WorldWideScience

Sample records for single telescope system

  1. Antares Reference Telescope System

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 μm in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10 - 6 torr) chamber. The design goal is to position the targets to within 10 μm of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail

  2. Virtual Telescope Alignment System

    Data.gov (United States)

    National Aeronautics and Space Administration — Next-generation space telescopes require two spacecraft to fly in a coordinated fashion in space forming a virtual telescope. Achieving and maintaining this precise...

  3. The prototype opto-mechanical system for the Fluorescence detector Array of Single-pixel Telescopes

    Czech Academy of Sciences Publication Activity Database

    Mandát, Dušan; Palatka, Miroslav; Pech, Miroslav; Schovánek, Petr; Trávníček, Petr; Nozka, L.; Hrabovský, M.; Horvath, P.; Fujii, T.; Privitera, P.; Malacari, M.; Farmer, J.; Galimova, A.; Matalon, A.; Merolle, M.; Ni, X.; Bellido, J.A.; Matthews, J.N.; Thomas, S.B.

    2017-01-01

    Roč. 12, Jul (2017), 1-10, č. článku T07001. ISSN 1748-0221 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA MŠk LE13012 Grant - others:OP VVV - AUGER-CZ(XE) CZ.02.1.01/0.0/0.0/16_013/0001402 Institutional support: RVO:68378271 Keywords : large detector systems for particle and astroparticle physics * particle detectors Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 1.220, year: 2016

  4. The JCMT Telescope Management System

    Science.gov (United States)

    Tilanus, Remo P. J.; Jenness, Tim; Economou, Frossie; Cockayne, Steve

    Established telescopes often face a challenge when trying to incorporate new software standards and utilities into their existing real-time control system. At the JCMT we have successfully added important new features such as a Relational Database (the Telescope Management System---TMS), an online data Archive, and WWW based utilities to an, in part, 10-year old system. The new functionality was added with remarkably few alterations to the existing system. We are still actively expanding and exploring these new capabilities.

  5. Global Astrophysical Telescope System - GATS

    Science.gov (United States)

    Polińska, M.; Kamiński, K.; Dimitrov, W.; Fagas, M.; Borczyk, W.; Kwiatkowski, T.; Baranowski, R.; Bartczak, P.; Schwarzenberg-Czerny, A.

    2014-02-01

    The Global Astronomical Telescope System is a project managed by the Astronomical Observatory Institute of Adam Mickiewicz University in Poznań (Poland) and it is primarily intended for stellar medium/high resolution spectroscopy. The system will be operating as a global network of robotic telescopes. The GATS consists of two telescopes: PST 1 in Poland (near Poznań) and PST 2 in the USA (Arizona). The GATS project is also intended to cooperate with the BRITE satellites and supplement their photometry with spectroscopic observations.

  6. Ideas for future large single dish radio telescopes

    Science.gov (United States)

    Kärcher, Hans J.; Baars, Jacob W. M.

    2014-07-01

    The existing large single dish radio telescopes of the 100m class (Effelsberg, Green Bank) were built in the 1970s and 1990s. With some active optics they work now down to 3 millimeter wavelength where the atmospheric quality of the site is also a limiting factor. Other smaller single dish telescopes (50m LMT Mexico, 30m IRAM Spain) are located higher and reach sub-millimeter quality, and the much smaller 12m antennas of the ALMA array reach at a very high site the Terahertz region. They use advanced technologies as carbon fiber structures and flexible body control. We review natural limits to telescope design and use the examples of a number of telescopes for an overview of the available state-of-the-art in design, engineering and technologies. Without considering the scientific justification we then offer suggestions to realize ultimate performance of huge single dish telescopes (up to 160m). We provide an outlook on design options, technological frontiers and cost estimates.

  7. Development of telescope control system for the 50cm telescope of UC Observatory Santa Martina

    Science.gov (United States)

    Shen, Tzu-Chiang; Soto, Ruben; Reveco, Johnny; Vanzi, Leonardo; Fernández, Jose M.; Escarate, Pedro; Suc, Vincent

    2012-09-01

    The main telescope of the UC Observatory Santa Martina is a 50cm optical telescope donated by ESO to Pontificia Universidad Catolica de Chile. During the past years the telescope has been refurbished and used as the main facility for testing and validating new instruments under construction by the center of Astro-Engineering UC. As part of this work, the need to develop a more efficient and flexible control system arises. The new distributed control system has been developed on top of Internet Communication Engine (ICE), a framework developed by Zeroc Inc. This framework features a lightweight but powerful and flexible inter-process communication infrastructure and provides binding to classic and modern programming languages, such as, C/C++, java, c#, ruby-rail, objective c, etc. The result of this work shows ICE as a real alternative for CORBA and other de-facto distribute programming framework. Classical control software architecture has been chosen and comprises an observation control system (OCS), the orchestrator of the observation, which controls the telescope control system (TCS), and detector control system (DCS). The real-time control and monitoring system is deployed and running over ARM based single board computers. Other features such as logging and configuration services have been developed as well. Inter-operation with other main astronomical control frameworks are foreseen in order achieve a smooth integration of instruments when they will be integrated in the main observatories in the north of Chile

  8. New 50-M-Class Single Dish Telescope: Large Submillimeter Telescope (LST)

    Science.gov (United States)

    Kawabe, Ryohei

    2018-01-01

    We report on the plan to construct a 50 m class millimeter (mm) and sub-mm single dish telescope, the Large Submillimeter Telescope (LST). The telescope is optimized for wide-area imaging and spectroscopic surveys in the 70 to 420 GHz main frequency range, which just covers main atmospheric windows at millimeter and submillimeter wavelengths for good observing sites such as the ALMA site in Chile. We also target observations at higher frequencies of up to 1 THz, using an inner part high-precision surface. Active surface control is required in order to correct gravitational and thermal deformations of the surface. The LST will facilitate new discovery spaces such as wide-field imaging with both continuum and spectral lines, along with new developments for time domain science. With exploiting synergy with ALMA and other telescopes, LST can contribute to a wide range of topics in astronomy and astrophysics, e.g., astrochemistry, star formation in the Galaxy and galaxies, evolution of galaxy clusters via SZ effect. We also report the recent progress on the technical study, e.g., the tentative study of the surface error budget and challenges to correction for the wind-load effect.

  9. The ANTARES telescope neutrino alert system

    Science.gov (United States)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-03-01

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.

  10. FPGA applications for single dish activity at Medicina radio telescopes

    Science.gov (United States)

    Bartolin, M.; Nald, G.; Mattan, A.; Maccaferr, A.; De Biagg, M.

    FPGA technologies are gaining major attention in the recent years in the field of radio astronomy. At Medicina radio telescopes, FPGAs have been used in the last ten years for a number of purposes and in this article we will take into exam the applications developed and installed for the Medicina Single Dish 32m Antenna: these range from high performance digital signal processing to instrument control developed on top of smaller FPGAs.

  11. RHCV Telescope System Operations Manual

    Science.gov (United States)

    2018-01-05

    restrictions described on inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY 711 HUMAN PERFORMANCE WING, AIRMAN SYSTEMS DIRECTORATE, WRIGHT...corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them. Qualified requestors...4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply

  12. Adaptive optics system application for solar telescope

    Science.gov (United States)

    Lukin, V. P.; Grigor'ev, V. M.; Antoshkin, L. V.; Botugina, N. N.; Emaleev, O. N.; Konyaev, P. A.; Kovadlo, P. G.; Krivolutskiy, N. P.; Lavrionova, L. N.; Skomorovski, V. I.

    2008-07-01

    The possibility of applying adaptive correction to ground-based solar astronomy is considered. Several experimental systems for image stabilization are described along with the results of their tests. Using our work along several years and world experience in solar adaptive optics (AO) we are assuming to obtain first light to the end of 2008 for the first Russian low order ANGARA solar AO system on the Big Solar Vacuum Telescope (BSVT) with 37 subapertures Shack-Hartmann wavefront sensor based of our modified correlation tracker algorithm, DALSTAR video camera, 37 elements deformable bimorph mirror, home made fast tip-tip mirror with separate correlation tracker. Too strong daytime turbulence is on the BSVT site and we are planning to obtain a partial correction for part of Sun surface image.

  13. The lofar phased array telescope system

    NARCIS (Netherlands)

    Gunst, André W.; Bentum, Marinus Jan

    2010-01-01

    The Low Frequency Array (LOFAR) is the largest telescope in the world operating at a frequency range from 30 to 240 MHz. LOFAR is the first radio telescope of its size which uses phased array principles to detect radio signals. More than 10,000 antennas are installed in the field. The antennas are

  14. Upgrade and standardization of real-time software for telescope systems at the Gemini telescopes

    Science.gov (United States)

    Rambold, William N.; Gigoux, Pedro; Urrutia, Cristian; Ebbers, Angelic; Taylor, Philip; Rippa, Mathew J.; Rojas, Roberto; Cumming, Tom

    2014-07-01

    The real-time control systems for the Gemini Telescopes were designed and built in the 1990s using state-of-the-art software tools and operating systems of that time. Since these systems are in use every night they have not been kept upto- date and are now obsolete and very labor intensive to support. Gemini is currently engaged in a major upgrade of its telescope control systems. This paper reviews the studies performed to select and develop a new standard operating environment for Gemini real-time systems and the work performed so far in implementing it.

  15. TICS-24 --- an Integrated Telescope Control System Using Hypercard

    Science.gov (United States)

    Hawkins, R. L.; Ratcliff, S. J.

    1993-12-01

    Starting from scripts generously provided by Ratcliff, the author has developed an integrated telescope and instrumentation control system for Hypercard on the Macintosh. The Telescope Integrated Control System (TICS-24) uses Hypercard scripts, HyperBASIC XFCN's, and APDA serial port XFCN's to control a telescope and another instrument over the built-in serial ports on a Macintosh. Additionally, TICS-24 has the ability to act as an object database with finder charts for frequently observed targets. The system is expandable, since new functions simply become new scripts and/or ``cards''. The system is also easily adaptable to other telescopes and instrumentation, since controlling a different telescope or instrument only requires rewriting the actual serial commands to match those expected by the new instrument.

  16. Design control system of telescope force actuators based on WLAN

    Science.gov (United States)

    Shuai, Xiaoying; Zhang, Zhenchao

    2010-05-01

    With the development of the technology of autocontrol, telescope, computer, network and communication, the control system of the modern large and extra lager telescope become more and more complicated, especially application of active optics. Large telescope based on active optics maybe contain enormous force actuators. This is a challenge to traditional control system based on wired networks, which result in difficult-to-manage, occupy signification space and lack of system flexibility. Wireless network can resolve these disadvantages of wired network. Presented control system of telescope force actuators based on WLAN (WFCS), designed the control system framework of WFCS. To improve the performance of real-time, we developed software of force actuators control system in Linux. Finally, this paper discussed improvement of WFCS real-time, conceived maybe improvement in the future.

  17. The ANTARES telescope neutrino alert system

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M.P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhofer, A.; Ernenwein, J.P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G.V.; Salesa, F.; Sapienza, P.; Schock, F.; Schuller, J.P.; Schussler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2012-01-01

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on

  18. The ANTARES telescope neutrino alert system

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J-L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schoeck, F.; Schuller, J-P.; Schuessler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on

  19. Mobile Tracking Systems Using Meter Class Reflective Telescopes

    Science.gov (United States)

    Sturzenbecher, K.; Ehrhorn, B.

