments. The radioactivity of the tumor cells, as an indicator of cell loss, was measured with a gamma spectrometer. In the irradiated group, the ratio of cell loss increased in a dose-dependent manner, starting from the 4th day after the transplantation to the 9th day. In the heated group, the ratio of cell loss increased in proportion to the heating time, starting without delay after transplantation. In the combination group, the effect of the treatments was more marked than that by each single treatment. In the early stage of this group, cell loss was by heating and then, from the 4th day, the irradiation effect mostly dominated. It is concluded from the above results that cell loss by heating or irradiation is independent and that the effect of the combination is additive. (author)

  13. Natural killer cells and interleukin-1: a possible role in natural killer-tumor cell interaction

    Energy Technology Data Exchange (ETDEWEB)

    Traub, L M

    1986-01-01

    Effector cells with broad cytolytic reactivity against various tumor cell lines have been detected in the peripheral blood of normal individuals. This phenomenon, known as natural killing, appeared to be significantly depressed in a small group of patients with extensive primary hepatocellular carcinoma. These data, together with that of others showing depressed interleukin-1 (IL-1) production in these patients, were taken to indicate that IL-1 played a functional role in natural killer (NK) cell biology. The hypothesis was confirmed by the demonstration that preincubation of tumor target cells with IL-1 enhanced their susceptibility to NK cell killing. In this study tumor target cells were labelled with /sup 51/Cr.

  14. Elucidation of Altered Pathways in Tumor-Initiating Cells of Triple-Negative Breast Cancer: A Useful Cell Model System for Drug Screening.

    Science.gov (United States)

    Christensen, Anne G; Ehmsen, Sidse; Terp, Mikkel G; Batra, Richa; Alcaraz, Nicolas; Baumbach, Jan; Noer, Julie B; Moreira, José; Leth-Larsen, Rikke; Larsen, Martin R; Ditzel, Henrik J

    2017-08-01

    A limited number of cancer cells within a tumor are thought to have self-renewing and tumor-initiating capabilities that produce the remaining cancer cells in a heterogeneous tumor mass. Elucidation of central pathways preferentially used by tumor-initiating cells/cancer stem cells (CSCs) may allow their exploitation as potential cancer therapy targets. We used single cell cloning to isolate and characterize four isogenic cell clones from a triple-negative breast cancer cell line; two exhibited mesenchymal-like and two epithelial-like characteristics. Within these pairs, one, but not the other, resulted in tumors in immunodeficient NOD/Shi-scid/IL-2 Rγ null mice and efficiently formed mammospheres. Quantitative proteomics and phosphoproteomics were used to map signaling pathways associated with the tumor-initiating ability. Signaling associated with apoptosis was suppressed in tumor-initiating versus nontumorigenic counterparts with pro-apoptotic proteins, such as Bcl2-associated agonist of cell death (BAD), FAS-associated death domain protein (FADD), and myeloid differentiation primary response protein (MYD88), downregulated in tumor-initiating epithelial-like cells. Functional studies confirmed significantly lower apoptosis in tumor-initiating versus nontumorigenic cells. Moreover, central pathways, including β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related signaling, exhibited increased activation in the tumor-initiating cells. To evaluate the CSC model as a tool for drug screening, we assessed the effect of separately blocking NF-κB and Wnt/β-catenin signaling and found markedly reduced mammosphere formation, particularly for tumor-initiating cells. Similar reduction was also observed using patient-derived primary cancer cells. Furthermore, blocking NF-κB signaling in mice transplanted with tumor-initiating cells significantly reduced tumor outgrowth. Our study demonstrates that suppressed apoptosis, activation

  15. Single Nanowire Probe for Single Cell Endoscopy and Sensing

    Science.gov (United States)

    Yan, Ruoxue

    The ability to manipulate light in subwavelength photonic and plasmonic structures has shown great potentials in revolutionizing how information is generated, transformed and processed. Chemically synthesized nanowires, in particular, offers a unique toolbox not only for highly compact and integrated photonic modules and devices, including coherent and incoherent light sources, waveguides, photodetectors and photovoltaics, but also for new types of nanoscopic bio-probes for spot cargo delivery and in-situ single cell endoscopy and sensing. Such nanowire probes would enable us to carry out intracellular imaging and probing with high spatial resolution, monitor in-vivo biological processes within single living cells and greatly improve our fundamental understanding of cell functions, intracellular physiological processes, and cellular signal pathways. My work is aimed at developing a material and instrumental platform for such single nanowire probe. Successful optical integration of Ag nanowire plasmonic waveguides, which offers deep subwavelength mode confinement, and conventional photonic waveguides was demonstrated on a single nanowire level. The highest plasmonic-photonic coupling efficiency coupling was found at small coupling angles and low input frequencies. The frequency dependent propagation loss was observed in Ag nanowire and was confirmed by quantitative measurement and in agreement with theoretical expectations. Rational integration of dielectric and Ag nanowire waveguide components into hybrid optical-plasmonic routing devices has been demonstrated. This capability is essential for incorporating sub-100nm Ag nanowire waveguides into optical fiber based nanoprobes for single cell endoscopy. The nanoprobe system based on single nanowire waveguides was demonstrated by optically coupling semiconductor or metal nanowire with an optical fiber with tapered tip. This nanoprobe design requires minimal instrumentation which makes it cost efficient and readily

  16. NKT Cell Networks in the Regulation of Tumor Immunity

    Science.gov (United States)

    Robertson, Faith C.; Berzofsky, Jay A.; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting. PMID:25389427

  17. NKT cell networks in the regulation of tumor immunity.

    Science.gov (United States)

    Robertson, Faith C; Berzofsky, Jay A; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8(+) and CD4(+) T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host's ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  18. NKT cell networks in the regulation of tumor immunity

    Directory of Open Access Journals (Sweden)

    Faith C Robertson

    2014-10-01

    Full Text Available CD1d-restricted natural killer T (NKT cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  19. p53-Mediated Molecular Control of Autophagy in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Maria Mrakovcic

    2018-03-01

    Full Text Available Autophagy is an indispensable mechanism of the eukaryotic cell, facilitating the removal and renewal of cellular components and thereby balancing the cell’s energy consumption and homeostasis. Deregulation of autophagy is now regarded as one of the characteristic key features contributing to the development of tumors. In recent years, the suppression of autophagy in combination with chemotherapeutic treatment has been approached as a novel therapy in cancer treatment. However, depending on the type of cancer and context, interference with the autophagic machinery can either promote or disrupt tumorigenesis. Therefore, disclosure of the major signaling pathways that regulate autophagy and control tumorigenesis is crucial. To date, several tumor suppressor proteins and oncogenes have emerged as eminent regulators of autophagy whose depletion or mutation favor tumor formation. The mammalian cell “janitor” p53 belongs to one of these tumor suppressors that are most commonly mutated in human tumors. Experimental evidence over the last decade convincingly reports that p53 can act as either an activator or an inhibitor of autophagy depending on its subcellular localization and its mode of action. This finding gains particular significance as p53 deficiency or mutant variants of p53 that accumulate in the cytoplasm of tumor cells enable activation of autophagy. Accordingly, we recently identified p53 as a molecular hub that regulates autophagy and apoptosis in histone deacetylase inhibitor-treated uterine sarcoma cells. In light of this novel experimental evidence, in this review, we focus on p53 signaling as a mediator of the autophagic pathway in tumor cells.

  20. Lysosomal cysteine peptidases - Molecules signaling tumor cell death and survival.

    Science.gov (United States)

    Pišlar, Anja; Perišić Nanut, Milica; Kos, Janko

    2015-12-01

    Lysosomal cysteine peptidases - cysteine cathepsins - are general intracellular protein-degrading enzymes that control also a variety of specific physiological processes. They can trigger irreversible events leading to signal transduction and activation of signaling pathways, resulting in cell survival and proliferation or cell death. In cancer cells, lysosomal cysteine peptidases are involved in multiple processes during malignant progression. Their translocation from the endosomal/lysosomal pathway to nucleus, cytoplasm, plasma membrane and extracellular space enables the activation and remodeling of a variety of tumor promoting proteins. Thus, lysosomal cysteine peptidases interfere with cytokine/chemokine signaling, regulate cell adhesion and migration and endocytosis, are involved in the antitumor immune response and apoptosis, and promote cell invasion, angiogenesis and metastasis. Further, lysosomal cysteine peptidases modify growth factors and receptors involved in tyrosine kinase dependent pathways such as MAPK, Akt and JNK, thus representing key signaling tools for the activation of tumor cell growth and proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities

    OpenAIRE

    Diegeler, Sebastian; Hellweg, Christine E.

    2017-01-01

    Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an e...

