WorldWideScience

Sample records for single tryptophan residue

  1. Studies on tryptophan residues of Abrus agglutinin. Stopped-flow kinetics of modification and fluorescence-quenching studies.

    OpenAIRE

    Patanjali, S R; Swamy, M J; Surolia, A

    1987-01-01

    The presence of two essential tryptophan residues/molecule was implicated in the binding site of Abrus agglutinin [Patanjali, Swamy, Anantharam, Khan & Surolia (1984) Biochem. J. 217, 773-781]. A detailed study of the stopped-flow kinetics of the oxidation of tryptophan residues revealed three classes of tryptophan residues in the native protein. A discrete reorganization of tryptophan residues revealed three classes of tryptophan residues in the native protein. A discrete reorganization of t...

  2. Tryptophan

    Science.gov (United States)

    Tryptophan is an amino acid needed for normal growth in infants and for nitrogen balance in adults. ... The body uses tryptophan to help make niacin and serotonin. Serotonin is thought to produce healthy sleep and a stable mood. In order ...

  3. Structural Characterization of New Microcystins Containing Tryptophan and Oxidized Tryptophan Residues

    Science.gov (United States)

    Puddick, Jonathan; Prinsep, Michèle R.; Wood, Susanna A.; Miles, Christopher O.; Rise, Frode; Cary, Stephen Craig; Hamilton, David P.; Wilkins, Alistair L.

    2013-01-01

    Microcystins are cyclic peptides produced by cyanobacteria, which can be harmful to humans and animals when ingested. Eight of the (more than) 90 microcystin variants presently characterized, contain the amino acid tryptophan. The well-researched oxidation products of tryptophan; kynurenine, oxindolylalanine, and N-formylkynurenine, have been previously identified in intact polypeptides but microcystin congeners containing oxidized tryptophan moieties have not been reported. Liquid chromatography-tandem mass spectrometric analysis of an extract of Microcystis CAWBG11 led to the tentative identification of two new tryptophan-containing microcystins (MC‑WAba and MC-WL), as well as eight other microcystin analogs containing kynurenine, oxindolylalanine and N‑formylkynurenine (Nfk). Investigation of one of these congeners (MC‑NfkA) by nuclear magnetic resonance spectroscopy was used to verify the presence of Nfk in the microcystin. Liquid chromatography-mass spectrometry analysis of a tryptophan oxidation experiment demonstrated that tryptophan-containing microcystins could be converted into oxidized tryptophan analogs and that low levels of oxidized tryptophan congeners were present intracellularly in CAWBG11. MC-NfkR and MC-LNfk were detected in standards of MC-WR and MC-LW, indicating that care during storage of tryptophan-containing microcystins is required. PMID:23966035

  4. Room temperature phosphorescence study on the structural flexibility of single tryptophan containing proteins

    Science.gov (United States)

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2015-01-01

    In this study, we have undertaken efforts to find correlation between phosphorescence lifetimes of single tryptophan containing proteins and some structural indicators of protein flexibility/rigidity, such as the degree of tryptophan burial or its exposure to solvent, protein secondary and tertiary structure of the region of localization of tryptophan as well as B factors for tryptophan residue and its immediate surroundings. Bearing in mind that, apart from effective local viscosity of the protein/solvent matrix, the other factor that concur in determining room temperature tryptophan phosphorescence (RTTP) lifetime in proteins is the extent of intramolecular quenching by His, Cys, Tyr and Trp side chains, the crystallographic structures derived from the Brookhaven Protein Data Bank were also analyzed concentrating on the presence of potentially quenching amino acid side chains in the close proximity of the indole chromophore. The obtained results indicated that, in most cases, the phosphorescence lifetimes of tryptophan containing proteins studied tend to correlate with the above mentioned structural indicators of protein rigidity/flexibility. This correlation is expected to provide guidelines for the future development of phosphorescence lifetime-based method for the prediction of structural flexibility of proteins, which is directly linked to their biological function.

  5. Distinct Contributions of Tryptophan Residues within the Dimerization Domain to Nanog Function.

    Science.gov (United States)

    Mullin, Nicholas P; Gagliardi, Alessia; Khoa, Le Tran Phuc; Colby, Douglas; Hall-Ponsele, Elisa; Rowe, Arthur J; Chambers, Ian

    2017-05-19

    The level of the transcription factor Nanog directly determines the efficiency of mouse embryonic stem cell self-renewal. Nanog protein exists as a dimer with the dimerization domain composed of a simple repeat region in which every fifth residue is a tryptophan, the tryptophan repeat (WR). Although WR is necessary to enable Nanog to confer LIF-independent self-renewal, the mechanism of dimerization and the effect of modulating dimerization strength have been unclear. Here we couple mutagenesis with functional and dimerization assays to show that the number of tryptophans within the WR is linked to the strength of homodimerization, Sox2 heterodimerization and self-renewal activity. A reduction in the number of tryptophan residues leads initially to a gradual reduction in activity before a precipitous reduction in activity occurs upon reduction in tryptophan number below eight. Further functional attrition follows subsequent tryptophan number reduction with substitution of all tryptophan residues ablating dimerization and self-renewal function completely. A strong positional influence of tryptophans exists, with residues at the WR termini contributing more to Nanog function, particularly at the N-terminal end. Limited proteolysis demonstrates that a structural core of Nanog encompassing the homeodomain and the tryptophan repeat can support LIF-independent colony formation. These results increase understanding of the molecular interactions occurring between transcription factor subunits at the core of the pluripotency gene regulatory network and will enhance our ability to control pluripotent cell self-renewal and differentiation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Mutation of tryptophan residues in lipoprotein lipase. Effects on stability, immunoreactivity, and catalytic properties

    NARCIS (Netherlands)

    Lookene, A.; Groot, N. B.; Kastelein, J. J.; Olivecrona, G.; Bruin, T.

    1997-01-01

    Previous studies had pointed to an important function of a putative exposed loop in the C-terminal domain of lipoprotein lipase for activity against emulsified lipid substrates. This loop contains 3 tryptophan residues (Trp390, Trp393, and Trp394). We have expressed and characterized lipase mutants

  7. Tripping up Trp: Modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences.

    Science.gov (United States)

    Ehrenshaft, Marilyn; Deterding, Leesa J; Mason, Ronald P

    2015-12-01

    Proteins comprise a majority of the dry weight of a cell, rendering them a major target for oxidative modification. Oxidation of proteins can result in significant alterations in protein molecular mass such as breakage of the polypeptide backbone and/or polymerization of monomers into dimers, multimers, and sometimes insoluble aggregates. Protein oxidation can also result in structural changes to amino acid residue side chains, conversions that have only a modest effect on protein size but can have widespread consequences for protein function. There are a wide range of rate constants for amino acid reactivity, with cysteine, methionine, tyrosine, phenylalanine, and tryptophan having the highest rate constants with commonly encountered biological oxidants. Free tryptophan and tryptophan protein residues react at a diffusion-limited rate with hydroxyl radical and also have high rate constants for reactions with singlet oxygen and ozone. Although oxidation of proteins in general and tryptophan residues specifically can have effects detrimental to the health of cells and organisms, some modifications are neutral, whereas others contribute to the function of the protein in question or may act as a signal that damaged proteins need to be replaced. This review provides a brief overview of the chemical mechanisms by which tryptophan residues become oxidized, presents both the strengths and the weaknesses of some of the techniques used to detect these oxidative interactions, and discusses selected examples of the biological consequences of tryptophan oxidation in proteins from animals, plants, and microbes. Published by Elsevier Inc.

  8. Functional and fluorescence analyses of tryptophan residues in H+-pyrophosphatase of Clostridium tetani.

    Science.gov (United States)

    Chen, Yen-Wei; Lee, Ching-Hung; Huang, Yun-Tzu; Pan, Yih-Jiuan; Lin, Shih-Ming; Lo, Yueh-Yu; Lee, Chien-Hsien; Huang, Lin-Kun; Huang, Yu-Fen; Hsu, Yu-Di; Pan, Rong-Long

    2014-04-01

    Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational state of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be a crucial residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis analysis.

  9. Eosinophilia-myalgia syndrome associated with exposure to tryptophan from a single manufacturer.

    Science.gov (United States)

    Slutsker, L; Hoesly, F C; Miller, L; Williams, L P; Watson, J C; Fleming, D W

    1990-07-11

    Although eosinophilia-myalgia syndrome has been linked to use of tryptophan, it has been unclear whether tryptophan itself or a contaminant causes illness. In Oregon, we compared the brand and source of tryptophan used by 58 patients with eosinophilia-myalgia syndrome with the brand and source of tryptophan used by 30 asymptomatic controls identified through a random telephone survey and 63 asymptomatic controls who contacted the Oregon Health Division voluntarily. Although a single brand/retail lot of tryptophan was statistically associated with the development of eosinophilia-myalgia syndrome, there was no common importer, wholesaler, tablet maker, encapsulator, or distributor. However, 45 (98%) of 46 cases had taken a product made by one manufacturer, compared with three (30%) of 10 telephone survey controls and 15 (48%) of 31 volunteer controls. Retail lots of tryptophan from this manufacturer that were associated with cases were significantly more likely to have been produced from January through June 1989 than lots from this manufacturer that were taken by controls. These findings indicate that the recent epidemic of eosinophilia-myalgia syndrome was caused by a contaminant or an alteration in a subset of tryptophan manufactured by a single company in Japan shortly before the outbreak began.

  10. Intragenic suppressor of Osiaa23 revealed a conserved tryptophan residue crucial for protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Jun Ni

    Full Text Available The Auxin/Indole-3-Acetic Acid (Aux/IAA and Auxin Response Factor (ARF are two important families that play key roles in auxin signal transduction. Both of the families contain a similar carboxyl-terminal domain (Domain III/IV that facilitates interactions between these two families. In spite of the importance of protein-protein interactions among these transcription factors, the mechanisms involved in these interactions are largely unknown. In this study, we isolated six intragenic suppressors of an auxin insensitive mutant, Osiaa23. Among these suppressors, Osiaa23-R5 successfully rescued all the defects of the mutant. Sequence analysis revealed that an amino acid substitution occurred in the Tryptophan (W residue in Domain IV of Osiaa23. Yeast two-hybrid experiments showed that the mutation in Domain IV prevents the protein-protein interactions between Osiaa23 and OsARFs. Phylogenetic analysis revealed that the W residue is conserved in both OsIAAs and OsARFs. Next, we performed site-specific amino acid substitutions within Domain IV of OsARFs, and the conserved W in Domain IV was exchanged by Serine (S. The mutated OsARF(WSs can be released from the inhibition of Osiaa23 and maintain the transcriptional activities. Expression of OsARF(WSs in Osiaa23 mutant rescued different defects of the mutant. Our results suggest a previously unknown importance of Domain IV in both families and provide an indirect way to investigate functions of OsARFs.

  11. Fluorescence of the single tryptophan of cutinase: temperature and pH effect on protein conformation and dynamics.

    Science.gov (United States)

    Martinho, J M G; Santos, A M; Fedorov, A; Baptista, R P; Taipa, M A; Cabral, J M S

    2003-07-01

    The cutinase from Fusarium solani pisi is an enzyme with a single L-tryptophan (Trp) involved in a hydrogen bond with an alanine (Ala) residue and located close to a cystine formed by a disulfide bridge between two cysteine (Cys) residues. The Cys strongly quenches the fluorescence of Trp by both static and dynamic quenching mechanisms. The Trp fluorescence intensity increases by about fourfold on protein melting because of the disruption of the Ala-Trp hydrogen bond that releases the Trp from the vicinity of the cystine residue. The Trp forms charge-transfer complexes with the disulfide bridge, which is disrupted by UV light irradiation of the protein. This results in a 10-fold increase of the Trp fluorescence quantum yield because of the suppression of the static quenching by the cystine residue. The Trp fluorescence anisotropy decays are similar to those in other proteins and were interpreted in terms of the wobbling-in-cone model. The long relaxation time is attributed to the Brownian rotational correlation time of the protein as a whole below the protein-melting temperature and to protein-backbone dynamics above it. The short relaxation time is related to the local motion of the Trp, whose mobility increases on protein denaturation.

  12. Selective Oxidation of Methionine and Tryptophan Residues in a Therapeutic IgG1 Molecule.

    Science.gov (United States)

    Folzer, Emilien; Diepold, Katharina; Bomans, Katrin; Finkler, Christof; Schmidt, Roland; Bulau, Patrick; Huwyler, Jörg; Mahler, Hanns-Christian; Koulov, Atanas V

    2015-09-01

    Oxidation of methionine and tryptophan are common degradation pathways for monoclonal antibodies and present major analytical challenges in biotechnology. Generally, protein oxidation is detectable in stability and/or stressed samples (e.g., exposed to hydrogen peroxide, UV light, or metal ions). The induced chemical modifications may impact the biological activity of antibodies and may have biological consequences. However, these effects and the contribution of individual protein modifications are difficult to delineate as different amino acids are often oxidized simultaneously and accompanied by other degradants such as aggregates, especially in forced degradation studies. Here, we report a new method to obtain selective oxidation of methionine or tryptophan by using oxidation reagents combined with large excess of free tryptophan or methionine, correspondingly. More specifically, using hydrogen peroxide or tert-butyl hydroperoxide in combination with addition of free tryptophan allowed for selective oxidation of methionine. Conversely, the use of 2,2-azobis(2-amidinopropane) dihydrochloride in combination with free methionine resulted in selective tryptophan oxidation, whereas methionine oxidation was not significantly altered. This novel stress model system may prove to be valuable tool in future mechanistic studies of oxidative degradation of protein therapeutics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. A 1H NMR spectroscopic study on the tryptophan residues of lysozyme included by glucosyl-β-cyclodextrin

    Science.gov (United States)

    Yamamoto, Tatsuyuki; Kobayashi, Teruya; Yoshikiyo, Keisuke; Matsui, Yoshihisa; Takahashi, Tetsuya; Aso, Yuji

    2009-02-01

    A 1H NMR spectroscopic study showed that the side chains of Trp residues of chicken egg white lysozyme in an aqueous solution are included by Glucosyl-β-cyclodextrin (G1-β-CD). The 1H NMR signals due to Trp residues shifted with the addition of G1-β-CD. The addition of methyl α- D-glucopyranoside, which has no inclusion ability, gave different effect on the shift of 1H NMR signals. The 1H NMR signals due to Cys64 and Ile98 were also influenced to a considerable extent with the addition of G1-β-CD, suggesting that these hydrophobic amino acid residues are also included by the CD. The chemical shift values of 1H NMR signals, due to indole rings of tryptophan residues, changed more with the addition of G1-β-CD. The magnitudes of the chemical shift change were different depending on their locations in the protein. The chemical shift values of 1H NMR signals, due to those Trp residues in the active site of the lysozyme were smaller than those locating at relatively near the surface of the protein.

  14. Control of ionizable residues in the catalytic mechanism of tryptophan synthase from Salmonella typhimurium.

    Science.gov (United States)

    Raboni, Samanta; Mozzarelli, Andrea; Cook, Paul F

    2007-11-13

    The tryptophan synthase alpha2beta2 complex catalyzes the last two steps in the biosynthesis of l-tryptophan in bacteria, plants, and fungi, the conversion of indole-3-glycerol phosphate and l-serine to l-tryptophan, glyceraldehyde 3-phosphate, and water. The beta-subunit binds pyridoxal 5'-phosphate and catalyzes the beta-replacement reaction with serine and indole. Structural, spectral, and kinetic studies indicate that different monovalent cations stabilize the alternative enzyme conformations and equilibrium distribution of the internal, external, and alpha-aminoacrylate Schiff base. To improve our understanding of the role of monovalent cations, the pH dependence of steady-state and pre-steady-state kinetic parameters and primary kinetic deuterium isotope effects were measured in the presence of l-serine and [alpha-2H]-l-serine in the absence and presence of Na+, K+, and Cs+. For the interpretation of the data obtained in this study, it was necessary to re-interpret a number of results published previously. Overall, data suggest that the enzyme exists in two conformers that equilibrate slowly either in the absence of substrates and monovalent cations or in the presence of K+ or Cs+, whereas they equilibrate faster in the presence of Na+. The rate of interconversion of the conformers increases as a group on the enzyme with a pKa of approximately 8 becomes deprotonated. The pH dependence of deuterium isotope effects is suggestive of a mechanism in which a pH-dependent conformational change that closes the active site precedes the chemical steps, likely a result of formation of one or more salt bridges. As the pH increases, the reaction becomes more committed to proceed to products, which causes the deuterium isotope effect to decrease to a value of unity at high pH. The closure of the site is modulated by the different monovalent cations and is fastest in the presence of Na+, which exhibits the maximum isotope effect of 5.7 (likely the intrinsic effect) on V

  15. Identification of a Residue (Glu60) in TRAP Required for Inducing Efficient Transcription Termination at thetrpAttenuator Independent of Binding Tryptophan and RNA.

    Science.gov (United States)

    McAdams, Natalie M; Patterson, Andrea; Gollnick, Paul

    2017-03-15

    Transcription of the tryptophan ( trp ) operon in Bacillus subtilis is regulated by an attenuation mechanism. Attenuation is controlled by the t rp R NA-binding a ttenuation p rotein (TRAP). TRAP binds to a site in the 5' leader region of the nascent trp transcript in response to the presence of excess intracellular tryptophan. This binding induces transcription termination upstream of the structural genes of the operon. In prior attenuation models, the role of TRAP was only to alter the secondary structure of the leader region RNA so as to promote formation of the trp attenuator, which was presumed to function as an intrinsic terminator. However, formation of the attenuator alone has been shown to be insufficient to induce efficient termination, indicating that TRAP plays an additional role in this process. To further examine the function of TRAP, we performed a genetic selection for mutant TRAPs that bind tryptophan and RNA but show diminished termination at the trp attenuator. Five such TRAP mutants were obtained. Four of these have substitutions at Glu60, three of which are Lys (E60K) substitutions and the fourth of which is a Val (E60V) substitution. The fifth mutant obtained contains a substitution at Ile63, which is on the same β-strand of TRAP as Glu60. Purified E60K TRAP binds tryptophan and RNA with properties similar to those of the wild type but is defective at inducing termination at the trp attenuator in vitro IMPORTANCE Prior models for attenuation control of the B. subtilis trp operon suggested that the only role for TRAP is to bind to the leader region RNA and alter its folding to induce formation of an intrinsic terminator. However, several recent studies suggested that TRAP plays an additional role in the termination mechanism. We hypothesized that this function could involve residues in TRAP other than those required to bind tryptophan and RNA. Here we obtained TRAP mutants with alterations at Glu60 that are deficient at inducing termination in

  16. Tryptophan Residue Located at the Middle of Putative Transmembrane Domain 11 Is Critical for the Function of Organic Anion Transporting Polypeptide 2B1.

    Science.gov (United States)

    Bian, Jialin; Jin, Meng; Yue, Mei; Wang, Meiyu; Zhang, Hongjian; Gui, Chunshan

    2016-10-03

    Organic anion transporting polypeptide 2B1 (OATP2B1), which is highly expressed in enterocytes and hepatocytes could be a key determinant for the intestinal absorption and hepatic uptake of its substrates, most of which are amphipathic organic anions. Tryptophan residues may possess a multitude of functions for a transport protein through aromatic interactions, such as maintaining the proper protein structure, guiding the depth of membrane insertion, or interacting directly with substrates. There are totally six tryptophan residues in OATP2B1. However, little is known about their role in the function and expression of OATP2B1. Our results show that, while W272, W276, and W277 located at the border of extracellular loop 3 and transmembrane domain 6 exhibit a moderate effect on the surface expression of OATP2B1, W611 located at the middle of transmembrane domain 11 plays a critical role in the function of OATP2B1. The tryptophan-to-alanine mutation of W611 changes the kinetic characteristics of OATP2B1-mediated estrone-3-sulfate (E3S) transport radically, from a monophasic saturation curve (with K m and V max values being of 7.1 ± 1.1 μM and 182 ± 7 pmol/normalized mg/min, respectively) to a linear curve. Replacing alanine with a phenylalanine will rescue most of OATP2B1's function, suggesting that the aromatic side chain of residue 611 is very important. However, hydrogen-bond forming and positively charged groups at this position are not favorable. The important role of W611 is not substrate-dependent. Molecular modeling indicates that the side chain of W611 faces toward the substrate translocation pathway and might interact with substrates directly. Taken together, our findings reveal that W611 is critical for the function of OATP2B1.

  17. Oxidation of free, peptide and protein tryptophan residues mediated by AAPH-derived free radicals: role of alkoxyl and peroxyl radicals

    DEFF Research Database (Denmark)

    Fuentes-Lemus, E.; Dorta, E.; Escobar, E.

    2016-01-01

    The oxidation of tryptophan (Trp) residues, mediated by peroxyl radicals (ROOc), follows a complex mechanism involving free radical intermediates, and short chain reactions. The reactivity of Trp towards ROOc should be strongly affected by its inclusion in peptides and proteins. To examine...... the latter, we investigated (by fluorescence) the kinetic of the consumption of free, peptide- and protein-Trp residues towards AAPH (2,20 -azobis(2-amidinopropane)dihydrochloride)-derived free radicals. Interestingly, the initial consumption rates (Ri ) were only slightly influenced by the inclusion of Trp...... concentrations (10–50 mM), the values of Ri were nearly constant; and at high Trp concentrations (50 mM to 1 mM), a slower increase of Ri than expected for chain reactions. Similar behavior was detected for all three systems (free Trp, and Trp in peptides and proteins). For the first time we are showing...

  18. Osmium tetroxide, 2,2’-bipyridine: Electroactive marker for probing accessibility of tryptophan residues in proteins

    Czech Academy of Sciences Publication Activity Database

    Fojta, Miroslav; Billová, Sabina; Havran, Luděk; Pivoňková, Hana; Černocká, Hana; Horáková Brázdilová, Petra; Paleček, Emil

    2008-01-01

    Roč. 80, č. 12 (2008), s. 4598-4605 ISSN 0003-2700 R&D Projects: GA MŠk(CZ) LC06035; GA AV ČR(CZ) IAA4004402; GA AV ČR(CZ) 1QS500040581; GA AV ČR(CZ) KAN400310651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : osmium tetroxide * chemical modification * tryptophan Subject RIV: BO - Biophysics Impact factor: 5.712, year: 2008

  19. Dynamic fluorescence spectroscopy on single tryptophan mutants of EIImtl in detergent micelles : Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay

    NARCIS (Netherlands)

    Swaving Dijkstra, Dolf; Broos, J.; Visser, Antonie J.W.G.; van Hoek, A.; Robillard, George

    1997-01-01

    The effects of substrate and substrate analogue binding and phosphorylation on the conformational dynamics of the mannitol permease of Escherichia coli were investigated, using time-resolved fluorescence spectroscopy on mutants containing five single tryptophans situated in the membrane-embedded C

  20. Structural perfection and residual electric resistance of tungsten single crystals

    International Nuclear Information System (INIS)

    Tagirova, D.M.; Dyakina, V.P.; Startsev, V.E.; Esin, V.O.

    1997-01-01

    A study was made into residual relative resistance (RRR) and structural perfection (SP) of tungsten single crystals, grown by electron beam zone melting using seeding crystals of several orientations, namely, , , , . The single crystals were of 99.98 and 99.9995 wt.% purity. The RRR value is found to depend on crystallographic orientation of an axis of crystal growth and to correlate with SP. Single crystals of different purity are differ in the nature of orientational dependences. It is shown that the correlation between RRR and SP of crystals is mainly due to conduction electron scattering by subgrain boundaries (internal size effect)

  1. Bioavailability of tryptophan from a single oral dose of a trytophan-enriched peptide mixture in healthy men

    NARCIS (Netherlands)

    Brink, E.J.; Boelsma, E.; Steijns, J.; Hendriks, H.F.J.

    2004-01-01

    The aim of the study was to investigate the bioavailability of tryptophan (Trp) from a Trp-enriched peptide mixture in healthy men. A second objective was to investigate the effect of this Trp-enriched protein hydrolysate on potential parameters of serotonergic activity. serum serotonim melatonin

  2. Quenching of Tryptophan Fluorescence in Unfolded Cytochrome "c": A Biophysics Experiment for Physical Chemistry Students

    Science.gov (United States)

    Schlamadinger, Diana E.; Kats, Dina I.; Kim, Judy E.

    2010-01-01

    Laboratory experiments that focus on protein folding provide excellent opportunities for undergraduate students to learn important topics in the expanding interdisciplinary field of biophysics. Here, we describe the use of Stern-Volmer plots to determine the extent of solvent accessibility of the single tryptophan residue (trp-59) in unfolded and…

  3. Fluorescence of cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid: a single tryptophan chi(1) rotamer model.

    Science.gov (United States)

    Liu, Bo; Thalji, Reema K; Adams, Paul D; Fronczek, Frank R; McLaughlin, Mark L; Barkley, Mary D

    2002-11-06

    A constrained derivative, cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid, cis-W3, was designed to test the rotamer model of tryptophan photophysics. The conformational constraint enforces a single chi(1) conformation, analogous to the chi(1) = 60 degrees rotamer of tryptophan. The side-chain torsion angles in the X-ray structure of cis-W3 were chi(1) = 58.5 degrees and chi(2) = -88.7 degrees. Molecular mechanics calculations suggested two chi(2) rotamers for cis-W3 in solution, -100 degrees and 80 degrees, analogous to the chi(2) = +/-90 degrees rotamers of tryptophan. The fluorescence decay of the cis-W3 zwitterion was biexponential with lifetimes of 3.1 and 0.3 ns at 25 degrees C. The relative amplitudes of the lifetime components match the chi(2) rotamer populations predicted by molecular mechanics. The longer lifetime represents the major chi(2) = -100 degrees rotamer. The shorter lifetime represents the minor chi(2) = 80 degrees rotamer having the ammonium group closer to C4 of the indole ring (labeled C5 in the cis-W3 X-ray structure). Intramolecular excited-state proton transfer occurs at indole C4 in the tryptophan zwitterion (Saito, I.; Sugiyama, H.; Yamamoto, A.; Muramatsu, S.; Matsuura,T. J. Am. Chem. Soc. 1984, 106, 4286-4287). Photochemical isotope exchange experiments showed that H-D exchange occurs exclusively at C5 in the cis-W3 zwitterion, consistent with the presence of the chi(2) = 80 degrees rotamer in solution. The rates of two nonradiative processes, excited-state proton and electron transfer, were measured for individual chi(2) rotamers. The excited-state proton-transfer rate was determined from H-D exchange and fluorescence lifetime data. The excited-state electron-transfer rate was determined from the temperature dependence of the fluorescence lifetime. The major quenching process in the -100 degrees rotamer is electron transfer from the excited indole to carboxylate. Electron transfer also occurs in the 80 degrees rotamer, but the

  4. Dynamic Allostery Mediated by a Conserved Tryptophan in the Tec Family Kinases.

    Directory of Open Access Journals (Sweden)

    Nikita Chopra

    2016-03-01

    Full Text Available Bruton's tyrosine kinase (Btk is a Tec family non-receptor tyrosine kinase that plays a critical role in immune signaling and is associated with the immunological disorder X-linked agammaglobulinemia (XLA. Our previous findings showed that the Tec kinases are allosterically activated by the adjacent N-terminal linker. A single tryptophan residue in the N-terminal 17-residue linker mediates allosteric activation, and its mutation to alanine leads to the complete loss of activity. Guided by hydrogen/deuterium exchange mass spectrometry results, we have employed Molecular Dynamics simulations, Principal Component Analysis, Community Analysis and measures of node centrality to understand the details of how a single tryptophan mediates allostery in Btk. A specific tryptophan side chain rotamer promotes the functional dynamic allostery by inducing coordinated motions that spread across the kinase domain. Either a shift in the rotamer population, or a loss of the tryptophan side chain by mutation, drastically changes the coordinated motions and dynamically isolates catalytically important regions of the kinase domain. This work also identifies a new set of residues in the Btk kinase domain with high node centrality values indicating their importance in transmission of dynamics essential for kinase activation. Structurally, these node residues appear in both lobes of the kinase domain. In the N-lobe, high centrality residues wrap around the ATP binding pocket connecting previously described Catalytic-spine residues. In the C-lobe, two high centrality node residues connect the base of the R- and C-spines on the αF-helix. We suggest that the bridging residues that connect the catalytic and regulatory architecture within the kinase domain may be a crucial element in transmitting information about regulatory spine assembly to the catalytic machinery of the catalytic spine and active site.

  5. Dynamic Allostery Mediated by a Conserved Tryptophan in the Tec Family Kinases.

    Science.gov (United States)

    Chopra, Nikita; Wales, Thomas E; Joseph, Raji E; Boyken, Scott E; Engen, John R; Jernigan, Robert L; Andreotti, Amy H

    2016-03-01

    Bruton's tyrosine kinase (Btk) is a Tec family non-receptor tyrosine kinase that plays a critical role in immune signaling and is associated with the immunological disorder X-linked agammaglobulinemia (XLA). Our previous findings showed that the Tec kinases are allosterically activated by the adjacent N-terminal linker. A single tryptophan residue in the N-terminal 17-residue linker mediates allosteric activation, and its mutation to alanine leads to the complete loss of activity. Guided by hydrogen/deuterium exchange mass spectrometry results, we have employed Molecular Dynamics simulations, Principal Component Analysis, Community Analysis and measures of node centrality to understand the details of how a single tryptophan mediates allostery in Btk. A specific tryptophan side chain rotamer promotes the functional dynamic allostery by inducing coordinated motions that spread across the kinase domain. Either a shift in the rotamer population, or a loss of the tryptophan side chain by mutation, drastically changes the coordinated motions and dynamically isolates catalytically important regions of the kinase domain. This work also identifies a new set of residues in the Btk kinase domain with high node centrality values indicating their importance in transmission of dynamics essential for kinase activation. Structurally, these node residues appear in both lobes of the kinase domain. In the N-lobe, high centrality residues wrap around the ATP binding pocket connecting previously described Catalytic-spine residues. In the C-lobe, two high centrality node residues connect the base of the R- and C-spines on the αF-helix. We suggest that the bridging residues that connect the catalytic and regulatory architecture within the kinase domain may be a crucial element in transmitting information about regulatory spine assembly to the catalytic machinery of the catalytic spine and active site.

  6. Randomised clinical trial on the effect of a single oral administration of l-tryptophan, at three dose rates, on reaction speed, plasma concentration and haemolysis in horses.

    Science.gov (United States)

    Noble, Glenys K; Li, Xiuhua; Zhang, Dagong; Sillence, Martin N

    2016-07-01

    Tryptophan (TRP) is marketed as a calmative for horses despite reservations about its efficacy. The aim of this study was to measure the effect of oral TRP administration on the reaction speed of horses. Sixty mature horses were used in a two stage randomised, blind, cross-over study, receiving a placebo and an oral dose of TRP (30, 60 or 120 mg/kg body weight), before undergoing a reaction speed test. Blood samples were taken up to 96 h after TRP administration, to identify signs of acute haemolytic anaemia. Plasma TRP concentrations were increased (P reaction speed of horses when startled. There was no evidence of alterations in clinical pathology parameters in 432 blood samples. While the safety of these doses of TRP can be confirmed, there was no evidence to suggest that a single dose of TRP is an effective calmative for horses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The contribution of tryptophan residues to conformational changes in clostridial glutamate dehydrogenase--W64 and W449 as mediators of the cooperative response to glutamate.

    Science.gov (United States)

    Hamza, Muaawia A; Martin, Stephen R; Engel, Paul C

    2007-08-01

    The hexameric glutamate dehydrogenase of Clostridium symbiosum has previously been shown to undergo a pH-dependent inactivating conformational change that perturbs the environment of one or more Trp residues and is reversed by glutamate in a highly cooperative fashion with a Hill coefficient of almost 6. Five single mutants have now been made in which each of the Trp residues in turn has been replaced by Phe. All five were successfully over-produced as soluble proteins and purified. Far-UV CD showed that none of the mutations significantly affected secondary structure. All five proteins were active, ranging from 13 U.mg(-1) (W64F) to 20.8 U.mg(-1) (W393F), compared to 20 U.mg(-1) for wild-type, and the kinetic parameters at pH 7 were little changed, except for a five- to six-fold increase in Km for glutamate in W243F. Thermostability was also relatively little changed, although W310F and W393F were somewhat more stable and W64F less stable than the unmutated enzyme. All still showed the characteristic reversible, time-dependent high-pH inactivation. Near-UV CD spectra, reflecting the environment of aromatic residues, were recorded at both pH 7 and 8.8, and four of the mutants showed essentially the same perturbation in the 280 nm region as the wild-type enzyme. W64F, however, showed essentially no change. W64 is thus clearly a passive reporter of the pH-dependent conformational change, and not actually required for the transition to occur. The CD comparisons also suggest that the aromatic CD spectrum is contributed almost entirely by W64 and W449. Consistent with the pH-dependent change, all five mutant proteins also showed a positively cooperative response to glutamate at pH 9, reversing the inactivation. However, the Hill coefficient decreased from > 5 for wild-type to approximately 3 for the active site cleft mutation W243F and to approximately 2 for the interfacial mutants W64F and W449F in which the trimer-trimer interaction may be directly interrupted. W64 of

  8. Growth, crystalline perfection, spectral and optical characterization of a novel optical material: l-tryptophan p-nitrophenol trisolvate single crystal

    Science.gov (United States)

    Sivakumar, N.; Srividya, J.; Mohana, J.; Anbalagan, G.

    2015-03-01

    l-tryptophan p-nitrophenol trisolvate (LTPN), an organic nonlinear optical material was synthesized using ethanol-water mixed solvent and the crystals were grown by a slow solvent evaporation method. The crystal structure and morphology were studied by single crystal X-ray diffraction analysis. The crystalline perfection of the LTPN crystal was analyzed by high-resolution X-ray diffraction study. The molecular structure of the crystal was confirmed by observing the various characteristic functional groups of the material using vibrational spectroscopy. The cut-off wavelength, optical transmission, refractive index and band gap energy were determined using UV-visible data. The variation of refractive index with wavelength shows the normal behavior. The second harmonic generation of the crystal was confirmed and the efficiency was measured using Kurtz Perry powder method. Single and multiple shot methods were employed to measure surface laser damage of the crystal. The photoluminescence spectral study revealed that the emission may be associated with the radiative recombination of trapped electrons and holes. Microhardness measurements revealed that LTPN belongs to a soft material category.

  9. Effect of enzymatic desialylation of human serum amyloid P component on surface exposure of laser photo CIDNP (chemically induced dynamic nuclear polarization) - reactive histidine, tryptophan and tyrosine residues

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Siebert, H.-C; André, S.; Reuter, G.; Gabius, H.-J.; Kaptein, R.

    1995-01-01

    The human pentraxin serum amyloid P component (SAP) exhibits no microheterogeneity in its complex di-antennary glycan. To elucidate whether the removal of sialic acids from this glycoprotein might affect the accessibility of certain amino acid residues of the protein we employed the laser photo

  10. Oxidation of the tryptophan 32 residue of human superoxide dismutase 1 caused by its bicarbonate-dependent peroxidase activity triggers the non-amyloid aggregation of the enzyme.

    Science.gov (United States)

    Coelho, Fernando R; Iqbal, Asif; Linares, Edlaine; Silva, Daniel F; Lima, Filipe S; Cuccovia, Iolanda M; Augusto, Ohara

    2014-10-31

    The role of oxidative post-translational modifications of human superoxide dismutase 1 (hSOD1) in the amyotrophic lateral sclerosis (ALS) pathology is an attractive hypothesis to explore based on several lines of evidence. Among them, the remarkable stability of hSOD1(WT) and several of its ALS-associated mutants suggests that hSOD1 oxidation may precede its conversion to the unfolded and aggregated forms found in ALS patients. The bicarbonate-dependent peroxidase activity of hSOD1 causes oxidation of its own solvent-exposed Trp(32) residue. The resulting products are apparently different from those produced in the absence of bicarbonate and are most likely specific for simian SOD1s, which contain the Trp(32) residue. The aims of this work were to examine whether the bicarbonate-dependent peroxidase activity of hSOD1 (hSOD1(WT) and hSOD1(G93A) mutant) triggers aggregation of the enzyme and to comprehend the role of the Trp(32) residue in the process. The results showed that Trp(32) residues of both enzymes are oxidized to a similar extent to hSOD1-derived tryptophanyl radicals. These radicals decayed to hSOD1-N-formylkynurenine and hSOD1-kynurenine or to a hSOD1 covalent dimer cross-linked by a ditryptophan bond, causing hSOD1 unfolding, oligomerization, and non-amyloid aggregation. The latter process was inhibited by tempol, which recombines with the hSOD1-derived tryptophanyl radical, and did not occur in the absence of bicarbonate or with enzymes that lack the Trp(32) residue (bovine SOD1 and hSOD1(W32F) mutant). The results support a role for the oxidation products of the hSOD1-Trp(32) residue, particularly the covalent dimer, in triggering the non-amyloid aggregation of hSOD1. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Understanding the molecular basis of stability in Kunitz (STI) family of inhibitors in terms of a conserved core tryptophan residue: A theoretical investigation.

    Science.gov (United States)

    Datta Sharma, Ravi; Goswami, Nabajyoti; Ghosh, Debasree; Majumder, Sudip

    2017-08-01

    β-trefoil is one of the superfolds among proteins. Important classes of proteins like Interleukins (ILs), FibroblastGrowth Factors (FGFs), Kunitz (STI) family of inhibitors etc. belong to this fold. Kunitz (STI) family of inhibitors of proteins possess a highly conserved and structurally important Trytophan 91 (W91) residue, which stitches the top layer of the barrel with the lid. In this article we have investigated the molecular insights of the involvement of this W91 residue in the stability and folding pathway of Kunitz (STI) family. Winged bean Chymotrypsin inhibitor (WCI), a member of Kunitz (STI) family was chosen as a model system for carrying out the work. Molecular dynamics (MD) simulations were run with a set of total six proteins, including wild type WCI (WT) & five mutants namely W91F, W91M, W91A, W91H and W91I. Among all of them the coordinates of four proteins were taken from their crystal structures deposited in the Protein Data Bank (PDB), where as the coordinates for the rest two was generated using in-silico modelling. Our results suggest that truly this W91 residue plays a determining role in stability and folding pathway of Kunitz (STI) family. The mutants are less stable and more susceptible to quicker unfolding at higher temperatures compared to the wild type WCI. These effects are most pronounced for the smallest mutants namely W91H and W91A, indicating more is the cavity created by mutation at W91 position more the proteins becomes unstable. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tryptophan promotes morphological and physiological differentiation in Streptomyces coelicolor.

    Science.gov (United States)

    Palazzotto, Emilia; Renzone, Giovanni; Fontana, Pietro; Botta, Luigi; Scaloni, Andrea; Puglia, Anna Maria; Gallo, Giuseppe

    2015-12-01

    The molecular mechanisms regulating tryptophan biosynthesis in actinomycetes are poorly understood; similarly, the possible roles of tryptophan in the differentiation program of microorganism life-cycle are still underexplored. To unveil the possible regulatory effect of this amino acid on gene expression, an integrated study based on quantitative teverse transcription-PCR (qRT-PCR) and proteomic approaches was performed on the actinomycete model Streptomyces coelicolor. Comparative analyses on the microorganism growth in a minimal medium with or without tryptophan supplementation showed that biosynthetic trp gene expression in S. coelicolor is not subjected to a negative regulation by the presence of the end product. Conversely, tryptophan specifically induces the transcription of trp genes present in the biosynthetic gene cluster of the calcium-dependent antibiotic (CDA), a lipopeptide containing D- and L-tryptophan residues. In addition, tryptophan stimulates the transcription of the CDA gene cluster regulator cdaR and, coherently, CDA production. Surprisingly, tryptophan also promotes the production of actinorhodin, another antibiotic that does not contain this amino acid in its structure. Combined 2D-DIGE and nano liquid chromatography electrospray linear ion trap tandem mass spectrometry (LC-ESI-LIT-MS/MS) analyses revealed that tryptophan exerts a growth-stage-dependent global effect on S. coelicolor proteome, stimulating anabolic pathways and promoting the accumulation of key factors associated with morphological and physiological differentiation at the late growth stages. Phenotypic observations by scanning electron microscopy and spore production assays demonstrated an increased sporulation in the presence of tryptophan. Transcriptional analysis of catabolic genes kynA and kynB suggested that the actinomycete also uses tryptophan as a carbon and nitrogen source. In conclusion, this study originally provides the molecular basis underlying the stimulatory

  13. Tryptophan and aspartic acid residues present in the glycerophosphoryl diester phosphodiesterase (GDPD) domain of the Loxosceles laeta phospholipase D are essential for substrate recognition.

    Science.gov (United States)

    Catalán, Alejandro; Cortés, William; Muñoz, Christian; Araya, Jorge E

    2014-04-01

    It is known that the family of phospholipases D (PLD) from spiders of the genus Loxosceles, hydrolyze the substrates sphingomyelin and lisophosphatidylcholine, by their catalytic acid-base action which involves two histidines. However, little is known about the amino acids that participate on substrate recognition. In this study we identified highly conserved amino acids of the glycerophosphoryl diester phosphodiesterase (GDPD) domain of recombinant LlPLD1, which interact with the substrate sphingomyelin. The mutation of W256 to serine and D259 to glycine decreased significantly the sphingomyelinase and hemolytic activity when compared to wild type LlPLD1. The interaction of LlPLD1 with sphingomyelin was also strongly reduced in both mutants LlPLD1-W256S and LlPLD1-D259G. The results show the importance of these residues in the interaction of the protein with its substrate sphingomyelin in cell membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of residual stress on the nanoindentation response of (100) copper single crystal

    International Nuclear Information System (INIS)

    Zhu, Li-na; Xu, Bin-shi; Wang, Hai-dou; Wang, Cheng-biao

    2012-01-01

    Experimental measurements were used to investigate the effect of residual stress on the nanoindentation of (100) copper single crystal. Equi-biaxial tensile and compressive stresses were applied to the copper single crystal using a special designed apparatus. It was found that residual stresses greatly affected peak load, curvature of the loading curve, elastically recovered depth, residual depth, indentation work, pile-up amount and contact area. The Suresh and Giannakopoulos and Lee and Kwon methods were used to calculate the residual stresses from load-depth data and morphology observation of nanoindents using atomic force microscopy. Comparison of the obtained results with stress values from strain gage showed that the residual stresses analyzed from the Suresh and Giannakopoulos model agreed well with the applied stresses. -- Highlights: ► Residual stresses greatly affected various nanoindentation parameters. ► The contact area can be accurately measured from AFM observation. ► The residual stresses analyzed from the S and G model agreed well with applied stresses.

  15. Residual stresses measurement by neutron diffraction and theoretical estimation in a single weld bead

    International Nuclear Information System (INIS)

    Price, John W.H.; Paradowska, Anna; Joshi, Suraj; Finlayson, Trevor

    2006-01-01

    Welding residual stresses are important in pressure vessel and structural applications. However, residual stress remains the single largest unknown in industrial damage situations. They are difficult to measure or theoretically estimate and are often significant when compared with the in-service stresses on which they superimpose. High residual stresses lead to loss of performance in corrosion, fatigue and fracture. In this research, a measurement of residual stress by the neutron diffraction technique is compared to an analysis of the same geometry by theoretical finite element procedures. The results indicate good agreement but scope for further understanding of the details of modelling the welding heat source, heat transfer and variation of material properties with temperature

  16. Short-chain fluorescent tryptophan tags for on-line detection of functional recombinant proteins

    Directory of Open Access Journals (Sweden)

    Siepert Eva-Maria

    2012-09-01

    Full Text Available Abstract Background Conventional fluorescent proteins, such as GFP, its derivatives and flavin mononucleotide based fluorescent proteins (FbFPs are often used as fusion tags for detecting recombinant proteins during cultivation. These reporter tags are state-of-the-art; however, they have some drawbacks, which can make on-line monitoring challenging. It is discussed in the literature that the large molecular size of proteins of the GFP family may stress the host cell metabolism during production. In addition, fluorophore formation of GFP derivatives is oxygen-dependent resulting in a lag-time between expression and fluorescence detection and the maturation of the protein is suppressed under oxygen-limited conditions. On the contrary, FbFPs are also applicable in an oxygen-limited or even anaerobic environment but are still quite large (58% of the size of GFP. Results As an alternative to common fluorescent tags we developed five novel tags based on clustered tryptophan residues, called W-tags. They are only 5-11% of the size of GFP. Based on the property of tryptophan to fluoresce in absence of oxygen it is reasonable to assume that the functionality of our W-tags is also given under anaerobic conditions. We fused these W-tags to a recombinant protein model, the anti-CD30 receptor single-chain fragment variable antibody (scFv Ki-4(scFv and the anti-MucI single-chain fragment variable M12(scFv. During cultivation in Microtiter plates, the overall tryptophan fluorescence intensity of all cultures was measured on-line for monitoring product formation via the different W-tags. After correlation of the scattered light signal representing biomass concentration and tryptophan fluorescence for the uninduced cultures, the fluorescence originating from the biomass was subtracted from the overall tryptophan signal. The resulting signal, thus, represents the product fluorescence of the tagged and untagged antibody fragments. The product fluorescence signal

  17. L-Tryptophan

    Science.gov (United States)

    ... tryptophan for 3 days before exercising can improve power during exercise. This improvement in power helps increase the distance an athlete can go ... to 5-HTP (5-hyrdoxytryptophan), and then to serotonin, melatonin, and vitamin B6 (nicotinamide). Serotonin is a ...

  18. Residual Stress State in Single-Edge Notched Tension Specimen Caused by the Local Compression Technique

    Directory of Open Access Journals (Sweden)

    Huang Yifan

    2016-12-01

    Full Text Available Three-dimensional (3D finite element analyses (FEA are performed to simulate the local compression (LC technique on the clamped single-edge notched tension (SE(T specimens. The analysis includes three types of indenters, which are single pair of cylinder indenters (SPCI, double pairs of cylinder indenters (DPCI and single pair of ring indenters (SPRI. The distribution of the residual stress in the crack opening direction in the uncracked ligament of the specimen is evaluated. The outcome of this study can facilitate the use of LC technique on SE(T specimens.

  19. L-Tryptophan depletion bioreactor, a possible cancer therapy

    Directory of Open Access Journals (Sweden)

    Rolf Bambauer

    2015-04-01

    Full Text Available The cancer therapeutic strategies knownto date are not adequate for all cancer patients. Most of them are followed by a high rate of side effects and complications. The L-tryptophan depletion bioreactor is described as a possible new method of cancer therapy. L-tryptophan is an essential amino acid which has been recognized as an important cancer nutrient and its removal can lead to destruction of the tumour. Normal human cells or tumor cells cannot synthesize L-tryptophan and therefore tumor resistance is unlikely to develop. L-tryptophan is also a constituent for different bio-molecules such as Serotonin, Melatonin, and is needed for other synthesis processes in the cell growth. L-tryptophan degrading enzymes with 3 iso-enzymes called tryptophan side chain oxydase (TSO I, II, III were isolated. The 3 iso-enzymes can be differentiated by tryptic digestion. They have different molecular weights with different effectivenesses. All the TSO enzymes have heme that can catalyze essentially similar reactions involving L-tryptophan as a substrate. The most effective TSO is the type TSO III. A column which contained TSO as a bioreactor was integrated in a plasmapheresis unit and tested it in different animals. In sheep and rabbits L-tryptophan depletion in plasma was shown at 95% and 100% rates respectively by a single pass through the bioreactor. The results in immune supprimized rats with tumors were impressive, too. In 20 different tumor cell lines there were different efficacies. Brest cancer and medulloblastoma showed the greatest efficacy of L-tryptophan degrading. The gene technology of TSO production from Pseudomonas is associated with formation of endotoxins. This disadvantage can be prevented by different washing procedures or by using fungal sources for the TSO production. TSO III is developed to treat cancer diseases successfully, and has low side effects. A combination of L-tryptophan depletion with all available cancer therapies is

  20. Rotational spectrum of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M. Eugenia, E-mail: maria.sanz@kcl.ac.uk; Cabezas, Carlos, E-mail: ccabezas@qf.uva.es; Mata, Santiago, E-mail: santiago.mata@uva.es; Alonso, Josè L., E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  1. /sup 13/C NMR evidence of the slow exchange of tryptophans in dihydrofolate reductase between stable conformations

    Energy Technology Data Exchange (ETDEWEB)

    London, R.E. (Univ. of California, Los Alamos, NM); Groff, J.P.; Blakley, R.L.

    1979-01-01

    /sup 13/C NMR spectra are reported for dihydrofolate reductase of Streptococcus faecium labeled with (..gamma..-/sup 13/C)tryptophan. Two of the four tryptophans generate unusual resonances indicating slow exchange of the residues between alternative stable conformations. Since 3', 5'-dichloromethotrexate sharpens two of the resonances, it apparently locks the corresponding residues into one conformation.

  2. Consumption of peptide-included and free tryptophan induced by peroxyl radicals: A kinetic study.

    Science.gov (United States)

    Fuentes, E; López-Alarcón, C

    2014-10-01

    It is well-known that tryptophan residues are efficiently oxidized by peroxyl radicals, generating kynurenine, and N-formyl kynurenine as well as hydroperoxide derivatives as products. In the present work we studied the kinetic of such reaction employing free and peptide-included tryptophan. Two azocompounds were used to produce peroxyl radicals: AAPH (2,2'-Azobis(2-methylpropionamidine) dihydrochloride) and ABCVA (4,4'-Azobis(4-cyanovaleric acid)), which generate cationic and anionic peroxyl radicals, respectively. Tryptophan consumption was assessed by fluorescence spectroscopy and the reactions were carried out in phosphate buffer (75mM, pH 7.4) at 45°C. Only a slight effect of the peroxyl radical charge was evidenced on the consumption of free tryptophan and the dipeptide Gly-Trp. Employing AAPH as peroxyl radical source, at low free tryptophan concentrations (1-10µM) near 0.3 mol of tryptophan were consumed per each mol of peroxyl radicals introduced into the system. However, at high free tryptophan concentrations (100µM-1mM) such stoichiometry increased in a tryptophan concentration-way. At 1mM three moles of tryptophan were consumed per mol of AAPH-derived peroxyl radicals, evidencing the presence of chain reactions. A similar behavior was observed when di and tri-peptides (Gly-Trp, Trp-Gly, Gly-Trp-Gly, Trp-Ala, Ala-Trp-Ala) were studied. Nonetheless, at low initial concentration (5µM), the initial consumption rate of tryptophan included in the peptides was two times higher than free tryptophan. In contrast, at high concentration (1mM) free and peptide-included tryptophan showed similar initial consumption rates. These results could be explained considering a disproportionation process of tryptophanyl radicals at low free tryptophan concentrations, a process that would be inhibited when tryptophan is included in peptides. Copyright © 2014. Published by Elsevier Inc.

  3. Contaminant Release from Residual Waste in Single Shell Tanks at the Hanford Site, Washington, USA - 9276

    International Nuclear Information System (INIS)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Determinations of elemental and solid-phase compositions, and contaminant release studies have been applied in an ongoing study of residual tank wastes (i.e., waste remaining after final retrieval operations) from five of 149 underground single-shell storage tanks (241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112) at the U.S. Department of Energy's Hanford Site in Washington State. This work is being conducted to support performance assessments that will be required to evaluate long-term health and safety risks associated with tank site closure. The results of studies completed to date show significant variability in the compositions, solid phase properties, and contaminant release characteristics from these residual tank wastes. This variability is the result of differences in waste chemistry/composition of wastes produced from several different spent fuel reprocessing schemes, subsequent waste reprocessing to remove certain target constituents, tank farm operations that concentrated wastes and mixed wastes between tanks, and differences in retrieval processes used to remove the wastes from the tanks. Release models were developed based upon results of chemical characterization of the bulk residual waste, solid-phase characterization (see companion paper 9277 by Krupka et al.), leaching and extraction experiments, and geochemical modeling. In most cases empirical release models were required to describe contaminant release from these wastes. Release of contaminants from residual waste was frequently found to be controlled by the solubility of phases that could not be identified and/or for which thermodynamic data and/or dissolution rates have not been measured. For example, significant fractions of Tc-99, I-129, and Cr appear to be coprecipitated at trace concentrations in metal oxide phases that could not be identified unambiguously. In the case of U release from tank 241-C-103 residual waste, geochemical calculations indicated that leachate

  4. Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein

    Science.gov (United States)

    Wu, Hao; Wang, Wei; Naiyer, Nada; Fichtenbaum, Eric; Qualley, Dominic F.; McCauley, Micah J.; Gorelick, Robert J.; Rouzina, Ioulia; Musier-Forsyth, Karin; Williams, Mark C.

    2014-01-01

    Feline immunodeficiency virus (FIV) is a retrovirus that infects domestic cats, and is an excellent animal model for human immunodeficiency virus type 1 (HIV-1) pathogenesis. The nucleocapsid (NC) protein is critical for replication in both retroviruses. FIV NC has several structural features that differ from HIV-1 NC. While both NC proteins have a single conserved aromatic residue in each of the two zinc fingers, the aromatic residue on the second finger of FIV NC is located on the opposite C-terminal side relative to its location in HIV-1 NC. In addition, whereas HIV-1 NC has a highly charged cationic N-terminal tail and a relatively short C-terminal extension, the opposite is true for FIV NC. To probe the impact of these differences on the nucleic acid (NA) binding and chaperone properties of FIV NC, we carried out ensemble and single-molecule assays with wild-type (WT) and mutant proteins. The ensemble studies show that FIV NC binding to DNA is strongly electrostatic, with a higher effective charge than that observed for HIV-1 NC. The C-terminal basic domain contributes significantly to the NA binding capability of FIV NC. In addition, the non-electrostatic component of DNA binding is much weaker for FIV NC than for HIV-1 NC. Mutation of both aromatic residues in the zinc fingers to Ala (F12A/W44A) further increases the effective charge of FIV NC and reduces its non-electrostatic binding affinity. Interestingly, switching the location of the C-terminal aromatic residue to mimic the HIV-1 NC sequence (N31W/W44A) reduces the effective charge of FIV NC and increases its non-electrostatic binding affinity to values similar to HIV-1 NC. Consistent with the results of these ensemble studies, single-molecule DNA stretching studies show that while WT FIV NC has reduced stacking capability relative to HIV-1 NC, the aromatic switch mutant recovers the ability to intercalate between the DNA bases. Our results demonstrate that altering the position of a single aromatic

  5. Tryptophan Metabolism in Allergic Disorders

    Science.gov (United States)

    Gostner, Johanna M.; Becker, Katrin; Kofler, Heinz; Strasser, Barbara; Fuchs, Dietmar

    2017-01-01

    Allergic diseases such as asthma and rhinitis, as well the early phase of atopic dermatitis, are characterized by a Th2-skewed immune environment. Th2-type cytokines are upregulated in allergic inflammation, whereas there is downregulation of the Th1-type immune response and related cytokines, such as interferon-γ (IFN-γ). The latter is a strong inducer of indoleamine 2,3-dioxygenase-1 (IDO-1), which degrades the essential amino acid tryptophan, as part of an antiproliferative strategy of immunocompetent cells to halt the growth of infected and malignant cells, and also of T cells – an immunoregulatory intervention to avoid overactivation of the immune system. Raised serum tryptophan concentrations have been reported in patients with pollen allergy compared to healthy blood donors. Moreover, higher baseline tryptophan concentrations have been associated with a poor response to specific immunotherapy. It has been shown that the increase in tryptophan concentrations in patients with pollen allergy only exists outside the pollen season, and not during the season. Interestingly, there is only a minor alteration of the kynurenine to tryptophan ratio (Kyn/Trp, an index of tryptophan breakdown). The reason for the higher tryptophan concentrations in patients with pollen allergy outside the season remains a matter of discussion. To this regard, the specific interaction of nitric oxide (NO˙) with the tryptophan-degrading enzyme IDO-1 could be important, because an enhanced formation of NO˙ has been reported in patients with asthma and allergic rhinitis. Importantly, NO˙ suppresses the activity of the heme enzyme IDO-1, which could explain the higher tryptophan levels. Thus, inhibitors of inducible NO˙ synthase should be reconsidered as candidates for antiallergic therapy out of season that may abrogate the arrest of IDO-1 by decreasing the production of NO˙. Considering its association with the pathophysiology of atopic disease, tryptophan metabolism may play a

  6. A Single Residue in Ebola Virus Receptor NPC1 Influences Cellular Host Range in Reptiles.

    Science.gov (United States)

    Ndungo, Esther; Herbert, Andrew S; Raaben, Matthijs; Obernosterer, Gregor; Biswas, Rohan; Miller, Emily Happy; Wirchnianski, Ariel S; Carette, Jan E; Brummelkamp, Thijn R; Whelan, Sean P; Dye, John M; Chandran, Kartik

    2016-01-01

    Filoviruses are the causative agents of an increasing number of disease outbreaks in human populations, including the current unprecedented Ebola virus disease (EVD) outbreak in western Africa. One obstacle to controlling these epidemics is our poor understanding of the host range of filoviruses and their natural reservoirs. Here, we investigated the role of the intracellular filovirus receptor, Niemann-Pick C1 (NPC1) as a molecular determinant of Ebola virus (EBOV) host range at the cellular level. Whereas human cells can be infected by EBOV, a cell line derived from a Russell's viper (Daboia russellii) (VH-2) is resistant to infection in an NPC1-dependent manner. We found that VH-2 cells are resistant to EBOV infection because the Russell's viper NPC1 ortholog bound poorly to the EBOV spike glycoprotein (GP). Analysis of panels of viper-human NPC1 chimeras and point mutants allowed us to identify a single amino acid residue in NPC1, at position 503, that bidirectionally influenced both its binding to EBOV GP and its viral receptor activity in cells. Significantly, this single residue change perturbed neither NPC1's endosomal localization nor its housekeeping role in cellular cholesterol trafficking. Together with other recent work, these findings identify sequences in NPC1 that are important for viral receptor activity by virtue of their direct interaction with EBOV GP and suggest that they may influence filovirus host range in nature. Broader surveys of NPC1 orthologs from vertebrates may delineate additional sequence polymorphisms in this gene that control susceptibility to filovirus infection. IMPORTANCE Identifying cellular factors that determine susceptibility to infection can help us understand how Ebola virus is transmitted. We asked if the EBOV receptor Niemann-Pick C1 (NPC1) could explain why reptiles are resistant to EBOV infection. We demonstrate that cells derived from the Russell's viper are not susceptible to infection because EBOV cannot bind to

  7. Chromatographic analysis of tryptophan metabolites.

    Science.gov (United States)

    Sadok, Ilona; Gamian, Andrzej; Staniszewska, Magdalena Maria

    2017-08-01

    The kynurenine pathway generates multiple tryptophan metabolites called collectively kynurenines and leads to formation of the enzyme cofactor nicotinamide adenine dinucleotide. The first step in this pathway is tryptophan degradation, initiated by the rate-limiting enzymes indoleamine 2,3-dioxygenase, or tryptophan 2,3-dioxygenase, depending on the tissue. The balanced kynurenine metabolism, which has been a subject of multiple studies in last decades, plays an important role in several physiological and pathological conditions such as infections, autoimmunity, neurological disorders, cancer, cataracts, as well as pregnancy. Understanding the regulation of tryptophan depletion provide novel diagnostic and treatment opportunities, however it requires reliable methods for quantification of kynurenines in biological samples with complex composition (body fluids, tissues, or cells). Trace concentrations, interference of sample components, and instability of some tryptophan metabolites need to be addressed using analytical methods. The novel separation approaches and optimized extraction protocols help to overcome difficulties in analyzing kynurenines within the complex tissue material. Recent developments in chromatography coupled with mass spectrometry provide new opportunity for quantification of tryptophan and its degradation products in various biological samples. In this review, we present current accomplishments in the chromatographic methodologies proposed for detection of tryptophan metabolites and provide a guide for choosing the optimal approach. © 2017 The Authors. Journal of Separation Science published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. TRYPTOPHAN PROMOTES CHARITABLE DONATING

    Directory of Open Access Journals (Sweden)

    Laura eSteenbergen

    2014-12-01

    Full Text Available The link between serotonin (5-HT and one of the most important elements of prosocial behavior, charity, has remained largely uninvestigated. In the present study, we tested whether charitable donating can be promoted by administering the food supplement L-Tryptophan (TRP, the biochemical precursor of 5-HT. Participants were compared with respect to the amount of money they donated when given the opportunity to make a charitable donation. As expected, compared to a neutral placebo, TRP appears to increase the participants’ willingness to donate money to a charity. This result supports the idea that the food we eat may act as a cognitive enhancer modulating the way we think and perceive the world and others.

  9. Comparison of mineral dust and droplet residuals measured with two single particle aerosol mass spectrometers

    Science.gov (United States)

    Wonaschütz, Anna; Ludwig, Wolfgang; Zawadowicz, Maria; Hiranuma, Naruki; Hitzenberger, Regina; Cziczo, Daniel; DeMott, Paul; Möhler, Ottmar

    2017-04-01

    Single Particle mass spectrometers are used to gain information on the chemical composition of individual aerosol particles, aerosol mixing state, and other valuable aerosol characteristics. During the Mass Spectrometry Intercomparison at the Fifth Ice Nucleation (FIN-01) Workshop, the new LAAPTOF single particle aerosol mass spectrometer (AeroMegt GmbH) was conducting simultaneous measurements together with the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. The aerosol particles were sampled from the AIDA chamber during ice cloud expansion experiments. Samples of mineral dust and ice droplet residuals were measured simultaneously. In this work, three expansion experiments are chosen for a comparison between the two mass spectrometers. A fuzzy clustering routine is used to group the spectra. Cluster centers describing the ensemble of particles are compared. First results show that while differences in the peak heights are likely due to the use of an amplifier in PALMS, cluster centers are comparable.

  10. Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6

    Directory of Open Access Journals (Sweden)

    M. Kamphus

    2010-08-01

    Full Text Available Two different single particle mass spectrometers were operated in parallel at the Swiss High Alpine Research Station Jungfraujoch (JFJ, 3580 m a.s.l. during the Cloud and Aerosol Characterization Experiment (CLACE 6 in February and March 2007. During mixed phase cloud events ice crystals from 5–20 μm were separated from larger ice aggregates, non-activated, interstitial aerosol particles and supercooled droplets using an Ice-Counterflow Virtual Impactor (Ice-CVI. During one cloud period supercooled droplets were additionally sampled and analyzed by changing the Ice-CVI setup. The small ice particles and droplets were evaporated by injection into dry air inside the Ice-CVI. The resulting ice and droplet residues (IR and DR were analyzed for size and composition by the two single particle mass spectrometers: a custom-built Single Particle Laser-Ablation Time-of-Flight Mass Spectrometer (SPLAT and a commercial Aerosol Time-of-Flight Mass Spectrometer (ATOFMS, TSI Model 3800. During CLACE 6 the SPLAT instrument characterized 355 individual IR that produced a mass spectrum for at least one polarity and the ATOFMS measured 152 IR. The mass spectra were binned in classes, based on the combination of dominating substances, such as mineral dust, sulfate, potassium and elemental carbon or organic material. The derived chemical information from the ice residues is compared to the JFJ ambient aerosol that was sampled while the measurement station was out of clouds (several thousand particles analyzed by SPLAT and ATOFMS and to the composition of the residues of supercooled cloud droplets (SPLAT: 162 cloud droplet residues analyzed, ATOFMS: 1094. The measurements showed that mineral dust was strongly enhanced in the ice particle residues. Close to all of the SPLAT spectra from ice residues did contain signatures from mineral compounds, albeit connected with varying amounts of soluble compounds. Similarly, close to all of the ATOFMS IR spectra show a

  11. Analysis of morphology and residual porosity in selective laser melting of Fe powders using single track experiments

    Science.gov (United States)

    Shutov, I. V.; Gordeev, G. A.; Kharanzhevskiy, E. V.; Krivilyov, M. D.

    2017-04-01

    Morphology and residual porosity of single tracks obtained by pulse selective laser melting (SLM) of Fe powder have been studied by metallography. Multiple cross sections of the stainless substrate with the single tracks deposited by SLM are examined and classified depending on processing parameters. A sustainable scanning strategy to reduce residual porosity is suggested for pulse laser annealing. The developed method is suitable both for improvement of processing regimes in commercial SLM machines and validation of numerical models in additive manufacturing of metal parts. The effect of the beam radius, pulse energy, its frequency and duration on a shape of the single track and its adhesion to the substrate is revealed.

  12. Metabolism of an oral tryptophan load. I: Effects of dose and pretreatment with tryptophan.

    OpenAIRE

    Green, A R; Aronson, J K; Curzon, G; Woods, H F

    1980-01-01

    1 The metabolism of three oral doses of L-tryptophan (50, 25 and 10 mg/kg) in healthy young males has been investigated. 2 There was a linear relationship between both peak and area under curve of the total plasma tryptophan concentrations whilst the relationship between these parameters and plasma free tryptophan was hyperbolic. 3 Before the tryptophan load about 85% of plasma tryptophan was bound to albumin. As plasma tryptophan concentrations increased there was a hyperbolic increase in fr...

  13. Analysis of cosmetic residues on a single human hair by ATR FT-IR microspectroscopy.

    Science.gov (United States)

    Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Naranitad, Suwimol; Ekgasit, Sanong

    2018-05-15

    In this work, ATR FT-IR spectra of single human hair and cosmetic residues on hair surface are successfully collected using a homemade dome-shaped Ge μIRE accessary installed on an infrared microscope. By collecting ATR spectra of hairs from the same person, the spectral patterns are identical and superimposed while different spectral features are observed from ATR spectra of hairs collected from different persons. The spectral differences depend on individual hair characteristics, chemical treatments, and cosmetics on hair surface. The "Contact-and-Collect" technique that transfers remarkable materials on the hair surface to the tip of the Ge μIRE enables an identification of cosmetics on a single hair. Moreover, the differences between un-split and split hairs are also studied in this report. These highly specific spectral features can be employed for unique identification or for differentiation of hairs based on the molecular structures of hairs and cosmetics on hairs. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Incorporation of tryptophan analogues into the lantibiotic nisin.

    Science.gov (United States)

    Zhou, Liang; Shao, Jinfeng; Li, Qian; van Heel, Auke J; de Vries, Marcel P; Broos, Jaap; Kuipers, Oscar P

    2016-05-01

    Lantibiotics are posttranslationally modified peptides with efficient inhibitory activity against various Gram-positive bacteria. In addition to the original modifications, incorporation of non-canonical amino acids can render new properties and functions to lantibiotics. Nisin is the most studied lantibiotic and contains no tryptophan residues. In this study, a system was constructed to incorporate tryptophan analogues into nisin, which included the modification machinery (NisBTC) and the overexpression of tryptophanyl-tRNA synthetase (TrpRS). Tryptophan and three different tryptophan analogues (5-fluoroTrp (5FW), 5-hydroxyTrp (5HW) and 5-methylTrp (5MeW)) were successfully incorporated at four different positions of nisin (I1W, I4W, M17W and V32W). The incorporation efficiency of tryptophan analogues into mutants I1W, M17W and V32W was over 97 %, while the mutant I4W showed relatively low incorporation efficiency (69-93 %). The variants with 5FW showed relatively higher production yield, while 5MeW-containing variants showed the lowest yield. The dehydration efficiency of serines or threonines was affected by the tryptophan mutants of I4W and V32W. The affinity of the peptides for the cation-ion exchange and reverse phase chromatography columns was significantly reduced when 5HW was incorporated. The antimicrobial activity of IIW and its 5FW analogue both decreased two times compared to that of nisin, while that of its 5HW analogue decreased four times. The 5FW analogue of I4W also showed two times decreased activity than nisin. However, the mutant M17W and its 5HW analogue both showed 32 times reduced activity relative to that of nisin.

  15. Development of Bacillus subtilis mutants to produce tryptophan in pigs.

    Science.gov (United States)

    Bjerre, Karin; Cantor, Mette D; Nørgaard, Jan V; Poulsen, Hanne D; Blaabjerg, Karoline; Canibe, Nuria; Jensen, Bent B; Stuer-Lauridsen, Birgitte; Nielsen, Bea; Derkx, Patrick M F

    2017-02-01

    To generate tryptophan-overproducing Bacillus subtilis strains for in situ use in pigs, to reduce the feed cost for farmers and nitrogen pollution. A novel concept has been investigated-to generate B. subtilis strains able to produce tryptophan (Trp) in situ in pigs. Mutagenesis by UV was combined with selection on Trp and purine analogues in an iterative process. Two mutants from different wild types were obtained, mutant 1 (M1) produced 1 mg Trp/l and mutant 2 (M2) 14 mg Trp/l. Genome sequence analysis revealed that M1 had three single nuclear polymorphisms (SNPs) and M2 had two SNPs compared to the wild type strains. In both mutants SNPs were found in genes regulating tryptophan synthesis. Reverse transcription PCR confirmed up-regulation of the tryptophan synthesis genes in both mutants, the expression was up to 3 times higher in M2 than in M1. Tryptophan-excreting B. subtilis strains were obtained with UV-mutagenesis and analogue selection and can be used in animal feed applications.

  16. Association between Tryptophan Hydroxylase 2 Gene Polymorphism and Completed Suicide

    Science.gov (United States)

    Fudalej, Sylwia; Ilgen, Mark; Fudalej, Marcin; Kostrzewa, Grazyna; Barry, Kristen; Wojnar, Marcin; Krajewski, Pawel; Blow, Frederic; Ploski, Rafal

    2010-01-01

    The association between suicide and a single nucleotide polymorphism (rs1386483) was examined in the recently identified tryptophan hydroxylase 2 (TPH2) gene. Blood samples of 143 suicide victims and 162 age- and sex-matched controls were examined. The frequency of the TT genotype in the TPH2 polymorphism was higher in suicide victims than in…

  17. Tryptophan Research in Panic Disorder

    Directory of Open Access Journals (Sweden)

    Eduard Maron

    2008-01-01

    Full Text Available A considerable body of evidence suggests the involvement of serotonin neurotransmission in the pathogenesis of panic disorder. Research on pathways and functions of tryptophan, an essential amino acid converted into serotonin, may advance our understanding of serotonergic actions in panic disorder and related phenomena. The investigative approaches in this field include manipulations of tryptophan availability as well as genetic association and functional brain imaging studies. In this review we examine the principle findings of these studies and propose further research directions.

  18. The stability of tryptophan, 5-methyl-tryptophan and α-methyl-tryptophan during NaOH hydrolysis of selected foods.

    Science.gov (United States)

    Rutherfurd, Shane M; Richardson, Russell K; Moughan, Paul J

    2015-12-01

    This study evaluated the use of 5-methyl-tryptophan, α-methyl-tryptophan or synthetic tryptophan to correct for the losses of protein-bound tryptophan in foods during NaOH hydrolysis. Synthetic tryptophan and each protein source was incubated in 4.5M NaOH containing 5-methyl-tryptophan and α-methyl-tryptophan in nitrogen gas-sparged Teflon vials for 0-144 h at 110 °C. The hydrolysis and loss rates of protein-bound tryptophan, 5-methyl-tryptophan, α-methyl-tryptophan and synthetic tryptophan were predicted using least-squares nonlinear regression. Using 5-methyl-tryptophan or synthetic tryptophan to correct for hydrolytic losses of tryptophan overestimated the tryptophan content by 8.2-19% and -0.3-8.8% respectively, while correction using α-methyl-tryptophan underestimated tryptophan by between 0.2% and 8.1% across the protein sources. Correction using α-methyl-tryptophan or synthetic tryptophan was more accurate than using 5-methyl-tryptophan, but when highly accurate tryptophan composition data are required, least-squares nonlinear regression is the best approach as it removes the need for a hydrolysis correction factor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Tryptophan-induced pathogenesis of breast cancer

    African Journals Online (AJOL)

    determine the influence of tryptophan towards interleukin-10 (IL-10) secretion by CD4+ T cell. Results: Targeted metabolomics of amino acids showed that the level of tryptophan significantly (p<0.05) increased in patients with breast cancer. Furthermore, the biological function of tryptophan was determined through ...

  20. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    International Nuclear Information System (INIS)

    Cochran, J.R.; Shyr, L.J.

    1998-01-01

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits

  1. Computing H/D-Exchange rates of single residues from data of proteolytic fragments

    Directory of Open Access Journals (Sweden)

    Althaus Ernst

    2010-08-01

    Full Text Available Abstract Background Protein conformation and protein/protein interaction can be elucidated by solution-phase Hydrogen/Deuterium exchange (sHDX coupled to high-resolution mass analysis of the digested protein or protein complex. In sHDX experiments mutant proteins are compared to wild-type proteins or a ligand is added to the protein and compared to the wild-type protein (or mutant. The number of deuteriums incorporated into the polypeptides generated from the protease digest of the protein is related to the solvent accessibility of amide protons within the original protein construct. Results In this work, sHDX data was collected on a 14.5 T FT-ICR MS. An algorithm was developed based on combinatorial optimization that predicts deuterium exchange with high spatial resolution based on the sHDX data of overlapping proteolytic fragments. Often the algorithm assigns deuterium exchange with single residue resolution. Conclusions With our new method it is possible to automatically determine deuterium exchange with higher spatial resolution than the level of digested fragments.