    This paper is a discussion on the use of large reflective telescopes on mobile tracking systems with modern instrument control systems. Large optics can be defined as reflective telescopes with an aperture of at least 20 inches in diameter. New carbon composite construction techniques allow for larger, stronger, and lighter telescopes ranging from 240 pounds for a 20 inch, to 800 pounds for a 32 inch, making them ideal for mobile tracking systems. These telescopes have better light gathering capability and produce larger images with greater detail at a longer range than conventional refractive lenses. In a mobile configuration these systems provide the ability to move the observation platform to the optimal location anywhere in the world. Mounting and systems integration - We will discuss how large telescopes can be physically fit to the mobile tracking system and the integration with the tracking systems' digital control system. We will highlight the remote control capabilities. We will discuss special calibration techniques available in a modern instrument control system such as star calibration, calibration of sensors. Tracking Performance - We will discuss the impact of using large telescopes on the performance of the mobile tracking system. We will highlight the capabilities for auto-tracking and sidereal rate tracking in a mobile mount. Large optics performance - We will discuss the advantages of two-mirror Ritchey-Chrétien reflective optics which offer in-focus imaging across the spectrum, from visible to Long Wave Infrared. These zero expansion optics won't lose figure or focus during temperature changes. And the carbon composite telescope tube is thermally inert. The primary mirror is a modern lightweight "dish" mirror for low thermal mass and is center supported/self balancing. Applications - We will discuss Visible - IR Imaging requirements, Optical Rangefinders, and capabilities for special filters to increase resolution in difficult conditions such as

  20. Research on reflective optical telescope system's wavefront aberration compensation method

    Science.gov (United States)

    Duan, Xueting

    Wavefront aberration measurement of the image quality of reflective telescope system which has a large aperture and long focal length is one of the frequently-used methods of high-precision test and alignment. It was widely used during the large aperture telescope manufacturing process. The influences of surface shape error of the reflective optical telescope system components were simulated and analyst by input the actual measuring data into the optical design software CODE V in this article. According to the test results compared to the alignment process, the accuracy of the simulation method was indicated. At the same time, the wavefront aberration optical compensation principle of the reflective optical telescope system was proved by the simulation of alignment. And in this article, the feasibility of the application of optical phase compensation alignment method was investigated.

  1. A control system framework for the Hobby-Eberly telescope

    Science.gov (United States)

    Ramsey, Jason; Drory, Niv; Bryant, Randy; Elliott, Linda; Fowler, James; Hill, Gary J.; Landriau, Martin; Leck, Ron; Vattiat, Brian

    2016-08-01

    We present the development framework for the distributed control systems, scripting frontend, and monitoring facilities of the recently upgraded Hobby-Eberly Telescope (HET). A common flexible control and data acquisition layer in C++, with message passing implemented on top of ZeroMQ, wraps the final designs of each new hardware component including tracking, metrology, instrumentation and calibration equipment. A homogeneous command, response and event layer normalizes the diversity of the lower level software interfaces easing the development of the Telescope Control System (TCS). Applications developed in the framework easily interface to the new tracker and legacy instrumentation of the primary mirror, weather, dome, and tracker support structure. The framework facilitates testing, vetting, and characterization of the telescope and TCS. Examples of the real-time monitoring capabilities and the Python scripting methods of various telescope components yield insight into overall system performance. Lessons learned along the way, future refinements, and anticipated enhancements, are detailed.

  2. A Digital Motion Control System for Large Telescopes

    Science.gov (United States)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.

    2001-05-01

    We have designed and programmed a digital motion control system for large telescopes, in particular, the 6-meter antennas of the Submillimeter Array on Mauna Kea. The system consists of a single robust, high-reliability microcontroller board which implements a two-axis velocity servo while monitoring and responding to critical safety parameters. Excellent tracking performance has been achieved with this system (0.3 arcsecond RMS at sidereal rate). The 24x24 centimeter four-layer printed circuit board contains a multitude of hardware devices: 40 digital inputs (for limit switches and fault indicators), 32 digital outputs (to enable/disable motor amplifiers and brakes), a quad 22-bit ADC (to read the motor tachometers), four 16-bit DACs (that provide torque signals to the motor amplifiers), a 32-LED status panel, a serial port to the LynxOS PowerPC antenna computer (RS422/460kbps), a serial port to the Palm Vx handpaddle (RS232/115kbps), and serial links to the low-resolution absolute encoders on the azimuth and elevation axes. Each section of the board employs independent ground planes and power supplies, with optical isolation on all I/O channels. The processor is an Intel 80C196KC 16-bit microcontroller running at 20MHz on an 8-bit bus. This processor executes an interrupt-driven, scheduler-based software system written in C and assembled into an EPROM with user-accessible variables stored in NVSRAM. Under normal operation, velocity update requests arrive at 100Hz from the position-loop servo process running independently on the antenna computer. A variety of telescope safety checks are performed at 279Hz including routine servicing of a 6 millisecond watchdog timer. Additional ADCs onboard the microcontroller monitor the winding temperature and current in the brushless three-phase drive motors. The PID servo gains can be dynamically changed in software. Calibration factors and software filters can be applied to the tachometer readings prior to the application of

  3. Architecture of a Generic Telescope Control and Monitoring System

    Science.gov (United States)

    Mohile, V.; Purkar, C.

    2009-09-01

    This paper focuses on a proposed architecture for a Generic Control and Monitoring System (CMS) which can be adapted for any telescope system. This architecture is largely based on an in-progress specification project that PSL is carrying out for IUCAA and NCRA. Historically, the communication link between the telescope and its users at IUCAA and NCRA has been unfriendly. Also, previously it was difficult to maintain and there was no facility to add support for new features or new hardware on the fly. PSL is proposing a new contemporary open-source software based architecture to be applied to both radio and optical telescopes that resolves some of these issues. We present the high-level architecture and design of this CMS. Specifically, we have proposed for the development of the commonality of GUI in platform-independent, modular, secure and robust Java environment. This application along with Extensible Markup Language-Document Type Definition (XML-DTD) structure can control the telescope as well as monitors the status of the telescope. Thus, using CMS we can provide various users having different access levels to control and monitor different telescope systems. The CMS thus achieves design objectives of being generic and not tightly coupled to the actual underlying hardware. In that way, it would enable easy and flexible upgrades of the hardware.

  4. SEPIA - a new single pixel receiver at the APEX telescope

    Science.gov (United States)

    Belitsky, V.; Lapkin, I.; Fredrixon, M.; Meledin, D.; Sundin, E.; Billade, B.; Ferm, S.-E.; Pavolotsky, A.; Rashid, H.; Strandberg, M.; Desmaris, V.; Ermakov, A.; Krause, S.; Olberg, M.; Aghdam, P.; Shafiee, S.; Bergman, P.; Beck, E. De; Olofsson, H.; Conway, J.; Breuck, C. De; Immer, K.; Yagoubov, P.; Montenegro-Montes, F. M.; Torstensson, K.; Pérez-Beaupuits, J.-P.; Klein, T.; Boland, W.; Baryshev, A. M.; Hesper, R.; Barkhof, J.; Adema, J.; Bekema, M. E.; Koops, A.

    2018-04-01

    Context. We describe the new Swedish-ESO PI Instrument for APEX (SEPIA) receiver, which was designed and built by the Group for Advanced Receiver Development (GARD), at Onsala Space Observatory (OSO) in collaboration with ESO. It was installed and commissioned at the APEX telescope during 2015 with an ALMA Band 5 receiver channel and updated with a new frequency channel (ALMA Band 9) in February 2016. Aim. This manuscript aims to provide, for observers who use the SEPIA receiver, a reference in terms of the hardware description, optics and performance as well as the commissioning results. Methods: Out of three available receiver cartridge positions in SEPIA, the two current frequency channels, corresponding to ALMA Band 5, the RF band 158-211 GHz, and Band 9, the RF band 600-722 GHz, provide state-of-the-art dual polarization receivers. The Band 5 frequency channel uses 2SB SIS mixers with an average SSB noise temperature around 45 K with IF (intermediate frequency) band 4-8 GHz for each sideband providing total 4 × 4 GHz IF band. The Band 9 frequency channel uses DSB SIS mixers with a noise temperature of 75-125 K with IF band 4-12 GHz for each polarization. Results: Both current SEPIA receiver channels are available to all APEX observers.

  5. An observatory control system for the University of Hawai'i 2.2m Telescope

    Science.gov (United States)

    McKay, Luke; Erickson, Christopher; Mukensnable, Donn; Stearman, Anthony; Straight, Brad

    2016-07-01

    The University of Hawai'i 2.2m telescope at Maunakea has operated since 1970, and has had several controls upgrades to date. The newest system will operate as a distributed hierarchy of GNU/Linux central server, networked single-board computers, microcontrollers, and a modular motion control processor for the main axes. Rather than just a telescope control system, this new effort is towards a cohesive, modular, and robust whole observatory control system, with design goals of fully robotic unattended operation, high reliability, and ease of maintenance and upgrade.

  6. Planet detection and spectroscopy in visible light with a single aperture telescope and a nulling coronagraph

    Science.gov (United States)

    Shao, Michael; Serabyn, Eugene; Levine, Bruce Martin; Beichman, Charles; Liu, Duncan; Martin, Stefan; Orton, Glen; Mennesson, Bertrand; Morgan, Rhonda; Velusamy, Thangasamy; hide

    2003-01-01

    This talk describes a new concept for visible direct detection of Earth like extra solar planets using a nulling coronagraph instrument behind a 4m telescope in space. In the baseline design, a 4 beam nulling interferometer is synthesized from the telescope pupil, producing a very deep theta^4null which is then filtered by a coherent array of single mode fibers to suppress the residual scattered light. With perfect optics, the stellar leakage is less than 1e-11 of the starlight at the location of the planet. With diffraction limited telescope optics (lambda/20), suppression of the starlight to 1e-10 is possible. The concept is described along with the key advantages over more traditional approaches such as apodized aperture telescopes and Lyot type coronagraphs.

  7. Performance Evaluation of Irbene RT-16 Radio Telescope Receiving System

    Directory of Open Access Journals (Sweden)

    Bleiders M.

    2017-12-01

    Full Text Available In the present paper, recent measurement results of refurbished Irbene RT-16 radio telescope receiving system performance are presented. The aim of the research is to evaluate characteristics of RT-16, which will allow carrying out necessary amplitude calibration in both single dish and VLBI observations, to improve the performance of existing system as well as to monitor, control and compare performance if possible changes in the receiving system will occur in future. The evaluated receiving system is 16 m Cassegrain antenna equipped with a cryogenic receiver with frequency range from 4.5 to 8.8 GHz, which is divided into four sub-bands. Multiple calibration sessions have been carried out by observing stable astronomical sources with known flux density by using in-house made total power registration backend. First, pointing offset calibration has been carried out and pointing model coefficients calculated and applied. Then, amplitude calibration, namely antenna sensitivity, calibration diode equivalent flux density and gain curve measurements have been carried out by observing calibration sources at different antenna elevations at each of the receiver sub-bands. Beam patterns have also been evaluated at different frequency bands. As a whole, acquired data will serve as a reference point for comparison in future performance evaluation of RT-16.