  2. Single-cell measurement of red blood cell oxygen affinity.

    Science.gov (United States)

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan

    2015-08-11

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.

  3. Tumor cells diagnostic through fractal dimensions

    International Nuclear Information System (INIS)

    Timbo, Christiano dos Santos

    2004-01-01

    This method relies on the application of an algorithm for the quantitative and statistic differentiation of a sample of cells stricken by a certain kind of pathology and a sample of healthy cells. This differentiation is made by applying the principles of fractal dimension to digital images of the cells. The algorithm was developed using the the concepts of Object- Oriented Programming, resulting in a simple code, divided in 5 distinct procedures, and a user-friendly interface. To obtain the fractal dimension of the images of the cells, the program processes the image, extracting its border, and uses it to characterize the complexity of the form of the cell in a quantitative way. In order to validate the code, it was used a digitalized image found in an article by W. Bauer, developer of an analog method. The result showed a difference of 6% between the value obtained by Bauer and the value obtained the algorithm developed in this work. (author)

  4. Multicentric Giant Cell Tumor of Bone: Synchronous and Metachronous Presentation

    Directory of Open Access Journals (Sweden)

    Reiner Wirbel

    2013-01-01

    Full Text Available A 27-year-old man treated 2.5 years ago for synchronous multicentric giant cell tumor of bone located at the right proximal humerus and the right 5th finger presented now with complaints of pain in his right hip and wrist of two-month duration. Radiology and magnetic resonance revealed multicentric giant cell tumor lesions of the right proximal femur, the left ileum, the right distal radius, and the left distal tibia. The patient has an eighteen-year history of a healed osteosarcoma of the right tibia that was treated with chemotherapy, resection, and allograft reconstruction. A literature review establishes this as the first reported case of a patient with synchronous and metachronous multicentric giant cell tumor who also has a history of osteosarcoma.

  5. MRI Findings of Suprasellar Germ Cell Tumors in Two Dogs.

    Science.gov (United States)

    Cook, Laurie; Tensley, Michelle; Drost, Wm Tod; Koivisto, Christopher; Oglesbee, Michael

    A 4 yr old border collie presenting for mydriasis and decreased mentation and a 7 yr old Boston terrier presenting for obtundation, head tilt, and paraparesis were both evaluated using MRI. Findings in both included mass lesions of the thalamus and brainstem that were hypo- to isointense on T1-weighted images and hyperintense on T2-weighted images with regions of hypointensity, and robust contrast enhancement and displacement of adjacent structures. Postmortem histopathology findings, tumor location, and a mixed pattern of epithelial cell differentiation were consistent with germ cell tumor in both cases. Germ cell tumor of the suprasellar region is an infrequently reported neoplasm of dogs and imaging findings in this species have not been well described in the prior literature.

  6. Capacity of tumor necrosis factor to augment lymphocyte-mediated tumor cell lysis of malignant mesothelioma

    International Nuclear Information System (INIS)

    Bowman, R.V.; Manning, L.S.; Davis, M.R.; Robinson, B.W.

    1991-01-01

    Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by natural killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma

  7. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship

    NARCIS (Netherlands)

    Netea-Maier, R.T.; Smit, J.W.A.; Netea, M.G.

    2018-01-01

    In order to adapt to the reduced availability of nutrients and oxygen in the tumor microenvironment and the increased requirements of energy and building blocks necessary for maintaining their high proliferation rate, malignant cells undergo metabolic changes that result in an increased production

  8. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    International Nuclear Information System (INIS)

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors

  9. Epigenetics, Nervous System Tumors, and Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Irfan A. [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Mehler, Mark F., E-mail: mark.mehler@einstein.yu.edu [Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States); Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461 (United States)

    2011-09-13

    Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.

  10. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities

    Directory of Open Access Journals (Sweden)

    Sebastian Diegeler

    2017-06-01

    Full Text Available Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  11. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities.

    Science.gov (United States)

    Diegeler, Sebastian; Hellweg, Christine E

    2017-01-01

    Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  12. HPMA copolymer-bound doxorubicin induces immunogenic tumor cell death.

    Science.gov (United States)

    Sirova, M; Kabesova, M; Kovar, L; Etrych, T; Strohalm, J; Ulbrich, K; Rihova, B

    2013-01-01

    Treatment of murine EL4 T cell lymphoma with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates of doxorubicin (Dox) leads to complete tumor regression and to the development of therapy-dependent longlasting cancer resistance. This phenomenon occurs with two types of Dox conjugates tested, despite differences in the covalent linkage of Dox to the polymer carrier. Such a cancer resistance cannot fully express in conventional treatment with free Dox, due to substantial immunotoxicity of the treatment, which was not observed in the polymer conjugates. In this study, calreticulin (CRT) translocation and high mobility group box-1 protein (HMGB1) release was observed in EL4 cells treated with a conjugate releasing Dox by a pH-dependent manner. As a result, the treated tumor cells were engulfed by dendritic cells (DC) in vitro, and induced their expression of CD80, CD86, and MHC II maturation markers. Conjugates with Dox bound via an amide bond only increased translocation of HSPs to the membrane, which led to an elevated phagocytosis but was not sufficient to induce increase of the maturation markers on DCs in vitro. Both types of conjugates induced engulfment of the target tumor cells in vivo, that was more intense than that seen with free Dox. It means that the induction of anti-tumor immunity documented upon treatment of EL4 lymphoma with HPMA-bound Dox conjugates does not rely solely on CRT-mediated cell death, but involves multiple mechanisms.

  13. A Novel Tumor Antigen and Foxp3 Dual Targeting Tumor Cell Vaccine Enhances the Immunotherapy in a Murine Model of Renal Cell Carcinoma

    Science.gov (United States)

    2015-12-01

    MDSCs facilitate tumor progression by impairing T-cell and natural killer (NK)–cell activation (9) and by modulating angiogenesis. Preclinical data...tasquinimod. Left, tumor growth curves by serial calipermeasurements. Right, tumor weights at the endpoint. B, mice were inoculated s.c. with B16...25 mg/kg) was given as daily i.v. injections on days 3 to 6. Left, tumor growth curves by serial caliper measurements. Right, end-of-treatment tumor

  14. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis | Center for Cancer Research

    Science.gov (United States)

    We demonstrate a novel tumor-promoting role of myeloid immune suppressor Gr+CD11b+ cells, which are evident in cancer patients and tumor-bearing animals. These cells constitute approximately 5% of total cells in tumors. Tumors coinjected with Gr+CD11b+ cells exhibited increased vascular density, vascular maturation, and decreased necrosis. These immune cells produce high

  15. Chimeric antigen receptors with human scFvs preferentially induce T cell anti-tumor activity against tumors with high B7H6 expression.

    Science.gov (United States)

    Gacerez, Albert T; Hua, Casey K; Ackerman, Margaret E; Sentman, Charles L

    2018-05-01

    B7H6 is emerging as a promising tumor antigen that is known to be expressed on a wide array of tumors and is reported to stimulate anti-tumor responses from the immune system. As such, B7H6 presents a good target for tumor-specific immunotherapies. B7H6-specific chimeric antigen receptors (CAR) based on a murine antibody showed successful targeting and elimination of tumors expressing B7H6. However, mouse single chain variable fragments (scFvs) have the potential to induce host anti-CAR responses that may limit efficacy, so human scFvs specific for B7H6 were selected by yeast surface display. In this study, we validate the functionality of these human scFvs when formatted into chimeric antigen receptors. The data indicate that T cells expressing these B7H6-specific human scFvs as CARs induced potent anti-tumor activity in vitro and in vivo against tumors expressing high amounts of B7H6. Importantly, these human scFv-based CARs are sensitive to changes in B7H6 expression which may potentially spare non-tumor cells that express B7H6 and provides the foundation for future clinical development.

  16. Capillary Electrophoretic Technologies for Single Cell Metabolomics

    Science.gov (United States)

    Lapainis, Theodore E.