  2. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  3. Liquid chromatography-fluorescence and liquid chromatography-mass spectrometry detection of tryptophan degradation products of a recombinant monoclonal antibody.

    Science.gov (United States)

    Nowak, Christine; Ponniah, Gomathinayagam; Cheng, Guilong; Kita, Adriana; Neill, Alyssa; Kori, Yekaterina; Liu, Hongcheng

    2016-03-01

    Light exposure is one of several conditions used to study the degradation pathways of recombinant monoclonal antibodies. Tryptophan is of particular interest among the 20 amino acids because it is the most photosensitive. Tryptophan degradation forms several products, including an even stronger photosensitizer and several reactive oxygen species. The current study reports a specific peptide mapping procedure to monitor tryptophan degradation. Instead of monitoring peptides using UV 214 nm, fluorescence detection with an excitation wavelength of 295 nm and an emission wavelength of 350 nm was used to enable specific detection of tryptophan-containing peptides. Peaks that decreased in area over time are likely to contain susceptible tryptophan residues. This observation can allow further liquid chromatography-mass spectrometry (LC-MS) analysis to focus only on those peaks to confirm tryptophan degradation products. After confirmation of tryptophan degradation, susceptibility of tryptophan residues can be compared based on the peak area decrease. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effect of increased exposure times on amount of residual monomer released from single-step self-etch adhesives.

    Science.gov (United States)

    Altunsoy, Mustafa; Botsali, Murat Selim; Tosun, Gonca; Yasar, Ahmet

    2015-10-16

    The aim of this study was to evaluate the effect of increased exposure times on the amount of residual Bis-GMA, TEGDMA, HEMA and UDMA released from single-step self-etch adhesive systems. Two adhesive systems were used. The adhesives were applied to bovine dentin surface according to the manufacturer's instructions and were polymerized using an LED curing unit for 10, 20 and 40 seconds (n = 5). After polymerization, the specimens were stored in 75% ethanol-water solution (6 mL). Residual monomers (Bis-GMA, TEGDMA, UDMA and HEMA) that were eluted from the adhesives (after 10 minutes, 1 hour, 1 day, 7 days and 30 days) were analyzed by high-performance liquid chromatography (HPLC). The data were analyzed using 1-way analysis of variance and Tukey HSD tests. Among the time periods, the highest amount of released residual monomers from adhesives was observed in the 10th minute. There were statistically significant differences regarding released Bis-GMA, UDMA, HEMA and TEGDMA between the adhesive systems (p<0.05). There were no significant differences among the 10, 20 and 40 second polymerization times according to their effect on residual monomer release from adhesives (p>0.05). Increasing the polymerization time did not have an effect on residual monomer release from single-step self-etch adhesives.

  5. The mining of toxin-like polypeptides from EST database by single residue distribution analysis

    Science.gov (United States)

    2011-01-01

    Background Novel high throughput sequencing technologies require permanent development of bioinformatics data processing methods. Among them, rapid and reliable identification of encoded proteins plays a pivotal role. To search for particular protein families, the amino acid sequence motifs suitable for selective screening of nucleotide sequence databases may be used. In this work, we suggest a novel method for simplified representation of protein amino acid sequences named Single Residue Distribution Analysis, which is applicable both for homology search and database screening. Results Using the procedure developed, a search for amino acid sequence motifs in sea anemone polypeptides was performed, and 14 different motifs with broad and low specificity were discriminated. The adequacy of motifs for mining toxin-like sequences was confirmed by their ability to identify 100% toxin-like anemone polypeptides in the reference polypeptide database. The employment of novel motifs for the search of polypeptide toxins in Anemonia viridis EST dataset allowed us to identify 89 putative toxin precursors. The translated and modified ESTs were scanned using a special algorithm. In addition to direct comparison with the motifs developed, the putative signal peptides were predicted and homology with known structures was examined. Conclusions The suggested method may be used to retrieve structures of interest from the EST databases using simple amino acid sequence motifs as templates. The efficiency of the procedure for directed search of polypeptides is higher than that of most currently used methods. Analysis of 39939 ESTs of sea anemone Anemonia viridis resulted in identification of five protein precursors of earlier described toxins, discovery of 43 novel polypeptide toxins, and prediction of 39 putative polypeptide toxin sequences. In addition, two precursors of novel peptides presumably displaying neuronal function were disclosed. PMID:21281459

  6. Correlation Between the Microstructural Defects and Residual Stress in a Single Crystal Nickel-Based Superalloy During Different Creep Stages

    Science.gov (United States)

    Mo, Fangjie; Wu, Erdong; Zhang, Changsheng; Wang, Hong; Zhong, Zhengye; Zhang, Jian; Chen, Bo; Hofmann, Michael; Gan, Weimin; Sun, Guangai

    2018-03-01

    The present work attempts to reveal the correlation between the microstructural defects and residual stress in the single crystal nickel-based superalloy, both of which play the significant role on properties and performance. Neutron diffraction was employed to investigate the microstructural defects and residual stresses in a single crystal (SC) nickel-based superalloy, which was subjected to creeping under 220 MPa and 1000 °C for different times. The measured superlattice and fundamental lattice reflections confirm that the mismatch and tetragonal distortions with c/a > 1 exist in the SC superalloy. At the initially unstrained state, there exists the angular distortion between γ and γ' phases with small triaxial compressive stresses, ensuring the structural stability of the superalloy. After creeping, the tetragonal distortion for the γ phase is larger than that for the γ' phase. With increasing the creeping time, the mismatch between γ and γ' phases increases to the maximum, then decreases gradually and finally remains unchanged. The macroscopic residual stress shows a similar behavior with the mismatch, indicating the correlation between them. Based on the model of shear and dislocations, the evolution of microstructural defects and residual stress are reasonably explained. The effect of shear is dominant at the primary creep stage, which greatly enlarges the mismatch and the residual stress. The dislocations weaken the effect of shear for the further creep stage, resulting in the decrease of the mismatch and relaxation of the residual stress. Those findings add some helpful understanding into the microstructure-performance relationship in the SC nickel-based superalloy, which might provide the insight to materials design and applications.

  7. Bromocontryphan: post-translational bromination of tryptophan.

    Science.gov (United States)

    Jimenez, E C; Craig, A G; Watkins, M; Hillyard, D R; Gray, W R; Gulyas, J; Rivier, J E; Cruz, L J; Olivera, B M

    1997-02-04

    We demonstrate that post-translational bromination of a tryptophan residue occurs in the biologically active octapeptide bromocontryphan, purified and characterized from Conus radiatus venom. Clones encoding bromocontryphan were identified from a cDNA library made from C. radiatus venom ducts. The mRNA sequence obtained predicts a prepropeptide which has the mature peptide sequence at the C-terminal end, with the L-6-bromotryptophan residue encoded by UGG, the Trp codon. These data provide the first direct evidence for post-translational bromination of a polypeptide which is translated through the normal cellular machinery. In addition to bromination, the peptide, which induces a "stiff tail" syndrome in mice, has several other modifications as shown by the sequence [Formula: See Text] in which Hyp = hydroxyproline. Asterisks indicate post-translational modifications (left to right): proteolytic cleavage at the N-terminus; hydroxylation of Pro3; epimerization of Trp4; bromination of Trp7, and C-terminal amidation. Bromocontryphan appears to have the highest density of post-translational modifications known among gene-encoded polypeptides. The overall result is a molecule which closely resembles marine natural products produced through specialized biosynthetic pathways comprising many enzyme-catalyzed steps.

  8. Residual strains and microstructure development in single and sequential double sided friction stir welds in RQT-701 steel

    International Nuclear Information System (INIS)

    Barnes, S.J.; Steuwer, A.; Mahawish, S.; Johnson, R.; Withers, P.J.

    2008-01-01

    Single and double sided partial penetration friction stir butt welds, in a rolled, quenched and tempered steel (RQT-701), were produced at The Welding Institute (TWI) under controlled process conditions. The residual strain distributions in the longitudinal and transverse directions have been measured using energy dispersive synchrotron X-ray diffraction. The measured strains were indicative of longitudinal tensile residual stresses at levels greater than the 0.2% yield stress of the parent metal in both the single and double pass welds. In both cases, the maximum tensile strain was found in the parent metal at the boundary of the heat affected zone (HAZ). Microstructural analysis of the welds was carried out using optical microscopy and hardness variations were also mapped across the weld-plate cross-section. The maximum hardness was observed in the mixed bainite/martensite structure of the weld nugget on the advancing side of the stir zone. The minimum hardness was observed in the HAZ

  9. Candidate genes and single nucleotide polymorphisms associated with variation in residual feed intake in beef cattle.

    Science.gov (United States)

    Karisa, B K; Thomson, J; Wang, Z; Stothard, P; Moore, S S; Plastow, G S

    2013-08-01

    The candidate gene approach was used to identify genes associated with residual feed intake (RFI) in beef steers. The approach uses prior knowledge of gene functions to predict their biological role in the variation observed in a trait. It is suited to identify genes associated with complex traits where each gene has a relatively small effect. First, positional candidate genes were identified within the genomic positions of previously reported QTL associated with component traits related to RFI such as dry matter intake (DMI), growth, feed conversion ratio (FCR), average daily gain (ADG), and energy balance. Secondly, the positional candidate genes were prioritized into functional candidate genes according to their biological functions and their relationship with the biological processes associated with RFI including carbohydrate, fat and protein metabolism, thermoregulation, immunity and muscle activity. Single nucleotide polymorphisms (SNPs) located within the functional candidate genes were identified using mRNA sequences and prioritized into functional classes such as non-synonymous (nsSNP), synonymous (sSNP) or intronic SNP. A total of 117 nsSNP were considered as functional SNP and genotyped in steers at the University of Alberta ranch in Kinsella. Multiple marker association analysis in ASReml was performed using RFI data obtained from 531 beef steers. Twenty-five SNP were significantly associated with RFI (P < 0.05) accounting for 19.7% of the phenotypic variation. Using SIFT program to predict the effect of the SNP on the function of the corresponding protein, 3 of the 25 SNP were predicted to cause a significant effect on protein function (P < 0.05). One of the 3 SNP was located in the GHR gene and was also associated with a significant effect on the tertiary structure of the GHR protein (P < 0.05) as modeled using SWISSModel software. Least square means for each genotype were estimated and an over-dominance effect was observed for the SNP located in the

  10. A single residue mutation of 5-enoylpyruvylshikimate-3-phosphate synthase in Pseudomonas stutzeri enhances resistance to the herbicide glyphosate.

    Science.gov (United States)

    Liang, Aimin; Sha, Jiying; Lu, Wei; Chen, Ming; Li, Liang; Jin, Dan; Yan, Yongliang; Wang, Jin; Ping, Shuzhen; Zhang, Wei; Wang, Yiding; Lin, Min

    2008-08-01

    A novel class II 5-enoylpyruvylshikimate-3-phosphate synthase (EPSPS) was identified from Pseudomonas stutzeri A1501 by complementation of an Escherichia coli auxotrophic aroA mutant. The single amino acid substitution of serine (Ser) for asparagine (Asn)-130 of the A1501 EPSPS enhanced resistance to 200 mM glyphosate. The mutated EPSPS had a 2.5-fold increase for IC(50) [glyphosate] value, a 2-fold increase for K (i) [glyphosate] value, but a K (m) [PEP] value similar to that of wild type. The effect of the single residue mutation on glyphosate resistance was also analyzed using a computer-based three-dimensional model.

  11. Photosensitizer-conjugated tryptophan-containing peptide ligands as new dual-targeted theranostics for cancers.

    Science.gov (United States)

    Kim, Jisu; Chae, Jihyun; Kim, Jun Soo; Goh, Sung-Ho; Choi, Yongdoo

    2016-11-20

    Here we report that new dual-targeted theranostic anti-cancer agents can be produced by simple conjugation of photosensitizers with tryptophan-containing peptide ligands via cyclic disulfide linkages. In the proof-of-concept study, photosensitizers conjugated with EGFR-targeting peptide GE11 (C-EGFR) were in close proximity with tryptophan residues in the conjugate, resulting in quenching of its fluorescence and singlet oxygen generation. C-EGFR specifically binds to target receptors on the cancer cell surface, after which it is internalized via receptor-mediated endocytosis. Intracellular cleavage of cyclic disulfide bonds allows separation of the photosensitizers from the tryptophan residue, after which they emit near-infrared (NIR) fluorescence and produce a phototoxic effect in the target cells. This strategy enabled us to accomplish simultaneous real-time NIR fluorescence imaging of EGFR-overexpressing cancer cells with high contrast and selective photodynamic therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Was the Chlamydial Adaptative Strategy to Tryptophan Starvation an Early Determinant of Plastid Endosymbiosis?

    Science.gov (United States)

    Cenci, Ugo; Ducatez, Mathieu; Kadouche, Derifa; Colleoni, Christophe; Ball, Steven G

    2016-01-01

    Chlamydiales were recently proposed to have sheltered the future cyanobacterial ancestor of plastids in a common inclusion. The intracellular pathogens are thought to have donated those critical transporters that triggered the efflux of photosynthetic carbon and the consequent onset of symbiosis. Chlamydiales are also suspected to have encoded glycogen metabolism TTS (Type Three Secretion) effectors responsible for photosynthetic carbon assimilation in the eukaryotic cytosol. We now review the reasons underlying other chlamydial lateral gene transfers evidenced in the descendants of plastid endosymbiosis. In particular we show that half of the genes encoding enzymes of tryptophan synthesis in Archaeplastida are of chlamydial origin. Tryptophan concentration is an essential cue triggering two alternative modes of replication in Chlamydiales. In addition, sophisticated tryptophan starvation mechanisms are known to act as antibacterial defenses in animal hosts. We propose that Chlamydiales have donated their tryptophan operon to the emerging plastid to ensure increased synthesis of tryptophan by the plastid ancestor. This would have allowed massive expression of the tryptophan rich chlamydial transporters responsible for symbiosis. It would also have allowed possible export of this valuable amino-acid in the inclusion of the tryptophan hungry pathogens. Free-living single cell cyanobacteria are devoid of proteins able to transport this amino-acid. We therefore investigated the phylogeny of the Tyr/Trp transporters homologous to E. coli TyrP/Mre and found yet another LGT from Chlamydiales to Archaeplastida thereby considerably strengthening our proposal.

  13. Membranes fabricated with a deep single corrugation for package stress reduction and residual stress relief

    NARCIS (Netherlands)

    Spiering, V.L.; Spiering, V.L.; Bouwstra, S.; Bouwstra, S.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    1993-01-01

    Thin square membranes including a deep circular corrugation are realized and tested for application in a strain-based pressure sensor. Package-induced stresses are reduced and relief of the residual stress is obtained, resulting in a larger pressure sensitivity and a reduced temperature sensitivity.

  14. Structure and Activity of an Aminoacyl-tRNA Synthetase that Charges tRNA with Nitro-Tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Buddha,M.; Crane, B.

    2005-01-01

    The most divergent of two tryptophanyl tRNA synthetases (TrpRS II) found in Deinococcus radiodurans interacts with a nitric oxide synthase protein that produces 4-nitro-tryptophan (4-NRP). TrpRS II efficiently charges transfer RNATrp with 4-NRP and 5-hydroxy-tryptophan (5-HRP). The crystal structures of TrpRS II bound to tryptophan and 5-HRP reveal residue substitutions that accommodate modified indoles. A class of auxiliary bacterial TrpRSs conserve this capacity to charge tRNA with nonstandard amino acids.

  15. Tryptophan-Rich and Proline-Rich Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Awdhesh Kumar Mishra

    2018-04-01

    Full Text Available Due to the increasing emergence of drug-resistant pathogenic microorganisms, there is a world-wide quest to develop new-generation antibiotics. Antimicrobial peptides (AMPs are small peptides with a broad spectrum of antibiotic activities against bacteria, fungi, protozoa, viruses and sometimes exhibit cytotoxic activity toward cancer cells. As a part of the native host defense system, most AMPs target the membrane integrity of the microorganism, leading to cell death by lysis. These membrane lytic effects are often toxic to mammalian cells and restrict their systemic application. However, AMPs containing predominantly either tryptophan or proline can kill microorganisms by targeting intracellular pathways and are therefore a promising source of next-generation antibiotics. A minimum length of six amino acids is required for high antimicrobial activity in tryptophan-rich AMPs and the position of these residues also affects their antimicrobial activity. The aromatic side chain of tryptophan is able to rapidly form hydrogen bonds with membrane bilayer components. Proline-rich AMPs interact with the 70S ribosome and disrupt protein synthesis. In addition, they can also target the heat shock protein in target pathogens, and consequently lead to protein misfolding. In this review, we will focus on describing the structures, sources, and mechanisms of action of the aforementioned AMPs.

  16. Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides

    KAUST Repository

    Rydberg, Hanna A.

    2012-07-10

    Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view. © 2012 American Chemical Society.

  17. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing.

    Science.gov (United States)

    Fang, Gang; Munera, Diana; Friedman, David I; Mandlik, Anjali; Chao, Michael C; Banerjee, Onureena; Feng, Zhixing; Losic, Bojan; Mahajan, Milind C; Jabado, Omar J; Deikus, Gintaras; Clark, Tyson A; Luong, Khai; Murray, Iain A; Davis, Brigid M; Keren-Paz, Alona; Chess, Andrew; Roberts, Richard J; Korlach, Jonas; Turner, Steve W; Kumar, Vipin; Waldor, Matthew K; Schadt, Eric E

    2012-12-01

    Single-molecule real-time (SMRT) DNA sequencing allows the systematic detection of chemical modifications such as methylation but has not previously been applied on a genome-wide scale. We used this approach to detect 49,311 putative 6-methyladenine (m6A) residues and 1,407 putative 5-methylcytosine (m5C) residues in the genome of a pathogenic Escherichia coli strain. We obtained strand-specific information for methylation sites and a quantitative assessment of the frequency of methylation at each modified position. We deduced the sequence motifs recognized by the methyltransferase enzymes present in this strain without prior knowledge of their specificity. Furthermore, we found that deletion of a phage-encoded methyltransferase-endonuclease (restriction-modification; RM) system induced global transcriptional changes and led to gene amplification, suggesting that the role of RM systems extends beyond protecting host genomes from foreign DNA.

  18. Construction of a recombinant single chain antibody recognizing nonreducing terminal mannose residues applicable to immunohistochemistry.

    Science.gov (United States)

    Yuasa, Noriyuki; Iida, Noriko; Sakaue, Hiroyuki; Zhang, Wei; Wilczynski, Sharon; Fujita-Yamaguchi, Yoko

    2007-10-01

    We recently reported characterization of 25 clones isolated from a phage library displaying human scFvs using a neoglycolipid Man3-DPPE, which was synthesized from mannotriose (Man3) and dipalmitoylphosphatidylethanolamine (DPPE). Of those, 5A3 scFv was successfully expressed and purified as a humanized scFv-Fc form (Sakai et al., Biochemistry 46:253, 2007, Zhang et al. ibid 263). To carry out immunohistochemistry (IHC) in human tissues, a HA tag sequence was introduced to the 5A3 scFv-Fc gene and the resulting construct was transfected to murine myeloma NS0 cells. The 5A3 scFv-Fc protein expressed was affinity-purified. Sodium dodecyl sulfate polyacrylamide gel electrophoresis under nonreducing and reducing conditions and enzyme-linked immunosorbent assay confirmed that 5A3 scFv-Fc protein is dimeric and retained the ability to recognize nonreducing terminal mannose residues. IHC staining of non-neoplastic tissues by this recombinant antibody revealed that no immunoreactivity was detectable in most of 16 tissues examined. Exceptions were found in IHC staining of kidney and pancreas, which demonstrated clear staining of proximal tubules and islet of Langerhans, respectively. These results demonstrated that nonreducing terminal mannose residues are not usually present under normal physiological conditions. This study thus provided a potentially useful tool for examination of the nonreducing terminal mannose residues, which may become exposed under certain pathophysiologycal conditions.

  19. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    Science.gov (United States)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  20. Tryptophan Scanning Reveals Dense Packing of Connexin Transmembrane Domains in Gap Junction Channels Composed of Connexin32*

    Science.gov (United States)

    Brennan, Matthew J.; Karcz, Jennifer; Vaughn, Nicholas R.; Woolwine-Cunningham, Yvonne; DePriest, Adam D.; Escalona, Yerko; Perez-Acle, Tomas; Skerrett, I. Martha

    2015-01-01

    Tryptophan was substituted for residues in all four transmembrane domains of connexin32. Function was assayed using dual cell two-electrode voltage clamp after expression in Xenopus oocytes. Tryptophan substitution was poorly tolerated in all domains, with the greatest impact in TM1 and TM4. For instance, in TM1, 15 substitutions were made, six abolished coupling and five others significantly reduced function. Only TM2 and TM3 included a distinct helical face that lacked sensitivity to tryptophan substitution. Results were visualized on a comparative model of Cx32 hemichannel. In this model, a region midway through the membrane appears highly sensitive to tryptophan substitution and includes residues Arg-32, Ile-33, Met-34, and Val-35. In the modeled channel, pore-facing regions of TM1 and TM2 were highly sensitive to tryptophan substitution, whereas the lipid-facing regions of TM3 and TM4 were variably tolerant. Residues facing a putative intracellular water pocket (the IC pocket) were also highly sensitive to tryptophan substitution. Although future studies will be required to separate trafficking-defective mutants from those that alter channel function, a subset of interactions important for voltage gating was identified. Interactions important for voltage gating occurred mainly in the mid-region of the channel and focused on TM1. To determine whether results could be extrapolated to other connexins, TM1 of Cx43 was scanned revealing similar but not identical sensitivity to TM1 of Cx32. PMID:25969535

  1. Tryptophan scanning mutagenesis of aromatic residues within the polymerase domain of HIV-1 reverse transcriptase: critical role of Phe-130 for p51 function and second-site revertant restoring viral replication capacity.

    Science.gov (United States)

    Olivares, Isabel; Gutiérrez-Rivas, Mónica; López-Galíndez, Cecilio; Menéndez-Arias, Luis

    2004-07-01

    The effects on virus viability and reverse transcriptase (RT) function of substituting Trp for Tyr or Phe residues within the polymerase domain of human immunodeficiency virus type 1 (HIV-1) RT have been analyzed with an infectious HIV-1 clone. Viruses containing mutations Y56W, F61W, F87W, F116W, Y127W, Y144W, F171W, Y181W, Y183W, Y188W, F227W, or Y232W in their RT-coding regions were viable and showed replication capacities similar or slightly reduced in comparison with the wild-type HIV-1. However, RTs bearing mutations F77W or Y146W had a dNTP-binding defect, rendering nonviable viruses. HIV-1 carrying RT mutations F124W or F130W replicated very poorly, but compensatory changes (K83R for F124W, and T58S for F130W) were selected upon passaging the virus in cell culture. The amino acid substitution F130W diminishes the stability of the 51-kDa subunit of the RT (p51) and impairs polyprotein processing in virus-infected cells, an effect that can be mitigated when T58S is found in p51.

  2. Tryptophan: a key nutrient in pig diets

    NARCIS (Netherlands)

    Jansman, A.J.M.; Floc'h Le, N.; Melchior, N.; Melchior, D.

    2007-01-01

    During the past decades, the interest in the essential amino acid tryptophan has steadily increased, especially in piglets because they are particularly sensitive to tryptophan. However, how much does the animal actually require in terms of diet, age, health and sanitary housing conditions? This

  3. Single well push-pull CO2 injection experiment for evaluating in-situ residual trapping at Heletz, Israel

    Science.gov (United States)

    Niemi, Auli; Bensabat, Jacob; Fagerlund, Fritjof; Ronen, Rona; Goren, Yoni; Perez, Lily; Tsarfis, Igal; Joodaki, Saba; Yang, Zhibing; Liang, Tian; Sauter, Martin; Hassan, Jawad; Gouze, Philippe; Rasmusson, Kristina

    2017-04-01

    The Heletz sands is a depleted oil reservoir at 1.6 km depth with saline water at its edges. In the saline part of the reservoir a CO2 injection experiment site has been developed for the purpose of scientifically motivated injection experiments, especially in the context of EU FP7 projects MUSTANG and TRUST. This presentation describes the single-well CO2 injection experiment carried out in September 2016, with the objective of determining field scale values of key CO2 trapping mechanisms, the residual and dissolution trapping. The sequence consisted in creating a residually trapped CO2 zone as well as reference hydraulic and heater tests prior and after the establishment of the zone, in order to determine the in-situ residual trapping. Monitoring included down-hole pressure and temperature measurement, distributed temperature sensing along the well via an optical fiber (DTS), U-tube sampling and tracers. We here present the experimental sequence, the monitoring and sampling system, the key results as well as the first interpretations.

  4. A single conserved basic residue in the potassium channel filter region controls KCNQ1 insensitivity toward scorpion toxins.

    Science.gov (United States)

    Chen, Zongyun; Hu, Youtian; Wang, Bin; Cao, Zhijian; Li, Wenxin; Wu, Yingliang

    2015-09-01

    Although many studies concerning the sensitivity mechanism of scorpion toxin-potassium channel interactions have been reported, few have explored the biochemical insensitivity mechanisms of potassium channel receptors toward natural scorpion toxin peptides, such as the KCNQ1 channel. Here, by sequence alignment analyses of the human KCNQ1 channel and scorpion potassium channel MmKv2, which is completely insensitive to scorpion toxins, we proposed that the insensitivity mechanism of KCNQ1 toward natural scorpion toxins might involve two functional regions, the turret and filter regions. Based on this observation, a series of KCNQ1 mutants were constructed to study molecular mechanisms of the KCNQ1 channel insensitivity toward natural scorpion toxins. Electrophysiological studies of chimera channels showed that the channel filter region controls KCNQ1 insensitivity toward the classical scorpion toxin ChTX. Interestingly, further residue mutant experiments showed that a single basic residue in the filter region determined the insensitivity of KCNQ1 channels toward scorpion toxins. Our present work showed that amino acid residue diversification at common sites controls the sensitivity and insensitivity of potassium channels toward scorpion toxins. The unique insensitivity mechanism of KCNQ1 toward natural scorpion toxins will accelerate the rational design of potent peptide inhibitors toward this channel.

  5. Single-Residue Sensitivity in Neutron Reflectivity and Resonant X-ray Reflectivity from Langmuir Monolayers of Synthetic Peptides

    Science.gov (United States)

    Strzalka, Joseph; Satija, Sushil; Dimasi, Elaine; Kuzmenko, Ivan; Gog, Thomas; Blasie, J. Kent

    2004-03-01

    Labeling groups with ^2H to distinguish them in the scattering length density (SLD) profile constitutes the chief advantage of neutron reflectivity (NR) in studying Langmuir monolayers (LM) of lipids and proteins. Solid phase synthesis (SPPS) permits the labeling of a single residue in a peptide. Recent work demonstrates the sensitivity of NR to single ^2H-labeled residues in LM of vectorially oriented α -helical bundle peptides. NR requires comparison of isomorphic samples of all-^1H and ^2H-labeled peptides. Alternately, resonant x-ray reflectivity (RXR) uses only one sample. RXR exploits energy-dependent changes in the scattering factor from heavy atoms to distinguish them within the SLD profile. Peptides may be labeled by SPPS (e.g. Br-Phe), or may have inherent labels (e.g. Fe in heme proteins). As test cases, we studied LM of Br-labeled lipids and peptides with RXR. Both approaches require a model-independent means of obtaining SLD profiles from the reflectivity data. We have applied box-refinement to obtain the gradient SLD profile. This is fit uniquely with a sum of Gaussians and integrated analytically [Blasie et al., PRB 67 224201 (2003)] to provide the SLD profile. Label positions can then be determined to sub-Ångstrom accuracy. This work supported by the NIH (GM55876).

  6. Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper D; Zehl, Martin; Jensen, Ole Nørregaard

    2009-01-01

    Because of unparalleled sensitivity and tolerance to protein size, mass spectrometry (MS) has become a popular method for measuring the solution hydrogen (1H/2H) exchange (HX) of biologically relevant protein states. While incorporated deuterium can be localized to different regions by pepsin...... proteolysis of the labeled protein, the assignment of deuteriums to individual residues is typically not obtained, thereby limiting a detailed understanding of HX and the dynamics of protein structure. Here we use gas-phase fragmentation of peptic peptides by electron transfer dissociation (ETD) to measure...... the HX of individual amide linkages in the amyloidogenic protein beta2-microglobulin. A comparison of the deuterium levels of 60 individual backbone amides of beta2-microglobulin measured by HX-ETD-MS analysis to the corresponding values measured by NMR spectroscopy shows an excellent correlation...

  7. Orientation of cutinase adsorbed onto PMMA nanoparticles probed by tryptophan fluorescence.

    Science.gov (United States)

    Santos, Andrea M; Fedorov, Aleksander; Martinho, José M G; Baptista, Ricardo P; Taipa, Maria Angela; Cabral, Joaquim M S

    2008-03-27

    The fluorescence of the single tryptophan (Trp69) of cutinase from Fusarium solani pisi, free in aqueous solution and adsorbed onto the surface of poly(methyl methacrylate) (PMMA) latex particles, was studied at pHs of 4.5 and 8.0. The monodisperse PMMA particles (d=106.0+/-0.1 nm) were coated with a quite compact monolayer of cutinase at both pH values. The Trp decay curve of the folded free cutinase in solution can only be fitted with a sum of four exponentials with lifetimes of 0.05, 0.3-0.4, 2-3, and 6-7 ns, irrespective of pH. The 50 ps lifetime is attributed to the population of Trp residues hydrogen bonded with the Ala32 and strongly quenched by a close disulfide bridge, while the other lifetimes are due to the non-hydrogen-bonded Trp rotamers. The 50 ps Trp lifetime component disappears by temperature melting and upon protein adsorption, owing to the disruption of the Trp-Ala hydrogen bond and the release of the Trp residue from the vicinity of the disulfide bridge. This shows that cutinase adsorption occurs by the region of the protein where the Trp is located, which agrees with the retention of cutinase enzymatic activity by adsorption at basic pH.

  8. L-Tryptophan Production in Escherichia coli Improved by Weakening the Pta-AckA Pathway.

    Science.gov (United States)

    Liu, Lina; Duan, Xuguo; Wu, Jing

    2016-01-01

    Acetate accumulation during the fermentation process of Escherichia coli FB-04, an L-tryptophan production strain, is detrimental to L-tryptophan production. In an initial attempt to reduce acetate formation, the phosphate acetyltransferase gene (pta) from E. coli FB-04 was deleted, forming strain FB-04(Δpta). Unfortunately, FB-04(Δpta) exhibited a growth defect. Therefore, pta was replaced with a pta variant (pta1) from E. coli CCTCC M 2016009, forming strain FB-04(pta1). Pta1 exhibits lower catalytic capacity and substrate affinity than Pta because of a single amino acid substitution (Pro69Leu). FB-04(pta1) lacked the growth defect of FB-04(Δpta) and showed improved fermentation performance. Strain FB-04(pta1) showed a 91% increase in L-tryptophan yield in flask fermentation experiments, while acetate production decreased by 35%, compared with its parent FB-04. Throughout the fed-batch fermentation process, acetate accumulation by FB-04(pta1) was slower than that by FB-04. The final L-tryptophan titer of FB-04(pta1) reached 44.0 g/L, representing a 15% increase over that of FB-04. Metabolomics analysis showed that the pta1 genomic substitution slightly decreased carbon flux through glycolysis and significantly increased carbon fluxes through the pentose phosphate and common aromatic pathways. These results indicate that this strategy enhances L-tryptophan production and decreases acetate accumulation during the L-tryptophan fermentation process.

  9. Single-Use Sensor Strips for Reliable Field Analysis of Gunshot Residue

    Science.gov (United States)

    2013-10-13

    determined in a single GSR assay. Wearable textile -based printed electrodes were also examined towards a ’Lab-on-Sleeve’ forensic field analysis. New...Example of the different cyclic square-wave stripping voltammetric signals obtained with “swiping” samples at a bare SPCE electrode . Score plot of the...A) The Forensic Finger exhibiting the three electrode surface screen-printed onto a flexible nitrile finger cot (bottom left inset), as well as a

  10. Simulation investigation of thermal phase transformation and residual stress in single pulse EDM of Ti-6Al-4V

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2018-04-01

    The thermal phase transformation and residual stress are ineluctable in the electrical discharge machining (EDM) process, and they will greatly affect the working performances of the machined surface. This paper presents a simulation study on the thermal phase transformation and residual stress in single-pulse EDM of Ti-6Al-4V, which is the most popular titanium alloy in fields such as aircraft engine and some other leading industries. A multi-physics model including thermal, hydraulic, metallography and structural mechanics was developed. Based on the proposed model, the thickness and metallographic structure of the recast layer and heat affected layer (HAZ) were investigated. The distribution and characteristics of residual stress around the discharge crater were obtained. The recast layer and HAZ at the center of crater are found to be the thinnest, and their thicknesses gradually increase approaching the periphery of the crater. The recast layer undergoes a complete α‧ (martensitic) transformation, while the HAZ is mainly composed by the α  +  β  +  α‧ three-phase microstructure. Along the depth direction of crater, the Von Mises stress increases first and then decreases, reaching its maximal value near the interface of recast layer and HAZ. In the recast layer, both compressive stress component and tensile stress component are observed. ANOVA results showed that the influence of discharge current on maximal tensile stress is more significant than that of pulse duration, while the pulse duration has more significant influence on average thickness of the recast layer and the depth location of the maximal tensile stress. The works conducted in this study will help to evaluate the quality and integrity of EDMed surface, especially when the non-destructive testing is difficult to achieve.

  11. Fluorescence properties of porcine odorant binding protein Trp 16 residue

    Energy Technology Data Exchange (ETDEWEB)

    Albani, Jihad Rene, E-mail: Jihad-Rene.Albani@univ-lille1.f [Laboratoire de Biophysique Moleculaire, Universite des Sciences et Technologies de Lille, F-59655 Villeneuve d' Ascq Cedex (France)

    2010-11-15

    Summary: The present work deals with fluorescence studies of adult porcine odorant binding protein at pH=7.5. At this pH, the protein is a dimer, each monomer contains one tryptophan residue. Our results show that tryptophan residue displays significant motions and emits with three fluorescence lifetimes. Decay associated spectra showed that the three lifetime's components emanate from sub-structures surrounded by the same microenvironment.

  12. Pharmacokinetics and egg residues after oral administration of a single dose of meloxicam in domestic chickens (Gallus domesticus).

    Science.gov (United States)

    Souza, Marcy J; Bergman, Joan B; White, Molly S; Gordon, Kristen I; Gerhardt, Lillian E; Cox, Sherry K

    2017-08-01

    OBJECTIVE To determine the pharmacokinetics of meloxicam in domestic hens and duration and quantity of drug residues in their eggs following PO administration of a single dose (1 mg of meloxicam/kg). ANIMALS 8 healthy adult White Leghorn hens. PROCEDURES Hens were administered 1 mg of meloxicam/kg PO once. A blood sample was collected immediately before and at intervals up to 48 hours after drug administration. The hens' eggs were collected for 3 weeks after drug administration. Samples of the hens' plasma, egg whites (albumen), and egg yolks were analyzed by high-performance liquid chromatography. RESULTS The half-life, maximum concentration, and time to maximum concentration of meloxicam in plasma samples were 2.8 hours, 7.21 μg/mL, and 2 hours, respectively. Following meloxicam administration, the drug was not detected after 4 days in egg whites and after 8 days in egg yolks. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that meloxicam administered at a dose of 1 mg/kg PO in chickens appears to maintain plasma concentrations equivalent to those reported to be therapeutic for humans for 12 hours. The egg residue data may be used to aid establishment of appropriate drug withdrawal time recommendations.

  13. [Acute tryptophan depletion in eating disorders].

    Science.gov (United States)

    Díaz-Marsa, M; Lozano, C; Herranz, A S; Asensio-Vegas, M J; Martín, O; Revert, L; Saiz-Ruiz, J; Carrasco, J L

    2006-01-01

    This work describes the rational bases justifying the use of acute tryptophan depletion technique in eating disorders (ED) and the methods and design used in our studies. Tryptophan depletion technique has been described and used in previous studies safely and makes it possible to evaluate the brain serotonin activity. Therefore it is used in the investigation of hypotheses on serotonergic deficiency in eating disorders. Furthermore, and given the relationship of the dysfunctions of serotonin activity with impulsive symptoms, the technique may be useful in biological differentiation of different subtypes, that is restrictive and bulimic, of ED. 57 female patients with DSM-IV eating disorders and 20 female controls were investigated with the tryptophan depletion test. A tryptophan-free amino acid solution was administered orally after a two-day low tryptophan diet to patients and controls. Free plasma tryptophan was measured at two and five hours following administration of the drink. Eating and emotional responses were measured with specific scales for five hours following the depletion. A study of the basic characteristics of the personality and impulsivity traits was also done. Relationship of the response to the test with the different clinical subtypes and with the temperamental and impulsive characteristics of the patients was studied. The test was effective in considerably reducing plasma tryptophan in five hours from baseline levels (76%) in the global sample. The test was well tolerated and no severe adverse effects were reported. Two patients withdrew from the test due to gastric intolerance. The tryptophan depletion test could be of value to study involvement of serotonin deficits in the symptomatology and pathophysiology of eating disorders.

  14. Study of radiolytic effect on residual ethylene oxide in perfusion devices for single use by using gas chromatography

    International Nuclear Information System (INIS)

    Wang Mingsuo; Teng Weifang; Liu Keliang; Feng Jixin; Su Liaoyuan

    1993-01-01

    The efficiency of the 60 Co γ-rays irradiation induced elimination reaction of residual ethylene oxide (RETO) in the perfusion devices for single use conducted with RETO gas chromatography has been studied. The observations show: 1. the splinting reaction of RETO absorbed by the infusion sets after ethylene oxide (ETO) sterilization occurred accompanied with 4 kGy irradiation, therefore the relative elimination percentage (RELP) calculated from RETO is over 90%. 2. the optimum radiation conditions are as following irradiation dose 4 kGy, dose rate 8 Gy/min, irradiation temperature 20 degree C. 3. the RETO content within medical infusion sets at 2 weeks storing time after radiation was probably controlled under 2.0 ppm. 4. the radiation chemistry mechanism of the RETO elimination reaction is discussed in relation to the primary and secondary actions of elimination reaction

  15. Contaminant Release from Residual Waste in Closed Single-Shell Tanks and Other Waste Forms Associated with the Tanks

    International Nuclear Information System (INIS)

    Deutsch, William J.

    2008-01-01

    This chapter describes the release of contaminants from the various waste forms that are anticipated to be associated with closure of the single-shell tanks. These waste forms include residual sludge or saltcake that will remain in the tanks after waste retrieval. Other waste forms include engineered glass and cementitious materials as well as contaminated soil impacted by previous tank leaks. This chapter also describes laboratory testing to quantify contaminant release and how the release data are used in performance/risk assessments for the tank waste management units and the onsite waste disposal facilities. The chapter ends with a discussion of the surprises and lessons learned to date from the testing of waste materials and the development of contaminant release models

  16. A residual-based a posteriori error estimator for single-phase Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin

    2016-12-09

    In this paper we develop an a posteriori error estimator for a mixed finite element method for single-phase Darcy flow in a two-dimensional fractured porous media. The discrete fracture model is applied to model the fractures by one-dimensional fractures in a two-dimensional domain. We consider Raviart–Thomas mixed finite element method for the approximation of the coupled Darcy flows in the fractures and the surrounding porous media. We derive a robust residual-based a posteriori error estimator for the problem with non-intersecting fractures. The reliability and efficiency of the a posteriori error estimator are established for the error measured in an energy norm. Numerical results verifying the robustness of the proposed a posteriori error estimator are given. Moreover, our numerical results indicate that the a posteriori error estimator also works well for the problem with intersecting fractures.

  17. Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution

    DEFF Research Database (Denmark)

    Zehl, Martin; Rand, Kasper D; Jensen, Ole N

    2008-01-01

    Mass spectrometry is routinely applied to measure the incorporation of deuterium into proteins and peptides. The exchange of labile, heteroatom-bound hydrogens is mainly used to probe the structural dynamics of proteins in solution, e.g., by hydrogen-exchange mass spectrometry, but also to study...... the gas-phase structure and fragmentation mechanisms of polypeptide ions. Despite considerable effort in recent years, there is no widely established mass spectrometric method to localize the incorporated deuterium to single amino acid residues, and typically, only the overall deuterium content...... of peptides or proteins is obtained. The main reason for this is that CID and related techniques induce intramolecular migration of hydrogens ("hydrogen scrambling") upon vibrational excitation of the even-electron precursor ion, thus randomizing the positional distribution of the incorporated deuterium atoms...

  18. Protein residue linking in a single spectrum for magic-angle spinning NMR assignment

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Loren B.; Stanek, Jan; Marchand, Tanguy Le; Bertarello, Andrea; Paepe, Diane Cala-De; Lalli, Daniela; Krejčíková, Magdaléna; Doyen, Camille; Öster, Carl [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France); Knott, Benno; Wegner, Sebastian; Engelke, Frank [Bruker Biospin (Germany); Felli, Isabella C.; Pierattelli, Roberta [University of Florence, Department of Chemistry “Ugo Schiff“and Magnetic Resonance Center (CERM) (Italy); Dixon, Nicholas E. [University of Wollongong, School of Chemistry (Australia); Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France)

    2015-07-15

    Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH.

  19. A Single Coxsackievirus B2 Capsid Residue Controls Cytolysis and Apoptosis in Rhabdomyosarcoma Cells

    DEFF Research Database (Denmark)

    Gullberg, M.; Tolf, C.; Jonsson, N.

    2010-01-01

    genetics, we identified a single amino acid change within the exposed region of the VP1 protein (glutamine to lysine at position 164) as the determinant for the acquired cytolytic trait. Moreover, this cytolytic virus induced apoptosis, including caspase activation and DNA degradation, in RD cells......) was originally isolated from a patient with summer grippe in the 1950s. Later on, CVB2O was adapted to cytolytic replication in rhabdomyosarcoma (RD) cells. Here, we present analyses of the correlation between the adaptive mutations of this RD variant and the cytolytic infection in RD cells. Using reverse....... These findings contribute to our understanding of the host cell adaptation process of CVB2O and provide a valuable tool for further studies of virus-host interactions....

  20. A single gp120 residue can affect HIV-1 tropism in macaques.

    Directory of Open Access Journals (Sweden)

    Gregory Q Del Prete

    2017-09-01

    Full Text Available Species-dependent variation in proteins that aid or limit virus replication determines the ability of lentiviruses to jump between host species. Identifying and overcoming these differences facilitates the development of animal models for HIV-1, including models based on chimeric SIVs that express HIV-1 envelope (Env glycoproteins, (SHIVs and simian-tropic HIV-1 (stHIV strains. Here, we demonstrate that the inherently poor ability of most HIV-1 Env proteins to use macaque CD4 as a receptor is improved during adaptation by virus passage in macaques. We identify a single amino acid, A281, in HIV-1 Env that consistently changes during adaptation in macaques and affects the ability of HIV-1 Env to use macaque CD4. Importantly, mutations at A281 do not markedly affect HIV-1 Env neutralization properties. Our findings should facilitate the design of HIV-1 Env proteins for use in non-human primate models and thus expedite the development of clinically relevant reagents for testing interventions against HIV-1.

  1. 2D IR cross peaks reveal hydrogen-deuterium exchange with single residue specificity.

    Science.gov (United States)

    Dunkelberger, Emily B; Woys, Ann Marie; Zanni, Martin T

    2013-12-12

    A form of chemical exchange, hydrogen-deuterium exchange (HDX), has long been used as a method for studying the secondary and tertiary structure of peptides and proteins using mass spectrometry and NMR spectroscopy. Using two-dimensional infrared (2D IR) spectroscopy, we resolve cross peaks between the amide II band and a (13)C(18)O isotope-labeled amide I band, which we show measures HDX with site-specific resolution. By rapidly scanning 2D IR spectra using mid-IR pulse shaping, we monitor the kinetics of HDX exchange on-the-fly. For the antimicrobial peptide ovispirin bound to membrane bilayers, we find that the amide II peak decays with a biexponential with rate constants of 0.54 ± 0.02 and 0.12 ± 0.01 min(-1), which is a measure of the overall HDX in the peptide. The cross peaks between Ile-10-labeled ovispirin and the amide II mode, which specifically monitor HDX kinetics at Ile-10, decay with a single rate constant of 0.36 ± 0.1 min(-1). Comparing this exchange rate to theoretically determined exchange rates of Ile-10 for ovispirin in a solution random coil configuration, the exchange rate at Ile-10 is at least 100 times slower, consistent with the known α-helix structure of ovispirin in bilayers. Because backbone isotope labels produce only a very small shift of the amide II band, site-specific HDX cannot be measured with FTIR spectroscopy, which is why 2D IR spectroscopy is needed for these measurements.

  2. Tryptophan exposure and accessibility in the chitooligosaccharide-specific phloem exudate lectin from pumpkin (Cucurbita maxima). A fluorescence study.

    Science.gov (United States)

    Narahari, Akkaladevi; Swamy, Musti J

    2009-10-06

    The exposure and accessibility of the tryptophan residues in the chitooligosaccharide-specific pumpkin (Cucurbita maxima) phloem exudate lectin (PPL) have been investigated by fluorescence spectroscopy. The emission lambda(max) of native PPL, seen at 338nm was red-shifted to 348nm upon denaturation by 6M Gdn.HCl in the presence of 10mM beta-mercaptoethanol, indicating near complete exposure of the tryptophan residues to the aqueous medium, whereas a blue-shift to 335nm was observed in the presence of saturating concentrations of chitotriose, suggesting that ligand binding leads to a decrease in the solvent exposure of the tryptophan residues. The extent of quenching was maximum with the neutral molecule, acrylamide whereas the ionic species, iodide and Cs(+) led to significantly lower quenching, which could be attributed to the presence of charged amino acid residues in close proximity to some of the tryptophan residues. The Stern-Volmer plot for acrylamide was linear for native PPL and upon ligand binding, but became upward curving upon denaturation, indicating that the quenching occurs via a combination of static and dynamic mechanisms. In time-resolved fluorescence experiments, the decay curves could be best fit to biexponential patterns, for native protein, in the presence of ligand and upon denaturation. In each case both lifetimes systematically decreased with increasing acrylamide concentrations, indicating that quenching occurs predominantly via a dynamic process.

  3. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    Science.gov (United States)

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  4. Ultrafast polarized fluorescence measurements on tryptophan and a tryptophan-containing peptide

    NARCIS (Netherlands)

    Larsen, O.F.A.; van Stokkum, I.H.M.; Pandit, A.; van Grondelle, R.; van Amerongen, H.

    2003-01-01

    In this work polarized picosecond fluorescence measurements were performed on isolated tryptophan and tryptophan in a small 22-mer peptide using a streak camera coupled to a spectrograph as a detection system. In both cases the fluorescence decay was multiexponential with decay times of ∼500 ps and

  5. Ultrafast polarized fluorescence measurements on Tryptophan and a Tryptophan-containing peptide

    NARCIS (Netherlands)

    Larsen, O.F.A.; Stokkum, van I.H.M.; Pandit, A.; Grondelle, van R.; Amerongen, van H.

    2003-01-01

    In this work polarized picosecond fluorescence measurements were performed on isolated tryptophan and tryptophan in a small 22-mer peptide using a streak camera coupled to a spectrograph as a detection system. In both cases the fluorescence decay was multiexponential with decay times of similar

  6. Tryptophan auxotrophs were obtained by random transposon insertions in the Methanococcus maripaludis tryptophan operon.

    Science.gov (United States)

    Porat, Iris; Whitman, William B

    2009-08-01

    Methanococcus maripaludis is an anaerobic, methane-producing archaeon that utilizes H(2) or formate for the reduction of CO(2) to methane. Tryptophan auxotrophs were constructed by in vitro insertions of the Tn5 transposon into the tryptophan operon, followed by transformation into M. maripaludis. This method could serve for rapid insertions into large cloned DNA regions.

  7. Crucial Roles of Single Residues in Binding Affinity, Specificity, and Promiscuity in the Cellulosomal Cohesin-Dockerin Interface*

    Science.gov (United States)

    Slutzki, Michal; Reshef, Dan; Barak, Yoav; Haimovitz, Rachel; Rotem-Bamberger, Shahar; Lamed, Raphael; Bayer, Edward A.; Schueler-Furman, Ora

    2015-01-01

    Interactions between cohesin and dockerin modules play a crucial role in the assembly of multienzyme cellulosome complexes. Although intraspecies cohesin and dockerin modules bind in general with high affinity but indiscriminately, cross-species binding is rare. Here, we combined ELISA-based experiments with Rosetta-based computational design to evaluate the contribution of distinct residues at the Clostridium thermocellum cohesin-dockerin interface to binding affinity, specificity, and promiscuity. We found that single mutations can show distinct and significant effects on binding affinity and specificity. In particular, mutations at cohesin position Asn37 show dramatic variability in their effect on dockerin binding affinity and specificity: the N37A mutant binds promiscuously both to cognate (C. thermocellum) as well as to non-cognate Clostridium cellulolyticum dockerin. N37L in turn switches binding specificity: compared with the wild-type C. thermocellum cohesin, this mutant shows significantly increased preference for C. cellulolyticum dockerin combined with strongly reduced binding to its cognate C. thermocellum dockerin. The observation that a single mutation can overcome the naturally observed specificity barrier provides insights into the evolutionary dynamics of this system that allows rapid modulation of binding specificity within a high affinity background. PMID:25833947

  8. Tryptophan catabolizing enzymes – party of three

    Directory of Open Access Journals (Sweden)

    Helen J Ball

    2014-10-01

    Full Text Available Indoleamine 2,3-dioxygenase (IDO and tryptophan 2,3-dioxygenase (TDO are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway. The depletion of tryptophan and formation of kynurenine pathway metabolites modulates the activity of the mammalian immune, reproductive and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties and biological functions. This review analyses the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.

  9. Risk factors for poor outcome of a single Epley maneuver and residual positional vertigo in patients with benign paroxysmal positional vertigo.

    Science.gov (United States)

    Sato, Go; Sekine, Kazunori; Matsuda, Kazunori; Takeda, Noriaki

    2013-11-01

    The findings suggest that in patients with posterior semicircular canal (PSCC) benign paroxysmal positional vertigo (P-BPPV), head trauma and prolonged bedrest, but not inner ear disease, are risk factors for poor outcome of a single Epley maneuver and persistent residual positional vertigo. We first examined the efficacy of a single Epley maneuver and then assessed the time course in remission of residual positional vertigo in patients with idiopathic P-BPPV and secondary P-BPPV. A total of 157 patients with idiopathic P-BPPV and 40 patients with secondary P-BPPV (secondary to head trauma in 8 patients, to prolonged bedrest in 14 patients, and to inner ear disease in 18 patients) were treated with a single Epley maneuver. The negative rates of the Dix-Hallpike test on day 7 after a single Epley maneuver in both patients with P-BPPV secondary to head trauma (25%) and those with prolonged bedrest (36%) were significantly lower than that (73%) in patients with idiopathic P-BPPV. Additionally, the remission of residual positional vertigo in the former groups of patients was significantly delayed in comparison with that of the latter group. However, there were no significant differences in the efficacy of a single Epley maneuver and persistent residual positional vertigo between idiopathic P-BPPV and P-BPPV secondary to inner ear disease.

  10. Evolution and function of the Mycoplasma hyopneumoniae peroxiredoxin, a 2-Cys-like enzyme with a single Cys residue.

    Science.gov (United States)

    Gonchoroski, Taylor; Virginio, Veridiana G; Thompson, Claudia E; Paes, Jéssica A; Machado, Cláudio X; Ferreira, Henrique B

    2017-04-01

    The minimal genome of the mollicute Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia, encodes a limited repertoire of antioxidant enzymes that include a single and atypical peroxiredoxin (MhPrx), whose evolution and function were studied here. MhPrx has only one catalytic cysteine, in contrast with some of its possible ancestors (2-Cys peroxiredoxins), which have two. Although it is more similar to 2-Cys orthologs, MhPrx can still function with a single peroxidatic cysteine (Cys P ), using non-thiolic electron donors to reduce it. Therefore, MhPrx could be a representative of a possible group of 2-Cys peroxiredoxins, which have lost the resolving cysteine (Cys R ) residue without losing their catalytic properties. To further investigate MhPrx evolution, we performed a comprehensive phylogenetic analysis in the context of several bacterial families, including Prxs belonging to Tpx and AhpE families, shedding light on the evolutionary history of Mycoplasmataceae Prxs and giving support to the hypothesis of a relatively recent loss of the Cys R within this family. Moreover, mutational analyses provided insights into MhPrx function with one, two, or without catalytic cysteines. While removal of the MhPrx putative Cys P caused complete activity loss, confirming its catalytic role, the introduction of a second cysteine in a site correspondent to that of the Cys R of a 2-Cys orthologue, as in the MhPrx supposed ancestral form, was compatible with enzyme activity. Overall, our phylogenetic and mutational studies support that MhPrx recently diverged from a 2-Cys Prx ancestor and pave the way for future studies addressing structural, functional, and evolutive aspects of peroxiredoxin subfamilies in Mollicutes and other bacteria.

  11. A Single Residue Mutation in the Gαq Subunit of the G Protein Complex Causes Blindness in Drosophila

    Directory of Open Access Journals (Sweden)

    Jinguo Cao

    2018-01-01

    Full Text Available Heterotrimeric G proteins play central roles in many signaling pathways, including the phototransduction cascade in animals. However, the degree of involvement of the G protein subunit Gαq is not clear since animals with previously reported strong loss-of-function mutations remain responsive to light stimuli. We recovered a new allele of Gαq in Drosophila that abolishes light response in a conventional electroretinogram assay, and reduces sensitivity in whole-cell recordings of dissociated cells by at least five orders of magnitude. In addition, mutant eyes demonstrate a rapid rate of degeneration in the presence of light. Our new allele is likely the strongest hypomorph described to date. Interestingly, the mutant protein is produced in the eyes but carries a single amino acid change of a conserved hydrophobic residue that has been assigned to the interface of interaction between Gαq and its downstream effector, PLC. Our study has thus uncovered possibly the first point mutation that specifically affects this interaction in vivo.

  12. Purification and Characterization of Tryptophan Hydroxylase

    DEFF Research Database (Denmark)

    Haahr, Lærke Tvedebrink

    catalyzes the hydroxylation of tryptophan to 5-hydroxytryptophan, which is the rate-limiting step in the biosynthesis ofserotonin. Serotonin is an important neurotransmitter, which is involved in a range of psychiatric disorders including depression and obsessive-compulsive disorder. The goal...... compared to the Fe(III) form. Furthermore, the addition of substrates and cofactor only stabilizes chTPH2 when Fe(II) is present. Isothermal titration calorimetry measurements on chTPH2 determined the dissociation constant of BH2 to 5 μM, while the dissociation constant for tryptophan is somewhat higher...

  13. Mechanism of decline in rat brain 5-hydroxytryptamine after induction of liver tryptophan pyrrolase by hydrocortisone: roles of tryptophan catabolism and kynurenine synthesis

    OpenAIRE

    Young, Simon N.

    1981-01-01

    1 Two mechanisms have been proposed to explain the decline in brain tryptophan and 5-hydroxytryptamine (5-HT) after administration of hydrocortisone and the subsequent induction of liver pyrrolase. These are depletion of tryptophan by high rates of tryptophan catabolism and inhibition of tryptophan uptake by elevated levels of the tryptophan catabolite, kynurenine.

  14. Improving therapeutics in anorexia nervosa with tryptophan.

    Science.gov (United States)

    Haleem, Darakhshan Jabeen

    2017-06-01

    A growing body of evidence suggests that our diet is an important contributing factor in the development, management and prevention of a number of psychiatric illnesses. Tryptophan, an essential amino acid, is the sole precursor of neurotransmitter 5-hydroxytryptamine (5-HT; serotonin). Administration of tryptophan can boost serotonin neurotransmission to produce therapeutically important effects in serotonin deficiency disorders. Anorexia nervosa (AN) an eating disorder associated with high levels of psychiatric comorbidity including psychosis, hyperactivity, depression and anxiety has highest lethality of all psychiatric illnesses. Evidence suggests that excessive dieting and food restriction can decrease brain tryptophan and serotonin in AN patients to precipitate depression, psychosis and hyperactivity. There are currently no FDA approved pharmacological treatments available for AN patients; antidepressants and antipsychotics, largely used to treat associated psychiatric comorbidities are also not very effective. The aim of this non-systematic review article is to evaluate and document a potential importance of tryptophan supplementation in improving therapeutics in AN patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Tryptophan and kynurenines: continuing to court controversy.

    Science.gov (United States)

    Stone, Trevor W

    2016-08-01

    The role of the amino acid tryptophan in the generation of 5-hydroxy-tryptamine (5-HT) has been expanded over the past 30 years with recognition that its oxidation by indoleamine-2,3-dioxygenase (IDO) results in the formation of kynurenine and metabolites which regulate neuronal excitability, psychiatric status, immune cell activity and balance, and probably implantation and the development of embryos. While the amount of work on this kynurenine pathway continues to accelerate, it is important that disagreements about results, differences of interpretation or problems with technical issues are presented openly and discussed thoroughly so that new research is not mis-led in ways that could have been foreseen. In this issue of Clinical Science, Badawy et al. discuss in depth two opposing views of how changes in tryptophan availability or utilisation bring about their effects on cell function. The original concept that local depletion of tryptophan is responsible seems to be less attractive than the view that kynurenine and its metabolites have direct, potent actions on cells. This conclusion not only clarifies our understanding of the importance of tryptophan metabolism to kynurenine but also raises the possibility that the actions of those metabolites could be novel targets for the development of agonists and antagonists with a range of medical implications. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. Critical role for a single leucine residue in leukemia induction by E2A-PBX1.

    Science.gov (United States)

    Bayly, Richard; Murase, Takayuki; Hyndman, Brandy D; Savage, Rachel; Nurmohamed, Salima; Munro, Kim; Casselman, Richard; Smith, Steven P; LeBrun, David P

    2006-09-01

    In roughly 5% of cases of acute lymphoblastic leukemia, a chromosomal translocation leads to expression of the oncogenic protein E2A-PBX1. The N-terminal portion of E2A-PBX1, encoded by the E2A gene, is identical in sequence to the corresponding portion of the E proteins E12/E47 and includes transcriptional activation domains. The C terminus consists of most of the HOX interacting transcription factor PBX1, including its DNA-binding homeodomain. Structure-function correlative experiments have suggested that oncogenesis by E2A-PBX1 requires an activation domain, called AD1, at the extreme N terminus. We recently demonstrated that a potentially helical portion of AD1 interacts directly with the transcriptional coactivator protein cyclic AMP response element-binding protein (CBP) and that this interaction is essential in the immortalization of primary bone marrow cells in tissue culture. Here we show that a conserved LXXLL motif within AD1 is required in the interaction between E2A-PBX1 and the KIX domain of CBP. We show by circular dichroism spectroscopy that the LXXLL-containing portion of AD1 undergoes a helical transition upon interacting with the KIX domain and that amino acid substitutions that prevent helix formation prevent both the KIX interaction and cell immortalization by E2A-PBX1. Perhaps most strikingly, substitution of a single, conserved leucine residue (L20) within the LXXLL motif impairs leukemia induction in mice after transplantation with E2A-PBX1-expressing bone marrow. The KIX domain of CBP mediates well-characterized interactions with several transcription factors of relevance to leukemia induction. Circumstantial evidence suggests that the side chain of L20 might interact with a deep hydrophobic pocket in the KIX domain. Therefore, our results serve to identify a potential new drug target.

  17. The Effects of Dietary Tryptophan on Affective Disorders

    Science.gov (United States)

    Lindseth, Glenda; Helland, Brian; Caspers, Julie

    2014-01-01

    Using a randomized crossover study design, 25 healthy young adults were examined for differences in anxiety, depression, and mood after consuming a high tryptophan and a low tryptophan diet for four days each. There was a two week washout between the diets. A within-subjects analysis of the participants’ mood indicated significantly (p tryptophan diet as compared to a low tryptophan diet. Negative affect differences between the diets were not statistically significant (p > .05). Also, consuming more dietary tryptophan resulted in (p < .05) less depressive symptoms and decreased anxiety. PMID:25858202

  18. Tryptophan Transport in Human Fibroblast Cells—A Functional Characterization

    Directory of Open Access Journals (Sweden)

    Ravi Vumma

    2011-01-01

    Full Text Available There are indications that serotonergic neurotransmission is disturbed in several psychiatric disorders. One explanation may be disturbed transport of tryptophan (precursor for serotonin synthesis across cell membranes. Human fibroblast cells offer an advantageous model to study the transport of amino acids across cell membranes, since they are easy to propagate and the environmental factors can be controlled. The aim of this study was to functionally characterize tryptophan transport and to identify the main transporters of tryptophan in fibroblast cell lines from healthy controls. Tryptophan kinetic parameters ( V max and K m at low and high concentrations were measured in fibroblasts using the cluster tray method. Uptake of 3 H (5-L-tryptophan at different concentrations in the presence and absence of excess concentrations of inhibitors or combinations of inhibitors of amino acid transporters were also measured. Tryptophan transport at high concentration (0.5 mM had low affinity and high V max and the LAT1 isoform of system-L was responsible for approximately 40% of the total uptake of tryptophan. In comparison, tryptophan transport at low concentration (50 nM had higher affinity, lower V max and approximately 80% of tryptophan uptake was transported by system-L with LAT1 as the major isoform. The uptake of tryptophan at the low concentration was mainly sodium (Na + dependent, while uptake at high substrate concentration was mainly Na + independent. A series of different transporter inhibitors had varying inhibitory effects on tryptophan uptake. This study indicates that tryptophan is transported by multiple transporters that are active at different substrate concentrations in human fibroblast cells. The tryptophan transport trough system-L was mainly facilitated by the LAT1 isoform, at both low and high substrate concentrations of tryptophan.

  19. Modulating short tryptophan- and arginine-rich peptides activity by substitution with histidine.

    Science.gov (United States)

    Bacalum, Mihaela; Janosi, Lorant; Zorila, Florina; Tepes, Ana-Maria; Ionescu, Cristina; Bogdan, Elena; Hadade, Niculina; Craciun, Liviu; Grosu, Ion; Turcu, Ioan; Radu, Mihai

    2017-07-01

    High antimicrobial efficacy of short tryptophan-and arginine-rich peptides makes them good candidates in the fight against pathogens. Substitution of tryptophan and arginine by histidine could be used to modulate the peptides efficacy by optimizing their structures. The peptide (RRWWRWWRR), reported to showed good antimicrobial efficacy, was used as template, seven new analogs being designed substituting tryptophan or arginine with histidine. The peptides' efficacy was tested against E. coli, B. subtilis and S. aureus. The cytotoxicity and hemolytic effect were evaluated and the therapeutic index was inferred for each peptide. Atomic force microscopy and molecular simulation were used to analyze the effects of peptides on bacterial membrane. The substitution of tryptophan by histidine proved to strongly modulate the antimicrobial activity, mainly by changing the peptide-to-membrane binding energy. The substitution of arginine has low effect on the antimicrobial efficacy. The presence of histidine residue reduced the cytotoxic and hemolytic activity of the peptides in some cases maintaining the same efficacy against bacteria. The peptides' antimicrobial activity was correlated to the 3D-hydrophobic moment and to a simple structure-based packing parameter. The results show that some of these peptides have the potential to become good candidates to fight against bacteria. The substitution by histidine proved to fine tune the therapeutic index allowing the optimization of the peptide structure mainly by changing its binding energy and 3D-hydrophobic moment. The short tryptophan reach peptides therapeutic index can be maximized using the histidine substitution to optimize their structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Expression, Purification and Characterisation of Tryptophan Hydroxylases

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo

    2007-01-01

    og co-substratet tetrahydrobiopterin spalter dioxygen (O2) så det ene oxygen-atom indsættes i aminosyren tryptophan. Der findes to forskellige former af TPH: TPH-1 findes flere forskellige steder i kroppen, mens TPH-2 findes i hjernen hvor det har afgørende betydning for mængden af serotonin i...... tetrahydro-biopterin og O2. Denne opdagelse er meget vigtig for udvikling af lægemidler, som individuelt kan regulere TPH-1s eller TPH-2s enzymaktivitet. Desuden er det vist, at tryptophan binder til TPH før tetrahydrobiopterin og O2. Den 3-dimensionelle struktur af TPH-1 er bestemt ved brug af...

  1. Undetected residual cement on standard or individualized all-ceramic abutments with cemented zirconia single crowns - a prospective randomized pilot trial.

    Science.gov (United States)

    Kappel, Stefanie; Eiffler, Constantin; Lorenzo-Bermejo, Justo; Stober, Thomas; Rammelsberg, Peter

    2016-09-01

    To assess the frequency and amount of residual cement after attachment of monolithic zirconia crowns to standard and individualized ceramic abutments. Twenty patients (mean age 58.9 years at inclusion in the study; 30% male) were randomized to receive either a standard or an individualized abutment on a bone-level implant. Monolithic zirconia single crowns were attached to abutments by use of permanent glass-ionomer cement. Crowns were fabricated with an occlusal hole to enable unscrewing of the abutment-crown complex. Immediately after cementation, superstructures were removed and both the peri-implant soft tissue and the abutment-crown complex were photographed in a standardized manner, to detect residual cement. Photographs were analyzed using Corel Photo Paint X7, and residual cement-to-total abutment and residual cement-to-peri-implant soft tissue area ratios were calculated. Residual cement was observed for 9 of 10 (90%) individualized abutments, compared with 4 of 10 (40%) standard abutments (OR = 13.5, P = 0.049). Twenty-seven of 40 (68%) individualized abutment surfaces were affected, compared with 12 of 40 (30%) standard abutment surfaces. The probability of observing residual cement was approximately five times higher for the surfaces of individualized abutments than for those of standard abutments (P = 0.005). The mean amount of sulcus surface covered by cement was 1.17% (SD 2.85) for the individualized abutments and 3.78% (SD 7.40) for the standard abutments. The position of the margin significantly affected the amount of residual cement. Both individualized and standard all-ceramic abutments result in small amounts of subgingival residual cement on abutment and sulcus surfaces. However, use of individualized abutments does not guarantee complete avoidance of undetected cement rests. Undetected residual cement might be avoided by use of all-ceramic abutments with visible abutment shoulders. © 2015 John Wiley & Sons A/S. Published by John Wiley

  2. Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment

    Directory of Open Access Journals (Sweden)

    A. C. Targino

    2006-01-01

    Full Text Available Individual ice crystal residual particles collected over Scandinavia during the INTACC (INTeraction of Aerosol and Cold Clouds experiment in October 1999 were analyzed by Scanning Electron Microscopy (SEM equipped with Energy-Dispersive X-ray Analysis (EDX. Samples were collected onboard the British Met Office Hercules C-130 aircraft using a Counterflow Virtual Impactor (CVI. This study is based on six samples collected in orographic clouds. The main aim of this study is to characterize cloud residual elemental composition in conditions affected by different airmasses. In total 609 particles larger than 0.1 μm diameter were analyzed and their elemental composition and morphology were determined. Thereafter a hierarchical cluster analysis was performed on the signal detected with SEM-EDX in order to identify the major particle classes and their abundance. A cluster containing mineral dust, represented by aluminosilicates, Fe-rich and Si-rich particles, was the dominating class of particles, accounting for about 57.5% of the particles analyzed, followed by low-Z particles, 23.3% (presumably organic material and sea salt (6.7%. Sulfur was detected often across all groups, indicating ageing and in-cloud processing of particles. A detailed inspection of samples individually unveiled a relationship between ice crystal residual composition and airmass origin. Cloud residual samples from clean airmasses (that is, trajectories confined to the Atlantic and Arctic Oceans and/or with source altitude in the free troposphere were dominated primarily by low-Z and sea salt particles, while continentally-influenced airmasses (with trajectories that originated or traveled over continental areas and with source altitude in the continental boundary layer contained mainly mineral dust residuals. Comparison of residual composition for similar cloud ambient temperatures around –27°C revealed that supercooled clouds are more likely to persist in conditions where

  3. Central fatigue and nycthemeral change of serum tryptophan and serotonin in the athletic horse

    Directory of Open Access Journals (Sweden)

    Percipalle Maurizio

    2005-04-01

    Full Text Available Abstract Background The serotonergic system is associated with numerous brain functions, including the resetting of the mammalian circadian clock. The synthesis and metabolism of 5-HT in the brain increases in response to exercise and is correlated with high levels of blood-borne tryptophan (TRP. The present investigation was aimed at testing the existence of a daily rhythm of TRP and 5-HT in the blood of athletic horses. Methods Blood samples from 5 Thoroughbred mares were collected at 4-hour intervals for 48 hours (starting at 08:00 hours on day 1 and finishing at 4:00 on day 2 via an intravenous cannula inserted into the jugular vein. Tryptophan and serotonin concentrations were assessed by HPLC. Data analysis was conducted by one-way repeated measures analysis of variance (ANOVA and by the single cosinor method. Results ANOVA showed a highly significant influence of time both on tryptophan and on serotonin, in all horses, on either day, with p values Conclusion The results showed that serotonin and tryptophan blood levels undergo nycthemeral variation with typical evening acrophases. These results enhance the understanding of the athlete horse's chronoperformance and facilitate the establishment of training programs that take into account the nycthemeral pattern of aminoacids deeply involved in the onset of central fatigue.

  4. Enzymes of the tryptophan pathway in Acinetobacter calco-aceticus.

    Science.gov (United States)

    Twarog, R; Liggins, G L

    1970-10-01

    All enzymes of the tryptophan synthetic pathway were detectable in extracts from wild-type Acinetobacter calco-aceticus. The levels of these enzymes were determined in extracts from a number of auxotrophs grown under limiting tryptophan. In each case only anthranilate synthetase was found to be present in increased amounts, whereas the specific activities of the remaining enzymes remained unchanged and unaffected by the tryptophan concentration. Derepression of anthranilate synthetase was found to occur as the concentration of tryptophan became limiting. Anthranilate synthetase and phosphoribosyl transferase activities are both feedback-inhibited by tryptophan. Molecular weight determination carried out by gel filtration and zonal centrifugation in sucrose revealed that all the enzymes are less than 100,000, and no molecular aggregates of these enzymes were detected. The data indicate that tryptophan synthesis in Acinetobacter is regulated both by feedback inhibition of the first two enzymes of the pathway and by repression control of anthranilate synthetase.

  5. Dietary tryptophan intake and suicide rate in industrialized nations.

    Science.gov (United States)

    Voracek, Martin; Tran, Ulrich S

    2007-03-01

    The objective of this study was to assess the ecological association of dietary tryptophan intake and suicide rates across industrialized nations. Tryptophan, an essential amino acid, is the rate-limiting precursor of serotonin biosynthesis. The serotonergic system has been strongly implicated in the neurobiology of suicide. Contemporary male and female suicide rates for the general population (42 countries) and the elderly (38 countries) were correlated with national estimates of dietary tryptophan intake. Measures of tryptophan intake were significantly negatively associated to national suicide rates. Controlling for national affluence, total alcohol consumption and happiness levels slightly attenuated these associations, but left all of them negative. The effect is an ecological (group-level) finding. Estimated per capita tryptophan supply is only a proxy for actual consumption. Developed nations ranking high in dietary tryptophan intake rank low in suicide rates, independent of national wealth, alcohol intake and happiness.

  6. Requirement of young pigs for apparent ileal digestible tryptophan

    NARCIS (Netherlands)

    Schutte, J.B.; Verstraten, A.J.M.A.; Lenis, N.P.; Jong, de J.; Diepen, van J.Th.M.

    1995-01-01

    In 5 growth trials with a total of 420 pigs, tryptophan requirements from 20 to 40 kg liveweight were estimated. L-Tryptophan 0, 0.15, 0.30, 0.45 and 0.60 g/kg was added to a basal diet containing tapioca, barley and maize, with CP 162 g/kg and tryptophan 1.65 g/kg. The control diet was supplemented

  7. Tryptophan availability modulates serotonin release from rat hypothalamic slices

    Science.gov (United States)

    Schaechter, Judith D.; Wurtman, Richard J.

    1989-01-01

    The relationship between the tryptophan availability and serononin release from rat hypothalamus was investigated using a new in vitro technique for estimating rates at which endogenous serotonin is released spontaneously or upon electrical depolarization from hypothalamic slices superfused with a solution containing various amounts of tryptophan. It was found that the spontaneous, as well as electrically induced, release of serotonin from the brain slices exhibited a dose-dependent relationship with the tryptophan concentration of the superfusion medium.

  8. Tryptophan hydroxylase-1 regulates immune tolerance and inflammation

    OpenAIRE

    Nowak, Elizabeth C.; de Vries, Victor C.; Wasiuk, Anna; Ahonen, Cory; Bennett, Kathryn A.; Le Mercier, Isabelle; Ha, Dae-Gon; Noelle, Randolph J.