  8. New Control System Software for the Hobby-Eberly Telescope

    Science.gov (United States)

    Rafferty, T.; Cornell, M. E.; Taylor, C., III; Moreira, W.

    2011-07-01

    The Hobby-Eberly Telescope at the McDonald Observatory is undergoing a major upgrade to support the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and to facilitate large field systematic emission-line surveys of the universe. An integral part of this upgrade will be the development of a new software control system. Designed using modern object oriented programming techniques and tools, the new software system uses a component architecture that closely models the telescope hardware and instruments, and provides a high degree of configuration, automation and scalability. Here we cover the overall architecture of the new system, plus details some of the key design patterns and technologies used. This includes the utilization of an embedded Python scripting engine, the use of the factory method pattern and interfacing for easy run-time configuration, a flexible communication scheme, the design and use of a centralized logging system, and the distributed GUI architecture.

  9. Status, performance and scientific highlights from the MAGIC telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Doert, Marlene [Technische Universitaet Dortmund (Germany); Ruhr-Universitaet Bochum (Germany); Collaboration: MAGIC-Collaboration

    2015-07-01

    The MAGIC telescopes are a system of two 17 m Imaging Air Cherenkov Telescopes, which are located at 2200 m above sea level at the Roque de Los Muchachos Observatory on the Canary Island of La Palma. In this presentation, we report on recent scientific highlights gained from MAGIC observations in the galactic and the extragalactic regime. We also present the current status and performance of the MAGIC system after major hardware upgrades in the years 2011 to 2014 and give an overview of future plans.

  10. A computer-aided telescope pointing system utilizing a video star tracker

    Science.gov (United States)

    Murphy, J. P.; Lorell, K. R.; Swift, C. D.

    1975-01-01

    The Video Inertial Pointing (VIP) System developed to satisfy the acquisition and pointing requirements of astronomical telescopes is described. A unique feature of the system is the use of a single sensor to provide information for the generation of three axis pointing error signals and for a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization and the CRT display is used by an operator to facilitate target acquisition and to aid in manual positioning of the telescope optical axis. A model of the system using a low light level vidicon built and flown on a balloon-borne infrared telescope is briefly described from a state of the art charge coupled device (CCD) sensor. The advanced system hardware is described and an analysis of the multi-star tracking and three axis error signal generation, along with an analysis and design of the gyro update filter, are presented. Results of a hybrid simulation are described in which the advanced VIP system hardware is driven by a digital simulation of the star field/CCD sensor and an analog simulation of the telescope and gyro stabilization dynamics.

  11. Telescope Array Control System Based on Wireless Touch Screen Platform

    Science.gov (United States)

    Fu, Xia-nan; Huang, Lei; Wei, Jian-yan

    2017-10-01

    Ground-based Wide Angle Cameras (GMAC) are the ground-based observational facility for the SVOM (Space Variable Object Monitor) astronomical satellite of Sino-French cooperation, and Mini-GWAC is the pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system based on the wireless touch screen platform. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test etc. The system uses a touch-control PC which is based on the Windows CE system as the upper computer, while the wireless transceiver module and PLC (Programmable Logic Controller) are taken as the system kernel. It has the advantages of low cost, reliable data transmission, and simple operation. And the control system has been applied to the Mini-GWAC successfully.

  12. The data acquisition system for the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Aslanides, E.; Aubert, J. -J.; Barbarito, E.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Bigi, A.; Billault, M.; Blaes, R.; de Botton, N.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Cafagna, F.; Caillat, L.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chauchot, P.; Chiarusi, T.; Circella, M.; Colnard, C.; Compere, C.; Coniglione, R.; Cottini, N.; Coyle, P.; Cuneo, S.; Cussatlegras, A. -S.; Damy, G.; van Dantzig, R.; De Marzo, C.; Dekeyser, I.; Delagnes, E.; Denans, D.; Deschamps, A.; Dessages-Ardellier, F.; Destelle, J. -J.; Dinkespieler, B.; Distefano, C.; Donzaud, C.; Drogou, J. -F.; Druillole, F.; Durand, D.; Ernenwein, J. -P.; Escoffier, S.; Falchini, E.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Fiorello, C.; Flaminio, V.; Galeotti, S.; Gallone, J. -M.; Giacomelli, G.; Girard, N.; Gojak, C.; Goret, Ph.; Graf, K.; Hallewell, G.; Harakeh, M. N.; Hartmann, B.; Heijboer, A.; Heine, E.; Hello, Y.; Hernandez-Rey, J. J.; Hoessl, J.; Hoffman, C.; Hogenbirk, J.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Jouvenot, F.; Kalantar-Nayestanaki, N.; Kappes, A.; Karg, T.; Karkar, S.; Katz, U.; Keller, P.; Kok, H.; Kooijman, P.; Kopper, C.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kudryavstev, V. A.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lamanna, G.; Lamare, P.; Languillat, J. C.; Laschinsky, H.; Le Guen, Y.; Le Provost, H.; Suu, A. Le Van; Legou, T.; Lim, G.; Lo Nigro, L.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazeas, F.; Mazure, A.; McMillan, J. E.; Megna, R.; Melissas, M.; Migneco, E.; Milovanovic, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Niess, V.; Olivetto, C.; Ostasch, R.; Palanque-Delabrouille, N.; Payre, P.; Peek, H.; Petta, C.; Piattelli, P.; Pineau, J. -P.; Poinsignon, J.; Popa, V.; Pradier, T.; Racca, C.; Randazzo, N.; van Randwijk, J.; Real, D.; van Rens, B.; Rethore, F.; Rewiersma, P.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca, V.; Roda, C.; Rolin, J. F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Roux, J.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schuller, J. -P.; Shanidze, R.; Sokalski, I.; Spona, T.; Spurio, M.; van der Steenhoven, G.; Stolarczyk, T.; Streeb, K.; Stubert, D.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Terreni, G.; Thompson, L. F.; Valdy, P.; Valente, V.; Vallage, B.; Venekamp, G.; Verlaat, B.; Vernin, P.; de Vita, R.; de Vries, G.; Huberts, P. de Witt; Wobbe, G.; de Wolf, E.; Yao, A-F; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zuniga, J.; van Wijk, R.

    2007-01-01

    The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and

  13. Telescope sipping the optimum fuel leak detection system

    International Nuclear Information System (INIS)

    Deleryd, R.

    1998-01-01

    The TELESCOPE Sipping technology is an evolutionary development from previous ABB fuel leak systems used in LWR reactors. The system utilizes the existing dynamics that cause numerous fission products to leak from a failed fuel rod when the fuel assembly is raised from a reactor core during core fuel alterations. The system can also be used by repair work in pool side inspection in order to detect leaking rods or to verify reconstituted assemblies as non leakers. (author)

  14. Integration tests of the VLT telescope control system

    Science.gov (United States)

    Chiozzi, Gianluca; Wirenstrand, Krister; Ravensbergen, Martin; Gilli, Bruno

    1997-09-01

    The installation of the complete VLT telescope control system on the observatory is a complex task. It is important that the various components of the system have been carefully tested and integrated before. This paper presents the ESO strategy to pre-installation testing. In particular, results and experiences from pre-erection tests of the telescope structure are presented. In these tests, the complete telescope structure, including both axes with encoders and drives, has been built up at the premises of the European manufacturer (in Milan, Italy). These tests provide valuable input for the erection on Paranal. To this system, ESO added control electronics and software, which was tested with the telescope. The complete positioning of both main axes is under test, including slewing and tracking performance tests, as far as this is possible without using the sky. The VLT control software and most parts of the VLT control electronics have also been tested on the NTT on La Silla. Since the NTT upgrade software is practically a subset of the VLT software, the NTT tests have provided invaluable feedback for the VLT. The NTT tests are described in a separate paper presented at this conference. The paper also briefly discusses subsystem tests, and presents results from some of the subsystem tests performed in Europe.

  15. The SiRi particle-telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Guttormsen, M., E-mail: magne.guttormsen@fys.uio.no [Department of Physics, University of Oslo (Norway); Buerger, A. [Department of Physics, University of Oslo (Norway); Hansen, T.E.; Lietaer, N. [SINTEF, Department for Microsystems and Nanotechnology, Oslo (Norway)

    2011-08-21

    A silicon particle-telescope system for light-ion nuclear reactions is described. In particular, the system is optimized for level density and {gamma}-ray strength function measurements with the so-called Oslo method. Eight trapezoidal modules are mounted at 5 cm distance from the target, covering eight forward angles between {theta}=40 deg. and 54 deg. The thin front {Delta}E detectors (130{mu}m) are segmented into eight pads, determining the reaction angle {theta} for the outgoing charged ejectile. Guard rings on the thick back E detectors (1550{mu}m) guarantee low leakage current at high depletion voltage. - Highlights: > We have designed silicon chips with guard rings with small leakage current. > These form a particle-telescope system with 64 {Delta}E-E detectors. > The system covers eight forward angels between 40 deg. and 54 deg. > Together with NaI detectors we obtain high {gamma}-particle coincidence efficiency.

  16. The data acquisition system for the ANTARES neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Aslanides, E.; Aubert, J.-J.; Barbarito, E.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Bigi, A.; Billault, M.; Blaes, R.; de Botton, N.; Bouwhuis, M. C.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Cafagna, F.; Caillat, L.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chauchot, P.; Chiarusi, T.; Circella, M.; Colnard, C.; Compère, C.; Coniglione, R.; Cottini, N.; Coyle, P.; Cuneo, S.; Cussatlegras, A.-S.; Damy, G.; van Dantzig, R.; de Marzo, C.; Dekeyser, I.; Delagnes, E.; Denans, D.; Deschamps, A.; Dessages-Ardellier, F.; Destelle, J.-J.; Dinkespieler, B.; Distefano, C.; Donzaud, C.; Drogou, J.-F.; Druillole, F.; Durand, D.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Fiorello, C.; Flaminio, V.; Galeotti, S.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Gojak, C.; Goret, Ph.; Graf, K.; Hallewell, G.; Harakeh, M. N.; Hartmann, B.; Heijboer, A.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hoffman, C.; Hogenbirk, J.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jouvenot, F.; Kalantar-Nayestanaki, N.; Kappes, A.; Karg, T.; Karkar, S.; Katz, U.; Keller, P.; Kok, H.; Kooijman, P.; Kopper, C.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kudryavstev, V. A.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lamanna, G.; Lamare, P.; Languillat, J. C.; Laschinsky, H.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Legou, T.; Lim, G.; Lo Nigro, L.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazure, A.; McMillan, J. E.; Megna, R.; Melissas, M.; Migneco, E.; Milovanovic, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Niess, V.; Olivetto, C.; Ostasch, R.; Palanque-Delabrouille, N.; Payre, P.; Peek, H.; Petta, C.; Piattelli, P.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Pradier, T.; Racca, C.; Randazzo, N.; van Randwijk, J.; Real, D.; van Rens, B.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca, V.; Roda, C.; Rolin, J. F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Roux, J.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schuller, J.-P.; Shanidze, R.; Sokalski, I.; Spona, T.; Spurio, M.; van der Steenhoven, G.; Stolarczyk, T.; Streeb, K.; Stubert, D.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Terreni, G.; Thompson, L. F.; Valdy, P.; Valente, V.; Vallage, B.; Venekamp, G.; Verlaat, B.; Vernin, P.; de Vita, R.; de Vries, G.; van Wijk, R.; de Witt Huberts, P.; Wobbe, G.; de Wolf, E.; Yao, A.-F.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2007-01-01

    The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.