    2009-01-01

    Understanding the functioning of the brain is hindered by a lack of knowledge of the full complement of neurotransmitters and neuromodulatory compounds. Single cell measurements aid in the discovery of neurotransmitters used by small subsets of neurons that would be diluted below detection limits or masked by ubiquitous compounds when working with…

  17. Therapeutic profile of single-fraction radiosurgery of vestibular schwannoma: unrelated malignancy predicts tumor control

    Science.gov (United States)

    Wowra, Berndt; Muacevic, Alexander; Fürweger, Christoph; Schichor, Christian; Tonn, Jörg-Christian

    2012-01-01

    Radiosurgery has become an accepted treatment option for vestibular schwannomas. Nevertheless, predictors of tumor control and treatment toxicity in current radiosurgery of vestibular schwannomas are not well understood. To generate new information on predictors of tumor control and cranial nerve toxicity of single-fraction radiosurgery of vestibular schwannomas, we conducted a single-institution long-term observational study of radiosurgery for sporadic vestibular schwannomas. Minimum follow-up was 3 years. Investigated as potential predictors of tumor control and cranial nerve toxicity were treatment technology; tumor resection preceding radiosurgery; tumor size; gender; patient age; history of cancer, vascular disease, or metabolic disease; tumor volume; radiosurgical prescription dose; and isodose line. Three hundred eighty-six patients met inclusion criteria. Treatment failure was observed in 27 patients. History of unrelated cancer (strongest predictor) and prescription dose significantly predicted tumor control. The cumulative incidence of treatment failure was 30% after 6.5 years in patients with unrelated malignancy and 10% after ≥15 years in patients without such cancer (P making in ambiguous cases. PMID:22561798

  18. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  19. Granulosa cell tumor of scrotal tunics: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Eun Kyung; Cho, Kyoung Sik [Pochon CHA University, Seoul (Korea, Republic of)

    2001-06-01

    We report a case of adult granulosa cell tumor arising in the scrotal tunics. The patient was a 34-year-old man who presented with right scrotal swelling, first noticed four months previously. Under the initial clinical impression of epididymoorchitis, antibiotic treatment was instituted but there was no response. The paratesticular nodules revealed by ultrasound and magnetic resonance imaging mimicked intratesticular lesion, and radical orchiectomy was performed. Although several cases of adult testicular granulosa cell tumor, have been reported, the occurrence of this entity in the paratesticular area has not, as far as we are aware, been previously described.

  20. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    Science.gov (United States)

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Tumor control probability after a radiation of animal tumors

    International Nuclear Information System (INIS)

    Urano, Muneyasu; Ando, Koichi; Koike, Sachiko; Nesumi, Naofumi

    1975-01-01

    Tumor control and regrowth probability of animal tumors irradiated with a single x-ray dose were determined, using a spontaneous C3H mouse mammary carcinoma. Cellular radiation sensitivity of tumor cells and tumor control probability of the tumor were examined by the TD 50 and TCD 50 assays respectively. Tumor growth kinetics were measured by counting the percentage of labelled mitosis and by measuring the growth curve. A mathematical analysis of tumor control probability was made from these results. A formula proposed, accounted for cell population kinetics or division probability model, cell sensitivity to radiation and number of tumor cells. (auth.)

  2. Radioimmunoassay for tumor antigen of human cervical squamous cell carcinoma

    International Nuclear Information System (INIS)

    Kato, H.; Torigoe, T.

    1977-01-01

    A heterologous antiserum for human cervical squamous cell carcinoma was prepared and specificity determined by Ouchterlony immunodiffusion and immunofluorescence studies. With this antiserum, a tumor antigen was purified from human cervical squamous cell carcinoma tissue. The specificities of the antigen and the antiserum were then re-examined by a radioimmunoassay method using 125 I-labeled purified antigen. Although normal cervical tissue extract showed a moderate cross-reactivity in the radioimmunoassay, the circulating antigen activity could not be detected in normal women or in several patients with other carcinomas, whereas 27 of 35 patients with cervical squamous cell carcinoma showed detectable serum antigen activity. All patients with advanced stages of cervical squamous cell carcinoma showed detectable antigen levels. These results indicate that there is a quantitative abnormality, at least, of this tumor antigen in patients with cervical squamous cell carcinoma and that the radioimmunoassay for the antigen is a potentially useful tool in clinical care

  3. Circulating Tumor Cells: From Theory to Nanotechnology-Based Detection

    Science.gov (United States)

    Ming, Yue; Li, Yuanyuan; Xing, Haiyan; Luo, Minghe; Li, Ziwei; Chen, Jianhong; Mo, Jingxin; Shi, Sanjun

    2017-01-01

    Cancer stem cells with stem-cell properties are regarded as tumor initiating cells. Sharing stem-cell properties, circulating tumor cells (CTCs) are responsible for the development of metastasis, which significant affects CTC analysis in clinical practice. Due to their extremely low occurrence in blood, however, it is challenging to enumerate and analyze CTCs. Nanotechnology is able to address the problems of insufficient capture efficiency and low purity of CTCs owing to the unique structural and functional properties of nanomaterials, showing strong promise for CTC isolation and detection. In this review, we discuss the role of stem-like CTCs in metastases, provide insight into recent progress in CTC isolation and detection approaches using various nanoplatforms, and highlight the role of nanotechnology in the advancement of CTC research. PMID:28203204

  4. Reemergence of apoptotic cells between fractionated doses in irradiated murine tumors

    International Nuclear Information System (INIS)

    Meyn, R.E.; Hunter, N.R.; Milas, L.

    1994-01-01

    The purpose of this investigation was to follow up our previous studies on the development of apoptosis in irradiated murine tumors by testing whether an apoptotic subpopulation of cells reemerges between fractionated exposures. Mice bearing a murine ovarian carcinoma, OCa-I, were treated in vivo with two fractionation protocols: two doses of 12.5 Gy separated by various times out to 5 days and multiple daily fractions of 2.5 Gy. Animals were killed 4 h after the last dose in each protocol, and the percent apoptosis was scored from stained histological sections made from the irradiated tumors according to the specific features characteristic of this mode of cell death. The 12.5+12.5 Gy protocol yielded a net total percent apoptosis of about 45% when the two doses were separated by 5 days (total dose = 25 Gy), whereas the 2.5 Gy per day protocol yielded about 50% net apoptotic cells when given for 5 days (total dose = 12.5 Gy). These values are to be compared to the value of 36% apoptotic cells that is yielded by large single doses (> 25 Gy). Thus, these results indicate that an apoptotic subpopulation of cells reemerged between the fractions in both protocols, but the kinetics appeared to be delayed in the 12.5+12.5 Gy vs. the multiple 2.5 Gy protocol. This reemergence of cells with the propensity for radiation-induced apoptosis between fractionated exposures is consistent with a role for this mode of cell death in the response of tumors to radiotherapy and may represent the priming of a new subpopulation of tumor cells for apoptosis as part of normal tumor homeostasis to counterbalance cell division. 25 refs., 3 figs., 1 tab

  5. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation.

    Science.gov (United States)

    Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey; Sukumaran, Sujita; Watanabe, Norihiro; Hoyos, Valentina; Lulla, Premal; Brenner, Malcolm K; Leen, Ann M; Vera, Juan F

    2018-05-10

    The adoptive transfer of T cells redirected to tumor via chimeric antigen receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to breast cancer, we generated CAR T cells directed against mucin1 (MUC1), an aberrantly glycosylated neoantigen that is overexpressed by malignant cells and whose expression has been correlated with poor prognosis. Furthermore, to protect our tumor-targeted cells from the elevated levels of immune-inhibitory cytokines present in the tumor milieu, we co-expressed an inverted cytokine receptor linking the IL4 receptor exodomain with the IL7 receptor endodomain (4/7ICR) in order to transform the suppressive IL4 signal into one that would enhance the anti-tumor effects of our CAR T cells at the tumor site. First (1G - CD3ζ) and second generation (2G - 41BB.CD3ζ) MUC1-specific CARs were constructed using the HMFG2 scFv. Following retroviral transduction transgenic expression of the CAR±ICR was assessed by flow cytometry. In vitro CAR/ICR T cell function was measured by assessing cell proliferation and short- and long-term cytotoxic activity using MUC1+ MDA MB 468 cells as targets. In vivo anti-tumor activity was assessed using IL4-producing MDA MB 468 tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. In the IL4-rich tumor milieu, 1G CAR.MUC1 T cells failed to expand or kill MUC1+ tumors and while co-expression of the 4/7ICR promoted T cell expansion, in the absence of co-stimulatory signals the outgrowing cells exhibited an exhausted phenotype characterized by PD-1 and TIM3 upregulation and failed to control tumor growth. However, by co-expressing 2G CAR.MUC1 (signal 1 - activation + signal 2 - co-stimulation) and 4/7ICR (signal 3 - cytokine), transgenic T cells selectively expanded at the tumor site and produced potent and durable tumor control in vitro and in vivo. Our findings demonstrate the feasibility of targeting breast

  6. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  7. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice

    International Nuclear Information System (INIS)

    Chang Mengya; Chen Yuhung; Chang Chihjui; Chen Helen H-W; Wu Chaoliang; Shiau Aili

    2008-01-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P=0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P<0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P<0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (author)

  8. Cell survival of human tumor cells compared with normal fibroblasts following 60Co gamma irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.; Reynolds, S.D.; Holmblad, G.L.; Trier, J.E.