    2012-01-01

    Nutrient deprivation based on the loss of essential amino acids by catabolic enzymes in the microenvironment is a critical means to control inflammatory responses and immune tolerance. Here we report the novel finding that Tph-1 (tryptophan hydroxylase-1), a synthase which catalyses the conversion of tryptophan to serotonin and exhausts tryptophan, is a potent regulator of immunity. In models of skin allograft tolerance, tumor growth, and experimental autoimmune encephalomyelitis, Tph-1 defic...

  9. Tryptophan and kynurenine determination in human hair by liquid chromatography.

    Science.gov (United States)

    Dario, Michelli F; Freire, Thamires Batello; Pinto, Claudinéia Aparecida Sales de Oliveira; Prado, María Segunda Aurora; Baby, André R; Velasco, Maria Valéria R

    2017-10-15

    Tryptophan, an amino acid found in hair proteinaceous structure is used as a marker of hair photodegradation. Also, protein loss caused by several chemical/physical treatments can be inferred by tryptophan quantification. Kynurenine is a photo-oxidation product of tryptophan, expected to be detected when hair is exposed mainly to UVB (290-320nm) radiation range. Tryptophan from hair is usually quantified directly as a solid or after alkaline hydrolysis, spectrofluorimetrically. However, these types of measure are not sufficiently specific and present several interfering substances. Thus, this work aimed to propose a quantification method for both tryptophan and kynurenine in hair samples, after alkali hydrolysis process, by using high-performance liquid chromatography (HPLC) with fluorimetric and UV detection. The tryptophan and kynurenine quantification method was developed and validated. Black, white, bleached and dyed (blond and auburn) hair tresses were used in this study. Tryptophan and kynurenine were separated within ∼9min by HPLC. Both black and white virgin hair samples presented similar concentrations of tryptophan, while bleaching caused a reduction in the tryptophan content as well as dyeing process. Unexpectedly, UV/vis radiation did not promote significantly the conversion of tryptophan into its photo-oxidation product and consequently, kynurenine was not detected. Thus, this works presented an acceptable method for quantification of tryptophan and its photooxidation metabolite kynurenine in hair samples. Also, the results indicated that bleaching and dyeing processes promoted protein/amino acids loss but tryptophan is not extensively degraded in human hair by solar radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Heterologous Expression of Hen Egg White Lysozyme and Resonance Assignment of Tryptophan Side Chains in its Non-native States

    International Nuclear Information System (INIS)

    Schloerb, Christian; Ackermann, Katrin; Richter, Christian; Wirmer, Julia; Schwalbe, Harald

    2005-01-01

    A new protocol is described for the isotope ( 15 N and 13 C, 15 N) enrichment of hen egg white lysozyme. Hen egg white lysozyme and an all-Ala-mutant of this protein have been expressed in E. coli. They formed inclusion bodies from which mg quantities of the proteins were purified and prepared for NMR spectroscopic investigations. 1 H, 13 C and 15 N main chain resonances of disulfide reduced and S-methylated lysozyme were assigned and its residual structure in water pH 2 was characterized by chemical shift perturbation analysis. A new NMR experiment has been developed to assign tryptophan side chain indole resonances by correlation of side chain and backbone NH resonances with the C γ resonances of these residues. Assignment of tryptophan side chains enables further residue specific investigations on structural and dynamical properties, which are of significant interest for the understanding of non-natives states of lysozyme stabilized by hydrophobic interactions between clusters of tryptophan residues

  11. NET TG1: Residual stress assessment by neutron diffraction and finite element modeling on a single bead weld on a steel plate

    International Nuclear Information System (INIS)

    Ohms, C.; Wimpory, R.C.; Katsareas, D.E.; Youtsos, A.G.

    2009-01-01

    In the context of the efforts of Task Group 1 (TG1) of the European Network on Neutron Techniques Standardization for Structural Integrity (NET), the Joint Research Centre (JRC) participated in the experimental round robin campaign for residual stress analysis on a single weld bead on a steel plate. In parallel, the University of Patras (UP), in collaboration with the JRC, contributed to the corresponding numerical analysis round robin exercise. Neutron diffraction measurements were performed on a specimen, designated as A12, using the residual stress diffractometer at beam tube HB5 at the High Flux Reactor (HFR) in Petten, The Netherlands. Several line scans of strains and stresses were performed in accordance with an experimental protocol devised for this exercise and their results are presented in this paper. Two scans were made along the weld longitudinal direction beneath the upper surface of the plate, three were made in the weld transverse direction, and three through the thickness of the plate. The measured residual stresses are presented in detail. The measurements confirm that the stress distribution around this single weld bead on a plate is intrinsically 3-dimensional. The procedure followed by UP in the numerical assessment of the problem is presented in detail. The numerical results are presented in direct comparison to the JRC measurement data

  12. Impact of single annual treatment and four-monthly treatment for hookworm and Ascaris lumbricoides, and factors associated with residual infection among Kenyan school children.

    Science.gov (United States)

    Kepha, Stella; Mwandawiro, Charles S; Anderson, Roy M; Pullan, Rachel L; Nuwaha, Fred; Cano, Jorge; Njenga, Sammy M; Odiere, Maurice R; Allen, Elizabeth; Brooker, Simon J; Nikolay, Birgit

    2017-02-09

    School-based deworming is widely implemented in various countries to reduce the burden of soil-transmitted helminths (STHs), however, the frequency of drug administration varies in different settings. In this study, we compared the impact of a single annual treatment and 4-monthly treatment over a follow-up among Kenyan school children, and investigated the factors associated with residual infection. We performed a secondary analysis of data from a randomized trial investigating whether deworming for STHs alters risk of acquiring malaria. Children received either a single treatment or 4-monthly albendazole treatments were followed longitudinally from February 2014 to October 2014. The relative impact of treatment and factors associated with residual infections were investigated using mixed-effects regression models. Predisposition to infection was assessed based on Spearman's rank and Kendall's Tau correlation coefficients. In the 4-monthly treatment group, the proportion of children infected with hookworm decreased from 59.9 to 5.7%, while Ascaris lumbricoides infections dropped from 55.7 to 6.2%. In the single treatment group, hookworm infections decreased over the same time period from 58.7 to 18.3% (12.6% absolute difference in reduction, 95% CI: 8.9-16.3%), and A. lumbricoides from 56.7 to 23.3% (17.1% absolute difference in reduction, 95% CI: 13.1-21.1%). There was strong evidence for predisposition to both STH types. Residual hookworm infection among children on 4-monthly treatment were associated with male sex and baseline nutritional status, whereas A. lumbricoides infection was associated with individual and school-level infection at baseline, latrine cleanliness at schools. This study found that 4-monthly treatment w more effective than single annual treatment. Repeated treatments led to dramatic reductions in the intensities of STHs, but did not completely clear infections among school children in Kenya, a presumed reflection of reinfection in a setting

  13. Dysbiosis of the Vaginal Microbiota and Higher Vaginal Kynurenine/Tryptophan Ratio Reveals an Association with Chlamydia trachomatis Genital Infections

    Directory of Open Access Journals (Sweden)

    Noa Ziklo

    2018-01-01

    Full Text Available The natural course of Chlamydia trachomatis urogenital tract infections varies between individuals. While protective immunity can occur, some women can become reinfected, contributing to the development of severe pathology. While the reasons for these differences are unknown, an individual's response to induced interferon-γ (IFN-γ is suggested to be critical. IFN-γ induction of the enzyme indoleamine 2,3-dioxygenase, which depletes tryptophan, may be the key. One hypothesis suggests that indole-producing bacteria in the vaginal microbiota can provide a substrate for the Chlamydia to synthesize tryptophan, rescuing the Chlamydia from host IFN-γ attack. We studied a cohort of 25 women who were either, Chlamydia negative, Chlamydia positive with a single infection, or Chlamydia positive with repeated infection, to test our hypothesis. We characterized their vaginal microbiota, cytokine response, as well as their tryptophan, kynurenine and indole concentrations directly in vaginal secretions. We found that C. trachomatis urogenital tract infections either initial or repeat infections, were associated with elevated vaginal kynurenine/tryptophan ratios, primarily as a result of elevated kynurenine levels. In addition, vaginal microbiota of community state type (CST IV showed significantly lower vaginal tryptophan levels compared to CST I and III, which might be related to a higher abundance of indole producers found within this group. Furthermore, we found a higher abundance of indole producers in women who cleared their Chlamydia infection post antibiotic treatment. This study demonstrates for the first time in vivo, the association between high vaginal kynurenine/tryptophan ratios and C. trachomatis infections. In addition, tryptophan depletion was associated with vaginal microbiota of CST IV.

  14. Insight into the interactions, residue snorkeling, and membrane disordering potency of a single antimicrobial peptide into different lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Majid Jafari

    Full Text Available Pardaxin, with a bend-helix-bend-helix structure, is a membrane-active antimicrobial peptide that its membrane activity depends on the lipid bilayer composition. Herein, all-atom molecular dynamics (MD simulations were performed to provide further molecular insight into the interactions, structural dynamics, orientation behavior, and cationic residues snorkeling of pardaxin in the DMPC, DPPC, POPC, POPG, POPG/POPE (3:1, and POPG/POPE (1:3 lipid bilayers. The results showed that the C-terminal helix of the peptide was maintained in all six types of the model-bilayers and pardaxin was tilted into the DMPC, DPPC, and POPG/POPE mixed bilayers more than the POPC and POPG bilayers. As well as, the structure of zwitterionic membranes was more affected by the peptide than the anionic bilayers. Taken together, the study demonstrated that the cationic residues of pardaxin snorkeled toward the interface of lipid bilayers and all phenylalanine residues of the peptide played important roles in the peptide-membrane interactions. We hope that this work will provide a better understanding of the interactions of antimicrobial peptides with the membranes.

  15. Acute tryptophan depletion attenuates brain-heart coupling following external feedback

    Directory of Open Access Journals (Sweden)

    Erik M Mueller

    2012-04-01

    Full Text Available External and internal performance feedback triggers neural and visceral modulations such as reactions in the medial prefrontal cortex and insulae or changes of heart period (HP. The functional coupling of neural and cardiac responses following feedback (cortico-cardiac connectivity is not well understood. While linear time-lagged within-subjects correlations of single-trial EEG and HP (cardio-electroencephalographic covariance-tracing, CECT indicate a robust negative coupling of EEG magnitude 300 ms after presentation of an external feedback stimulus with subsequent alterations of heart period (the so-called N300H phenomenon, the neurotransmitter systems underlying feedback-evoked cortico-cardiac connectivity are largely unknown. Because it has been shown that acute tryptophan depletion (ATD, attenuating brain serotonin (5-HT, decreases cardiac but not neural correlates of feedback processing, we hypothesized that 5-HT may be involved in feedback-evoked cortico-cardiac connectivity. In a placebo-controlled double-blind crossover design, twelve healthy participants received a tryptophan-free amino-acid drink at one session and a balanced amino-acid control-drink on another and twice performed a time-estimation task with feedback presented after each trial. N300H magnitude and plasma tryptophan levels were assessed. Results indicated a robust N300H after the control drink, which was significantly attenuated following ATD. Moreover, plasma tryptophan levels during the control session were correlated with N300H amplitude such that individuals with lower tryptophan levels showed reduced N300H. Together, these findings indicate that 5-HT is important for feedback-induced covariation of cortical and cardiac activity. Because individual differences in anxiety have previously been linked to 5-HT, cortico-cardiac coupling and feedback processing, the present findings may be particularly relevant for futures studies linking 5-HT to anxiety.

  16. Tryptophan analogues. 1. Synthesis and antihypertensive activity of positional isomers.

    Science.gov (United States)

    Safdy, M E; Kurchacova, E; Schut, R N; Vidrio, H; Hong, E

    1982-06-01

    A series of tryptophan analogues having the carboxyl function at the beta-position was synthesized and tested for antihypertensive activity. The 5-methoxy analogue 46 exhibited antihypertensive activity in the rat via the oral route and was much more potent than the normal tryptophan analogue. The methyl ester was found to be a critical structural feature for activity.

  17. Development of Bacillus subtilis mutants to produce tryptophan in pigs

    DEFF Research Database (Denmark)

    Bjerre, Karin; Cantor, Mette D.; Nørgaard, Jan Værum

    2017-01-01

    Objectives To generate tryptophan-overproducing Bacillus subtilis strains for in situ use in pigs, to reduce the feed cost for farmers and nitrogen pollution. Results A novel concept has been investigated—to generate B. subtilis strains able to produce tryptophan (Trp) in situ in pigs. Mutagenesis...

  18. Tryptophan Predicts the Risk for Future Type 2 Diabetes.

    Science.gov (United States)

    Chen, Tianlu; Zheng, Xiaojiao; Ma, Xiaojing; Bao, Yuqian; Ni, Yan; Hu, Cheng; Rajani, Cynthia; Huang, Fengjie; Zhao, Aihua; Jia, Weiping; Jia, Wei

    2016-01-01

    Recently, 5 amino acids were identified and verified as important metabolites highly associated with type 2 diabetes (T2D) development. This report aims to assess the association of tryptophan with the development of T2D and to evaluate its performance with existing amino acid markers. A total of 213 participants selected from a ten-year longitudinal Shanghai Diabetes Study (SHDS) were examined in two ways: 1) 51 subjects who developed diabetes and 162 individuals who remained metabolically healthy in 10 years; 2) the same 51 future diabetes and 23 strictly matched ones selected from the 162 healthy individuals. Baseline fasting serum tryptophan concentrations were quantitatively measured using ultra-performance liquid chromatography triple quadruple mass spectrometry. First, serum tryptophan level was found significantly higher in future T2D and was positively and independently associated with diabetes onset risk. Patients with higher tryptophan level tended to present higher degree of insulin resistance and secretion, triglyceride and blood pressure. Second, the prediction potential of tryptophan is non-inferior to the 5 existing amino acids. The predictive performance of the combined score improved after taking tryptophan into account. Our findings unveiled the potential of tryptophan as a new marker associated with diabetes risk in Chinese populations. The addition of tryptophan provided complementary value to the existing amino acid predictors.

  19. Tryptophan Metabolism and White Matter Integrity in Schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Postolache, Teodor T; Kochunov, Peter; Rowland, Laura M; Wijtenburg, S Andrea; Shukla, Dinesh K; Tagamets, Malle; Du, Xiaoming; Savransky, Anya; Lowry, Christopher A; Can, Adem; Fuchs, Dietmar; Hong, L Elliot

    2016-09-01

    Schizophrenia is associated with abnormalities in the structure and functioning of white matter, but the underlying neuropathology is unclear. We hypothesized that increased tryptophan degradation in the kynurenine pathway could be associated with white matter microstructure and biochemistry, potentially contributing to white matter abnormalities in schizophrenia. To test this, fasting plasma samples were obtained from 37 schizophrenia patients and 38 healthy controls and levels of total tryptophan and its metabolite kynurenine were assessed. The ratio of kynurenine to tryptophan was used as an index of tryptophan catabolic activity in this pathway. White matter structure and function were assessed by diffusion tensor imaging (DTI) and (1)H magnetic resonance spectroscopy (MRS). Tryptophan levels were significantly lower (ptryptophan ratios were correspondingly higher (p=0.018) in patients compared with controls. In patients, lower plasma tryptophan levels corresponded to lower structural integrity (DTI fractional anisotropy) (r=0.347, p=0.038). In both patients and controls, the kynurenine/tryptophan ratio was inversely correlated with frontal white matter glutamate level (r=-0.391 and -0.350 respectively, p=0.024 and 0.036). These results provide initial evidence implicating abnormal tryptophan/kynurenine pathway activity in changes to white matter integrity and white matter glutamate in schizophrenia.

  20. Effects of rumen-protected tryptophan on performance, nutrient ...

    African Journals Online (AJOL)

    Jane

    2011-06-27

    Jun 27, 2011 ... Thirty-six Liaoning cashmere goat wethers (28.72 ± 0.59 kg) were used to determine the effects of rumen-protected tryptophan (RPT) on performance, nutrient utilization and plasma tryptophan (Trp) during the cashmere fast-growing period. The goats were randomly assigned to the following treatments: ...

  1. Human myeloid dendritic cells are refractory to tryptophan metabolites.

    Science.gov (United States)

    von Bubnoff, Dagmar; Wilms, Helene; Scheler, Marina; Brenk, Manuela; Koch, Susanne; Bieber, Thomas

    2011-10-01

    The enzyme indoleamine 2,3-dioxygenase (IDO) degrades the essential amino acid tryptophan and is expressed, among other cell types, in immune cells such as dendritic cells (DCs), monocytes, and macrophages. It has been shown that the activity of IDO has a broad regulatory function in the immune system by inhibiting effector T-cell responses, inducing regulatory T cells and facilitating the development of regulatory DCs. The degradation of tryptophan has 2 consequences, both of which have been postulated to be physiologically relevant, namely the reduction of tryptophan levels and the accumulation of tryptophan catabolites. Recently, we have shown that DCs that had differentiated under low-tryptophan conditions acquire a tolerogenic phenotype with increased expression of the inhibitory receptors immunoglobulin-like transcript 2 (ILT2), ILT3, and ILT4. In the present study, we investigated the effect of distinct tryptophan catabolites on the function of human DCs and the expression of ILT2, ILT3, and ILT4 on these cells. We show that, in contrast to low tryptophan levels alone, the combination of several metabolites along the tryptophan-kynurenine degradation pathway during DC differentiation does not induce ILT2, ILT3, or ILT4 on these DCs and does not reduce the T-cell stimulatory capacity of these DCs. Copyright © 2011 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  2. The tryptophan requirements of pullets in the early production stage

    African Journals Online (AJOL)

    per day (1,519 per kg diet at a consumption rate of 1109 per bird per day). This estimate is valid for an economic situation when the marginal cost of 1 kg tryptophan is 20 times the marginal value of 1 kg egg. Under the same price structure and potential egg output the estimated daily tryptophan requirement for a flock was ...

  3. Confirmation of antibodies against L-tryptophan-like epitope in ...

    African Journals Online (AJOL)

    Confirmation of antibodies against L-tryptophan-like epitope in human African trypanosomosis serological diagnostic. ... number of patients in Congo. A diagnostic test based on this synthetic epitope, especially in combination with other tests, might improve the HAT diagnostic test in field conditions. Key words: Tryptophan ...

  4. protein, tryptophan and lysine contents in quality protien maize

    African Journals Online (AJOL)

    owner

    study of protein, tryptophan and lysine composition of quality protein maize varieties (9). The tryptophan content of eleven superior QPM genotypes was much higher than those of wheat,. * Jimma University, College of Agriculture and Veterinary Medicine, Department of Crop Sciences, P.O. Box 307,. Jimma , Ethiopia.

  5. Alleviation of hysteria in laying hens with dietary tryptophan.

    Science.gov (United States)

    Laycock, S R; Ball, R O

    1990-01-01

    A commercial layer breeder flock that was suffering from hysteria was fed a diet containing 5 grams tryptophan/kg for six days. The incidence of episodes of hysteria declined from five times/hour on day 0 to once/hour on day 6 and none on day 8. Feed consumption increased from 107 g to 145 g/hen/day and egg production increased 23% during the six day feeding period. The tryptophan concentration in plasma doubled (from 95.6 to 188.2 mumol/mL). Plasma phenylalanine and tyrosine also increased. Birds that were not in lay, by postmortem examination, had significantly higher plasma valine concentrations (476.4 vs 372.7 mumol/mL). Tryptophan, serotonin and related metabolites increased in both the hypothalamic region and the remainder of the brain following tryptophan feeding, and subsequently declined. High levels of dietary tryptophan may be useful in alleviating hysteria in poultry. PMID:2357668

  6. 3D-TROSY-based backbone and ILV-methyl resonance assignments of a 319-residue homodimer from a single protein sample

    Energy Technology Data Exchange (ETDEWEB)

    Krejcirikova, Anna; Tugarinov, Vitali, E-mail: vitali@umd.edu [University of Maryland, Department of Chemistry and Biochemistry (United States)

    2012-10-15

    The feasibility of practically complete backbone and ILV methyl chemical shift assignments from a single [U-{sup 2}H,{sup 15}N,{sup 13}C; Ile{delta}1-{l_brace}{sup 13}CH{sub 3}{r_brace}; Leu,Val-{l_brace}{sup 13}CH{sub 3}/{sup 12}CD{sub 3}{r_brace}]-labeled protein sample of the truncated form of ligand-free Bst-Tyrosyl tRNA Synthetase (Bst-{Delta}YRS), a 319-residue predominantly helical homodimer, is established. Protonation of ILV residues at methyl positions does not appreciably detract from the quality of TROSY triple resonance data. The assignments are performed at 40 Degree-Sign C to improve the sensitivity of the measurements and alleviate the overlap of {sup 1}H-{sup 15}N correlations in the abundant {alpha}-helical segments of the protein. A number of auxiliary approaches are used to assist in the assignment process: (1) selection of {sup 1}H-{sup 15}N amide correlations of certain residue types (Ala, Thr/Ser) that simplifies 2D {sup 1}H-{sup 15}N TROSY spectra, (2) straightforward identification of ILV residue types from the methyl-detected 'out-and-back' HMCM(CG)CBCA experiment, and (3) strong sequential HN-HN NOE connectivities in the helical regions. The two subunits of Bst-YRS were predicted earlier to exist in two different conformations in the absence of ligands. In agreement with our earlier findings (Godoy-Ruiz in J Am Chem Soc 133:19578-195781, 2011), no evidence of dimer asymmetry has been observed in either amide- or methyl-detected experiments.

  7. Regulation of the tryptophan synthetic enzymes in Clostridium butyricum.

    Science.gov (United States)

    Baskerville, E N; Twarog, R

    1972-10-01

    Experiments concerned with the regulation of the tryptophan synthetic enzymes in anaerobes were carried out with a strain of Clostridium butyricum. Enzyme activities for four of the five synthetic reactions were readily detected in wild-type cells grown in minimal medium. The enzymes mediating reactions 3, 4, and 5 were derepressed 4- to 20-fold, and the data suggest that these enzymes are coordinately controlled in this anaerobe. The first enzyme of the pathway, anthranilate synthetase, could be derepressed approximately 90-fold under these conditions, suggesting that this enzyme is semicoordinately controlled. Mutants resistant to 5-methyl tryptophan were isolated, and two of these were selected for further analysis. Both mutants retained high constitutive levels of the tryptophan synthetic enzymes even in the presence of repressing concentrations of tryptophan. The anthranilate synthetase from one mutant was more sensitive to feedback inhibition by tryptophan than the enzyme from wild-type cells. The enzyme from the second mutant was comparatively resistant to feedback inhibition by tryptophan. Neither strain excreted tryptophan into the culture fluid. Tryptophan inhibits anthranilate synthetase from wild-type cells noncompetitively with respect to chorismate and uncompetitively with respect to glutamine. The Michaelis constants calculated for chorismate and glutamine are 7.6 x 10(-5)m and 6.7 x 10(-5)m, respectively. The molecular weights of the enzymes estimated by zonal centrifugation in sucrose and by gel filtration ranged from 24,000 to 89,000. With the possible exception of a tryptophan synthetase complex, there was no evidence for the existence of other enzyme aggregates. The data indicate that tryptophan synthesis is regulated by repression control of the relevant enzymes and by feedback inhibition of anthranilate synthetase. That this enzyme system more closely resembles that found in Bacillus than that found in enteric bacteria is discussed.

  8. Regulation of the Tryptophan Synthetic Enzymes in Clostridium butyricum1

    Science.gov (United States)

    Baskerville, E. N.; Twarog, Robert

    1972-01-01

    Experiments concerned with the regulation of the tryptophan synthetic enzymes in anaerobes were carried out with a strain of Clostridium butyricum. Enzyme activities for four of the five synthetic reactions were readily detected in wild-type cells grown in minimal medium. The enzymes mediating reactions 3, 4, and 5 were derepressed 4- to 20-fold, and the data suggest that these enzymes are coordinately controlled in this anaerobe. The first enzyme of the pathway, anthranilate synthetase, could be derepressed approximately 90-fold under these conditions, suggesting that this enzyme is semicoordinately controlled. Mutants resistant to 5-methyl tryptophan were isolated, and two of these were selected for further analysis. Both mutants retained high constitutive levels of the tryptophan synthetic enzymes even in the presence of repressing concentrations of tryptophan. The anthranilate synthetase from one mutant was more sensitive to feedback inhibition by tryptophan than the enzyme from wild-type cells. The enzyme from the second mutant was comparatively resistant to feedback inhibition by tryptophan. Neither strain excreted tryptophan into the culture fluid. Tryptophan inhibits anthranilate synthetase from wild-type cells noncompetitively with respect to chorismate and uncompetitively with respect to glutamine. The Michaelis constants calculated for chorismate and glutamine are 7.6 × 10−5m and 6.7 × 10−5m, respectively. The molecular weights of the enzymes estimated by zonal centrifugation in sucrose and by gel filtration ranged from 24,000 to 89,000. With the possible exception of a tryptophan synthetase complex, there was no evidence for the existence of other enzyme aggregates. The data indicate that tryptophan synthesis is regulated by repression control of the relevant enzymes and by feedback inhibition of anthranilate synthetase. That this enzyme system more closely resembles that found in Bacillus than that found in enteric bacteria is discussed. PMID

  9. Destabilization of artificial biomembrane induced by the penetration of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liuhua [Department of Chemistry, Tongji University, Shanghai 200092 (China); Gan Lihua, E-mail: ganlh@tongji.edu.cn [Department of Chemistry, Tongji University, Shanghai 200092 (China); Liu Mingxian; Fan Rong; Xu Zijie; Hao Zhixian; Chen Longwu [Department of Chemistry, Tongji University, Shanghai 200092 (China)

    2011-03-15

    The effect of tryptophan on the membrane stability was studied by using three artificial biological membranes including liposome, Langmuir monolayer and solid supported bilayer lipid membrane (s-BLM) as models. All the results indicate that the penetration of tryptophan can destabilize different artificial biological membranes. The diameter of liposome and the leakage of calcein from liposome increased with the increase of tryptophan concentration because the penetration of tryptophan was beneficial for dehydrating the polar head groups of lipids and the formation of fusion intermediates. {pi}-A isotherms of lecithin on the subphase of tryptophan solution further confirm that tryptophan can penetrate into lipid monolayer and reduce the stability of lipid monolayer. When the concentration of tryptophan increased from 0 to 2 x 10{sup -3} mol L{sup -1}, the limiting molecular area of lecithin increased from 110.5 to 138.5 A{sup 2}, but the collapse pressure of the monolayer decreased from 47.6 to 42.3 mN m{sup -1}, indicating the destabilization of lipid monolayer caused by the penetration of tryptophan. The resistance spectra of s-BLM demonstrate that the existence of tryptophan leads to the formation of some defects in s-BLM and the destabilization of s-BLM. The values of electron-transfer resistance and double layer capacitance respectively decreased from 5.765 x 10{sup 6} {Omega} and 3.573 x 10{sup -8} F to 1.391 x 10{sup 6} {Omega} and 3.340 x 10{sup -8} F when the concentration of tryptophan increased from 0 to 2 x 10{sup -3} mol L{sup -1}. Correspondingly, the breakdown voltage of s-BLM decreased from 2.51 to 1.72 V.

  10. The metabolism of L-tryptophan by isolated rat liver cells. Effect of albumin binding and amino acid competition on oxidatin of tryptophan by tryptophan 2,3-dioxygenase.

    OpenAIRE

    Smith, S A; Pogson, C I

    1980-01-01

    1. Novel methods, using L-[ring-2-14C]tryptophan, are described for the measurement of tryptophan 2,3-dioxygenase activity and tryptophan accumulation in isolated rat liver cells. 2. The effects of bovine serum albumin, non-esterified fatty acids and neutral amino acids on tryptophan oxidation by hepatocytes and on the partition of tryptophan between free and albumin-bound forms were investigated. 3. Oxidation of physiological concentrations (0.1 mM) of tryptophan was inhibited by approx. 50%...

  11. Residual deposits (residual soil)

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Residual soil deposits is accumulation of new formate ore minerals on the earth surface, arise as a result of chemical decomposition of rocks. As is well known, at the hyper genes zone under the influence of different factors (water, carbonic acid, organic acids, oxygen, microorganism activity) passes chemical weathering of rocks. Residual soil deposits forming depends from complex of geologic and climatic factors and also from composition and physical and chemical properties of initial rocks

  12. Stochastic thermodynamics of a chemical nanomachine: The channeling enzyme tryptophan synthase.

    Science.gov (United States)

    Loutchko, Dimitri; Eisbach, Maximilian; Mikhailov, Alexander S

    2017-01-14

    The enzyme tryptophan synthase is characterized by a complex pattern of allosteric interactions that regulate the catalytic activity of its two subunits and opening or closing of their ligand gates. As a single macromolecule, it implements 13 different reaction steps, with an intermediate product directly channeled from one subunit to another. Based on experimental data, a stochastic model for the operation of tryptophan synthase has been earlier constructed [D. Loutchko, D. Gonze, and A. S. Mikhailov, J. Phys. Chem. B 120, 2179 (2016)]. Here, this model is used to consider stochastic thermodynamics of such a chemical nanomachine. The Gibbs energy landscape of the internal molecular states is determined, the production of entropy and its flow within the enzyme are analyzed, and the information exchange between the subunits resulting from allosteric cross-regulations and channeling is discussed.

  13. Influence of Tryptophan Contained in 1-Methyl-Tryptophan on Antimicrobial and Immunoregulatory Functions of Indoleamine 2,3-Dioxygenase

    Science.gov (United States)

    Schmidt, Silvia K.; Siepmann, Stephan; Kuhlmann, Katja; Meyer, Helmut E.; Metzger, Sabine; Pudelko, Sabine; Leineweber, Margret; Däubener, Walter

    2012-01-01

    Indoleamine 2,3-dioxygenase (IDO) has been identified as an important antimicrobial and immunoregulatory effector molecule essential for the establishment of tolerance by regulating local tryptophan (Trp) concentrations. On the other hand, the immunosuppressive capacity of IDO can have detrimental effects for the host as it can lead to deleterious alterations of the immune response by promoting tolerance to some types of tumors. To suppress this disadvantageous IDO effect, the competitive inhibitor 1-Methyl-Tryptophan (1-MT) is being tested in clinical trials. However, it remains inconclusive which stereoisomer of 1-MT is the more effective inhibitor of IDO-mediated immunosuppression. While IDO enzyme activity is more efficiently inhibited by 1-L-MT in cell-free or in vitro settings, 1-D-MT is superior to 1-L-MT in the enhancement of anti-tumor responses in vivo. Here, we present new data showing that commercially available 1-L-MT lots contain tryptophan in amounts sufficient to compensate for the IDO-mediated tryptophan depletion in vitro. The addition of 1-L-MT abrogated IDO-mediated antimicrobial effects and permitted the growth of the tryptophan-auxotroph microorganisms Staphylococcus aureus and Toxoplasma gondii. Consistent with this, the tryptophan within 1-L-MT lots was sufficient to antagonize IDO-mediated inhibition of T cell responses. Mass spectrometry (MS) analysis revealed not only tryptophan within 1-L-MT, but also the incorporation of this tryptophan in bacterial and human proteins that were generated in the presence of 1-L-MT in otherwise tryptophan-free conditions. In summary, these data reveal that tryptophan within 1-L-MT can affect the results of in vitro studies in an L-stereospecific and IDO-independent way. PMID:23028625

  14. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    Science.gov (United States)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of metal oxides were the major INP/IPR particle types separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between

  15. Photochemical hydrogen-deuterium exchange reaction of tryptophan: the role in nonradiative decay of singlet tryptophan

    International Nuclear Information System (INIS)

    Saito, I.; Sugiyama, H.; Yamamoto, A.; Muramatsu, S.; Matsuura, T.

    1984-01-01

    The mechanism of nonradiative decay of singlet excited tryptophan (Trp) in aqueous solution was investigated by a highly selective photosubstitution of the C-4 hydrogen of Trp with deuterium of solvent D 2 O. It was concluded that intramolecular proton transfer from the α-ammonia group giving rise to formation of a protonated species plays an important role in the nonradiative decay of singlet Trp at neutral pH. 11 references, 1 figure

  16. Chimeras Reveal a Single Lipid-Interface Residue that Controls MscL Channel Kinetics as well as Mechanosensitivity

    Directory of Open Access Journals (Sweden)

    Li-Min Yang

    2013-02-01

    Full Text Available MscL, the highly conserved bacterial mechanosensitive channel of large conductance, serves as an osmotic “emergency release valve,” is among the best-studied mechanosensors, and is a paradigm of how a channel senses and responds to membrane tension. Although all homologs tested thus far encode channel activity, many show functional differences. We tested Escherichia coli and Staphylococcus aureus chimeras and found that the periplasmic region of the protein, particularly E. coli I49 and the equivalent S. aureus F47 at the periplasmic lipid-aqueous interface of the first transmembrane domain, drastically influences both the open dwell time and the threshold of channel opening. One mutant shows a severe hysteresis, confirming the importance of this residue in determining the energy barriers for channel gating. We propose that this site acts similarly to a spring for a clasp knife, adjusting the resistance for obtaining and stabilizing an open or closed channel structure.

  17. Mood, food, and cognition: role of tryptophan and serotonin.

    Science.gov (United States)

    Strasser, Barbara; Gostner, Johanna M; Fuchs, Dietmar

    2016-01-01

    Food is not only necessary as a metabolic fuel for the body, it becomes more and more evident that there exists an association between food and brain functions like mood and cognition. Tryptophan represents a key element for brain functioning, because of its role as a precursor for production of neurotransmitter serotonin (5-hydroxytryptamine). In clinical conditions, which involve chronic immune system activation or under cytokine therapy, lower tryptophan levels because of high catabolism of tryptophan as indicated by the kynurenine to tryptophan ratio are common and often associate with depressive mood. Studies in the in vitro model of mitogen-stimulated peripheral blood mononuclear cells revealed that several phytocompounds, mainly antioxidants like polyphenols and vitamins, can interfere with inflammatory signaling cascades including tryptophan breakdown. If extrapolated to the in vivo situation, such compounds could increase blood and brain tryptophan availability for serotonin production. Although there is some in vivo evidence for the effect of such compounds, outcomes are hardly predictable and most likely depend on the individual's immunological state. Not only a diet rich in tryptophan but also a diet rich in antioxidants can have a positive impact on mood and cognition. This could be of special relevance for individuals who present with low grade inflammation conditions.

  18. A Mathematical Model of Tryptophan Metabolism via the Kynurenine Pathway Provides Insights into the Effects of Vitamin B-6 Deficiency, Tryptophan Loading, and Induction of Tryptophan 2,3-Dioxygenase on Tryptophan Metabolites123

    Science.gov (United States)

    Rios-Avila, Luisa; Nijhout, H. Frederik; Reed, Michael C.; Sitren, Harry S.; Gregory, Jesse F.

    2013-01-01

    Vitamin B-6 deficiency is associated with impaired tryptophan metabolism because of the coenzyme role of pyridoxal 5′-phosphate (PLP) for kynureninase and kynurenine aminotransferase. To investigate the underlying mechanism, we developed a mathematical model of tryptophan metabolism via the kynurenine pathway. The model includes mammalian data on enzyme kinetics and tryptophan transport from the intestinal lumen to liver, muscle, and brain. Regulatory mechanisms and inhibition of relevant enzymes were included. We simulated the effects of graded reduction in cellular PLP concentration, tryptophan loads and induction of tryptophan 2,3-dioxygenase (TDO) on metabolite profiles and urinary excretion. The model predictions matched experimental data and provided clarification of the response of metabolites in various extents of vitamin B-6 deficiency. We found that moderate deficiency yielded increased 3-hydroxykynurenine and a decrease in kynurenic acid and anthranilic acid. More severe deficiency also yielded an increase in kynurenine and xanthurenic acid and more pronounced effects on the other metabolites. Tryptophan load simulations with and without vitamin B-6 deficiency showed altered metabolite concentrations consistent with published data. Induction of TDO caused an increase in all metabolites, and TDO induction together with a simulated vitamin B-6 deficiency, as has been reported in oral contraceptive users, yielded increases in kynurenine, 3-hydroxykynurenine, and xanthurenic acid and decreases in kynurenic acid and anthranilic acid. These results show that the model successfully simulated tryptophan metabolism via the kynurenine pathway and can be used to complement experimental investigations. PMID:23902960

  19. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    Science.gov (United States)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  20. Analysis of tomato matrix effect in pesticide residue quantification through QuEChERS and single quadrupole GC/MS

    Directory of Open Access Journals (Sweden)

    Ana M Domínguez

    2014-04-01

    Full Text Available The detection of pesticide in tomato (Solanum lycopersicum L. matrix using Gas Chromatography hyphenated to Mass Spectrometry detector (GC/MS can affect the sensitivity of the analysis by enhancement or suppression of their chromatography response, the percentages of recoveries and leading to errors in the quantification of the pesticides. In this study, the matrix effect was investigated using nine pesticides, and "Quick, Easy, Cheap, Effective, Rugged and Safe" (QuEChERS-GC/MS analytical technique was validated for pesticides multiresidue analysis. The matrix effect was determined using not statistical and statistical procedures including ANOVA, with similar results. Strong negative matrix effect was found for the pesticides trifluralin, 4,4'-DDT, and permethrin, resulting in the increment of the chromatogram background and a decrease in their detection responses. Contrary, an enhancement induced by the matrix presence was obtained for carbaryl and azinphos methyl, showing a positive medium matrix effect. While, dimethoate, simazine, 4,4'-DDE, and iprodione did not exhibit matrix effect. The detection limits (LOD obtained, varied from 0.003 to 0.1 mg kg-1. Reproducibility was less than 20% for each pesticide. Recoveries were found to be between 71% and 121%, except for dimethoate, carbaryl, and azinphos methyl which reached values lower than 70%. Recoveries relative standard deviations were less than 22%. QuEChERS-GC/MS technique was used for evaluation of fresh commercial tomatoes samples, detecting carbaryl in all of them, but in concentration levels lower than the maximum residue limits according to regulations of Codex.

  1. Metabolism and serum levels of tryptophan in senile cataract patients.

    Science.gov (United States)

    Costa, C; Angi, M R; De Carli, M; Vanzan, S; Allegri, G

    1982-03-30

    In order to clarify the role of tryptophan in the patogenesis of senile cataract, we have studied the serum total and free levels of tryptophan in cataract patients as compared with age and sex-matched controls, and the urinary excretion of 10 metabolites after oral load of the amino acid. This excretion increases in the cataract group both as total per cent and as kynurenine. No difference has been found in the free and total serum tryptophan between normal subjects and cataract patients. A possible role of the kynurenines in the pathogenesis of senile cataract is suggested.

  2. Exploring the mechanism of tryptophan 2,3-dioxygenase

    Science.gov (United States)

    Thackray, Sarah J.; Mowat, Christopher G.; Chapman, Stephen K.

    2008-01-01

    The haem proteins TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase) are specific and powerful oxidation catalysts that insert one molecule of dioxygen into L-tryptophan in the first and rate-limiting step in the kynurenine pathway. Recent crystallographic and biochemical analyses of TDO and IDO have greatly aided our understanding of the mechanisms employed by these enzymes in the binding and activation of dioxygen and tryptophan. In the present paper, we briefly discuss the function, structure and possible catalytic mechanism of these enzymes. PMID:19021508

  3. Substitution of Active Site Tyrosines with Tryptophan Alters the Free Energy for Nucleotide Flipping by Human Alkyladenine DNA Glycosylase†

    Science.gov (United States)

    Hendershot, Jenna M.; Wolfe, Abigail E.; O'Brien, Patrick J.

    2011-01-01

    Human alkyladenine DNA glycosylase (AAG) locates and excises a wide variety of structurally diverse alkylated and oxidized purine lesions from DNA to initiate the base excision repair pathway. Recognition of a base lesion requires flipping of the damaged nucleotide into a relatively open active site pocket between two conserved tyrosine residues, Y127 and Y159. We have mutated each of these amino acids to tryptophan and measured the kinetic effects on the nucleotide flipping and base excision steps. The Y127W and Y159W mutant proteins have robust glycosylase activity toward DNA containing 1,N6-ethenoadenine (εA), within 4-fold of that of the wildtype enzyme, raising the possibility that tryptophan fluorescence could be used to probe the DNA binding and nucleotide flipping steps. Stopped-flow fluorescence was used to compare the time-dependent changes in tryptophan fluorescence and εA fluorescence. For both mutants, the tryptophan fluorescence exhibited two-step binding with essentially identical rate constants as were observed for the εA fluorescence changes. These results provide evidence that AAG forms an initial recognition complex in which the active site pocket is perturbed and the stacking of the damaged base is disrupted. Upon complete nucleotide flipping, there is further quenching of the tryptophan fluorescence with coincident quenching of the εA fluorescence. Although these mutations do not have large effects on the rate constant for excision of εA, there are dramatic effects on the rate constants for nucleotide flipping that result in 40 to 100-fold decreases in the flipping equilibrium relative to wildtype. Most of this effect is due to an increased rate of unflipping, but surprisingly the Y159W mutation causes a 5-fold increase in the rate constant for flipping. The large effect on the equilibrium for nucleotide flipping explains the greater deleterious effects that these mutations have on the glycosylase activity toward base lesions that are in

  4. Detecting Pesticide Residue by Using Modulating Temperature Over a Single SnO2-Based Gas Sensor

    Directory of Open Access Journals (Sweden)

    Zengliang Yu

    2003-09-01

    Full Text Available A new rapid detecting method (called dynamic measurements was reported to detect and distinguish the presence of two pesticide gases in the ambient atmosphere. The method employed only a single SnO2-based gas sensor in a rectangular temperature mode to perform the qualitative analysis of a binary gas mixture (acephate and trichlorphon in air. Polar plots was used for quantitative analysis which the feature extraction was performed by FFT. Experimental results showed that high selectivity of the sensor achieved in the range of 250~3000C and modulating frequency 20mHz, one can easily observe the qualitative difference among the response to pure acephate and trichlorphon gases of the same concentration and to the mixture, and the concentration of pesticide gases can be obtained based on the changes of polar plots.

  5. Drugs with antidepressant properties affect tryptophan metabolites differently in rodent models with depression-like behavior.

    Science.gov (United States)

    Eskelund, Amanda; Li, Yan; Budac, David P; Müller, Heidi K; Gulinello, Maria; Sanchez, Connie; Wegener, Gregers

    2017-07-01

    The metabolism of tryptophan through kynurenine and serotonin pathways is linked to depression. Here, effects of different drugs with antidepressant properties (vortioxetine, fluoxetine, and ketamine) on various tryptophan metabolites in different brain regions and plasma were examined using tandem mass spectrometry (LC-MS/MS), in Flinders Sensitive Line rats, a genetic rat model of depression, and its controls: Flinders Sensitive Line and Sprague-Dawley rats. Protein levels of kynurenine pathway enzymes were measured in the brains and livers of these rat strains. Furthermore, effects of vortioxetine on tryptophan metabolites were assessed in the cortical regions of lupus mice (MRL/MpJ-Fas Ipr ), a murine model of increased depression-like behavior associated with inflammation. Sustained vortioxetine or fluoxetine (at doses aimed to fully occupy serotonin transporter via food or drinking water for at least 14 days) reduced levels of the excitotoxin quinolinic acid (QUIN) in various brain regions in all rats. Furthermore, chronic vortioxetine reduced levels of QUIN in MRL/MpJ-Fas Ipr mice. Acute i.p. administration of fluoxetine (10 mg/kg) or vortioxetine (10 mg/kg) led to reduced brain 5-hydroxyindoleacetic acid in Sprague-Dawley rats (2, 4, 6, and 8 h) and a similar trend was evident in Flinders Sensitive Line and Flinders Sensitive Line rats after 4 h. In contrast, single or repeated administration of ketamine (15 mg/kg i.p.) did not induce significant changes in metabolite levels. In conclusion, sustained vortioxetine and fluoxetine administration decreased QUIN independent of species, while ketamine was ineffective. These results support the hypothesis that modulating tryptophan metabolism may be part of the mechanism of action for some antidepressants. © 2017 International Society for Neurochemistry.

  6. Molecular analysis of intragenic recombination at the tryptophan ...

    Indian Academy of Sciences (India)

    /fulltext/jgen/092/03/0523-0528. Keywords. mutation; recombination; DNA sequence; primary metabolism; trp-3. Abstract. Fifteen different classically generated and mapped mutations at the tryptophan synthetase locus in Neurospora crassa ...

  7. Kernel modifications and tryptophan content in QPM segregating generations

    Directory of Open Access Journals (Sweden)

    -Ignjatović-Micić Dragana

    2010-01-01

    Full Text Available Maize has poor nutritional value due to deficiency of two essential amino acids - tryptophan and lysine. Although recessive opaque2 (o2 mutation significantly increases their content in the endosperm, incorporation of opaque2 into high yielding cultivars was not commercially successful, because of its numerous agronomic and processing problems due to soft endosperm. Quality protein maize - QPM has lately been introduced as opaque2 maize with improved endosperm hardness and improved agronomic traits, but mostly within tropical and subtropical germplasm. The ongoing breeding project at MRI includes improvement of MRI opaque2 lines and conversion of standard lines to QPM germplasm. The main selection steps in QPM breeding involve assessing kernel modifications and tryptophan level in each generation. Herein, we present the results of the analysis for these traits on F3 and BC1F1 generations of QPM x opaque2, opaque2 x QPM and standard lines x QPM crosses. The results showed that the majority the genotypes had kernel types 2 and 3 (good modifications. The whole grain tryptophan content in F3 and BC1F1 genotypes of crosses between QPM and opaque2 germplasm was at the quality protein level, with a few exceptions. All BC1F1 genotypes of standard lines x QPM had tryptophan content in the range of normal maize, while majority of F3 genotypes had tryptophan content at level of QPM. The progeny (with increased tryptophan levels of QPM and opaque2 crosses had significantly higher tryptophan content compared to the progeny of crosses between standard and QPM lines - 0.098 to 0.114 and 0.080, respectively. All genotypes that had poorly modified kernels and/or low tryptophan content will be discarded from further breeding.

  8. Utilization of DL- and L-tryptophan in young pigs

    NARCIS (Netherlands)

    Schutte, J.B.; Van Weerden, E.J.; Koch, F.

    1988-01-01

    Two trials involving young pigs (total numbers 288 and 400, respectively) were performed to compare the biological activity of Dl- and L-tryptophan under restricted (trial 1) and ad libitum (trial 2) feeding conditions. In trial 1, three additions of Dl-tryptophan (0·3, 0·6 and 0·9 g/kg) and two

  9. Photosensitized oxidation of tryptophan and hepatic dysfunction in neonatal gerbils.

    Science.gov (United States)

    Bhatia, J; Rassin, D K

    1985-01-01

    Hepatic dysfunction is a common metabolic complication of parenteral nutrition. Studies in animals have suggested that several amino acids, especially tryptophan, may play a role in the development of hepatic dysfunction. Further, photoirradiation of amino acids in the presence of photosensitizers, such as riboflavin, causes photooxidative changes in several amino acids. The present study was undertaken to determine the effect of tryptophan, after photoirradiation in the presence of riboflavin, on hepatic function in neonatal gerbils. Two-week-old suckling gerbils received approximately 4 mmol/kg/day of light-exposed or nonlight-exposed tryptophan or received saline intraperitoneally for 4 days. An increase in the activity of serum gamma-glutamyl transpeptidase was found in gerbils receiving both light-exposed and nonlight-exposed tryptophan compared to control. Concentrations of tryptophan were significantly higher in animals receiving saline than in the other two groups. There were no significant differences in the major tissue amino acids among the three groups of animals. Our data suggest the role of photosensitized oxidation of tryptophan in the pathogenesis of hepatic dysfunction in neonatal gerbils. It is possible that similar photooxidation occurring during infusion of parenteral amino acid solutions containing vitamins exposed to constant illumination in the newborn nursery is responsible for the observed hepatic dysfunction in parenterally fed neonates.

  10. Suppression of Th1 differentiation by tryptophan supplementation in vivo.

    Science.gov (United States)

    Lanz, Tobias V; Becker, Simon; Mohapatra, Soumya R; Opitz, Christiane A; Wick, Wolfgang; Platten, Michael

    2017-07-01

    Metabolism of the essential amino acid tryptophan (trp) is a key endogenous immunosuppressive pathway restricting inflammatory responses. Tryptophan metabolites promote regulatory T cell (Treg) differentiation and suppress proinflammatory T helper cell (Th)1 and Th17 phenotypes. It has been shown that treatment with natural and synthetic tryptophan metabolites can suppress autoimmune neuroinflammation in preclinical animal models. Here, we tested if oral intake of tryptophan would increase immunosuppressive tryptophan metabolites and ameliorate autoimmune neuroinflammation as a safe approach to treat autoimmune disorders like multiple sclerosis (MS). Without oral supplementation, systemic kynurenine levels decrease during the initiation phase of experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, indicating systemic activation of tryptophan metabolism. Daily oral gavage of up to 10 mg/mouse/day was safe and increased serum kynurenine levels by more than 20-fold for more than 3 h after the gavage. While this treatment resulted in suppression of myelin-specific Th1 responses, there was no relevant impact on clinical disease activity. These data show that oral trp supplementation at subtoxic concentrations suppresses antigen-specific Th1 responses, but suggest that the increase in trp metabolites is not sustained enough to impact neuroinflammation.

  11. Tryptophan depletion and aggressive responding in healthy males.

    Science.gov (United States)

    Moeller, F G; Dougherty, D M; Swann, A C; Collins, D; Davis, C M; Cherek, D R

    1996-07-01

    In order to study the effect of decreasing plasma tryptophan levels on aggressive responding in a controlled laboratory setting, we administered two doses (25 g and 100 g) of a tryptophan-free amino acid mixture to ten healthy male subjects after 24 h of a low tryptophan diet. Subjects were screened for current or past psychiatric, or non-psychiatric medical illness. Aggressive responding on a free-operant laboratory measure of aggression (the Point Subtraction Aggression Paradigm) and plasma tryptophan levels were measured before and after drinking the amino acid mixture. There was a significant increase in aggressive responding 5 h after the 100 g mixture and a significant increase in aggressive responding 6 h after the 25 g mixture compared to a baseline day when no drink was administered. There was also a significant decrease in plasma tryptophan at 5 hours after ingestion compared to baseline for both doses of amino acid mixture. This study supports the hypothesis that tryptophan depletion increases aggressive responding in healthy males in a laboratory setting, probably by decreasing brain serotonin.

  12. Carbon dots from tryptophan doped glucose for peroxynitrite sensing

    Energy Technology Data Exchange (ETDEWEB)

    Simões, Eliana F.C. [CIQ-UP, Grupo de Ciências Biológicas e Bioanalíticas, Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra (Portugal); CIQ-UP, Departamento de Química, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal); Esteves da Silva, Joaquim C.G. [CIQ-UP, Departamento de Química, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal); Leitão, João M.M., E-mail: jleitao@ff.uc.pt [CIQ-UP, Grupo de Ciências Biológicas e Bioanalíticas, Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra (Portugal)

    2014-12-10

    Highlights: • Synthesis of tryptophan doped carbon dots. • Experimental design optimization of the tryptophan doped carbon dots synthesis. • Fluorescence sensing of peroxynitrite by tryptophan doped carbon dots. • Peroxynitrite quantification in serum samples by tryptophan doped carbon dots. - Abstract: Tryptophan doped carbon dots (Trp-CD) were microwave synthesized. The optimum conditions of synthesizing of the Trp-CD were established by response surface multivariate optimization methodologies and were the following: 2.5 g of glucose and 300 mg of tryptophan diluted in 15 mL of water exposed for 5 min to a microwave radiation of 700 W. Trp-CD have an average size of 20 nm, were fluorescent with a quantum yield of 12.4% and the presence of peroxynitrite anion (ONOO{sup −}) provokes quenching of the fluorescence. The evaluated analytical methodology for ONOO{sup −} detection shows a linear response range from 5 to 25 μM with a limit of detection of 1.5 μM and quantification of 4.9 μM. The capability of the ONOO{sup −} quantification was evaluated in standard solutions and in fortified serum samples.

  13. The association between the hypothalamic pituitary adrenal axis and tryptophan metabolism in persons with recurrent major depressive disorder and healthy controls.

    Science.gov (United States)

    Sorgdrager, F J H; Doornbos, B; Penninx, B W J H; de Jonge, P; Kema, I P

    2017-11-01

    Persistent changes in serotonergic and hypothalamic pituitary adrenal (HPA) axis functioning are implicated in recurrent types of major depressive disorder (MDD). Systemic tryptophan levels, which influence the rate of serotonin synthesis, are regulated by glucocorticoids produced along the HPA axis. We investigated tryptophan metabolism and its association with HPA axis functioning in single episode MDD, recurrent MDD and non-depressed individuals. We included depressed individuals (n = 1320) and controls (n = 406) from the Netherlands Study of Depression and Anxiety (NESDA). The kynurenine to tryptophan ratio (kyn/trp ratio) was established using serum kynurenine and tryptophan levels. Several HPA axis parameters were calculated using salivary cortisol samples. We adjusted the regression analyses for a wide range of potential confounders and differentiated between single episode MDD, recurrent MDD and control. Tryptophan, kynurenine and the kyn/trp ratio did not differ between controls and depressed individuals. Increased evening cortisol levels were associated with a decreased kyn/trp ratio in the total sample (Crude: β = -.102, p depressed individuals (Crude: β = -.196, p depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells

    Science.gov (United States)

    Knies, Diana; Klobuch, Sebastian; Xue, Shao-An; Birtel, Matthias; Echchannaoui, Hakim; Yildiz, Oezlem; Omokoko, Tana; Guillaume, Philippe; Romero, Pedro; Stauss, Hans; Sahin, Ugur; Herr, Wolfgang; Theobald, Matthias; Thomas, Simone; Voss, Ralf-Holger

    2016-01-01

    Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells. PMID:27028870

  15. The Antimalarial Drug Quinine Disrupts Tat2p-mediated Tryptophan Transport and Causes Tryptophan Starvation*

    Science.gov (United States)

    Khozoie, Combiz; Pleass, Richard J.; Avery, Simon V.

    2009-01-01

    Quinine is a major drug of choice for the treatment of malaria. However, the primary mode of quinine action is unclear, and its efficacy is marred by adverse reactions among patients. To help address these issues, a genome-wide screen for quinine sensitivity was carried out using the yeast deletion strain collection. Quinine-sensitive mutants identified in the screen included several that were defective for tryptophan biosynthesis (trp strains). This sensitivity was confirmed in independent assays and was suppressible with exogenous Trp, suggesting that quinine caused Trp starvation. Accordingly, quinine was found to inhibit [3H]Trp uptake by cells, and the quinine sensitivity of a trp1Δ mutant could be rescued by overexpression of Trp permeases, encoded by TAT1 and TAT2. The site of quinine action was identified specifically as the high affinity Trp/Tyr permease, Tat2p, with which quinine associated in a Trp-suppressible manner. A resultant action also on Tyr levels was reflected by the Tyr-suppressible quinine hypersensitivity of an aro7Δ deletion strain, which is auxotrophic for Tyr (and Phe). The present genome-wide dataset provides an important resource for discovering modes of quinine toxicity. That potential was validated with our demonstration that Trp and Tyr uptake via Tat2p is a major target of cellular quinine toxicity. The results also suggest that dietary tryptophan supplements could help to avert the toxic effects of quinine. PMID:19416971

  16. Variation in tryptophan hydroxylase-2 gene is not associated to male completed suicide in Estonian population.

    Science.gov (United States)

    Must, Anne; Tasa, Gunnar; Lang, Aavo; Vasar, Eero; Kõks, Sulev; Maron, Eduard; Väli, Marika

    2009-04-03

    Dysfunction of the central serotonergic system has been related to a spectrum of psychiatric disorders, including suicidal behavior. Tryptophan hydroxylase isoform 2 (TPH2) is the rate-limiting enzyme in the biosynthetic pathway of serotonin, being expressed in serotonergic neurons of raphe nuclei. We investigated genetic variation in TPH2 gene in two samples of male subjects: 288 suicide completers and 327 volunteers, in order to reveal any associations between 14 single nucleotide polymorphisms and completed suicide. No associations were revealed neither on allelic nor haplotype level. Our finding does not support the hypothesis of TPH2 being a susceptibility factor for completed suicide in males of Estonian origin.

  17. Fructose malabsorption is associated with decreased plasma tryptophan.

    Science.gov (United States)

    Ledochowski, M; Widner, B; Murr, C; Sperner-Unterweger, B; Fuchs, D

    2001-04-01

    Fructose malabsorption is characterized by the inability to absorb fructose efficiently. As a consequence fructose reaches the colon where it is broken down by bacteria to short fatty acids, CO2, H2, CH4 and lactic acid. Bloating, cramps, osmotic diarrhea and other symptoms of irritable bowel syndrome are the consequence and can be seen in about 50% of fructose malabsorbers. Recently it was found that fructose malabsorption was associated with early signs of depressive disorders. Therefore, it was investigated whether fructose malabsorption is associated with abnormal tryptophan metabolism. Fifty adults (16 men, 34 women) with gastrointestinal discomfort were analyzed by measuring breath hydrogen concentrations after an oral dose of 50 g fructose after an overnight fast. They were classified as normals or fructose malabsorbers according to their breath H2 concentrations. All patients filled out a Beck depression inventory questionnaire. Blood samples were taken for plasma tryptophan and kynurenine measurements. Fructose malabsorption (breath deltaH2 production >20 ppm) was detected in 35 of 50 individuals (70%). Subjects with fructose malabsorption showed significantly lower plasma tryptophan concentrations and significantly higher scores in the Beck depression inventory compared to those with normal fructose absorption. Fructose malabsorption is associated with lower tryptophan levels that may play a role in the development of depressive disorders. High intestinal fructose concentration seems to interfere with L-tryptophan metabolism, and it may reduce availability of tryptophan for the biosynthesis of serotonin (5-hydroxytryptamine). Fructose malabsorption should be considered in patients with symptoms of depression and disturbances of tryptophan metabolism.

  18. Kynurenine pathway in psychosis: evidence of increased tryptophan degradation.

    LENUS (Irish Health Repository)

    Barry, Sandra

    2009-05-01

    The kynurenine pathway of tryptophan degradation may serve to integrate disparate abnormalities heretofore identified in research aiming to elucidate the complex aetiopathogenesis of psychotic disorders. Post-mortem brain tissue studies have reported elevated kynurenine and kynurenic acid in the frontal cortex and upregulation of the first step of the pathway in the anterior cingulate cortex of individuals with schizophrenia. In this study, we examined kynurenine pathway activity by measuring tryptophan breakdown, a number of pathway metabolites and interferon gamma (IFN-gamma), which is the preferential activator of the first-step enzyme, indoleamine dioxygenase (IDO), in the plasma of patients with major psychotic disorder. Plasma tryptophan, kynurenine pathway metabolites were measured using high-performance liquid chromatography (HPLC) in 34 patients with a diagnosis on the psychotic spectrum (schizophrenia or schizoaffective disorder) and in 36 healthy control subjects. IFN-gamma was measured using enzyme-linked immunosorbent assay (ELISA). The mean tryptophan breakdown index (kynurenine\\/tryptophan) was significantly higher in the patient group compared with controls (P < 0.05). IFN-gamma measures did not differ between groups (P = 0.23). No relationship was found between measures of psychopathology, symptom severity and activity in the first step in the pathway. A modest correlation was established between the tryptophan breakdown index and illness duration. These results provide evidence for kynurenine pathway upregulation, specifically involving the first enzymatic step, in patients with major psychotic disorder. Increased tryptophan degradation in psychoses may have potential consequences for the treatment of these disorders by informing the development of novel therapeutic compounds.

  19. Tryptophan metabolism in breast cancers: molecular imaging and immunohistochemistry studies

    International Nuclear Information System (INIS)

    Juhász, Csaba; Nahleh, Zeina; Zitron, Ian; Chugani, Diane C.; Janabi, Majid Z.; Bandyopadhyay, Sudeshna; Ali-Fehmi, Rouba; Mangner, Thomas J.; Chakraborty, Pulak K.; Mittal, Sandeep; Muzik, Otto

    2012-01-01

    Introduction: Tryptophan oxidation via the kynurenine pathway is an important mechanism of tumoral immunoresistance. Increased tryptophan metabolism via the serotonin pathway has been linked to malignant progression in breast cancer. In this study, we combined quantitative positron emission tomography (PET) with tumor immunohistochemistry to analyze tryptophan transport and metabolism in breast cancer. Methods: Dynamic α-[ 11 C]methyl-L-tryptophan (AMT) PET was performed in nine women with stage II–IV breast cancer. PET tracer kinetic modeling was performed in all tumors. Expression of L-type amino acid transporter 1 (LAT1), indoleamine 2,3-dioxygenase (IDO; the initial and rate-limiting enzyme of the kynurenine pathway) and tryptophan hydroxylase 1 (TPH1; the initial enzyme of the serotonin pathway) was assessed by immunostaining of resected tumor specimens. Results: Tumor AMT uptake peaked at 5–20 min postinjection in seven tumors; the other two cases showed protracted tracer accumulation. Tumor standardized uptake values (SUVs) varied widely (2.6–9.8) and showed a strong positive correlation with volume of distribution values derived from kinetic analysis (P < .01). Invasive ductal carcinomas (n = 6) showed particularly high AMT SUVs (range, 4.7–9.8). Moderate to strong immunostaining for LAT1, IDO and TPH1 was detected in most tumor cells. Conclusions: Breast cancers show differential tryptophan kinetics on dynamic PET. SUVs measured 5–20 min postinjection reflect reasonably the tracer's volume of distribution. Further studies are warranted to determine if in vivo AMT accumulation in these tumors is related to tryptophan metabolism via the kynurenine and serotonin pathways.

  20. Eficiência dos testes COPAN (Microplate e Single na detecção de resíduos de antimicrobianos no leite Efficacy of COPAN (Microplate and Single kits in detection of antimicrobials residues in milk

    Directory of Open Access Journals (Sweden)

    C.G.M.S.C. Tenório

    2009-04-01

    Full Text Available Avaliou-se a eficiência dos testes microbiológicos COPAN (Microplate e Single para detecção de resíduos de 13 antimicrobianos inoculados em leite isento de resíduos. Foram utilizadas quatro concentrações, sendo a primeira equivalente à metade do limite de detecção declarado pelo fabricante (C1; a segunda equivalente ao limite máximo de resíduos (LMR estabelecido pela legislação brasileira (C2; a terceira equivalente ao limite de detecção declarado pelo fabricante (C3; e a quarta equivalente ao dobro do limite de detecção declarado pelo fabricante (C4. Os testes apresentaram 100% de sensibilidade na detecção de amoxicilina, ampicilina, cloxacilina, penicilina, tilosina, sulfadiazina, sulfametoxazol, e 96,7% na detecção de oxacilina para as concentrações informadas pelo fabricante como limite de detecção. Em relação às concentrações estabelecidas pela legislação brasileira, verificou-se que os testes foram capazes de detectá-las para a maioria dos antimicrobianos avaliados. Os testes não se mostraram eficientes na detecção das concentrações estabelecidas pela legislação para eritromicina, oxitetraciclina, tetraciclina, trimetoprim e gentamicina (Microplate.The efficacy of the microbiological kits COPAN (Microplate and Single for detection of antimicrobials residues was tested. Thirteen drugs were inoculated into milk without residues at four concentration levels: C1 - half of the detection threshold declared by the manufacturer, C2 - the maximum residues threshold established by the Brazilian legislation, C3 - the detection threshold declared by the manufacturer, and C4 - two fold the detection threshold declared by the manufacturer. The tests showed 100% efficient in detection of amoxicillin, cloxacillin, penicillin, tilosin, sulfadiazine, and sulfa methoxazol; and 96.7% for oxacillin considering the concentration stated by the manufacturer as threshold level. Regarding the concentrations established by

  1. Disturbed tryptophan metabolism in cardiovascular disease.

    Science.gov (United States)

    Mangge, H; Stelzer, I; Reininghaus, E Z; Weghuber, D; Postolache, T T; Fuchs, D

    2014-06-01

    Atherosclerosis (AS), a major pathologic consequence of obesity, is the main etiological factor of cardiovascular disease (CVD), which is the most common cause of death in the western world. A systemic chronic low grade immune- mediated inflammation (scLGI) is substantially implicated in AS and its consequences. In particular, proinflammatory cytokines play a major role, with Th1-type cytokine interferon-γ (IFN-γ) being a key mediator. Among various other molecular and cellular effects, IFN-γ activates the enzyme indoleamine 2,3-dioxygenase (IDO) in monocyte-derived macrophages, dendritic, and other cells, which, in turn, decreases serum levels of the essential amino acid tryptophan (TRP). Thus, people with CVD often have increased serum kynurenine to tryptophan ratios (KYN/TRP), a result of an increased TRP breakdown. Importantly, increased KYN/TRP is associated with a higher likelihood of fatal cardiovascular events. A scLGI with increased production of the proinflammatory adipokine leptin, in combination with IFN-γ and interleukin-6 (IL-6), represents another central link between obesity, AS, and CVD. Leptin has also been shown to contribute to Th1-type immunity shifting, with abdominal fat being thus a direct contributor to KYN/TRP ratio. However, TRP is not only an important source for protein production but also for the generation of one of the most important neurotransmitters, 5-hydroxytryptamine (serotonin), by the tetrahydrobiopterin-dependent TRP 5-hydroxylase. In prolonged states of scLGI, availability of free serum TRP is strongly diminished, affecting serotonin synthesis, particularly in the brain. Additionally, accumulation of neurotoxic KYN metabolites such as quinolinic acid produced by microglia, can contribute to the development of depression via NMDA glutamatergic stimulation. Depression had been reported to be associated with CVD endpoints, but it most likely represents only a secondary loop connecting excess adipose tissue, scLGI and

  2. One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli

    Science.gov (United States)

    2012-01-01

    Background L-tryptophan is an aromatic amino acid widely used in the food, chemical and pharmaceutical industries. In Escherichia coli, L-tryptophan is synthesized from phosphoenolpyruvate and erythrose 4-phosphate by enzymes in the shikimate pathway and L-tryptophan branch pathway, while L-serine and phosphoribosylpyrophosphate are also involved in L-tryptophan synthesis. In order to construct a microbial strain for efficient L-tryptophan production from glucose, we developed a one step tryptophan attenuator inactivation and promoter swapping strategy for metabolic flux optimization after a base strain was obtained by overexpressing the tktA, mutated trpE and aroG genes and inactivating a series of competitive steps. Results The engineered E. coli GPT1002 with tryptophan attenuator inactivation and tryptophan operon promoter substitution exhibited 1.67 ~ 9.29 times higher transcription of tryptophan operon genes than the control GPT1001. In addition, this strain accumulated 1.70 g l-1 L-tryptophan after 36 h batch cultivation in 300-mL shake flask. Bioreactor fermentation experiments showed that GPT1002 could produce 10.15 g l-1 L-tryptophan in 48 h. Conclusions The one step inactivating and promoter swapping is an efficient method for metabolic engineering. This method can also be applied in other bacteria. PMID:22380540

  3. Expanding tryptophan-containing cyclodipeptide synthase spectrum by identification of nine members from Streptomyces strains.

    Science.gov (United States)

    Liu, Jing; Yu, Huili; Li, Shu-Ming

    2018-03-24

    Cyclodipeptide synthases (CDPSs) comprise normally 200-300 amino acid residues and are mainly found in bacteria. They hijack aminoacyl-tRNAs from the ribosomal machinery for cyclodipeptide formation. In this study, nine new CDPS genes from eight Streptomyces strains were cloned into pET28a vector and expressed in Escherichia coli. Structural elucidation of the isolated products led to the identification of one cyclo-L-Trp-L-Leu, two cyclo-L-Trp-L-Pro, and three cyclo-L-Trp-L-Trp synthases. Other three CDPSs produce cyclo-L-Trp-L-Ala or cyclo-L-Trp-L-Tyr as the major cyclodipeptide. Total product yields of 46 to 211 mg/L E. coli culture were obtained. Our findings represent rare examples of CDPS family derived from actinobacteria that form various tryptophan-containing cyclodipeptides. Furthermore, this study highlights the potential of the microbial machinery for tryptophan-containing cyclodipeptide biosynthesis and provides valid experimental basis for further combination of these CDPS genes with other modification genes in synthetic biology.

  4. Evidence of Energy Transfer from Tryptophan to BSA/HSA Protected Gold Nanoclusters.

    Science.gov (United States)

    Raut, Sangram; Chib, Rahul; Butler, Susan; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2014-09-01

    This work reports on the chromophores interactions within protein-protected gold nanoclusters. We conducted spectroscopic studies of fluorescence emissions originated from gold nanoclusters and intrinsic tryptophan (Trp) in BSA or HSA proteins. Both, steady state fluorescence and lifetime measurements show a significant Forster resonance energy transfer (FRET) from Trp to the gold nanocluster. Tryptophan lifetimes in the case of protein-protected gold nanoclusters are 2.6ns and 2.3ns for BSA and HSA Au clusters while 5.8ns for native BSA and 5.6 for native HSA. The apparent distances from Trp to gold nanocluster emission center, we estimated as 24.75A 0 for BSA and 23.80A 0 for HSA. We also studied a potassium iodide (KI) quenching of protein-protected gold nanoclusters and compared with the quenching of BSA and HAS alone. The rates of Trp quenching were smaller in BSA-Au and HSA-Au nanoclusters than in the case of free proteins, which is consistent with shorter lifetime of quenched Trp(s) and lower accessibility for KI. While Trp residues were quenched by KI, the emissions originated from nanoclusters were practically unquenched. In summary, for BSA and HSA Au clusters, we found 55% and 59% energy transfer efficiency respectively from tryoptophan to gold clusters. We believe this interaction can be used to our advantage in terms of developing resonance energy transfer based sensing applications.

  5. Role of quaternary structure in muscle creatine kinase stability: tryptophan 210 is important for dimer cohesion.

    Science.gov (United States)

    Perraut, C; Clottes, E; Leydier, C; Vial, C; Marcillat, O

    1998-07-01

    A mutant of the dimeric rabbit muscle creatine kinase (MM-CK) in which tryptophan 210 was replaced has been studied to assess the role of this residue in dimer cohesion and the importance of the dimeric state for the native enzyme stability. Wild-type protein equilibrium unfolding induced by guanidine hydrochloride occurs through intermediate states with formation of a molten globule and a premolten globule. Unlike the wild-type enzyme, the mutant inactivates at lower denaturant concentration and the loss of enzymatic activity is accompanied by the dissociation of the dimer into two apparently compact monomers. However, the Stokes radius of the monomer increases with denaturant concentration as determined by size exclusion chromatography, indicating that, upon monomerization, the protein structure is destabilized. Binding of 8-anilinonaphthalene-1-sulfonate shows that the dissociated monomer exposes hydrophobic patches at its surface, suggesting that it could be a molten globule. At higher denaturant concentrations, both wild-type and mutant follow similar denaturation pathways with formation of a premolten globule around 1.5-M guanidine, indicating that tryptophan 210 does not contribute to a large extent to the monomer conformational stability, which may be ensured in the dimeric state through quaternary interactions.

  6. Tryptophan metabolism, disposition and utilization in pregnancy

    Science.gov (United States)

    Badawy, Abdulla A.-B.

    2015-01-01

    Tryptophan (Trp) requirements in pregnancy are several-fold: (1) the need for increased protein synthesis by mother and for fetal growth and development; (2) serotonin (5-HT) for signalling pathways; (3) kynurenic acid (KA) for neuronal protection; (4) quinolinic acid (QA) for NAD+ synthesis (5) other kynurenines (Ks) for suppressing fetal rejection. These goals could not be achieved if maternal plasma [Trp] is depleted. Although plasma total (free + albumin-bound) Trp is decreased in pregnancy, free Trp is elevated. The above requirements are best expressed in terms of a Trp utilization concept. Briefly, Trp is utilized as follows: (1) In early and mid-pregnancy, emphasis is on increased maternal Trp availability to meet the demand for protein synthesis and fetal development, most probably mediated by maternal liver Trp 2,3-dioxygenase (TDO) inhibition by progesterone and oestrogens. (2) In mid- and late pregnancy, Trp availability is maintained and enhanced by the release of albumin-bound Trp by albumin depletion and non-esterified fatty acid (NEFA) elevation, leading to increased flux of Trp down the K pathway to elevate immunosuppressive Ks. An excessive release of free Trp could undermine pregnancy by abolishing T-cell suppression by Ks. Detailed assessment of parameters of Trp metabolism and disposition and related measures (free and total Trp, albumin, NEFA, K and its metabolites and pro- and anti-inflammatory cytokines in maternal blood and, where appropriate, placental and fetal material) in normal and abnormal pregnancies may establish missing gaps in our knowledge of the Trp status in pregnancy and help identify appropriate intervention strategies. PMID:26381576

  7. Chemically defined media modifications to lower tryptophan oxidation of biopharmaceuticals.

    Science.gov (United States)

    Hazeltine, Laurie B; Knueven, Kristine M; Zhang, Yan; Lian, Zhirui; Olson, Donald J; Ouyang, Anli

    2016-01-01

    Oxidation of biopharmaceuticals is a major product quality issue with potential impacts on activity and immunogenicity. At Eli Lilly and Company, high tryptophan oxidation was observed for two biopharmaceuticals in development produced in Chinese hamster ovary cells. A switch from historical hydrolysate-containing media to chemically defined media with a reformulated basal powder was thought to be responsible, so mitigation efforts focused on media modification. Shake flask studies identified that increasing tryptophan, copper, and manganese and decreasing cysteine concentrations were individual approaches to lower tryptophan oxidation. When amino acid and metal changes were combined, the modified formulation had a synergistic impact that led to substantially less tryptophan oxidation for both biopharmaceuticals. Similar results were achieved in shake flasks and benchtop bioreactors, demonstrating the potential to implement these modifications at manufacturing scale. The modified formulation did not negatively impact cell growth and viability, product titer, purity, charge variants, or glycan profile. A potential mechanism of action is presented for each amino acid or metal factor based on its role in oxidation chemistry. This work served not only to mitigate the tryptophan oxidation issue in two Lilly biopharmaceuticals in development, but also to increase our knowledge and appreciation for the impact of media components on product quality. © 2015 American Institute of Chemical Engineers.