  17. The upgraded telescope control system performance for the Canada-France-Hawaii Telescope

    Science.gov (United States)

    Jones-Palma, Windell H.; Metz, Brandon; Ho, Kevin K. Y.; Thomas, Jim

    2016-08-01

    The Canada-France-Hawaii Telescope (CFHT) completed the first phase of its TCS upgrade in early 2015. Prior to this effort, the previous version of CFHTs TCS was largely unmodified since it began operation in 1979 and had begun to exhibit reliability and maintainability issues entering its third decade of operation. The first phase consisted of replacing the custom-built servo control hardware built by the Canadian Marconi Company with an off-the-shelf Delta Tau Systems Power PMAC and replacing the absolute and incremental encoders with modern equivalents. Adapting the motion control algorithms used within the Power PMAC for real-time control of the telescope on the sky posed unique challenges. This work brie y summarizes the design for the upgraded TCS at CFHT, describes the solutions that adapted the traditional use of the Power PMAC for use at CFHT, and discusses the improved performance of CFHTs new TCS in terms of decreased time to target and tracking error.

  18. The EXIST Infra-Red Telescope System: Design and Performance

    Science.gov (United States)

    Moseley, Samuel H.

    2010-01-01

    The Infra-Red Telescope is a critical element of the EXIST (Energetic X-Ray Imaging Survey Telescope) observatory. It is a passively cooled 1.lm visible/infrared telescope. The primary goal of the IRT is to obtain photometric and spectroscopic measurements of high redshift (>6) gamma ray burst afterglows to study the nature of these enigmatic events and their environments, and to use them as probes of the composition and ionization state of the intergalactic medium of the young universe. The IRT will provide a prompt follow up (within three minutes) of the transient discovered by the EXIST with exceptional NIR sensitivity (AB=24 in 100s) surpassing HST in the infrared due to its passively cooled (- 30 C) mirror. Its optical design and spectral coverage is tailored to the high redshift transient events that require prompt pointing, identification, accurate photometry and both low and high resolution spectroscopy. Here we describe the telescope, its instrument complement, and the cooling systems which provide its remarkable sensitivity

  19. Apollo telescope mount thermal systems unit thermal vacuum test

    Science.gov (United States)

    Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.

    1971-01-01

    The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.

  20. CCD - based guiding and control system for solar telescopes

    Czech Academy of Sciences Publication Activity Database

    Klvaňa, Miroslav; Bumba, Václav; Sobotka, Michal

    2003-01-01

    Roč. 324, č. 4 (2003), s. 305-307 ISSN 0004-6337 R&D Projects: GA ČR GA205/01/0658; GA AV ČR IAA3003903; GA AV ČR KSK2043105 Institutional research plan: CEZ:AV0Z1003909 Keywords : solar telescopes * guiding and control system Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.199, year: 2003

  1. A Large-Telescope Natural Guide Star AO System

    Science.gov (United States)

    Redding, David; Milman, Mark; Needels, Laura

    1994-01-01

    None given. From overview and conclusion:Keck Telescope case study. Objectives-low cost, good sky coverage. Approach--natural guide star at 0.8um, correcting at 2.2um.Concl- Good performance is possible for Keck with natural guide star AO system (SR>0.2 to mag 17+).AO-optimized CCD should b every effective. Optimizing td is very effective.Spatial Coadding is not effective except perhaps at extreme low light levels.

  2. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several

  3. A Scalable Superconductor Bearing System For Lunar Telescopes And Instruments

    Science.gov (United States)

    Chen, Peter C.; Rabin, D.; Van Steenberg, M. E.

    2010-01-01

    We report on a new concept for a telescope mount on the Moon based on high temperature superconductors (HTS). Lunar nights are long (15 days), and temperatures range from 100 K to 30 K inside shadowed craters. Telescopes on the Moon therefore require bearing systems that can position and track precisely under cryogenic conditions, over long time periods, preferably with no maintenance, and preferably do not fail with loss of power. HTS bearings, consisting of permanent magnets levitated over bulk superconductors, are well suited to the task. The components do not make physical contact, hence there is no wear. The levitation is passive and stable; no power is required to maintain position. We report on the design and laboratory demonstration of a prototype two-axis pointing system. Unlike previous designs, this new configuration is simple and easy to implement. Most importantly, it can be scaled to accommodate instruments ranging in size from decimeters (laser communication systems) to meters (solar panels, communication dishes, optical telescopes, optical interferometers) to decameters and beyond (VLA-type radio interferometer elements).

  4. The control system of the 3 mm band SIS receiver for the Sardinia Radio Telescope

    Science.gov (United States)

    Ladu, A.; Ortu, P.; Saba, A.; Pili, M.; Guadiomonte, F.; Navarrini, A.; Urru, E.; Pisanu, T.; Valente, G.; Marongiu, P.; Mazzarella, G.

    2016-07-01

    We present the control system of the 84-116 GHz (3 mm band) Superconductor-Insulator-Superconductor (SIS) heterodyne receiver to be installed at the Gregorian focus of the Sardinia Radio Telescope (SRT). The control system is based on a single-board computer from Raspberry, on microcontrollers from Arduino, and on a Python program for communication between the receiver and the SRT antenna control software, which remotely controls the backshorttuned SIS mixer, the receiver calibration system and the Local Oscillator (LO) system.

  5. Preliminary design study of the TMT Telescope structure system: overview

    Science.gov (United States)

    Usuda, Tomonori; Ezaki, Yutaka; Kawaguchi, Noboru; Nagae, Kazuhiro; Kato, Atsushi; Takaki, Junji; Hirano, Masaki; Hattori, Tomoya; Tabata, Masaki; Horiuchi, Yasushi; Saruta, Yusuke; Sofuku, Satoru; Itoh, Noboru; Oshima, Takeharu; Takanezawa, Takashi; Endo, Makoto; Inatani, Junji; Iye, Masanori; Sadjadpour, Amir; Sirota, Mark; Roberts, Scott; Stepp, Larry

    2014-07-01

    We present an overview of the preliminary design of the Telescope Structure System (STR) of Thirty Meter Telescope (TMT). NAOJ was given responsibility for the TMT STR in early 2012 and engaged Mitsubishi Electric Corporation (MELCO) to take over the preliminary design work. MELCO performed a comprehensive preliminary design study in 2012 and 2013 and the design successfully passed its Preliminary Design Review (PDR) in November 2013 and April 2014. Design optimizations were pursued to better meet the design requirements and improvements were made in the designs of many of the telescope subsystems as follows: 1. 6-legged Top End configuration to support secondary mirror (M2) in order to reduce deformation of the Top End and to keep the same 4% blockage of the full aperture as the previous STR design. 2. "Double Lower Tube" of the elevation (EL) structure to reduce the required stroke of the primary mirror (M1) actuators to compensate the primary mirror cell (M1 Cell) deformation caused during the EL angle change in accordance with the requirements. 3. M1 Segment Handling System (SHS) to be able to make removing and installing 10 Mirror Segment Assemblies per day safely and with ease over M1 area where access of personnel is extremely difficult. This requires semi-automatic sequence operation and a robotic Segment Lifting Fixture (SLF) designed based on the Compliance Control System, developed for controlling industrial robots, with a mechanism to enable precise control within the six degrees of freedom of position control. 4. CO2 snow cleaning system to clean M1 every few weeks that is similar to the mechanical system that has been used at Subaru Telescope. 5. Seismic isolation and restraint systems with respect to safety; the maximum acceleration allowed for M1, M2, tertiary mirror (M3), LGSF, and science instruments in 1,000 year return period earthquakes are defined in the requirements. The Seismic requirements apply to any EL angle, regardless of the

  6. The SiRi particle-telescope system

    Science.gov (United States)

    Guttormsen, M.; Bürger, A.; Hansen, T. E.; Lietaer, N.

    2011-08-01

    A silicon particle-telescope system for light-ion nuclear reactions is described. In particular, the system is optimized for level density and γ-ray strength function measurements with the so-called Oslo method. Eight trapezoidal modules are mounted at 5 cm distance from the target, covering eight forward angles between θ=40∘ and 54°. The thin front ΔE detectors (130μm) are segmented into eight pads, determining the reaction angle θ for the outgoing charged ejectile. Guard rings on the thick back E detectors (1550μm) guarantee low leakage current at high depletion voltage.

  7. The SiRi Particle-Telescope System

    OpenAIRE

    Guttormsen, M.; Bürger, A.; Hansen, T. E.; Lietaer, N.

    2011-01-01

    A silicon particle-telescope system for light-ion nuclear reactions is described. In particular, the system is designed to be optimized for level density and gamma-ray strength function measurements with the so-called Oslo method. Eight trapezoidal modules are mounted at 5 cm distance from the target, covering 8 forward angles between theta = 40 and 54 degrees. The thin front dE detectors (130 micrometer) are segmented into eight pads, determining the reaction angle for the outgoing charged e...

  8. Distributed data acquisition system for Pachmarhi array of Cverenkov telescopes

    Science.gov (United States)

    Upadhya, S. S.; Acharya, B. S.; Bhat, P. N.; Chitnis, V. R.; D'Souza, A. I.; Francis, P. J.; Gothe, K. S.; Joshi, S. R.; Majumdar, P.; Manogaran, M.; Nagesh, B. K.; Pose, M. S.; Purohit, P. N.; Rahman, M. A.; Rao, K. K.; Rao, S. K.; Sharma, S. K.; Singh, B. B.; Stanislaus, A. J.; Sudersanan, P. V.; Venkatesh Murthy, B. L.; Vishwanath, P. R.

    2002-03-01

    Pachmarhi Array of Cverenkov Telescopes consists of 25 Telescopes distributed within an area of 8000m2. The array was designed to detect and process faint Cverenkov light flashes that lasts for a few nanoseconds, produced in the atmosphere by celestial VHE ?-rays or cosmic rays. In this experiment, the arrival time and amplitude of fast tiny pulses have to be measured and recorded from each of 175 photo-tubes in a shortest possible time. In view of the complexity of the system, the entire array is divided into 4 sectors. A Distributed Data Acquisition System developed for the purpose consists of independent Sector Data Acquisition Systems and a Master Data Acquisition System. The distributed data acquisition and monitoring system are built using PC's which are networked through LAN. The entire software for DDAS was developed in-house in C language under LINUX environment. Also, most of the hardware barring a few fast digitization modules were designed and fabricated in-house. The design features, implementation strategy as well as the performance of the whole system are discussed.

  9. Development of the optical system for the SST-1M telescope of the Cherenkov Telescope Array observatory

    CERN Document Server

    Ostrowski, Michael; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Schioppa, E. jr; Schovanek, P.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.; Barciński, T.; Karczewski, M.; Kukliński, J. Nicolau; Płatos, Ł.; Rataj, M.; Wawer, P.; Wawrzaszek, R.