    1982-01-01

    Three tumor cell lines, two of which were shown to be HeLa cells, were irradiated with 60 Co gamma irradiation, together with two cell cultures of normal human diploid fibroblasts. Cell survival was studied in three different experiments over a dose range of 2 to 14 gray. All the tumor cell lines showed a very wide shoulder in the dose response curves in contrast to the extremely narrow shoulder of the normal fibroblasts. In addition, the D/sub o/ values for the tumor cell lines were somewhat greater. These two characteristics of the dose response curves resulted in up to 2 orders of magnitude less sensitivity for cell inactivation of HeLa cells when compared with normal cells at high doses (10 gray). Because of these large differences, the extrapolation of results from the irradiation of HeLa cells concerning the mechanisms of normal cell killing should be interpreted with great caution

  9. Assessing T cell differentiation at the single-cell level

    NARCIS (Netherlands)

    Gerlach, Carmen

    2012-01-01

    This thesis describes the development and use of a novel technology for single-cell fate mapping, called cellular barcoding. With this technology, unique and heritable genetic tags (barcodes) are introduced into naïve T cells. Using cellular barcoding, we investigated I) how different

  10. CD4 cells can be more efficient at tumor rejection than CD8 cells.

    Science.gov (United States)

    Perez-Diez, Ainhoa; Joncker, Nathalie T; Choi, Kyungho; Chan, William F N; Anderson, Colin C; Lantz, Olivier; Matzinger, Polly

    2007-06-15

    Researchers designing antitumor treatments have long focused on eliciting tumor-specific CD8 cytotoxic T lymphocytes (CTL) because of their potent killing activity and their ability to reject transplanted organs. The resulting treatments, however, have generally been surprisingly poor at inducing complete tumor rejection, both in experimental models and in the clinic. Although a few scattered studies suggested that CD4 T "helper" cells might also serve as antitumor effectors, they have generally been studied mostly for their ability to enhance the activity of CTL. In this mouse study, we compared monoclonal populations of tumor-specific CD4 and CD8 T cells as effectors against several different tumors, and found that CD4 T cells eliminated tumors that were resistant to CD8-mediated rejection, even in cases where the tumors expressed major histocompatibility complex (MHC) class I molecules but not MHC class II. MHC class II expression on host tissues was critical, suggesting that the CD4 T cells act indirectly. Indeed, the CD4 T cells partnered with NK cells to obtain the maximal antitumor effect. These findings suggest that CD4 T cells can be powerful antitumor effector cells that can, in some cases, outperform CD8 T cells, which are the current "gold standard" effector cell in tumor immunotherapy.

  11. Mandatory chromosomal segment balance in aneuploid tumor cells

    International Nuclear Information System (INIS)

    Kost-Alimova, Maria; Stanbridge, Eric; Klein, George; Imreh, Stefan; Darai-Ramqvist, Eva; Yau, Wing Lung; Sandlund, Agneta; Fedorova, Ludmila; Yang, Ying; Kholodnyuk, Irina; Cheng, Yue; Li Lung, Maria

    2007-01-01

    Euploid chromosome balance is vitally important for normal development, but is profoundly changed in many tumors. Is each tumor dependent on its own structurally and numerically changed chromosome complement that has evolved during its development and progression? We have previously shown that normal chromosome 3 transfer into the KH39 renal cell carcinoma line and into the Hone1 nasopharyngeal carcinoma line inhibited their tumorigenicity. The aim of the present study was to distinguish between a qualitative and a quantitative model of this suppression. According to the former, a damaged or deleted tumor suppressor gene would be restored by the transfer of a normal chromosome. If so, suppression would be released only when the corresponding sequences of the exogenous normal chromosome are lost or inactivated. According to the alternative quantitative model, the tumor cell would not tolerate an increased dosage of the relevant gene or segment. If so, either a normal cell derived, or, a tumor derived endogenous segment could be lost. Fluorescence in Situ Hybridization based methods, as well as analysis of polymorphic microsatellite markers were used to follow chromosome 3 constitution changes in monochromosomal hybrids. In both tumor lines with introduced supernumerary chromosomes 3, the copy number of 3p21 or the entire 3p tended to fall back to the original level during both in vitro and in vivo growth. An exogenous, normal cell derived, or an endogenous, tumor derived, chromosome segment was lost with similar probability. Identification of the lost versus retained segments showed that the intolerance for increased copy number was particularly strong for 3p14-p21, and weaker for other 3p regions. Gains in copy number were, on the other hand, well tolerated in the long arm and particularly the 3q26-q27 region. The inability of the cell to tolerate an experimentally imposed gain in 3p14-p21 in contrast to the well tolerated gain in 3q26-q27 is consistent with the

  12. Repeated cycles of 5-fluorouracil chemotherapy impaired anti-tumor functions of cytotoxic T cells in a CT26 tumor-bearing mouse model.

    Science.gov (United States)

    Wu, Yanhong; Deng, Zhenling; Wang, Huiru; Ma, Wenbo; Zhou, Chunxia; Zhang, Shuren

    2016-09-20

    Recently, the immunostimulatory roles of chemotherapeutics have been increasingly revealed, although bone marrow suppression is still a common toxicity of chemotherapy. While the numbers and ratios of different immune subpopulations are analyzed after chemotherapy, changes to immune status after each cycle of treatment are less studied and remain unclear. To determine the tumor-specific immune status and functions after different cycles of chemotherapy, we treated CT26 tumor-bearing mice with one to four cycles of 5-fluorouracil (5-FU). Overall survival was not improved when more than one cycle of 5-FU was administered. Here we present data concerning the immune statuses after one and three cycles of chemotherapy. We analyzed the amount of spleen cells from mice treated with one and three cycles of 5-FU as well as assayed their proliferation and cytotoxicity against the CT26 tumor cell line. We found that the absolute numbers of CD8 T-cells and NK cells were not influenced significantly after either one or three cycles of chemotherapy. However, after three cycles of 5-FU, proliferated CD8 T-cells were decreased, and CT26-specific cytotoxicity and IFN-γ secretion of spleen cells were impaired in vitro. After one cycle of 5-FU, there was a greater percentage of tumor infiltrating CD8 T-cells. In addition, more proliferated CD8 T-cells, enhanced tumor-specific cytotoxicity as well as IFN-γ secretion of spleen cells against CT26 in vitro were observed. Given the increased expression of immunosuppressive factors, such as PD-L1 and TGF-β, we assessed the effect of early introduction of immunotherapy in combination with chemotherapy. We found that mice treated with cytokine induced killer cells and PD-L1 monoclonal antibodies after one cycle of 5-FU had a better anti-tumor performance than those treated with chemotherapy or immunotherapy alone. These data suggest that a single cycle of 5-FU treatment promoted an anti-tumor immune response, whereas repeated chemotherapy

  13. Single-Cell RNA Sequencing of Glioblastoma Cells.

    Science.gov (United States)

    Sen, Rajeev; Dolgalev, Igor; Bayin, N Sumru; Heguy, Adriana; Tsirigos, Aris; Placantonakis, Dimitris G

    2018-01-01

    Single-cell RNA sequencing (sc-RNASeq) is a recently developed technique used to evaluate the transcriptome of individual cells. As opposed to conventional RNASeq in which entire populations are sequenced in bulk, sc-RNASeq can be beneficial when trying to better understand gene expression patterns in markedly heterogeneous populations of cells or when trying to identify transcriptional signatures of rare cells that may be underrepresented when using conventional bulk RNASeq. In this method, we describe the generation and analysis of cDNA libraries from single patient-derived glioblastoma cells using the C1 Fluidigm system. The protocol details the use of the C1 integrated fluidics circuit (IFC) for capturing, imaging and lysing cells; performing reverse transcription; and generating cDNA libraries that are ready for sequencing and analysis.

  14. Antibody-linked drug destroys tumor cells and tumor blood vessels in many types of cancer | Center for Cancer Research

    Science.gov (United States)

    A team led by Brad St. Croix, Ph.D., Senior Associate Scientist, Mouse Cancer Genetics Program, has developed an antibody-drug conjugate (ADC) that destroys both tumor cells and the blood vessels that nourish them. The drug significantly shrank breast tumors, colon tumors and several other types of cancer and prolonged survival. Learn more...  

  15. Mutational analysis of circulating tumor cells from colorectal cancer patients and correlation with primary tumor tissue.