  8. Cross-linking between thymine and indolyl radical: possible mechanisms for cross-linking of DNA and tryptophan-containing peptides.

    Science.gov (United States)

    Mitrasinovic, Petar M

    2005-01-01

    As experimentally observed in gamma-irradiated aqueous solutions of tryptophan-containing peptides in the presence of DNA, a fast electron (or hydrogen atom) transfer from the DNA restores an intact tryptophan residue at the expense of the DNA integrity. Alternatively, addition of the deprotonated electron-deficient indolyl radical to the DNA, followed by subsequent rearrangement, may lead toward DNA/tryptophan-containing peptide cross-linking. Herein, possible reaction mechanisms for thymine-indolyl radical cross-linking are proposed. The consistent use of the contact spin density distribution is the key virtue of this work. The Becke 3, Lee, Yang, and Parr (B3LYP) density functional theory (DFT) method is employed to investigate the feasibility of the proposed cross-linking mechanisms. A possible complete reaction mechanism consists of a combination of the C(5)-hydroxylated thymine and indolyl radicals forming the initial cross-linked product, a hydrogen transfer within the initial cross-linked product by use of a bridging water molecule, and a dehydration step. The overall thermodynamics of the free energy profiles at 0 and 298 K are similar and display differences of magnitude for the hydrogen-transfer reaction. Temperature may be a key factor influencing the overall mechanism. The skeletal structures and contact spin densities on the heavy atoms of the tryptophan side chain and indolyl radicals are essentially equal. Hence, it is believed that a direct combination of the C(5)-hydroxylated thymine and tryptophan radicals should form the initial cross-linked product, as far as addition of the tryptophan radical to the DNA is concerned.

  9. Coumarins as turn on/off fluorescent probes for detection of residual acetone in cosmetics following headspace single-drop microextraction.

    Science.gov (United States)

    Cabaleiro, N; de la Calle, I; Bendicho, C; Lavilla, I

    2014-11-01

    In this work, a new method based on headspace-single drop microextraction for the determination of residual acetone in cosmetics by microfluorospectrometry is proposed. Acetone causes fluorescence changes in a 2.5 µL-ethanolic drop (40% v/v) containing 3.10(-4) mol L(-1) 7-hydroxy-4-methylcoumarin ('turn off') or 6.10(-6) mol L(-1) 7-diethylamino-4-methylcoumarin ('turn on'). Polarity and ability to form hydrogen bonds of short chain alcohols (polar protic solvents) were crucial in order to observe these changes in the presence of acetone (polar aprotic solvent). Parameters related with the HS-SDME procedure were studied, namely headspace volume, composition, volume and temperature of drop, microextraction time, stirring rate, mass and temperature of sample, as well as the effect of potential interferents (alcohols and fragrances). The high volatility of acetone allows its extraction from an untreated cosmetic sample within 3 min. A detection limit of 0.26 µg g(-1) and repeatability, expressed as relative standard deviation, around 5% were reached. Accuracy of the proposed methodology was evaluated by means of recovery studies. The method was successfully used to analyze different cosmetics. Simplicity and high sample throughput can be highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen: identification of N-formylkynurenine tryptophan derivatives within the active-site gorge of its complex with the photosensitizer methylene blue.

    Science.gov (United States)

    Triquigneaux, Mathilde M; Ehrenshaft, Marilyn; Roth, Esther; Silman, Israel; Ashani, Yakov; Mason, Ronald P; Weiner, Lev; Deterding, Leesa J

    2012-11-15

    The principal role of AChE (acetylcholinesterase) is termination of impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine. The active site of AChE is near the bottom of a long and narrow gorge lined with aromatic residues. It contains a CAS (catalytic 'anionic' subsite) and a second PAS (peripheral 'anionic' site), the gorge mouth, both of which bind acetylcholine via π-cation interactions, primarily with two conserved tryptophan residues. It was shown previously that generation of (1)O(2) by illumination of MB (Methylene Blue) causes irreversible inactivation of TcAChE (Torpedo californica AChE), and suggested that photo-oxidation of tryptophan residues might be responsible. In the present study, structural modification of the TcAChE tryptophan residues induced by MB-sensitized oxidation was investigated using anti-N-formylkynurenine antibodies and MS. From these analyses, we determined that N-formylkynurenine derivatives were specifically produced from Trp(84) and Trp(279), present at the CAS and PAS respectively. Peptides containing these two oxidized tryptophan residues were not detected when the competitive inhibitors, edrophonium and propidium (which should displace MB from the gorge) were present during illumination, in agreement with their efficient protection against the MB-induced photo-inactivation. Thus the bound MB elicited selective action of (1)O(2) on the tryptophan residues facing on to the water-filled active-site gorge. The findings of the present study thus demonstrate the localized action and high specificity of MB-sensitized photo-oxidation of TcAChE, as well as the value of this enzyme as a model system for studying the mechanism of action and specificity of photosensitizing agents.

  11. Neurospora tryptophan synthase: N-terminal analysis and the sequence of the pyridoxal phosphate active site peptide

    International Nuclear Information System (INIS)

    Pratt, M.L.; Hsu, P.Y.; DeMoss, J.A.

    1986-01-01

    Tryptophan synthase (TS), which catalyzes the final step of tryptophan biosynthesis, is a multifunctional protein requiring pyridoxal phosphate (B6P) for two of its three distinct enzyme activities. TS from Neurospora has a blocked N-terminal, is a homodimer of 150 KDa and binds one mole of B6P per mole of subunit. The authors shown the N-terminal residue to be acyl-serine. The B6P-active site of holoenzyme was labelled by reduction of the B6P-Schiff base with [ 3 H]-NaBH 4 , and resulted in a proportionate loss of activity in the two B6P-requiring reactions. SDS-polyacrylamide gel electrophoresis of CNBr-generated peptides showed the labelled, active site peptide to be 6 KDa. The sequence of this peptide, purified to apparent homogeneity by a combination of C-18 reversed phase and TSK gel filtration HPLC is: gly-arg-pro-gly-gln-leu-his-lys-ala-glu-arg-leu-thr-glu-tyr-ala-gly-gly-ala-gln-ile-xxx-leu-lys-arg-glu-asp-leu-asn-his-xxx-gly-xxx-his-/sub ***/-ile-asn-asn-ala-leu. Although four residues (xxx, /sub ***/) are unidentified, this peptide is minimally 78% homologous with the corresponding peptide from yeast TS, in which residue (/sub ***/) is the lysine that binds B6P

  12. Isoform-Specific Substrate Inhibition Mechanism of Human Tryptophan Hydroxylase

    DEFF Research Database (Denmark)

    Tidemand, Kasper Damgaard; Peters, Günther H.J.; Harris, Pernille

    2017-01-01

    Tryptophan hydroxylase (TPH) catalyzes the initial and rate-limiting step in the biosynthesis of serotonin, which is associated with a variety of disorders such as depression and irritable bowel syndrome. TPH exists in two isoforms: TPH1 and TPH2. TPH1 catalyzes the initial step in the synthesis...... of serotonin in the peripheral tissues, while TPH2 catalyzes this step in the brain. In this study, the steady-state kinetic mechanism for the catalytic domain of human TPH1 has been determined. Varying substrate tryptophan (Trp) and tetrahydrobiopterin (BH4) results in a hybrid Ping Pong-ordered mechanism...... in which the reaction can either occur through a Ping Pong or a sequential mechanism depending on the concentration of tryptophan. The catalytic domain of TPH1 shares a sequence identity of 81% with TPH2. Despite the high sequence identity, differences in the kinetic parameters of the isoforms have been...

  13. Phasor approaches simplify the analysis of tryptophan fluorescence data in protein denaturation studies

    NARCIS (Netherlands)

    Bader, A.N.; Visser, N.V.; Amerongen, van H.; Visser, A.J.W.G.

    2014-01-01

    The intrinsic fluorescence of tryptophan is frequently used to investigate the structure of proteins. The analysis of tryptophan fluorescence data is challenging: fluorescence (anisotropy) decays typically have multiple lifetime (correlation time) components and fluorescence spectra are broad and

  14. Internet-Based Cognitive Behavioral Therapy for Residual Symptoms in Bipolar Disorder Type II: A Single-Subject Design Pilot Study.

    Science.gov (United States)

    Holländare, Fredrik; Eriksson, Annsofi; Lövgren, Lisa; Humble, Mats B; Boersma, Katja

    2015-04-23

    Bipolar disorder is a chronic condition with recurring episodes that often lead to suffering, decreased functioning, and sick leave. Pharmacotherapy in the form of mood stabilizers is widely available, but does not eliminate the risk of a new depressive or (hypo)manic episode. One way to reduce the risk of future episodes is to combine pharmacological treatment with individual or group psychological interventions. However, access to such interventions is often limited due to a shortage of trained therapists. In unipolar depression there is now robust evidence of the effectiveness of Internet-based psychological interventions, usually comprising psychoeducation and cognitive behavioral therapy (CBT). Internet-based interventions for persons suffering from bipolar disorder could increase access to psychological treatment. The aim of this study was to investigate the feasibility of an Internet-based intervention, as well as its effect on residual depressive symptoms in persons diagnosed with bipolar disorder type II (BP-II). The most important outcomes were depressive symptoms, treatment adherence, and whether the patient perceived the intervention as helpful. A total of 7 patients diagnosed with bipolar disorder type II at a Swedish psychiatric outpatient clinic were offered the opportunity to participate. Of the 7 patients, 3 (43%) dropped out before treatment began, and 4 (57%) were treated by means of an online, Internet-based intervention based on CBT (iCBT). The intervention was primarily aimed at psychoeducation, treatment of residual depressive symptoms, emotion regulation, and improved sleep. All patients had ongoing pharmacological treatment at recruitment and established contact with a psychiatrist. The duration of BP-II among the treated patients was between 6 and 31 years. A single-subject design was used and the results of the 4 participating patients were presented individually. Initiating treatment was perceived as too demanding under current life

  15. The Tryptophan Depletion Theory in Delirium: Not Confirmed in Elderly Hip Fracture Patients

    NARCIS (Netherlands)

    de Jonghe, Annemarieke; van Munster, Barbara C.; Fekkes, Durk; van Oosten, Hannah E.; de Rooij, Sophia E.

    2012-01-01

    Background: The tryptophan depletion theory assumes that low tryptophan levels are present in delirium. These lower levels may be regarded as a biochemical marker for cellular immune activation, which may lead to increased catabolism of tryptophan into kynurenine via stimulation of the enzyme

  16. Tryptophan requirement of the enterally fed term infant in the first month of life

    NARCIS (Netherlands)

    Huang, Lisha; Hogewind-Schoonenboom, Jacomine E.; Zhu, Li; Kraaijenga, Juliette V. S.; van Haren, Nicky P. C.; Voortman, Gardi J.; Schierbeek, Henk; Twisk, Jos W. R.; Huang, Ying; Chen, Chao; van Goudoever, Johannes B.

    2014-01-01

    Tryptophan not only is an amino acid essential to protein synthesis but also serves as a precursor in 2 important metabolic pathways: the serotonin and the kynurenine pathways. Tryptophan is related to sleeping patterns. The objective of the present study was to determine the tryptophan requirement

  17. Environmental Stress Testing of the Single Sample Cylinder: A Proven Consensus Standard for Internal Gas Analysis (IGA) or Residual Gas Analysis (RGA)

    Science.gov (United States)

    Schuessler, Philipp WH

    2010-01-01

    In August 2008, Schuessler Consulting was contracted by NASA GSFC in support of the NASA Electronic Parts and Packaging (NEPP) program to perform two separate studies on moisture laden air in a stainless steel cylinder that had been designed to become a consensus standard for Test Method 1018. This Test Method was originally released for hybrids under Mil. Std. 883 but was quickly utilized on other microelectronic devices under the auspice of Mil. Std. 750. The cylinder had subsequently been fabricated for the 750 community. It was back-filled with moist air and subsequently analyzed over a period of time under a previous NASA contract. It had been shown that moisture in the 4000 - 5000 ppm range could be analyzed rather precisely with a mass spectrometer, commonly referred to as a Residual Gas Analyzer (RGA). The scope of this study was to ascertain if the composition and precision varied as a function of thermal shock at sub-zero temperatures and whether there was consensus when the standard was submitted to other RGA units. It was demonstrated and published that the consensus standard would yield precise RGA data for moisture within +/- 1% when optimized for a given RGA unit. It has been subsequently shown in this study at Oneida Research Services, that sub-zero storage did not affect that precision when a well-defined protocol for the analysis was followed. The consensus standard was taken to a second facility for analysis where it was found that moisture adsorption on the transfer lines caused precision to drop to +/- 12%. The Single Sample Cylinder (SSC) is a one liter stainless steel cylinder with associated sampling valves and has considerable weight and volume. But this considerable size allows for approximately 300 gas samples of the same composition to be delivered to any RGA unit. Lastly, a smaller cylinder, approximately 75 cc, of a second consensus standard was fabricated and tested with a different mix of fixed gases where moisture was kept in the

  18. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    Science.gov (United States)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  19. Structure-function paradigm in human myoglobin: how a single-residue substitution affects NO reactivity at low pO2.

    Science.gov (United States)

    Scorciapino, Mariano Andrea; Spiga, Enrico; Vezzoli, Alessandra; Mrakic-Sposta, Simona; Russo, Rosaria; Fink, Bruno; Casu, Mariano; Gussoni, Maristella; Ceccarelli, Matteo

    2013-05-22

    This work is focused on the two more expressed human myoglobin isoforms. In the literature, their different overexpression in high-altitude natives was proposed to be related to alternative/complementary functions in hypoxia. Interestingly, they differ only at residue-54, lysine or glutamate, which is external and far from the main binding site. In order to ascertain whether these two almost identical myoglobins might exert different functions and to contribute to a deeper understanding about myoglobin's oxygen-level dependent functioning, they have been compared with respect to dynamics, heme electronic structure, and NO reactivity at different O2 levels. Electron paramagnetic resonance (EPR) spectroscopy was employed to investigate the electronic structure of the nitrosyl-form, obtaining fundamental clues about a different bond interaction between the heme-iron and the proximal histidine and highlighting striking differences in NO reactivity, especially at a very low pO2. The experimental results well matched with the information provided by molecular dynamics simulations, which showed a significantly different dynamics for the two proteins only in the absence of O2. The single mutation differentiating the two myoglobins resulted in strongly affecting the plasticity of the CD-region (C-helix-loop-D-helix), whose fluctuations, being coupled to the solvent, were found to be correlated with the dynamics of the distal binding site. In the absence of O2, on the one hand a significantly different probability for the histidine-gate opening has been shown by MD simulations, and on the other a different yield of myoglobin-NO formation was experimentally observed through EPR.

  20. Interaction of Small Zinc Complexes with Globular Proteins and Free Tryptophan

    Directory of Open Access Journals (Sweden)

    Joann M. Butkus

    2016-01-01

    Full Text Available A series of eight water soluble anionic, cationic, and neutral zinc(II complexes were synthesized and characterized. The interaction of these complexes with bovine serum albumin (BSA, human serum albumin (HSA, lysozyme, and free tryptophan (Trp was investigated using steady-state fluorescence spectroscopy. Static and dynamic fluorescence quenching analysis based on Stern-Volmer kinetics was conducted, and the decrease in fluorescence intensity of the Trp residue(s can be ascribed predominantly to static quenching that occurs when the Zn complex binds to the protein and forms a nonfluorescent complex. The role played by the nature of the ligand, the metal, and complex charge in quenching Trp fluorescence was investigated. The binding association constants (Ka ranged from 104 to 1010 M−1 and indicate that complexes with planar aromatic features have the strongest affinity for globular proteins and free Trp. Complexes with nonaromatic features failed to interact with these proteins at or in the vicinity of the Trp residues. These interactions were studied over a range of temperatures, and binding was found to weaken with the increase in temperature and was exothermic with a negative change in entropy. The thermodynamic parameters suggest that binding of Zn complexes to the proteins is a highly spontaneous and favorable process.

  1. Modeling operon dynamics: the tryptophan and lactose operons as paradigms.

    Science.gov (United States)

    Mackey, Michael C; Santillán, Moisés; Yildirim, Necmettin

    2004-03-01

    Understanding the regulation of gene control networks and their ensuing dynamics will be a critical component in the understanding of the mountain of genomic data being currently collected. This paper reviews recent mathematical modeling work on the tryptophan and lactose operons which are, respectively, the classical paradigms for repressible and inducible operons.

  2. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2009-01-01

    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and

  3. Tryptophan as a link between psychopathology and somatic states

    NARCIS (Netherlands)

    Russo, Sascha; Kema, Ido P; Fokkema, M Rebecca; Boon, Jim C; Willemse, Pax H B; de Vries, Elisabeth G E; den Boer, Johannes A; Korf, Jakob

    2003-01-01

    OBJECTIVE: Several somatic illnesses are associated with psychiatric comorbidity. Evidence is provided that availability of the essential amino acid tryptophan, which is the precursor of serotonin, may cause this phenomenon. METHODS: We performed a database search to find relevant articles published

  4. Preliminary study: voluntary food intake in dogs during tryptophan supplementation.

    Science.gov (United States)

    Fragua, Víctor; González-Ortiz, Gemma; Villaverde, Cecilia; Hervera, Marta; Mariotti, Valentina Maria; Manteca, Xavier; Baucells, María Dolores

    2011-10-01

    Tryptophan, a precursor of important molecules such as serotonin, melatonin and niacin, is an essential amino acid for dogs. In pigs, tryptophan supplementation has been shown to induce a significant increase in food intake. The aim of the present study was to assess whether long-term tryptophan supplementation increases voluntary food intake in dogs and to observe whether this was accompanied by a change in serum ghrelin. In the present study, sixteen adult Beagle dogs were used, with four male and four female dogs fed diets supplemented with tryptophan (1 g/dog per d) during 81 d (Trp) and four male and four female dogs that were not supplemented (control). A voluntary food intake test was performed during 5 d following the supplementation period. The Trp group tended to show a higher food intake during the voluntary food intake test (58.0 (SE 5.37) v. 77.5 (SE 3.65) g/kg metabolic weight per d; P = 0.074). No significant differences were found for serum ghrelin concentrations.

  5. Palladium(II)-catalyzed oxidation of L-tryptophan by ...

    Indian Academy of Sciences (India)

    The rate law associated with the reaction mechanism is derived. Keywords. Kinetics; oxidation; L-tryptophan; hexacyanoferrate(III); palladium(II). 1. Introduction. A large number of kinetic investigations on the oxida- tion of amino acids are being carried out using various oxidants under different experimental conditions1–16.

  6. Fluorescence resonance energy transfer from tryptophan in human ...

    Indian Academy of Sciences (India)

    TECS

    and free energy change for the process have been reported. The AODIQ–HSA complex results in fluores- cence resonance energy transfer (FRET) from the tryptophan moiety of HSA to the probe. The critical energy-transfer distance (R0) for FRET and the Stern–Volmer constant (Ksv) for the fluorescence quench- ing of the ...

  7. Analysis of Grain Protein, Tryptophan and Lysine Contents of Quality ...

    African Journals Online (AJOL)

    Maize proteins, however, have poor nutritional value for humans, because of reduced content of essential amino acids such as lysine, tryptophan and threonine. Maize proteins contain on an average about 2% lysine, which is less than one-half of the concentration recommended for human nutrition. Therefore, healthy diets ...

  8. Palladium (II)-catalyzed oxidation of L-tryptophan by ...

    Indian Academy of Sciences (India)

    A first order dependence in [hexacyanoferrate(III)] and fractional-first order dependences in both [L-tryptophan] and [palladium(II)] were obtained. The reaction exhibits fractional-second order kinetics with respect to [H+]. Reaction rate increased with increase in ionic strength and dielectric constant of the medium. The effect ...

  9. Confirmation of antibodies against L-tryptophan-like epitope in ...

    African Journals Online (AJOL)

    Rachel Oneya

    2016-09-07

    Sep 7, 2016 ... test based on this synthetic epitope, especially in combination with other tests, might improve the HAT diagnostic test in field conditions. Key words: Tryptophan, enzyme-linked immunosorbent assay (ELISA), human African trypanosomosis, serological diagnostic. INTRODUCTION. Trypanosoma brucei ...

  10. Residuation theory

    CERN Document Server

    Blyth, T S; Sneddon, I N; Stark, M

    1972-01-01

    Residuation Theory aims to contribute to literature in the field of ordered algebraic structures, especially on the subject of residual mappings. The book is divided into three chapters. Chapter 1 focuses on ordered sets; directed sets; semilattices; lattices; and complete lattices. Chapter 2 tackles Baer rings; Baer semigroups; Foulis semigroups; residual mappings; the notion of involution; and Boolean algebras. Chapter 3 covers residuated groupoids and semigroups; group homomorphic and isotone homomorphic Boolean images of ordered semigroups; Dubreil-Jacotin and Brouwer semigroups; and loli

  11. INDOLEAMINE 2,3-DIOXYGENASE INDUCES EXPRESSION OF A NOVEL TRYPTOPHAN TRANSPORTER IN MOUSE AND HUMAN TUMOR CELLS1

    Science.gov (United States)

    Silk, Jonathan D.; Lakhal, Samira; Laynes, Robert; Vallius, Laura; Karydis, Ioannis; Marcea, Cornelius; Boyd, C. A. Richard; Cerundolo, Vincenzo

    2011-01-01

    Indoleamine 2,3 dioxygenase (IDO) is the rate-limiting enzyme in the kynurenine pathway, catabolizing tryptophan to kynurenine. Tryptophan depletion by IDO expressing tumors is a common mechanism of immune evasion inducing regulatory T cells and inhibiting effector T cells. As mammalian cells cannot synthesize tryptophan, it remains unclear how IDO positive tumor cells overcome the detrimental effects of local tryptophan depletion. We demonstrate that IDO positive tumor cells express a novel amino acid transporter, which accounts for approximately 50% of the tryptophan uptake. The induced transporter is biochemically distinguished from the constitutively expressed tryptophan transporter System L by increased resistance to inhibitors of System L, resistance to inhibition by high concentrations of most amino acids tested, and high substrate specificity for tryptophan. Under conditions of low extracellular tryptophan, expression of this novel transporter significantly increases tryptophan entry into IDO positive tumors relative to tryptophan uptake through the low affinity System L alone, and further decreases tryptophan levels in the microenvironment. Targeting this additional tryptophan transporter could be a way of pharmacological inhibition of IDO mediated tumor escape. These findings highlight the ability of IDO-expressing tumor cells to thrive in a tryptophan depleted microenvironment by expressing a novel, highly tryptophan-specific transporter, which is resistant to inhibition by most other amino acids. The additional transporter allows tumor cells to strike the ideal balance between supply of tryptophan essential for their own proliferation and survival, and depleting the extracellular milieu of tryptophan to inhibit T cell proliferation. PMID:21742973

  12. Laser Desorption of Tryptophan from Tryptophan-HCl Salt on a Graphite Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Jun; Kim, Jeong Jin; Kang, Hyuk [Ajou University, Suwon (Korea, Republic of)

    2016-03-15

    Laser spectroscopy of biological molecules in the gas phase has been pioneered by Levy and coworkers when they first produced a supersonic molecular beam of tryptophan (Trp) and obtained its electronic spectrum. They were able to obtain enough vapor pressure needed for spectroscopy by heating a powder sample of Trp, although a special thermal spray was used to minimize fragmentation during heating. Many amine compounds, including biomolecules like amino acids and peptides, are usually available only as HCl salt form in order to prevent oxidation in air. Chemical processing is required to recover a neutral amine compound from its salt, thus limiting the applicability of laser-desorption spectroscopy of biomolecules. The experimental setup is a standard molecular beam machine composed of a pulsed valve with a laser-desorption module in a vacuum chamber, a second buffer chamber, a skimmer that separates the first and the second chambers, and a third vacuum chamber that is a time-of-flight mass spectrometer (TOF MS)

  13. Modulation of the transglycosylation activity of plant family GH18 chitinase by removing or introducing a tryptophan side chain.

    Science.gov (United States)

    Umemoto, Naoyuki; Ohnuma, Takayuki; Osawa, Takuo; Numata, Tomoyuki; Fukamizo, Tamo

    2015-08-19

    Transglycosylation (TG) activity of a family GH18 chitinase from the cycad, Cycas revoluta, (CrChiA) was modulated by removing or introducing a tryptophan side chain. The removal from subsite +3 through mutation of Trp168 to alanine suppressed TG activity, while introduction into subsite +1 through mutation of Gly77 to tryptophan (CrChiA-G77W) enhanced TG activity. The crystal structures of an inactive double mutant of CrChiA (CrChiA-G77W/E119Q) with one or two N-acetylglucosamine residues occupying subsites +1 or +1/+2, respectively, revealed that the Trp77 side chain was oriented toward +1 GlcNAc to be stacked with it face-to-face, but rotated away from subsite +1 in the absence of GlcNAc at the subsite. Aromatic residues in the aglycon-binding site are key determinants of TG activity of GH18 chitinases. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Increased serum free tryptophan in patients with diarrhea-predominant irritable bowel syndrome.

    Science.gov (United States)

    Christmas, David M; Badawy, Abdulla A-B; Hince, Dana; Davies, Simon J C; Probert, Christopher; Creed, Tom; Smithson, John; Afzal, Muhammad; Nutt, David J; Potokar, John P

    2010-10-01

    Irregularities of serotonin function in irritable bowel syndrome (IBS) may be due to changes in the metabolism of the serotonin precursor l-tryptophan. Dietary alteration of tryptophan intake may impact upon the mood and bowel symptoms of IBS. We hypothesized that diarrhea-predominant irritable bowel syndrome (d-IBS) patients would exhibit an increase in plasma tryptophan due to alterations in tryptophan metabolism. We also hypothesized that a diet low in tryptophan would reverse this change and reduce symptoms. Thirteen patients with d-IBS had fasting serum free and total tryptophan, large neutral amino acids, and 6 kynurenine metabolites measured before and after 2 weeks of a strict dairy-free diet. Baseline tryptophan parameters were compared with an age- and sex-matched control group. Changes in the specific tryptophan parameters before and after dairy-free diet were correlated with symptoms of IBS and mood. Compared with the control group, d-IBS patients at baseline exhibited significantly higher free serum tryptophan (10.5 ± 4.35 vs 4.75 ± 2.43 μmol/L [means ± standard deviation], P = .006) and significantly lower tryptophan dioxygenase and total tryptophan oxidation as measured by the kynurenine to free tryptophan and total kynurenines to free tryptophan ratios (23.37 ± 10.12 vs 55.33 ± 16.02, P < .001 and 49.34 ± 17.84 vs 258.46 ± 98.67, P < .001, respectively). Dairy-free diet did not modulate metabolites of the kynurenine pathway or symptoms. Tryptophan metabolism along the kynurenine pathway is inhibited in d-IBS, and a dairy-free diet does not alter this. Our findings are consistent with possible enhanced serotonin activity in d-IBS. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. HIV/Human herpesvirus co-infections: Impact on tryptophan-kynurenine pathway and immune reconstitution.

    Science.gov (United States)

    Yap, Siew Hwei; Abdullah, Noor Kamila; McStea, Megan; Takayama, Kozo; Chong, Meng Li; Crisci, Elisa; Larsson, Marie; Azwa, Iskandar; Kamarulzaman, Adeeba; Leong, Kok Hoong; Woo, Yin Ling; Rajasuriar, Reena

    2017-01-01

    Co-infections with human herpesvirus (HHV) have been associated with residual chronic inflammation in antiretroviral (ART)-treated human immunodeficiency virus (HIV)-infected individuals. However, the role of HHV in modulating the tryptophan-kynurenine pathway and clinical outcomes in HIV-infected individuals is poorly understood. Thus, we investigated the seroprevalence of four common HHVs among treated HIV-infected participants and their impact on kynurenine/tryptophan (K/T) ratio and long-term CD4 T-cell recovery in HIV/HHV co-infected participants. In this cross-sectional study, HIV-infected participants receiving suppressive ART for a minimum of 12 months were recruited from the University Malaya Medical Centre (UMMC), Malaysia. Stored plasma was analyzed for CMV, VZV, HSV-1 and HSV-2 IgG antibody levels, immune activation markers (interleukin-6, interferon-γ, neopterin and sCD14), kynurenine and tryptophan concentrations. The influence of the number of HHV co-infection and K/T ratio on CD4 T-cell recovery was assessed using multivariate Poisson regression. A total of 232 HIV-infected participants were recruited and all participants were seropositive for at least one HHV; 96.1% with CMV, 86.6% with VZV, 70.7% with HSV-1 and 53.9% with HSV-2. K/T ratio had a significant positive correlation with CMV (rho = 0.205, p = 0.002), VZV (rho = 0.173, p = 0.009) and a tendency with HSV-2 (rho = 0.120, p = 0.070), with CMV antibody titer demonstrating the strongest modulating effect on K/T ratio among the four HHVs assessed in SOM analysis. In multivariate analysis, higher K/T ratio (p = 0.03) and increasing number of HHV co-infections (p<0.001) were independently associated with poorer CD4 T-cell recovery following 12 months of ART initiation. Multiple HHV co-infections are common among ART-treated HIV-infected participants in the developing country setting and associated with persistent immune activation and poorer CD4 T-cell recovery.

  16. [Residual neuromuscular blockade].

    Science.gov (United States)

    Fuchs-Buder, T; Schmartz, D

    2017-06-01

    Even small degrees of residual neuromuscular blockade, i. e. a train-of-four (TOF) ratio >0.6, may lead to clinically relevant consequences for the patient. Especially upper airway integrity and the ability to swallow may still be markedly impaired. Moreover, increasing evidence suggests that residual neuromuscular blockade may affect postoperative outcome of patients. The incidence of these small degrees of residual blockade is relatively high and may persist for more than 90 min after a single intubating dose of an intermediately acting neuromuscular blocking agent, such as rocuronium and atracurium. Both neuromuscular monitoring and pharmacological reversal are key elements for the prevention of postoperative residual blockade.

  17. Tryptophan Synthase Uses an Atypical Mechanism To Achieve Substrate Specificity.

    Science.gov (United States)

    Buller, Andrew R; van Roye, Paul; Murciano-Calles, Javier; Arnold, Frances H

    2016-12-27

    Tryptophan synthase (TrpS) catalyzes the final steps in the biosynthesis of l-tryptophan from l-serine (Ser) and indole-3-glycerol phosphate (IGP). We report that native TrpS can also catalyze a productive reaction with l-threonine (Thr), leading to (2S,3S)-β-methyltryptophan. Surprisingly, β-substitution occurs in vitro with a 3.4-fold higher catalytic efficiency for Ser over Thr using saturating indole, despite a >82000-fold preference for Ser in direct competition using IGP. Structural data identify a novel product binding site, and kinetic experiments clarify the atypical mechanism of specificity: Thr binds efficiently but decreases the affinity for indole and disrupts the allosteric signaling that regulates the catalytic cycle.

  18. Archetypal tryptophan-rich antimicrobial peptides: properties and applications.

    Science.gov (United States)

    Shagaghi, Nadin; Palombo, Enzo A; Clayton, Andrew H A; Bhave, Mrinal

    2016-02-01

    Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.

  19. Kynurenines: Tryptophan's metabolites in exercise, inflammation, and mental health.

    Science.gov (United States)

    Cervenka, Igor; Agudelo, Leandro Z; Ruas, Jorge L

    2017-07-28

    Kynurenine metabolites are generated by tryptophan catabolism and regulate biological processes that include host-microbiome signaling, immune cell response, and neuronal excitability. Enzymes of the kynurenine pathway are expressed in different tissues and cell types throughout the body and are regulated by cues, including nutritional and inflammatory signals. As a consequence of this systemic metabolic integration, peripheral inflammation can contribute to accumulation of kynurenine in the brain, which has been associated with depression and schizophrenia. Conversely, kynurenine accumulation can be suppressed by activating kynurenine clearance in exercised skeletal muscle. The effect of exercise training on depression through modulation of the kynurenine pathway highlights an important mechanism of interorgan cross-talk mediated by these metabolites. Here, we discuss peripheral mechanisms of tryptophan-kynurenine metabolism and their effects on inflammatory, metabolic, oncologic, and psychiatric disorders. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Evidence for an altered tryptophan metabolism in fibromyalgia.

    Science.gov (United States)

    Schwarz, M J; Offenbaecher, M; Neumeister, A; Ewert, T; Willeit, M; Praschak-Rieder, N; Zach, J; Zacherl, M; Lossau, K; Weisser, R; Stucki, G; Ackenheil, M

    2002-12-01

    Fibromyalgia (FM) is a prevalent syndrome with chronic pain and a hypothesized underlying disturbance of the tryptophan (TRP) metabolism. We performed a tryptophan depletion (TD) test in 17 FM patients and 17 controls. TRP, 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), and interleukin-6 (IL-6) were measured. Additionally pain perception was monitored in the FM patients. FM patients and controls exhibited a decrease of TRP and KYN during TD. 5-HIAA levels also decreased in all controls and in 11 FM patients, but showed a marked increase in 6 FM patients. IL-6 significantly increased during TD in the patients, but not in the controls. Pain perception was not affected in the FM patients. These data demonstrate an altered TRP metabolism in a subgroup of FM patients, where the TD seems to activate 5-HT metabolism. Our findings may have diagnostic as well as therapeutic implications in the field of fibromyalgia.

  1. Experimental evaluation of an altered tryptophan metabolism in fibromyalgia.

    Science.gov (United States)

    Schwarz, Markus J; Offenbaecher, Martin; Neumeister, Alexander; Ackenheil, Manfred

    2003-01-01

    Fibromyalgia (FM) is a prevalent syndrome with chronic pain and a hypothesised underlying disturbance of the tryptophan (TRP) metabolism. We performed a tryptophan depletion (TD) test in 17 FM patients and 17 controls. TRP, 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), and Interleukin-6 (IL-6) were measured. Additionally pain perception was monitored in the FM patients. FM patients and controls exhibited a decrease of TRP and KYN during TD. 5-HIAA levels also decreased in all controls and in 11 FM patients, but showed a marked increase in 6 FM patients. IL-6 significantly increased during TD in the patients, but not in the controls. Pain perception was not affected in the FM patients. These data demonstrate an altered TRP metabolism in a subgroup of FM patients, where the TD seems to activate 5-HT metabolism and IL-6 production. Our findings may have diagnostic as well as therapeutic implications in the field of fibromyalgia.

  2. Digestible tryptophan requirements of meat quails in the growth phase

    Directory of Open Access Journals (Sweden)

    Ana Paula Silva Ton

    2012-05-01

    Full Text Available The objective of this experiment was to estimate the digestible tryptophan (DTrp requirements for growing meat quails. In the first experiment (1-14 days of age, 1,950 quails were distributed in a completely randomized design, with six levels of DTrp (0.27; 0.30; 0.33; 0.36; 0.39 and 0.42% of diet, five replications and 65 quails per experimental unit. There was a linear increase of feed intake, tryptophan intake, weight gain and body weight with the DTrp levels increase. In the second experiment (15-35 days of age, 1,350 quails were distributed in a completely randomized design, with six levels of DTrp (0.22; 0.25; 0.28; 0.31; 0.34 and 0.37% of diet, five replications and 45 quails per experimental unit. There was a linear increase for tryptophan intake, carcass yield, ash levels and protein deposition rate with the DTrp levels increase. In the third experiment (28-35 days of age, conducted to determine the nitrogen balance, 150 males were housed in galvanized wire cages featuring drinker, feeder and individual metal tray lined with plastic to collect the excreta. The design was completely randomized, with six levels of DTrp (0.22; 0.25; 0.28; 0.31; 0.34 and 0.37% of diet, five replicates and five quails per experimental unit. Linear decrease was observed on the nitrogen balance and metabolization coefficient with the DTrp levels increase. The nutritional requirement of digestible tryptophan for maximum growing of meat quail, in the period from 1 to 14 days of age, is higher or equal to 0.42%; in the period from 15 to 35 days, it is 0.22%.

  3. Gramicidin tryptophans mediate formamidinium-induced channel stabilization

    OpenAIRE

    Seoh, S.A.; Busath, D.

    1995-01-01

    Compared with alkali metal cations, formamidinium ions stabilize the gramicidin A channel molecule in monoolein bilayers (Seoh and Busath, 1993a). A similar effect is observed with N-acetyl gramicidin channel molecules in spite of the modified forces at the dimeric junction (Seoh and Busath, 1993b). Here we use electrophysiological measurements with tryptophan-to-phenylalanine-substituted gramicidin analogs to show that the formamidinium-induced channel molecule stabilization is eliminated wh...

  4. Isoform-Specific Substrate Inhibition Mechanism of Human Tryptophan Hydroxylase.

    Science.gov (United States)

    Tidemand, Kasper D; Peters, Günther H; Harris, Pernille; Stensgaard, Eva; Christensen, Hans E M

    2017-11-21

    Tryptophan hydroxylase (TPH) catalyzes the initial and rate-limiting step in the biosynthesis of serotonin, which is associated with a variety of disorders such as depression and irritable bowel syndrome. TPH exists in two isoforms: TPH1 and TPH2. TPH1 catalyzes the initial step in the synthesis of serotonin in the peripheral tissues, while TPH2 catalyzes this step in the brain. In this study, the steady-state kinetic mechanism for the catalytic domain of human TPH1 has been determined. Varying substrate tryptophan (Trp) and tetrahydrobiopterin (BH 4 ) results in a hybrid Ping Pong-ordered mechanism in which the reaction can either occur through a Ping Pong or a sequential mechanism depending on the concentration of tryptophan. The catalytic domain of TPH1 shares a sequence identity of 81% with TPH2. Despite the high sequence identity, differences in the kinetic parameters of the isoforms have been identified; i.e., only TPH1 displays substrate tryptophan inhibition. This study demonstrates that the difference can be traced to an active site loop which displays different properties in the TPH isoforms. Steady-state kinetic results of the isoforms, and variants with point mutations in a loop lining the active site, show that the kinetic parameters of only TPH1 are significantly changed upon mutations. Mutations in the active site loop of TPH1 result in an increase in the substrate inhibition constant, K i , and therefore turnover rate. Molecular dynamics simulations reveal that this substrate inhibition mechanism occurs through a closure of the cosubstrate, BH 4 , binding pocket, which is induced by Trp binding.

  5. Kinetics and mechanism of the condensation of pyridoxal hydrochloride with L-tryptophan and D-tryptophan, and the chemical transformation of their products

    Science.gov (United States)

    Pishchugin, F. V.; Tuleberdiev, I. T.

    2017-10-01

    The kinetics and mechanism of interaction between pyridoxal and L-tryptophan, D-tryptophan, and their derivatives are studied. It is found that condensation reactions proceed via three kinetically distinguishable stages: (1) the rapid intraplanar addition of the NH2 groups of the amino acids to pyridoxal with the formation of amino alcohols; (2) the rotational isomerism of amino alcohol fragments with their subsequent dehydration and the formation of a Schiff base with a specific configuration; (3) the abstraction of α-hydrogen in the product of condensation of pyridoxal with L-tryptophan, or the abstraction of CO2 in the product of condensation of pyridoxal with D-tryptophan with the formation of quinoid structures, hydrolysis of which results in the preparation of pyridoxamine and keto acid or pyridoxal and tryptamine, respectively. Schiff bases resistant to further chemical transformations are formed in the reaction with tryptophan methyl ester.

  6. Altered placental tryptophan metabolic pathway in human fetal growth restriction.

    Science.gov (United States)

    Murthi, Padma; Wallace, Euan M; Walker, David W

    2017-04-01

    Tryptophan is a substrate for kynurenine pathway metabolism in the placenta. We investigated if kynurenine metabolites change over gestation, if they are different between pregnancies with normal and fetal growth restriction (FGR), and if the oxygen environment modulated kynurenine pathway activity in the human placenta. Tryptophan, kynurenine, and downstream kynurenine metabolites were determined in maternal venous blood, umbilical cord blood, and placental samples obtained in 1st and 3rd trimester pregnancies including FGR, and in the media of placental explants incubated with 20% or 5-8% O 2 for 24, 48 or 72 h. All the major kynurenine metabolites were present in cord blood, and in general were higher than in maternal blood. IDO and TDO mRNA and protein expression, responsible for kynurenine production from tryptophan, were significantly lower in placentas from FGR pregnancies compared with control. Explants prepared from 1st and 3rd trimester placentas actively produced all the major kynurenine pathway metabolites which, together with expression of IDO, TDO, KYN-OHase and 3HAO mRNAs, were significantly lower after 24 h exposure to 5-8% O 2 compared to 20% O 2 CONCLUSIONS: Expression and activity of the kynurenine pathway is present in the placenta from early gestation, and is down-regulated by hypoxia and in FGR pregnancies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Residue processing

    Energy Technology Data Exchange (ETDEWEB)

    Gieg, W.; Rank, V.

    1942-10-15

    In the first stage of coal hydrogenation, the liquid phase, light and heavy oils were produced; the latter containing the nonliquefied parts of the coal, the coal ash, and the catalyst substances. It was the problem of residue processing to extract from these so-called let-down oils that which could be used as pasting oils for the coal. The object was to obtain a maximum oil extraction and a complete removal of the solids, because of the latter were returned to the process they would needlessly burden the reaction space. Separation of solids in residue processing could be accomplished by filtration, centrifugation, extraction, distillation, or low-temperature carbonization (L.T.C.). Filtration or centrifugation was most suitable since a maximum oil yield could be expected from it, since only a small portion of the let-down oil contained in the filtration or centrifugation residue had to be thermally treated. The most satisfactory centrifuge at this time was the Laval, which delivered liquid centrifuge residue and centrifuge oil continuously. By comparison, the semi-continuous centrifuges delivered plastic residues which were difficult to handle. Various apparatus such as the spiral screw kiln and the ball kiln were used for low-temperature carbonization of centrifuge residues. Both were based on the idea of carbonization in thin layers. Efforts were also being made to produce electrode carbon and briquette binder as by-products of the liquid coal phase.

  8. Single molecule TPM analysis of the catalytic pentad mutants of Cre and Flp site-specific recombinases: contributions of the pentad residues to the pre-chemical steps of recombination.

    Science.gov (United States)

    Fan, Hsiu-Fang; Cheng, Yong-Song; Ma, Chien-Hui; Jayaram, Makkuni

    2015-03-31

    Cre and Flp site-specific recombinase variants harboring point mutations at their conserved catalytic pentad positions were characterized using single molecule tethered particle motion (TPM) analysis. The findings reveal contributions of these amino acids to the pre-chemical steps of recombination. They suggest functional differences between positionally conserved residues in how they influence recombinase-target site association and formation of 'non-productive', 'pre-synaptic' and 'synaptic' complexes. The most striking difference between the two systems is noted for the single conserved lysine. The pentad residues in Cre enhance commitment to recombination by kinetically favoring the formation of pre-synaptic complexes. These residues in Flp serve a similar function by promoting Flp binding to target sites, reducing non-productive binding and/or enhancing the rate of assembly of synaptic complexes. Kinetic comparisons between Cre and Flp, and between their derivatives lacking the tyrosine nucleophile, are consistent with a stronger commitment to recombination in the Flp system. The effect of target site orientation (head-to-head or head-to-tail) on the TPM behavior of synapsed DNA molecules supports the selection of anti-parallel target site alignment prior to the chemical steps. The integrity of the synapse, whose establishment/stability is fostered by strand cleavage in the case of Flp but not Cre, appears to be compromised by the pentad mutations. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Single molecule TPM analysis of the catalytic pentad mutants of Cre and Flp site-specific recombinases: contributions of the pentad residues to the pre-chemical steps of recombination

    Science.gov (United States)

    Fan, Hsiu-Fang; Cheng, Yong-Song; Ma, Chien-Hui; Jayaram, Makkuni

    2015-01-01

    Cre and Flp site-specific recombinase variants harboring point mutations at their conserved catalytic pentad positions were characterized using single molecule tethered particle motion (TPM) analysis. The findings reveal contributions of these amino acids to the pre-chemical steps of recombination. They suggest functional differences between positionally conserved residues in how they influence recombinase-target site association and formation of ‘non-productive’, ‘pre-synaptic’ and ‘synaptic’ complexes. The most striking difference between the two systems is noted for the single conserved lysine. The pentad residues in Cre enhance commitment to recombination by kinetically favoring the formation of pre-synaptic complexes. These residues in Flp serve a similar function by promoting Flp binding to target sites, reducing non-productive binding and/or enhancing the rate of assembly of synaptic complexes. Kinetic comparisons between Cre and Flp, and between their derivatives lacking the tyrosine nucleophile, are consistent with a stronger commitment to recombination in the Flp system. The effect of target site orientation (head-to-head or head-to-tail) on the TPM behavior of synapsed DNA molecules supports the selection of anti-parallel target site alignment prior to the chemical steps. The integrity of the synapse, whose establishment/stability is fostered by strand cleavage in the case of Flp but not Cre, appears to be compromised by the pentad mutations. PMID:25765648

  10. Body image dissatisfaction in pregnant and non-pregnant females is strongly predicted by immune activation and mucosa-derived activation of the tryptophan catabolite (TRYCAT) pathway.

    Science.gov (United States)

    Roomruangwong, Chutima; Kanchanatawan, Buranee; Carvalho, André F; Sirivichayakul, Sunee; Duleu, Sebastien; Geffard, Michel; Maes, Michael

    2018-04-01

    The aim of the present study is to delineate the associations between body image dissatisfaction in pregnant women and immune-inflammatory biomarkers, i.e., C-reactive protein (CRP), zinc and IgA/IgM responses to tryptophan and tryptophan catabolites (TRYCATs). We assessed 49 pregnant and 24 non-pregnant females and assessed Body Image Satisfaction (BIS) scores at the end of term (T1), and 2-4 days (T2) and 4-6 weeks (T3) after delivery. Subjects were divided in those with a lowered BIS score (≤ 3) versus those with a higher score. Logistic regression analysis showed that a lowered T1 BIS score was predicted by CRP levels and IgA responses to tryptophan (negative) and TRYCATs (positive), perinatal depression, body mass index (BMI) and age. The sum of quinolinic acid, kynurenine, 3-OH-kynurenine and 3-OH-anthranilic acid (reflecting brain quinolinic acid contents) was the single best predictor. In addition, a large part of the variance in the T1, T2 and T3 BIS scores was explained by IgA responses to tryptophan and TRYCATs, especially quinolinic acid. Body image dissatisfaction is strongly associated with inflammation and mucosa-derived IDO activation independently from depression, pregnancy, BMI and age. IgA responses to peripheral TRYCATs, which determine brain quinolinic acid concentrations, also predict body image dissatisfaction.

  11. Tryptophan biosynthesis protects mycobacteria from CD4 T cell-mediated killing

    Science.gov (United States)

    Zhang, Yanjia J.; Reddy, Manchi C.; Ioerger, Thomas R.; Rothchild, Alissa C.; Dartois, Veronique; Schuster, Brian M.; Trauner, Andrej; Wallis, Deeann; Galaviz, Stacy; Huttenhower, Curtis; Sacchettini, James C.; Behar, Samuel M.; Rubin, Eric J.

    2014-01-01

    Summary Bacteria that cause disease rely on their ability to counteract and overcome host defenses. Here we present a genome-scale study of Mycobacterium tuberculosis (Mtb) that uncovers the bacterial determinants of surviving host immunity, sets of genes we term “counteractomes.” Through this, we find that CD4 T cells attempt to starve Mtb of tryptophan through a mechanism that limits Chlamydia and Leishmania infections. In those cases, tryptophan starvation works well, since those pathogens are natural tryptophan auxotrophs. Mtb, however, can synthesize tryptophan, and thus starvation fails as an Mtb-killing mechanism. We then describe a small molecule inhibitor of Mtb tryptophan synthesis, which turns Mtb into a tryptophan auxotroph and restores the efficacy of a failed host defense. Together, our findings demonstrate that the Mtb determinants for surviving host immunity—Mtb’s immune counteractomes—serve as probes of host immunity, uncovering immune-mediated stresses that can be leveraged for therapeutic discovery. PMID:24315099

  12. Mechanisms of the Pellagragenic Effect of Leucine: Stimulation of Hepatic Tryptophan Oxidation by Administration of Branched-Chain Amino Acids to Healthy Human Volunteers and the Role of Plasma Free Tryptophan and Total Kynurenines

    OpenAIRE

    Abdulla A-B Badawy; Sarah L. Lake; Donald M. Dougherty

    2014-01-01

    The pellagragenic effect of leucine (Leu) has been proposed to involve modulation of L -tryptophan (Trp) metabolism along the hepatic kynurenine pathway. Here, we discuss some of the mechanisms suggested and report the effects in healthy volunteers of single doses of Leu (4.05–6.75 g) administered in a 16-amino acid mixture on concentrations of plasma Trp and its kynurenine metabolites. Flux of Trp through Trp 2,3-dioxygenase (TDO) is dose-dependently enhanced most probably by Leu and can be ...

  13. Interfacial Tryptophan Residues: A Role for the Cation-{pi} Effect?

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Jensen, Morten Ø.; Helix Nielsen, Claus

    2005-01-01

    . Our criteria for cation-pi interactions are based on distance and angular requirements, and the results from our model suggest that cation-pi interactions are relevant for W(PE)(11), W(PE)(13), W(PE)(15), and, to some extent, W(PC)(11) and W(PC)(13). In our model, W(9)does not seem to engage in cation...

  14. Nuclear magnetic resonance study of interaction of ligands with Streptococcus faecium dihydrofolate reductase labeled with [#betta#-13C]tryptophan

    International Nuclear Information System (INIS)

    London, R.E.; Groff, J.P.; Cocco, L.; Blakley, R.L.

    1982-01-01

    Dihydrofolate reductase from Streptococcus faecium has been labeled with [#betta#- 13 C]tryptophan. We have determined changes occurring in the chemical shifts and line widths of the four resonances of the 13 C NMR spectrum of the labeled enzyme, due to its interaction with various ligands. These include the coenzyme, NPDPH and related nucleotides, folate and its polyglutamate derivatives, and many inhibitors including methotrexate and trimethoprim. In addition, paramagnetic relaxation effects produced by a bound spin-labeled analogue of 2'-phosphoadenosine-5'-diphosphoribose on the tryptophan C/sup #betta#/ carbons have been measured. Distances calculated from the relaxation data have been compared with corresponding distances in the crystallographic model of the NADPH-methotrexate ternary complex of Lactobacillus casei reductase. The paramagnetic relaxation data indicate that the two downfield resonances (1 and 2) correspond to tryptophans (W/sub A/ and W/sub B/) that are more remote from the catalytic site, and from the crystallographic model these are seen to be Trp-115 and Trp-160. The upfield resonances (3 and 4) that show broadening due to chemical exchange correspond to closer residues (W/sub C/ and W/sub D/), and these are identified with Trp-6 and Trp-22. However, the relaxation data do not permit specific assignments within the nearer and farther pairs. Although resonance 3, which is split due to chemical exchange, was formerly assigned to Trp-6, data obtained for the enzyme in the presence of various ligands are better interpreted if resonance 3 is assigned to Trp-22, which is located on a loop that joins elements of secondary structure and forms one side of the ligand-binding cavity

  15. Research of nitroxynil residues in bovine milk following a single administration in the dry period by ultra-performance liquid chromatography tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Claudia Chirollo

    2013-10-01

    Full Text Available Nitroxynil (NIT is a halogenated phenol used to control fascioliasis in cattle and sheep. The Commission Regulation EU No 37/2010 has established maximum residue limits for NIT in bovine and ovine muscle (400 μg kg−1, fat (200 μg kg−1, liver (20 μg kg−1 and kidney (400 μg kg−1, and more recently in bovine and ovine milk (20 μg kg−1. Thirty-five pregnant dairy cows were treated in this study with nitroxynil (340 mg/mL solution for injection at the recommended dose of 10 mg/kg body weight at the start of the dry period, i.e. 53 to 74 days before the expected calving. Calving occurred between 43 days and 79 days after treatment. The concentrations of NIT in the milk were monitored for up to 120 days after calving. NIT residues were extracted using acetonitrile; magnesium sulfate and sodium chloride were added to induce liquid-liquid partitioning and purified by dispersive solid phase extraction for clean-up. NIT was detected by ultra high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS in negative ionization mode. The highest concentrations of this drug were found in two animals at the first milking, 48 and 53 day post treatment with levels of 362 and 657 μg kg–1, respectively. NIT residues were below the limit of detection of the method (0.24 μg/kg–1 between 67 and 106 day post-treatment. Following calving, residues rapidly depleted in animals and were non-detectable from 10 to 38 days post-calving. In particular, in all animals milk resulted compliant (<20 μg/kg−1 three days post partum.

  16. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Bellina, Bruno; Merthe, Daniel J.; Kresin, Vitaly V. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States)

    2015-03-21

    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N–H ⋅ ⋅ ⋅ N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  17. Digestible tryptophan levels for male broilers in pre-starter and starter diets

    Directory of Open Access Journals (Sweden)

    Bruno Samuel Borges

    2016-09-01

    Full Text Available The objective was to determine the digestible tryptophan requirements for male broilers in pre-starter and starter phases. Two experiments using 400 Cobb broilers were performed 200 males in the first experiment for the pre-starter phase (one to seven days old, and 200 males in the second experiment for the starter phase (eight to 21 days old. Chicks were housed in batter boxes made of galvanized steel as an experimental shed. The experiments were performed in a completely randomized design, with four treatments and five replicates, with ten birds each. In both experiments, the tryptophan requirement was determined using diets with different levels of digestible tryptophan. A tryptophan-deficient diet was formulated, as a basal diet, which was supplemented with increased levels of L-tryptophan in order to achieve the desirable digestible tryptophan levels. Treatments consisted of 0.209% (basal diet; 0.223%; 0.235% and 0.248% digestible tryptophan for the pre-starter phase (experiment 1 and 0.187% (basal diet; 0.200%, 0.211% and 0.223% digestible tryptophan for the starter phase (experiment 2. We evaluated feed intake, weight gain and feed conversion, as well as the metabolizability of feed nutrients. The performance and metabolic data were subjected to analysis of variance, and estimates of digestible tryptophan levels were made through polynomial regression models at 5% probability. There was no significant difference between the digestible tryptophan levels in the diet over performance and digestibility in both treatments. It is possible to conclude that the basal diet with 0.209% digestible tryptophan for the pre-starter phase and 0.187% for the starter phase, at a tryptophan: lysine ratio of 16%, as sufficient to meet the broilers requirements.

  18. Suppression of aggression in rainbow trout (Oncorhynchus mykiss) by dietary L-tryptophan.

    Science.gov (United States)

    Winberg, S; Øverli, Ø; Lepage, O

    2001-11-01

    Juvenile rainbow trout Oncorhynchus mykiss were isolated in individual compartments in observation aquaria and allowed to acclimate for 1 week, during which they were fed commercial trout feed. Thereafter, the fish were tested for aggressive behaviour using a resident/intruder test. Following this first resident/intruder test, the feed was exchanged for an experimental wet feed supplemented with 0.15 % or 1.5 % L-tryptophan (by wet mass). Controls received the same feed but without L-tryptophan supplementation. The fish were fed to satiety daily, and their individual feed intake was recorded. Aggressive behaviour was quantified again after 3 and 7 days of L-tryptophan feeding using the resident/intruder test. Feeding the fish L-tryptophan-supplemented feed for 3 days had no effect on aggressive behaviour, whereas feeding the fish L-tryptophan-supplemented feed for 7 days significantly suppressed aggressive behaviour in the fish, an effect seen at both levels of L-tryptophan supplementation. Fish fed L-tryptophan-supplemented feed showed elevated plasma and brain levels of L-tryptophan. The amino acid L-tryptophan is the precursor of serotonin, and supplementary dietary L-tryptophan was found to elevate levels of 5-hydroxyindoleacetic acid (5-HIAA) and the 5-HIAA/serotonin concentration ratio in the brain. Neither feed intake nor plasma cortisol level was significantly affected by dietary L-tryptophan. Central serotonin is believed to have an inhibitory effect on aggressive behaviour, and it is suggested that the suppressive effect of dietary L-tryptophan on aggressive behaviour is mediated by an elevation of brain serotonergic activity.

  19. Photochemical Generation of a Tryptophan Radical within the Subunit Interface of Ribonucleotide Reductase.

    Science.gov (United States)

    Olshansky, Lisa; Greene, Brandon L; Finkbeiner, Chelsea; Stubbe, JoAnne; Nocera, Daniel G

    2016-06-14

    The Escherichia coli class Ia ribonucleotide reductase (RNR) achieves forward and reverse proton-coupled electron transfer (PCET) over a pathway of redox active amino acids (β-Y122 ⇌ β-Y356 ⇌ α-Y731 ⇌ α-Y730 ⇌ α-C439) spanning ∼35 Å and two subunits every time it turns over. We have developed photoRNRs that allow radical transport to be phototriggered at tyrosine (Y) or fluorotyrosine (FnY) residues along the PCET pathway. We now report a new photoRNR in which photooxidation of a tryptophan (W) residue replacing Y356 within the α/β subunit interface proceeds by a stepwise ET/PT (electron transfer then proton transfer) mechanism and provides an orthogonal spectroscopic handle with respect to radical pathway residues Y731 and Y730 in α. This construct displays an ∼3-fold enhancement in photochemical yield of W(•) relative to F3Y(•) and a ∼7-fold enhancement relative to Y(•). Photogeneration of the W(•) radical occurs with a rate constant of (4.4 ± 0.2) × 10(5) s(-1), which obeys a Marcus correlation for radical generation at the RNR subunit interface. Despite the fact that the Y → W variant displays no enzymatic activity in the absence of light, photogeneration of W(•) within the subunit interface results in 20% activity for turnover relative to wild-type RNR under the same conditions.

  20. Enhanced enzymatic degradation of tryptophan by indoleamine 2,3-dioxygenase contributes to the tryptophan-deficient state seen after major trauma.

    Science.gov (United States)

    Pellegrin, Katharina; Neurauter, Gabriele; Wirleitner, Barbara; Fleming, Arthur W; Peterson, Verlyn M; Fuchs, Dietmar

    2005-03-01

    Decreased lymphocyte proliferation, lymphopenia, immunodepression, and opportunistic infections are common after major trauma. Early alimentation in these patients corrects lymphopenia, enhances immunity, and reduces the incidence of infections, but the underlying mechanisms are poorly understood. Tryptophan is essential for the production and function of rapidly proliferating cells such as lymphocytes. Tryptophan is enzymatically degraded by indoleamine 2,3-dioxygenase (IDO), whose activity is solely dependent on expression of interferon-gamma (IFN-gamma). Because increased expression of IFN-gamma has been reported in trauma patients, we investigated whether enhanced IDO-mediated tryptophan degradation is associated with lymphopenia and poor outcomes after major trauma. The incidence of bacteremic sepsis (BS), adult respiratory distress syndrome (ARDS), multiple organ dysfunction/failure syndromes (MODS/MOF), and death was prospectively documented in 22 trauma patients with a mean ISS of 24.9 +/- 2.2. Sequential blood samples were obtained from admission through postinjury day 10. Five patients developed BS, three of whom developed ARDS; two of the three ARDS patients developed MOF and died on day 10. Trauma patients had significantly lower tryptophan levels (days 1-10), higher kynurenine:tryptophan ratios (days 1-2), and fewer lymphocytes (days 1-4) than healthy volunteers (P < 0.05). Although patients with poor outcomes (i.e., BS, ARDS, MOF, and death) had significantly lower tryptophan levels and greater lymphopenia on several days after injury, the sample size was too small to draw any definitive conclusions. These data indicate that decreased plasma tryptophan levels and lymphopenia typically occur after major trauma. A concomitant increase in kynurenine suggests that the observed tryptophan deficiency is caused, in part, by IDO-mediated tryptophan degradation.

  1. Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine.

    Science.gov (United States)

    Deslouches, Berthony; Hasek, Mary L; Craigo, Jodi K; Steckbeck, Jonathan D; Montelaro, Ronald C

    2016-06-01

    We previously reported a series of de novo engineered cationic antibiotic peptides (eCAPs) consisting exclusively of arginine and tryptophan (WR) that display potent activity against diverse multidrug-resistant (MDR) bacterial strains. In this study, we sought to examine the influence of arginine compared to lysine on antibacterial properties by direct comparison of the WR peptides (8-18 residues) with a parallel series of engineered peptides containing only lysine and tryptophan. WR and WK series were compared for antibacterial activity by bacterial killing and growth inhibition assays and for mechanism of peptide-bacteria interactions by surface plasmon resonance and flow cytometry. Mammalian cytotoxicity was also assessed by flow cytometry, haemolytic and tetrazolium-based assays. The shortest arginine-containing peptides (8 and 10 mers) displayed a statistically significant increase in activity compared to the analogous lysine-containing peptides. The WR and WK peptides achieved maximum antibacterial activity at the 12-mer peptide (WK12 or WR12). Further examination of antibacterial mechanisms of the optimally active 12-mer peptides using surface plasmon resonance and flow cytometry demonstrates stronger interactions with Pseudomonasaeruginosa, greater membrane permeabilizing activity, and lower inhibitory effects of divalent cations on activity and membrane permeabilization properties of WR12 compared to WK12 (P arginine, compared to lysine, can indeed yield enhanced antibacterial activity to minimize the required length to achieve functional antimicrobial peptides.

  2. Determination of low-level agricultural residues in soft drinks and sports drinks by liquid chromatography/tandem mass spectrometry: single-laboratory validation.

    Science.gov (United States)

    Paske, Nathan; Berry, Bryan; Schmitz, John; Sullivan, Darryl

    2007-01-01

    In this study, sponsored by PepsiCo Inc., a method was validated for measurement of 11 pesticide residues in soft drinks and sports drinks. The pesticide residues determined in this validation were alachlor, atrazine, butachlor, isoproturon, malaoxon, monocrotophos, paraoxon-methyl, phorate, phorate sulfone, phorate sulfoxide, and 2,4-dichlorophenoxyacetic acid (2,4-D) when spiked at 0.100 microg/L (1.00 microg/L for phorate). Samples were filtered (if particulate matter was present), degassed (if carbonated), and analyzed using liquid chromatography with tandem mass spectrometry. Quantitation was performed with matrix-matched external standard calibration solutions. The standard curve range for this assay was 0.0750 to 10.0 microg/L. The calibration curves for all agricultural residues had coefficient of determination (r2) values greater than or equal to 0.9900 with the exception of 2 values that were 0.9285 and 0.8514. Fortification spikes at 0.100 microg/L (1.00 microg/L for phorate) over the course of 2 days (n=8 each day) for 3 matrixes (7UP, Gatorade, and Diet Pepsi) yielded average percent recoveries (and percent relative standard deviations) as follows (n=48): 94.4 (15.2) for alachlor, 98.2 (13.5) for atrazine, 83.1 (41.6) for butachlor, 89.6 (24.5) for isoproturon, 87.9 (24.4) for malaoxon, 96.1 (9.26) for monocrotophos, 101 (25.7) for paraoxon-methyl, 86.6 (20.4) for phorate, 101 (16.5) for phorate sulfone, 93.6 (25.5) for phorate sulfoxide, and 98.2 (6.02) for 2,4-D.

  3. Residual risk

    African Journals Online (AJOL)

    ing the residual risk of transmission of HIV by blood transfusion. An epidemiological approach assumed that all HIV infections detected serologically in first-time donors were pre-existing or prevalent infections, and that all infections detected in repeat blood donors were new or incident infections. During 1986 - 1987,0,012%.

  4. Indolic substances in plasma, cerebrospinal fluid, and frontal cortex of human subjects infused with saline or tryptophan.

    Science.gov (United States)

    Gillman, P K; Bartlett, J R; Bridges, P K; Hunt, A; Patel, A J; Kantamaneni, B D; Curzon, G

    1981-08-01

    Psychiatric patients undergoing the psychosurgical operation of stereotactic subcaudate tractotomy were infused intravenously with either saline or L-tryptophan (15 mg/kg/h). Plasma, lumbar cerebrospinal fluid (CSF), ventricular CSF and a specimen of frontal cortex were collected. The relationships of plasma concentrations of substances claimed to influence brain tryptophan concentration (total tryptophan, free tryptophan, large neutral amino acids) with the concentration of tryptophan in the cortex and CSF were investigated. Tryptophan infusion resulted in plasma tryptophan values comparable to those found after oral doses used in treating depression or insomnia, and about sixfold increases of tryptophan in the cerebral cortex. Increased brain 5-hydroxytryptamine synthesis was indicated by significant rises of CSF 5-hydroxyindoleacetic acid. The concentration of plasma free tryptophan was a better predictor than plasma total tryptophan of cortex tryptophan concentration. As all correlation coefficients of plasma versus brain or plasma versus ventricular CSF tryptophan concentrations were decreased when allowance was made for differences of concentration of large neutral amino acids, the results suggest that the role of these substances within their physiological range as inhibitors of tryptophan transport to the brain may previously have been overemphasised.

  5. Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate.

    Science.gov (United States)

    Martin, M; Kopaliani, I; Jannasch, A; Mund, C; Todorov, V; Henle, T; Deussen, A

    2015-12-01

    Angiotensin-converting enzyme inhibitors are treatment of choice in hypertensive patients. Clinically used inhibitors exhibit a structural similarity to naturally occurring peptides. This study evaluated antihypertensive and cardioprotective effects of ACE-inhibiting peptides derived from food proteins in spontaneously hypertensive rats. Isoleucine-tryptophan (in vitro IC50 for ACE = 0.7 μm), a whey protein hydrolysate containing an augmented fraction of isoleucine-tryptophan, or captopril was given to spontaneously hypertensive rats (n = 60) over 14 weeks. Two further groups, receiving either no supplement (Placebo) or intact whey protein, served as controls. Systolic blood pressure age-dependently increased in the Placebo group, whereas the blood pressure rise was effectively blunted by isoleucine-tryptophan, whey protein hydrolysate and captopril (-42 ± 3, -38 ± 5, -55 ± 4 mm Hg vs. Placebo). At study end, myocardial mass was lower in isoleucine-tryptophan and captopril groups but only partially in the hydrolysate group. Coronary flow reserve (1 μm adenosine) was improved in isoleucine-tryptophan and captopril groups. Plasma ACE activity was significantly decreased in isoleucine-tryptophan, hydrolysate and captopril groups, but in aortic tissue only after isoleucine-tryptophan or captopril treatment. This was associated with lowered expression and activity of matrix metalloproteinase-2. Following isoleucine-tryptophan and captopril treatments, gene expression of renin was significantly increased indicating an active feedback within renin-angiotensin system. Whey protein hydrolysate and isoleucine-tryptophan powerfully inhibit plasma ACE resulting in antihypertensive effects. Moreover, isoleucine-tryptophan blunts tissue ACE activity, reduces matrix metalloproteinase-2 activity and improves coronary flow reserve. Thus, whey protein hydrolysate and particularly isoleucine-tryptophan may serve as innovative food additives with the goal of attenuating

  6. Introduction of a tryptophan side chain into subsite +1 enhances transglycosylation activity of a GH-18 chitinase from Arabidopsis thaliana, AtChiC

    DEFF Research Database (Denmark)

    Umemoto, Naoyuki; Ohnuma, Takayuki; Mizuhara, Mamiko

    2013-01-01

    A tryptophan side chain was introduced into subsite +1 of family GH-18 (class V) chitinases from Nicotiana tabacum and Arabidopsis thaliana (NtChiV and AtChiC, respectively) by the mutation of a glycine residue to tryptophan (G74W-NtChiV and G75W-AtChiC). The specific activity toward glycol chitin...... of the two mutant enzymes was 70-71% of that of the wild type. Using chitin oligosaccharides, (GlcNAc)(n) (n = 4, 5 and 6), as the substrates, we found the transglycosylation reaction to be significantly enhanced in G74W-NtChiV and G75W-AtChiC when compared with the corresponding wild-type enzymes....... The introduced tryptophan side chain might protect the oxazolinium ion intermediate from attack by a nucleophilic water molecule. The enhancement of transglycosylation activity was much more distinct in G75W-AtChiC than in G74W-NtChiV. Nuclear magnetic resonance titration experiments using the inactive double...

  7. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces.

    Science.gov (United States)

    Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal

    2017-09-05

    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form a heteroternary complex with cucurbit[8]uril (CB[8]) and surface-tethered methylviologen (MV 2+ ). The binding affinity of the knottins with CB[8] and MV 2+ surfaces was evaluated using surface plasmon resonance spectroscopy. Specific binding occurred, and the affinity increased with the valency of tryptophans on the knottin. Additionally, increased multilayer formation was observed, attributed to homoternary complex formation between tryptophan residues of different knottins and CB[8]. Thus, we were able to control the surface coverage of the knottins by valency and concentration. Cell experiments with mouse myoblast (C2C12) cells on the self-assembled knottin surfaces showed specific integrin recognition by the RGD-displaying knottins. Moreover, cells were observed to elongate more on the supramolecular knottin surfaces with a higher valency, and in addition, more pronounced focal adhesion formation was observed on the higher-valency knottin surfaces. We attribute this effect to the enhanced coverage and the enhanced affinity of the knottins in their interaction with the CB[8] surface. Collectively, these results are promising for the development of biomaterials including knottins via CB[8] ternary complexes for tunable interactions with cells.

  8. Gallium uptake in tryptophan-related pulmonary disease

    International Nuclear Information System (INIS)

    Kim, S.M.; Park, C.H.; Intenzo, C.M.; Patel, R.

    1991-01-01

    We describe a patient who developed fever, fatigue, muscle weakness, dyspnea, skin rash, and eosinophilia after taking high doses of tryptophan for insomnia for two years. A gallium-67 scan revealed diffuse increased uptake in the lung and no abnormal uptake in the muscular distribution. Bronchoscopy and biopsy confirmed inflammatory reactions with infiltration by eosinophils, mast cells, and lymphocytes. CT scan showed an interstitial alveolar pattern without fibrosis. EMG demonstrated diffuse myopathy. Muscle biopsy from the right thigh showed an inflammatory myositis with eosinophilic and lymphocytic infiltrations

  9. Chiral Discrimination of Tryptophan Enantiomers via (1R, 2R-2-Amino-1, 2-Diphenyl Ethanol Modified Interface

    Directory of Open Access Journals (Sweden)

    Juan Zhou

    2011-01-01

    Full Text Available The paper reported that a simple chiral selective interface constructed by (1R, 2R-2-amino-1, 2-diphenyl ethanol had been developed to discriminate tryptophan enantiomers. Cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS were used for the characteristic analysis of the electrode. The results indicated that the interface showed stable and sensitive property to determine the tryptophan enantiomers. Moreover, it exhibited the better stereoselectivity for L-tryptophan than that for D-tryptophan. The discrimination characteristics of the chiral selective interface for discriminating tryptophan enantiomers, including the response time, the effect of tryptophan enantiomers concentration, and the stability, were investigated in detail. In addition, the chiral selective interface was used to determine the enantiomeric composition of L- and D-tryptophan enantiomer mixtures by measuring the relative change of the peak current as well as in pure enantiomeric solutions. These results suggested that the chiral selective interface has the potential for enantiomeric discrimination of tryptophan enantiomers.

  10. SRC Residual fuel oils

    Science.gov (United States)

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  11. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket

    DEFF Research Database (Denmark)

    Carlsson, A.S.; LaBrie, S.T.; Kinney, A.J.

    2002-01-01

    in Arabidopsis KAS2 that results in a Leu337Phe substitution. The Leu337 residue is conserved among plant and bacterial KAS proteins, and in the crystal structures of E. coli KAS I and KAS II, this leucine abuts a phenylalanine whose imidazole ring extends into the substrate binding cavity causing the fatty acid...... chain to bend. For functional analysis the equivalent Leu207Phe mutation was introduced into the fabB gene encoding the E. coli KAS I enzyme. Compared to wild-type, the Leu207Phe protein showed a 10-fold decrease in binding affinity for the fatty acid substrate, exhibited a modified behavior during size...

  12. Results of correlation of values of individual behaviour of rats with liver tryptophan pyrrolase activity.

    Science.gov (United States)

    Tikal, K; Kunz, K

    1976-01-01

    A significant negative correlation was found between the individual animal's horizontal activity in an open field and liver tryptophan pyrrolase (LTP) activity. On the other hand, the duration of immobility in an open field correlated postively and significantly with liver tryptophan pyrrolase activity.