    2016-01-01

    The prototype of a Davies-Cotton small size telescope (SST-1M) has been designed and developed by a consortium of Polish and Swiss institutions and proposed for the Cherenkov Telescope Array (CTA) observatory. The main purpose of the optical system is to focus the Cherenkov light emitted by extensive air showers in the atmosphere onto the focal plane detectors. The main component of the system is a dish consisting of 18 hexagonal mirrors with a total effective collection area of 6.47 m2 (including the shadowing and estimated mirror reflectivity). Such a solution was chosen taking into account the analysis of the Cherenkov light propagation and based on optical simulations. The proper curvature and stability of the dish is ensured by the mirror alignment system and the isostatic interface to the telescope structure. Here we present the design of the optical subsystem together with the performance measurements of its components.

  10. Digital optical correlator x-ray telescope alignment monitoring system

    Science.gov (United States)

    Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.

    2018-01-01

    The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.

  11. Solar System Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  12. ICE: A Scalable, Low-Cost FPGA-Based Telescope Signal Processing and Networking System

    Science.gov (United States)

    Bandura, K.; Bender, A. N.; Cliche, J. F.; de Haan, T.; Dobbs, M. A.; Gilbert, A. J.; Griffin, S.; Hsyu, G.; Ittah, D.; Parra, J. Mena; Montgomery, J.; Pinsonneault-Marotte, T.; Siegel, S.; Smecher, G.; Tang, Q. Y.; Vanderlinde, K.; Whitehorn, N.

    2016-03-01

    We present an overview of the ‘ICE’ hardware and software framework that implements large arrays of interconnected field-programmable gate array (FPGA)-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, millimeter and sub-millimeter telescope readout systems that have requirements beyond typical off-the-shelf processing systems, such as careful control of interference signals produced by the digital electronics, and clocking of all elements in the system from a single precise observatory-derived oscillator. A new generation of telescopes operating at these frequency bands and designed with a vastly increased emphasis on digital signal processing to support their detector multiplexing technology or high-bandwidth correlators — data rates exceeding a terabyte per second — are becoming common. The ICE system is built around a custom FPGA motherboard that makes use of an Xilinx Kintex-7 FPGA and ARM-based co-processor. The system is specialized for specific applications through software, firmware and custom mezzanine daughter boards that interface to the FPGA through the industry-standard FPGA mezzanine card (FMC) specifications. For high density applications, the motherboards are packaged in 16-slot crates with ICE backplanes that implement a low-cost passive full-mesh network between the motherboards in a crate, allow high bandwidth interconnection between crates and enable data offload to a computer cluster. A Python-based control software library automatically detects and operates the hardware in the array. Examples of specific telescope applications of the ICE framework are presented, namely the frequency-multiplexed bolometer readout systems used for the South Pole Telescope (SPT) and Simons Array and the digitizer, F-engine, and networking engine for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) radio

  13. The Alignment System for a Medium-Sized Schwarzschild-Couder Telescope Prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Ribeiro, Deivid; Humensky, Brian; Nieto, Daniel; V Vassiliev Group in UCLA division of Astronomy and Astrophysics, P Kaaret Group at Iowa University Department of Physics and Astronomy, CTA Consortium

    2016-01-01

    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma-ray observatory. CTA, conceived as an array of tens of imaging atmospheric Cherenkov telescopes, comprising small, medium and large-size telescopes, is aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 20 GeV to more than 300 TeV. The Schwarzschild-Couder design is a candidate 9-m diameter medium-sized telescope featuring a novel aplanatic two-mirror optical design capable of a wide field of view with significantly improved imaging resolution as compared to the traditional Davies-Cotton optical design. Achieving this imaging resolution imposes strict mirror alignment requirements that necessitate a sophisticated alignment system. This system uses a collection of position sensors between panels to determine the relative position of adjacent panels; each panel is mounted on a Stewart platform to allow motion control with six degrees of freedom, facilitating the alignment of the optical surface for the segmented primary and secondary mirrors. Alignments of the primary and secondary mirrors and the camera focal plane with respect to each other are performed utilizing a set of CCD cameras which image LEDs placed on the mirror panels to measure relative translation, and custom-built auto-collimators to measure relative tilt between the primary and secondary mirrors along the optical axis of the telescope. In this contribution we present the status of the development of the SC optical alignment system, soon to be materialized in a full-scale prototype SC medium-size telescope (pSCT) at the Fred Lawrence Whipple Observatory in southern Arizona.

  14. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    Science.gov (United States)

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  15. The positioning system of the ANTARES Neutrino Telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Ageron, M.; Aguilar, J. A.; Samarai, I. Al; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Le Van Suu, A.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Niess, V.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Real, D.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-08-01

    The ANTARES neutrino telescope, located 40 km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475 m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10 cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.

  16. Thermal systems analysis for the Space Infrared Telescope Facility dewar

    Science.gov (United States)

    Bhandari, Pradeep; Petrick, S. W.; Schember, Helene

    1991-01-01

    Thermal systems analysis models were used to design SFHe cooled dewar for the Space Infrared Telescope Facility (SIRTF), a 1 m class cryogenically cooled observatory for IR astronomy. The models are capable of computing both the heat leaks into the dewar and the operating temperature of a SFHe tank. The models are aimed at predicting the ability of the SIRTF cryogenic system to satisfy a five-year mission lifetime requirement and maintain the SFHe tank operating temperature of 1.25 K to provide sufficient cooling for science instruments and the optical system. The thermal models are very detailed and very fast with a typical steady state run of about 20 sec on a VAX minicomputer.

  17. Single Purpose Satellite Systems

    OpenAIRE

    Watkins, Warren

    1989-01-01

    This paper examines the need for tactically responsive space systems capable of supporting battlefield and fleet commanders. Terminology used to describe this category of satellite system varies according to organization or agency. The Defense Advanced Research Projects Agency's Lightsat, the Naval Space Command's SPINSAT, and the Air Force Space Command s TACSAT, are reviewed. The United State Space Command's space support mission IS addressed and the role single-purpose satellites can play ...

  18. Reliability models applicable to space telescope solar array assembly system

    Science.gov (United States)

    Patil, S. A.

    1986-01-01

    A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.

  19. Efficient injection from large telescopes into single-mode fibres: Enabling the era of ultra-precision astronomy

    Science.gov (United States)

    Jovanovic, N.; Schwab, C.; Guyon, O.; Lozi, J.; Cvetojevic, N.; Martinache, F.; Leon-Saval, S.; Norris, B.; Gross, S.; Doughty, D.; Currie, T.; Takato, N.

    2017-08-01

    Photonic technologies offer numerous advantages for astronomical instruments such as spectrographs and interferometers owing to their small footprints and diverse range of functionalities. Operating at the diffraction-limit, it is notoriously difficult to efficiently couple such devices directly with large telescopes. We demonstrate that with careful control of both the non-ideal pupil geometry of a telescope and residual wavefront errors, efficient coupling with single-mode devices can indeed be realised. A fibre injection was built within the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. Light was coupled into a single-mode fibre operating in the near-IR (J - H bands) which was downstream of the extreme adaptive optics system and the pupil apodising optics. A coupling efficiency of 86% of the theoretical maximum limit was achieved at 1550 nm for a diffraction-limited beam in the laboratory, and was linearly correlated with Strehl ratio. The coupling efficiency was constant to within 40% for 84% of the time and >50% for 41% of the time. The laboratory results allow us to forecast that extreme adaptive optics levels of correction (Strehl ratio >90% in H-band) would allow coupling of >67% (of the order of coupling to multimode fibres currently) while standard levels of wavefront correction (Strehl ratio >20% in H-band) would allow coupling of >18%. For Strehl ratios <20%, few-port photonic lanterns become a superior choice but the signal-to-noise, and pixel availability must be considered. These results illustrate a clear path to efficient on-sky coupling into a single-mode fibre, which could be used to realise modal-noise-free radial velocity machines, very-long-baseline optical/near-IR interferometers and/or simply exploit photonic technologies in future instrument design.

  20. The Large Synoptic Survey Telescope project management control system

    Science.gov (United States)

    Kantor, Jeffrey P.

    2012-09-01

    The Large Synoptic Survey Telescope (LSST) program is jointly funded by the NSF, the DOE, and private institutions and donors. From an NSF funding standpoint, the LSST is a Major Research Equipment and Facilities (MREFC) project. The NSF funding process requires proposals and D&D reviews to include activity-based budgets and schedules; documented basis of estimates; risk-based contingency analysis; cost escalation and categorization. "Out-of-the box," the commercial tool Primavera P6 contains approximately 90% of the planning and estimating capability needed to satisfy R&D phase requirements, and it is customizable/configurable for remainder with relatively little effort. We describe the customization/configuration and use of Primavera for the LSST Project Management Control System (PMCS), assess our experience to date, and describe future directions. Examples in this paper are drawn from the LSST Data Management System (DMS), which is one of three main subsystems of the LSST and is funded by the NSF. By astronomy standards the LSST DMS is a large data management project, processing and archiving over 70 petabyes of image data, producing over 20 petabytes of catalogs annually, and generating 2 million transient alerts per night. Over the 6-year construction and commissioning phase, the DM project is estimated to require 600,000 hours of engineering effort. In total, the DMS cost is approximately 60% hardware/system software and 40% labor.

  1. Space infrared telescope pointing control system. Automated star pattern recognition

    Science.gov (United States)

    Powell, J. D.; Vanbezooijen, R. W. H.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a free flying spacecraft carrying a 1 meter class cryogenically cooled infrared telescope nearly three oders of magnitude most sensitive than the current generation of infrared telescopes. Three automatic target acquisition methods will be presented that are based on the use of an imaging star tracker. The methods are distinguished by the number of guidestars that are required per target, the amount of computational capability necessary, and the time required for the complete acquisition process. Each method is described in detail.

  2. 3D DIC tests of mirrors for the single-mirror small-size telescope of CTA

    Science.gov (United States)

    Rataj, M.; Malesa, M.; Kujawińska, M.; Płatos, Ł.; Wawer, P.; Seweryn, K.; Malowany, K.

    2015-10-01

    The Cherenkov Telescope Array (CTA) is the next generation very high energy gamma-ray observatory. Three classes of telescopes, of large, medium and small sizes are designed and developed for the observatory. The single-mirror option for the small-size telescopes (SST-1M), of 4 m diameter, dedicated to the observations of the highest energy gamma-rays above several TeV, consists of 18 hexagonal mirror facets of 78 cm flat-to-flat. The goal of the work described in this paper is the investigation of a surface shape quality of the mirror facets of the SST-1M CTA telescope. The mirrors measured are made of composite materials formed using sheet moulding compound (SMC) technology. This solution is being developed as an alternative to glass mirrors, to minimize the production cost of hundreds of mirrors for the network of telescopes, while retaining the optical quality of the telescope. To evaluate the progress of design, production technology and the mirrors' functionality in operating conditions, the three-dimensional (3D) Digital Image Correlation (DIC) method was selected and implemented for testing selected mirrors. The method and measurement procedure are described. The novel measurement approach based on 3D DIC has been proven to be well suited to the investigation of the mirrors' behavior with temperature, producing the necessary accuracy.

  3. A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope

    Science.gov (United States)

    Eddy, Pat

    1987-01-01

    The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.