    Directory of Open Access Journals (Sweden)

    Anna Lyberopoulou

    Full Text Available Circulating tumor cells (CTCs provide a non-invasive accessible source of tumor material from patients with cancer. The cellular heterogeneity within CTC populations is of great clinical importance regarding the increasing number of adjuvant treatment options for patients with metastatic carcinomas, in order to eliminate residual disease. Moreover, the molecular profiling of these rare cells might lead to insight on disease progression and therapeutic strategies than simple CTCs counting. In the present study we investigated the feasibility to detect KRAS, BRAF, CD133 and Plastin3 (PLS3 mutations in an enriched CTCs cell suspension from patients with colorectal cancer, with the hypothesis that these genes` mutations are of great importance regarding the generation of CTCs subpopulations. Subsequently, we compared CTCs mutational status with that of the corresponding primary tumor, in order to access the possibility of tumor cells characterization without biopsy. CTCs were detected and isolated from blood drawn from 52 colorectal cancer (CRC patients using a quantum-dot-labelled magnetic immunoassay method. Mutations were detected by PCR-RFLP or allele-specific PCR and confirmed by direct sequencing. In 52 patients, discordance between primary tumor and CTCs was 5.77% for KRAS, 3.85% for BRAF, 11.54% for CD133 rs3130, 7.69% for CD133 rs2286455 and 11.54% for PLS3 rs6643869 mutations. Our results support that DNA mutational analysis of CTCs may enable non-invasive, specific biomarker diagnostics and expand the scope of personalized medicine for cancer patients.

  16. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.

    Science.gov (United States)

    Alley, M C; Scudiero, D A; Monks, A; Hursey, M L; Czerwinski, M J; Fine, D L; Abbott, B J; Mayo, J G; Shoemaker, R H; Boyd, M R

    1988-02-01

    For the past 30 years strategies for the preclinical discovery and development of potential anticancer agents have been based largely upon the testing of agents in mice bearing transplantable leukemias and solid tumors derived from a limited number of murine as well as human sources. The feasibility of implementing an alternate approach, namely combined in vitro/in vivo screening for selective cytotoxicity among panels of human tumor cell lines derived from a broad spectrum of human solid tumors is under investigation. A group of 30 cell lines acquired from a variety of sources and representing 8 lung cancer pathologies as well as 76 cell lines representing 10 other categories of human cancer (carcinomas of colon, breast, kidney, prostate, ovary, head and neck; glioma; leukemia; melanoma; and sarcoma) have exhibited acceptable growth characteristics and suitable colorimetric profiles in a single, standard culture medium. Measurements of in vitro growth in microculture wells by cell-mediated reduction of tetrazolium showed excellent correlation (0.89 less than r2 less than 0.98) with measurements of cellular protein in adherent cell line cultures as well as viable cell count in suspension cell line cultures (0.94 less than r2 less than 0.99). Since the microculture tetrazolium assay provides sensitive and reproducible indices of growth as well as drug sensitivity in individual cell lines over the course of multiple passages and several months' cultivation, it appears suitable for initial-stage in vitro drug screening.

  17. Tumor cell-macrophage interactions increase angiogenesis through secretion of EMMPRIN

    Directory of Open Access Journals (Sweden)

    Bat-Chen eAmit-Cohen

    2013-07-01

    Full Text Available Tumor macrophages are generally considered to be alternatively/M2 activated to induce secretion of pro-angiogenic factors such as VEGF and MMPs. EMMPRIN (CD147, basigin is overexpressed in many tumor types, and has been shown to induce fibroblasts and endothelial cell expression of MMPs and VEGF. We first show that tumor cell interactions with macrophages resulted in increased expression of EMMPRIN and induction of MMP-9 and VEGF. Human A498 renal carcinoma or MCF-7 breast carcinoma cell lines were co-cultured with the U937 monocytic-like cell line in the presence of TNFalpha (1 ng/ml. Membranal EMMPRIN expression was increased in the co-cultures (by 3-4 folds, p<0.01, as was the secretion of MMP-9 and VEGF (by 2-5 folds for both MMP-9 and VEGF, p<0.01, relative to the single cultures with TNFalpha. Investigating the regulatory mechanisms, we show that EMMPRIN was post-translationally regulated by miR-146a, as no change was observed in the tumoral expression of EMMPRIN mRNA during co-culture, expression of miR-146a was increased and its neutralization by its antagomir inhibited EMMPRIN expression. The secretion of EMMPRIN was also enhanced (by 2-3 folds, p<0.05, only in the A498 co-culture via shedding off of the membranal protein by a serine protease that is yet to be identified, as demonstrated by the use of wide range protease inhibitors. Finally, soluble EMMPRIN enhanced monocytic secretion of MMP-9 and VEGF, as inhibition of its expression levels by neutralizing anti-EMMPRIN or siRNA in the tumor cells lead to subsequent decreased induction of these two pro-angiogenic proteins. These results reveal a mechanism whereby tumor cell-macrophage interactions promote angiogenesis via an EMMPRIN-mediated pathway.

  18. Dissecting stem cell differentiation using single cell expression profiling

    OpenAIRE

    Moignard, Victoria Rachel; Göttgens, Berthold

    2016-01-01

    Many assumptions about the way cells behave are based on analyses of populations. However, it is now widely recognized that even apparently pure populations can display a remarkable level of heterogeneity. This is particularly true in stem cell biology where it hinders our understanding of normal development and the development of strategies for regenerative medicine. Over the past decade technologies facilitating gene expression analysis at the single cell level have become widespread, provi...

  19. General Information about Ovarian Germ Cell Tumors

    Science.gov (United States)

    ... diagnosed, tests are done to find out if cancer cells have spread within the ovary or to other parts of the body. The process used to find out whether cancer has spread within the ovary or to other parts of the body is ...

  20. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Yuji Mishima

    2017-04-01

    Full Text Available The development of sensitive and non-invasive “liquid biopsies” presents new opportunities for longitudinal monitoring of tumor dissemination and clonal evolution. The number of circulating tumor cells (CTCs is prognostic in multiple myeloma (MM, but there is little information on their genetic features. Here, we have analyzed the genomic landscape of CTCs from 29 MM patients, including eight cases with matched/paired bone marrow (BM tumor cells. Our results show that 100% of clonal mutations in patient BM were detected in CTCs and that 99% of clonal mutations in CTCs were present in BM MM. These include typical driver mutations in MM such as in KRAS, NRAS, or BRAF. These data suggest that BM and CTC samples have similar clonal structures, as discordances between the two were restricted to subclonal mutations. Accordingly, our results pave the way for potentially less invasive mutation screening of MM patients through characterization of CTCs.

  1. Sphingosine kinase activity is not required for tumor cell viability.

    Directory of Open Access Journals (Sweden)

    Karen Rex

    Full Text Available Sphingosine kinases (SPHKs are enzymes that phosphorylate the lipid sphingosine, leading to the formation of sphingosine-1-phosphate (S1P. In addition to the well established role of extracellular S1P as a mitogen and potent chemoattractant, SPHK activity has been postulated to be an important intracellular regulator of apoptosis. According to the proposed rheostat theory, SPHK activity shifts the intracellular balance from the pro-apoptotic sphingolipids ceramide and sphingosine to the mitogenic S1P, thereby determining the susceptibility of a cell to apoptotic stress. Despite numerous publications with supporting evidence, a clear experimental confirmation of the impact of this mechanism on tumor cell viability in vitro and in vivo has been hampered by the lack of suitable tool reagents. Utilizing a structure based design approach, we developed potent and specific SPHK1/2 inhibitors. These compounds completely inhibited intracellular S1P production in human cells and attenuated vascular permeability in mice, but did not lead to reduced tumor cell growth in vitro or in vivo. In addition, siRNA experiments targeting either SPHK1 or SPHK2 in a large panel of cell lines failed to demonstrate any statistically significant effects on cell viability. These results show that the SPHK rheostat does not play a major role in tumor cell viability, and that SPHKs might not be attractive targets for pharmacological intervention in the area of oncology.