  13. Low plasma tryptophan in carcinoid patients is associated with increased urinary cortisol excretion

    NARCIS (Netherlands)

    Tanke, Marit A. C.; Kema, Ido P.; Dijck-Brouwer, Janneke; Doornbos, Bennard; De Vries, Elisabeth G. E.; Korf, Jakob

    2008-01-01

    Background: Previously we observed inpatients suffering from a metastatic carcinoid tumor that irritability, aggression and lack of impulse control are associated with Low levels of plasma tryptophan and presumably with low brain serotonin function. In rats we showed that a diet of low tryptophan

  14. Stereospecific effects of intraduodenal tryptophan on pyloric and duodenal motility in humans

    NARCIS (Netherlands)

    Edelbroek, M.; Sun, W. M.; Horowitz, M.; Dent, J.; Smout, A.; Akkermans, L.

    1994-01-01

    BACKGROUND: L-Tryptophan delays gastric emptying in animals to a greater extent than D-tryptophan, but none of the possible motor mechanisms responsible for this stereospecific effect have been evaluated. METHODS: In 11 healthy volunteers antropyloroduodenal pressures were recorded in the fasted

  15. Tryptophan end-tagging for promoted lipopolysaccharide interactions and anti-inflammatory effects

    DEFF Research Database (Denmark)

    Singh, Shalini; Datta, Aritreyee; Schmidtchen, Artur

    2017-01-01

    The objective of the present study is the investigation of possibilities for boosting peptide anti-inflammatory effects by tryptophan end-tagging, including identification of underlying mechanisms for this. In doing so, effects of tryptophan end-tagging of KYE21 (KYEITTIHNLFRKLTHRLFRR), a peptide...

  16. The association of sleep quality and insomnia with dietary intake of tryptophan and niacin

    NARCIS (Netherlands)

    Verster, J.; Fernstrand, A.; Bury, D.; Roth, T.; Garssen, J.

    2015-01-01

    Introduction: Dietary intake of tryptophan and niacin have been related to sleep. However, the sleep-promoting effects of these nutrients are still under investigation. The aim of the current study was to examine the relationship between daily dietary intake of tryptophan and niacin and sleep.

  17. Stochastic Resonance Activity Influences Serum Tryptophan Metabolism in Healthy Human Subjects

    Directory of Open Access Journals (Sweden)

    Berthold Kepplinger

    2011-01-01

    Full Text Available Background Stochastic resonance therapy (SRT is used for rehabilitation of patients with various neuropsychiatric diseases. An alteration in tryptophan metabolism along the kynurenine pathway has been identified in the central and peripheral nervous systems in patients with neuroinflammatory and neurodegenerative diseases and during the aging process. This study investigated the effect of SRT as an exercise activity on serum tryptophan metabolites in healthy subjects. Methods Serum L-tryptophan, L-kynurenine, kynurenic acid, and anthranilic acid levels were measured one minute before SRT and at one, 5, 15, 30, and 60 minutes after SRT. We found that SRT affected tryptophan metabolism. Serum levels of L-tryptophan, L-kynurenine, and kynurenic acid were significantly reduced for up to 60 minutes after SRT. Anthranilic acid levels were characterized by a moderate, non significant transient decrease for up to 15 minutes, followed by normalization at 60 minutes. Tryptophan metabolite ratios were moderately altered, suggesting activation of metabolism after SRT. Lowering of tryptophan would generally involve activation of tryptophan catabolism and neurotransmitter, protein, and bone biosynthesis. Lowering of kynurenic acid by SRT might be relevant for improving symptoms in patients with neuropsychiatric disorders, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and depression, as well as certain pain conditions.

  18. L-Tryptophan Production by Auxotrophic and Analogue Resistant Mutants of

    Directory of Open Access Journals (Sweden)

    A. Roy

    2011-01-01

    Full Text Available A number of tyrosine plus phenylalanine double auxotrophic mutants were isolated by N-methyl-N-nitro-N-nitrosoguanidine (MNNG treatment of a locally isolated strain of Aureobacterium flavescens of which 11A 39 and 11A 17 were selected on the basis of their tryptophan production in a mineral salt medium over other isolated mutant strains. The mutational block in the aromatic amino acid biosynthetic pathway of the selected double auxotrophs were determined. By controlling pH of the production medium to near neutrality, the active growth period could be extended up to 72 h and more tryptophan was accumulated compared to pH unregulated culture where the active growth ceased after 48 h. Further improvement of the tryptophan production has been achieved by stepwise isolation of a mutant strain resistant to the tryptophan analogues p-fluorotryptophan (FT and 5-methyl tryptophan (MT from the 11A 39 . Demand for L-tryptophan as food additive and therapeutic agent is increasing day by day throughout the World, particularly in the underdeveloped and developing countries like India. Still to date India depends on other countries for L-tryptophan. The aim of this work is to develop a potent high yielding, feed back insensitive mutant strain and optimization of its medium pH for maximum production of tryptophan.

  19. A single amino acid residue, Ala 105, confers 16alpha-hydroxylase activity to human cytochrome P450 17alpha-hydroxylase/17,20 lyase.

    Science.gov (United States)

    Swart, Amanda C; Storbeck, Karl-Heinz; Swart, Pieter

    2010-04-01

    In adrenal steroidogenesis, CYP17 catalyses the 17alpha-hydroxylation of pregnenolone and progesterone and the subsequent 17,20-lyase reaction, yielding adrenal androgens. The enzyme exhibits distinctly different selectivities towards these substrates in various species. CYP17 has also been shown to exhibit 16alpha-hydroxylase activity towards progesterone in some species, with only human and chimp CYP17 catalysing the biosynthesis of substantial amounts of 16-OHprogesterone. The 16alpha-hydroxylase activity was investigated by introducing an Ala105Leu substitution into human CYP17. The converse mutation, Leu105Ala was introduced into the baboon, goat and pig enzymes. Wt human CYP17 converted approximately 30% progesterone to 16-OHprogesterone while the Ala105Leu mutant converted negligible amounts to 16-OHprogesterone ( approximately 9%), comparable to wt CYP17 of the other three species when expressed in COS-1 cells. The ratio of 17-hydroxylated products to 16-OHprogesterone of human CYP17 was 2.7 and that of the mutant human construct 10.5. Similar ratios were observed for human and goat CYP17 with the corresponding Ala or Leu residues. Although the Leu105Ala mutation of both baboon and pig CYP17 exhibited the same trend regarding the ratios, the rate of progesterone conversion was reduced. Coexpression with cytochrome b(5) significantly decreased the ratio of 17-hydroxylated products to 16-OHprogesterone in the Leu105 constructs, while effects were negligible with Ala at this position. Homology models show that Ala105 faces towards the active pocket in the predicted B'-C domain of CYP17. The smaller residue allows more flexibility of movement in the active pocket than Leu, presenting both the C16 and C17 of progesterone to the iron-oxy complex. 2010 Elsevier Ltd. All rights reserved.

  20. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  1. Enantiomer-Selective Photo-Induced Reaction of Protonated Tryptophan with Disaccharides in the Gas Phase

    Science.gov (United States)

    Doan, Thuc N.; Fujihara, Akimasa

    2018-03-01

    In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two d-glucose units, such as d-maltose or d-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα-Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+( l-Trp)( d-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+( d-Trp)( d-maltose). For d-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links d-glucose residues to the indole moiety of Trp via a C-C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.

  2. Characterization of N-Acetyl-Tryptophan Degradation in Protein Therapeutic Formulations.

    Science.gov (United States)

    Hogan, Kyle L; Leiske, Danielle; Salisbury, Cleo M

    2017-12-01

    N-Acetyl-tryptophan (NAT) is used as a stabilizer for preparations of human serum albumin and has more recently been demonstrated to provide oxidative protection for labile Trp residues in monoclonal antibodies. As a component in the formulations of protein therapeutics, NAT is sacrificially degraded; therefore, understanding the identity and quantity of NAT degradants potentially formed in these drug products is essential to understanding the potential patient impact of this additive. Here, we report a simple reversed-phase chromatography approach that allows systematic investigation of NAT degradation in relevant formulations under stressed conditions. Screening a panel of NAT-containing samples following a variety of forced stress conditions led to a range of NAT degradation from minimal (3%) to significant (83%). NAT degradants were observed to be largely conserved between oxidative and thermal stress conditions. Online mass spectrometry and standard compound synthesis allowed for identification of the major degradants in the stressed sample panel. NAT degradation was minimal under recommended storage conditions and in relevant thermal stress conditions for a representative protein therapeutic drug product, suggesting that NAT is stable under normal manufacturing, storage, and handling conditions. This work supports the use of NAT as an antioxidant in liquid drug product formulations. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  3. Inhibiting tryptophan metabolism enhances interferon therapy in kidney cancer.

    Science.gov (United States)

    Trott, Josephine F; Kim, Jeffrey; Abu Aboud, Omran; Wettersten, Hiromi; Stewart, Benjamin; Berryhill, Grace; Uzal, Francisco; Hovey, Russell C; Chen, Ching-Hsien; Anderson, Katie; Graef, Ashley; Sarver, Aaron L; Modiano, Jaime F; Weiss, Robert H

    2016-10-11

    Renal cell carcinoma (RCC) is increasing in incidence, and a complete cure remains elusive. While immune-checkpoint antibodies are promising, interferon-based immunotherapy has been disappointing. Tryptophan metabolism, which produces immunosuppressive metabolites, is enhanced in RCC. Here we show indolamine-2,3-dioxygenase-1 (IDO1) expression, a kynurenine pathway enzyme, is increased not only in tumor cells but also in the microenvironment of human RCC compared to normal kidney tissues. Neither kynurenine metabolites nor IDO inhibitors affected the survival or proliferation of human RCC or murine renal cell adenocarcinoma (RENCA) cells in vitro. However, interferon-gamma (IFNγ) induced high levels of IDO1 in both RCC and RENCA cells, concomitant with enhanced kynurenine levels in conditioned media. Induction of IDO1 by IFNα was weaker than by IFNγ. Neither the IDO1 inhibitor methyl-thiohydantoin-DL-tryptophan (MTH-trp) nor IFNα alone inhibited RENCA tumor growth, however the combination of MTH-trp and IFNα reduced tumor growth compared to IFNα. Thus, the failure of IFNα therapy for human RCC is likely due to its inability to overcome the immunosuppressive environment created by increased IDO1. Based on our data, and given that IDO inhibitors are already in clinical trials for other malignancies, IFNα therapy with an IDO inhibitor should be revisited for RCC.

  4. Dissecting the Catalytic Mechanism of Betaine-Homocysteine S-Methyltransferase Using Intrinsic Tryptophan Fluorescence and Site-Directed Mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.; Gratson, A.A.; Evans, J.C.; Jiracek, J.; Collinsova, M.; Ludwig, M.L.; Garrow, T.A. (ASCR); (UIUC); (Michigan)

    2010-03-05

    Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent enzyme that catalyzes the transfer of a methyl group from glycine betaine (Bet) to homocysteine (Hcy) to form dimethylglycine (DMG) and methionine (Met). Previous studies in other laboratories have indicated that catalysis proceeds through the formation of a ternary complex, with a transition state mimicked by the inhibitor S-({delta}-carboxybutyl)-l-homocysteine (CBHcy). Using changes in intrinsic tryptophan fluorescence to determine the affinity of human BHMT for substrates, products, or CBHcy, we now demonstrate that the enzyme-substrate complex reaches its transition state through an ordered bi-bi mechanism in which Hcy is the first substrate to bind and Met is the last product released. Hcy, Met, and CBHcy bind to the enzyme to form binary complexes with K{sub d} values of 7.9, 6.9, and 0.28 {micro}M, respectively. Binary complexes with Bet and DMG cannot be detected with fluorescence as a probe, but Bet and DMG bind tightly to BHMT-Hcy to form ternary complexes with K{sub d} values of 1.1 and 0.73 {micro}M, respectively. Mutation of each of the seven tryptophan residues in human BHMT provides evidence that the enzyme undergoes two distinct conformational changes that are reflected in the fluorescence of the enzyme. The first is induced when Hcy binds, and the second, when Bet binds. As predicted by the crystal structure of BHMT, the amino acids Trp44 and Tyr160 are involved in binding Bet, and Glu159 in binding Hcy. Replacing these residues by site-directed mutagenesis significantly reduces the catalytic efficiency (V{sub max}/K{sub m}) of the enzyme. Replacing Tyr77 with Phe abolishes enzyme activity.

  5. Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells.

    Science.gov (United States)

    Pajović, Jelena D; Dojčilović, Radovan; Božanić, Dušan K; Kaščáková, Slavka; Réfrégiers, Matthieu; Dimitrijević-Branković, Suzana; Vodnik, Vesna V; Milosavljević, Aleksandar R; Piscopiello, Emanuela; Luyt, Adriaan S; Djoković, Vladimir

    2015-11-01

    Biocompatible fluorescent nanostructures were prepared by a functionalization of gold nanoparticles with the amino acid tryptophan. The gold-tryptophan bioconjugates were investigated by TEM and HRTEM and various spectroscopy methods (XPS, FTIR, UV-vis and photoluminescence). It was found that the gold nanoparticles, initially 8 nm in diameter, aggregate in the presence of the amino acid. From the XPS and FTIR spectroscopy results, it was concluded that the tryptophan gold interactions mainly take place via indole and carboxyl groups. Although the indole group is involved in the interaction with the gold surfaces, the tryptophan-gold hybrids showed strong fluorescence due to the presence of multilayers of tryptophan. Deep ultra violet (DUV) imaging performed at the SOLEIL synchrotron showed that it is possible to detect these hybrid nanostructures within Escherichia coli cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Lower Levels of Cervicovaginal Tryptophan Are Associated With Natural Clearance of Chlamydia in Women.

    Science.gov (United States)

    Jordan, Stephen J; Olson, Kristin M; Barnes, Stephen; Wilson, Landon S; Berryhill, Taylor F; Bakshi, Rakesh; Brown, LaDraka' T; Press, Christen G; Geisler, William M

    2017-06-15

    Chlamydiatrachomatis (Ct) infection causes significant morbidity. In vitro studies demonstrate that Ct growth inhibition occurs by interferon-gamma (IFN-γ)-mediated depletion of intracellular tryptophan, and some Ct strains utilize extracellular indole to restore tryptophan levels. Whether tryptophan levels are associated with Ct infection clearance in humans remains unknown. We evaluated tryptophan, indole, and IFN-γ levels in cervicovaginal lavages from women with either naturally cleared or persisting Ct infection. Women who cleared infection had significantly lower tryptophan levels and trended toward lower IFN-γ levels compared to women with persisting infection. Due to its volatility, indole was not measurable in either group. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  7. Determination of low-level agricultural residues in soft drinks and sports drinks by gas chromatography with mass-selective detection: single-laboratory validation.

    Science.gov (United States)

    Paske, Nathan; Berry, Bryan; Schmitz, John; Sullivan, Darryl

    2007-01-01

    In this study, sponsored by PepsiCo Inc., a method was validated for measurement of 19 pesticide residues in soft drinks and sports drinks by gas chromatography/mass spectrometry (GC/MS) with mass selective detection The pesticide residues determined in this validation were alpha-benzenehexachloride (BHC); beta-BHC; gamma-BHC; delta-BHC; methyl parathion; malathion; chlorpyrifos; aldrin; 2,4-dichlorodiphenyldichloroethylene (DDE); alpha-endosulfan; 4,4-DDE; 2,4-dichlorodiphenyldichloroethane (DDD); dieldrin; ethion; 4,4-DDD; 2,4-dichlorodiphenyltrichloroethylene (DDT); beta-endosulfan; 4,4-DDT; and endosulfan sulfate when spiked into a 200 mL matrix sample at 0.50 microg/L. The samples were diluted with acetonitrile and water, then liquid-liquid phase extracted into petroleum ether. The resulting extract was concentrated to near dryness and diluted with hexane:dichloromethane (50:50). The concentrated samples were purified by gel permeation chromatography. The resulting solution was concentrated and separated on a Florisil substrate. The eluent was concentrated to near dryness, reconstituted to produce a 200-fold concentration, and analyzed using a GC/MS instrument operated in the selective ion monitoring mode. The GC/MS instrument was equipped with a large volume injector capable of injecting 25 microL. External standards prepared in dichloromethane were used for quantification without the need for matrix-matched calibration because the extraction step minimized the matrix effects. The calibration curves for all agricultural residues had coefficients of determination (r2) of greater than or equal to 0.9900, with the exception of one value that was 0.988. Fortification spikes at 0.50 microg/L in 3 matrixes (7UP, Gatorade, and Diet Pepsi) over the course of 2 days (4 days for Gatorade), where n=8 each day, yielded average percent recoveries (and percent relative standard deviations) as follows (n=64): 95.6 (24.8) for alpha-BHC; 91.9 (23.6) for beta-BHC; 89.1 (21

  8. Sensitive determination of mixtures of neonicotinoid and fungicide residues in pollen and single bumblebees using a scaled down QuEChERS method for exposure assessment.

    Science.gov (United States)

    David, Arthur; Botías, Cristina; Abdul-Sada, Alaa; Goulson, Dave; Hill, Elizabeth M

    2015-10-01

    To accurately estimate exposure of bees to pesticides, analytical methods are needed to enable quantification of nanogram/gram (ng/g) levels of contaminants in small samples of pollen or the individual insects. A modified QuEChERS extraction method coupled with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis was tested to quantify residues of 19 commonly used neonicotinoids and fungicides and the synergist, piperonyl butoxide, in 100 mg samples of pollen and in samples of individual bumblebees (Bombus terrestris). Final recoveries ranged from 71 to 102 % for most compounds with a repeatability of below 20 % for both pollen and bumblebee extracts spiked at 5 and 40 ng/g. The method enables the detection of all compounds at sub-ng/g levels in both matrices and the method detection limits (MDL) ranged from 0.01 to 0.84 ng/g in pollen and 0.01 to 0.96 ng/g in individual bumblebees. Using this method, mixtures of neonicotinoids (thiamethoxam, clothianidin, imidacloprid and thiacloprid) and fungicides (carbendazim, spiroxamine, boscalid, tebuconazole, prochloraz, metconazole, fluoxastrobin, pyraclostrobin and trifloxystrobin) were detected in pollens of field bean, strawberry and raspberry at concentrations ranging from neonicotinoids and from MDL, and in some bees, the fungicides carbendazim, boscalid, tebuconazole, flusilazole and metconazole were present at concentrations between 0.80 to 30 ng/g. This new method allows the analysis of mixtures of neonicotinoids and fungicides at trace levels in small quantities of pollen and individual bumblebees and thus will facilitate exposure assessment studies.

  9. Entry of a Six-Residue Antimicrobial Peptide Derived from Lactoferricin B into Single Vesicles and Escherichia coli Cells without Damaging their Membranes.

    Science.gov (United States)

    Moniruzzaman, Md; Islam, Md Zahidul; Sharmin, Sabrina; Dohra, Hideo; Yamazaki, Masahito

    2017-08-22

    Lactoferricin B (LfcinB) and shorter versions of this peptide have antimicrobial activity. However, the elementary processes of interactions of these peptides with lipid membranes and bacteria are still not well understood. To elucidate the mechanism of their antimicrobial activity, we investigated the interactions of LfcinB (4-9) (its sequence of RRWQWR) with Escherichia coli cells and giant unilamellar vesicles (GUVs). LfcinB (4-9) and lissamine rhodamine B red-labeled LfcinB (4-9) (Rh-LfcinB (4-9)) did not induce an influx of a membrane-impermeant fluorescent probe, SYTOX green, from the outside of E. coli cells into their cytoplasm, indicating that no damage occurred in their plasma membrane. To examine the activity of LfcinB (4-9) to enter E. coli cytoplasm, we investigated the interaction of Rh-LfcinB (4-9) with single cells of E. coli containing calcein using confocal microscopy. We found that Rh-LfcinB (4-9) entered the cytoplasm without leakage of calcein. Next, we investigated the interactions of Rh-LfcinB (4-9) with single GUVs of dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC) mixtures containing a fluorescent probe, Alexa Fluor 647 hydrazide (AF647), using the single GUV method. The results indicate that Rh-LfcinB (4-9) outside the GUV translocated through the GUV membrane and entered its lumen without leakage of AF647. Interaction of Rh-LfcinB (4-9) with DNA increased its fluorescence intensity greatly. Therefore, we can conclude that Rh-LfcinB (4-9) can translocate across lipid membrane regions of the plasma membrane of E. coli cells to enter their cytoplasm without leakage of calcein and its antimicrobial activity is not due to damage of their plasma membranes.

  10. Increased Tryptophan Metabolism Is Associated With Activity of Inflammatory Bowel Diseases.

    Science.gov (United States)

    Nikolaus, Susanna; Schulte, Berenice; Al-Massad, Natalie; Thieme, Florian; Schulte, Dominik M; Bethge, Johannes; Rehman, Ateequr; Tran, Florian; Aden, Konrad; Häsler, Robert; Moll, Natalie; Schütze, Gregor; Schwarz, Markus J; Waetzig, Georg H; Rosenstiel, Philip; Krawczak, Michael; Szymczak, Silke; Schreiber, Stefan

    2017-12-01

    Administration of tryptophan and some of its metabolites reduces the severity of colitis in mice, whereas removing tryptophan from the diet increases susceptibility to colitis. Transfer of the intestinal microbiome transfers the colitogenic phenotype from tryptophan starved animals to normally nourished mice. We aimed to systematically evaluate serum levels of tryptophan and its metabolites in patients with inflammatory bowel diseases (IBD), and study their association with clinical and serologic features. We studied 535 consecutive patients with IBD (211 with ulcerative colitis [UC], 234 with Crohn's disease [CD]; 236 male), enrolled in Germany from August 2013 through April 2014 and followed until July 2016. Serum samples were collected from patients and 291 matched individuals without IBD (controls); levels of tryptophan were measured using high-performance liquid chromatography. Metabolites of tryptophan were measured in serum from 148 patients and 100 controls by mass spectrometry. We measured levels of interleukin 22 in serum from 28 patients by enzyme-linked immunosorbent assay. Paired stool and serum samples were collected from a subset of patients with active UC (n = 10) or CD (n = 8) to investigate associations between serum levels of tryptophan and composition of the fecal microbiota, analyzed by 16S ribosomal DNA amplicon sequencing. We used real-time polymerase chain reaction to measure levels of messenger RNAs in colonic biopsies from 60 patients with UC, 50 with CD, and 30 controls. We collected information on patients' disease activity scores, medications, laboratory assessments, and clinical examinations during recruitment and follow-up visits. Serum levels of tryptophan were significantly lower in patients with IBD than in controls (P = 5.3 × 10 -6 ) with a stronger reduction in patients with CD (vs control; P = 1.1 × 10 -10 ) than UC (vs control; P = 2.8 × 10 -3 ). We found a negative correlation between serum levels of tryptophan and

  11. Tryptophan overloading activates brain regions involved with cognition, mood and anxiety.

    Science.gov (United States)

    Silva, Luana C A; Viana, Milena B; Andrade, José S; Souza, Melyssa A; Céspedes, Isabel C; D'Almeida, Vânia

    2017-01-01

    Tryptophan is the only precursor of serotonin and mediates serotonergic activity in the brain. Previous studies have shown that the administration of tryptophan or tryptophan depletion significantly alters cognition, mood and anxiety. Nevertheless, the neurobiological alterations that follow these changes have not yet been fully investigated. The aim of this study was to verify the effects of a tryptophan-enriched diet on immunoreactivity to Fos-protein in the rat brain. Sixteen male Wistar rats were distributed into two groups that either received standard chow diet or a tryptophan-enriched diet for a period of thirty days. On the morning of the 31st day, animals were euthanized and subsequently analyzed for Fos-immunoreactivity (Fos-ir) in the dorsal and median raphe nuclei and in regions that receive serotonin innervation from these two brain areas. Treatment with a tryptophan-enriched diet increased Fos-ir in the prefrontal cortex, nucleus accumbens, paraventricular hypothalamus, arcuate and ventromedial hypothalamus, dorsolateral and dorsomedial periaqueductal grey and dorsal and median raphe nucleus. These observations suggest that the physiological and behavioral alterations that follow the administration of tryptophan are associated with the activation of brain regions that regulate cognition and mood/anxiety-related responses.

  12. RESIDUAL RISK ASSESSMENTS - RESIDUAL RISK ...

    Science.gov (United States)

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Coke Ovens. These assesments utilize existing models and data bases to examine the multi-media and multi-pollutant impacts of air toxics emissions on human health and the environment. Details on the assessment process and methodologies can be found in EPA's Residual Risk Report to Congress issued in March of 1999 (see web site). To assess the health risks imposed by air toxics emissions from Coke Ovens to determine if control technology standards previously established are adequately protecting public health.

  13. Tryptophan, Neurodegeneration and HIV-Associated Neurocognitive Disorder

    Directory of Open Access Journals (Sweden)

    Nicholas W.S. Davies

    2010-06-01

    Full Text Available This review presents an up-to-date assessment of the role of the tryptophan metabolic and catabolic pathways in neurodegenerative disease and HIV-associated neurocognitive disorder. The kynurenine pathway and the effects of each of its enzymes and products are reviewed. The differential expression of the kynurenine pathway in cells within the brain, including inflammatory cells, is explored given the increasing recognition of the importance of inflammation in neurodegenerative disease. An overview of common mechanisms of neurodegeneration is presented before a review and discussion of the evidence for a pathogenetic role of the kynurenine pathway in Alzheimer’s disease, HIV-associated neurocognitive disorder, Huntington’s disease, motor neurone disease, and Parkinson’s disease.

  14. Tryptophan, Neurodegeneration and HIV-Associated Neurocognitive Disorder

    Science.gov (United States)

    Davies, Nicholas W.S.; Guillemin, Gilles; Brew, Bruce J.

    2010-01-01

    This review presents an up-to-date assessment of the role of the tryptophan metabolic and catabolic pathways in neurodegenerative disease and HIV-associated neurocognitive disorder. The kynurenine pathway and the effects of each of its enzymes and products are reviewed. The differential expression of the kynurenine pathway in cells within the brain, including inflammatory cells, is explored given the increasing recognition of the importance of inflammation in neurodegenerative disease. An overview of common mechanisms of neurodegeneration is presented before a review and discussion of the evidence for a pathogenetic role of the kynurenine pathway in Alzheimer’s disease, HIV-associated neurocognitive disorder, Huntington’s disease, motor neurone disease, and Parkinson’s disease. PMID:22084594

  15. Exogenous Tryptophan Promotes Cutaneous Wound Healing of Chronically Stressed Mice through Inhibition of TNF-α and IDO Activation

    Science.gov (United States)

    Bandeira, Luana Graziella; Bortolot, Beatriz Salari; Cecatto, Matheus Jorand; Monte-Alto-Costa, Andréa; Romana-Souza, Bruna

    2015-01-01

    Stress prolongs the inflammatory response compromising the dermal reconstruction and wound closure. Acute stress-induced inflammation increases indoleamine 2, 3-dioxygenase-stimulated tryptophan catabolism. To investigate the role of indoleamine 2, 3-dioxygenase expression and tryptophan administration in adverse effects of stress on cutaneous wound healing, mice were submitted to chronic restraint stress and treated with tryptophan daily until euthanasia. Excisional lesions were created on each mouse and 5 or 7 days later, the lesions were analyzed. In addition, murine skin fibroblasts were exposed to elevated epinephrine levels plus tryptophan, and fibroblast activity was evaluated. Tryptophan administration reversed the reduction of the plasma tryptophan levels and the increase in the plasma normetanephrine levels induced by stress 5 and 7 days after wounding. Five days after wounding, stress-induced increase in the protein levels of tumor necrosis factor-α and indoleamine 2, 3-dioxygenase, and this was inhibited by tryptophan. Stress-induced increase in the lipid peroxidation and the amount of the neutrophils, macrophages and T cells number was reversed by tryptophan 5 days after wounding. Tryptophan administration inhibited the reduction of myofibroblast density, collagen deposition, re-epithelialization and wound contraction induced by stress 5 days after wounding. In dermal fibroblast culture, the tryptophan administration increased the cell migration and AKT phosphorylation in cells treated with high epinephrine levels. In conclusion, tryptophan-induced reduction of inflammatory response and indoleamine 2, 3-dioxygenase expression may have accelerated cutaneous wound healing of chronically stressed mice. PMID:26057238

  16. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

    Science.gov (United States)

    O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F

    2015-01-15

    The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Assessment of Tryptophan Uptake and Kinetics Using 1-(2-18F-Fluoroethyl)-l-Tryptophan and α-11C-Methyl-l-Tryptophan PET Imaging in Mice Implanted with Patient-Derived Brain Tumor Xenografts.

    Science.gov (United States)

    Michelhaugh, Sharon K; Muzik, Otto; Guastella, Anthony R; Klinger, Neil V; Polin, Lisa A; Cai, Hancheng; Xin, Yangchun; Mangner, Thomas J; Zhang, Shaohui; Juhász, Csaba; Mittal, Sandeep

    2017-02-01

    Abnormal tryptophan metabolism via the kynurenine pathway is involved in the pathophysiology of a variety of human diseases including cancers. α- 11 C-methyl-l-tryptophan ( 11 C-AMT) PET imaging demonstrated increased tryptophan uptake and trapping in epileptic foci and brain tumors, but the short half-life of 11 C limits its widespread clinical application. Recent in vitro studies suggested that the novel radiotracer 1-(2- 18 F-fluoroethyl)-l-tryptophan ( 18 F-FETrp) may be useful to assess tryptophan metabolism via the kynurenine pathway. In this study, we tested in vivo organ and tumor uptake and kinetics of 18 F-FETrp in patient-derived xenograft mouse models and compared them with 11 C-AMT uptake. Xenograft mouse models of glioblastoma and metastatic brain tumors (from lung and breast cancer) were developed by subcutaneous implantation of patient tumor fragments. Dynamic PET scans with 18 F-FETrp and 11 C-AMT were obtained for mice bearing human brain tumors 1-7 d apart. The biodistribution and tumoral SUVs for both tracers were compared. 18 F-FETrp showed prominent uptake in the pancreas and no bone uptake, whereas 11 C-AMT showed higher uptake in the kidneys. Both tracers showed uptake in the xenograft tumors, with a plateau of approximately 30 min after injection; however, 18 F-FETrp showed higher tumoral SUV than 11 C-AMT in all 3 tumor types tested. The radiation dosimetry for 18 F-FETrp determined from the mouse data compared favorably with the clinical 18 F-FDG PET tracer. 18 F-FETrp tumoral uptake, biodistribution, and radiation dosimetry data provide strong preclinical evidence that this new radiotracer warrants further studies that may lead to a broadly applicable molecular imaging tool to examine abnormal tryptophan metabolism in human tumors. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  18. Residual nilpotence and residual solubility of groups

    International Nuclear Information System (INIS)

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  19. Plasma Tryptophan and the Kynurenine-Tryptophan Ratio are Associated with the Acquisition of Statural Growth Deficits and Oral Vaccine Underperformance in Populations with Environmental Enteropathy.

    Science.gov (United States)

    Kosek, Margaret N; Mduma, Estomih; Kosek, Peter S; Lee, Gwenyth O; Svensen, Erling; Pan, William K Y; Olortegui, Maribel Paredes; Bream, Jay H; Patil, Crystal; Asayag, Cesar Ramal; Sanchez, Graciela Meza; Caulfield, Laura E; Gratz, Jean; Yori, Pablo Peñataro

    2016-10-05

    Early childhood enteric infections have adverse impacts on child growth and can inhibit normal mucosal responses to oral vaccines, two critical components of environmental enteropathy. To evaluate the role of indoleamine 2,3-dioxygenase 1 (IDO1) activity and its relationship with these outcomes, we measured tryptophan and the kynurenine-tryptophan ratio (KTR) in two longitudinal birth cohorts with a high prevalence of stunting. Children in rural Peru and Tanzania (N = 494) contributed 1,251 plasma samples at 3, 7, 15, and 24 months of age and monthly anthropometrics from 0 to 36 months of age. Tryptophan concentrations were directly associated with linear growth from 1 to 8 months after biomarker assessment. A 1-SD increase in tryptophan concentration was associated with a gain in length-for-age Z-score (LAZ) of 0.17 over the next 6 months in Peru (95% confidence interval [CI] = 0.11-0.23, P tryptophan and kynurenine as biomarkers for this syndrome, particularly in identifying those at risk for hyporesponsivity to oral vaccines. © The American Society of Tropical Medicine and Hygiene.

  20. Effects of tryptophan supplementation on cashmere fiber characteristics, serum tryptophan, and related hormone concentrations in cashmere goats.

    Science.gov (United States)

    Ma, H; Zhang, W; Song, W H; Sun, P; Jia, Z H

    2012-10-01

    This study was designed to investigate the effects of tryptophan (Trp) supplementation on cashmere fiber characteristics and on serum Trp, melatonin (MEL), prolactin (PRL), insulin-like growth factor 1 (IGF-1), triiodothyronine (T3), and thyroxine (T4) concentrations in cashmere goats during the cashmere fast-growth period. Thirty-six Liaoning cashmere wether goats were stratified on the basis of body weight (28±0.8 kg) and assigned randomly to 1 of the following 4 rumen-protected Trp treatments: 0, 2.0, 4.0, and 6.0 g per goat per day. The experimental period lasted 137 d. Blood samples were collected monthly during the daytime (8:00 AM) and at night (8:00 PM). Tryptophan supplementation improved cashmere growth rates, cashmere weight, and body weight (P=0.001) and increased serum Trp levels, nighttime MEL concentrations, IGF-1, and T3 and T4 concentrations (Pcashmere growth rate and nighttime serum MEL concentrations was observed (r=0.879, P=0.001). A moderately negative correlation between cashmere growth rates and serum PRL concentrations during the day and at night (rday=-0.645, P=0.007; rnight=-0.583, P=0.018) was observed. A moderately positive correlation between the cashmere growth rate and the daytime serum IGF-1 concentration (r=0.536, P=0.032) was observed, and no correlation was found between the cashmere growth rate and the other serum hormone concentrations. These data indicate that changes in serum concentrations of MEL, IGF-1, and PRL are related to cashmere growth in Liaoning cashmere goats during the cashmere fast-growth period. Under the experimental conditions of the current trial, we suggest that Trp may promote cashmere growth by increasing daytime IGF-1 and nighttime MEL secretion. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. High-throughput metabolic profiling of diverse green Coffea arabica beans identified tryptophan as a universal discrimination factor for immature beans.

    Science.gov (United States)

    Setoyama, Daiki; Iwasa, Keiko; Seta, Harumichi; Shimizu, Hiroaki; Fujimura, Yoshinori; Miura, Daisuke; Wariishi, Hiroyuki; Nagai, Chifumi; Nakahara, Koichi

    2013-01-01

    The maturity of green coffee beans is the most influential determinant of the quality and flavor of the resultant coffee beverage. However, the chemical compounds that can be used to discriminate the maturity of the beans remain uncharacterized. We herein analyzed four distinct stages of maturity (immature, semi-mature, mature and overripe) of nine different varieties of green Coffea arabica beans hand-harvested from a single experimental field in Hawaii. After developing a high-throughput experimental system for sample preparation and liquid chromatography-mass spectrometry (LC-MS) measurement, we applied metabolic profiling, integrated with chemometric techniques, to explore the relationship between the metabolome and maturity of the sample in a non-biased way. For the multivariate statistical analyses, a partial least square (PLS) regression model was successfully created, which allowed us to accurately predict the maturity of the beans based on the metabolomic information. As a result, tryptophan was identified to be the best contributor to the regression model; the relative MS intensity of tryptophan was higher in immature beans than in those after the semi-mature stages in all arabica varieties investigated, demonstrating a universal discrimination factor for diverse arabica beans. Therefore, typtophan, either alone or together with other metabolites, may be utilized for traders as an assessment standard when purchasing qualified trading green arabica bean products. Furthermore, our results suggest that the tryptophan metabolism may be tightly linked to the development of coffee cherries and/or beans.

  2. High-throughput metabolic profiling of diverse green Coffea arabica beans identified tryptophan as a universal discrimination factor for immature beans.

    Directory of Open Access Journals (Sweden)

    Daiki Setoyama

    Full Text Available The maturity of green coffee beans is the most influential determinant of the quality and flavor of the resultant coffee beverage. However, the chemical compounds that can be used to discriminate the maturity of the beans remain uncharacterized. We herein analyzed four distinct stages of maturity (immature, semi-mature, mature and overripe of nine different varieties of green Coffea arabica beans hand-harvested from a single experimental field in Hawaii. After developing a high-throughput experimental system for sample preparation and liquid chromatography-mass spectrometry (LC-MS measurement, we applied metabolic profiling, integrated with chemometric techniques, to explore the relationship between the metabolome and maturity of the sample in a non-biased way. For the multivariate statistical analyses, a partial least square (PLS regression model was successfully created, which allowed us to accurately predict the maturity of the beans based on the metabolomic information. As a result, tryptophan was identified to be the best contributor to the regression model; the relative MS intensity of tryptophan was higher in immature beans than in those after the semi-mature stages in all arabica varieties investigated, demonstrating a universal discrimination factor for diverse arabica beans. Therefore, typtophan, either alone or together with other metabolites, may be utilized for traders as an assessment standard when purchasing qualified trading green arabica bean products. Furthermore, our results suggest that the tryptophan metabolism may be tightly linked to the development of coffee cherries and/or beans.

  3. Determination of residual 1,4-dioxane in surfactants and cleaning agents using headspace single-drop microextraction followed by gas chromatography-flame ionization detection.

    Science.gov (United States)

    Saraji, M; Shirvani, N

    2017-02-01

    Polyethoxylated surfactants are widely used in the formulation of different cleaning agents such as shampoo, dish washing and hand washing products and lotion formulation. During the production of polyethoxylated surfactants, 1,4-dioxane as a toxic and carcinogenic by-product is formed. A simple low-cost method based on headspace single-drop microextraction combined with gas chromatography-flame ionization detection was developed for the determination of 1,4-dioxane in surfactants and cleaning agents. In this method, 1,4-dioxane was extracted from 8.0 mL sample solution into a microdrop of an organic solvent, and then, it was injected to gas chromatography. The effects of such parameters as the solvent type, salt addition, microdrop volume, stirring rate, equilibrium time, extraction time and the temperature of sample solution on the extraction performance were studied and optimized. An ethoxylated surfactant containing 1,4-dioxane was used as the sample for the optimization of the extraction parameters. The linear range, determination coefficient, limit of detection and relative standard deviation of the method were 0.5-100 μg g -1 , 0.9977, 0.4 μg g -1 and 7.2% (n = 5), respectively. Different real samples including sodium lauryl ether sulphate, sodium lauryl sulphate (SLS), four brands of shampoo, and hand washing and dish washing liquids were analysed by the method. 1,4-Dioxane was detected at the concentration range of 2.4-201 μg g -1 in the samples, except dish washing liquid and SLS. A new method with the merits of simplicity, low cost, low organic solvent consumption, short analysis time, good repeatability and suitable detection limit was developed for the analysis of 1,4-dioxane in surfactants and cleaning agents. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. Expression and purification of single cysteine-containing mutant variants of the mouse prion protein by oxidative refolding.

    Science.gov (United States)

    Sengupta, Ishita; Udgaonkar, Jayant B

    2017-12-01

    The folding and aggregation of proteins has been studied extensively, using multiple probes. To facilitate such experiments, introduction of spectroscopically-active moieties in to the protein of interest is often necessary. This is commonly achieved by specifically labelling cysteine residues in the protein, which are either present naturally or introduced artificially by site-directed mutagenesis. In the case of the recombinant prion protein, which is normally expressed in inclusion bodies, the presence of the native disulfide bond complicates the correct refolding of single cysteine-containing mutant variants of the protein. To overcome this major bottleneck, a simple purification strategy for single tryptophan, single cysteine-containing mutant variants of the mouse prion protein is presented, with yields comparable to that of the wild type protein. The protein(s) obtained by this method are correctly folded, with a single reduced cysteine, and the native disulfide bond between residues C178 and C213 intact. The β-sheet rich oligomers formed from these mutant variant protein(s) are identical to the wild type protein oligomer. The current strategy facilitates sample preparation for a number of high resolution spectroscopic measurements for the prion protein, which specifically require thiol labelling. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Deep residual networks of residual networks for image super-resolution

    Science.gov (United States)

    Wei, Xueqi; Yang, Fumeng; Wu, Congzhong

    2017-11-01

    Single image super-resolution (SISR), which aims at obtaining a high-resolution image from a single low-resolution image, is a classical problem in computer vision. In this paper, we address this problem based on a deep learning method with residual learning in an end-to-end manner. We propose a novel residual-network architecture, Residual networks of Residual networks (RoR), to promote the learning capability of residual networks for SISR. In residual network, the signal can be directly propagated from one unit to any other units in both forward and backward passes when using identity mapping as the skip connections. Based on it, we add level-wise connections upon original residual networks, to dig the optimization ability of residual networks. Our experiments demonstrate the effectiveness and versatility of RoR, it can get a faster convergence speed and gain higher resolution accuracy from considerably increased depth.

  6. Acute tryptophan depletion dose dependently impairs object memory in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Olivier, J D A; Jans, L A W; Korte-Bouws, G A H; Korte, S M; Deen, P M T; Cools, A R; Ellenbroek, B A; Blokland, A

    2008-01-01

    RATIONALE: Acute tryptophan depletion (ATD) transiently lowers central serotonin levels and can induce depressive mood states and cognitive defects. Previous studies have shown that ATD impairs object recognition in rats. OBJECTIVES: As individual differences exist in central serotonin

  7. Acute tryptophan depletion in humans: a review of theoretical, practical and ethical aspects

    Science.gov (United States)

    Young, Simon N.

    2013-01-01

    The acute tryptophan depletion (ATD) technique has been used extensively to study the effect of low serotonin in the human brain. This review assesses the validity of a number of published criticisms of the technique and a number of previously unpublished potential criticisms. The conclusion is that ATD can provide useful information when results are assessed in conjunction with results obtained using other techniques. The best-established conclusion is that low serotonin function after tryptophan depletion lowers mood in some people. However, this does not mean that other variables, altered after tryptophan depletion, are necessarily related to low serotonin. Each aspect of brain function has to be assessed separately. Furthermore, a negative tryptophan depletion study does not mean that low serotonin cannot influence the variable studied. This review suggests gaps in knowledge that need to be filled and guidelines for carrying out ATD studies. PMID:23428157

  8. Linoleic acid, thymine, and tryptophan radiosensitization by protoporphyrin in presence of oxygene

    International Nuclear Information System (INIS)

    Champel, P.; Mignot, M.A.; Pillement, B.; Fontenil, L.; Rocquet, G.

    Sensitizing effect induced by protoporphyrin, an active molecule in photooxidation is studied. Studied substances are tryptophan, thymine, linoleic acid, each component representing one of the great groups of biological components, nucleic acid, proteins, lipids [fr

  9. Tryptophan Oxidative Metabolism Catalyzed by : A Thermophile Isolated from Kuwait Soil Contaminated with Petroleum Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Jassim M. Al-Hassan

    2011-01-01

    Full Text Available Tryptophan metabolism has been extensively studied in humans as well as in soil. Its metabolism takes place mainly through kynurenine pathway yielding hydroxylated, deaminated and many other products of physiological significance. However, tryptophan metabolism has not been studied in an isolated thermophilic bacterium. Geobacillus stearothermophilus is a local thermophile isolated from Kuwait desert soil contaminated with petroleum hydrocarbons. The bacterium grows well at 65 °C in 0.05 M phosphate buffer (pH 7, when supplied with organic compounds as a carbon source and has a good potential for transformation of steroids and related molecules. In the present study, we used tryptophan ethyl ester as a carbon source for the bacterium to study the catabolism of the amino acid at pH 5 and pH 7. In this endeavor, we have resolved twenty one transformation products of tryptophan by GC/LC and have identified them through their mass spectral fragmentation.

  10. Post-synthetic modification of tryptophan containing peptides via NIS mediation.

    Science.gov (United States)

    Gu, Chen-Xue; Bi, Qing-Wei; Gao, Chu-Kun; Wen, Jian; Zhao, Zhi-Gang; Chen, Zili

    2017-04-18

    A new efficient method was developed to provide modified tryptophan peptides through NIS (N-iodosuccinimide) mediated N 2 -selective coupling of a Trp unit with 1,2,3-triazoles, of which, the preliminary spectral properties were also studied.

  11. FLIM-FRET image analysis of tryptophan in prostate cancer cells

    Science.gov (United States)

    Periasamy, Ammasi; Alam, Shagufta R.; Svindrych, Zdenek; Wallrabe, Horst

    2017-07-01

    A region of interest (ROI) based quantitative FLIM-FRET image analysis is developed to quantitate the autofluorescence signals of the essential amino acid tryptophan as a biomarker to investigate the metabolism in prostate cancer cells.

  12. Characterization of individual ice residual particles by the single droplet freezing method: a case study in the Asian dust outflow region

    Science.gov (United States)

    Iwata, Ayumi; Matsuki, Atsushi

    2018-02-01

    pure or fresh calcite, Ca(NO3)2, and (NH4)2SO4 particles were more often found in the non-active fraction. In this study, we demonstrated the capability of the combined single droplet freezing method and thorough individual particle analysis to characterize the ice nucleation activity of atmospheric aerosols. We also found that dramatic changes in the particle mixing states during long-range transport had a complex effect on the ice nucleation activity of the host aerosol particles. A case study in the Asian dust outflow region highlighted the need to consider particle mixing states, which can dramatically influence ice nucleation activity.

  13. Characterization of individual ice residual particles by the single droplet freezing method: a case study in the Asian dust outflow region

    Directory of Open Access Journals (Sweden)

    A. Iwata

    2018-02-01

    dust particles. Also, relatively pure or fresh calcite, Ca(NO32, and (NH42SO4 particles were more often found in the non-active fraction. In this study, we demonstrated the capability of the combined single droplet freezing method and thorough individual particle analysis to characterize the ice nucleation activity of atmospheric aerosols. We also found that dramatic changes in the particle mixing states during long-range transport had a complex effect on the ice nucleation activity of the host aerosol particles. A case study in the Asian dust outflow region highlighted the need to consider particle mixing states, which can dramatically influence ice nucleation activity.

  14. Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice.

    Science.gov (United States)

    Islam, Jahidul; Sato, Shoko; Watanabe, Kouichi; Watanabe, Takaya; Ardiansyah; Hirahara, Keisuke; Aoyama, Yukihide; Tomita, Shuhei; Aso, Hisashi; Komai, Michio; Shirakawa, Hitoshi

    2017-04-01

    Ulcerative colitis is the typical progression of chronic inflammatory bowel disease. Amino acids, particularly tryptophan, have been reported to exert a protective effect against colitis induced by dextran sodium sulfate (DSS), but the precise underlying mechanisms remain incompletely clarified. Tryptophan metabolites are recognized to function as endogenous ligands for aryl hydrocarbon receptor (Ahr), which is a critical regulator of inflammation and immunity. Thus, we conducted this study to investigate whether dietary tryptophan supplementation protects against DSS-induced colitis by acting through Ahr. Female wild-type (WT) and Ahr-deficient (knockout; KO) mice (10-12 weeks old) were divided into four groups and fed either a control or 0.5% tryptophan diet. The tryptophan diet ameliorated DSS-induced colitis symptoms and severity in WT mice but not in KO mice, and the diet reduced the mRNA expression of Il-6, Tnfα, Il-1β and the chemokines Ccl2, Cxcl1 and Cxcl2 in the WT groups. Furthermore, Il-22 and Stat3 mRNA expression in the colon was elevated in WT mice fed with the tryptophan diet, which mainly protected epithelial layer integrity, and Ahr also modulated immune homeostasis by regulating Foxp3 and Il-17 mRNA expression. These data suggest that tryptophan-containing diet might ameliorate DSS-induced acute colitis and regulate epithelial homeostasis through Ahr. Thus, tryptophan could serve as a promising preventive agent in the treatment of ulcerative colitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effects of dietary L-tryptophan supplementation on intestinal response to chronic unpredictable stress in broilers.

    Science.gov (United States)

    Yue, Yunshuang; Guo, Yuming; Yang, Ying

    2017-07-01

    Stress has been recognized as a critical risk factor for gastrointestinal diseases in both humans and animals. However, nutritional strategies to attenuate stress-induced intestinal barrier function and underlying mechanisms remain largely unknown. This study tested the hypothesis that L-tryptophan enhanced intestinal barrier function by regulating mucosal serotonin metabolism in chronic unpredictable stress-exposed broilers. One-day-old male broilers (Arbor Acres) were fed a basal diet supplemented with or without L-tryptophan in the absence or presence of chronic unpredictable stress. Feed intake, body weight gain, plasma corticosterone and 5-hydroxytryptamine (5-HT), intestinal permeability, mucosal secretory IgA (sIgA), and mRNA levels for tryptophan hydroxylase 1 (TPH1), IL-1β, IL-6, TNF-α, IL-10, protein abundance for claudin-1, occludin, and ZO-1 were determined. Stress exposure led to elevated plasma corticosterone (P tryptophan supplementation. Western blot analysis showed that stress exposure resulted in decreased protein abundance for occludin, claudin-1, and ZO-1, which was attenuated by L-tryptophan. mRNA levels for IL-1β, IL-6, and TNF-α were increased, but those for IL-10 were decreased, in the jejunal tissue of broilers subjected to stress. This effect of stress on cytokine expression was abolished by L-tryptophan treatment. The effects of stress were associated with decreased plasma concentration of 5-HT (P Tryptophan supplementation markedly attenuated stress-induced alterations in 5-HT and TPH1 mRNA level in jejunal tissues of broilers. Collectively, these results indicate that L-tryptophan supplementation alleviates chronic unpredictable stress-induced intestinal barrier dysfunction by regulating 5-HT metabolism in broilers.

  16. Changes of intermediary taurine and tryptophan metabolism after combined radiation-thermal injury

    International Nuclear Information System (INIS)

    Konnova, L.A.; Novoselova, G.S.

    1986-01-01

    The dynamics of changes of the taurine and tryptophane concentration in blood serum of rats has been studied during 30 days after 3b degree burn of 15% of body surface after total even exposure to radiation in doses of 3 and 6 Gy, and after combined radiation thermal injury. Combined radiation-thermal injury was found to be characterized by reduced concentration of taurine but an increase of the tryptophane level from the second-third day after the injury

  17. Nutritional tryptophan restriction impairs plasticity of retinotectal axons during the critical period.

    Science.gov (United States)

    Penedo, Letícia Abel; Oliveira-Silva, Priscilla; Gonzalez, Ericka M C; Maciel, Rafaela; Jurgilas, Patricia B; Melibeu, Adriana da Cunha Faria; Campello-Costa, Paula; Serfaty, Claudio Alberto

    2009-05-01

    The use-dependent specification of neural circuits occurs during post-natal development with a conspicuous influence of environmental factors, such as malnutrition that interferes with the major steps of brain maturation. Serotonin (5-HT), derived exclusively from the essential aminoacid tryptophan, is involved in mechanisms of development and use-dependent plasticity of the central nervous system. We studied the effects of the nutritional restriction of tryptophan in the plasticity of uncrossed retinotectal axons following a retinal lesion to the contralateral retina during the critical period in pigmented rats. Litters were fed through their mothers with a low tryptophan content diet, based on corn and gelatin, a complemented diet with standard tryptophan requirements for rodents or standard laboratory diet. The results suggest a marked reduction in the plasticity of intact axons into denervated territories in the tryptophan restricted group in comparison to control groups. Tryptophan complementation between PND10-21 completely restored retinotectal plasticity. However, the re-introduction of tryptophan after the end of the critical period (between PND28-P41) did not restore the sprouting ability of uncrossed axons suggesting a time-dependent effect to the reversion of plasticity deficits. Tryptophan-restricted animals showed a reduced activity of matrix metalloproteinase-9 and altered expressions of phosphorylated forms of ERK1/2 and AKT. Our results demonstrate the influence of this essential aminoacid as a modulator of neural plasticity during the critical period through the reduction of serotonin content which alters plasticity-related signaling pathways and matrix degradation.

  18. Effects of Exhaustive Aerobic Exercise on Tryptophan-Kynurenine Metabolism in Trained Athletes.

    Directory of Open Access Journals (Sweden)

    Barbara Strasser

    Full Text Available Exhaustive exercise can cause a transient depression of immune function. Data indicate significant effects of immune activation cascades on the biochemistry of monoamines and amino acids such as tryptophan. Tryptophan can be metabolized through different pathways, a major route being the kynurenine pathway, which is often systemically up-regulated when the immune response is activated. The present study was undertaken to examine the effect of exhaustive aerobic exercise on biomarkers of immune activation and tryptophan metabolism in trained athletes. After a standardized breakfast 2 h prior to exercise, 33 trained athletes (17 women, 16 men performed an incremental cycle ergometer exercise test at 60 rpm until exhaustion. After a 20 min rest phase, the participants performed a 20 min maximal time-trial on a cycle ergometer (RBM Cyclus 2, Germany. During the test, cyclists were strongly encouraged to choose a maximal pedalling rate that could be maintained for the respective test duration. Serum concentrations of amino acids tryptophan, kynurenine, phenylalanine, and tyrosine were determined by HPLC and immune system biomarker neopterin by ELISA at rest and immediately post exercise. Intense exercise was associated with a strong increase in neopterin concentrations (p<0.001, indicating increased immune activation following intense exercise. Exhaustive exercise significantly reduced tryptophan concentrations by 12% (p<0.001 and increased kynurenine levels by 6% (p = 0.022. Also phenylalanine to tyrosine ratios were lower after exercise as compared with baseline (p<0.001. The kynurenine to tryptophan ratio correlated with neopterin (r = 0.560, p<0.01. Thus, increased tryptophan catabolism by indoleamine 2,3-dioxygenase appears likely. Peak oxygen uptake correlated with baseline tryptophan and kynurenine concentrations (r = 0.562 and r = 0.511, respectively, both p<0.01. Findings demonstrate that exhaustive aerobic exercise is associated with

  19. Association between tryptophan hydroxylase 2 polymorphism and anger-related personality traits among young Korean women.

    Science.gov (United States)

    Yang, Jaewon; Lee, Moon-Soo; Lee, So-Hee; Lee, Boung-Chul; Kim, Seung-Hyun; Joe, Sook-Haeng; Jung, In-Kwa; Choi, Ihn-Geun; Ham, Byung-Joo

    2010-08-01

    It has been suggested that the serotonergic systems are associated with anger and aggressive behaviors. We investigated the association between several single nucleotide polymorphisms in the serotonergic genes and anger-related personality traits. A total of 228 healthy female Korean women participated in this study. All subjects were assessed with the State-Trait Anger Expression Inventory (STAXI) and were genotyped for 3 polymorphisms: serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR), tryptophan hydroxylase 1 (TPH1) A218C, and TPH2 G-703T. The Anger Expression-Out (AX-Out) subscale scores of the STAXI differed significantly between the genotypes for the TPH2 G-703T polymorphism (F = 4.825, p = 0.009). G/G homozygous subjects scored significantly higher on the AX-Out subscale than those with the G/T genotype. However, no significant differences were observed in the relationships between the STAXI subscale scores of subjects with other polymorphisms. This study suggests that the TPH2 G-703T polymorphism might contribute to anger-related traits, especially to the expression of anger. (c) 2010 S. Karger AG, Basel.

  20. Acute hyponatremia after cardioplegia by histidine-tryptophane-ketoglutarate – a retrospective study

    Directory of Open Access Journals (Sweden)

    Lindner Gregor

    2012-06-01

    Full Text Available Abstract Background Hyponatremia is the most common electrolyte disorder in hospitalized patients and is known to be associated with increased mortality. The administration of antegrade single-shot, up to two liters, histidine-tryptophane-ketoglutarate (HTK solution for adequate electromechanical cardiac arrest and myocardial preservation during minimally invasive aortic valve replacement (MIAVR is a standard procedure. We aimed to determine the impact of HTK infusion on electrolyte and acid–base balance. Methods In this retrospective analysis we reviewed data on patient characteristics, type of surgery, arterial blood gas analysis during surgery and intra-/postoperative laboratory results of patients receiving surgery for MIAVR at a large tertiary care university hospital. Results A total of 25 patients were included in the study. All patients were normonatremic at start of surgery. All patients developed hyponatremia after administration of HTK solution with a significant drop of serum sodium of 15 mmol/L (p  Conclusions Acute hyponatremia during cardioplegia with HTK solution is isotonic and should probably not be corrected without presence of hypotonicity as confirmed by measurement of serum osmolality.

  1. An Engineered Tryptophan Synthase Opens New Enzymatic Pathways to β-Methyltryptophan and Derivatives.

    Science.gov (United States)

    Francis, Daniel; Winn, Michael; Latham, Jonathan; Greaney, Michael F; Micklefield, Jason

    2017-02-16

    β-Methyltryptophans (β-mTrp) are precursors in the biosynthesis of bioactive natural products and are used in the synthesis of peptidomimetic-based therapeutics. Currently β-mTrp is produced by inefficient multistep synthetic methods. Here we demonstrate how an engineered variant of tryptophan synthase from Salmonella (StTrpS) can catalyse the efficient condensation of l-threonine and various indoles to generate β-mTrp and derivatives in a single step. Although l-serine is the natural substrate for TrpS, targeted mutagenesis of the StTrpS active site provided a variant (βL166V) that can better accommodate l-Thr as a substrate. The condensation of l-Thr and indole proceeds with retention of configuration at both α- and β-positions to give (2S,3S)-β-mTrp. The integration of StTrpS (βL166V) with l-amino acid oxidase, halogenase enzymes and palladium chemocatalysts provides access to further d-configured and regioselectively halogenated or arylated β-mTrp derivatives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fingerprint analysis of thermolytic decarboxylation of tryptophan to tryptamine catalyzed by natural oils.

    Science.gov (United States)

    Martins, Cláudia P B; Awan, M Ali; Freeman, Sally; Herraiz, Tomás; Alder, John F; Brandt, Simon D

    2008-11-07

    A number of N,N-dialkylated tryptamines show psychoactive properties in man which resulted in a renewed interest in psychopharmacological research. Attempts to manufacture these derivatives are increasing within a clandestine environment, where literature procedures are adapted and information is exchanged on the Internet. One such example is based on the thermolytic decarboxylation of tryptophan to tryptamine as the precursor to psychoactive derivatives. This procedure was proposed to make use of household solvents such as turpentine substitute and white spirit to facilitate decarboxylation. Discussions on websites also suggested the catalytic use of natural oils in order to accelerate these reactions. In this research, the analytical characterization of this preparation procedure was carried out using gas chromatography-ion trap single and tandem stage mass spectrometry in electron and chemical ionization mode that led to the identification of previously unreported 1-mono and 1,1-disubstituted tetrahydro-beta-carboline (THBCs) by-products. The tryptamine product and several THBC by-products were determined quantitatively and a "fingerprint" analysis of the crude products allowed for the differentiation between the essential oil catalysts involved as indicated by the presence of tetrahydro-beta-carbolines and their imine intermediates.

  3. Influence of tryptophan and related compounds on ergot alkaloid formation in Claviceps purpurea (FR.) Tul.

    Science.gov (United States)

    Erge, D; Schumann, B; Gröger, D

    1984-01-01

    L-Tryptophan did not exert any influence on peptide alkaloid formation in an ergotamine and in an ergosine-accumulating C. purpurea strain. A different picture was observed in a series of related C. purpurea strains. Tryptophan showed a slight stimulatory effect on the ergotoxine producer Pepty 695/S. A blocked mutant of it, designated as Pepty 695/ch which was able to accumulate secoclavines gave similar results. In a high-yielding elymoclavine strain Pepty 695/e, the progeny of the former one, tryptophan up to a concentration of 25 mM stimulated remarkably clavine biosynthesis. Furthermore, tryptophan could overcome the block of synthesis by inorganic phosphate. Increased specific activities of chanoclavine cyclase but not DMAT synthetase were observed in cultures of strain Pepty 695/e supplemented with tryptophan. 5-Methyltryptophan and bioisosteres of tryptophan were ineffective in alkaloid stimulation. These results are compared with those obtained with the grass ergot strain SD 58 and discussed with the relation to other induction phenomena.

  4. Tryptophan biosynthesis is important for resistance to replicative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Godin, Stephen K; Lee, Alison G; Baird, Jared M; Herken, Benjamin W; Bernstein, Kara A

    2016-05-01

    Acute tryptophan depletion is used to induce low levels of serotonin in the brain. This method has been widely used in psychiatric studies to evaluate the effect of low levels of serotonin, and is generally considered a safe and reversible procedure. Here we use the budding yeast Saccharomyces cerevisiae to study the effects of tryptophan depletion on growth rate upon exposure to DNA-damaging agents. Surprisingly, we found that budding yeast undergoing tryptophan depletion were more sensitive to DNA-damaging agents such as methyl methanesulphonate (MMS) and hydroxyurea (HU). We found that this defect was independent of several DNA repair pathways, such as homologous recombination, base excision repair and translesion synthesis, and that this damage sensitivity was not due to impaired S-phase signalling. Upon further analysis, we found that the DNA-damage sensitivity of tryptophan depletion was likely due to impaired protein synthesis. These studies describe an important source of variance in budding yeast when using tryptophan as an auxotrophic marker, particularly on studies focusing on DNA repair, and suggest that further testing of the effect of tryptophan depletion on DNA repair in mammalian cells is warranted. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Role of decreased Plasma Tryptophan in memory deficits observed in Type-I diabetes

    International Nuclear Information System (INIS)

    Ahmad, S.; Tabassum, S.; Haider, S.

    2013-01-01

    Objective: To investigate the relationship between plasma tryptophan and the occurrence of memory dysfunctions in male and female type 1 diabetics. Methods: The case-control study was conducted at two urban healthcare facilities in Karachi from January to June 2009, and comprised 100 diabetic subjects of among whom were 50 men and 50 women. The controls were also similar in number and gender. A questionnaire was used to evaluate the memory impairment in the subjects. Plasma tryptophan was determined by high performance liquid chromatography with ultra-violet method. Students t-test was used to analyse tryptophan data. Results: There was considerable memory impairment in the cases (n=40) compared to the controls (n=5). Results also showed a significant (p<0.01) decrease in plasma tryptophan levels in both male and female diabetic patients. Conclusions: Diabetic subjects exhibited occurrence of memory impairment with concomitant decline in plasma tryptophan levels. The findings indicate that decreased brain uptake of tryptophan and lowered brain 5-hydroxytryptamine levels may be responsible for the memory deficits seen in diabetics. (author)

  6. Updates on the biology of serotonin and tryptophan hydroxylase.

    Science.gov (United States)

    Swami, Tara; Weber, H Christian

    2018-02-01

    To summarize the most recent findings relevant to the biology of serotonin (5-hydroxytryptamine; 5-HT) and the enzyme tryptophan hydroxylase (TPH) in human gastrointestinal disease. Serotonin is synthesized in the central nervous system (CNS) and the gastrointestinal tract where it is secreted from enteroendocrine cells. Its biosynthesis is regulated by two isoforms of the enzyme TPH of which TPH1 is localized predominantly in gastrointestinal enteroendocrine cells. Serotonin activates the peristaltic reflexes, regulates gastrointestinal motility, and has a role in intestinal inflammation. Inhibition of TPH with novel molecules represents a new pharmacological tool in the successful management of carcinoid syndrome in patients with gastrointestinal neuroendocrine tumors (GI-NETs). Certain 5-HT receptor subtype agonists and antagonists are useful in the treatment of functional gastrointestinal disorders. The gastrointestinal tract is the largest storage organ for serotonin where its biosynthesis is regulated by TPH1. It has several important functions in gastrointestinal motility, secretion, and inflammation. Furthermore, TPH represents a target for inhibitory pharmacological therapy of serotonin access states such as the carcinoid syndrome.

  7. Tryptophan Hydroxylase 2 Gene and Alcohol Use among College Students

    Science.gov (United States)

    Gacek, Paul; Conner, Tamlin S.; Tennen, Howard; Kranzler, Henry R.; Covault, Jonathan

    2009-01-01

    Objective Genes that regulate serotonin activity are regarded as promising predictors of heavy alcohol use. Tryptophan Hydroxylase (TPH2) plays an important role in serotonergic neurotransmission by serving as the rate-limiting enzyme for serotonin biosynthesis in the midbrain and serotonergic neurons. Despite the link between TPH2 and serotonergic function, TPH2’s role in the pathogenesis of alcohol use disorders remains unclear. The goal of this study was to examine whether variation in the TPH2 gene is associated with risky alcohol consumption. Specifically, this study examined whether the TPH2 G-703T polymorphism predicted alcohol consumption among college students. Methods In two successive years, 351 undergraduates were asked to record their alcohol use each day for 30 days using an internet-based electronic diary. Participants’ DNA was collected and polymerase chain reaction genotyping was performed. Results Alcohol consumption was not associated with the TPH2 G-703T polymorphism alone, or the interaction of TPH2 with two other candidate polymorphisms (TPH1 C218A, and the SLC6A4 tri-allelic 5-HTTLPR) or negative life events. Conclusions This study supports recent null findings relating TPH2 to drinking outcomes. It also extends these findings by showing null interactions with the TPH1 C218A polymorphism, the SLC6A4 tri-allelic 5-HTTLPR polymorphism, and environmental stressors in predicting sub-clinical alcohol use among Caucasian American young adults. PMID:18782386

  8. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Pantouris, Georgios; Mowat, Christopher G., E-mail: C.G.Mowat@ed.ac.uk

    2014-01-03

    Highlights: •∼2800 National Cancer Institute USA compounds have been screened as potential inhibitors of TDO and/or IDO. •Seven compounds with anti-tumour properties have been identified as potent inhibitors. •NSC 36398 (taxifolin, dihydroquercetin) is selective for TDO with a K{sub i} of 16 M. •This may help further our understanding of the role of TDO in cancer. -- Abstract: The involvement of tryptophan 2,3-dioxygenase (TDO) in cancer biology has recently been described, with the enzyme playing an immunomodulatory role, suppressing antitumour immune responses and promoting tumour cell survival and proliferation. This finding reinforces the need for specific inhibitors of TDO that may potentially be developed for therapeutic use. In this work we have screened ∼2800 compounds from the library of the National Cancer Institute USA and identified seven potent inhibitors of TDO with inhibition constants in the nanomolar or low micromolar range. All seven have antitumour properties, killing various cancer cell lines. For comparison, the inhibition potencies of these compounds were tested against IDO and their inhibition constants are reported. Interestingly, this work reveals that NSC 36398 (dihydroquercetin, taxifolin), with an in vitro inhibition constant of ∼16 μM, is the first TDO-selective inhibitor reported.

  9. Tryptophanase-Catalyzed L-Tryptophan Synthesis from D-Serine in the Presence of Diammonium Hydrogen Phosphate

    Directory of Open Access Journals (Sweden)

    Fujii Noriko

    2009-06-01

    Full Text Available Tryptophanase, an enzyme with extreme absolute stereospecificity for optically active stereoisomers, catalyzes the synthesis of L-tryptophan from L-serine and indole through a β-substitution mechanism of the ping-pong type, and has no activity on D-serine. We previously reported that tryptophanase changed its stereospecificity to degrade D-tryptophan in highly concentrated diammonium hydrogen phosphate, (NH42HPO4 solution. The present study provided the same stereospecific change seen in the D-tryptophan degradation reaction also occurs in tryptophan synthesis from D-serine. Tryptophanase became active to D-serine to synthesize L-tryptophan in the presence of diammonium hydrogen phosphate. This reaction has never been reported before. D-serine seems to undergo β-replacement via an enzyme-bonded α-aminoacylate intermediate to yield L-tryptophan.

  10. Structure of the green fluorescent protein NowGFP with an anionic tryptophan-based chromophore.

    Science.gov (United States)

    Pletnev, Vladimir Z; Pletneva, Nadya V; Sarkisyan, Karen S; Mishin, Alexander S; Lukyanov, Konstantin A; Goryacheva, Ekaterina A; Ziganshin, Rustam H; Dauter, Zbigniew; Pletnev, Sergei

    2015-08-01

    A green-emitting fluorescent variant, NowGFP, with a tryptophan-based chromophore (Thr65-Trp66-Gly67) was recently developed from the cyan mCerulean by introducing 18 point mutations. NowGFP is characterized by bright green fluorescence at physiological and higher pH and by weak cyan fluorescence at low pH. Illumination with blue light induces irreversible photoconversion of NowGFP from a green-emitting to a cyan-emitting form. Here, the X-ray structures of intact NowGFP at pH 9.0 and pH 4.8 and of its photoconverted variant, NowGFP_conv, are reported at 1.35, 1.18 and 2.5 Å resolution, respectively. The structure of NowGFP at pH 9.0 suggests the anionic state of Trp66 of the chromophore to be the primary cause of its green fluorescence. At both examined pH values Trp66 predominantly adopted a cis conformation; only ∼ 20% of the trans conformation was observed at pH 4.8. It was shown that Lys61, which adopts two distinct pH-dependent conformations, is a key residue playing a central role in chromophore ionization. At high pH the side chain of Lys61 forms two hydrogen bonds, one to the indole N atom of Trp66 and the other to the carboxyl group of the catalytic Glu222, enabling an indirect noncovalent connection between them that in turn promotes Trp66 deprotonation. At low pH, the side chain of Lys61 is directed away from Trp66 and forms a hydrogen bond to Gln207. It has been shown that photoconversion of NowGFP is accompanied by decomposition of Lys61, with a predominant cleavage of its side chain at the C(γ)-C(δ) bond. Lys61, Glu222, Thr203 and Ser205 form a local hydrogen-bond network connected to the indole ring of the chromophore Trp66; mutation of any of these residues dramatically affects the spectral properties of NowGFP. On the other hand, an Ala150Val replacement in the vicinity of the chromophore indole ring resulted in a new advanced variant with a 2.5-fold improved photostability.

  11. Nuclear magnetic resonance study of interaction of ligands with Streptococcus faecium dihydrofolate reductase labeled with (. gamma. -/sup 13/C)tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    London, R.E. (Los Alamos National Lab., NM); Groff, J.P.; Cocco, L.; Blakley, R.L.

    1982-01-01

    Dihydrofolate reductase from Streptococcus faecium has been labeled with (..gamma..-/sup 13/C)tryptophan. We have determined changes occurring in the chemical shifts and line widths of the four resonances of the /sup 13/C NMR spectrum of the labeled enzyme, due to its interaction with various ligands. These include the coenzyme, NPDPH and related nucleotides, folate and its polyglutamate derivatives, and many inhibitors including methotrexate and trimethoprim. In addition, paramagnetic relaxation effects produced by a bound spin-labeled analogue of 2'-phosphoadenosine-5'-diphosphoribose on the tryptophan C/sup ..gamma../ carbons have been measured. Distances calculated from the relaxation data have been compared with corresponding distances in the crystallographic model of the NADPH-methotrexate ternary complex of Lactobacillus casei reductase. The paramagnetic relaxation data indicate that the two downfield resonances (1 and 2) correspond to tryptophans (W/sub A/ and W/sub B/) that are more remote from the catalytic site, and from the crystallographic model these are seen to be Trp-115 and Trp-160. The upfield resonances (3 and 4) that show broadening due to chemical exchange correspond to closer residues (W/sub C/ and W/sub D/), and these are identified with Trp-6 and Trp-22. However, the relaxation data do not permit specific assignments within the nearer and farther pairs. Although resonance 3, which is split due to chemical exchange, was formerly assigned to Trp-6, data obtained for the enzyme in the presence of various ligands are better interpreted if resonance 3 is assigned to Trp-22, which is located on a loop that joins elements of secondary structure and forms one side of the ligand-binding cavity.