  4. A natural language query system for Hubble Space Telescope proposal selection

    Science.gov (United States)

    Hornick, Thomas; Cohen, William; Miller, Glenn

    1987-01-01

    The proposal selection process for the Hubble Space Telescope is assisted by a robust and easy to use query program (TACOS). The system parses an English subset language sentence regardless of the order of the keyword phases, allowing the user a greater flexibility than a standard command query language. Capabilities for macro and procedure definition are also integrated. The system was designed for flexibility in both use and maintenance. In addition, TACOS can be applied to any knowledge domain that can be expressed in terms of a single reaction. The system was implemented mostly in Common LISP. The TACOS design is described in detail, with particular attention given to the implementation methods of sentence processing.

  5. The Design of Remote Control Terminal System for Three Channel Solar Telescope in Huairou in LAN

    Science.gov (United States)

    Shen, Ji; Hu, Ke-Liang; Lin, Jia-Ben; Deng, Yuan-Yong

    2008-09-01

    Using Huairou three-channel solar magnetic field telescope to carry out multi-level sun synchronous observation can obtain active image of different levels at the same time, which has an important significance in solar physics. Based on the Huairou three-channel solar magnetic field telescope the authors develop remote terminal Observing System to carry out the observation of three-channel CCD synchronously, and through this system to achieve the synergy observation between three-channel telescope and small magnetic field telescope in Huairou station. By using VC.net integrated development environment, TC/IP protocol and socket programming, carry out the control of the three CCD of three-channel solar telescope synchronously and remotely. The system can complete the remote observing by image data and camera control command transmission in the LAN environment, and greatly reduce the cost of observation, and preliminary observations have been made.

  6. Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989

    Science.gov (United States)

    Roddier, Francois J.

    1989-09-01

    The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.

  7. Geometrical factor and directional response of single and multi-element particle telescopes.

    Science.gov (United States)

    Sullivan, J. D.

    1971-01-01

    After a general treatment of the gathering power of particle telescopes, exact formulae are presented for the geometrical factor and directional response of multielement cylindrically symmetric telescopes with circular or rectangular cross sections. Some useful approximations to these formulae are given. For the gathering power in arbitrary geometries, there is a discussion of applicable digital computer techniques focusing particularly on a Monte Carlo method.

  8. TELESCOPE sipping - a proven fuel leak detection system

    International Nuclear Information System (INIS)

    Deleryd, R.; Collin, P.

    1996-01-01

    The advantages of the TELESCOPE sipping method are: For BWRs: clamp-on sipping nozzle, which attaches easily to the grapple of the telescope mast on the refuelling platform, but does not affect its operation; no heavy and large sipping bells have to be operated in the core with risk of damage, entangled hoses or lifting rods/wires; the sipping can also be performed for testing long time storaged fuel in the spent fuel pool. For PWRs: simple attachment of water suction hose or tube to the refuelling platform mast. (orig./DG)

  9. Hubble Space Telescope Astrometry of the Procyon System

    Science.gov (United States)

    Bond, Howard E.; Gilliland, Ronald L.; Schaefer, Gail H.; Demarque, Pierre; Girard, Terrence M.; Holberg, Jay B.; Gudehus, Donald; Mason, Brian D.; Kozhurina-Platais, Vera; Burleigh, Matthew R.

    2015-01-01

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 plus or minus 0.012M and 0.592 plus or minus 0.006M for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is approximately 2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2M, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only approximately AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (approximately 0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  10. HUBBLE SPACE TELESCOPE ASTROMETRY OF THE PROCYON SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Gilliland, Ronald L.; Kozhurina-Platais, Vera; Nelan, Edmund P. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Schaefer, Gail H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Demarque, Pierre; Girard, Terrence M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520 (United States); Holberg, Jay B. [Lunar and Planetary Laboratory, University of Arizona, 1541 E. University Blvd., Tucson, AZ 85721 (United States); Gudehus, Donald [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Mason, Brian D. [U.S. Naval Observatory, 3450 Massachusetts Ave., Washington, DC 20392 (United States); Burleigh, Matthew R.; Barstow, Martin A., E-mail: heb11@psu.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-11-10

    The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 ± 0.012 M{sub ⊙} and 0.592 ± 0.006 M{sub ⊙} for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A’s age is ∼2.7 Gyr. Procyon B’s location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass–radius plane is also consistent with theory, assuming a carbon–oxygen core and a helium-dominated atmosphere. Its progenitor’s mass was 1.9–2.2 M{sub ⊙}, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only ∼5 AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (∼0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.

  11. Recommended conceptual optical system design for China's Large Optical-infrared Telescope (LOT).

    Science.gov (United States)

    Ma, Donglin

    2018-01-08

    Recently, China is planning to construct a new large optical-infrared telescope (LOT), in which the aperture of the primary mirror is as large as 12m. China's LOT is a general-purpose telescope, which is aimed to work with multiple scientific instruments such as spectrographs. Based on the requirements of LOT telescope, we have compared the performance of Ritchey-Chrétien (RC) design and Aplanatic-Gregorian (AG) design from the perspective of scientific performance and construction cost. By taking the primary focal ratio, Nasmyth focal ratio, and telescope's site condition into consideration, we finally recommend a RC f/1.6 design configuration for LOT's Nasmyth telescope system. Unlike the general identical configuration, we choose a non-identical configuration for the telescope system which has a shorter Cassegrain focal ratio compared to the designed Nasmyth focal ratio. The non-identical design can allow for a shorter back focal distance and therefore a shorter telescope fork to guarantee the gravitational stability of the whole telescope structure, as well as relatively lower construction cost. Detailed analysis for the feasibility of our recommended design is provided in this paper.

  12. The positioning system of the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Ageron, M.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M.P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhofer, A.; Ernenwein, J.P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Le Van Suu, A.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Niess, V.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Real, D.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G.V.; Salesa, F.; Samtleben, D.F.E.; Schock, F.; Schuller, J.P.; Schussler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2012-01-01

    The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary

  13. Learning neuroendoscopy with an exoscope system (video telescopic operating monitor): Early clinical results.

    Science.gov (United States)

    Parihar, Vijay; Yadav, Y R; Kher, Yatin; Ratre, Shailendra; Sethi, Ashish; Sharma, Dhananjaya

    2016-01-01

    Steep learning curve is found initially in pure endoscopic procedures. Video telescopic operating monitor (VITOM) is an advance in rigid-lens telescope systems provides an alternative method for learning basics of neuroendoscopy with the help of the familiar principle of microneurosurgery. The aim was to evaluate the clinical utility of VITOM as a learning tool for neuroendoscopy. Video telescopic operating monitor was used 39 cranial and spinal procedures and its utility as a tool for minimally invasive neurosurgery and neuroendoscopy for initial learning curve was studied. Video telescopic operating monitor was used in 25 cranial and 14 spinal procedures. Image quality is comparable to endoscope and microscope. Surgeons comfort improved with VITOM. Frequent repositioning of scope holder and lack of stereopsis is initial limiting factor was compensated for with repeated procedures. Video telescopic operating monitor is found useful to reduce initial learning curve of neuroendoscopy.

  14. Wide-Field Imaging Telescope-0 (WIT0) with automatic observing system

    Science.gov (United States)

    Ji, Tae-Geun; Byeon, Seoyeon; Lee, Hye-In; Park, Woojin; Lee, Sang-Yun; Hwang, Sungyong; Choi, Changsu; Gibson, Coyne Andrew; Kuehne, John W.; Prochaska, Travis; Marshall, Jennifer L.; Im, Myungshin; Pak, Soojong

    2018-01-01

    We introduce Wide-Field Imaging Telescope-0 (WIT0), with an automatic observing system. It is developed for monitoring the variabilities of many sources at a time, e.g. young stellar objects and active galactic nuclei. It can also find the locations of transient sources such as a supernova or gamma-ray bursts. In 2017 February, we installed the wide-field 10-inch telescope (Takahashi CCA-250) as a piggyback system on the 30-inch telescope at the McDonald Observatory in Texas, US. The 10-inch telescope has a 2.35 × 2.35 deg field-of-view with a 4k × 4k CCD Camera (FLI ML16803). To improve the observational efficiency of the system, we developed a new automatic observing software, KAOS30 (KHU Automatic Observing Software for McDonald 30-inch telescope), which was developed by Visual C++ on the basis of a windows operating system. The software consists of four control packages: the Telescope Control Package (TCP), the Data Acquisition Package (DAP), the Auto Focus Package (AFP), and the Script Mode Package (SMP). Since it also supports the instruments that are using the ASCOM driver, the additional hardware installations become quite simplified. We commissioned KAOS30 in 2017 August and are in the process of testing. Based on the WIT0 experiences, we will extend KAOS30 to control multiple telescopes in future projects.

  15. Frequency Calibration of Spectral Observation System of the TM65m Radio Telescope

    Science.gov (United States)

    Juan, Li; Ya-jun, Wu; Hai-hua, Qiao; Jun-zhi, Wang; Xiu-ting, Zuo

    2016-10-01

    In order to carry out the spectral observation with the TM65m radio telescope, the frequency calibration and test of DIBAS (Digital Backend System) are performed, it is found that it has a good performance. First, by injecting the PCAL signals, the frequency resolution, frequency drift and the stability of frequency interval between two spectral lines of the DIBAS backend are measured. It is found that in one hour, the maximum frequency drift of a single spike is 0.03 channel, the maximum fluctuation of spike interval is 0.05 channel. Then, by the observations on the H2CO maser and absorbtion lines of massive star formation regions, and the comparison with the results observed by the GBT (Robert C. Byrd Green Bank Telescope), it is shown that the results of frequency calibration are correct. Finally, by the OH maser observations in more than one hour toward W3(OH), and the methanol maser observations in more than 5 hours, it is found that the spectral profiles keep consistent, and the observational noise is consistent with the theoretical value, indicating the stability and reliability of the frequency calibration program.

  16. System Design and Implementation of the Virginia Tech Optical Satellite Tracking Telescope

    Science.gov (United States)

    Luciani, D.; Black, J.

    2016-09-01

    The Virginia Tech Optical Satellite Tracking Telescope (VTOST) aims to test the feasibility of a commercial off-the-shelf (COTS) designed tracking system for Space Situational Awareness (SSA) data contribution. A novel approach is considered, combining two COTS systems, a high-powered telescope, built for astronomy purposes, and a larger field of view (FOV) camera. Using only publicly available two-line element sets (TLEs), orbital propagation accuracy degrades quickly with time from epoch and is often not accurate enough to task a high-powered, small FOV telescope. Under this experimental approach, the larger FOV camera is used to acquire and track the resident space object (RSO) and provide a real-time pointing update to allow the high-powered telescope to track the RSO and provide possible resolved imagery. VTOST is designed as a remotely taskable sensor, based on current network architecture, capable of serving as a platform for further SSA studies, including unresolved and resolved imagery analysis, network tasking, and orbit determination. Initial design considerations are based on the latest Raven class and other COTS based telescope research, including research by the Air Force Research Lab (AFRL), ExoAnalytic Solutions, and other university level telescope projects. A holistic system design, including astronomy, image processing, and tracking methods, in a low-budget environment is considered. Method comparisons and results of the system design process are presented.

  17. Development of the Software for 30 inch Telescope Control System at KHAO

    Science.gov (United States)

    Mun, B.-S.; Kim, S.-J.; Jang, M.; Min, S.-W.; Seol, K.-H.; Moon, K.-S.