  2. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Directory of Open Access Journals (Sweden)

    Wang Y

    2012-05-01

    Full Text Available Ye Wang,1,2,* Xiao-Yuan Zi,1,* Juan Su,1 Hong-Xia Zhang,1 Xin-Rong Zhang,3 Hai-Ying Zhu,1 Jian-Xiu Li,1 Meng Yin,3 Feng Yang,3 Yi-Ping Hu,11Department of Cell Biology, 2School of Clinical Medicine, 3Department of Pharmaceuticals, Second Military Medical University, Shanghai, People's Republic of China*Authors contributed equally.Abstract: In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy.Keywords: nanomedicine, selective cytotoxicity, apoptosis, cell cycle arrest, mitochondrion-targeted nanomaterials

  3. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  4. RELATIONSHIP BETWEEN EXPRESSION OF MATRIX METALLOPROTEINASES AND MORPHOLOGICAL HETEROGENEITY, TUMOR DIFFERENTIATION AND LYMPHOGENOUS METASTASIS OF SQUAMOUS CELL LARYNGEAL CARCINOMA

    Directory of Open Access Journals (Sweden)

    О. V. Savenkova

    2015-01-01

    Full Text Available The study included 58 patients with stage Т1–3N0–3M0–1 squamous cell laryngeal carcinoma. The age range was from 31 to 77 years. Patients received no cancer treatment before surgery. The expression of metalloproteinases (ММP-1, -2, -9, their inhibitors (TIMP-1, -2 and inductor of metalloproteinase expression (CD147 were determined in tumor cells of different structures of squamous cell carcinoma using immunohistochemical method. Results were compared with the presence of lymphogenous metastases. Results. Five morphological structures of squamous cell carcinomas were studied: with keratinization (type 1, with cells of basaloid and acanthocyte types without kartinization (type 2, with cells of basaloid type (type 3, with pronounced cellular polymorphism (type 4 and single tumor cells (type 5. With regard to combination of these structures, tumors were divided into high-grade, low-grade and mixed tumor structures. In tumors without lymphogenous metastases, the increased expression of ММP-1, -2, and-9 was only revealed in discrete cells. In tumors with lymphogenic metastases, the increased MMP-9 expression was observed in more differentiated structures of 1, 2 and 3 types. Less frequent lymphogenous metastasis of vocal cord carcinomas was associated only with tumors of mixed structure, in which the expression of TIMP1 was reduced.  Conclusion. To assess the histological differentiation of squamous cell carcinoma of the larynx, it should be considered a combination of high and low-grade tumor structures. The expression of metalloproteinases should be studied considering morphological heterogeneity of squamous cell carcinomas. The frequency of lymphogenous metastasis of high-or low-grade squamous cell carcinoma of the vocal cords did not differ from that of squamous cell carcinoma of the supra-glottal area. The frequency of lymphogenous metastasis was significantly lower in mixed squamous cell carcinomas of the vocal cords than in similar

  5. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons.

    Science.gov (United States)

    Tan, Carlyn Rose C; Zhou, Lanlan; El-Deiry, Wafik S

    2016-06-01

    Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned.

  6. Heterogeneity of estrogen receptor expression in circulating tumor cells from metastatic breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Anna Babayan

    Full Text Available BACKGROUND: Endocrine treatment is the most preferable systemic treatment in metastatic breast cancer patients that have had an estrogen receptor (ER positive primary tumor or metastatic lesions, however, approximately 20% of these patients do not benefit from the therapy and demonstrate further metastatic progress. One reason for failure of endocrine therapy might be the heterogeneity of ER expression in tumor cells spreading from the primary tumor to distant sites which is reflected in detectable circulating tumor cells (CTCs. METHODS: A sensitive and specific staining protocol for ER, keratin 8/18/19, CD45 was established. Peripheral blood from 35 metastatic breast cancer patients with ER-positive primary tumors was tested for the presence of CTCs. Keratin 8/18/19 and DAPI positive but CD45 negative cells were classified as CTCs and evaluated for ER staining. Subsequently, eight individual CTCs from four index patients (2 CTCs per patient were isolated and underwent whole genome amplification and ESR1 gene mutation analysis. RESULTS: CTCs were detected in blood of 16 from 35 analyzed patients (46%, with a median of 3 CTCs/7.5 ml. In total, ER-negative CTCs were detected in 11/16 (69% of the CTC positive cases, including blood samples with only ER-negative CTCs (19% and samples with both ER-positive and ER-negative CTCs (50%. No correlation was found between the intensity and/or percentage of ER staining in the primary tumor with the number and ER status of CTCs of the same patient. ESR1 gene mutations were not found. CONCLUSION: CTCs frequently lack ER expression in metastatic breast cancer patients with ER-positive primary tumors and show a considerable intra-patient heterogeneity, which may reflect a mechanism to escape endocrine therapy. Provided single cell analysis did not support a role of ESR1 mutations in this process.

  7. Heterogeneity of Estrogen Receptor Expression in Circulating Tumor Cells from Metastatic Breast Cancer Patients

    Science.gov (United States)

    Babayan, Anna; Hannemann, Juliane; Spötter, Julia; Müller, Volkmar

    2013-01-01

    Background Endocrine treatment is the most preferable systemic treatment in metastatic breast cancer patients that have had an estrogen receptor (ER) positive primary tumor or metastatic lesions, however, approximately 20% of these patients do not benefit from the therapy and demonstrate further metastatic progress. One reason for failure of endocrine therapy might be the heterogeneity of ER expression in tumor cells spreading from the primary tumor to distant sites which is reflected in detectable circulating tumor cells (CTCs). Methods A sensitive and specific staining protocol for ER, keratin 8/18/19, CD45 was established. Peripheral blood from 35 metastatic breast cancer patients with ER-positive primary tumors was tested for the presence of CTCs. Keratin 8/18/19 and DAPI positive but CD45 negative cells were classified as CTCs and evaluated for ER staining. Subsequently, eight individual CTCs from four index patients (2 CTCs per patient) were isolated and underwent whole genome amplification and ESR1 gene mutation analysis. Results CTCs were detected in blood of 16 from 35 analyzed patients (46%), with a median of 3 CTCs/7.5 ml. In total, ER-negative CTCs were detected in 11/16 (69%) of the CTC positive cases, including blood samples with only ER-negative CTCs (19%) and samples with both ER-positive and ER-negative CTCs (50%). No correlation was found between the intensity and/or percentage of ER staining in the primary tumor with the number and ER status of CTCs of the same patient. ESR1 gene mutations were not found. Conclusion CTCs frequently lack ER expression in metastatic breast cancer patients with ER-positive primary tumors and show a considerable intra-patient heterogeneity, which may reflect a mechanism to escape endocrine therapy. Provided single cell analysis did not support a role of ESR1 mutations in this process. PMID:24058649

  8. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype

    DEFF Research Database (Denmark)

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard

    2016-01-01

    and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area......-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell...... in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers...

  9. Single-Cell Transcriptomics Bioinformatics and Computational Challenges

    Directory of Open Access Journals (Sweden)

    Lana Garmire

    2016-09-01

    Full Text Available The emerging single-cell RNA-Seq (scRNA-Seq technology holds the promise to revolutionize our understanding of diseases and associated biological processes at an unprecedented resolution. It opens the door to reveal the intercellular heterogeneity and has been employed to a variety of applications, ranging from characterizing cancer cells subpopulations to elucidating tumor resistance mechanisms. Parallel to improving experimental protocols to deal with technological issues, deriving new analytical methods to reveal the complexity in scRNA-Seq data is just as challenging. Here we review the current state-of-the-art bioinformatics tools and methods for scRNA-Seq analysis, as well as addressing some critical analytical challenges that the field faces.

  10. Tumor necrosis factor alpha production in irradiated cells in vitro

    International Nuclear Information System (INIS)

    Koeteles, G.J.; Bognar, G.; Kubasova, T.

    1994-01-01

    Normal and tumor cell lines were used to investigate tumor necrosis factor (TNFα) production and its radiation sensitivity. The cells were irradiated with gamma rays using different doses from 0.25 Gy up to 5 Gy. The number of plated cells, changes of proliferation and TNFα production were determined during the following four post-irradiation days. For TNFα quantity measurement immuno-radiometric assay (IRMA) and enzyme amplified sensitivity assay (EASIA) was used. The results suggest that though gamma irradiation decreased cell proliferation in a dose dependent manner, the quantity produced in the post-irradiation period increased considerably in each irradiated sample. (N.T.) 3 refs.; 2 figs.; 1 tab

  11. Expression profiling of circulating tumor cells in metastatic breast cancer

    Czech Academy of Sciences Publication Activity Database

    Lang, J.; Scott, J.H.; Wolf, D.M.; Novák, Petr; Punj, V.; Magbanua, M.J.M.; Zhu, W.Z.; Mineyev, N.; Haqq, CH.; Crothers, J.