  12. Photolysis of carotenoids in chloroform: enhanced yields of carotenoid radical cations in the presence of a tryptophan ester

    International Nuclear Information System (INIS)

    El-Agamey, Ali; Burke, Marc; Edge, Ruth; Land, Edward J.; McGarvey, David J.; Truscott, T. George

    2005-01-01

    The presence of an acetyl tryptophan ester gives rise to enhanced yields of carotenoid radical cations in chloroform following 355 nm laser excitation of the carotenoid, even though the tryptophan does not absorb at this wavelength. The increase is attributed to positive charge transfer from semi-oxidized tryptophan itself generated by light absorbed by the carotenoid. The mechanism of these radical processes has been elucidated by pulse radiolysis studies

  13. Photoinduced Intramolecular Tryptophan Oxidation and Excited-State Behavior of [Re(L-AA)(CO)3(r-diimine)] þ (L = Pyridine or Imidazole, AA = Tryptophan, Tyrosine, Phenylalanine)

    Czech Academy of Sciences Publication Activity Database

    Blanco-Rodríguez, A. M.; Towrie, M.; Sýkora, Jan; Záliš, Stanislav; Vlček, Antonín

    2011-01-01

    Roč. 50, č. 13 (2011), s. 6122-6134 ISSN 0020-1669 R&D Projects: GA MŠk(CZ) LD11082 Institutional research plan: CEZ:AV0Z40400503 Keywords : tryptophan * tyrosine * phenylalanine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.601, year: 2011

  14. 13C-tryptophan breath test detects increased catabolic turnover of tryptophan along the kynurenine pathway in patients with major depressive disorder

    Science.gov (United States)

    Teraishi, Toshiya; Hori, Hiroaki; Sasayama, Daimei; Matsuo, Junko; Ogawa, Shintaro; Ota, Miho; Hattori, Kotaro; Kajiwara, Masahiro; Higuchi, Teruhiko; Kunugi, Hiroshi

    2015-01-01

    Altered tryptophan–kynurenine (KYN) metabolism has been implicated in major depressive disorder (MDD). The l-[1-13C]tryptophan breath test (13C-TBT) is a noninvasive, stable-isotope tracer method in which exhaled 13CO2 is attributable to tryptophan catabolism via the KYN pathway. We included 18 patients with MDD (DSM-IV) and 24 age- and sex-matched controls. 13C-tryptophan (150 mg) was orally administered and the 13CO2/12CO2 ratio in the breath was monitored for 180 min. The cumulative recovery rate during the 180-min test (CRR0–180; %), area under the Δ13CO2-time curve (AUC; %*min), and the maximal Δ13CO2 (Cmax; %) were significantly higher in patients with MDD than in the controls (p = 0.004, p = 0.008, and p = 0.002, respectively). Plasma tryptophan concentrations correlated negatively with Cmax in both the patients and controls (p = 0.020 and p = 0.034, respectively). Our results suggest that the 13C-TBT could be a novel biomarker for detecting a subgroup of MDD with increased tryptophan–KYN metabolism. PMID:26524975

  15. Tryptophan pathway alterations in the postpartum period and in acute postpartum psychosis and depression.

    Science.gov (United States)

    Veen, Cato; Myint, Aye Mu; Burgerhout, Karin M; Schwarz, Markus J; Schütze, Gregor; Kushner, Steven A; Hoogendijk, Witte J; Drexhage, Hemmo A; Bergink, Veerle

    2016-01-01

    Women are at very high risk for the first onset of acute and severe mood disorders the first weeks after delivery. Tryptophan breakdown is increased as a physiological phenomenon of the postpartum period and might lead to vulnerability for affective psychosis (PP) and severe depression (PD). The aim of the current study was to investigate alterations in tryptophan breakdown in the physiological postpartum period compared to patients with severe postpartum mood disorders. We included 52 patients (29 with PP, 23 with PD), 52 matched healthy postpartum women and 29 healthy non-postpartum women. Analyzes of serum tryptophan metabolites were performed using LC-MS/MS system for tryptophan, kynurenine, 3-hydroxykynurenine, kynurenic acid and 5-hydroxyindoleacetic acid. The first two months of the physiological postpartum period were characterized by low tryptophan levels, increased breakdown towards kynurenine and a downstream shift toward the 3-OH-kynurenine arm, away from the kynurenic acid arm. Kynurenine was significantly lower in patients with PP and PD as compared to healthy postpartum women (p=0.011 and p=0.001); the remaining tryptophan metabolites demonstrated few differences between patients and healthy postpartum women. Low prevalence of the investigated disorders and strict exclusion criteria to obtain homogenous groups, resulted in relatively small sample sizes. The high kynurenine levels and increased tryptophan breakdown as a phenomenon of the physiological postpartum period was not present in patients with severe postpartum mood disorders. No differences were observed in the levels of the 'neurotoxic' 3-OH-kynurenine and the 'neuroprotective' kynurenic acid arms between patients and healthy postpartum women. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The tryptophan/kynurenine pathway, systemic inflammation, and long-term outcome after kidney transplantation.

    Science.gov (United States)

    de Vries, Laura V; Minović, Isidor; Franssen, Casper F M; van Faassen, Martijn; Sanders, Jan-Stephan F; Berger, Stefan P; Navis, Gerjan; Kema, Ido P; Bakker, Stephan J L

    2017-08-01

    Tryptophan is metabolized along the kynurenine pathway, initially to kynurenine, and subsequently to cytotoxic 3-hydroxykynurenine. There is increasing interest in this pathway because of its proinflammatory nature, and drugs interfering in it have received increasing attention. We aimed to investigate whether serum and urinary parameters of the tryptophan/kynurenine pathway, and particularly cytotoxic 3-hydroxykynurenine, are associated with systemic inflammation and long-term outcome in renal transplant recipients (RTR). Data were collected in outpatient RTR with a functioning graft for >1 yr. Tryptophan, kynurenine, and 3-hydroxykynurenine in serum and urine were measured using LC-MS/MS. A total of 561 RTR (age: 51 ± 12 yr; 56% male) were included at a median of 6.0 (2.6-11.6) yr posttransplantation. Baseline median serum tryptophan was 40.0 (34.5-46.0) µmol/l, serum kynurenine was 1.8 (1.4-2.2) µmol/l, and serum 3-hydroxykynurenine was 42.2 (31.0-61.7) nmol/l. Serum kynurenine and 3-hydroxykynurenine were strongly associated with parameters of systemic inflammation. During follow-up for 7.0 (6.2-7.5) yr, 51 RTR (9%) developed graft failure and 120 RTR (21%) died. Both serum kynurenine and 3-hydroxykynurenine were independently associated with graft failure [HR 1.72 (1.23-2.41), P = 0.002; and HR 2.03 (1.42-2.90), P tryptophan/kynurenine pathway parameters were not associated with outcome. Of tryptophan metabolites, serum 3-hydroxykynurenine is cross-sectionally most strongly and consistently associated with systemic inflammation and prospectively with adverse long-term outcome after kidney transplantation. Serum 3-hydroxykynurenine may be an interesting biomarker and target for the evaluation of drugs interfering in the tryptophan/kynurenine pathway. Copyright © 2017 the American Physiological Society.

  17. Molecular imaging correlates of tryptophan metabolism via the kynurenine pathway in human meningiomas.

    Science.gov (United States)

    Bosnyák, Edit; Kamson, David O; Guastella, Anthony R; Varadarajan, Kaushik; Robinette, Natasha L; Kupsky, William J; Muzik, Otto; Michelhaugh, Sharon K; Mittal, Sandeep; Juhász, Csaba

    2015-09-01

    Increased tryptophan metabolism via the kynurenine pathway (KP) is a key mechanism of tumoral immune suppression in gliomas. However, details of tryptophan metabolism in meningiomas have not been elucidated. In this study, we evaluated in vivo tryptophan metabolism in meningiomas and compared it with gliomas using α-[(11)C]-methyl-L-tryptophan (AMT)-PET. We also explored expression patterns of KP enzymes in resected meningiomas. Forty-seven patients with MRI-detected meningioma (n = 16) and glioma (n = 31) underwent presurgical AMT-PET scanning. Tumoral AMT uptake and tracer kinetic parameters (including K and k3' evaluating unidirectional uptake and trapping, respectively) were measured, correlated with meningioma grade, and compared between meningiomas and gliomas. Patterns of KP enzyme expression were assessed by immunohistochemistry in all meningiomas. Meningioma grade showed a positive correlation with AMT k3' tumor/cortex ratio (r = 0.75, P = .003), and this PET parameter distinguished grade I from grade II/III meningiomas with 92% accuracy. Kinetic AMT parameters could differentiate meningiomas from both low-grade gliomas (97% accuracy by k3' ratios) and high-grade gliomas (83% accuracy by K ratios). Among 3 initial KP enzymes (indoleamine 2,3-dioxygenase 1/2, and tryptophan 2,3-dioxygenase 2 [TDO2]), TDO2 showed the strongest immunostaining, particularly in grade I meningiomas. TDO2 also showed a strong negative correlation with AMT k3' ratios (P = .001). PET imaging of tryptophan metabolism can provide quantitative imaging markers for differentiating grade I from grade II/III meningiomas. TDO2 may be an important driver of in vivo tryptophan metabolism in these tumors. These results can have implications for pharmacological targeting of the KP in meningiomas. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Serum Analysis of Tryptophan Catabolism Pathway: Correlation with Crohn’s Disease Activity

    Science.gov (United States)

    Gupta, Nitin K; Thaker, Ameet I; Kanuri, Navya; Riehl, Terrence E; Rowley, Christopher W; Stenson, William F; Ciorba, Matthew A

    2011-01-01

    BACKGROUND Indoleamine 2,3 dioxygenase 1 (IDO1) is a tryptophan catabolizing enzyme with immunotolerance promoting functions. We sought to determine if increased gut expression of IDO1 in Crohn’s disease (CD) would result in detectable changes in serum levels of tryptophan and the initial IDO1 pathway catabolite, kynurenine. METHODS Individuals were prospectively enrolled through the Washington University Digestive Diseases Research Center. Montreal classification was used for disease phenotyping. Disease severity was categorized by physician’s global assessment. Serum tryptophan and kynurenine were measured by high pressure liquid chromatography. IDO1 immunohistochemical staining was performed on formalin-fixed tissue blocks. RESULTS 25 CD patients and 11 controls were enrolled. 8 CD patients had serum collected at two different time points and levels of disease activity. Strong IDO1 expression exists in both the lamina propria and epithelium during active CD compared to controls. Suppressed serum tryptophan levels and an elevated kynurenine/tryptophan (K/T) ratio were found in individuals with active CD as compared to those in remission or the control population. K/T ratios correlated positively with disease activity as well as with C-reactive protein and erythrocyte sedimentation rate. In the subgroup of CD patients with two serum measurements, tryptophan levels elevated while kynurenine levels and the K/T ratio lowered as the disease activity lessened. CONCLUSIONS IDO1 expression in Crohn’s disease is associated with lower serum tryptophan and an elevated K/T ratio. These levels may serve a reasonable objective marker of gut mucosal immune activation and surrogate for Crohn’s Disease activity. PMID:21823214

  19. Mechanistic studies of ionizing radiation and oxidative mutagenesis: Genetic effects of a single 8-hydroxyguanine (7-hydro-8-oxoguanine) residue inserted at a unique site in a viral genome

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.L.; Essigmann, J.M. (Massachusetts Institute of Technology, Cambridge (USA)); Dizdaroglu, M.; Gajewski, E. (National Institute of Standards and Technology, Gaithersburg, MD (USA))

    1990-07-31

    T4 RNA ligase was used to construct a deoxypentanucleotide containing a single 8-hydroxyguanine (7-hydro-8-oxoguanine; G{sup 8-OH}) residue, which is one of the putatively mutagenic DNA adducts produced by oxidants and ionizing radiation. The pentamer d(GCTAG{sup 8-OH})p was prepared by the ligation of a chemically synthesized acceptor molecule, d(GCTA), to an adducted donor, 8-hydroxy-2{prime}-deoxyguanosine 5{prime},3{prime}-bisphosphate. Following 3{prime}-dephosphorylation, the pentamer was characterized by UV spectroscopy, by high-pressure liquid chromatography, and by gas chromatography-mass spectrometry of the nucleosides released by enzymatic hydrolysis. Both d(GCTAG{sup 8-OH}) and an unmodified control were 5{prime}-phosphorylated by using ({gamma}-{sup 32}P)ATP and incorporated covalently by DNA ligase into a five-base gap at a unique NheI restriction site in the otherwise duplex genome of an M13mp19 derivative. The adduct was part of a nonsense codon in a unique restriction site in order to facilitate the identification and selection of mutants generated by the replication of the modified genome in Escherichia coli. Both control and adducted pentamers ligated into the genome at 50% of the maximum theoretical efficiency, and nearly all of the site-specifically adducted products possessed pentanucleotides that were covalently linked at both 5{prime} and 3{prime} termini. Transformation of E. coli strain DL7 with the uniquely modified single-stranded genome resulted in {approximately}0.5-1.0% of the progeny phase showing the G {yields} T transversion mutation at the original position of G{sup 8-OH}. The vector containing G{sup 8-OH} also transformed 50-90% as efficiently as the unmodified control, indicating that the adduct can be both weakly cytotoxic and mutagenic to the phase genome.

  20. NMR Crystallography of Enzyme Active Sites: Probing Chemically-Detailed, Three-Dimensional Structure in Tryptophan Synthase

    Science.gov (United States)

    Dunn, Michael F.

    2013-01-01

    Conspectus NMR crystallography – the synergistic combination of X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry – offers unprecedented insight into three-dimensional, chemically-detailed structure. From its initial role in refining diffraction data of organic and inorganic solids, NMR crystallography is now being developed for application to active sites in biomolecules, where it reveals chemically-rich detail concerning the interactions between enzyme site residues and the reacting substrate that is not achievable when X-ray, NMR, or computational methodologies are applied in isolation. For example, typical X-ray crystal structures (1.5 to 2.5 Å resolution) of enzyme-bound intermediates identify possible hydrogen-bonding interactions between site residues and substrate, but do not directly identify the protonation state of either. Solid-state NMR can provide chemical shifts for selected atoms of enzyme-substrate complexes, but without a larger structural framework in which to interpret them, only empirical correlations with local chemical structure are possible. Ab initio calculations and molecular mechanics can build models for enzymatic processes, but rely on chemical details that must be specified. Together, however, X-ray diffraction, solid-state NMR spectroscopy, and computational chemistry can provide consistent and testable models for structure and function of enzyme active sites: X-ray crystallography provides a coarse framework upon which models of the active site can be developed using computational chemistry; these models can be distinguished by comparison of their calculated NMR chemical shifts with the results of solid-state NMR spectroscopy experiments. Conceptually, each technique is a puzzle piece offering a generous view of the big picture. Only when correctly pieced together, however, can they reveal the big picture at highest resolution. In this Account, we detail our first steps in the development of NMR

  1. Plasma Tryptophan and the Kynurenine–Tryptophan Ratio Are Associated with the Acquisition of Statural Growth Deficits and Oral Vaccine Underperformance in Populations with Environmental Enteropathy

    Science.gov (United States)

    Kosek, Margaret N.; Mduma, Estomih; Kosek, Peter S.; Lee, Gwenyth O.; Svensen, Erling; Pan, William K. Y.; Olortegui, Maribel Paredes; Bream, Jay H.; Patil, Crystal; Asayag, Cesar Ramal; Sanchez, Graciela Meza; Caulfield, Laura E.; Gratz, Jean; Yori, Pablo Peñataro

    2016-01-01

    Early childhood enteric infections have adverse impacts on child growth and can inhibit normal mucosal responses to oral vaccines, two critical components of environmental enteropathy. To evaluate the role of indoleamine 2,3-dioxygenase 1 (IDO1) activity and its relationship with these outcomes, we measured tryptophan and the kynurenine–tryptophan ratio (KTR) in two longitudinal birth cohorts with a high prevalence of stunting. Children in rural Peru and Tanzania (N = 494) contributed 1,251 plasma samples at 3, 7, 15, and 24 months of age and monthly anthropometrics from 0 to 36 months of age. Tryptophan concentrations were directly associated with linear growth from 1 to 8 months after biomarker assessment. A 1-SD increase in tryptophan concentration was associated with a gain in length-for-age Z-score (LAZ) of 0.17 over the next 6 months in Peru (95% confidence interval [CI] = 0.11–0.23, P < 0.001) and a gain in LAZ of 0.13 Z-scores in Tanzania (95% CI = 0.03–0.22, P = 0.009). Vaccine responsiveness data were available for Peru only. An increase in kynurenine by 1 μM was associated with a 1.63 (95% CI = 1.13–2.34) increase in the odds of failure to poliovirus type 1, but there was no association with tetanus vaccine response. A KTR of 52 was 76% sensitive and 50% specific in predicting failure of response to serotype 1 of the oral polio vaccine. KTR was associated with systemic markers of inflammation, but also interleukin-10, supporting the association between IDO1 activity and immunotolerance. These results strongly suggest that the activity of IDO1 is implicated in the pathophysiology of environmental enteropathy, and demonstrates the utility of tryptophan and kynurenine as biomarkers for this syndrome, particularly in identifying those at risk for hyporesponsivity to oral vaccines. PMID:27503512

  2. N-acetyl-l-tryptophan, but not N-acetyl-d-tryptophan, rescues neuronal cell death in models of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Sirianni, Ana C; Jiang, Jiying; Zeng, Jiang; Mao, Lilly L; Zhou, Shuanhu; Sugarbaker, Peter; Zhang, Xinmu; Li, Wei; Friedlander, Robert M; Wang, Xin

    2015-09-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss. Evidence suggests that mitochondrial dysfunction, apoptosis, oxidative stress, inflammation, glutamate excitotoxicity, and proteasomal dysfunction are all responsible for ALS pathogenesis. N-acetyl-tryptophan has been identified as an inhibitor of mitochondrial cytochrome c release and therefore is a potential neuroprotective agent. By quantifying cell death, we demonstrate that N-acetyl-l-tryptophan (L-NAT) and N-acetyl-DL-tryptophan are neuroprotective in NSC-34 motor neuron-like cells and/or primary motor neurons, while their isomer N-acetyl-d-tryptophan has no protective effect. These findings are consistent with energy minimization and molecular modeling analysis, confirming that L-NAT generates the most stable complex with the neurokinin-1 receptor (NK-1R). L-NAT inhibits the secretion of Substance P and IL-1β (Enzyme-Linked Immunosorbent Assay and/or dot blots) and mitochondrial dysfunction by effectively inhibiting the release of cytochrome c/Smac/AIF from mitochondria into the cytoplasm and activation of apoptotic pathways, including the activation of caspase-1, -9, and -3, as well as proteasomal dysfunction through restoring chymotrypsin-like, trypsin-like, and caspase-like proteasome activity. These data provide insight into the molecular mechanisms by which L-NAT offers neuroprotection in models of ALS and suggest its potential as a novel therapeutic strategy for ALS. We demonstrate that L-NAT (N-acetyl-l-tryptophan), but not D-NAT, rescues NSC-34 cells and primary motor neurons from cell death. L-NAT inhibits the secretion of Substance P and IL-1β, and caspase-1 activation, the release of cytochrome c/Smac/AIF, and the activation of caspase -9, and -3, as well as proteasomal dysfunction. The data suggest the potential of L-NAT as a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS). AIF, apoptosis-inducing factor. © 2015

  3. Myocardial blood flow rate and capillary permeability for 99mTc-DTPA in patients with angiographically normal coronary arteries. Evaluation of the single-injection, residue detection method with intracoronary indicator bolus injection and the use of a mobile gamma camera

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Kelbaek, H; Efsen, F

    1994-01-01

    The aims of the present study were to quantitate myocardial perfusion and capillary permeability in the human heart by means of the single-injection, residue detection method using a mobile gamma camera. With this method, the intravascular mean transit time and the capillary extraction fraction (...

  4. Mechanistic Insights into Radical-Mediated Oxidation of Tryptophan from ab Initio Quantum Chemistry Calculations and QM/MM Molecular Dynamics Simulations.

    Science.gov (United States)

    Wood, Geoffrey P F; Sreedhara, Alavattam; Moore, Jamie M; Wang, John; Trout, Bernhardt L

    2016-05-12

    An assessment of the mechanisms of (•)OH and (•)OOH radical-mediated oxidation of tryptophan was performed using density functional theory calculations and ab initio plane-wave Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics simulations. For the (•)OH reactions, addition to the pyrrole ring at position 2 is the most favored site with a barrierless reaction in the gas phase. The subsequent degradation of this adduct through a H atom transfer to water was intermittently observed in aqueous-phase molecular dynamics simulations. For the (•)OOH reactions, addition to the pyrrole ring at position 2 is the most favored pathway, in contrast to the situation in the model system ethylene, where concerted addition to the double bond is preferred. From the (•)OOH position 2 adduct QM/MM simulations show that formation of oxy-3-indolanaline occurs readily in an aqueous environment. The observed transformation starts from an initial rupture of the O-O bond followed by a H atom transfer with the accompanying loss of an (•)OH radical to solution. Finally, classical molecular dynamics simulations were performed to equate observed differential oxidation rates of various tryptophan residues in monoclonal antibody fragments. It was found that simple parameters derived from simulation correlate well with the experimental data.

  5. Clinical and physiological consequences of rapid tryptophan depletion.

    Science.gov (United States)

    Moore, P; Landolt, H P; Seifritz, E; Clark, C; Bhatti, T; Kelsoe, J; Rapaport, M; Gillin, J C

    2000-12-01

    We review here the rapid tryptophan depletion (RTD) methodology and its controversial association with depressive relapse. RTD has been used over the past decade to deplete serotonin (5-hydroxy-tryptamine, or 5-HT) in humans and to probe the role of the central serotonin system in a variety of psychiatric conditions. Its current popularity was stimulated by reports that RTD reversed the antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) and monoamine oxidase inhibitors (MAOIs) in remitted patients with a history of depression but not in patients treated with antidepressants which promote catecholaminergic rather than serotonergic neurotransmission (such as tricyclic antidepressants or buproprion). However, RTD has inconsistent effects in terms of full clinical relapse in depressed patients. Pooling the data from all published reports, patients who are either unmedicated and/or fully remitted are much less likely to experience relapse (7 of 61, or approximately 9%) than patients who are recently medicated and partially remitted (63 of 133, or approximately 47%; although, the numbers here may reflect patient overlap between reports). Recently remitted patients who have been treated with non-pharmacological therapies such as total sleep deprivation, electroconvulsive therapy, or bright light therapy also do not commonly show full clinical relapse with RTD. We briefly review RTD effects in other psychiatric disorders, many of which are treated with SSRIs. There is accumulating evidence to suggest that RTD affects central serotonergic neurotransmission. Nevertheless, many questions remain about the ability of RTD to reverse the beneficial effects of SSRIs or MAOIs, or to induce symptoms in unmedicated symptomatic or asymptomatic patients.

  6. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase

    Science.gov (United States)

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M.; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M.; Fuchs, Dietmar; Stuppner, Hermann

    2013-01-01

    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5 μM) and trachelogenin (IC50 of 57.4 μM) showed higher activity than matairesinol (IC50 >200 μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anti-cancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown. PMID:23867649

  7. Model of Tryptophan Metabolism, Readily Scalable Using Tissue-specific Gene Expression Data*

    Science.gov (United States)

    Stavrum, Anne-Kristin; Heiland, Ines; Schuster, Stefan; Puntervoll, Pål; Ziegler, Mathias

    2013-01-01

    Tryptophan is utilized in various metabolic routes including protein synthesis, serotonin, and melatonin synthesis and the kynurenine pathway. Perturbations in these pathways have been associated with neurodegenerative diseases and cancer. Here we present a comprehensive kinetic model of the complex network of human tryptophan metabolism based upon existing kinetic data for all enzymatic conversions and transporters. By integrating tissue-specific expression data, modeling tryptophan metabolism in liver and brain returned intermediate metabolite concentrations in the physiological range. Sensitivity and metabolic control analyses identified expected key enzymes to govern fluxes in the branches of the network. Combining tissue-specific models revealed a considerable impact of the kynurenine pathway in liver on the concentrations of neuroactive derivatives in the brain. Moreover, using expression data from a cancer study predicted metabolite changes that resembled the experimental observations. We conclude that the combination of the kinetic model with expression data represents a powerful diagnostic tool to predict alterations in tryptophan metabolism. The model is readily scalable to include more tissues, thereby enabling assessment of organismal tryptophan metabolism in health and disease. PMID:24129579

  8. The effect of acute tryptophan depletion on mood and impulsivity in polydrug ecstasy users.

    Science.gov (United States)

    Young, Simon N; Regoli, Martine; Leyton, Marco; Pihl, Robert O; Benkelfat, Chawki

    2014-02-01

    Several studies suggest users of 3,4-methylenedioxymethamphetamine (ecstasy) have low levels of serotonin. Low serotonin may make them susceptible to lowered mood. This work aims to study the acute effects on mood and impulsivity of lowering serotonin levels with acute tryptophan depletion in polydrug ecstasy users and to determine whether effects were different in men and women. In a double-blind cross-over study, participants who had used ecstasy at least 25 times (n = 13) and nonuser controls (n = 17) received a tryptophan-deficient amino acid mixture and a control amino acid mixture containing tryptophan, at least 1 week apart. Mood was measured using the profile of mood states, and impulsivity was measured with the Go/No-Go task. The main result shows that a lowering of mood after acute tryptophan depletion occurred only in female polydrug ecstasy users (n = 7), relative to controls (n = 9). Results from the Go/No-Go task suggested that impulsivity was not increased by acute tryptophan depletion in polydrug ecstasy users. The group sizes were small, when males and females were considered separately. Women polydrug ecstasy users appear to be more susceptible than men to the effects of lowered serotonin levels. If use of ecstasy alone or in conjunction with other drugs causes progressive damage of serotonin neurons, women polydrug ecstasy users may become susceptible to clinical depression.

  9. Judgment of pure fermented soy sauce by fluorescence resonance energy transfer of OPA-tryptophan adduct.

    Science.gov (United States)

    Gao, You-Syuan; Hsieh, Bo-Chuan; Cheng, Tzong-Jih; Chen, Richie L C

    2015-07-01

    Tryptophan was detected with a flow-injection manifold after reacting with mM order of fluorogenic o-phthalaldehyde (OPA)/thiol reagent (pH 10.0) in the carrier stream (0.63 mL/min). Based on the intra-molecular fluorescence resonance energy transfer of OPA-tryptophan adduct, the difference in fluorescence intensity obtained at 280 and 300 nm excitation was used to detect tryptophan content with satisfactory precision (CV<6.5% for concentration higher than 0.5 μM), linearity (0.1-10 μM, R(2)=0.9893) and sensitivity (≈10 nM). Since tryptophan will decompose during manufacturing non-fermented soy sauce by acid-hydrolysis procedure, the method was used to discriminate pure fermented soy sauces, adulterated soy sauces and chemical soy sauces in less than 5 min. The ratio of tryptophan to total amino acid content served as the index for the judgment, and the results were validated by capillary electrophoresis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Glycine as a regulator of tryptophan-dependent pigment synthesis in Malassezia furfur.

    Science.gov (United States)

    Barchmann, Thorsten; Hort, Wiebke; Krämer, Hans-Joachim; Mayser, Peter

    2011-01-01

    The effects of the addition of different amino nitrogens on growth, morphology and secondary metabolism of Malassezia furfur were investigated. After primary culture on Dixon agar, M. furfur CBS 1878 was transferred into a fluid medium together with the nitrogen sources, glycine (Gly) or tryptophan (Trp), or a combination of both. Growth was measured by means of a direct cell counting method and pigment synthesis was photometrically assessed. Addition of glycine resulted in an exponential increase in biomass, but not in pigment production. Tryptophan as the sole nitrogen source caused distinct brown staining of the medium, without increasing biomass. Simultaneous equimolar addition of both amino acids resulted in an initial increase in biomass as a sign of preferential metabolism of glycine, followed by a growth plateau and pigment production which, caused by higher biomass, occurred more rapidly than after addition of tryptophan alone. The yeast-cell morphology changed from round to oval. Addition of glycine to the tryptophan-containing liquid culture stopped pigment formation with simultaneous growth induction. These in vitro on-off phenomena depending on the nitrogen source might be significant in the pathogenesis of pityriasis versicolor: hyperhidrosis followed by preferential consumption of individual nitrogen sources such as glycine with exponential growth and thereafter transamination of tryptophan and TRP-dependent pigment synthesis. © 2009 Blackwell Verlag GmbH.

  11. Tryptophan Substitutions at Lipid-exposed Positions of the Gamma M3 Transmembrane Domain Increase the Macroscopic Ionic Current Response of the Torpedo californica Nicotinic Acetylcholine Receptor

    Science.gov (United States)

    Cruz-Martín, A.; Mercado, J.L.; Rojas, L.V.; McNamee, M.G.; Lasalde-Dominicci, J.A.

    2015-01-01

    Our previous amino-acid substitutions at the postulated lipid-exposed transmembrane segment M4 of the Torpedo californica acetylcholine receptor (AChR) focused on the alpha subunit. In this study we have extended the mutagenesis analysis using single tryptophan replacements in seven positions (I288, M291, F292, S294, L296, M299 and N300) near the center of the third transmembrane domain of the gamma subunit (γM3). All the tryptophan substitution mutants were expressed in Xenopus laevis oocytes following mRNA injections at levels close to wild type. The functional response of these mutants was evaluated using macroscopic current analysis in voltage-clamped oocytes. For all the substitutions the concentration for half-maximal activation, EC50, is similar to wild type using acetylcholine. For F292W, L296W and M299W the normalized macroscopic responses are 2- to 3-fold higher than for wild type. Previous photolabeling studies demonstrated that these three positions were in contact with membrane lipids. Each of these M3 mutations was co-injected with the previously characterized αC418W mutant to examine possible synergistic effects of single lipid-exposed mutations on two different subunits. For the γM3/αM4 double mutants, the EC50s were similar to those measured for the αC418W mutant alone. Tryptophan substitutions at positions that presumably face the interior of the protein (S294 and M291) or neighboring helices (I288) did not cause significant inhibition of channel function or surface expression of AChRs. PMID:11547353

  12. GPR142 Controls Tryptophan-Induced Insulin and Incretin Hormone Secretion to Improve Glucose Metabolism.

    Directory of Open Access Journals (Sweden)

    Hua V Lin

    Full Text Available GPR142, a putative amino acid receptor, is expressed in pancreatic islets and the gastrointestinal tract, but the ligand affinity and physiological role of this receptor remain obscure. In this study, we show that in addition to L-Tryptophan, GPR142 signaling is also activated by L-Phenylalanine but not by other naturally occurring amino acids. Furthermore, we show that Tryptophan and a synthetic GPR142 agonist increase insulin and incretin hormones and improve glucose disposal in mice in a GPR142-dependent manner. In contrast, Phenylalanine improves in vivo glucose disposal independently of GPR142. Noteworthy, refeeding-induced elevations in insulin and glucose-dependent insulinotropic polypeptide are blunted in Gpr142 null mice. In conclusion, these findings demonstrate GPR142 is a Tryptophan receptor critically required for insulin and incretin hormone regulation and suggest GPR142 agonists may be effective therapies that leverage amino acid sensing pathways for the treatment of type 2 diabetes.

  13. New insights into biodrying mechanism associated with tryptophan and tyrosine degradations during sewage sludge biodrying.

    Science.gov (United States)

    Cai, Lu; Krafft, Thomas; Chen, Tong-Bin; Lv, Wen-Zhou; Gao, Ding; Zhang, Han-Yan

    2017-11-01

    Sewage sludge biodrying is a treatment that uses bio-heat generated from organic degradation to remove water from sewage sludge. Dewatering is still limited during biodrying, due to the presence of extracellular polymeric substances (EPS) in sludge. To study the biodrying mechanism associated with EPS compositions tryptophan and tyrosine degradations, this study investigated the microbial function in sludge biodrying material. This study conducted a taxonomic analysis of biodrying material; determined the most abundant genetic functions; analyzed the functional microorganisms involved in the degradations of tryptophan and tyrosine; and summarized the metabolic pathways. The results indicated efficient degradations of tryptophan and tyrosine were observed during the initial thermophilic phase; functional microorganisms were mainly from the phyla Firmicutes, Actinobacteria, and Proteobacteria, enriched with genes involved in amino acid transport and metabolism. These findings highlight the potentially important microorganisms and typical pathways that may help improve dewaterability during biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Involvement of tryptophan hydroxylase 2 gene polymorphisms in susceptibility to tic disorder in Chinese Han population.

    Science.gov (United States)

    Zheng, Ping; Li, Erzhen; Wang, Jianhua; Cui, Xiaodai; Wang, Liwen

    2013-01-29

    Tryptophan hydroxylase-2 (TPH2) is a potential candidate gene for screening tic disorder (TD). A case-control study was performed to examine the association between the TPH2 gene and TD. The Sequenom® Mass ARRAY iPLEX GOLD System was used to genotype two single nucleotide polymorphisms (SNPs) of the TPH2 gene in 149 TD children and in 125 normal controls. For rs4565946, individuals with the TT genotype showed a significantly higher risk of TD than those with TC plus CC genotypes [odds ratio (OR) =3.077, 95% confidence interval (CI): 1.273-7.437; P = 0.009], as did male TD children with the TT genotype (OR = 3.228, 95% CI: 1.153-9.040; P = 0.020). The G allele of rs4570625 was significantly more frequent in TD children with higher levels of tic symptoms (Yale Global Tic Severity Scale, YGTSS) than those in controls among the male children (OR = 1.684, 95%: 1.097-2.583; P = 0.017]. TD children with severe tic symptoms had significantly higher frequencies of rs4546946 TT genotype than did normal controls in boys (OR = 3.292, 95% CI: 1.139-9.513; P = 0.022). We also found that genotype distributions of both SNPs were different between the Asian and European populations. Our results indicated that the TT genotype of rs4565946 is a potential genetic risk factor for TD, and the allele G of rs4570625 might be associated with the severity of tic symptoms in boys. These polymorphisms might be susceptibility loci for TD in the Chinese Han population. Because of the confounding of co-existing attention deficit hyperactivity disorder (ADHD),these findings need to be confirmed by studies in much larger samples.

  15. FLIM data analysis of NADH and Tryptophan autofluorescence in prostate cancer cells

    Science.gov (United States)

    O'Melia, Meghan J.; Wallrabe, Horst; Svindrych, Zdenek; Rehman, Shagufta; Periasamy, Ammasi

    2016-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is one of the most sensitive techniques to measure metabolic activity in living cells, tissues and whole animals. We used two- and three-photon fluorescence excitation together with time-correlated single photon counting (TCSPC) to acquire FLIM signals from normal and prostate cancer cell lines. FLIM requires complex data fitting and analysis; we explored different ways to analyze the data to match diverse cellular morphologies. After non-linear least square fitting of the multi-photon TCSPC images by the SPCImage software (Becker & Hickl), all image data are exported and further processed in ImageJ. Photon images provide morphological, NAD(P)H signal-based autofluorescent features, for which regions of interest (ROIs) are created. Applying these ROIs to all image data parameters with a custom ImageJ macro, generates a discrete, ROI specific database. A custom Excel (Microsoft) macro further analyzes the data with charts and statistics. Applying this highly automated assay we compared normal and cancer prostate cell lines with respect to their glycolytic activity by analyzing the NAD(P)H-bound fraction (a2%), NADPH/NADH ratio and efficiency of energy transfer (E%) for Tryptophan (Trp). Our results show that this assay is able to differentiate the effects of glucose stimulation and Doxorubicin in these prostate cell lines by tracking the changes in a2% of NAD(P)H, NADPH/NADH ratio and the changes in Trp E%. The ability to isolate a large, ROI-based data set, reflecting the heterogeneous cellular environment and highlighting even subtle changes -- rather than whole cell averages - makes this assay particularly valuable.

  16. Twenty-four-hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction

    DEFF Research Database (Denmark)

    Breum, Leif; Rasmussen, Michael H; Hilsted, Jannik

    2003-01-01

    BACKGROUND: Plasma tryptophan concentrations and the ratio of tryptophan to other large neutral amino acids (plasma tryptophan ratio) are reportedly low in obese subjects. The plasma tryptophan ratio predicts brain tryptophan uptake and serotonin production. If this ratio is low in obese subjects...... subjects. Blood samples were drawn frequently throughout the 24-h period. An insulin tolerance test was also used to determine whether weight loss altered the ability of insulin to modify plasma concentrations of tryptophan and of the other large neutral amino acids. RESULTS: Plasma tryptophan...... concentrations and ratios in obese subjects were low at all times; these effects persisted after weight reduction. Plasma concentrations of all the large neutral amino acids decreased during insulin infusion in all the groups. CONCLUSIONS: The low 24-h plasma tryptophan ratios in obese and formerly obese...

  17. Aspirin down-regulates tryptophan degradation in stimulated human peripheral blood mononuclear cells in vitro.

    Science.gov (United States)

    Schroecksnadel, K; Winkler, C; Wirleitner, B; Schennach, H; Fuchs, D

    2005-04-01

    Acetylsalicylic acid (aspirin) is one of the most widely used drugs worldwide, due mainly to its broad therapeutic spectrum with anti-inflammatory, antipyretic, antithrombotic and analgesic effects. However, the exact mechanisms by which aspirin influences inflammation, pain and immune system activation are only partly understood. Within activation of the cellular immune system, Th1-type cytokine interferon (IFN)-gamma induces enzyme indoleamine-2,3-dioxygenase (IDO) which converts tryptophan to kynurenine. In parallel, IFN-gamma induces enzyme GTP-cyclohydrolase I, which gives rise to neopterin production by activated human macrophages. Similarly, tryptophan degradation and neopterin formation increase during several disease states involving Th1-type immune activation. Using stimulated human peripheral blood mononuclear cells (PBMC), the effect of aspirin on tryptophan degradation and neopterin production was investigated. Stimulation of PBMC with mitogens concanavalin A, phytohaemagglutinin and pokeweed mitogen induced significant tryptophan catabolism as was reflected by a decline in tryptophan levels and a parallel increase in kynurenine concentrations compared with unstimulated cells. In parallel, neopterin production was enhanced. Treatment of stimulated PBMC with increasing doses of 1-5 mM aspirin significantly decreased stimulation-induced tryptophan degradation and neopterin production as well. All the effects of aspirin were dose-dependent. The parallel influence of aspirin on both biochemical pathways implies that there was no direct inhibitory effect of aspirin on IDO; rather, it inhibits production of IFN-gamma in mitogen-treated PBMC. The influence of aspirin on biochemical pathways induced by IFN-gamma may represent an important part of its broad pharmacological effect.

  18. Non-invasive tryptophan fluorescence measurements as a novel method of grading cataract.

    Science.gov (United States)

    Erichsen, Jesper Høiberg; Mensah, Aurore; Kessel, Line

    2017-12-01

    Development of non-invasive treatments for cataract calls for a sensitive diagnostic assay. We conducted a study to test whether the ratio of folded tryptophan to non-tryptophan fluorescence emission (F-factor) may be used for grading cataracts in human lenses. The F-factor was measured on aspirated lens material from eyes undergoing femtosecond laser assisted cataract surgery (FLACS) and was compared to a preoperative optical grading of cataract using Scheimpflug imaging. The preoperative optical grading allocated the cataracts to 1 of 4 categories according to the density of the cataract. All cataracts were age-related. Lens material from 16 eyes of 14 patients was included in the study. Cataracts were preoperatively graded in categories 1, 2 and 3. No lenses were category 4. For nuclear cataracts mean values of F-factor were 52.9 (SD 12.2), 61.7 (SD 5.3) and 75.7 (SD 8.9) for categories 1, 2 and 3 respectively. Linear regression on F-factor as a function of preoperative grading category showed increasing values of F-factor with increasing preoperative grading category, R 2  = 0.515. Our experiment showed that preoperative optical grading of cataracts by Scheimpflug imaging may correlate to measures of tryptophan and non-tryptophan fluorescence in human lenses. Based on our results we find that measuring the ratio between tryptophan- and non-tryptophan fluorescence may be a future tool for grading cataracts, but further research is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Pigment production on L-tryptophan medium by Cryptococcus gattii and Cryptococcus neoformans.

    Science.gov (United States)

    Chaskes, Stuart; Cammer, Michael; Nieves, Edward; Casadevall, Arturo

    2014-01-01

    In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin.

  20. Pigment Production on L-Tryptophan Medium by Cryptococcus gattii and Cryptococcus neoformans

    Science.gov (United States)

    Chaskes, Stuart; Cammer, Michael; Nieves, Edward; Casadevall, Arturo

    2014-01-01

    In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin. PMID:24736553

  1. Western diet-induced anxiolytic effects in mice are associated with alterations in tryptophan metabolism.

    Science.gov (United States)

    Ohland, Christina L; Pankiv, Evelina; Baker, Glen; Madsen, Karen L

    2016-10-01

    Western-style diets high in saturated fat and refined carbohydrate have been shown to alter gut microbiota as well as being associated with altered behaviour and learning ability. The objective of this study was to determine the effects of short-term intake of a Western-style diet on intestinal cytokine expression, tryptophan metabolism, and levels of neurotransmitters in the brain. At 7 weeks of age, 129S1/SvImJ mice were placed on a standard chow or Western-style diet (fat 33%, refined carbohydrates 49%) for 3 weeks. Anxiety-like behaviour was assessed by the latency to step-down test and exploration assessed in a Barnes maze. Neurotransmitter levels in forebrains were analysed by high-pressure liquid chromatography. Liver metabolism was examined by 1 H nuclear magnetic resonance (NMR). Cytokine expression in the intestine was measured using MesoScale discovery platform. mRNA levels of tryptophan hydroxylase (Tph) and indoleamine 2,3-dioxygenase (IDO) in the brain and intestine were measured using qPCR. Results showed that mice fed the Western diet displayed reduced exploratory and anxiety-like behaviour. Anxiolytic effects correlated with increased hippocampal brain-derived neurotrophic factor (BDNF) and tryptophan levels. Brain serotonin was not altered. These changes were associated with reduced expression of small intestinal indoleamine 2,3-dioxygenase, a tryptophan-processing enzyme. Western diet-fed mice exhibited low-grade systemic and intestinal inflammation along with altered liver metabolic profiles. In conclusion, diets high in fat and refined sugar are associated with increased levels of brain BDNF and tryptophan and decreased exploratory and anxiety-like behaviour. These behavioural changes correlated with altered intestinal tryptophan metabolism and liver metabolic profiles.

  2. Quinine interactions with tryptophan and tyrosine in malaria patients, and implications for quinine responses in the clinical setting.

    Science.gov (United States)

    Islahudin, Farida; Pleass, Richard J; Avery, Simon V; Ting, Kang-Nee

    2012-10-01

    Recent work with the yeast model revealed that the antiprotozoal drug quinine competes with tryptophan for uptake via a common transport protein, causing cellular tryptophan starvation. In the present work, it was hypothesized that similar interactions may occur in malaria patients receiving quinine therapy. A direct observational study was conducted in which plasma levels of drug and amino acids (tryptophan, tyrosine and phenylalanine) were monitored during quinine treatment of malaria patients with Plasmodium falciparum infections. Consistent with competition for uptake from plasma into cells, plasma tryptophan and tyrosine levels increased ≥2-fold during quinine therapy. Plasma quinine levels in individual plasma samples were significantly and positively correlated with tryptophan and tyrosine in the same samples. Control studies indicated no effect on phenylalanine. Chloroquine treatment of Plasmodium vivax-infected patients did not affect plasma tryptophan or tyrosine. During quinine treatment, plasma tryptophan was significantly lower (and quinine significantly higher) in patients experiencing adverse drug reactions. Plasma quinine levels during therapy are related to patient tryptophan and tyrosine levels, and these interactions can determine patient responses to quinine. The study also highlights the potential for extrapolating insights directly from the yeast model to human malaria patients.

  3. Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins.

    Science.gov (United States)

    Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A

    2016-11-11

    A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml -1 and 0.48mgml -1 for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10 6 M -1 affinity constants and Qmax values of 19.11±2.60ugg -1 and 79.39ugg -1 for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mechanisms of hydrogen exchange in proteins from nuclear magnetic resonance studies of individual tryptophan indole NH hydrogens in lysozyme

    International Nuclear Information System (INIS)

    Wedin, R.E.; Delepierre, M.; Dobson, C.M.; Poulsen, F.M.

    1982-01-01

    The individual rates of solvent exchange of the six tryptophan indole NH hydrogens of lysozyme in 2 H 2 O have been measured over a wide range of temperatures by using 1 H NMR. Two distinct mechanisms for exchange have been identified, one characterized by a high activation energy and the other by a much lower activation energy. The high-energy process has been shown to be associated directly with the cooperative thermal unfolding of the protein and is the dominant mechanism for exchange of the most slowly exchanging hydrogen even 15 0 C below the denaturation temperature. Rate constants and activation energies for the folding and unfolding reactions were obtained from the experimental exchange rates. At low temperatures, a lower activation energy mechanism is dominant for all hydrogens, and this can be associated with local fluctuations in the protein structure which allow access of solvent. The relative exchange rates and activation energies can only qualitatively be related to the different environments of the residues in the crystal structure. There is provisional evidence that a mechanism intermediate between these two extremes may be significant for some hydrogens under restricted conditions

  5. Role of tryptophan repeats and flanking amino acids in Myb-DNA interactions.

    OpenAIRE

    Saikumar, P; Murali, R; Reddy, E P

    1990-01-01

    The c-myb protooncogene codes for a sequence-specific DNA-binding protein that appears to act as a transcriptional regulator and is highly conserved through evolution. The DNA-binding domain of Myb has been shown to contain three imperfectly conserved repeats of 52 amino acids that constitute the amino-terminal end. Within each repeat, there are three tryptophans that are separated by 18 or 19 amino acids and are flanked by basic amino acids. To determine the role of tryptophans and the flank...

  6. The crystal structure of tryptophan hydroxylase with bound amino acid substrate

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Petersen, Charlotte Rode; Christensen, Hans Erik Mølager

    2008-01-01

    of the neurotransmitter and hormone serotonin (5-hydroxytryptamine). We have determined the 1.9 Å resolution crystal structure of the catalytic domain (Δ1−100/Δ415−445) of chicken TPH isoform 1 (TPH1) in complex with the tryptophan substrate and an iron-bound imidazole. This is the first structure of any aromatic amino...... acid hydroxylase with bound natural amino acid substrate. The iron coordination can be described as distorted trigonal bipyramidal coordination with His273, His278, and Glu318 (partially bidentate) and one imidazole as ligands. The tryptophan stacks against Pro269 with a distance of 3.9 Å between...

  7. Don't panic. A guide to tryptophan depletion with disorder-specific anxiety provocation.

    Science.gov (United States)

    Hood, S D; Bell, C J; Argyropoulos, S V; Nutt, D J

    2016-11-01

    The 2002 paper "Does 5-HT restrain panic? A tryptophan depletion study in panic disorder patients recovered on paroxetine" by Bell and colleagues - reprinted in this issue of the Journal - reports on a study undertaken in the halcyon days of David Nutt's Psychopharmacology Unit at the University of Bristol, England. In this invited commentary authors of the original work discuss the impact of this paper on the field of acute tryptophan depletion research (especially in the field of clinical anxiety disorders) and the development of disorder-specific anxiogenic provocations over the past decade. © The Author(s) 2016.

  8. Leptogenesis and residual CP symmetry

    International Nuclear Information System (INIS)

    Chen, Peng; Ding, Gui-Jun; King, Stephen F.

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  9. The two tryptophans of β2-microglobulin have distinct roles in function and folding and might represent two independent responses to evolutionary pressure

    Directory of Open Access Journals (Sweden)

    Monti Maria

    2011-06-01

    Full Text Available Abstract Background We have recently discovered that the two tryptophans of human β2-microglobulin have distinctive roles within the structure and function of the protein. Deeply buried in the core, Trp95 is essential for folding stability, whereas Trp60, which is solvent-exposed, plays a crucial role in promoting the binding of β2-microglobulin to the heavy chain of the class I major histocompatibility complex (MHCI. We have previously shown that the thermodynamic disadvantage of having Trp60 exposed on the surface is counter-balanced by the perfect fit between it and a cavity within the MHCI heavy chain that contributes significantly to the functional stabilization of the MHCI. Therefore, based on the peculiar differences of the two tryptophans, we have analysed the evolution of β2-microglobulin with respect to these residues. Results Having defined the β2-microglobulin protein family, we performed multiple sequence alignments and analysed the residue conservation in homologous proteins to generate a phylogenetic tree. Our results indicate that Trp60 is highly conserved, whereas some species have a Leu in position 95; the replacement of Trp95 with Leu destabilizes β2-microglobulin by 1 kcal/mol and accelerates the kinetics of unfolding. Both thermodynamic and kinetic data fit with the crystallographic structure of the Trp95Leu variant, which shows how the hydrophobic cavity of the wild-type protein is completely occupied by Trp95, but is only half filled by Leu95. Conclusions We have established that the functional Trp60 has been present within the sequence of β2-microglobulin since the evolutionary appearance of proteins responsible for acquired immunity, whereas the structural Trp95 was selected and stabilized, most likely, for its capacity to fully occupy an internal cavity of the protein thereby creating a better stabilization of its folded state.

  10. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Raaymakers, J S; Saris, W H

    1995-01-01

    1. An increased uptake of tryptophan in the brain may increase serotoninergic activity and recently has been suggested to be a cause of fatigue during prolonged exercise. The present study, therefore, investigates whether ingestion of tryptophan or the competing branched-chain amino acids (BCAAs...... tryptophan ingestion caused a 7- to 20-fold increase. Exercise time to exhaustion was not different between treatments (122 +/- 3 min). 3. The data suggest that manipulation of tryptophan supply to the brain either has no additional effect upon serotoninergic activity during prolonged exhaustive exercise......) affect performance. Ten endurance-trained male athletes were studied during cycle exercise at 70-75% maximal power output, while ingesting, ad random and double-blind, drinks that contained 6% sucrose (control) or 6% sucrose supplemented with (1) tryptophan (3 g l-1), (2) a low dose of BCAA (6 g l-1...

  11. A Designed Tryptophan- and Lysine/Arginine-Rich Antimicrobial Peptide with Therapeutic Potential for Clinical Antibiotic-Resistant Candida albicans Vaginitis.

    Science.gov (United States)

    Jin, Lin; Bai, Xuewei; Luan, Ning; Yao, Huimin; Zhang, Zhiye; Liu, Weihui; Chen, Yan; Yan, Xiuwen; Rong, Mingqiang; Lai, Ren; Lu, Qiumin

    2016-03-10

    New therapeutic agents for Candida albicans vaginitis are urgently awaiting to be developed because of the increasing antibiotic resistance of C. albicans. Antimicrobial peptides (AMPs) are one of the most promising choices for next-generation antibiotics. In this study, novel peptides were designed based on snake venom antimicrobial peptide cathelicidin-BF to promote anti-C. albicans activity and decrease side-effects. The designing strategies include substitutions of charged or hydrophobic amino acid residues for noncharged polar residues to promote antimicrobial activity and insertion of a hydrophobic residue in the hydrophilic side of the helix structure to reduce hemolysis. A designed tryptophan and lysine/arginine-rich cationic peptide 4 (ZY13) (VKRWKKWRWKWKKWV-NH2) exhibited excellent antimicrobial activity against either common strain or clinical isolates of antibiotic-resistant C. albicans with little hemolysis. Peptide 4 showed significant therapeutic effects on vaginitis in mice induced by the infection of clinical antibiotic-resistant C. albicans. The approaches herein might be useful for designing of AMPs.

  12. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.

    Science.gov (United States)

    Hendershot, Jenna M; O'Brien, Patrick J

    2017-09-29

    DNA repair enzymes recognize and remove damaged bases that are embedded in the duplex. To gain access, most enzymes use nucleotide flipping, whereby the target nucleotide is rotated 180° into the active site. In human alkyladenine DNA glycosylase (AAG), the enzyme that initiates base excision repair of alkylated bases, the flipped-out nucleotide is stabilized by intercalation of the side chain of tyrosine 162 that replaces the lesion nucleobase. Previous kinetic studies provided evidence for the formation of a transient complex that precedes the stable flipped-out complex, but it is not clear how this complex differs from nonspecific complexes. We used site-directed mutagenesis and transient-kinetic approaches to investigate the timing of Tyr 162 intercalation for AAG. The tryptophan substitution (Y162W) appeared to be conservative, because the mutant protein retained a highly favorable equilibrium constant for flipping the 1, N 6 -ethenoadenine (ϵA) lesion, and the rate of N -glycosidic bond cleavage was identical to that of the wild-type enzyme. We assigned the tryptophan fluorescence signal from Y162W by removing two native tryptophan residues (W270A/W284A). Stopped-flow experiments then demonstrated that the change in tryptophan fluorescence of the Y162W mutant is extremely rapid upon binding to either damaged or undamaged DNA, much faster than the lesion-recognition and nucleotide flipping steps that were independently determined by monitoring the ϵA fluorescence. These observations suggest that intercalation by this aromatic residue is one of the earliest steps in the search for DNA damage and that this interaction is important for the progression of AAG from nonspecific searching to specific-recognition complexes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Does dietary tryptophan around farrowing affect sow behavior and piglet mortality

    Science.gov (United States)

    Piglet mortality remains a serious welfare and economic problem. Much of the early mortality is due to crushing by the sow. Tryptophan has been shown to reduce aggression and have a calming effect on behaviour, which may reduce the number and type of posture changes, thereby altering risk of crushin...

  14. Internal Energies of Ion-Sputtered Neutral Tryptophan and Thymine Molecules Determined by Vacuum Ultraviolet Photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jia; Takahashi, Lynelle; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2010-03-11

    Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi3 + indicates that the ion-sputtered parent molecules have ~;;2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi3 + ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis.

  15. No Tryptophan, Tyrosine and Phenylalanine Abnormalities in Children with Attention-Deficit/Hyperactivity Disorder

    NARCIS (Netherlands)

    Bergwerff, C.E.; Luman, M.; Blom, H.J.; Oosterlaan, J.

    2016-01-01

    Background The aim of the current study was to explore the role of aromatic amino acids (AAAs) in blood in relation to attention-deficit/hyperactivity disorder (ADHD). Given their impact on the synthesis of serotonin and dopamine, decreased concentrations of the AAAs tryptophan, tyrosine and

  16. Reprint of 'pH tuning of Nafion for selective detection of tryptophan'

    Energy Technology Data Exchange (ETDEWEB)

    Frith, K.-A. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa); Limson, J.L., E-mail: j.limson@ru.ac.z [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa)

    2010-05-30

    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 +- 0.1 nM and 1.6 +- 0.2 nM, respectively.

  17. pH tuning of Nafion for selective detection of tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Frith, K.-A. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa); Limson, J.L. [Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, 6140 (South Africa)], E-mail: j.limson@ru.ac.za

    2009-05-01

    Selective and sensitive detection of the amino acid tryptophan is of importance in food processing, pharmaceutical formulations and in biological fluids. Electrochemical methods of detection of tryptophan are hampered by sluggish electron transfer kinetics and in complex matrices through overlapping peaks from interferents. This study examines the potential of the cation exchange membrane Nafion to enhance selectivity and sensitivity of this analyte through a seldom explored feature of this membrane: pH manipulation. A detailed examination of the effect of pH on the selectivity afforded by Nafion as a function of the analyte charge is presented. Selective detection of tryptophan and significant increases in sensitivity of its detection was observed in the presence of melatonin, dopamine and other interferents present in a pharmaceutical formulation through manipulation of the pH of the solution. At pH 3.0 at a Nafion-modified electrode, changes in the protonation of melatonin and tryptophan lowered the anodic potential of the analytes in a non-uniform manner increasing the peak resolution and permitting analyses with detection limits of 1.6 {+-} 0.1 nM and 1.6 {+-} 0.2 nM, respectively.

  18. Direct fluorination of melatonin and 5-hydroxy-L-tryptophan with [18F]F2

    International Nuclear Information System (INIS)

    Chirakal, R.; Firnau, G.; Garnett, E.S.

    1986-01-01

    In order that melatonin receptors may be studied in man with positron emission tomography, melatonin labelled with a positron emitting isotope is needed. The preparation of 6-fluoro-melatonin labelled with F-18 is described. Using the same fluorination method, 5-hydroxy-6-(F-18)fluorotryptophan and 4-(F-18)fluoro-5-hydroxy-tryptophan were also prepared. (UK)

  19. Enrichment of cellulose acetate nanofibre assemblies for therapeutic delivery of l-tryptophan.

    Science.gov (United States)

    Ghorani, Behrouz; Goswami, Parikshit; Blackburn, Richard S; Russell, Stephen J

    2018-03-01

    The essential amino acid l-tryptophan is naturally present in the body, and is also available as a water soluble dietary supplement. The feasibility of preparing enriched cellulose acetate (CA)-based fibres as a vehicle for therapeutic delivery of such biomolecules was investigated. A new ternary solvent system consisting of acetone: N,N-dimethylacetamide: methanol (2:1:2) has been demonstrated to permit the solution blending of CA with the water soluble l-tryptophan. Nanofibrous webs substantially free of structural defects were continuously produced with mean fibre diameters in the range of 520-1010nm, dependent on process parameters. Morphology and diameter of fibres were influenced by concentration of CA spinning solution, applied voltage and flow rates. The kinetic release profile of l-tryptophan from electrospun CA nanofibres was described by the pseudo-second order kinetic model. Fibres with mean diameter of 720nm provide both the highest initial desorption rate and rate constant, which was partially attributed to the low fibre diameter and high relative surface area, but also the fact that the 720nm fibres produced were the most bead-free, providing diffusion advantages over the fibres with lowest mean diameter (520nm). The feasibility of combining l-tryptophan within fibres provides a promising route for manufacture of transdermal delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Formation and detection of oxidant-generated tryptophan dimers in peptides and proteins

    DEFF Research Database (Denmark)

    Carroll, Luke; Pattison, David I; Davies, Justin B

    2017-01-01

    and function. Due to its low oxidation potential, the indole ring of tryptophan (Trp) is a major target, with this resulting in the formation of indolyl radicals (Trp•). These undergo multiple reactions including ring opening and dimerization which can result in protein aggregation. The factors that govern Trp...

  1. Synthesis of 2-substituted tryptophans via a C3- to C2-alkyl migration

    Directory of Open Access Journals (Sweden)

    Michele Mari

    2014-08-01

    Full Text Available The reaction of 3-substituted indoles with dehydroalanine (Dha derivatives under Lewis acid-mediated conditions has been investigated. The formation of 2-substituted tryptophans is proposed to occur through a selective alkylative dearomatization–cyclization followed by C3- to C2-alkyl migration and rearomatization.

  2. Comprehensive analysis of the tryptophan metabolome in urine of patients with acute intermittent porphyria.

    Science.gov (United States)

    Gomez-Gomez, Alex; Marcos, Josep; Aguilera, Paula; To-Figueras, Jordi; Pozo, Oscar J

    2017-08-15

    Acute intermittent porphyria (AIP) is a rare metabolic disorder due to a deficiency of porphobilinogen deaminase, the third enzyme of the heme biosynthetic pathway. This low enzymatic activity may predispose to the appearance of acute neurological attacks. Seminal studies suggested that AIP was associated with changes in tryptophan homeostasis with inconclusive results. Therefore, the aim of this study was to analyze the urinary metabolome of AIP patients focusing on tryptophan metabolism using state-of-the-art technology. This was a case-control study including a group of 25 AIP patients with active biochemical disease and increased excretion of heme-precursors and 25 healthy controls. Tryptophan and related compounds and metabolites including: large neutral amino acids (LNAAs), serotonin, kynurenine, kynurenic acid and anthranilic acid were quantified in urine by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Twenty-nine biological markers (including metabolic ratios and absolute concentrations) were compared between patients and controls. Significant differences were found in the tryptophan-kynurenine metabolic pathway. Compared to controls, AIP patients showed: (a) increased urinary excretion of kynurenine and anthranilic acid (Ptryptophan ratio (Ptryptophan ratio in urine and a reduction of the kynurenic acid/kynurenine ratio. The modified ratios suggest induction of indoleamine 2,3-deoxygenase and decreased activity of kynurenine aminotransferase in the liver. The results confirm that LC-MS/MS is useful for the characterization of the urinary metabolome of hepatic porphyrias. Copyright © 2017. Published by Elsevier B.V.

  3. Stabilization of Tryptophan Hydroxylase 2 by L-Phenylalanine Induced Dimerization

    DEFF Research Database (Denmark)

    Tidemand, Kasper Damgaard; Christensen, Hans Erik Mølager; Hoeck, Niclas

    2016-01-01

    Tryptophan hydroxylase 2 (TPH2) catalyses the initial and rate-limiting step in the biosynthesis of serotonin, which is associated with a variety of disorders such as depression, obsessive compulsive disorder, and schizophrenia. Full length TPH2 is poorly characterized due to low purification...

  4. Problem-Solving Test: Attenuation--A Mechanism to Regulate Bacterial Tryptophan Biosynthesis

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    Terms to be familiar with before you start to solve the test: tryptophan, transcription unit, operon, "trp" repressor, corepressor, operator, promoter, palindrome, initiation, elongation, and termination of transcription, open reading frame, coupled transcription/translation, chromosome-polysome complex. (Contains 2 figures and 1 footnote.)

  5. The Tryptophan-Kynurenine Pathway, Systemic Inflammation, and Long-Term Outcome after Kidney Transplantation

    NARCIS (Netherlands)

    de Vries, Laura V; Minovic, Isidor; Franssen, Casper Fm; van Faassen, Martijn; Sanders, Jan-Stephan F.; Berger, Stefan P; Navis, Gerjan; Kema, Ido P; Bakker, Stephan Jl

    2017-01-01

    BACKGROUND: Tryptophan is metabolized along the kynurenine pathway, initially to kynurenine, and subsequently to cytotoxic 3-hydroxykynurenine. There is increasing interest in this pathway, because of its pro-inflammatory nature, and drugs interfering in it receive increasing attention. We aimed to

  6. A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells

    NARCIS (Netherlands)

    G. Mondanelli (Giada); R. Bianchi (Roberta); M.T. Pallotta (Maria Teresa); C. Orabona (Ciriana); E. Albini (Elisa); A. Iacono (Alberta); M.L. Belladonna (Maria Laura); C. Vacca (Carmine); F. Fallarino (Francesca); A. Macchiarulo (Antonio); S. Ugel (Stefano); V. Bronte (Vincenzo); F. Gevi (Federica); L. Zolla (Lello); A.P. Verhaar (Auke); M.P. Peppelenbosch (Maikel); E.M.C. Mazza (Emilia Maria Cristina); S. Bicciato (Silvio); Y. Laouar (Yasmina); L. Santambrogio (Laura); P. Puccetti (Paolo); C. Volpi (Claudia); U. Grohmann (Ursula)

    2017-01-01

    textabstractArginase 1 (Arg1) and indoleamine 2,3-dioxygenase 1 (IDO1) are immunoregulatory enzymes catalyzing the degradation of l-arginine and l-tryptophan, respectively, resulting in local amino acid deprivation. In addition, unlike Arg1, IDO1 is also endowed with non-enzymatic signaling activity

  7. Converging evidence for central 5-HT effects in acute tryptophan depletion

    DEFF Research Database (Denmark)

    Crockett, Molly; Clark, Luke; Roiser, Jonathan

    2012-01-01

    Acute tryptophan depletion (ATD), a dietary technique for manipulating brain serotonin (5-HT) function, has advanced our understanding of 5-HT mechanisms in the etiology and treatment of depression and other affective disorders.1 A recent review article in Molecular Psychiatry questioned the vali...

  8. Cross-linking of lens crystallin proteins induced by tryptophan metabolites and metal ions

    DEFF Research Database (Denmark)

    Tweeddale, Helen J; Hawkins, Clare Louise; Janmie, Joane F

    2016-01-01

    Long-wavelength solar UV radiation is implicated in photodamage to the human eye. The human lens contains multiple tryptophan-derived compounds that have significant absorbance bands in the UVA region (λ 315-400 nm) that act as efficient physical filters for these wavelengths. The concentrations ...

  9. PYROLYTIC PRODUCTS FROM TRYPTOPHAN AND GLUTAMIC-ACID ARE POSITIVE IN THE MAMMALIAN SPOT-TEST

    DEFF Research Database (Denmark)

    Jensen, Niels Juul

    1983-01-01

    Pyrolysates of tryptophan (Trp-P-2) and glutamic acid (Glu-P-1) are known mutagens in in vitro short term mutagenicity tests, and have also shown carcinogenic effects in long term animal studies. The present study demonstrates that they also produce mutations in somatic cells. This result...

  10. Effect of diet on plasma tryptophan and serotonin in trained mares and geldings

    NARCIS (Netherlands)

    Alberghina, D.; Giannetto, C.; Visser, E.K.; Ellis, A.D.

    2010-01-01

    Concentrations of tryptophan (TRP) and serotonin (5-HT) in plasma were measured in 36 moderately trained Dutch warmblood horses after eight weeks on a high fibre (n=18) or high starch (n=18) diet. Samples were taken three hours after feeding, when the horse was at rest, either at 11.00 or 14.00

  11. Surplus dietary tryptophan inhibits stress hormone kinetics and induces insulin resistance in pigs

    NARCIS (Netherlands)

    Koopmans, S.J.; Ruis, M.A.W.; Dekker, R.A.; Korte, M.

    2009-01-01

    Recently we have shown that surplus dietary tryptophan (TRP) reduced the plasma concentrations of cortisol and noradrenaline in pigs. Stress hormones are known to affect insulin sensitivity and metabolism. We now investigated the long-term effects of surplus dietary TRP on 1) plasma and urinary

  12. Tryptophan biosynthesis in stramenopiles: eukaryotic winners in the diatom complex chloroplast

    Czech Academy of Sciences Publication Activity Database

    Jiroutová, Kateřina; Horák, Aleš; Bowler, C.; Oborník, Miroslav

    2007-01-01

    Roč. 65, č. 5 (2007), s. 496-511 ISSN 0022-2844 R&D Projects: GA AV ČR IAA500220502 Institutional research plan: CEZ:AV0Z60220518 Keywords : tryptophan synthesis * mosaic origin * diatom * Oomycetes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2007

  13. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease.

    Science.gov (United States)

    Kepert, Inge; Fonseca, Juliano; Müller, Constanze; Milger, Katrin; Hochwind, Kerstin; Kostric, Matea; Fedoseeva, Maria; Ohnmacht, Caspar; Dehmel, Stefan; Nathan, Petra; Bartel, Sabine; Eickelberg, Oliver; Schloter, Michael; Hartmann, Anton; Schmitt-Kopplin, Philippe; Krauss-Etschmann, Susanne

    2017-05-01

    Chronic immune diseases, such as asthma, are highly prevalent. Currently available pharmaceuticals improve symptoms but cannot cure the disease. This prompted demands for alternatives to pharmaceuticals, such as probiotics, for the prevention of allergic disease. However, clinical trials have produced inconsistent results. This is at least partly explained by the highly complex crosstalk among probiotic bacteria, the host's microbiota, and immune cells. The identification of a bioactive substance from probiotic bacteria could circumvent this difficulty. We sought to identify and characterize a bioactive probiotic metabolite for potential prevention of allergic airway disease. Probiotic supernatants were screened for their ability to concordantly decrease the constitutive CCL17 secretion of a human Hodgkin lymphoma cell line and prevent upregulation of costimulatory molecules of LPS-stimulated human dendritic cells. Supernatants from 13 of 37 tested probiotic strains showed immunoactivity. Bioassay-guided chromatographic fractionation of 2 supernatants according to polarity, followed by total ion chromatography and mass spectrometry, yielded C 11 H 12 N 2 O 2 as the molecular formula of a bioactive substance. Proton nuclear magnetic resonance and enantiomeric separation identified D-tryptophan. In contrast, L-tryptophan and 11 other D-amino acids were inactive. Feeding D-tryptophan to mice before experimental asthma induction increased numbers of lung and gut regulatory T cells, decreased lung T H 2 responses, and ameliorated allergic airway inflammation and hyperresponsiveness. Allergic airway inflammation reduced gut microbial diversity, which was increased by D-tryptophan. D-tryptophan is a newly identified product from probiotic bacteria. Our findings support the concept that defined bacterial products can be exploited in novel preventative strategies for chronic immune diseases. Copyright © 2016. Published by Elsevier Inc.

  14. The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production

    Science.gov (United States)

    Palmer, Gregory C.; Jorth, Peter A.

    2013-01-01

    Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes infections in the lungs of individuals with the genetic disease cystic fibrosis. Density-dependent production of toxic factors regulated by the Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) have been proposed to be involved in P. aeruginosa virulence. PQS biosynthesis requires conversion of the central metabolite chorismate to anthranilate by anthranilate synthase. This reaction is also the first step in tryptophan biosynthesis. P. aeruginosa possesses two functional anthranilate synthases, TrpEG and PhnAB, and these enzymes are not functionally redundant, as trpEG mutants are tryptophan auxotrophs but produce PQS while mutants in phnAB are tryptophan prototrophs but do not produce PQS in minimal media. The goal of the work described in this paper was to determine the mechanism for this lack of functional complementation of TrpEG and PhnAB. Our results reveal that overexpression of either enzyme compensates for tryptophan auxotrophy and PQS production in the trpEG and phnAB mutants respectively, leading to the hypothesis that differential regulation of these genes is responsible for the lack of functional complementation. In support of this hypothesis, trpEG was shown to be expressed primarily during low-density growth while phnAB was expressed primarily at high density. Furthermore, dysregulation of phnAB expression eliminated tryptophan auxotrophy in the P. aeruginosa trpEG mutant. Based on these data, we propose a model for anthranilate sequestration by differential transcriptional regulation of the two P. aeruginosa anthranilate synthase enzymes. PMID:23449919

  15. Disturbed tryptophan metabolism correlating to progression and metastasis of esophageal squamous cell carcinoma.

    Science.gov (United States)

    Cheng, Jing; Jin, Hai; Hou, Xiaobei; Lv, Jie; Gao, Xianfu; Zheng, Guangyong

    2017-05-06

    Esophageal squamous cell carcinoma (ESCC) is one of the most frequent malignancies worldwide. Lymph node metastasis is the leading cause of death in ESCC patients. To identify early diagnostic and prognostic biomarkers of ESCC and elucidate underlying pathogenesis of the disease, a targeted metabolomics strategy based on liquid chromatography combined with tandem mass spectrometry was applied to explore tryptophan metabolism between ESCC patients, metastatic ESCC patients (mESCC), and healthy controls. Statistical analysis on metabolite expression abundance and compound concentration ratio was conducted to discriminate patients from healthy controls. The concentration ratio of kynurenine, 5-hydroxytryptophan, 5-hydroxyindole-3-acetic acid, 5-hydroxytryptamine to their precursor tryptophan were identified as potential biomarkers, presenting high diagnostic capacity for distinguishing ESCC and mESCC patients from healthy controls. Moreover, a prognostic prediction model was also built on these ratios to distinguish metastasis patients from non-metastasis patients successfully. The high performance of ESCC prediction models suggest that concentration ratios of compounds may be used as biomarkers for early diagnosis and prognosis of the disease. In addition, concentration ratios of compounds show a progressively increased trend from non-metastasis to metastasis patients compared with healthy controls, which is in accordance with process of malignant transformation of ESCC. This interested finding suggests that disturbed tryptophan metabolism is correlated to progression and metastasis of ESCC since concentration ratios of compounds reflect activity of enzymes involved in tryptophan metabolism. This study reveals the impact of tryptophan metabolism to tumorigenesis and metastasis of ESCC, which help biologists investigate mechanism of the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. L-tryptophan and dipeptide derivatives for supercoiled plasmid DNA purification.

    Science.gov (United States)

    Santos, Tiago; Carvalho, Josué; Corvo, Marta C; Cabrita, Eurico J; Queiroz, J A; Cruz, C

    2016-06-01

    The present study focus on the preparation of chromatography supports for affinity-based chromatography of supercoiled plasmid purification. Three l-tryptophan based supports are prepared through immobilization on epoxy-activated Sepharose and characterized by HR-MAS NMR. The SPR is employed for a fast screening of l-tryptophan derivatives, as potential ligands for the biorecognition of supercoiled isoform, as well as, to establish the suitable experimental conditions for the chromatography. The results reveal that the overall affinity is high (KD=10(-9) and 10(-8)M) and the conditions tested show that the use of HEPES 100mM enables the separation and purification of supercoiled at T=10°C. The STD-NMR is performed to accomplish the epitope mapping of the 5'-mononucleotides bound to l-tryptophan derivatives supports. The data shows that the interactions between the three supports and the 5'-mononucleotides are mainly hydrophobic and π-π stacking. The chromatography experiments are performed with l-tryptophan support and plasmids pVAX-LacZ and pPH600. The supercoiled isoform separation is achieved at T=10°C by decreasing the concentration of (NH4)2SO4 from 2.7 to 0M in HEPES for pVAX-LacZ and 2.65M to 0M in HEPES for pPH600. Overall, l-tryptophan derivatives can be a promising strategy to purify supercoiled for pharmaceutical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism.

    Science.gov (United States)

    Li, Yang; Hu, Nan; Yang, Dan; Oxenkrug, Gregory; Yang, Qing

    2017-03-01

    Tryptophan is metabolized along the kynurenine and serotonin pathways, resulting in formation of kynurenine metabolites, neuroactive serotonin and melatonin. Each pathway is critical for maintaining healthy homeostasis. However, the two pathways are extremely unequal in their ability to degrade tryptophan, and little is known about the mechanisms maintaining the balance between them. Here, we demonstrated that in PC12 cells, a change of expression of key genes of one pathway resulted in a change of expression of key genes of the other. Melatonin, the end product of the serotonin pathway, played an important role in tryptophan metabolism by affecting both key enzymes of the two pathways. Melatonin treatment induced the expression of indole-2,3-dioxygenase 1 (IDO1) and enhanced the activity of the IDO1 promoter while decreasing the expression of arylalkylamine N-acetyl transferase. Melatonin treatment up-regulated the expression of forkhead box protein O1 (FoxO1) and enhanced the binding of FoxO1 to the IDO1 promoter. FoxO1 was shown to be a new regulator for IDO1 expression. Melatonin treatment decreased the phosphorylation of FoxO1 by extracellular signal-regulated kinases 1 and 2 and protein kinase B (Akt) and increased the phosphorylation of binding protein 14-3-3 by c-Jun N-terminal kinase (JNK), and thus the complex of FoxO1-14-3-3 in the cytoplasm was disassembled and FoxO1 was relocated to the nucleus to induce IDO1 expression. The JNK signaling pathway played an important role in melatonin-induced IDO1 up-regulation. In conclusion, this study suggests a link between melatonin, JNK, FoxO1 and IDO1 that acts as a potential balance regulator of tryptophan metabolism, and offers a new approach to treat diseases related to dysregulation of tryptophan metabolism. © 2017 Federation of European Biochemical Societies.