    2006-12-01

    Even though 30inch optical telescope at Kyung Hee Astronomy Observatory has been used to produce a series of scientific achievements since its first light in 1992, numerous difficulties in the operation of the telescope have hindered the precise observations needed for further researches. Since the currently used PC-TCS (Personal Computer based Telescope Control system) software based on ISA-bus type is outdated, it doesn't have a user friendly interface and make it impossible to scale. Also accumulated errors which are generated by discordance from input and output signals into a motion controller required new control system. Thus we have improved the telescope control system by updating software and modifying mechanical parts. We applied a new BLDC (brushless DC) servo motor system to the mechanical parts of the telescope and developed a control software using Visual Basic 6.0. As a result, we could achieve a high accuracy in controlling of the telescope and use the userfriendly GUI (Graphic User Interface).

  18. Status and recent results of the MAGIC telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Fruck, Christian [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is an instrument for pointed ground-based observations of the gamma-ray sky in the 50 GeV to 80 TeV regime. The two 17 m diameter Imaging Air Cherenkov Telescopes are located on 2200 m a.s.l. at the Roque de los Muchachos Observatory on the Canary island La Palma. We will report the status and recent technical developments of the instrument, highlight the most important scientific results obtained with observations of Galactic and extragalactic objects, and will summarize future plans.

  19. The use of contact lens telescopic systems in low vision rehabilitation.

    Science.gov (United States)

    Vincent, Stephen J

    2017-06-01

    Refracting telescopes are afocal compound optical systems consisting of two lenses that produce an apparent magnification of the retinal image. They are routinely used in visual rehabilitation in the form of monocular or binocular hand held low vision aids, and head or spectacle-mounted devices to improve distance visual acuity, and with slight modifications, to enhance acuity for near and intermediate tasks. Since the advent of ground glass haptic lenses in the 1930's, contact lenses have been employed as a useful refracting element of telescopic systems; primarily as a mobile ocular lens (the eyepiece), that moves with the eye. Telescopes which incorporate a contact lens eyepiece significantly improve the weight, comesis, and field of view compared to traditional spectacle-mounted telescopes, in addition to potential related psycho-social benefits. This review summarises the underlying optics and use of contact lenses to provide telescopic magnification from the era of Descartes, to Dallos, and the present day. The limitations and clinical challenges associated with such devices are discussed, along with the potential future use of reflecting telescopes incorporated within scleral lenses and tactile contact lens systems in low vision rehabilitation. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  20. Interference coupling analysis based on a hybrid method: application to a radio telescope system

    Science.gov (United States)

    Xu, Qing-Lin; Qiu, Yang; Tian, Jin; Liu, Qi

    2018-02-01

    Working in a way that passively receives electromagnetic radiation from a celestial body, a radio telescope can be easily disturbed by external radio frequency interference as well as electromagnetic interference generated by electric and electronic components operating at the telescope site. A quantitative analysis of these interferences must be taken into account carefully for further electromagnetic protection of the radio telescope. In this paper, based on electromagnetic topology theory, a hybrid method that combines the Baum-Liu-Tesche (BLT) equation and transfer function is proposed. In this method, the coupling path of the radio telescope is divided into strong coupling and weak coupling sub-paths, and the coupling intensity criterion is proposed by analyzing the conditions in which the BLT equation simplifies to a transfer function. According to the coupling intensity criterion, the topological model of a typical radio telescope system is established. The proposed method is used to solve the interference response of the radio telescope system by analyzing subsystems with different coupling modes separately and then integrating the responses of the subsystems as the response of the entire system. The validity of the proposed method is verified numerically. The results indicate that the proposed method, compared with the direct solving method, reduces the difficulty and improves the efficiency of interference prediction.

  1. Design and Construction of a New 1420 MHz Receiver System for a 12-meter Radio Telescope

    Science.gov (United States)

    Lemley, Cameron; Castelaz, M. W.

    2014-01-01

    During the summer of 2013, a new 1420 MHz receiver system was designed and constructed for the 12-meter radio telescope at the Pisgah Astronomical Research Institute (PARI). The new radio receiver system consists of a feedhorn (which is a duplicate of the feedhorn that is currently installed on PARI’s 4.6-meter radio telescope), a low-noise amplifier, a bandpass filter, a downconverter, a SpectraCyber 1420 MHz Hydrogen Line Spectrometer, CommScope CNT-600 braided coaxial cable, and a power supply. Each component was individually tested on the preexisting 4.6-meter radio telescope receiver system before being installed on the 12-meter telescope. This testing process revealed that the spectrometer that was intended for use in the new 12-meter receiver system would require 12-bit software, which was acquired soon thereafter. The new receiver system was then assembled on a rolling cart for further testing. After the 1420 MHz receiver system was moved outside, it successfully detected its first extraterrestrial radio signal. The next step of this project was the installation of the feedhorn at the focus of the 12-meter parabolic reflector and the mounting of the additional receiver system components inside the radio frequency (RF) room of the 12-meter telescope. Following its installation on the 12-meter telescope, the new receiver system was connected to the PARI network via ethernet using a device called a SitePlayer Telnet. The 12-meter telescope was focused by taking continuum scans of Virgo A during its meridian crossing. The positioning of the feedhorn had to be adjusted several times before the new radio receiver system was precisely focused. After focusing the 12-meter telescope, spectra were taken of both the Orion Nebula and the Crab Nebula to test the abilities of the new 1420 MHz receiver system. As a final test of both the angular resolution and time resolution of the new radio receiver system, the 12-meter telescope was used to observe the pulsar PSR J

  2. Mount control system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Antolini, Elisa; Tosti, Gino; Tanci, Claudio; Bagaglia, Marco; Canestrari, Rodolfo; Cascone, Enrico; Gambini, Giorgio; Nucciarelli, Giuliano; Pareschi, Giovanni; Scuderi, Salvo; Stringhetti, Luca; Busatta, Andrea; Giacomel, Stefano; Marchiori, Gianpietro; Manfrin, Cristiana; Marcuzzi, Enrico; Di Michele, Daniele; Grigolon, Carlo; Guarise, Paolo

    2016-08-01

    The ASTRI SST-2M telescope is an end-to-end prototype proposed for the Small Size class of Telescopes (SST) of the future Cherenkov Telescope Array (CTA). The prototype is installed in Italy at the INAF observing station located at Serra La Nave on Mount Etna (Sicily) and it was inaugurated in September 2014. This paper presents the software and hardware architecture and development of the system dedicated to the control of the mount, health, safety and monitoring systems of the ASTRI SST-2M telescope prototype. The mount control system installed on the ASTRI SST-2M telescope prototype makes use of standard and widely deployed industrial hardware and software. State of the art of the control and automation industries was selected in order to fulfill the mount related functional and safety requirements with assembly compactness, high reliability, and reduced maintenance. The software package was implemented with the Beckhoff TwinCAT version 3 environment for the software Programmable Logical Controller (PLC), while the control electronics have been chosen in order to maximize the homogeneity and the real time performance of the system. The integration with the high level controller (Telescope Control System) has been carried out by choosing the open platform communications Unified Architecture (UA) protocol, supporting rich data model while offering compatibility with the PLC platform. In this contribution we show how the ASTRI approach for the design and implementation of the mount control system has made the ASTRI SST-2M prototype a standalone intelligent machine, able to fulfill requirements and easy to be integrated in an array configuration such as the future ASTRI mini-array proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA).

  3. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Y.; Kubo, H.; Masuda, S. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan); Paoletti, R.; Poulios, S. [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Rugliancich, A., E-mail: andrea.rugliancich@pi.infn.it [SFTA Department, Physics Section, University of Siena and INFN, Siena (Italy); Saito, T. [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan)

    2016-07-11

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards. - Highlights: • The Dragon Board is part of the DAQ of the LST Cherenkov telescope prototype. • We developed an automated quality control system for the Dragon Board. • We check pedestal, linearity, pulse shape and crosstalk values. • The quality control test can be performed on the production line.

  4. Active remote observing system for the 1-m telescope at Tonantzintla Observatory

    Science.gov (United States)

    Bernal, Abel; Martínez, Luis A.; Hernández, Héctor; Garfias, Fernando; Ángeles, Fernando

    2006-06-01

    We have designed and installed a new active remote observing system for the 1-m, f/15 telescope at the Tonantzintla Observatory. This remote system is operated in real-time through the Internet, allowing an observer to control the building, the telescope (pointing, guiding and focusing) and the CCD image acquisition at the main and finder telescopes from the Instituto de Astronomia headquarters in Mexico City (150 KM away). The whole system was modeled within the Unified Modeling Language (UML) and the design has proved to be versatile enough for a variety of astronomical instruments. We describe the system architecture and how different subsystems (telescope control, main telescope and finder image acquisition, weather station, videoconference, etc.) that are based on different operative system platforms (Linux, Windows, uIP) have been integrated. We present the first results of an IPv6 over IPv4 tunnel. Recent remote direct imaging and spectroscopic observations have been used to test the astronomical site. We conclude that this remote system is an excellent tool for supporting research and graduated observational astronomy programs.

  5. Remote control and monitoring system for the TACTIC gamma-ray telescope

    International Nuclear Information System (INIS)

    Kulkarni, J.J.; Babu, L.P.; Lad, U.C.; Dhekne, P.S.; Chouhan, N.; Yadav, K.K.; Koul, R.

    2004-01-01

    A platform independent web based system is being developed for the remote control and monitoring of the TACTIC gamma-ray telescope through virtual instrumentation console. On the bottom layer of the two layered system the existing QNX based telescope data acquisition and control system has been linked to WinNT based web server using TCP/IP socket programming and on the top layer a java client-server application has been developed using servlet communication to provide an elaborate user interface through standard inter net browser. The paper describes the design and implementation status of the system. (author)

  6. Status of the new Sum-Trigger system for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, Jezabel; Schweizer, Thomas; Nakajima, Daisuke [Max Planck Institute for Physics, Muenchen (Germany); Dazzi, Francesco [Dipartimento di Fisica dell' Universita di Udine (Italy); INFN, sez. di Trieste (Italy)

    2013-07-01

    MAGIC is a stereoscopic system of two 17 meters Imaging Air Cherenkov Telescopes for gamma-ray astronomy operating in stereo mode. The telescopes are located at about 2.200 metres above sea level in the Observatorio del Roque de los Muchachos (ORM), in the Canary island of La Palma. Lowering the energy threshold of Cherenkov Telescopes is crucial for the observation of Pulsars, High redshift AGNs and GRBs. The Sum-Trigger, based on the analogue sum of a patch of pixels has a lower threshold compared to conventional digital triggers. The Sum-Trigger principle has been proven experimentally in 2007 by decreasing the energy threshold of the first Magic telescope (Back then operating in mono mode) from 55 GeV down to 25 GeV. The first VHE detection for the Crab Pulsar was achieved due to this low threshold. After the upgrade of the MAGIC I and MAGIC II cameras and readout systems, we are planning to install a new Sum-Trigger system in both telescopes in Summer 2013. This trigger system will be operated for the first time in stereo mode. At the conference we report about the status and the performance of the new Sum-Trigger-II system.

  7. Design and development of telescope control system and software for the 50/80 cm Schmidt telescope

    Science.gov (United States)

    Kumar, T. S.; Banavar, R. N.