    2015-01-01

    Roč. 149, č. 1 (2015), s. 121-131 ISSN 0167-6806 Institutional support: RVO:60077344 Keywords : Circulating tumor cells * Micrometastases * Breast cancer * EpCAM Subject RIV: FD - Oncology ; Hematology Impact factor: 4.085, year: 2015

  12. Quantifying HER-2 expression on Circulating Tumor Cells by ACCEPT

    NARCIS (Netherlands)

    Zeune, Leonie Laura; van Dalum, Guus; Decraene, C.; Proudhon, C.; Fehm, T.; Neubauer, Hans; Rack, B.; Alunni-fabbroni, Marianna; Terstappen, L.W.M.M.; van Gils, Stephanus A.; Brune, Christoph

    2017-01-01

    Circulating tumor cells (CTCs) isolated from blood can be probed for the expression of treatment targets. Immunofluorescence is often used for both the enumeration of CTC and the determination of protein expression levels related to treatment targets. Accurate and reproducible assessment of such

  13. Granular cell tumor with orbital involvement in a child

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Fabiano [Universidade Estadual de Campinas (FCM/UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Radiologia; Iyeyasu, Josie Naomi; Carvalho, Keila Monteiro de [Universidade Estadual de Campinas (FCM/UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Oftalmo-Otorrinolaringologia; Altemani, Albina Messias [Universidade Estadual de Campinas (FCM/UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Anatomia Patologica

    2011-09-15

    The authors report a rare case of granular cell tumor in the left medial rectus muscle of a seven-year-old boy. Clinical, pathologic and radiologic findings of the present case are described and a brief literature review is undertaken. (author)

  14. Importance of circulating tumor cells in newly diagnosed colorectal cancer

    NARCIS (Netherlands)

    van Dalum, Guus; Stam, Gerrit-Jan; Scholten, Loes F.A.; Mastboom, Walter J.B.; Vermes, I.; Tibbe, Arjan G.J.; De Groot, Marco R.; Terstappen, Leonardus Wendelinus Mathias Marie

    2015-01-01

    Presence of circulating tumor cells (CTC) is associated with poor prognosis in patients with metastatic colorectal cancer (CRC). The present study was conducted to determine if the presence of CTC prior to surgery and during follow‑up in patients with newly diagnosed non-metastatic CRC can identify

  15. Cancer vaccine development: Designing tumor cells for greater immunogenicity

    Science.gov (United States)

    Bozeman, Erica N.; Shashidharamurthy, Rangaiah; Paulos, Simon A.; Palaniappan, Ravi; D’Souza, Martin; Selvaraj, Periasamy

    2014-01-01

    Cancer vaccine development is one of the most hopeful and exhilarating areas in cancer research. For this reason, there has been a growing interest in the development and application of novel immunotherapies for the treatment of cancer with the focus being on stimulating the immune system to target tumor cells specifically while leaving normal cells unharmed. From such research has emerged a host of promising immunotherapies such as dendritic cell-based vaccines, cytokine therapies and gene transfer technology. These therapies seek to counteract the poor immunogenicity of tumors by augmenting the host’s immune system with a variety of immunostimulatory proteins such as cytokines and costimulatory molecules. While such therapies have proven effective in the induction of anti-tumor immunity in animal models, they are less than optimal and pose a high risk of clinical infeasibility. Herein, we further discuss these immunotherapies as well as a feasible and efficient alternative that, in pre-clinical animal models, allows for the expression of specific immunostimulatory molecules on the surface of tumor cells by a novel protein transfer technology. PMID:20036822

  16. Precocious pseudopuberty due to juvenile granulosa cell tumor

    International Nuclear Information System (INIS)

    Saeed, G.A.; Farooq, N.

    2003-01-01

    A case of precocious puberty occurring in a young girl is presented. Vaginal bleeding and secondary sexual characteristics had occurred at 7 years of age associated with an abdominal mass. These findings were due to a functional juvenile granulosa cell tumor in the right ovary. Right adenectomy was performed. Histopathology was confirmatory. (author)

  17. Circulating tumor cell isolation and diagnostics: toward routine clinical use

    NARCIS (Netherlands)

    Stolpe, van de A.; Pantel, K.; Sleijfer, S.; Terstappen, L.W.; Toonder, den J.M.J.

    2011-01-01

    From February 7–11, 2011, the multidisciplinary Lorentz Workshop Circulating Tumor Cell (CTC) Isolation and Diagnostics: Toward Routine Clinical Use was held in Leiden (The Netherlands) to discuss progress and define challenges and potential solutions for development of clinically useful circulating

  18. Localized giant cell tumors in the spinal column radiologic presentation

    International Nuclear Information System (INIS)

    Fernandez Echeverria, M.A.; Parra Blanco, J.A.; Pagola Serrano, M.A.; Mellado Santos, J.M.; Bueno Lopez, J.; Gonzalez Tutor, A.

    1994-01-01

    Given the uncommonness of the location of giant cell tumors (GCT) in the spinal column and the limited number of studies published, we present a case of GCT located in the spinal column, which involved both vertebral bodies and partially destroyed the adjacent rib. (Author)

  19. Hormone therapy in ovarian granulosa cell tumors: a systematic review

    NARCIS (Netherlands)

    van Meurs, Hannah S.; van Lonkhuijzen, Luc R. C. W.; Limpens, Jacqueline; van der Velden, Jacobus; Buist, Marrije R.

    2014-01-01

    This systematic review assessed the effectiveness of hormone therapy (HT) in patients with a granulosa cell tumor (GCT) of the ovary. Medline (OVID), EMBASE (OVID), the Cochrane Central Register of Controlled Trials (CENTRAL), prospective trial registers and PubMed (as supplied by publisher-subset)

  20. INHIBIN AS A MARKER FOR GRANULOSA-CELL TUMOR

    NARCIS (Netherlands)

    LAPPOHN, RE; BURGER, HG; BOUMA, J; BANGAH, M; KRANS, M

    1992-01-01

    In order to determine whether serum-immunoreactive inhibin could constitute a biochemical marker for the presence and progression of ovarian granulosa cell tumors and their metastases, we measured immunoreactive inhibin concentrations in series of serum samples obtained from 8 patients with

  1. In Vivo Imaging of Natural Killer Cell Trafficking in Tumors

    NARCIS (Netherlands)

    Galli, Filippo; Rapisarda, Anna Serafina; Stabile, Helena; Malviya, Gaurav; Manni, Isabella; Bonanno, Elena; Piaggio, Giulia; Gismondi, Angela; Santoni, Angela; Signore, Alberto

    2015-01-01

    Natural killer cells (NKs) are important effectors of the innate immune system, with marked antitumor activity. Imaging NK trafficking in vivo may be relevant to following up the efficacy of new therapeutic approaches aiming at increasing tumor-infiltrating NKs (TINKs). The specific aims of present

  2. Towards Optimal Diagnosis of Type II Germ Cell Tumors

    NARCIS (Netherlands)

    J.A. Stoop (Hans)

    2011-01-01

    textabstractThe aim of the work described in this thesis is to improve the understanding of the pathobiology of testicular cancer (type II Germ Cell Tumors) to create possibilities for optimalization of diagnosis for this type of malignancy in routine pathology laboratories. The different studies

  3. Granular cell tumor with orbital involvement in a child

    International Nuclear Information System (INIS)

    Reis, Fabiano; Iyeyasu, Josie Naomi; Carvalho, Keila Monteiro de; Altemani, Albina Messias

    2011-01-01

    The authors report a rare case of granular cell tumor in the left medial rectus muscle of a seven-year-old boy. Clinical, pathologic and radiologic findings of the present case are described and a brief literature review is undertaken. (author)

  4. Autophagy contributes to resistance of tumor cells to ionizing radiation.

    Science.gov (United States)

    Chaachouay, Hassan; Ohneseit, Petra; Toulany, Mahmoud; Kehlbach, Rainer; Multhoff, Gabriele; Rodemann, H Peter

    2011-06-01

    Autophagy signaling is a novel important target to improve anticancer therapy. To study the role of autophagy on resistance of tumor cells to ionizing radiation (IR), breast cancer cell lines differing in their intrinsic radiosensitivity were used. Breast cancer cell lines MDA-MB-231 and HBL-100 were examined with respect to clonogenic cell survival and induction of autophagy after radiation exposure and pharmacological interference of the autophagic process. As marker for autophagy the appearance of LC3-I and LC3-II proteins was analyzed by SDS-PAGE and Western blotting. Formation of autophagic vacuoles was monitored by immunofluorescence staining of LC3. LC3-I and LC3-II formation differs markedly in radioresistant MDA-MB-231 versus radiosensitive HBL-100 cells. Western blot analyses of LC3-II/LC3-I ratio indicated marked induction of autophagy by IR in radioresistant MDA-MB-231 cells, but not in radiosensitive HBL-100 cells. Indirect immunofluorescence analysis of LC3-II positive vacuoles confirmed this differential effect. Pre-treatment with 3-methyladenine (3-MA) antagonized IR-induced autophagy. Likewise, pretreatment of radioresistant MDA-231 cells with autophagy inhibitors 3-MA or chloroquine (CQ) significantly reduced clonogenic survival of irradiated cells. Our data clearly indicate that radioresistant breast tumor cells show a strong post-irradiation induction of autophagy, which thus serves as a protective and pro-survival mechanism in radioresistance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Recombinant human erythropoietin alpha improves the efficacy of radiotherapy of a human tumor xenograft, affecting tumor cells and microvessels

    International Nuclear Information System (INIS)

    Loevey, J.; Bereczky, B.; Gilly, R.; Kenessey, I.; Raso, E.; Simon, E.; Timar, J.; Dobos, J.; Vago, A.; Kasler, M.; Doeme, B.; Tovari, J.