  18. Promoting effect of saccharin and DL-tryptophan in urinary bladder carcinogenesis.

    Science.gov (United States)

    Cohen, S M; Arai, M; Jacobs, J B; Friedell, G H

    1979-04-01

    The existence of at least two stages in bladder carcinogenesis was evaluated in male Fischer rats using N-[14-(5-nitro-2-furyl)-2-thiazolyl]formamide (FANFT) fed for six weeks at a level of 0.2% of the diet as the initiator. Sodium saccharin and DL-tryptophan were fed at levels of 5 and 2% of the diet, respectively, as possible promoting chemicals, and they were fed either immediately after FANFT administration or after six weeks of FANFT plus six weeks of control diet. All surviving rats were killed at the end of two years. Both chemicals significantly increased the incidence of bladder tumors following FANFT feeding compared to six weeks of FANFT feeding followed by control diet, and the results were similar whether saccharin or tryptophan feeding was started immediately after FANFT feeding was concluded or after a six-week delay. Saccharin was considerably more potent as a promoting agent than was tryptophan, inducing higher incidences of bladder tumors and having a shorter latent period. Long-term administration of FANFT induced a 100% incidence of bladder cancer. Sequential epithelial changes were observed by scanning and transmission electron microscopy as well as by light microscopy. Pleomorphic microvilli were present on the superficial cells of all tumors examined and on the surface cells of hyperplastic bladder epithelium after six weeks of FANFT plus six weeks of saccharin, but not after six weeks of FANFT and six weeks of control diet. Rats fed only saccharin tryptophan, or control diet did not have bladder tumors or pleomorphic microvilli on bladder epithelium. These data suggest that saccharin and tryptophan might act as tumor-promoting agents during bladder carcinogenesis.

  19. N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats.

    Science.gov (United States)

    Fernandes, Joylee; Mudgal, Jayesh; Rao, Chamallamudi Mallikarjuna; Arora, Devinder; Basu Mallik, Sanchari; Pai, K S R; Nampoothiri, Madhavan

    2018-06-01

    Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl 3 ) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.

  20. Effect of dietary protein content and tryptophan supplementation on dominance aggression, territorial aggression, and hyperactivity in dogs.

    Science.gov (United States)

    DeNapoli, J S; Dodman, N H; Shuster, L; Rand, W M; Gross, K L

    2000-08-15

    To evaluate the effect of high- and low-protein diets with or without tryptophan supplementation on behavior of dogs with dominance aggression, territorial aggression, and hyperactivity. Prospective crossover study. 11 dogs with dominance aggression, 11 dogs with territorial aggression, and 11 dogs with hyperactivity. In each group, 4 diets were fed for 1 weeks each in random order with a transition period of not diet. Two diets had low protein content (approximately 18%), and 2 diets had high protein content (approximately 30%). Two of the diets (1 low-protein and 1 high-protein) were supplemented with tryptophan. Owners scored their dog's behavior daily by use of customized behavioral score sheets. Mean weekly values of 5 behavioral measures and serum concentrations of serotonin and tryptophan were determined at the end of each dietary period. For dominance aggression, behavioral scores were highest in dogs fed unsupplemented high-protein rations. For territorial aggression, [corrected] tryptophan-supplemented low-protein diets were associated with significantly lower behavioral scores than low-protein diets without tryptophan supplements. For dogs with dominance aggression, the addition of tryptophan to high-protein diets or change to a low-protein diet may reduce aggression. For dogs with territorial aggression, tryptophan supplementation of a low-protein diet may be helpful in reducing aggression.

  1. Relation of plasma tryptophan concentrations during pregnancy to maternal sleep and mental well-being: The GUSTO cohort.

    Science.gov (United States)

    van Lee, Linde; Cai, Shirong; Loy, See Ling; Tham, Elaine K H; Yap, Fabian K P; Godfrey, Keith M; Gluckman, Peter D; Shek, Lynette P C; Teoh, Oon Hoe; Goh, Daniel Y T; Tan, Kok Hian; Chong, Yap Seng; Meaney, Michael J; Chen, Helen; Broekman, Birit F P; Chong, Mary F F

    2018-01-01

    Evidence suggests a relation between plasma tryptophan concentrations and sleep and mental well-being. As no studies have been performed in pregnant women, we studied the relation of plasma tryptophan concentrations during pregnancy with sleep quality, and mood during and after pregnancy. Pregnant women (n = 572) from the Growing Up in Singapore Towards healthy Outcomes study completed the Pittsburgh Sleep Quality Index (PSQI), the Edinburgh Postnatal Depression Scale (EPDS) and the State-Trait Anxiety Inventory (STAI) at 26-28 weeks gestation and three months post-delivery. Plasma tryptophan concentrations were measured at 26-28 weeks gestation. Poisson regressions estimated prevalence ratios (PR) for the association between tryptophan and poor sleep quality (PSQI global score > 5), probable antenatal depression (EPDS ≥ 15) and probable anxiety (STAI-state ≥ 41) were calculated adjusting for covariates. Mean plasma tryptophan concentrations was 48.0µmol/L (SD: 8.09). Higher plasma tryptophan concentrations were associated with a lower prevalence of antenatal poor sleep quality adjusting for covariates [PR: 0.88 (95% CI 0.80, 0.97) per 10µmol/L], especially in those participants who also suffered from anxiety symptoms [PR: 0.80 (95% CI 0.67, 0.95)]. No associations were observed between tryptophan concentrations during pregnancy and postnatal sleep quality or mental well-being. Subjective measures were used to assess sleep and mental well-being. We observed that higher plasma tryptophan concentrations were associated with a 12% lower prevalence of poor sleep quality during pregnancy, in particular among those with anxiety symptoms. These findings suggest the importance of having adequate tryptophan concentrations during pregnancy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Effects of Tryptophan on Everyday Interpersonal Encounters and Social Cognitions in Individuals with a Family History of Depression

    Science.gov (United States)

    Schoevers, Robert A.; aan het Rot, Marije

    2015-01-01

    Background: Individuals with a family history of depression show subtle abnormalities in the processing of social stimuli. This could negatively affect their interpersonal functioning and contribute to their depression risk. Repeated administration of the serotonin precursor tryptophan has previously been shown to increase agreeable behavior and reduce quarrelsome behavior in irritable people, who are also considered at risk for depression. Methods: To examine the effects of tryptophan on social functioning in individuals with a family history of depression, 40 men and women with at least one first-degree relative with depression received tryptophan (1g three times a day) and placebo for 14 days each in a double-blind crossover design and recorded their social behavior and mood during everyday interpersonal encounters. Participants also provided daily ratings of their positive and negative cognitions concerning their social functioning. Results: Tryptophan improved mood. Unexpectedly, tryptophan increased quarrelsome behavior and reduced agreeable behavior, specifically during interactions at home. The behavioral effects of tryptophan were not moderated by mood or by the interaction partner. Negative social cognitions were lower when tryptophan was given second and lower during placebo when placebo was given second. Conclusion: Overall, tryptophan may not alter social behavior in individuals with a family history of depression as it does in irritable people. However, the behavioral effects of tryptophan at home might be seen as a way for individuals with a family history of depression to achieve more control. Over time, this may positively influence the way they feel and think about themselves in a social context. PMID:25733537

  3. Acute tryptophan depletion in C57BL/6 mice does not induce central serotonin reduction or affective behavioural changes.

    Science.gov (United States)

    van Donkelaar, Eva L; Blokland, Arjan; Lieben, Cindy K J; Kenis, Gunter; Ferrington, Linda; Kelly, Paul A T; Steinbusch, Harry W M; Prickaerts, Jos

    2010-01-01

    Acute tryptophan depletion is extensively used to investigate the implication of serotonin in the onset of depressive disorders. In rats, it lowers peripheral tryptophan and decreases central serotonin concentrations. We aimed to establish the rat model of acute tryptophan depletion in the mouse for potential application as serotonin challenge tool in genetic mouse models of depression. Pharmacokinetic and behavioural effects of a tryptophan-free diet were examined in Swiss and C57BL/6 mice. Peripheral amino acids were measured and central tryptophan and serotonin concentrations were compared with anxiety and depression-like behaviour in the elevated zero-maze, forced swimming test or tail suspension test. While acute tryptophan depletion resulted in a 74% reduction of the plasma ratio tryptophan to the sum of other large neutral amino acids in Swiss mice 1h after administration (2x10 ml/kg, 30 min interval), there was only a 40% reduction in C57BL/6 mice. The latter did not show anxiety in the elevated zero-maze or increased immobility in the forced swimming test or tail suspension test. A higher dose (2x20 ml/kg) with a longer interval (60 min) reduced the ratio with 68% in C57BL/6 mice, lowered hippocampal serotonin turnover and had no functional effect when tested in the elevated zero-maze and forced swimming test. These findings have important implications for the use of acute tryptophan depletion in general and in particular for its application in mice. Although in healthy mice no clear central serotonin or functional effects were observed, further research is indicated using mice with pre-existing serotonin dysfunction, as they might be more vulnerable to acute tryptophan depletion. 2009 Elsevier Ltd. All rights reserved.

  4. A Brief Historic Overview of Clinical Disorders Associated with Tryptophan: The Relevance to Chronic Fatigue Syndrome (CFS and Fibromyalgia (FM.

    Directory of Open Access Journals (Sweden)

    Adele Blankfield

    2012-01-01

    Full Text Available Last century there was a short burst of interest in the tryptophan related disorders of pellagra and related abnormalities that are usually presented in infancy. 1 , 2 Nutritional physiologists recognized that a severe human dietary deficiency of either tryptophan or the B group vitamins could result in central nervous system (CNS sequelae such as ataxia, cognitive dysfunction and dysphoria, accompanied by skin hyperpigmentation. 3 , 4 The current paper will focus on the emerging role of tryptophan in chronic fatigue syndrome (CFS and fibromyalgia (FM.

  5. Involvement of tryptophan hydroxylase 2 gene polymorphisms in susceptibility to tic disorder in Chinese Han population

    Directory of Open Access Journals (Sweden)

    Zheng Ping

    2013-01-01

    Full Text Available Abstract Background Tryptophan hydroxylase-2 (TPH2 is a potential candidate gene for screening tic disorder (TD. Methods A case–control study was performed to examine the association between the TPH2 gene and TD. The Sequenom® Mass ARRAY iPLEX GOLD System was used to genotype two single nucleotide polymorphisms (SNPs of the TPH2 gene in 149 TD children and in 125 normal controls. Results For rs4565946, individuals with the TT genotype showed a significantly higher risk of TD than those with TC plus CC genotypes [odds ratio (OR =3.077, 95% confidence interval (CI: 1.273–7.437; P = 0.009], as did male TD children with the TT genotype (OR = 3.228, 95% CI: 1.153–9.040; P = 0.020. The G allele of rs4570625 was significantly more frequent in TD children with higher levels of tic symptoms (Yale Global Tic Severity Scale, YGTSS than those in controls among the male children (OR = 1.684, 95%: 1.097–2.583; P = 0.017]. TD children with severe tic symptoms had significantly higher frequencies of rs4546946 TT genotype than did normal controls in boys (OR = 3.292, 95% CI: 1.139–9.513; P = 0.022. We also found that genotype distributions of both SNPs were different between the Asian and European populations. Conclusions Our results indicated that the TT genotype of rs4565946 is a potential genetic risk factor for TD, and the allele G of rs4570625 might be associated with the severity of tic symptoms in boys. These polymorphisms might be susceptibility loci for TD in the Chinese Han population. Because of the confounding of co-existing attention deficit hyperactivity disorder (ADHD,these findings need to be confirmed by studies in much larger samples.

  6. Residual gas analysis

    International Nuclear Information System (INIS)

    Berecz, I.

    1982-01-01

    Determination of the residual gas composition in vacuum systems by a special mass spectrometric method was presented. The quadrupole mass spectrometer (QMS) and its application in thin film technology was discussed. Results, partial pressure versus time curves as well as the line spectra of the residual gases in case of the vaporization of a Ti-Pd-Au alloy were demonstrated together with the possible construction schemes of QMS residual gas analysers. (Sz.J.)

  7. Evening intake of α-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention

    NARCIS (Netherlands)

    Markus, C.R.; Jonkman, L.M.; Lammers, J.H.C.M.; Deutz, N.E.P.; Messer, M.H.; Rigtering, N.

    2005-01-01

    Background: Brain serotonin function is thought to promote sleep regulation and cognitive processes, whereas sleep abnormalities and subsequent behavioral decline are often attributed to deficient brain serotonin activity. Brain uptake of the serotonin precursor tryptophan is dependent on nutrients

  8. The Effects of Tryptophan on Everyday Interpersonal Encounters and Social Cognitions in Individuals with a Family History of Depression

    NARCIS (Netherlands)

    Hogenelst, Koen; Schoevers, Robert A.; Rot, Marije Aan Het

    2015-01-01

    Background: Individuals with a family history of depression show subtle abnormalities in the processing of social stimuli. This could negatively affect their interpersonal functioning and contribute to their depression risk. Repeated administration of the serotonin precursor tryptophan has

  9. Differences in the association of inflammation and tryptophan with depressive symptoms between white and non-white chronic dialysis patients

    NARCIS (Netherlands)

    Haverkamp, Gertrud L; Loosman, Wim L; Schouten, Robbert W; Franssen, Casper F; Kema, Ido P; van Diepen, Merel; Dekker, Friedo W; Siegert, Carl E; Honig, Adriaan

    Objective: Possibly, different biochemical parameters are involved in the development of depressive symptoms in white and non-white dialysis patients. We examined whether the association between inflammation and depressive symptoms and between tryptophan and depressive symptoms differs between white

  10. Fourier transform coupled tryptophan scanning mutagenesis identifies a bending point on the lipid-exposed δM3 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor.

    Science.gov (United States)

    Caballero-Rivera, Daniel; Cruz-Nieves, Omar A; Oyola-Cintrón, Jessica; Torres-Núñez, David A; Otero-Cruz, Jose D; Lasalde-Dominicci, José A

    2011-01-01

    The nicotinic acetylcholine receptor (nAChR) is a member of a family of ligand-gated ion channels that mediate diverse physiological functions, including fast synaptic transmission along the peripheral and central nervous systems. Several studies have made significant advances toward determining the structure and dynamics of the lipid-exposed domains of the nAChR. However, a high-resolution atomic structure of the nAChR still remains elusive. In this study, we extended the Fourier transform coupled tryptophan scanning mutagenesis (FT-TrpScanM) approach to gain insight into the secondary structure of the δM3 transmembrane domain of the Torpedo californica nAChR, to monitor conformational changes experienced by this domain during channel gating, and to identify which lipid-exposed positions are linked to the regulation of ion channel kinetics. The perturbations produced by periodic tryptophan substitutions along the δM3 transmembrane domain were characterized by two-electrode voltage clamp and (125)I-labeled α-bungarotoxin binding assays. The periodicity profiles and Fourier transform spectra of this domain revealed similar helical structures for the closed- and open-channel states. However, changes in the oscillation patterns observed between positions Val-299 and Val-304 during transition between the closed- and open-channel states can be explained by the structural effects caused by the presence of a bending point introduced by a Thr-Gly motif at positions 300-301. The changes in periodicity and localization of residues between the closed-and open-channel states could indicate a structural transition between helix types in this segment of the domain. Overall, the data further demonstrate a functional link between the lipid-exposed transmembrane domain and the nAChR gating machinery.

  11. Fourier transform coupled tryptophan scanning mutagenesis identifies a bending point on the lipid-exposed δM3 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor

    Science.gov (United States)

    Caballero-Rivera, Daniel; Cruz-Nieves, Omar A; Oyola-Cintrón, Jessica; Torres-Núñez, David A; Otero-Cruz, José D

    2011-01-01

    The nicotinic acetylcholine receptor (nAChR) is a member of a family of ligand-gated ion channels that mediate diverse physiological functions, including fast synaptic transmission along the peripheral and central nervous systems. Several studies have made significant advances toward determining the structure and dynamics of the lipid-exposed domains of the nAChR. However, a high-resolution atomic structure of the nAChR still remains elusive. In this study, we extended the Fourier transform coupled tryptophan scanning mutagenesis (FT-TrpScanM) approach to gain insight into the secondary structure of the δM3 transmembrane domain of the Torpedo californica nAChR, to monitor conformational changes experienced by this domain during channel gating, and to identify which lipid-exposed positions are linked to the regulation of ion channel kinetics. The perturbations produced by periodic tryptophan substitutions along the δM3 transmembrane domain were characterized by two-electrode voltage clamp and 125I-labeled α-bungarotoxin binding assays. The periodicity profiles and Fourier transform spectra of this domain revealed similar helical structures for the closed- and open-channel states. However, changes in the oscillation patterns observed between positions Val-299 and Val-304 during transition between the closed- and open-channel states can be explained by the structural effects caused by the presence of a bending point introduced by a Thr-Gly motif at positions 300–301. The changes in periodicity and localization of residues between the closed-and open-channel states could indicate a structural transition between helix types in this segment of the domain. Overall, the data further demonstrate a functional link between the lipid-exposed transmembrane domain and the nAChR gating machinery. PMID:21785268

  12. Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast

    OpenAIRE

    Martí-Raga, M.; Guillamon, J.M.; Chiva, R.; García-Rios, E.; López-Malo, M.

    2014-01-01

    10.1002/btpr.1915 Low-temperature fermentations produce wines with greater aromatic complexity, but the success of these fermentations greatly depends on the adaptation of yeast cells to cold. Tryptophan has been previously reported to be a limiting amino acid during Saccharomyces cerevisiae growth at low temperature. The objective of this study was to determine the influence of the tryptophan metabolism on growth and fermentation performance during low-temperature wine fermentation. To t...

  13. Tryptophan-enriched antioxidant cereals improve sleep in children with autistic spectrum and attention deficit hyperactivity disorders

    OpenAIRE

    Galán, Carmen; Sánchez, Soledad; Franco, Lourdes; Bravo, Rafael; Rivero, Montserrat; Rodríguez, Ana Beatriz; Barriga, Carmen

    2017-01-01

    Theintake of foods rich in tryptophan produces beneficial effects on sleep. Themajority of children with neurological disorders like autistic spectrum disorder(ASD), cerebral palsy or attention deficit hyperactivity disorder (ADHD) havesleep problems. To evaluate the effect of tryptophan-enriched cereal intake onsleep of children with neurological disorders. Involving 7 children with ASD, 9children with cerebral palsy and 6 children with ADHD. They carried a wrist actimeterto record activity....

  14. Tryptophan-Derived Metabolites Are Required for Antifungal Defense in the Arabidopsis mlo2 Mutant1[C][W][OA

    Science.gov (United States)

    Consonni, Chiara; Bednarek, Paweł; Humphry, Matt; Francocci, Fedra; Ferrari, Simone; Harzen, Anne; Ver Loren van Themaat, Emiel; Panstruga, Ralph

    2010-01-01

    Arabidopsis (Arabidopsis thaliana) genes MILDEW RESISTANCE LOCUS O2 (MLO2), MLO6, and MLO12 exhibit unequal genetic redundancy with respect to the modulation of defense responses against powdery mildew fungi and the control of developmental phenotypes such as premature leaf decay. We show that early chlorosis and necrosis of rosette leaves in mlo2 mlo6 mlo12 mutants reflects an authentic but untimely leaf senescence program. Comparative transcriptional profiling revealed that transcripts of several genes encoding tryptophan biosynthetic and metabolic enzymes hyperaccumulate during vegetative development in the mlo2 mlo6 mlo12 mutant. Elevated expression levels of these genes correlate with altered steady-state levels of several indolic metabolites, including the phytoalexin camalexin and indolic glucosinolates, during development in the mlo2 single mutant and the mlo2 mlo6 mlo12 triple mutant. Results of genetic epistasis analysis suggest a decisive role for indolic metabolites in mlo2-conditioned antifungal defense against both biotrophic powdery mildews and a camalexin-sensitive strain of the necrotrophic fungus Botrytis cinerea. The wound- and pathogen-responsive callose synthase POWDERY MILDEW RESISTANCE4/GLUCAN SYNTHASE-LIKE5 was found to be responsible for the spontaneous callose deposits in mlo2 mutant plants but dispensable for mlo2-conditioned penetration resistance. Our data strengthen the notion that powdery mildew resistance of mlo2 genotypes is based on the same defense execution machinery as innate antifungal immune responses that restrict the invasion of nonadapted fungal pathogens. PMID:20023151

  15. [Characterisation of three polymorphisms of the tryptophan hydroxylase 2 gene in a sample of Colombian population with major depressive disorder].

    Science.gov (United States)

    Martínez-Idárraga, Adriana; Riveros-Barrera, Irene; Sánchez, Ricardo; Jaramillo, Luis Eduardo; Calvo-Gómez, José Manuel; Yunis-Londoño, Juan José

    Identify whether rs11179000, rs136494 and rs4570625 polymorphisms of the tryptophan hydroxylase 2 gene, are associated with a major depressive disorder in a sample of the Colombian population. Case-control study was conducted in which a comparison was made between subjects diagnosed with major depressive disorder at some point in adulthood or active symptoms at the time of evaluation, and subjects with no psychiatric disease. Subjects were studied in the Department of Psychiatry, Faculty of Medicine and the Institute of Genetics at the National University of Colombia. Polymorphisms were genotyped using Taqman probes in real time PCR. As well as studying the association between major depressive disorder and these (single nucleotide polymorphisms (SNPs), the association with other factors previously associated with depression were also analysed. No statistically significant association between genotypic and allelic frequencies of each polymorphism and major depressive disorder was found. Association between sex and complication during pregnancy / childbirth and major depressive disorder was observed. Association between sex and complication during pregnancy / childbirth and major depressive disorder was observed. There was no association between any polymorphism and major depressive disorder. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  16. Identification and characterization of a biosynthetic gene cluster for tryptophan dimers in deep sea-derived Streptomyces sp. SCSIO 03032.

    Science.gov (United States)

    Ma, Liang; Zhang, Wenjun; Zhu, Yiguang; Zhang, Guangtao; Zhang, Haibo; Zhang, Qingbo; Zhang, Liping; Yuan, Chengshan; Zhang, Changsheng

    2017-08-01

    Tryptophan dimers (TDs) are an important class of natural products with diverse bioactivities and share conserved biosynthetic pathways. We report the identification of a partial gene cluster (spm) responsible for the biosynthesis of a class of unusual TDs with non-planar skeletons including spiroindimicins (SPMs), indimicins (IDMs), and lynamicins (LNMs) from the deep-sea derived Streptomyces sp. SCSIO 03032. Bioinformatics analysis, targeted gene disruptions, and heterologous expression studies confirmed the involvement of the spm gene cluster in the biosynthesis of SPM/IDM/LNMs, and revealed the indispensable roles for the halogenase/reductase pair SpmHF, the amino acid oxidase SpmO, and the chromopyrrolic acid (CPA) synthase SpmD, as well as the positive regulator SpmR and the putative transporter SpmA. However, the spm gene cluster was unable to confer a heterologous host the ability to produce SPM/IDM/LNMs. In addition, the P450 enzyme SpmP and the monooxygenase SpmX2 were found to be non-relevant to the biosynthesis of SPM/IDM/LNMs. Sequence alignment and structure modeling suggested the lack of key conserved amino acid residues in the substrate-binding pocket of SpmP. Furthermore, feeding experiments in the non-producing ΔspmO mutant revealed several biosynthetic precursors en route to SPMs, indicating that key enzymes responsible for the biosynthesis of SPMs should be encoded by genes outside of the identified spm gene cluster. Finally, the biosynthetic pathways of SPM/IDM/LNMs are proposed to lay a basis for further insights into their intriguing biosynthetic machinery.

  17. Concatemerization increases the inhibitory activity of short, cell-penetrating, cationic and tryptophan-rich antifungal peptides.

    Science.gov (United States)

    López-García, Belén; Harries, Eleonora; Carmona, Lourdes; Campos-Soriano, Lidia; López, José Javier; Manzanares, Paloma; Gandía, Mónica; Coca, María; Marcos, Jose F

    2015-10-01

    There are short cationic and tryptophan-rich antifungal peptides such as the hexapeptide PAF26 (RKKWFW) that have selective toxicity and cell penetration properties against fungal cells. This study demonstrates that concatemeric peptides with tandem repeats of the heptapeptide PAF54 (which is an elongated PAF26 sequence) show increased fungistatic and bacteriostatic activities while maintaining the absence of hemolytic activity of the monomer. The increase in antimicrobial activity of the double-repeated PAF sequences (diPAFs), compared to the nonrepeated PAF, was higher (4-8-fold) than that seen for the triple-repeated sequences (triPAFs) versus the diPAFs (2-fold). However, concatemerization diminished the fungicidal activity against quiescent spores of the filamentous fungus Penicillium digitatum. Peptide solubility and sensitivity to proteolytic degradation were affected by the design of the concatemers: incorporation of the AGPA sequence hinge to separate PAF54 repeats increased solubility while the C-terminal addition of the KDEL sequence decreased in vitro stability. These results led to the design of the triPAF sequence PAF102 of 30 amino acid residues, with increased antimicrobial activity and minimal inhibitory concentration (MIC) value of 1-5 μM depending on the fungus. Further characterization of the mode-of-action of PAF102 demonstrated that it colocalizes first with the fungal cell wall, it is thereafter internalized in an energy dependent manner into hyphal cells of the filamentous fungus Fusarium proliferatum, and finally kills hyphal cells intracellularly. Therefore, PAF102 showed mechanistic properties against fungi similar to the parental PAF26. These observations are of high interest in the future development of PAF-based antimicrobial molecules optimized for their production in biofactories.

  18. Tryptophan-Assisted Synthesis Reduces Bimetallic Gold/Silver Nanoparticle Cytotoxicity and Improves Biological Activity

    Directory of Open Access Journals (Sweden)

    Igor O. Shmarakov

    2014-10-01

    Full Text Available Aiming to reduce the potential in vivo hepato-and nephrotoxicity of Ag/Au bimetallic nanoparticles (NPs stabilized by sodium dodecyl sulphate (SDS, an approach involving a simultaneous reduction of silver nitrate and tetrachlorauratic acid using tryptophan (Trp as a reducing/stabilizing agent was applied during NP synthesis. The obtained Ag/Au/Trp NPs (5–15 nm sized were able to form stable aggregates with an average size of 370–450 nm and were potentially less toxic than Ag/Au/SDS in relation to a mouse model system based on clinical biochemical parameters and oxidative damage product estimation. Ag/Au/Trp NPs were shown to exhibit anticancer activity in relation to a Lewis lung carcinoma model. The data generated from the present study support the fact that the use of tryptophan in NP synthesis is effective in attenuating the potential hepatotoxicity and nephrotoxicity of NPs during their in vivo application.

  19. Tryptophan metabolism: entering the field of aging and age-related pathologies.

    Science.gov (United States)

    van der Goot, Annemieke T; Nollen, Ellen A A

    2013-06-01

    Aging is an important risk factor for many debilitating diseases, including cancer and neurodegeneration. In model organisms, interfering with metabolic signaling pathways, including the insulin/insulin-like growth factor (IGF) 1 (IIS) and TOR pathways, can protect against age-related pathologies and increase lifespan. Recent studies in multiple organisms have implicated tryptophan metabolism as a powerful regulator of age-related diseases and lifespan. Its high conservation throughout evolution has enabled studies that begin to dissect the contribution of individual enzymes and metabolites. Here, we focus on the emerging view of tryptophan metabolism as a pathway that integrates environmental and metabolic signals to regulate animal biology and health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. L-Tryptophan on Cu(111): engineering a molecular labyrinth driven by indole groups

    Energy Technology Data Exchange (ETDEWEB)

    Yitamben, E. N.; Clayborne, A.; Darling, Seth B.; Guisinger, N. P.

    2015-05-21

    The present article investigates the adsorption and molecular orientation of L-Tryptophan, which is both an essential amino acid important for protein synthesis and of particular interest for the development of chiral molecular electronics and biocompatible processes and devices, on Cu(111) using scanning tunneling microscopy and spectroscopy at 55 K and at room temperature. The arrangement of chemisorbed L-Tryptophan on the copper surface varies with both temperature and surface coverage. At low coverage, small clusters form on the surface irrespective of temperature, while at high coverage an ordered chain structure emerges at room temperature, and a tightly packed structure forms a molecular labyrinth at low temperature. The dominating superstructure of the adsorbates arises from intermolecular hydrogen bonding, and pi-bonding interactions between the indole groups of neighboring molecules and the Cu surface.

  1. Synthesis and fungicidal activity of tryptophan analogues - the unexpected calycanthaceous alkaloid derivatives.

    Science.gov (United States)

    Zheng, Shaojun; Gu, Yongdong; Li, Longbo; Zhu, Rui; Cai, Xingwei; Bai, Hongjin; Zhang, Jiwen

    2017-05-01

    A series of 21 N-protected tryptophan derivatives were synthesised from tryptophan in good yields. Their structures were characterised by IR, 1 H NMR, 13 C NMR, DEPT (90° and 135°) and MS analysis. The synthesised compounds were evaluated against a wide variety of plant pathogen fungi. Compounds a19 and a21 displayed activity against Fusarium oxysporum (F. oxysporum), and compound a21 showed high activity against F. oxysporum and Eggplant Verticillium, with EC 50 values of 58.27 and 77.39 μg mL -1 , respectively. Considering that the bioassay of the title compounds was evaluated, effects of the chain alkyl substituents may contribute to the significant variations in fungicidal potency. Their structure-antifungal activity relationships were also discussed. These results will pave the way for further design, structural modification and development of calycanthaceous alkaloids as antimicrobial agents.

  2. Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues

    Directory of Open Access Journals (Sweden)

    Persson Bengt

    2010-10-01

    Full Text Available Abstract Background We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R and its ligand the tuberoinfundibular peptide of 39 residues (TIP39 by constructing a homology model of their complex. The two related peptides parathyroid hormone (PTH and parathyroid hormone related protein (PTHrP are compared with the complex to examine their interactions. Findings In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause internalisation. Conclusions A model is constructed for the complex and a trigger interaction for full agonistic activation between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.

  3. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    Science.gov (United States)

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  4. Gonadal hormone levels and platelet tryptophan and serotonin concentrations in perimenopausal women with or without depressive symptoms.

    Science.gov (United States)

    Flores-Ramos, Mónica; Moreno, Julia; Heinze, Gerhard; Aguilera-Pérez, Rafael; Pellicer Graham, Francisco

    2014-03-01

    The etiology of depressive symptoms associated with the transition to menopause is still unknown; hormonal changes, serotonergic system or insomnia, could be a trigger to depressive symptomatology. The aim of the present study was to evaluate gonadal hormonal levels, platelet serotonin concentrations and platelet tryptophan concentrations in a group of depressed perimenopausal women and their healthy counterparts. A total of 63 perimenopausal women between 45 and 55 years old were evaluated; of these, 44 were depressed patients, and 19 were perimenopausal women without depression. The instruments that were applied included the Center for Epidemiologic Studies Depression Scale (CES-D), the Hamilton Depression Rating Scale (HDRS) and the Green Climacteric Scale (GCS); gonadal hormone levels and platelet tryptophan and serotonin concentrations were measured in all participants. Differences in hormonal levels and tryptophan and serotonin concentrations were evaluated with respect to specific symptoms, such as insomnia, hot flashes, nervousness, depressed mood and loss of interest. No differences between groups were observed with respect to hormonal levels and tryptophan and serotonin concentrations; mean sleep hours and insomnia were significantly correlated with platelet tryptophan concentrations. In this sample, all symptoms of depression could not be explained by platelet tryptophan and serotonin concentrations and hormonal levels; differences were observed only when we evaluated insomnia and hot flashes.

  5. The tryptophan synthetase gene TRP1 of Nodulisporium sp.: molecular characterization and its relation to nodulisporic acid A production.

    Science.gov (United States)

    Ireland, C; Peekhaus, N; Lu, P; Sangari, R; Zhang, A; Masurekar, P; An, Z

    2008-06-01

    Nodulisporic acid A (NAA), an insecticidal indole diterpene, is produced by the fungus Nodulisporium sp. Since indole-3-glycerolphosphate is the precursor of the indole moiety of NAA, it is suggested that the activity of tryptophan synthetase may play a role in NAA biosynthesis. To investigate this hypothesis, the tryptophan synthetase gene TRP1 of Nodulisporium sp. was cloned and characterized. The gene consists of three introns of 146, 68, and 57 bp. The four exons encode a protein of 712 amino acids, the sequence of which is highly homologous to that of other fungal tryptophan synthetase proteins. The transcription initiation site was mapped 66 bp upstream to the ATG, and the polyA tail attachment site is 169 bp downstream to the translation stop codon. Replacement of the N-terminal half of the gene with a hygromycin selection marker yielded mutants with the tryptophan auxotroph/hygromycin-resistance (trp(-)/hyr) phenotype. The TRP1 mutants required a high concentration of tryptophan supplement in solid medium (10 mM) to sustain minimal growth and failed to produce NAA in the production medium (FFL-CAM) supplemented with high concentrations of tryptophan.

  6. Multiresponse optimization of a UPLC method for the simultaneous determination of tryptophan and 15 tryptophan-derived compounds using a Box-Behnken design with a desirability function.

    Science.gov (United States)

    Setyaningsih, Widiastuti; Saputro, Irfan E; Carrera, Ceferino A; Palma, Miguel; Barroso, Carmelo G

    2017-06-15

    A Box-Behnken design was used in conjunction with multiresponse optimization based on the desirability function to carry out the simultaneous separation of tryptophan and 15 derivatives by Ultra Performance Liquid Chromatography. The gradient composition of the mobile phase and the flow rate were optimized with respect to the resolution of severely overlapping chromatographic peaks and the total run time. Two different stationary phases were evaluated (hybrid silica and a solid-core-based C 18 column). The methods were validated and a suitable sensitivity was found for all compounds in the concentration range 1-100μgL -1 (R 2 >0.999). High levels of repeatability and intermediate precision (CV less than 0.25% and 1.7% on average for the retention time and the signal area, respectively) were obtained. The new method was applied to the determination tryptophan and its derivatives in black pigmented glutinous and non-glutinous rice grain samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Serum Levels of Tryptophan, 5-Hydroxytryptophan and Serotonin in Patients Affected with Different Forms of Amenorrhea

    Directory of Open Access Journals (Sweden)

    S. Comai

    2010-01-01

    Full Text Available Tryptophan (Trp is present in the serum, partly bound to albumine and in the free form. The unbound portion of circulating tryptophan has the property of crossing the hematoencephalic barrier and being converted within the brain into serotonin (5-HT through the enzymatic processes of hydroxylation and decarboxylation. The serotoninergic system plays an important role in neuroendocrine control of reproductive hormone secretion, and in particular, it may influence GnRH pulsatility, a function essential for reproductive processes. In this study, we analysed serum levels of tryptophan, serotonin and 5-hydroxytryptophan (5-HTP in women with three different forms of amenorrhea: 16 patients were diagnosed with anorexia nervosa, 60 patients with functional hypothalamic amenorrhea, and 14 patients with hyperprolactinemia. Data were compared with those of a group of 25 healthy women. Serum Trp levels were significantly (P ≤ 0.05 lower in the anorexic (11.64 ± 0.53 μg/ml, mean ± S.E. than in the control (12.98 ± 0.37 μg/ml groups. In addition, in the anorexic group a statistical dispersion of Trp values was shown indicating a bimodal data distribution suggesting the existence of two different subgroups of patients. Regarding 5-HTP, an increase of its serum level was observed in all the groups with amenorrhea with the highest value in hyperprolactinemic patients. On the contrary, no statistical differences in serum 5-HT levels among the four analyzed groups were observed. This study shows that women affected by various forms of amenorrhea present an altered metabolism of tryptophan via serotonin and, in particular, markedly high differences are observed between the two subgroups of anorexic patients.

  8. Serum Levels of Tryptophan, 5-Hydroxytryptophan and Serotonin in Patients Affected with Different Forms of Amenorrhea

    Directory of Open Access Journals (Sweden)

    S. Comai

    2010-06-01

    Full Text Available Tryptophan (Trp is present in the serum, partly bound to albumine and in the free form. The unbound portion of circulating tryptophan has the property of crossing the hematoencephalic barrier and being converted within the brain into serotonin (5-HT through the enzymatic processes of hydroxylation and decarboxylation. The serotoninergic system plays an important role in neuroendocrine control of reproductive hormone secretion, and in particular, it may influence GnRH pulsatility, a function essential for reproductive processes. In this study, we analysed serum levels of tryptophan, serotonin and 5-hydroxytryptophan (5-HTP in women with three different forms of amenorrhea: 16 patients were diagnosed with anorexia nervosa, 60 patients with functional hypothalamic amenorrhea, and 14 patients with hyperprolactinemia. Data were compared with those of a group of 25 healthy women. Serum Trp levels were significantly (P ≤ 0.05 lower in the anorexic (11.64 ± 0.53 µg/ml, mean ± S.E. than in the control (12.98 ± 0.37 µg/ml groups. In addition, in the anorexic group a statistical dispersion of Trp values was shown indicating a bimodal data distribution suggesting the existence of two different subgroups of patients. Regarding 5-HTP, an increase of its serum level was observed in all the groups with amenorrhea with the highest value in hyperprolactinemic patients. On the contrary, no statistical differences in serum 5-HT levels among the four analyzed groups were observed. This study shows that women affected by various forms of amenorrhea present an altered metabolism of tryptophan via serotonin and, in particular, markedly high differences are observed between the two subgroups of anorexic patients.

  9. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism.

    Science.gov (United States)

    Gevi, Federica; Zolla, Lello; Gabriele, Stefano; Persico, Antonio M

    2016-01-01

    Autism spectrum disorder (ASD) is still diagnosed through behavioral observation, due to a lack of laboratory biomarkers, which could greatly aid clinicians in providing earlier and more reliable diagnoses. Metabolomics on human biofluids provides a sensitive tool to identify metabolite profiles potentially usable as biomarkers for ASD. Initial metabolomic studies, analyzing urines and plasma of ASD and control individuals, suggested that autistic patients may share some metabolic abnormalities, despite several inconsistencies stemming from differences in technology, ethnicity, age range, and definition of "control" status. ASD-specific urinary metabolomic patterns were explored at an early age in 30 ASD children and 30 matched controls (age range 2-7, M:F = 22:8) using hydrophilic interaction chromatography (HILIC)-UHPLC and mass spectrometry, a highly sensitive, accurate, and unbiased approach. Metabolites were then subjected to multivariate statistical analysis and grouped by metabolic pathway. Urinary metabolites displaying the largest differences between young ASD and control children belonged to the tryptophan and purine metabolic pathways. Also, vitamin B 6 , riboflavin, phenylalanine-tyrosine-tryptophan biosynthesis, pantothenate and CoA, and pyrimidine metabolism differed significantly. ASD children preferentially transform tryptophan into xanthurenic acid and quinolinic acid (two catabolites of the kynurenine pathway), at the expense of kynurenic acid and especially of melatonin. Also, the gut microbiome contributes to altered tryptophan metabolism, yielding increased levels of indolyl 3-acetic acid and indolyl lactate. The metabolic pathways most distinctive of young Italian autistic children largely overlap with those found in rodent models of ASD following maternal immune activation or genetic manipulations. These results are consistent with the proposal of a purine-driven cell danger response, accompanied by overproduction of epileptogenic and

  10. Predictive and prognostic role of serum neopterin and tryptophan breakdown in prostate cancer.

    Science.gov (United States)

    Pichler, Renate; Fritz, Josef; Heidegger, Isabel; Steiner, Eberhard; Culig, Zoran; Klocker, Helmut; Fuchs, Dietmar

    2017-04-01

    The γ-interferon-induced enzymes indoleamine 2,3-dioxygenase and GTP-cyclohydrolase are key players in tumor immune escape mechanisms. We quantified serum levels of neopterin and tryptophan breakdown (tryptophan, kynurenine, and kynurenine-to-tryptophan ratio) in addition to prostate-specific antigen (PSA) in newly diagnosed prostate cancer (PCa) patients (n = 100) before radical prostatectomy (RP) as well as at time of biochemical recurrence (BCR) after RP (n = 50) in comparison to healthy men (n = 49). Effects of biomarkers on the risk of PCa diagnosis on transrectal biopsy, worse histopathological characteristics of the RP specimens, and cancer-specific survival (CSS) after BCR were investigated. Neopterin (hazard ratio [HR], 2.46; 95% confidence interval [CI], 1.08-5.61; P = 0.032) and kynurenine (HR, 2.93; 95% CI, 1.26-6.79; P = 0.012) levels were univariately associated with CSS. When adjusted for other biomarkers, only neopterin remained an independent predictor of CSS (HR, 2.56; 95% CI, 1.07-6.12; P = 0.035). Only PSA was associated with an increased risk of PCa diagnosis on biopsy, univariately (odds ratio, 3.14; 95% CI, 1.68-5.88; P tryptophan breakdown cannot be considered as biomarkers in detecting PCa or in predicting worse final pathological findings, neopterin levels are useful for stratifying patients into different prognostic groups after BCR. © 2017 The Authors Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Effect of tryptophan enriched diets on aggression in hierarchical groups of juvenile Atlantic salmon (Salmo salar)

    OpenAIRE

    Vindas Alvarado, Marco Antonio

    2010-01-01

    Aggression in fish hierarchies often leads to one dominant individual monopolizing resources (food/shelter), thus increasing their fitness. Meanwhile individuals in subordinate ranks, endure high stressful conditions, which often lead to disease and higher mortality rates. Levels of serotonin have been linked to agonistic behavior. Enriching fish diets with tryptophan (TRP), the natural precursor for serotonin, has been used in several vertebrate species in order to control agg...

  12. Physiological roles of tryptophan in teleosts: current knowledge and perspectives for future studies

    DEFF Research Database (Denmark)

    Hoseini, Seyyed Morteza; Pérez-Jiménez, Amelia; Costas, Benjamin

    2017-01-01

    from the neuroendocrine to the immune system in vertebrates. In aquaculture, extensive research has been performed to optimize the levels of tryptophan in the commercial diets for many fish species. Providing adequate levels of this amino acid is critically important for fish growth but also for fish......- mediated functions, along with its participation in the regulation of the immune system and its role as an antioxidant and antitoxic agent in fish....

  13. Spectrofluorometric and Molecular Modeling Studies on Binding of Nitrite Ion with Bovine Hemoglobin: Effect of Nitrite Ion on Amino Acid Residues

    Science.gov (United States)

    Madrakian, T.; Bagheri, H.; Afkhami, A.

    2015-05-01

    The interaction between nitrite ion and bovine hemoglobin was investigated by a spectrofluorometric technique. The experimental results indicated that the interaction causes a static quenching of the fluorescence of bovine hemoglobin, that the binding reaction is spontaneous, and that H-bonding interactions play a major role in binding of this ion to bovine hemoglobin. The formation constant for this interaction was calculated. Based on Förster's theory of nonradiative energy transfer, the binding distance between this ion and bovine hemoglobin was determined. Furthermore, the interaction of nitrite ion with tyrosine and tryptophan was investigated with synchronous fluorescence. There was no significant shift of the maximum emission wavelength with interactions of the mentioned ion with bovine hemoglobin, which implies that interaction of nitrite ion with bovine hemoglobin does not affect the microenvironment around the tryptophan and tyrosine residues. Furthermore, the effect of nitrite ion on amino acid residues of bovine hemoglobin was studied by a molecular docking technique.

  14. Agricultural pesticide residues

    International Nuclear Information System (INIS)

    Fuehr, F.

    1984-01-01

    The utilization of tracer techniques in the study of agricultural pesticide residues is reviewed under the following headings: lysimeter experiments, micro-ecosystems, translocation in soil, degradation of pesticides in soil, biological availability of soil-applied substances, bound residues in the soil, use of macro- and microautography, double and triple labelling, use of tracer labelling in animal experiments. (U.K.)

  15. Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi.

    Science.gov (United States)

    Romani, Luigina; Zelante, Teresa; De Luca, Antonella; Iannitti, Rossana G; Moretti, Silvia; Bartoli, Andrea; Aversa, Franco; Puccetti, Paolo

    2014-11-01

    An increased understanding of the importance of microbiota in shaping the host's immune and metabolic activities has rendered fungal interactions with their hosts more complex than previously appreciated. The aryl hydrocarbon receptor (AhR) has a pivotal role in connecting tryptophan catabolism by microbial communities and the host's own pathway of tryptophan metabolite production with the orchestration of T-cell function. AhR activation by a Lactobacillus-derived AhR ligand leads to the production of IL-22 to the benefit of mucosal defense mechanisms, an activity upregulated in the absence of the host tryptophan catabolic enzyme, indoleamine 2,3-dioxygenase 1 (IDO1), which is required for protection from fungal diseases ("disease tolerance"). As AhR activation in turn leads to the activation-in a feedback fashion-of IDO1, the regulatory loop involving AhR and IDO1 may have driven the coevolution of commensal fungi with the mammalian immune system and the microbiota, to the benefit of host survival and fungal commensalism. This review will discuss the essential help the microbiota provides in controlling the balance between the dual nature of the fungal-host relationship, namely, commensalism vs. infection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism

    Directory of Open Access Journals (Sweden)

    Dietmar Fuchs

    2010-08-01

    Full Text Available Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects. Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC and the non-psychotropic cannabidiol (CBD modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC. The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO, suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system. Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling. We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.

  17. Tryptophan PET Imaging of the Kynurenine Pathway in Patient-Derived Xenograft Models of Glioblastoma.

    Science.gov (United States)

    Guastella, Anthony R; Michelhaugh, Sharon K; Klinger, Neil V; Kupsky, William J; Polin, Lisa A; Muzik, Otto; Juhász, Csaba; Mittal, Sandeep

    2016-01-01

    Increasing evidence demonstrates the immunosuppressive kynurenine pathway's (KP) role in the pathophysiology of human gliomas. To study the KP in vivo, we used the noninvasive molecular imaging tracer α-[(11)C]-methyl-l-tryptophan (AMT). The AMT-positron emission tomography (PET) has shown high uptake in high-grade gliomas and predicted survival in patients with recurrent glioblastoma (GBM). We generated patient-derived xenograft (PDX) models from dissociated cells, or tumor fragments, from 5 patients with GBM. Mice bearing subcutaneous tumors were imaged with AMT-PET, and tumors were analyzed to detect the KP enzymes indoleamine 2,3-dioxygenase (IDO) 1, IDO2, tryptophan 2,3-dioxygenase, kynureninase, and kynurenine 3-monooxygenase. Overall, PET imaging showed robust tumoral AMT uptake in PDX mice with prolonged tracer accumulation over 60 minutes, consistent with AMT trapping seen in humans. Immunostained tumor tissues demonstrated positive detection of multiple KP enzymes. Furthermore, intracranial implantation of GBM cells was performed with imaging at both 9 and 14 days postimplant, with a marked increase in AMT uptake at 14 days and a corresponding high level of tissue immunostaining for KP enzymes. These results indicate that our PDX mouse models recapitulate human GBM, including aberrant tryptophan metabolism, and offer an in vivo system for development of targeted therapeutics for patients with GBM. © The Author(s) 2016.

  18. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway.

    Science.gov (United States)

    Brunke, Sascha; Seider, Katja; Almeida, Ricardo Sergio; Heyken, Antje; Fleck, Christian Benjamin; Brock, Matthias; Barz, Dagmar; Rupp, Steffen; Hube, Bernhard

    2010-04-01

    Pigments contribute to the pathogenicity of many fungi, mainly by protecting fungal cells from host defence activities. Here, we have dissected the biosynthetic pathway of a tryptophan-derived pigment of the human pathogen Candida glabrata, identified key genes involved in pigment production and have begun to elucidate the possible biological function of the pigment. Using transcriptional analyses and a transposon insertion library, we have identified genes associated with pigment production. Targeted deletion mutants revealed that the pigment is a by-product of the Ehrlich pathway of tryptophan degradation: a mutant lacking a tryptophan-upregulated aromatic aminotransferase (Aro8) displayed significantly reduced pigmentation and a recombinantly expressed version of this protein was sufficient for pigment production in vitro. Pigment production is tightly regulated as the synthesis is affected by the presence of alternative nitrogen sources, carbon sources, cyclic AMP and oxygen. Growth of C. glabrata on pigment inducing medium leads to an increased resistance to hydrogen peroxide, an effect which was not observed with a mutant defective in pigmentation. Furthermore, pigmented yeast cells had a higher survival rate when exposed to human neutrophils and caused increased damage in a monolayer model of human epithelia, indicating a possible role of pigmentation during interactions with host cells.

  19. Effect of sodium saccharin and L-tryptophan on rat urine during bladder carcinogenesis.

    Science.gov (United States)

    Demers, D M; Fukushima, S; Cohen, S M

    1981-01-01

    We examined several parameters of urine excretion during a two-year initiation-promotion experiment in male Fischer rats using four weeks of N-[4-(5-nitro-2-furyl)-2-thiazoly]formamide at 0.2% of the diet as the initiating agent and either 5% sodium saccharin or 2% L-tryptophan in the diet as promoting agents. Rats fed sodium saccharin increased their intake of water; this was accompanied by diarrhea and an increased urinary volume. Osmolality was decreased slightly. The total amount of sodium excreted was increased, although the concentration in the urine was similar to that of the controls or slightly increased. No abnormalities were observed in urinary potassium, calcium, urea, or other parameters measured except for the pH, which was slightly increased during the first three months of the experiment. There was no increase in the size or concentration of crystals in the urine of rats fed sodium saccharin, and no calculi were observed. Hypoglycemia and hypoglycosuria were present in sodium saccharin-fed rats and to a lesser extent in L-tryptophan-fed rats. No other abnormalities were seen in the urine of rats fed L-tryptophan. These data suggest that none of the urinary factors measured in our experiment, including crystal and calculus formation, correlated with the induction of urinary bladder lesions by sodium saccharin.

  20. Influence of amino acid residues near the active site of cytochrome P450 from Bacillus megaterium on the selectivity of n-octane oxidation to octanol regioisomers

    Science.gov (United States)

    Miyaji, Akimitsu; Baba, Toshihide

    2017-09-01

    A mutant of cytochrome P450 from Bacillus megaterium (CYP450BM-3) was prepared by replacing two alanine residues around active site of the enzyme, alanine 328 and alanine 82, with leucine and tryptophan, respectively. The CYP450BM-3 mutant produced 2-octanol selectively from n-octane under atmospheric temperature and pressure; its selectivity was 74%. Furthermore, the mutant produced 1-octanol, which is not produced by wild-type enzyme.

  1. [Effect of pps and aroGfbr overexpression on L-tryptophan production in Corynebacterium pekinense].

    Science.gov (United States)

    Zang, Chuangang; Zhao, Zhi; Wang, Yu; Zhang, Yingzi; Ding, Jiuyuan

    2014-01-04

    In order to redirect carbon flows into aromatic amino acids biosynthesis pathway and further improve the production of L-tryptophan in Corynebacterium pekinense PD-67, two schemes were implemented. First, the supply of phosphoenolpyruvate (PEP), one of precursors of L-tryptophan biosynthesis, was increased. Second, the feedback inhibition of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DS), a key enzyme in the aromatic amino acids biosynthesis, was relieved and the activity of DS was increased. The phosphoenolpyruvate synthase gene (pps) was cloned from C. pekinense PD-67 chromosome by PCR and inserted into expression vector to construct a recombinant plasmid pXPPS; the aroG gene encoding DS isozymes was cloned from Escherichia coli chromosome by PCR and the mutation of Leu175Asp was introduced by site-directed mutagenesis using sequence-overlap extension PCR. The mutated gene named as aroGfbr was cloned to expression vector to construct a recombinant plasmid pXA; and the recombinant plasmid pXAPS co-expressing pps and aroGfbr was constructed. The three recombinant plasmids were transformed into PD-67 to generate the engineering strains PD-67/pXPS, PD-67/pXA and PD-67/pXAPS, respectively. The fermentation characteristics of the three engineering strains were investigated. The expression of pps and aroGfbr was confirmed by enzyme activity assays. The deregulation of feedback inhibition of AroGfbr was confirmed by determining DS activity in the presence of three aromatic amino acids. The overexpression of pps and aroGfbr resulted in an increase of L-tryptophan biosynthesis by 12.1% and 26.8%, respectively, while the co-expression of two genes increased the production of L-tryptophan by 35.9% in the engineering strain PD-67/pXAPS. Both of the overexpressions of the pps gene and aroGfbr gene can increase L-tryptophan biosynthesis, while the production was further improved by the co-expression of the two genes.

  2. Nutritional Stress Induced by Tryptophan-Degrading Enzymes Results in ATF4-Dependent Reprogramming of the Amino Acid Transporter Profile in Tumor Cells.

    Science.gov (United States)

    Timosenko, Elina; Ghadbane, Hemza; Silk, Jonathan D; Shepherd, Dawn; Gileadi, Uzi; Howson, Lauren J; Laynes, Robert; Zhao, Qi; Strausberg, Robert L; Olsen, Lars R; Taylor, Stephen; Buffa, Francesca M; Boyd, Richard; Cerundolo, Vincenzo

    2016-11-01

    Tryptophan degradation is an immune escape strategy shared by many tumors. However, cancer cells' compensatory mechanisms remain unclear. We demonstrate here that a shortage of tryptophan caused by expression of indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) resulted in ATF4-dependent upregulation of several amino acid transporters, including SLC1A5 and its truncated isoforms, which in turn enhanced tryptophan and glutamine uptake. Importantly, SLC1A5 failed to be upregulated in resting human T cells kept under low tryptophan conditions but was enhanced upon cognate antigen T-cell receptor engagement. Our results highlight key differences in the ability of tumor and T cells to adapt to tryptophan starvation and provide important insights into the poor prognosis of tumors coexpressing IDO and SLC1A5. Cancer Res; 76(21); 6193-204. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Handling of Solid Residues

    International Nuclear Information System (INIS)

    Medina Bermudez, Clara Ines

    1999-01-01

    The topic of solid residues is specifically of great interest and concern for the authorities, institutions and community that identify in them a true threat against the human health and the atmosphere in the related with the aesthetic deterioration of the urban centers and of the natural landscape; in the proliferation of vectorial transmitters of illnesses and the effect on the biodiversity. Inside the wide spectrum of topics that they keep relationship with the environmental protection, the inadequate handling of solid residues and residues dangerous squatter an important line in the definition of political and practical environmentally sustainable. The industrial development and the population's growth have originated a continuous increase in the production of solid residues; of equal it forms, their composition day after day is more heterogeneous. The base for the good handling includes the appropriate intervention of the different stages of an integral administration of residues, which include the separation in the source, the gathering, the handling, the use, treatment, final disposition and the institutional organization of the administration. The topic of the dangerous residues generates more expectation. These residues understand from those of pathogen type that are generated in the establishments of health that of hospital attention, until those of combustible, inflammable type, explosive, radio-active, volatile, corrosive, reagent or toxic, associated to numerous industrial processes, common in our countries in development

  4. Tryptophan degradation in irritable bowel syndrome: evidence of indoleamine 2,3-dioxygenase activation in a male cohort

    Directory of Open Access Journals (Sweden)

    Cryan John F

    2009-01-01

    Full Text Available Abstract Background Irritable bowel syndrome (IBS is a common disorder that affects 10–15% of the population. Although characterised by a lack of reliable biological markers, the disease state is increasingly viewed as a disorder of the brain-gut axis. In particular, accumulating evidence points to the involvement of both the central and peripheral serotonergic systems in disease symptomatology. Furthermore, altered tryptophan metabolism and indoleamine 2,3-dioxygenase (IDO activity are hallmarks of many stress-related disorders. The kynurenine pathway of tryptophan degradation may serve to link these findings to the low level immune activation recently described in IBS. In this study, we investigated tryptophan degradation in a male IBS cohort (n = 10 and control subjects (n = 26. Methods Plasma samples were obtained from patients and healthy controls. Tryptophan and its metabolites were measured by high performance liquid chromatography (HPLC and neopterin, a sensitive marker of immune activation, was measured using a commercially available ELISA assay. Results Both kynurenine levels and the kynurenine:tryptophan ratio were significantly increased in the IBS cohort compared with healthy controls. Neopterin was also increased in the IBS subjects and the concentration of the neuroprotective metabolite kynurenic acid was decreased, as was the kynurenic acid:kynurenine ratio. Conclusion These findings suggest that the activity of IDO, the immunoresponsive enzyme which is responsible for the degradation of tryptophan along this pathway, is enhanced in IBS patients relative to controls. This study provides novel evidence for an immune-mediated degradation of tryptophan in a male IBS population and identifies the kynurenine pathway as a potential source of biomarkers in this debilitating condition.

  5. Twins labeling-liquid chromatography/mass spectrometry based metabolomics for absolute quantification of tryptophan and its key metabolites.

    Science.gov (United States)

    Guo, Huimin; Jiao, Yu; Wang, Xu; Lu, Tao; Zhang, Zunjian; Xu, Fengguo

    2017-06-30

    Tryptophan metabolism plays a crucial role in mediating gastrointestinal function. Here, in order to absolutely quantify tryptophan and its metabolites, a liquid chromatography-mass spectrometry (LC-MS) based targeted metabolomics approach was developed using N-dimethyl-/N-diethyl-amino naphthalene-1-sulfonyl chloride (Dns/Dens-Cl) as twins labeling (TL) reagents. Dns-Cl is famous in amine and phenol derivations, and structure is similar with Dens-Cl. The introduction of easily protonated moiety of tertiary ammonium-containing part in the derivatives from Dns to tryptophan and its metabolites not only improved the LC separation but also enhanced their MS response. In addition, the Dens labeled standards were used as internal standards to compensate for matrix effects and ensure accurate quantifications. With the proposed method, twelve metabolites in tryptophan pathway could be detected at sub-ng/mL levels using only 20μL rat serum (the limit of detection could reach 3pg/mL for tryptamine, N-acetyl-serotonin and 6-hydroxymelatonin). The sensitivity was enhanced about 1-2 orders of magnitude compared with non-derivatization method. Focusing on tryptophan pathway, the method was successfully applied to determine the absolute serum concentrations of twelve tryptophan metabolites in a vincristine-induced ileus rat model. A significant down-regulation of the tryptophan metabolism along the kynurenine pathway and up-regulation of serotonin pathway were uncovered. Our findings provide a deeper insight into the mechanism of gastrointestinal dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans.

    Science.gov (United States)

    Bravo, R; Matito, S; Cubero, J; Paredes, S D; Franco, L; Rivero, M; Rodríguez, A B; Barriga, C

    2013-08-01

    Melatonin and serotonin rhythms, which exhibit a close association with the endogenous circadian component of sleep, are attenuated with increasing age. This decrease seems to be linked to sleep alterations in the elderly. Chrononutrition is a field of chronobiology that establishes the principle of consuming foodstuffs at times of the day when they are more useful for health, improving, therefore, biorhythms and physical performance. Our aim was to analyze whether the consumption of cereals enriched with tryptophan, the precursor of both serotonin and melatonin, may help in the reconsolidation of the sleep/wake cycle and counteract depression and anxiety in 35 middle-aged/elderly (aged 55-75 year) volunteers in a simple blind assay. Data were collected for 3 weeks according to the following schedule: The control week participants consumed standard cereals (22.5 mg tryptophan in 30 g cereals per dose) at breakfast and dinner; for the treatment week, cereals enriched with a higher dose of tryptophan (60 mg tryptophan in 30 g cereals per dose) were eaten at both breakfast and dinner; the posttreatment week volunteers consumed their usual diet. Each participant wore a wrist actimeter that logged activity during the whole experiment. Urine was collected to analyze melatonin and serotonin urinary metabolites and to measure total antioxidant capacity. The consumption of cereals containing the higher dose in tryptophan increased sleep efficiency, actual sleep time, immobile time, and decreased total nocturnal activity, sleep fragmentation index, and sleep latency. Urinary 6-sulfatoxymelatonin, 5-hydroxyindoleacetic acid levels, and urinary total antioxidant capacity also increased respectively after tryptophan-enriched cereal ingestion as well as improving anxiety and depression symptoms. Cereals enriched with tryptophan may be useful as a chrononutrition tool for alterations in the sleep/wake cycle due to age.

  7. Peripheral Serotonin 1B Receptor Transcription Predicts the Effect of Acute Tryptophan Depletion on Risky Decision-Making.

    Science.gov (United States)

    Faulkner, Paul; Mancinelli, Federico; Lockwood, Patricia L; Matarin, Mar; Dolan, Raymond J; Wood, Nick W; Dayan, Peter; Roiser, Jonathan P

    2017-01-01

    The effects of acute tryptophan depletion on human decision-making suggest that serotonin modulates the processing of rewards and punishments. However, few studies have assessed which of the many types of serotonin receptors are responsible. Using a within-subject, double-blind, sham-controlled design in 26 subjects, we examined whether individual differences in serotonin system gene transcription, measured in peripheral blood, predicted the effect of acute tryptophan depletion on decision-making. Participants performed a task in which they chose between successive pairs of fixed, lower-stakes (control) and variable, higher-stakes (experimental) gambles, each involving wins or losses. In 21 participants, mRNA from 9 serotonin system genes was measured in whole blood prior to acute tryptophan depletion: 5-HT1B, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT3A, 5-HT3E, 5-HT7 (serotonin receptors), 5-HTT (the serotonin transporter), and tryptophan hydroxylase 1. Acute tryptophan depletion did not significantly influence participants' sensitivity to probability, wins, or losses, although there was a trend for a lower tendency to choose experimental gambles overall following depletion. Significant positive correlations, which survived correction for multiple comparisons, were detected between baseline 5-HT1B mRNA levels and acute tryptophan depletion-induced increases in both the overall tendency to choose the experimental gamble and sensitivity to wins. No significant relationship was observed with any other peripheral serotonin system markers. Computational analyses of decision-making data provided results consistent with these findings. These results suggest that the 5-HT1B receptor may modulate the effects of acute tryptophan depletion on risky decision-making. Peripheral levels of serotonin markers may predict response to treatments that act upon the serotonin system, such as selective serotonin reuptake inhibitors. © The Author 2016. Published by Oxford University Press on behalf

  8. A simple two step procedure for purification of the catalytic domain of chicken tryptophan hydroxylase 1 in a form suitable for crystallization

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Petersen, Charlotte R.; Munch, Astrid

    2008-01-01

    Tryptophan hydroxylase (TPH) [EC 1.14.16.4] catalyzes the conversion of tryptophan to 5-hydroxytryptophan, which is the first and rate-determining step in the biosynthesis of the neurotransmitter serotonin. We have expressed the catalytic domain of chicken (Gallus gallus) TPH isoform 1 in Escheri......Tryptophan hydroxylase (TPH) [EC 1.14.16.4] catalyzes the conversion of tryptophan to 5-hydroxytryptophan, which is the first and rate-determining step in the biosynthesis of the neurotransmitter serotonin. We have expressed the catalytic domain of chicken (Gallus gallus) TPH isoform 1...

  9. Frontline Science: Tryptophan restriction arrests B cell development and enhances microbial diversity in WT and prematurely agingErcc1-/Δ7mice.

    Science.gov (United States)

    van Beek, Adriaan A; Hugenholtz, Floor; Meijer, Ben; Sovran, Bruno; Perdijk, Olaf; Vermeij, Wilbert P; Brandt, Renata M C; Barnhoorn, Sander; Hoeijmakers, Jan H J; de Vos, Paul; Leenen, Pieter J M; Hendriks, Rudi W; Savelkoul, Huub F J

    2017-04-01

    With aging, tryptophan metabolism is affected. Tryptophan has a crucial role in the induction of immune tolerance and the maintenance of gut microbiota. We, therefore, studied the effect of dietary tryptophan restriction in young wild-type (WT) mice (118-wk life span) and in DNA-repair deficient, premature-aged ( Ercc1 -/Δ7 ) mice (20-wk life span). First, we found that the effect of aging on the distribution of B and T cells in bone marrow (BM) and in the periphery of 16-wk-old Ercc1 -/Δ7 mice was comparable to that in 18-mo-old WT mice. Dietary tryptophan restriction caused an arrest of B cell development in the BM, accompanied by diminished B cell frequencies in the periphery. In general, old Ercc1 -/Δ7 mice showed similar responses to tryptophan restriction compared with young WT mice, indicative of age-independent effects. Dietary tryptophan restriction increased microbial diversity and made the gut microbiota composition of old Ercc1 -/Δ7 mice more similar to that of young WT mice. The decreased abundances of Alistipes and Akkermansia spp. after dietary tryptophan restriction correlated significantly with decreased B cell precursor numbers. In conclusion, we report that dietary tryptophan restriction arrests B cell development and concomitantly changes gut microbiota composition. Our study suggests a beneficial interplay between dietary tryptophan, B cell development, and gut microbial composition on several aspects of age-induced changes. © Society for Leukocyte Biology.

  10. Residual stress field of ballised holes

    International Nuclear Information System (INIS)

    Lai, Man On; He, Zhimin

    2012-01-01

    Ballising, involving pushing a slightly over-sized ball made of hard material through a hole, is a kind of cold working process. Applying ballising process to fastener holes produces compressive residual stress on the edge of the holes, and therefore increases the fatigue life of the components or structures. Quantification of the residual stress field is critical to define and precede the ballising process. In this article, the ballised holes are modeled as cold-expanded holes. Elastic-perfectly plastic theory is employed to analyze the holes with cold expansion process. For theoretical simplification, an axially symmetrical thin plate with a cold expanded hole is assumed. The elasticplastic boundaries and residual stress distribution surrounding the cold expanded hole are derived. With the analysis, the residual stress field can be obtained together with actual cold expansion process in which only the diameters of hole before and after cold expansion need to be measured. As it is a non-destructive method, it provides a convenient way to estimate the elastic-plastic boundaries and residual stresses of cold worked holes. The approach is later extended to the case involving two cold-worked holes. A ballised hole is looked upon as a cold expanded hole and therefore is investigated by the approach. Specimens ballised with different interference levels are investigated. The effects of interference levels and specimen size on residual stresses are studied. The overall residual stresses of plates with two ballised holes are obtained by superposing the residual stresses induced on a single ballised hole. The effects of distance between the centers of the two holes with different interference levels on the residual stress field are revealed

  11. TENORM: Wastewater Treatment Residuals

    Science.gov (United States)

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  12. Residuation in orthomodular lattices

    Directory of Open Access Journals (Sweden)

    Chajda Ivan

    2017-04-01

    Full Text Available We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one.

  13. Characterization of Hospital Residuals

    International Nuclear Information System (INIS)

    Blanco Meza, A.; Bonilla Jimenez, S.

    1997-01-01

    The main objective of this investigation is the characterization of the solid residuals. A description of the handling of the liquid and gassy waste generated in hospitals is also given, identifying the source where they originate. To achieve the proposed objective the work was divided in three stages: The first one was the planning and the coordination with each hospital center, in this way, to determine the schedule of gathering of the waste can be possible. In the second stage a fieldwork was made; it consisted in gathering the quantitative and qualitative information of the general state of the handling of residuals. In the third and last stage, the information previously obtained was organized to express the results as the production rate per day by bed, generation of solid residuals for sampled services, type of solid residuals and density of the same ones. With the obtained results, approaches are settled down to either determine design parameters for final disposition whether for incineration, trituration, sanitary filler or recycling of some materials, and storage politics of the solid residuals that allow to determine the gathering frequency. The study concludes that it is necessary to improve the conditions of the residuals handling in some aspects, to provide the cleaning personnel of the equipment for gathering disposition and of security, minimum to carry out this work efficiently, and to maintain a control of all the dangerous waste, like sharp or polluted materials. In this way, an appreciable reduction is guaranteed in the impact on the atmosphere. (Author) [es

  14. Regular moderate or intense exercise prevents depression-like behavior without change of hippocampal tryptophan content in chronically tryptophan-deficient and stressed mice.

    Directory of Open Access Journals (Sweden)

    Hosung Lee

    Full Text Available Regular exercise has an antidepressant effect in human subjects. Studies using animals have suggested that the antidepressant effect of exercise is attributable to an increase of brain 5-hydroxytryptamine (5-HT; however, the precise mechanism underlying the antidepressant action via exercise is unclear. In contrast, the effect of 5-HT on antidepressant activity has not been clarified, in part because the therapeutic response to antidepressant drugs has a time lag in spite of the rapid increase of brain 5-HT upon administration of these drugs. This study was designed to investigate the contribution of brain 5-HT to the antidepressant effect of exercise. Mice were fed a tryptophan-deficient diet and stressed using chronic unpredictable stress (CUS for 4 weeks with or without the performance of either moderate or intense exercise on a treadmill 3 days per week. The findings demonstrated that the onset of depression-like behavior is attributable not to chronic reduction of 5-HT but to chronic stress. Regular exercise, whether moderate or intense, prevents depression-like behavior with an improvement of adult hippocampal cell proliferation and survival and without the recovery of 5-HT. Concomitantly, the mice that exercised showed increased hippocampal noradrenaline. Regular exercise prevents the impairment of not long-term memory but short-term memory in a 5-HT-reduced state. Together, these findings suggest that: (1 chronic reduction of brain 5-HT may not contribute to the onset of depression-like behavior; (2 regular exercise, whether moderate or intense, prevents the onset of chronic stress-induced depression-like behavior independent of brain 5-HT and dependent on brain adrenaline; and (3 regular exercise prevents chronic tryptophan reduction-induced impairment of not long-term but short-term memory.

  15. Mapping Residual Structure in Intrinsically Disordered Proteins at Residue Resolution Using Millisecond Hydrogen/Deuterium Exchange and Residue Averaging

    Science.gov (United States)

    Keppel, Theodore R.; Weis, David D.

    2015-04-01

    Measurement of residual structure in intrinsically disordered proteins can provide insights into the mechanisms by which such proteins undergo coupled binding and folding. The present work describes an approach to measure residual structure in disordered proteins using millisecond hydrogen/deuterium (H/D) exchange in a conventional bottom-up peptide-based workflow. We used the exchange mid-point, relative to a totally deuterated control, to quantify the rate of H/D exchange in each peptide. A weighted residue-by-residue average of these midpoints was used to map the extent of residual structure at near single-residue resolution. We validated this approach both by simulating a disordered protein and experimentally using the p300 binding domain of ACTR, a model disordered protein already well-characterized by other approaches. Secondary structure elements mapped in the present work are in good agreement with prior nuclear magnetic resonance measurements. The new approach was somewhat limited by a loss of spatial resolution and subject to artifacts because of heterogeneities in intrinsic exchange. Approaches to correct these limitations are discussed.

  16. Schiff bases derived from L-Tyrosine L-Tryptophan and their Cu(II) chelates as effective means for preventive-treatment of radiation injuries

    International Nuclear Information System (INIS)

    Malakyan, M.H.; Bajinyan, S.A.; Matosyan, V.H.; Tonoyan, V.J.; Babayan, K.N.; Boyajyan, A.S.; Yeghiazaryan, D.E.; Vardevanyan, L.A.; Sorenson, J.R.J.

    2008-01-01

    Full text: Study on essential metallo element chelates as radioprotectors presents a promising direction in a search for and development of novel anti-radiation agents and offers a new approach to overcome the pathological effects of ionizing radiation. The key idea elucidating the radioprotective effects of metallo element-containing chelates of amino acid derivatives is their role in stimulation of de novo synthesis of metallo element-dependent enzymes required for recovery of hemopoietic activity and immuno competency lost as a consequence of radiation damage. Aimed to develop novel anti-radiation remedies of less toxicity and high efficacy, Schiff bases derived from L-Tyrosine and L-Tryptophan and their Cu(II) chelates were synthesized. In experiments in vitro and in vivo biological and pharmacological properties of the mentioned Schiff Bases and their copper complexes are under study. According to the results obtained, L-Tyrosinate and L-Tryptophanate Schiff bases are low toxic compounds with a weak antioxidant activity and exert radioprotective effects in case of animal X-ray irradiation at a dose level equal or less than LD 50/30 . Unlike Schiff Bases, their appropriate Cu(II) chelates possess high anti radical/antioxidant activity and manifest expressed radio-protective action at LD 100/30 dose of ionizing radiation. Anti-radiation effects of amino acid Schiff bases and their metallo chelates are manifested in case of both subcutaneous and oral single administration to the animal organism at 10, 20, or 40 mg/kg 1, 3, 6, or 24 hours prior to radiation exposure. Conclusions are drawn basing on determinations of survival and average life-span indices of irradiated animals, as well as on studies for their hematological, biochemical, immunological, biophysical indices. It is revealed that on the background of preliminary administration of the compounds studied to the animal organism the characteristics of DNA are significantly improved, the immune status

  17. Meal pattern of male rats maintained on amino acid supplemented diets: the effect of tryptophan, lysine, arginine, proline and threonine.