    2008-01-01

    Background and purpose: tumor-induced anemia often occurs in cancer patients, and is corrected by recombinant human erythropoietins (rHuEPOs). Recent studies indicated that, besides erythroid progenitor cells, tumor and endothelial cells express erythropoietin receptor (EPOR) as well; therefore, rHuEPO may affect their functions. Here, the effect of rHuEPOα on irradiation in EPOR-positive human squamous cell carcinoma xenograft was tested. Material and methods: A431 tumor-bearing SCID mice were treated from the tumor implantation with rHuEPOα at human-equivalent dose. Xenografts were irradiated (5 Gy) on day 14, and the final tumor mass was measured on day 22. The systemic effects of rHuEPOα on the hemoglobin level, on tumor-associated blood vessels and on hypoxia-inducible factor-(HIF-)1α expression of the tumor xenografts were monitored. The proliferation, apoptosis and clonogenic capacity of A431 cancer cells treated with rHuEPOα and irradiation were also tested in vitro. Results: in vitro, rHuEPOα treatment alone did not modify the proliferation of EPOR-positive A431 tumor cells but enhanced the effect of irradiation on proliferation, apoptosis and clonogenic capacity. In vivo, rHuEPOα administration compensated the tumor-induced anemia in SCID mice and decreased tumoral HIF-1α expression but had no effect on tumor growth. At the same time rHuEPOα treatment significantly increased the efficacy of radiotherapy in vivo (tumor weight of 23.9 ± 4.7 mg and 34.9 ± 4.6 mg, respectively), mediated by increased tumoral blood vessel destruction. Conclusion: rHuEPOα treatment may modulate the efficacy of cancer radiotherapy not only by reducing systemic hypoxia and tumoral HIF-1α expression, but also by destroying tumoral vessels. (orig.)

  6. Supratentorial tumours. Part II: tumors of neurolglial cells

    International Nuclear Information System (INIS)

    Sage, M.R.

    1991-01-01

    Tumors arising from neuroglial cells are the most common primary brain tumours, representing approximately 45% of all tumours. A simplified classification of these tumours is given, based on the degree of anaplasia. Both computed tomography and magnetic resonance imaging appearance of such lesions is presented and the relevance of these techniques in the detection and differential diagnosis of neuroglial cells tumours is discussed. 39 refs., 1 tab., 11 figs

  7. Dedifferentiated giant-cell tumor of bone with an undifferentiated round cell mesenchymal component

    Directory of Open Access Journals (Sweden)

    Eréndira G. Estrada-Villaseñor

    2014-08-01

    Full Text Available The dedifferentiated giant-cell tumor of the bone is a very rare variant of the giant-cell tumor (GCT. We report the clinical, radiographic and histological findings of a dedifferentiated GCT in which the dedifferentiated component consisted of small round cells. We also comment on previously reported cases of dedifferentiated GCT, discuss the clinical implications of this dual histology, and analyze the information published about the coexistence of similar genetic abnormalities in GCT and small round cell tumors of the bone.

  8. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    International Nuclear Information System (INIS)

    Hatano, Yu; Nakahama, Ken-ichi; Isobe, Mitsuaki; Morita, Ikuo

    2014-01-01

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  9. Gene expression patterns in pancreatic tumors, cells and tissues.

    Directory of Open Access Journals (Sweden)

    Anson W Lowe

    2007-03-01

    Full Text Available Cancers of the pancreas originate from both the endocrine and exocrine elements of the organ, and represent a major cause of cancer-related death. This study provides a comprehensive assessment of gene expression for pancreatic tumors, the normal pancreas, and nonneoplastic pancreatic disease.DNA microarrays were used to assess the gene expression for surgically derived pancreatic adenocarcinomas, islet cell tumors, and mesenchymal tumors. The addition of normal pancreata, isolated islets, isolated pancreatic ducts, and pancreatic adenocarcinoma cell lines enhanced subsequent analysis by increasing the diversity in gene expression profiles obtained. Exocrine, endocrine, and mesenchymal tumors displayed unique gene expression profiles. Similarities in gene expression support the pancreatic duct as the origin of adenocarcinomas. In addition, genes highly expressed in other cancers and associated with specific signal transduction pathways were also found in pancreatic tumors.The scope of the present work was enhanced by the inclusion of publicly available datasets that encompass a wide spectrum of human tissues and enabled the identification of candidate genes that may serve diagnostic and therapeutic goals.

  10. Specific Visualization of Tumor Cells Using Upconversion Nanophosphors

    Science.gov (United States)

    Grebenik, E. A.; Generalova, A. N.; Nechaev, A. V.; Khaydukov, E.V.; Mironova, K. E.; Stremovskiy, O. A.; Lebedenko, E.N.; Zvyagin, A. V.; Deyev, S. M.

    2014-01-01

    The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct. High selectivity for the binding of the two-component 4D5 scFv-Bn : UCNP-Bs construct to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2 was demonstrated. This approach provides an opportunity to produce similar constructs for the visualization of different specific markers in pathogenic tissues, including malignant tumors. PMID:25558394

  11. Cell proliferation markers in the transplanted canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    F.G.A. Santos

    2011-12-01

    Full Text Available Adult male mongrel dogs were subcutaneously transplanted with the canine transmissible venereal tumor (TVT on the hypogastric region. Twelve specimens of tumors were collected, half during the proliferative phase and the other half during the regressive phase. Fragments of the tumor were fixed in 10% buffered formalin and routinely processed for light microscopy. Sections of 4µm were stained by Schorr or AgNOR or either immunostained for MIB1 (Ki67. Schorr stain, AgNOR and MIB1 showed an increased proliferative activity through mitotic index, nuclear argyrophilic protein stain and cycling tumoral cells in the growing tumors, respectively. All of the three cell proliferation markers were able to distinguish the TVT in both evolution phases. MIB1 monoclonal antibody was the best in the morphologic evaluation of growth and regression of TVT. This resulted in higher values than AgNORs counting and mitotic index. MIB1 immunostaining was the most effective parameter of the proliferative activity of TVT. However, a significant correlation has been detected only between mitosis counting and AgNORs.

  12. The p75NTR tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    International Nuclear Information System (INIS)

    Khwaja, Fatima; Tabassum, Arshia; Allen, Jeff; Djakiew, Daniel

    2006-01-01

    The p75 neurotrophin receptor (p75 NTR ) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75 NTR retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted (ΔDD) dominant-negative antagonist of p75 NTR showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75 NTR -dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75 NTR expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75 NTR rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75 NTR was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75 NTR -dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75 NTR expressing prostate cancer cells

  13. The p75{sup NTR} tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Khwaja, Fatima [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057-1436 (United States); Tabassum, Arshia [Toronto Western Hospital, Toronto, ON, M5T258 (Canada); Allen, Jeff [National Center for Complementary and Alternative Medicine, N.I.H., Bethesda, MD 20892 (United States); Djakiew, Daniel [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057-1436 (United States) and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057-1436 (United States)

    2006-03-24

    The p75 neurotrophin receptor (p75{sup NTR}) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75{sup NTR} retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted ({delta}DD) dominant-negative antagonist of p75{sup NTR} showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75{sup NTR}-dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75{sup NTR} expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75{sup NTR} rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75{sup NTR} was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75{sup NTR}-dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75{sup NTR} expressing prostate cancer cells.

  14. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    Directory of Open Access Journals (Sweden)

    Vanesa Alonso-Camino

    2013-01-01

    Full Text Available A human single-chain variable fragment (scFv antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs. The repertoire was fused to a first-generation T cell receptor ζ (TCRζ-based chimeric antigen receptor (CAR. We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2 bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR and the selection context (cell synapse, which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells.

  15. HMB-45 negative clear cell perivascular epithelioid cell tumor of the skin.

    Science.gov (United States)

    Pusiol, Teresa; Morichetti, Doriana; Zorzi, Maria Grazia; Dario, Surace

    2012-01-01

    The first case of cutaneous clear cell perivascular epithelioid cell tumor (PEComa) with negative HMB-45 marker is presented. The tumor was a nodule 3x2 cm in size, located on the right foot in a 60-year-old man. The lesion consisted of large irregularly shaped cells with clear cytoplasm, negative for S-100 protein, HMB-45, Melan-A, pancytokeratin, epithelial membrane antigen and CAM5.2. Multifocal positivity for desmin, microphthalmia transcription factor and tyrosinase was found. The diagnosis of cutaneous PEComa of clear