    Science.gov (United States)

    Ayaso, Raghad; Ghattas, Hala; Abiad, Mohamad; Obeid, Omar

    2014-07-01

    The macronutrient composition of the diet has been shown to affect food intake, with proteins having distinct effects. The present study investigated the effect of diet supplementation with individual amino acids (tryptophan, lysine, arginine, proline and threonine) on meal pattern among male rats. Meal pattern and body weight were monitored for two weeks. Proline and threonine had minimal effects on meal pattern, while the most pronounced changes were observed in the tryptophan group. Both tryptophan and lysine decreased overall food intake, which was translated into a reduction in body weight. The reduced food intake of the tryptophan group was associated with an increase in meal size, intermeal intervals (IMI) and meal time and a decrease in meal number. The decrease in the food intake of the lysine group was associated with a reduction in both IMI and meal number, and this was accompanied by an increase in meal time. Arginine increased meal number, while decreasing IMI. Proline and threonine had a minimal effect on meal pattern. Lysine seems to increase satiety, and arginine seems to decrease it, while tryptophan seems to increase satiety and decrease satiation. Accordingly, changes in meal patterns are associated with the type of amino acid added to the diet.

  18. Meal Pattern of Male Rats Maintained on Amino Acid Supplemented Diets: The Effect of Tryptophan, Lysine, Arginine, Proline and Threonine

    Directory of Open Access Journals (Sweden)

    Raghad Ayaso

    2014-07-01

    Full Text Available The macronutrient composition of the diet has been shown to affect food intake, with proteins having distinct effects. The present study investigated the effect of diet supplementation with individual amino acids (tryptophan, lysine, arginine, proline and threonine on meal pattern among male rats. Meal pattern and body weight were monitored for two weeks. Proline and threonine had minimal effects on meal pattern, while the most pronounced changes were observed in the tryptophan group. Both tryptophan and lysine decreased overall food intake, which was translated into a reduction in body weight. The reduced food intake of the tryptophan group was associated with an increase in meal size, intermeal intervals (IMI and meal time and a decrease in meal number. The decrease in the food intake of the lysine group was associated with a reduction in both IMI and meal number, and this was accompanied by an increase in meal time. Arginine increased meal number, while decreasing IMI. Proline and threonine had a minimal effect on meal pattern. Lysine seems to increase satiety, and arginine seems to decrease it, while tryptophan seems to increase satiety and decrease satiation. Accordingly, changes in meal patterns are associated with the type of amino acid added to the diet.

  19. Effects of Tranilast on the Urinary Excretion of Kynurenic and Quinolinic Acid under Conditions of L Tryptophan Loading

    Directory of Open Access Journals (Sweden)

    Rowland R. Noakes

    2013-01-01

    Full Text Available The pathogenesis of morphea and other cutaneous sclerosing disorders remain poorly understood. Although they are considered to be autoimmune disorders, abnormal tryptophan metabolism may be involved. Current therapy is directed to supressing the autoimmune response. Demonstration of a therapeutic response to manipulation of the kynurenine pathway would both support a role for abnormal tryptophan metabolism and offer additional targets for therapy. Tranilast is a 3-hydroxyanthranilic acid derivative known to target the kynurenine pathway. The aim of this study was to see if tranilast lowered the urinary excretion of the kynurenine metabolites kynurenic and quinolinic acid under condition of L tryptophan loading in a volunteer. Mean baseline value for kynurenic acid and quinolinic acid were 1.1 and 2.1 mmol/mol creatinine, respectively. This rose to 5.6 and 3.8 mmol/mol creatinine respectively under conditions of L tryptophan loading 2 grams daily. Adding 1 g of tranilast daily lowered the values to 2.0 and 2.9 mmol/mol creatinine, respectively. These data suggest that tranilast acts as a competitive inhibitor of either indoleamine 2, 3-dioxygenase (IDO, tryptophan 2, 3 di-oxygenase (TDO or both. As it involved only 1 subject, the results may not be representative of the larger population and must be considered preliminary.

  20. Tryptophan Intake in the US Adult Population Is Not Related to Liver or Kidney Function but Is Associated with Depression and Sleep Outcomes.

    Science.gov (United States)

    Lieberman, Harris R; Agarwal, Sanjiv; Fulgoni, Victor L

    2016-12-01

    Tryptophan is an indispensable amino acid and is a precursor of the neurotransmitter serotonin. Tryptophan metabolites, such as serotonin and melatonin, are thought to participate in the regulation of mood and sleep and tryptophan is used to treat insomnia, sleep apnea, and depression. This study examined the intake of tryptophan and its associations with biochemical, behavioral, sleep, and health and safety outcomes in adults in a secondary analysis of a large, publicly available database of the US population. Data from the NHANES 2001-2012 (n = 29,687) were used to determine daily intakes of tryptophan and its associations with biochemical markers of health- and safety-related outcomes, self-reported depression, and sleep-related variables. Data were adjusted for demographic factors and protein intake. Linear trends were computed across deciles of intake for each outcome variable, and P-trends were determined. The usual tryptophan intake by US adults was 826 mg/d, severalfold higher than the Estimated Average Requirement for adults of 4 mg/(kg ⋅ d) (∼280 mg/d for a 70-kg adult). Most health- and safety-related biochemical markers of liver function, kidney function, and carbohydrate metabolism were not significantly (P-trend > 0.05) associated with deciles of tryptophan intake and were well within normal ranges, even for individuals in the 99th percentile of intake. Usual intake deciles of tryptophan were inversely associated with self-reported depression measured by the Patient Health Questionnaire raw score (0-27; P-trend Tryptophan intake was not related to most markers of liver function, kidney function or carbohydrate metabolism. Levels of tryptophan intake in the US population appear to be safe as shown by the absence of abnormal laboratory findings. Tryptophan intake was inversely associated with self-reported level of depression and positively associated with sleep duration. © 2016 American Society for Nutrition.

  1. Enhanced synthesis of 5-hydroxy-l-tryptophan through tetrahydropterin regeneration.

    Science.gov (United States)

    Hara, Ryotaro; Kino, Kuniki

    2013-12-09

    5-Hydroxy-l-tryptophan (5-HTP) is a naturally occurring aromatic amino acid present in the seeds of the African plant Griffonia simplicifolia. Although 5-HTP has therapeutic effects in various symptoms, efficient method of producing 5-HTP has not been established. In this study, we developed a novel cofactor regeneration process to achieve enhanced synthesis of 5-HTP by using modified l-phenylalanine 4-hydroxylase of Chromobacterium violaceum. For the synthesis of 5-HTP using Escherichia coli whole cell bioconversion, l-tryptophan and 5-HTP degradation by E. coli endogenous catabolic enzymes should be considered. The tryptophanase gene was disrupted using the λ red recombination system, since tryptophanase is postulated as an initial enzyme for the degradation of l-tryptophan and 5-HTP in E. coli. For regeneration of the cofactor pterin, we screened and investigated several key enzymes, including dihydropteridine reductase from E. coli, glucose dehydrogenase from Bacillus subtilis, and pterin-4α-carbinolamine dehydratase from Pseudomonas syringae. Genes encoding these three enzymes were overexpressed in an E. coli tryptophanase-deficient host, resulting in the synthesis of 0.74 mM 5-HTP in the presence of 0.1 mM pterin and the synthesis of 0.07 mM 5-HTP in the absence of regeneration of pterin. These results clearly indicated the successful regeneration of pterin. Following optimization of the reaction conditions, 2.5 mM 5-HTP was synthesized with cofactor regeneration, while 0.8 mM 5-HTP was recovered without cofactor regeneration under the same reaction conditions, suggesting that the principle described here provides a new method for cofactor regeneration.

  2. Proton-coupled electron transfer from tryptophan: a concerted mechanism with water as proton acceptor.

    Science.gov (United States)

    Zhang, Ming-Tian; Hammarström, Leif

    2011-06-15

    The mechanism of proton-coupled electron transfer (PCET) from tyrosine in enzymes and synthetic model complexes is under intense discussion, in particular the pH dependence of the PCET rate with water as proton acceptor. Here we report on the intramolecular oxidation kinetics of tryptophan derivatives linked to [Ru(bpy)(3)](2+) units with water as proton acceptor, using laser flash-quench methods. It is shown that tryptophan oxidation can proceed not only via a stepwise electron-proton transfer (ETPT) mechanism that naturally shows a pH-independent rate, but also via another mechanism with a pH-dependent rate and higher kinetic isotope effect that is assigned to concerted electron-proton transfer (CEP). This is in contrast to current theoretical models, which predict that CEP from tryptophan with water as proton acceptor can never compete with ETPT because of the energetically unfavorable PT part (pK(a)(Trp(•)H(+)) = 4.7 ≫ pK(a)(H(3)O(+)) ≈ -1.5). The moderate pH dependence we observe for CEP cannot be explained by first-order reactions with OH(-) or the buffers and is similar to what has been demonstrated for intramolecular PCET in [Ru(bpy)(3)](3+)-tyrosine complexes (Sjödin, M.; et al. J. Am. Chem. Soc.2000, 122, 3932. Irebo, T.; et al. J. Am. Chem. Soc.2007, 129, 15462). Our results suggest that CEP with water as the proton acceptor proves a general feature of amino acid oxidation, and provide further experimental support for understanding of the PCET process in detail. © 2011 American Chemical Society

  3. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival

    Science.gov (United States)

    Fernandes, João Daniel Santos; Martho, Kevin; Tofik, Veridiana; Vallim, Marcelo A.; Pascon, Renata C.

    2015-01-01

    Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR). We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8). The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i) quality of nitrogen (Nitrogen Catabolism Repression, NCR) and carbon sources (Carbon Catabolism Repression, CCR), (ii) amino acid availability in the extracellular environment (SPS-sensing) and (iii) nutritional deprivation (Global Amino Acid Control, GAAC). This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro. PMID:26162077

  4. Tryptophan catabolism and immune activation in primary and chronic HIV infection.

    Science.gov (United States)

    Gelpi, Marco; Hartling, Hans J; Ueland, Per M; Ullum, Henrik; Trøseid, Marius; Nielsen, Susanne D

    2017-05-16

    Kynurenine/Tryptophan ratio (KTR) is increased in HIV infection, and linked to immune activation. We hypothesized that early cART initiation results in lower KTR compared to late initiation. Furthermore, we hypothesized that KTR prior to cART is a predictor of the magnitude of subsequent reduction in immune activation. Prospective study including 57 HIV-infected individuals (primary HIV infection (N = 14), early presenters (>350 CD4+ T cells/μL, N = 24), late presenters (tryptophan were analysed by liquid chromatography-tandem mass spectrometry. Total CD4+ and CD8+ T cells were determined and proportion of activated CD38 + HLA-DR+ Tcells was measured using flow cytometry at baseline and after 6 and 12 months of cART. At baseline, primary HIV infection had higher KTR than early presenters. However, similar KTR in primary HIV infection and early presenters was found after cART initiation, while late presenters had higher KTR at all time points. In primary HIV infection and early presenters, KTR was positively associated with proportion of activated cells at baseline. Furthermore, in early presenters the KTR at baseline was associated with proportion of activated cells after 6 and 12 months. Interestingly, in primary HIV infection the KTR at baseline was positively associated with reduction in proportion of CD8 + CD38 + HLA-DR T cells after 6 and 12 months. Lower kynurenine/tryptophan ratio during follow-up was found after early initiation of cART. KTR in primary HIV infection and early presenters was positively associated with immune activation. Importantly, KTR in primary HIV infection predicted the magnitude of subsequent reduction in immune activation. Thus, a beneficial effect of early cART on KTR was suggested.

  5. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival.

    Directory of Open Access Journals (Sweden)

    João Daniel Santos Fernandes

    Full Text Available Metabolic diversity is an important factor during microbial adaptation to different environments. Among metabolic processes, amino acid biosynthesis has been demonstrated to be relevant for survival for many microbial pathogens, whereas the association between pathogenesis and amino acid uptake and recycling are less well-established. Cryptococcus neoformans is an opportunistic fungal pathogen with many habitats. As a result, it faces frequent metabolic shifts and challenges during its life cycle. Here we studied the C. neoformans tryptophan biosynthetic pathway and found that the pathway is essential. RNAi indicated that interruptions in the biosynthetic pathway render strains inviable. However, auxotroph complementation can be partially achieved by tryptophan uptake when a non preferred nitrogen source and lower growth temperature are applied, suggesting that amino acid permeases may be the target of nitrogen catabolism repression (NCR. We used bioinformatics to search for amino acid permeases in the C. neoformans and found eight potential global permeases (AAP1 to AAP8. The transcriptional profile of them revealed that they are subjected to regulatory mechanisms which are known to respond to nutritional status in other fungi, such as (i quality of nitrogen (Nitrogen Catabolism Repression, NCR and carbon sources (Carbon Catabolism Repression, CCR, (ii amino acid availability in the extracellular environment (SPS-sensing and (iii nutritional deprivation (Global Amino Acid Control, GAAC. This study shows that C. neoformans has fewer amino acid permeases than other model yeasts, and that these proteins may be subjected to complex regulatory mechanisms. Our data suggest that the C. neoformans tryptophan biosynthetic pathway is an excellent pharmacological target. Furthermore, inhibitors of this pathway cause Cryptococcus growth arrest in vitro.

  6. The Kynurenine Pathway of Tryptophan Catabolism and AIDS-Associated Kaposi Sarcoma in Africa.

    Science.gov (United States)

    Byakwaga, Helen; Hunt, Peter W; Laker-Oketta, Miriam; Glidden, David V; Huang, Yong; Bwana, Bosco M; Mocello, A Rain; Bennett, John; Walusansa, Victoria; Dollard, Sheila C; Bangsberg, David R; Mbidde, Edward K; Martin, Jeffrey N

    2015-11-01

    Other than Kaposi sarcoma (KS)-associated herpesvirus and CD4 T-cell lymphopenia, the mechanisms responsible for KS in the context of HIV are poorly understood. One recently explored pathway of HIV pathogenesis involves induction of the enzyme indoleamine 2,3-dioxygenase-1 (IDO), which catabolizes tryptophan into kynurenine and several other immunologically active metabolites that suppress T-cell proliferation. We investigated the role of IDO in the development of KS in HIV disease. In a case-control study among untreated HIV-infected Ugandans, cases were adults with KS and controls were without KS. IDO activity was assessed by the ratio of plasma kynurenine to tryptophan levels (KT ratio), measured by liquid chromatography-tandem mass spectrometry. We studied 631 HIV-infected subjects: 222 KS cases and 409 controls. Non-KS controls had a higher median plasma KT ratio (130, interquartile range: 90 to 190 nM/μM) than KS cases (110, interquartile range: 90 to 150 nM/μM) (P = 0.004). After adjustment for age, sex, CD4 count, and plasma HIV RNA level, subjects with the highest (fourth quartile) plasma KT ratios had a 59% reduction (95% confidence interval: 27% to 77%) in the odds of KS compared with those with the lowest (first quartile) levels. KS was also independently associated with lower CD4 count, higher plasma HIV RNA, and men. Among HIV-infected individuals, greater activity of the kynurenine pathway of tryptophan catabolism, as evidenced by higher levels of plasma KT ratio, was associated with lower occurrence of KS. Some consequences of immune activation in HIV infection might actually suppress certain cancers.

  7. Cation-pi interactions with a model for the side chain of tryptophan: structures and absolute binding energies of alkali metal cation-indole complexes.

    Science.gov (United States)

    Ruan, Chunhai; Yang, Zhibo; Hallowita, Nuwan; Rodgers, M T

    2005-12-22

    Threshold collision-induced dissociation techniques are employed to determine bond dissociation energies (BDEs) of mono- and bis-complexes of alkali metal cations, Li+, Na+, K+, Rb+, and Cs+, with indole, C8H7N. The primary and lowest energy dissociation pathway in all cases is endothermic loss of an intact indole ligand. Sequential loss of a second indole ligand is observed at elevated energies for the bis-complexes. Density functional theory calculations at the B3LYP/6-31G level of theory are used to determine the structures, vibrational frequencies, and rotational constants of these complexes. Theoretical BDEs are determined from single point energy calculations at the MP2(full)/6-311+G(2d,2p) level using the B3LYP/6-31G* geometries. The agreement between theory and experiment is very good for all complexes except Li+ (C8H7N), where theory underestimates the strength of the binding. The trends in the BDEs of these alkali metal cation-indole complexes are compared with the analogous benzene and naphthalene complexes to examine the influence of the extended pi network and heteroatom on the strength of the cation-pi interaction. The Na+ and K+ binding affinities of benzene, phenol, and indole are also compared to those of the aromatic amino acids, phenylalanine, tyrosine, and tryptophan to elucidate the factors that contribute to the binding in complexes to the aromatic amino acids. The nature of the binding and trends in the BDEs of cation-pi complexes between alkali metal cations and benzene, phenol, and indole are examined to help understand nature's preference for engaging tryptophan over phenylalanine and tyrosine in cation-pi interactions in biological systems.

  8. Radiation and photochemiluminescence in solutions of tryptophan-containing peptides and proteins

    International Nuclear Information System (INIS)

    Sapezhinskij, I.I.; Lozovskaya, E.L.

    1995-01-01

    The review dwells on the studies relating to chemiluminescence appearing in tryptophan-containing peptides and proteins under the effect of ionizing and optical radiation. Data on radiation-induced chemiluminescence in various objects are presented. Classification of chemiluminescent phenomena according to life time of radiation defects, types of objects and methods of recording has been made. Initial photo and radiation processes resulting in chemiluminescence are considered. The influence of acceptors on chemiluminescence is analyzed. Possible mechanisms of dioxetan formation under various conditions of initiation are discussed. Methods based on glycyltryptophan photochemiluminescence for testing pharmaceuticals, cosmetic preparations and other substances for antioxidant or photosensiticizing activity are presented. 140 refs., 4 tabs

  9. Low tryptophan diet decreases brain serotonin and alters response to apomorphine

    Science.gov (United States)

    Sahakian, B. J.; Wurtman, R. J.; Barr, J. K.; Millington, W. R.; Chiel, H. J.

    1979-01-01

    The role of the serotoninergic system in the regulation of apomorphine-induced behavior, a behavior primarily controlled by dopaminergic neurotransmission, was investigated in rats fed on a low tryptophan diet since weaning. It was found that reductions in brain seritonin (5-HT) produced by diet result in decreased stereotypy after apomorphine administration. This indicates that although stereotyped behavior is primarily mediated by dopaminergic mechanisms, it can also be modulated by other neurotransmitter including 5-HT. It was also shown that changes in brain seritonin levels can affect psychomotor stimulant-induced hypothermia.

  10. Cysteine and tryptophan anomalies found when scanning all the binding sites in the Protein Data Bank.

    Science.gov (United States)

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2010-01-01

    The Protein Data Bank (PDB) is one of the richest sources of structural biological information in the World. It started to exist as the computer-readable depository of crystallographic data complementing printed papers. The proper interpretation of the content of the individual files in the PDB still needs the detailed information found in the citing publication. An advanced graph theoretical method is presented here for automatically repairing, re-organising and re-structuring PDB data yielding the identification of all the protein-ligand complexes and all the binding sites in the PDB. As an application, we identified strong cysteine and tryptophan irregularities in the data.

  11. Synthesis and Characterization of Poly(ethylene glycol)-block-Poly(Nα-Boc-L-tryptophan) copolymers

    Science.gov (United States)

    Voda, Andreea S.; Guo, Qipeng

    2010-06-01

    Amphiphilic diblock and triblock copolymers were synthesized from poly(ethylene glycol) (PEG) and Nα-Boc-L-tryptophan. A number of reaction conditions were investigated in order to achieve optimum yield and maximum chain extension for the newly formed block copolymers. Characterization of the novel copolymers was evaluated by means of 1D and 2D solution state nuclear magnetic resonance (NMR), infrared (IR) spectroscopy and size exclusion chromatography (SEC). The 2D NMR investigation of the block copolymers provided evidence to suggest that protonation of the nitrogen atoms present along the newly formed peptide back bone was occurring when the solvent environment was under acidic conditions.

  12. Management of NORM Residues

    International Nuclear Information System (INIS)

    2013-06-01

    The IAEA attaches great importance to the dissemination of information that can assist Member States in the development, implementation, maintenance and continuous improvement of systems, programmes and activities that support the nuclear fuel cycle and nuclear applications, and that address the legacy of past practices and accidents. However, radioactive residues are found not only in nuclear fuel cycle activities, but also in a range of other industrial activities, including: - Mining and milling of metalliferous and non-metallic ores; - Production of non-nuclear fuels, including coal, oil and gas; - Extraction and purification of water (e.g. in the generation of geothermal energy, as drinking and industrial process water; in paper and pulp manufacturing processes); - Production of industrial minerals, including phosphate, clay and building materials; - Use of radionuclides, such as thorium, for properties other than their radioactivity. Naturally occurring radioactive material (NORM) may lead to exposures at some stage of these processes and in the use or reuse of products, residues or wastes. Several IAEA publications address NORM issues with a special focus on some of the more relevant industrial operations. This publication attempts to provide guidance on managing residues arising from different NORM type industries, and on pertinent residue management strategies and technologies, to help Member States gain perspectives on the management of NORM residues

  13. Neuroendocrine and immune responses undertake different fates following tryptophan or methionine dietary treatment: tales from a teleost model

    DEFF Research Database (Denmark)

    Azeredo, Rita; Machado, M.; Afonso, A.

    2017-01-01

    cells proliferation. Differently, tryptophan effects on inflammatory transcripts suggested an inhibitory mode of action. This, together with a high production of brain monoamine and cortisol levels, suggests that tryptophan might mediate regulatory mechanisms of neuroendocrine and immune systems...... the immunomodulatory effect of these amino acids on the inflammatory and neuroendocrine responses in juveniles of European seabass, Dicentrarchus labrax. To achieve this, goal fish were fed for 14 days methionine and tryptophan-supplemented diets (MET and TRP, respectively, 2x dietary requirement level) or a control......, brain monoamines, plasma cortisol, and immune-related gene expression showed distinct and sometimes opposite patterns regarding the effects of dietary amino acids. While neuroendocrine intermediates were not affected by any dietary treatment at the end of the feeding trial, both supplemented diets led...

  14. Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer

    DEFF Research Database (Denmark)

    Hjortsø, Mads Duus; Larsen, Stine Kiaer; Kongsted, Per

    2015-01-01

    Tryptophan-2,3-dioxygenase (TDO) physiologically regulates systemic tryptophan levels in the liver. However, numerous studies have linked cancer with activation of local and systemic tryptophan metabolism. Indeed, similar to other heme dioxygenases TDO is constitutively expressed in many cancers....... In the present study, we detected the presence of both CD8(+) and CD4(+) T-cell reactivity toward TDO in peripheral blood of patients with malignant melanoma (MM) or breast cancer (BC) as well as healthy subjects. However, TDO-reactive CD4(+) T cells constituted distinct functional phenotypes in health...... and disease. In healthy subjects these cells predominately comprised interferon (IFN)γ and tumor necrosis factor (TNF)-α producing Th1 cells, while in cancer patients TDO-reactive CD4(+) T-cells were more differentiated with release of not only IFNγ and TNFα, but also interleukin (IL)-17 and IL-10 in response...

  15. Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment.

    Directory of Open Access Journals (Sweden)

    Stéphane Pallu

    Full Text Available Alcohol induced osteoporosis is characterized by a bone mass decrease and microarchitecture alterations. Having observed an excess in osteocyte apoptosis, we aimed to assess the bone tissue biochemistry, particularly in the osteocyte and its environment. For this purpose, we used a model of alcohol induced osteoporosis in rats. Bone sections of cortical bone were investigated using synchrotron UV-microspectrofluorescence at subcellular resolution. We show that bone present three fluorescence peaks at 305, 333 and 385 nm, respectively corresponding to tyrosine, tryptophan and collagen. We have determined that tyrosine/collagen and tryptophan/collagen ratios were higher in the strong alcohol consumption group. Tryptophan is related to the serotonin metabolism involved in bone formation, while tyrosine is involved in the activity of tyrosine kinases and phosphatases in osteocytes. Our experiment represents the first combined synchrotron UV microspectroscopy analysis of bone tissue with a quantitative biochemical characterization in the osteocyte and surrounding matrix performed separately.

  16. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    Directory of Open Access Journals (Sweden)

    Amar B. T. Ghisaidoobe

    2014-12-01

    Full Text Available F resonance energy transfer (FRET occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (\\(\\uplambda_{\\textsc{ex}}\\sim\\ nm, \\(\\uplambda_{\\textsc{em}}\\sim\\ 350 nm, in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the proteinlocal environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic F resonance energy transfer (iFRET, a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins.

  17. 1,1'-Binaphthyl-based imidazolium chemosensors for highly selective recognition of tryptophan in aqueous solutions.

    Science.gov (United States)

    Yang, Li; Qin, Song; Su, Xiaoyu; Yang, Fei; You, Jingsong; Hu, Changwei; Xie, Rugang; Lan, Jingbo

    2010-01-21

    A type of 1,1'-binaphthyl-based imidazolium chemosensor module has been synthesized for the highly selective recognition of tryptophan (Trp) among the eleven alpha-amino acids investigated in aqueous solutions via synergistic effects of multiple hydrogen bonding and electrostatic interactions. These results have demonstrated that the C-2 hydrogen atom of the imidazolium ring plays a key role as a hydrogen bond donor. The UV/vis, fluorescence and mass spectral studies have indicated that a 1 : 1 complex is formed between the host and tryptophan. The binding affinity and selectivity of the cleft-like receptor (R)- with l-Trp are superior to those of (R)-. In spite of an inferior selectivity towards various aromatic amino acids, the macrocyclic (R)- displays a remarkable enantiodiscrimination for the two enantiomers of tryptophan with a K(D)/K(L) value as high as 6.2.

  18. Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Raaymakers, J S; Saris, W H

    1995-01-01

    1. An increased uptake of tryptophan in the brain may increase serotoninergic activity and recently has been suggested to be a cause of fatigue during prolonged exercise. The present study, therefore, investigates whether ingestion of tryptophan or the competing branched-chain amino acids (BCAAs......) affect performance. Ten endurance-trained male athletes were studied during cycle exercise at 70-75% maximal power output, while ingesting, ad random and double-blind, drinks that contained 6% sucrose (control) or 6% sucrose supplemented with (1) tryptophan (3 g l-1), (2) a low dose of BCAA (6 g l-1...... or that manipulation of serotoninergic activity functionally does not contribute to mechanisms of fatigue....

  19. Variations in tryptophan hydroxylase 2 linked to decreased serotonergic activity are associated with elevated risk for metabolic syndrome in depression.

    Science.gov (United States)

    Kloiber, S; Kohli, M A; Brueckl, T; Ripke, S; Ising, M; Uhr, M; Menke, A; Unschuld, P G; Horstmann, S; Salyakina, D; Muller-Myhsok, B; Binder, E B; Holsboer, F; Lucae, S

    2010-07-01

    Major depression and the metabolic syndrome (MetS) are interacting clinical conditions influenced by genetic susceptibility. For both disorders, impaired serotonergic neurotransmission in specific brain areas has been suggested. This led us to investigate whether variants in the gene coding for tryptophan hydroxylase 2 (TPH2), the brain-specific and rate-limiting enzyme for serotonin biosynthesis, might be predictive for an increased liability for the development of MetS in depressed patients. In a case-control study consisting of 988 patients with recurrent unipolar depression (RUD) and 1023 psychiatric healthy controls, MetS components were ascertained according to the International Diabetes Foundation criteria. A total of 41 single nucleotide polymorphisms fully covering the TPH2 gene region were genotyped in stage 1 (300 patients/300 controls), resulting in significant genetic associations of polymorphisms located in exon 7 and intron 8 of TPH2 and the occurrence of MetS in depressed patients after correction for age, gender and multiple testing (51 RUD-MetS/179 RUD-non-MetS). We were able to confirm the significant association of rs17110690 in stage 2 (688 patients/723 controls; 110 RUD-MetS/549 RUD-non-MetS) and to link risk-genotypes and risk-haplotypes for MetS to lower TPH2 mRNA expression and to lower 5-hydroxyindoleacetic acid levels in cerebrospinal fluid previously reported in functional studies. Our findings suggest that TPH2 polymorphisms characterize a subgroup of depressed patients who are especially prone to develop metabolic disorders induced by a genotype-dependent impairment of serotonergic neurotransmission. Identifying depressed patients at high risk for MetS using genetic variants could have direct clinical impact on individualized disease management and prevention strategies.

  20. Downhill versus barrier-limited folding of BBL 2: mechanistic insights from kinetics of folding monitored by independent tryptophan probes.

    Science.gov (United States)

    Neuweiler, Hannes; Sharpe, Timothy D; Johnson, Christopher M; Teufel, Daniel P; Ferguson, Neil; Fersht, Alan R

    2009-04-10

    Barrier-free downhill folding has been proposed for the peripheral subunit-binding domain BBL. To date, ultrafast kinetic experiments on BBL, which are crucial for a mechanistic understanding of folding, have been hampered by the lack of good intrinsic spectroscopic probes. Here, we present a detailed kinetic characterization of three single-point tryptophan mutants of BBL that have suitable fluorescence properties for following microsecond and nanosecond folding kinetics using temperature jump fluorescence spectroscopy. Experiments were performed at pH 7, which is optimal for stability and minimizes complications that arise from the presence of an alternative native-state conformation of BBL at lower pH. We examined the dependence of rate and equilibrium constants on concentration of denaturant and found that they follow well-established laws allowing kinetic transients to be related to events in folding and compared with equilibrium data. Logarithms of rate constants versus denaturant concentration yielded plots (chevrons) that are characteristic of barrier-limited folding for all mutants investigated, including a truncated sequence that was previously used in the proposal of downhill folding. The thermodynamic quantities calculated from the rate constants were in excellent agreement with those directly determined from equilibrium denaturation based on empirical two-state equations. We found that sequence truncation of BBL as used in studies proposing downhill folding leads to a large loss in helical content and protein stability, which were exacerbated at the low pH used in those studies. The kinetics and equilibria of folding of BBL fit to conventional barrier-limited kinetics.

  1. Key amino acid residues for the endo-processive activity of GH74 xyloglucanase.

    Science.gov (United States)

    Matsuzawa, Tomohiko; Saito, Yuji; Yaoi, Katsuro

    2014-05-02

    Unlike endo-dissociative-xyloglucanases, Paenibacillus XEG74 is an endo-processive xyloglucanase that contains four unique tryptophan residues in the negative subsites (W61 and W64) and the positive subsites (W318 and W319), as indicated by three-dimensional homology modelling. Selective replacement of the positive subsite residues with alanine mutations reduced the degree of processive activity and resulted in the more endo-dissociative-activity. The results showed that W318 and W319, which are found in the positive subsites, are essential for processive degradation and are responsible for maintaining binding interactions with xyloglucan polysaccharide through a stacking effect. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense.

    Science.gov (United States)

    Palacios, Oskar A; Gomez-Anduro, Gracia; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    During synthetic mutualistic interactions between the microalga Chlorella sorokiniana and the plant growth-promoting bacterium (PGPB) Azospirillum brasilense, mutual exchange of resources involved in producing and releasing the phytohormone indole-3-acetic acid (IAA) by the bacterium, using tryptophan and thiamine released by the microalga, were measured. Although increased activities of tryptophan synthase in C. sorokiniana and indole pyruvate decarboxylase (IPDC) in A. brasilense were observed, we could not detect tryptophan or IAA in the culture medium when both organisms were co-immobilized. This indicates that no extra tryptophan or IAA is produced, apart from the quantities required to sustain the interaction. Over-expression of the ipdC gene occurs at different incubation times: after 48 h, when A. brasilense was immobilized alone and grown in exudates of C. sorokiniana and at 96 h, when A. brasilense was co-immobilized with the microalga. When A. brasilense was cultured in exudates of C. sorokiniana, increased expression of the ipdC gene, corresponding increase in activity of IPDC encoded by the ipdC gene, and increase in IAA production were measured during the first 48 h of incubation. IAA production and release by A. brasilense was found only when tryptophan and thiamine were present in a synthetic growth medium (SGM). The absence of thiamine in SGM yielded no detectable IAA. In summary, this study demonstrates that C. sorokiniana can exude sufficient tryptophan and thiamine to allow IAA production by a PGPB during their interaction. Thiamine is essential for IAA production by A. brasilense and these three metabolites are part of a communication between the two microorganisms. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Effects of L-tryptophan, Fructan, and Casein on Reducing Ammonia, Hydrogen Sulfide, and Skatole in Fermented Swine Manure

    Directory of Open Access Journals (Sweden)

    Q. K. Sheng

    2015-08-01

    Full Text Available The effects of daily dietary Bacillus subtilis (Bs, and adding L-tryptophan, fructan, or casein to fecal fermentation broths were investigated as means to reduce the production of noxious gas during manure fermentation caused by ammonia, hydrogen sulfide (H2S, and 3-methylindole (skatole. Eighty swine (50.0±0.5 kg were equally apportioned to an experimental group given Bs in daily feed, or a control group without Bs. After 6 weeks, fresh manure was collected from both groups for fermentation studies using a 3×3 orthogonal array, in which tryptophan, casein, and fructan were added at various concentrations. After fermentation, the ammonia, H2S, L-tryptophan, skatole, and microflora were measured. In both groups, L-tryptophan was the principle additive increasing skatole production, with significant correlation (r = 0.9992. L-tryptophan had no effect on the production of ammonia, H2S, or skatole in animals fed Bs. In both groups, fructan was the principle additive that reduced H2S production (r = 0.9981. Fructan and Bs significantly interacted in H2S production (p = 0.014. Casein was the principle additive affecting the concentration of ammonia, only in the control group. Casein and Bs significantly interacted in ammonia production (p = 0.039. The predominant bacteria were Bacillus spp. CWBI B1434 (26% in the control group, and Streptococcus alactolyticus AF201899 (36% in the experimental group. In summary, daily dietary Bs reduced ammonia production during fecal fermentation. Lessening L-tryptophan and increasing fructan in the fermentation broth reduced skatole and H2S.

  4. Tryptophan-Dependent Control of Colony Formation After DNA Damage via Sea3-Regulated TORC1 Signaling in Saccharomyces cerevisiae.

    Science.gov (United States)

    Polleys, Erica J; Bertuch, Alison A

    2015-05-04

    The Saccharomyces cerevisiae Iml1 complex inhibits TORC1 signaling and SEACAT antagonizes the Iml1 complex. Conditions in which SEACAT functions to inhibit Iml1 and, hence, TORC1 signaling, remain largely unknown. The SEACAT member Sea3 was linked previously to telomere maintenance and DNA repair via genome-wide genetic and physical interaction studies. Therefore, we questioned whether Sea3 functioned through TORC1 to influence these pathways. Deletion of SEA3 delayed the emergence of telomerase-independent survivors that use break-induced replication (BIR) to maintain their telomeres. Similarly, sea3∆ mutants exhibited a delay in colony formation in a BIR assay strain after double-strand break (DSB) induction as well as on the DNA-damaging agent bleomycin. Deletion of IML1 rescued the impaired growth of sea3∆ mutants after DNA damage, consistent with Sea3 functioning as a regulator of TORC1 signaling. The delay was not attributable to slowed DSB repair or termination of the DNA damage checkpoint but to tryptophan auxotrophy. High levels of tryptophan in yeast peptone dextrose media did not rescue the delay in colony formation, suggesting a defect in tryptophan import, although levels of the high-affinity tryptophan permease Tat2 were not perturbed in the sea3Δ mutant. Addition of quinolinic acid, an intermediate of the de novo NAD+ biosynthetic pathway, however, rescued the delay in colony formation in the sea3Δ mutant. Together, these findings highlight the importance of enforcement of TORC1 signaling and suggest that internal tryptophan levels influence growth recovery post DNA damage through the role of tryptophan in NAD+ synthesis. Copyright © 2015 Polleys and Bertuch.

  5. Residual-stress measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ezeilo, A.N.; Webster, G.A. [Imperial College, London (United Kingdom); Webster, P.J. [Salford Univ. (United Kingdom)

    1997-04-01

    Because neutrons can penetrate distances of up to 50 mm in most engineering materials, this makes them unique for establishing residual-stress distributions non-destructively. D1A is particularly suited for through-surface measurements as it does not suffer from instrumental surface aberrations commonly found on multidetector instruments, while D20 is best for fast internal-strain scanning. Two examples for residual-stress measurements in a shot-peened material, and in a weld are presented to demonstrate the attractive features of both instruments. (author).

  6. Plasma tryptophan, kynurenine and 3-hydroxykynurenine measurement using automated on-line solid-phase extraction HPLC-tandem mass spectrometry

    NARCIS (Netherlands)

    de Jong, Wilhelmina H. A.; Smit, Reinier; Bakker, Stephan J. L.; de Vries, Elisabeth G. E.; Kema, Ido P.

    2009-01-01

    Tryptophan metabolism plays a key role in several (patho)physiological conditions. In order to study the clinical importance of tryptophan and its predominant metabolites (kynurenines), it is important to be able to measure large series of samples with high accuracy and reliability. We aimed to

  7. Nutritional Stress Induced by Tryptophan-Degrading Enzymes Results in ATF4-Dependent Reprogramming of the Amino Acid Transporter Profile in Tumor Cells

    DEFF Research Database (Denmark)

    Timosenko, Elina; Ghadbane, Hemza; Silk, Jonathan D

    2016-01-01

    -dependent upregulation of several amino acid transporters, including SLC1A5 and its truncated isoforms, which in turn enhanced tryptophan and glutamine uptake. Importantly, SLC1A5 failed to be upregulated in resting human T cells kept under low tryptophan conditions but was enhanced upon cognate antigen T...

  8. Highly specific ''sensing'' of tryptophan by a luminescent europium(III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Stubenrauch, Jan A.; Mevissen, Christian; Schulte, Marie F.; Bochenek, Steffen; Albrecht, Markus [RWTH Univ. Aachen (Germany). Inst. fuer Organische Chemie; Subramanian, Palani S. [Central Salt and Marine Chemicals, Research Institute (CSRI), Gujarat (India)

    2016-07-01

    The europium(III) complex 1-Cl{sub 3} (S,S-2,2{sup '}-(((1,10-phenanthroline-2,9-diyl)bis(methanylylidene))bis (azanylyliden e))bis(3-methylbutanamide)europiumtrichloride) undergoes, only in the presence of the amino acid tryptophan, a change of emission at 615 nm. In the presence of few equivalents of tryptophan, emission of the europium complex is enhanced while it disappears upon addition of large amounts. This behavior can be assigned to displacement of the sensitizing phenanthroline ligand of 1-Cl{sub 2} x Trp in the latter case.

  9. Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups

    Directory of Open Access Journals (Sweden)

    H. Bauke Albada

    2012-10-01

    Full Text Available A series of small synthetic arginine and tryptophan containing peptides was prepared and analyzed for their antibacterial activity. The effect of N-terminal substitution with metallocenoyl groups such as ferrocene (FcCO and ruthenocene (RcCO was investigated. Antibacterial activity in different media, growth inhibition, and killing kinetics of the most active peptides were determined. The toxicity of selected derivatives was determined against erythrocytes and three human cancer cell lines. It was shown that the replacement of an N-terminal arginine residue with a metallocenoyl moiety modulates the activity of WRWRW-peptides against Gram-positive and Gram-negative bacteria. MIC values of 2–6 µM for RcCO-W(RW2 and 1–11 µM for (RW3 were determined. Interestingly, W(RW2-peptides derivatized with ferrocene were significantly less active than those derivatized with ruthenocene which have similar structural but different electronic properties, suggesting a major influence of the latter. The high activities observed for the RcCO-W(RW2- and (RW3-peptides led to an investigation of the origin of activity of these peptides using several important activity-related parameters. Firstly, killing kinetics of the RcCO-W(RW2-peptide versus killing kinetics of the (RW3 derivative showed faster reduction of the colony forming units for the RcCO-W(RW2-peptide, although MIC values indicated higher activity for the (RW3-peptide. This was confirmed by growth inhibition studies. Secondly, hemolysis studies revealed that both peptides did not lead to significant destruction of erythrocytes, even up to 500 µg/mL for (RW3 and 250 µg/mL for RcCO-W(RW2. In addition, toxicity against three human cancer cell lines (HepG2, HT29, MCF7 showed that the (RW3-peptide had an IC50 value of ~140 µM and the RcW(RW2 one of ~90 µM, indicating a potentially interesting therapeutic window. Both the killing kinetics and growth inhibition studies presented in this work point to a

  10. Non-invasive tryptophan fluorescence measurements as a novel method of grading cataract

    DEFF Research Database (Denmark)

    Erichsen, Jesper Høiberg; Mensah, Aurore; Kessel, Line

    2017-01-01

    . All cataracts were age-related. Lens material from 16 eyes of 14 patients was included in the study. Cataracts were preoperatively graded in categories 1, 2 and 3. No lenses were category 4. For nuclear cataracts mean values of F-factor were 52.9 (SD 12.2), 61.7 (SD 5.3) and 75.7 (SD 8.......9) for categories 1, 2 and 3 respectively. Linear regression on F-factor as a function of preoperative grading category showed increasing values of F-factor with increasing preoperative grading category, R2 = 0.515. Our experiment showed that preoperative optical grading of cataracts by Scheimpflug imaging may......Development of non-invasive treatments for cataract calls for a sensitive diagnostic assay. We conducted a study to test whether the ratio of folded tryptophan to non-tryptophan fluorescence emission (F-factor) may be used for grading cataracts in human lenses. The F-factor was measured...

  11. Imaging C. elegans with thiolated tryptophan-based NIR fluorescent gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Apurba Kr. [Indian Institute of Technology Kanpur, Department of Chemistry (India); Chaturbedi, Amaresh; Subramaniam, K. [Indian Institute of Technology Kanpur, Department of Biological Sciences and Bioengineering (India); Verma, Sandeep, E-mail: sverma@iitk.ac.in [Indian Institute of Technology Kanpur, Department of Chemistry (India)

    2013-11-15

    Multidentate, thiolated, tryptophan-containing peptide conjugates were synthesized for the preparation of gold nanoclusters (AuNCs). Precursor Au{sub 11}(PPh{sub 3}){sub 8}Cl{sub 3} was prepared by the reduction of HAuCl{sub 4}, followed by the use of tryptophan-containing peptide conjugates in ligand displacement reactions, to afford near-infrared fluorescent AuNCs. The emission maxima for these newly synthesized AuNCs were ∼715 nm. AuNCs were characterized with the help of UV–Vis, FTIR, fluorescence and MALDI analysis. FTIR spectra showed that the ligands bind to Au atoms through Au–S bonds, while MALDI mass spectra revealed that the clusters consisted of 20–23 Au atoms. Introduction of hydrophilic –COOH groups engendered water solubility to these AuNCs, enabling bioimaging applications. We demonstrate fluorescence imaging of the nematode C. elegans and confirm distribution of these AuNCs in nematode gut with the help of green fluorescent protein co-localization experiments.

  12. Disorder in the serotonergic system due to tryptophan hydroxylation impairment: a cause of hypothalamic syndrome?

    Science.gov (United States)

    Schott, D A; Nicolai, J; de Vries, J E; Keularts, I M L W; Rubio-Gozalbo, M E; Gerver, W J M

    2010-01-01

    The hypothalamus regulates basic homeostasis such as appetite, circadian rhythm, autonomic and pituitary functions. Dysregulation in these functions results in the hypothalamic syndrome, a rare disorder of various origins. Since serotonin (5-HT) modulates most of the above-mentioned homeostasis, a defect in the serotonergic system can possibly participate in this syndrome. We describe a girl suffering from hypothalamic syndrome with a decreased concentration of 5-hydroxytryptophan (5-HTP) and a normal level of tryptophan in the cerebrospinal fluid (CSF) suggesting a functional defect in tryptophan hydroxylase (TPH). TPH is a rate-limiting enzyme in the synthesis of the neurotransmitter 5-HT. Therapeutic intervention with 5-HTP, carbidopa and a specific serotonin reuptake inhibitor significantly improved her clinical symptoms and caused biochemical normalisation of neurotransmitters. The girl described had the typical symptoms of a hypothalamic disorder and a defective serotonergic metabolism, a relationship which has not been reported before. Therapeutic interventions to restore 5-HT metabolism resulted in clinical improvement. We suggest that investigation of 5-HT metabolism in CSF of patients with this rare disorder is included in the aetiological work-up.

  13. Can formulation affect tryptophan depletion results? Hints from studies in experimental panic.

    Science.gov (United States)

    Sobczak, Sjacko; Schruers, Koen

    2014-05-01

    Acute Tryptophan Depletion (ATD) is a specific serotonergic challenge tool. Central serotonergic effects of different ATD procedures are possibly not those that are usually assumed. In this paper we review data of ATD in an experimental fear model to investigate whether and how methodological differences may affect fear outcomes. Next we point to discrepancies of studies in our laboratory in order to test the hypotheses formulated in the review. Literature was searched in PubMed and MEDLINE and studies of our laboratory were compared. Eight studies were included in the review: five in patients with panic disorder, three in healthy individuals. Methodologically the studies in our laboratory were quite similar except for the applied ATD mixtures. ATD exerts fear-enhancing effects in patients with panic disorders, more than in healthy individuals. However, our findings are inconclusive. The discrepant findings of studies in our laboratory can possibly be explained by differences in the ATD mixtures used. We suggest mechanisms as to how these might have affected the central availability of tryptophan and hence serotonin.

  14. Tryptophan-Assisted Synthesis Reduces Bimetallic Gold/Silver Nanoparticle Cytotoxicity and Improves Biological Activity

    Directory of Open Access Journals (Sweden)

    Igor O. Shmarakov

    2014-10-01

    Full Text Available Aiming to reduce the potential in vivo hepato-and neph‐ rotoxicity of Ag/Au bimetallic nanoparticles (NPs stabi‐ lized by sodium dodecyl sulphate (SDS, an approach involving a simultaneous reduction of silver nitrate and tetrachlorauratic acid using tryptophan (Trp as a reduc‐ ing/stabilizing agent was applied during NP synthesis. The obtained Ag/Au/Trp NPs (5-15 nm sized were able to form stable aggregates with an average size of 370-450 nm and were potentially less toxic than Ag/Au/SDS in relation to a mouse model system based on clinical biochemical param‐ eters and oxidative damage product estimation. Ag/Au/Trp NPs were shown to exhibit anticancer activity in relation to a Lewis lung carcinoma model. The data generated from the present study support the fact that the use of tryptophan in NP synthesis is effective in attenuating the potential hepatotoxicity and nephrotoxicity of NPs during their in vivo application.

  15. Assessment of tryptophan metabolism and signs of depression in individuals with carbohydrate malabsorption.

    Science.gov (United States)

    Enko, Dietmar; Wagner, Helga; Kriegshäuser, Gernot; Brandmayr, Wolfgang; Halwachs-Baumann, Gabriele; Schnedl, Wolfgang J; Zelzer, Sieglinde; Mangge, Harald; Meinitzer, Andreas

    2018-04-01

    This prospective cross-sectional study aimed to investigate the potential association between primary-adult lactose malabsorption, fructose malabsorption, tryptophan (TRP) metabolism and the presence of depressive signs. Overall 251 patients, who were referred for lactase gene C/T -13910 polymorphism genotyping and fructose hydrogen/methane breath testing, were included. All participants filled out the Beck Depression Inventory (BDI II). Serum concentrations of tryptophan (TRP), kynurenine (KYN), kynuric acid (KYNA), and TRP competing amino acids (leucine, isoleucine, valine, phenylalanine, tyrosine) were measured by high-pressure liquid-chromatography. Logistic regression analysis was performed with lactose malabsorption, fructose malabsorption and all potential biomarkers of TRP metabolism to assess the effect on signs of depression, defined as a BDI II score > 13. Primary-adult lactose malabsorption and fructose malabsorption was detected in 65 (25.90%) and 65 (25.90%) patients, respectively. Fructose malabsorption was significantly associated with BDI II score, whereas no such relationship was found for lactose malabsorption. Serum levels of TRP and TRP metabolites were no predictors of depression. The authors suggest to conduct further prospective longitudinal studies in order to get further insight of associations between carbohydrate malabsorption, biomarkers and mood disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Au nanoparticles on tryptophan-functionalized graphene for sensitive detection of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Qianwen; Luo, Ai; An, Zhenzhen; Li, Zhuang; Guo, Yongyang; Zhang, Dongxia [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, 730070, Lanzhou (China); Xue, Zhonghua [College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou (China); Zhou, Xibin, E-mail: zhouxb@nwnu.edu.cn [Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Geography and Environment Science, Northwest Normal University, 730070, Lanzhou (China); Lu, Xiaoquan, E-mail: Luxq@nwnu.edu.cn [College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou (China)

    2015-09-15

    Graphical abstract: - Highlights: • A novel AuNPs/Trp-GR composite was fabricated by directly electrochemical deposition. • The composite exhibited excellent electrocatalytic activity towards DA. • The proposed method was applied to real samples. - Abstract: A novel and uniform gold nanoparticles/tryptophan-functionalized graphene nanocomposite (AuNPs/Trp-GR) has been successfully fabricated by directly electrochemical depositing gold onto the surface of tryptophan-functionalized graphene (Trp-GR). The nanostructure of AuNPs/Trp-GR was characterized by using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). It was demonstrated that Au nanoparticles were well dispersed on the surface of Trp-GR which might attribute to the more binding sites provided by Trp-GR for the formation of Au nanoparticles. The electrocatalytic activity of the AuNPs/Trp-GR towards the dopamine (DA) was systematically investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimum conditions, a wide and valuable linear range (0.5–411 μM), a low detection limit (0.056 μM, S/N = 3), good repeatability and stability were obtained for the determination of DA. Furthermore, the modified electrode was successfully applied to real samples analysis.

  17. No clear effects of acute tryptophan depletion on processing affective prosody in male adults with ADHD.

    Science.gov (United States)

    Grabemann, M; Mette, C; Zimmermann, M; Heinrich, V; Uekermann, J; Wiltfang, J; Abdel-Hamid, M; Zepf, F D; Kis, B

    2013-08-01

    Adults with attention deficit hyperactivity disorder (ADHD) have difficulties processing affective prosody, and research evidence demonstrates the importance of brain serotonin (5-HT) in the neurobiology of ADHD. This study aimed to investigate whether diminished brain 5-HT synthesis, as achieved by acute tryptophan depletion (ATD), can impair the processing of affective prosody in adults with ADHD. Twenty male patients with ADHD and twenty male healthy controls received ATD and a tryptophan-balanced control condition on separate days in a double-blind within-subject repeated measures crossover design. In both conditions, the Tübingen Affect Battery was administered in which subjects had to name the affective prosody of sentences with neutral, congruent, or incongruent semantic content. Participants in the group of patients with ADHD perceived affective prosody less accurately than controls. Participants with ADHD showed compromised processing of sentences, committing more errors than healthy controls when identifying affect in instances of incongruent semantic content (P = 0.031). ATD did not contribute to this effect (all P > 0.5). The difficulties male adults with ADHD have in accurately processing affective prosody may result from impairments in their ability to inhibit unwanted stimuli and impulses. No clear evidence implicates 5-HT as a cause of these impairments. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers

    Directory of Open Access Journals (Sweden)

    Qi Xiao

    2016-11-01

    Full Text Available Based on N-doped carbon dots/β-cyclodextrin nanocomposites modified glassy carbon electrodes (N-CDs/β-CD/GCE, an effective electrochemical sensor for enantioselective recognition of tryptophan (Trp enantiomers was developed by differential pulse voltammograms (DPVs. Fluorescent N-CDs were synthesized through a hydrothermal method and characterized by spectroscopic approaches. The N-CDs/β-CD nanocomposites were efficiently electrodeposited on the surface of GCE through C–N bond formation between N-CDs and electrode. The obtained N-CDs/β-CD/GCE was characterized by multispectroscopic and electrochemical methods. Such N-CDs/β-CD/GCE generated a significantly lower Ip and more negative Ep in the presence of l-Trp in DPVs, which was used for the enantioselective recognition of Trp enantiomers. The N-CDs/β-CD nanocomposites showed different binding constants for tryptophan enantiomers, and they further selectively bonded with l-Trp to form inclusion complexes. This N-CDs/β-CD/GCE combined advantages of N-CDs with strong C–N binding ability and β-CD with specific recognition of Trp enantiomers to fabricate a novel sensing platform for enantioselective recognition of Trp enantiomers. This strategy provided the possibility of using a nanostructured sensor to discriminate the chiral molecules in bio-electroanalytical applications.

  19. Formula diet driven microbiota shifts tryptophan metabolism from serotonin to tryptamine in neonatal porcine colon.

    Science.gov (United States)

    Saraf, Manish Kumar; Piccolo, Brian D; Bowlin, Anne K; Mercer, Kelly E; LeRoith, Tanya; Chintapalli, Sree V; Shankar, Kartik; Badger, Thomas M; Yeruva, Laxmi

    2017-07-14

    The gut microbiota of breast-fed and formula-fed infants differ significantly, as do the risks for allergies, gut dysfunction, and upper respiratory tract infections. The connections between breast milk, various formulas, and the profiles of gut bacteria to these childhood illnesses, as well as the mechanisms underlying the effects, are not well understood. We investigated distal colon microbiota by 16S RNA amplicon sequencing, morphology by histomorphometry, immune response by cytokine expression, and tryptophan metabolism in a pig model in which piglets were sow-fed, or fed soy or dairy milk-based formula from postnatal day (PND) 2 to 21. Formula feeding significantly (p feeding. A significant reduction in microbial diversity was noted with formula groups in comparison to sow-fed. Streptococcus, Blautia, Citrobacter, Butrycimonas, Parabacteroides, Lactococcus genera were increased with formula feeding relative to sow feeding. In addition, relative to sow feeding, Anaerotruncus, Akkermansia, Enterococcus, Acinetobacter, Christensenella, and Holdemania were increased in milk-fed piglets, and Biliophila, Ruminococcus, Clostridium were increased in soy-fed piglets. No significant gut morphological changes were noted. However, higher cytokine mRNA expression (BMP4, CCL11, CCL21) was observed in the distal colon of formula groups. Formula feeding reduced enterochromaffin cell number and serotonin, but increased tryptamine levels relative to sow feeding. Our data confirm that formula diet alters the colon microbiota and appears to shift tryptophan metabolism from serotonin to tryptamine, which may lead to greater histamine levels and risk of allergies in infants.

  20. Different Mechanisms of Catalytic Complex Formation in Two L-Tryptophan Processing Dioxygenases

    Directory of Open Access Journals (Sweden)

    Karin Nienhaus

    2018-01-01

    Full Text Available The human heme enzymes tryptophan 2,3-dioxygenase (hTDO and indoleamine 2,3 dioxygenase (hIDO catalyze the initial step in L-tryptophan (L-Trp catabolism, the insertion of dioxygen into L-Trp. Overexpression of these enzymes causes depletion of L-Trp and accumulation of metabolic products, and thereby contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. Understanding the assembly of the catalytically active, ternary enzyme-substrate-ligand complexes is not yet fully resolved, but an essential prerequisite for designing efficient and selective de novo inhibitors. Evidence is mounting that the ternary complex forms by sequential binding of ligand and substrate in a specific order. In hTDO, the apolar L-Trp binds first, decreasing active-site solvation and, as a result, reducing non-productive oxidation of the heme iron by the dioxygen ligand, which may leave the substrate bound to a ferric heme iron. In hIDO, by contrast, dioxygen must first coordinate to the heme iron because a bound substrate would occlude ligand access to the heme iron, so the ternary complex can no longer form. Consequently, faster association of L-Trp at high concentrations results in substrate inhibition. Here, we summarize our present knowledge of ternary complex formation in hTDO and hIDO and relate these findings to structural peculiarities of their active sites.

  1. Pourbaix Diagram, Proton-Coupled Electron Transfer, and Decay Kinetics of a Protein Tryptophan Radical: Comparing the Redox Properties of W32• and Y32• Generated Inside the Structurally Characterized α3W and α3Y Proteins.

    Science.gov (United States)

    Glover, Starla D; Tyburski, Robin; Liang, Li; Tommos, Cecilia; Hammarström, Leif

    2018-01-10

    Protein-based "hole" hopping typically involves spatially arranged redox-active tryptophan or tyrosine residues. Thermodynamic information is scarce for this type of process. The well-structured α 3 W model protein was studied by protein film square wave voltammetry and transient absorption spectroscopy to obtain a comprehensive thermodynamic and kinetic description of a buried tryptophan residue. A Pourbaix diagram, correlating thermodynamic potentials (E°') with pH, is reported for W 32 in α 3 W and compared to equivalent data recently presented for Y 32 in α 3 Y ( Ravichandran , K. R. ; Zong , A. B. ; Taguchi , A. T. ; Nocera , D. G. ; Stubbe , J. ; Tommos , C. J. Am. Chem. Soc. 2017 , 139 , 2994 - 3004 ). The α 3 W Pourbaix diagram displays a pK OX of 3.4, a E°'(W 32 (N •+ /NH)) of 1293 mV, and a E°'(W 32 (N • /NH); pH 7.0) of 1095 ± 4 mV versus the normal hydrogen electrode. W 32 (N • /NH) is 109 ± 4 mV more oxidizing than Y 32 (O • /OH) at pH 5.4-10. In the voltammetry measurements, W 32 oxidation-reduction occurs on a time scale of about 4 ms and is coupled to the release and subsequent uptake of one full proton to and from bulk. Kinetic analysis further shows that W 32 oxidation likely involves pre-equilibrium electron transfer followed by proton transfer to a water or small water cluster as the primary acceptor. A well-resolved absorption spectrum of W 32 • is presented, and analysis of decay kinetics show that W 32 • persists ∼10 4 times longer than aqueous W • due to significant stabilization by the protein. The redox characteristics of W 32 and Y 32 are discussed relative to global and local protein properties.

  2. Composition of carbonization residues

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer; Leonhardt

    1943-11-27

    This report compared the composition of samples from Wesseling and Leuna. In each case the sample was a residue from carbonization of the residues from hydrogenation of the brown coal processed at the plant. The composition was given in terms of volatile components, fixed carbon, ash, water, carbon, hydrogen, oxygen, nitrogen, volatile sulfur, and total sulfur. The result of carbonization was given in terms of (ash and) coke, tar, water, gas and losses, and bitumen. The composition of the ash was given in terms of silicon dioxide, ferric oxide, aluminum oxide, calcium oxide, magnesium oxide, potassium and sodium oxides, sulfur trioxide, phosphorus pentoxide, chlorine, and titanium oxide. The most important difference between the properties of the two samples was that the residue from Wesseling only contained 4% oil, whereas that from Leuna had about 26% oil. Taking into account the total amount of residue processed yearly, the report noted that better carbonization at Leuna could save 20,000 metric tons/year of oil. Some other comparisons of data included about 33% volatiles at Leuna vs. about 22% at Wesseling, about 5 1/2% sulfur at Leuna vs. about 6 1/2% at Leuna, but about 57% ash for both. Composition of the ash differed quite a bit between the two. 1 table.

  3. Designing with residual materials

    NARCIS (Netherlands)

    Walhout, W.; Wever, R.; Blom, E.; Addink-Dölle, L.; Tempelman, E.

    2013-01-01

    Many entrepreneurial businesses have attempted to create value based on the residual material streams of third parties. Based on ‘waste’ materials they designed products, around which they built their company. Such activities have the potential to yield sustainable products. Many of such companies

  4. NMR assignments for the amino-terminal residues of trp repressor and their role in DNA binding

    International Nuclear Information System (INIS)

    Arrowsmith, C.H.; Carey, J.; Treat-Clemons, L.; Jardetzky, O.

    1989-01-01

    The trp repressor of Escherichia coli specifically binds to operator DNAs in three operons involved in tryptophan metabolism. The NMR spectra of repressor and a chymotryptic fragment lacking the six amino-terminal residues are compared. Two-dimensional J-correlated spectra of the two forms of the protein are superimposable except for cross-peaks that are associated with the N-terminal region. The chemical shifts and relaxation behavior of the N-terminal resonances suggest mobile arms. Spin-echo experiments on a ternary complex of repressor with L-tryptophan and operator DNA indicate that the termini are also disordered in the complex, although removal of the arms reduces the DNA binding energy. Relaxation measurements on the armless protein show increased mobility for several residues, probably due to helix fraying in the newly exposed N-terminal region. DNA binding by the armless protein does not reduce the mobility of these residues. Thus, it appears that the arms serve to stabilize the N-terminal helix but that this structural role does not explain their contribution to the DNA binding energy. These results suggest that the promiscuous DNA binding by the arms seen in the X-ray crystal structure is found in solution as well

  5. Tryptophan metabolism, its relation to inflammation and stress markers and association with psychological and cognitive functioning: Tasmanian Chronic Kidney Disease pilot study.

    Science.gov (United States)

    Karu, Naama; McKercher, Charlotte; Nichols, David S; Davies, Noel; Shellie, Robert A; Hilder, Emily F; Jose, Matthew D

    2016-11-10

    Adults with chronic kidney disease (CKD) exhibit alterations in tryptophan metabolism, mainly via the kynurenine pathway, due to higher enzymatic activity induced mainly by inflammation. Indoles produced by gut-microflora are another group of tryptophan metabolites related to inflammation and conditions accompanying CKD. Disruptions in tryptophan metabolism have been associated with various neurological and psychological disorders. A high proportion of CKD patients self-report symptoms of depression and/or anxiety and decline in cognitive functioning. This pilot study examines tryptophan metabolism in CKD and explores associations with psychological and cognitive functioning. Twenty-seven adults with CKD were part of 49 patients recruited to participate in a prospective pilot study, initially with an eGFR of 15-29 mL/min/1.73 m 2 . Only participants with viable blood samples and complete psychological/cognitive data at a 2-year follow-up were included in the reported cross-sectional study. Serum samples were analysed by Liquid Chromatography coupled to Mass Spectrometry, for tryptophan, ten of its metabolites, the inflammation marker neopterin and the hypothalamic-pituitary-adrenal (HPA) axis marker cortisol. The tryptophan breakdown index (kynurenine / tryptophan) correlated with neopterin (Pearson R = 0.51 P = 0.006) but not with cortisol. Neopterin levels also correlated with indoxyl sulfate (R = 0.68, P tryptophan (R range 0.5-0.7, all P ≤ 0.01), which were all negatively related to eGFR (P tryptophan breakdown via the kynurenine pathway, yet without sparing tryptophan metabolism through the 5-HT (serotonin) pathway in CKD patients. The multiple moderate associations between indole-3 acetic acid and psychological measures were a novel finding. The presented pilot data necessitate further exploration of these associations within a large prospective cohort to assess the broader significance of these findings.

  6. Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation

    Science.gov (United States)

    Aledo, Juan C.; Cantón, Francisco R.; Veredas, Francisco J.

    2015-01-01

    Methionine residues exhibit different degrees of susceptibility to oxidation. Although solvent accessibility is a relevant factor, oxidation at particular sites cannot be unequivocally explained by accessibility alone. To explore other possible structural determinants, we assembled different sets of oxidation-sensitive and oxidation-resistant methionines contained in human proteins. Comparisons of the proteins containing oxidized methionines with all proteins in the human proteome led to the conclusion that the former exhibit a significantly higher mean value of methionine content than the latter. Within a given protein, an examination of the sequence surrounding the non-oxidized methionine revealed a preference for neighbouring tyrosine and tryptophan residues, but not for phenylalanine residues. However, because the interaction between sulphur atoms and aromatic residues has been reported to be important for the stabilization of protein structure, we carried out an analysis of the spatial interatomic distances between methionines and aromatic residues, including phenylalanine. The results of these analyses uncovered a new determinant for methionine oxidation: the S-aromatic motif, which decreases the reactivity of the involved sulphur towards oxidants. PMID:26597773

  7. The relationship of alcohol-use disorders and depressive symptoms to tryptophan metabolism: cross-sectional data from a Nepalese alcohol treatment sample

    Science.gov (United States)

    Neupane, Sudan Prasad; Lien, Lars; Martinez, Priscilla; Hestad, Knut; Bramness, Jørgen G.

    2015-01-01

    Background Activation of the kynurenine pathway of tryptophan metabolism results in increased production of potentially depressogenic tryptophan catabolites and a reduction in tryptophan availability for serotonin synthesis. Since alcohol consumption affects tryptophan metabolism and disposition, we determined serum levels of kynurenine, tryptophan and the kynurenine/tryptophan ratio (KT ratio) in alcohol-use disorder (AUD) patients and compared their levels considering abstinence duration, AUD severity and comorbid depression. Methods The study sample included 169 AUD inpatients from eight alcohol treatment facilities in Kathmandu, Nepal. The Composite International Diagnostic Interview was administered to generate the AUD diagnosis. The Alcohol Use Disorder Identification Test (AUDIT) captured AUD severity and patterns of alcohol use. The Hopkins Symptom Checklist-25 was used to reveal current depressive symptoms. Serum kynurenine and tryptophan levels were determined by high-performance liquid chromatography and tryptophan degradation was measured by KT ratio (kynurenine/tryptophan × 103). Results Patients with above average AUDIT scores had higher mean serum levels of kynurenine (2.1μM±0.7 vs 1.8 μM ±0.6, p= 0.006) and KT ratios (48.6±17.6 vs 40.4±14.3, p=0.002) than those with below average scores. Patients with current depressive symptoms had higher mean tryptophan concentrations (49.9 μM ±13 vs 45.7 μM±14.1, p= 0.047) and lower KT ratios (41.4 μM ±14 vs 47.5 μM ±17.6, p=0.028) compared to patients whose reported depressive symptoms were below the standard cut-off. Higher tryptophan levels and lower KT ratios in the depressed group was specific to patients with longer abstinence and higher AUD severity. Conclusions Depression-related deregulation in tryptophan metabolism was found to depend on length of abstinence and on AUD severity. Together, results suggest that in AUD populations, peripheral tryptophan metabolism is subject to interactions

  8. Residual stresses in material processing

    Science.gov (United States)

    Kozaczek, K. J.; Watkins, T. R.; Hubbard, C. R.; Wang, Xun-Li; Spooner, S.

    Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then addresses the direct, nondestructive methods of residual stress measurement by X ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.

  9. IgA/IgM responses to tryptophan and tryptophan catabolites (TRYCATs) are differently associated with prenatal depression, physio-somatic symptoms at the end of term and premenstrual syndrome.

    Science.gov (United States)

    Roomruangwong, Chutima; Kanchanatawan, Buranee; Sirivichayakul, Sunee; Anderson, George; Carvalho, André F; Duleu, Sebastien; Geffard, Michel; Maes, Michael

    2017-05-01

    There is some evidence that lowered tryptophan and an activated tryptophan catabolite (TRYCAT) pathway play a role in depression, somatoform disorder, and postpartum blues. The aim of this study is to delineate the associations between the TRYCAT pathway and premenstrual syndrome (PMS) and perinatal depressive and physio-somatic symptoms. We examine the associations between end of term serum IgM and IgA responses to tryptophan and 9 TRYCATs in relation to zinc, C-reactive protein (CRP), and haptoglobin and prenatal physio-somatic (previously known as psychosomatic) symptoms (fatigue, back pain, muscle pain, dyspepsia, obstipation) and prenatal and postnatal depression and anxiety symptoms as measured using the Edinburgh Postnatal Depression Scale (EPDS), Hamilton Depression Rating Scale (HAMD), and Spielberger's State Anxiety Inventory (STAI). We included pregnant females with (n = 24) and without depression (n = 25) and 24 non-pregnant females. There were no significant associations between the IgA/IgM responses to tryptophan and TRYCATs and prenatal and postnatal depression/anxiety symptoms, except for lowered IgA responses to anthranilic acid in prenatal depression. A large part of the variance in IgA responses to most TRYCATs was explained by PMS and haptoglobin (positively) and CRP (inversely) levels. The IgA responses to TRYCATs were significantly increased in PMS, in particular picolinic, anthranilic, xanthurenic and kynurenic acid, and 3OH-kynurenine. Variance (62.5%) in physio-somatic symptoms at the end of term was explained by PMS, previous depressions, zinc (inversely), CRP and haptoglobin (both positively), and the IgM responses to quinolinic acid (positively), anthranilic acid, and tryptophan (both negatively). The results suggest that mucosa-derived TRYCAT pathway activation is significantly associated with PMS, but not with perinatal depression/anxiety symptoms. Physio-somatic symptoms in pregnancy have an immune-inflammatory pathophysiology

  10. Internalisation of the mu-opioid receptor by endomorphin-1 and leu-enkephalin is dependant on aromatic amino acid residues.

    Science.gov (United States)

    Del Borgo, Mark P; Blanchfield, Joanne T; Toth, Istvan

    2008-04-15

    The opioid receptor system in the central nervous system controls a number of physiological processes, most notably pain. However, most opioids currently available have a variety of side-effects as well as exhibiting tolerance. Tolerance is most likely to be a complex phenomenon, however, the role of receptor internalisation is thought to play a crucial role. In this study, we examined the role of aromaticity in ligand-mediated receptor internalisation of the mu-opioid receptor (MOPR). These studies show that the amount of receptor internalisation may be dependant on the amphiphilicity of the ligand. Specifically, deletion of the C-terminus aromatic residues of endomorphin 1, particularly tryptophan reduces receptor-mediated internalisation whilst the addition of tryptophan within the enkephalin sequence increases receptor internalisation and decreases tolerance.

  11. Efficacy of differently applied tyrosine and tryptophan for modulation of phenolic metabolism in Trachyspermum ammi (L.) sprague seedlings.

    Science.gov (United States)

    Mahmood, Saqib; Mahmood, Tariq; Hussian, Iqbal; Javed, Sadia; Afzal, Beenish; Ghaffar, Freeha; Iqbal, Muhammad; Akram, Muhammad; Ali Shah, Syed Muhammad

    2016-09-01

    Phenolics are pharmaceutically important molecules. Tyrosine and tryptophan are precursors of phenolic metabolism. It was aimed to investigate the potential of exogenously introduced precursors on the phenolic contents in Trachyspermum ammi (L.) Sprague seedlings. The seeds of two local varieties (Chakwal and Desi) were grown in completely randomized design in a growth chamber at 19 ± 2°C with two amino acids (tyrosine and tryptophan) applied (priming and supplementation in rooting medium) at two treatment levels (0, and 1%). Ten days old seedlings were harvested and subjected for growth (root and shoot length, fresh weight and dry weight) and phenolic estimation was done by HPLC method. Presence of seven phenolic acids including quercitin, chromatotropic acid, gallic acid, chlorogenic acid, sinnapic acid, trans 4 hydroxy 3 methoxy cinamic acid and P-courmeric acid was confirmed in both varieties with dissimilar fraction. Poor growth was observed by "Desi" under controlled conditions that were efficiently enhanced by tyrosine and tryptophan treatments. As precursors both amino acids differed for allosteric regulation of the pathway. That varied from application to application and variety to variety too for a pattern of phenolic accumulation. In conclusion, tyrosine and tryptophan application can be useful for farmers for improved growth of T. ammi and for pharmaceutical scientists to modulate metabolites of interest.

  12. Membrane proteins and impure detergents : Procedures to purify membrane proteins to a degree suitable for tryptophan fluorescence spectroscopy

    NARCIS (Netherlands)

    Dijkstra, Durk; Broos, J.; Robillard, G.T.

    1996-01-01

    Investigation of the membrane-embedded mannitol permease of Escherichia coli (EII(mtl)) steady-state tryptophan fluorescence was hampered by fluorescent impurities arising from detergents and other sources during the isolation. The signals from these impurities could not be distinguished from

  13. Adsorption of the cysteine–tryptophan dipeptide at the Au(110)/liquid interface studied using reflection anisotropy spectroscopy

    DEFF Research Database (Denmark)

    Morozzo della Rocca, Blasco; Smith, C I; Tesauro, Cinzia

    2010-01-01

    The adsorption of a cysteine–tryptophan dipeptide has been monitored at a Au(110)/electrolyte interface using reflection anisotropy spectroscopy. At −0.6 V the dipeptide adsorbed through the formation of Au–S bonds and a link between the NH2 group at the Au surface. As the applied potential...

  14. Neural and personality correlates of individual differences related to the effects of acute tryptophan depletion on future reward evaluation.

    Science.gov (United States)

    Demoto, Yoshihiko; Okada, Go; Okamoto, Yasumasa; Kunisato, Yoshihiko; Aoyama, Shiori; Onoda, Keiichi; Munakata, Ayumi; Nomura, Michio; Tanaka, Saori C; Schweighofer, Nicolas; Doya, Kenji; Yamawaki, Shigeto

    2012-01-01

    In general, humans tend to discount the value of delayed reward. An increase in the rate of discounting leads to an inability to select a delayed reward over a smaller immediate reward (reward-delay impulsivity). Although deficits in the serotonergic system are implicated in this reward-delay impulsivity, there is individual variation in response to serotonin depletion. The aim of the present study was to investigate whether the effects of serotonin depletion on the ability to evaluate future reward are affected by individual personality traits or brain activation. Personality traits were assessed using the NEO-Five Factor Inventory and Temperament and Character Inventory. The central serotonergic levels of 16 healthy volunteers were manipulated by dietary tryptophan depletion. Subjects performed a delayed reward choice task that