    2012-09-01

    In this paper, we describe the details of telescope controller design for the 50/80 cm Schmidt telescope at the Aryabhatta Research Institute of observational sciencES. The GUI based software for commanding the telescope is developed in Visual C++. The hardware architecture features a distributed network of microcontrollers over CAN. The basic functionality can also be implemented using the dedicated RS232 port per board. The controller is able to perform with negligible rms velocity errors. At fine speeds limit cycles are exhibited due to nonlinear friction. At speeds over 3.90 × 10-02 radians/sec, the PI controller performs with peak errors less than 1%.

  8. The Development of the Control System for the Automated Patrol Telescope.

    Science.gov (United States)

    Payne, Paul Wilfrid

    A Baker-Nunn Satellite Tracking Camera has been modified to undertake contemporary astronomical survey and patrol projects. The f/1 camera now has a CCD at the focus with a field of 1.2 by 0.9 degrees, with a pixel resolution of 9 arc seconds. The mount has been reconfigured into an equatorial, with new bearings and a friction drive on the right ascension axis. The camera is now called the Automated Patrol Telescope (A.P.T.). This thesis describes the servo control system which was developed to control the motion of the telescope. A digital servo control system was developed incorporating three 6502 microprocessors. Two digital controllers were constructed which interface to a host Apple IIe. Each controller drives a D.C. printed armature motor which is coupled to the axes of the telescope mount through reduction gears. The position and velocity of the telescope are sensed through an incremental encoder on the shaft of each motor. The thesis describes the development of the control algorithm and its performance. Nonlinear friction within the drive mechanism led to the implementation of a velocity PID control algorithm with gain scheduling. The control system is responsible for pointing, tracking and autoguiding the telescope. Each utility can be initiated through the Apple IIe keyboard or remotely via a GPIB link. The results of an initial pointing test are presented. The pointing algorithm compensates for the effects introduced by the nonperpendicularities between the axes of the mount, polar misalignment, and atmospheric refraction. Modelling of the telescope and mount improved the pointing accuracy from 746 to 168 arc second. The thesis discusses possible causes as to why further improvement was not achieved. The tracking and autoguiding responses of the telescope are presented. The tracking accuracy during autoguiding is 0.22 arc seconds. A systematic error of 0.56 arc seconds is also present. The source of this systematic error is explained and a solution is

  9. Tests of a prototype multiplexed fiber-optic ultra-fast FADC data acquisition system for the MAGIC telescope

    International Nuclear Information System (INIS)

    Bartko, H.; Goebel, F.; Mirzoyan, R.; Pimpl, W.; Teshima, M.

    2005-01-01

    Ground-based Atmospheric Air Cherenkov Telescopes (ACTs) are successfully used to observe very high energy (VHE) gamma rays from celestial objects. The light of the night sky (LONS) is a strong background for these telescopes. The gamma ray pulses being very short, an ultra-fast read-out of an ACT can minimize the influence of the LONS. This allows one to lower the so-called tail cuts of the shower image and the analysis energy threshold. It could also help to suppress other unwanted backgrounds. Fast 'flash' analog-to-digital converters (FADCs) with GSamples/s are available commercially; they are, however, very expensive and power consuming. Here we present a novel technique of Fiber-Optic Multiplexing which uses a single 2 GSamples/s FADC to digitize 16 read-out channels consecutively. The analog signals are delayed by using optical fibers. The multiplexed (MUX) FADC read-out reduces the cost by about 85% compared to using one ultra-fast FADC per read-out channel. Two prototype multiplexers, each digitizing data from 16 channels, were built and tested. The ultra-fast read-out system will be described and the test results will be reported. The new system will be implemented for the read-out of the 17 m diameter MAGIC telescope camera

  10. A secure and reliable monitor and control system for remote observing with the Large Millimeter Telescope

    Science.gov (United States)

    Wallace, Gary; Souccar, Kamal; Malin, Daniella

    2004-09-01

    Remote access to telescope monitor and control capabilities necessitates strict security mechanisms to protect the telescope and instruments from malicious or unauthorized use, and to prevent data from being stolen, altered, or corrupted. The Large Millimeter Telescope (LMT) monitor and control system (LMTMC) utilizes the Common Object Request Broker Architecture (CORBA) middleware technology to connect remote software components. The LMTMC provides reliable and secure remote observing by automatically generating SSLIOP enabled CORBA objects. TAO, the ACE open source Object Request Broker (ORB), now supports secure communications by implementing the Secure Socket Layer Inter-ORB Protocol (SSLIOP) as a pluggable protocol. This capability supplies the LMTMC with client and server authentication, data integrity, and encryption. Our system takes advantage of the hooks provided by TAO SSLIOP to implement X.509 certificate based authorization. This access control scheme includes multiple authorization levels to enable granular access control.

  11. The camera of the fifth H.E.S.S. telescope. Part I: System description

    Energy Technology Data Exchange (ETDEWEB)

    Bolmont, J., E-mail: bolmont@in2p3.fr [LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252 Paris Cedex 5 (France); Corona, P.; Gauron, P.; Ghislain, P.; Goffin, C.; Guevara Riveros, L.; Huppert, J.-F.; Martineau-Huynh, O.; Nayman, P.; Parraud, J.-M.; Tavernet, J.-P.; Toussenel, F.; Vincent, D.; Vincent, P. [LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252 Paris Cedex 5 (France); Bertoli, W.; Espigat, P.; Punch, M. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France); Besin, D.; Delagnes, E.; Glicenstein, J.-F. [CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex (France); and others

    2014-10-11

    In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S. (High Energy Stereoscopic System) array reached their tenth year of operation in Khomas Highlands, Namibia, a fifth telescope took its first data as part of the system. This new Cherenkov detector, comprising a 614.5 m{sup 2} reflector with a highly pixelized camera in its focal plane, improves the sensitivity of the current array by a factor two and extends its energy domain down to a few tens of GeV. The present part I of the paper gives a detailed description of the fifth H.E.S.S. telescope's camera, presenting the details of both the hardware and the software, emphasizing the main improvements as compared to previous H.E.S.S. camera technology.

  12. Design of the data management system for hard X-ray modulation telescope based on real-time Linux

    International Nuclear Information System (INIS)

    Jia Tao; Zhang Zhi

    2004-01-01

    Hard X-ray Modulation Telescope is an electronic subsystem, the data management system for capturing the data of the telescope, then managing and transferring them. The data management system also deals with the communication with the satellite. Because of these functions, it needs highly steady quality and good real-time performance. This paper describes the design of the system. (authors)

  13. Slewing Mirror Telescope and the Data-Acquisition System for the UFFO-Pathfinder

    DEFF Research Database (Denmark)

    Lim, H.; Ahmad, S.; Barrillon, P.

    2013-01-01

    Alert & Trigger Telescope (UBAT) measuring the X-ray/gamma-ray with the wide-field of view and the Slewing Mirror Telescope (SMT) with a rapid-response for the UV/optical photons. Once the UBAT detects a GRB candidate with the position accuracy of 10 arcmin, the SMT steers the UV/optical photons from...... the candidate to the telescope by the fast rotatable mirror and provides the early UV/optical photons measurements with 4 arcsec accuracy. The SMT has a modified Ritchey-Chrètien telescope with the aperture size of 10 cm diameter including the rotatable mirror and the image readout by the intensified charge......-coupled device. There is a key board called the UFFO Data Acquisition system (UDAQ) that manages the communication of each telescope and also of the satellite and the UFFO overall operation. This pathfinder is designed and built within the limited size and weight of ~20 kg and the low power consumption up to ~30...

  14. Graphical User Interface for an Observing Control System for the UK Infrared Telescope

    Science.gov (United States)

    Tan, M.; Bridger, A.; Wright, G. S.; Adamson, A. J.; Currie, M. J.; Economou, F.

    A Graphical user interface for the observing control system of UK Infrared Telescope has been developed as a part of the ORAC (Observatory Reduction and Acquisition Control) Project. We analyzed and designed the system using the Unified Modelling Language (UML) with the CASE tool Rational Rose 98. The system has been implemented in a modular way with Java packages using Swing and RMI. This system is component-based with pluggability. Object orientation concepts and UML notations have been applied throughout the development.

  15. TRAPPIST: a robotic telescope dedicated to the study of planetary systems

    Directory of Open Access Journals (Sweden)

    Manfroid J.

    2011-02-01

    Full Text Available We present here a new robotic telescope called TRAPPIST1 (TRAnsiting Planets and PlanetesImals Small Telescope. Equipped with a high-quality CCD camera mounted on a 0.6 meter light weight optical tube, TRAPPIST has been installed in April 2010 at the ESO La Silla Observatory (Chile, and is now beginning its scientific program. The science goal of TRAPPIST is the study of planetary systems through two approaches: the detection and study of exoplanets, and the study of comets. We describe here the objectives of the project, the hardware, and we present some of the first results obtained during the commissioning phase.

  16. A new telescope control system for the Telescopio Nazionale Galileo II: azimuth and elevation axes

    Science.gov (United States)

    Ghedina, Adriano; Gonzalez, Manuel; Pérez Ventura, Héctor; Riverol Rodríguez, A. Luis

    2016-07-01

    TNG is a 4m class active optics telescope at the Observatory of Roque de Los Muchachos. In the framework of keeping optimum performances during observation and continuous reliability the telescope control system (TCS) of the TNG is going through a deep upgrade after nearly 20 years of service. The original glass encoders and bulb lamp heads are substituted with modern steel scale drums and scanning units. The obsolete electronic racks and computers for the control loops are replaced with modern and compact commercial drivers with a net improvement in the motors torque ripple. In order to minimize the impact on the number of nights lost during the mechanical and electronic changes in the TCS the new TCS is developed and tested in parallel to the existing one and three steps will be taken to achieve the full upgrade. We describe here the second step that affected the main axes of the telescope, AZ and EL.

  17. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    NARCIS (Netherlands)

    Aguilar, J.A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.; Aubert, J.J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M.C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chiarusi, T.; Sen, N.C.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M.P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.L.; Gay, P.; Giacomelli, G.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A.J.; Heine, E.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; De Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchneri, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefevre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Pavalas, G.E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G.V.; Salesa, F.; Sapienza, P.; Schock, F.; Schuller, J.P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic

  18. Hubble Space Telescope ACS wide-field photometry of the sombrero galaxy globular cluster system

    NARCIS (Netherlands)

    Spitler, L.; Larsen, S.S.; Strader, J.; Brodie, J.P.; Forbes, D.A.; Beasley, M.A.

    2006-01-01

    A detailed imaging analysis of the globular cluster (GC) system of the Sombrero galaxy (NGC 4594) has been accomplished using a six-image mosaic from the Hubble Space Telescope Advanced Camera for Surveys. The quality of the data is such that contamination by foreground stars and background galaxies

  19. Temperature autocontrol system for the coud%eacute; room of the 1.2 m telescope

    Science.gov (United States)

    Zhang, Jian-Hua

    The setting up of temperature autocontrol system for the coudé room of the 1.2 m telescope at Yunnan Observatory and realizing the airflow autocirculation, purified the air, keeping the temperature in the coudé room constantly by autocontrol the heater, and then keeping the optical system in the best condition are introduced in this paper. The autocontrol system is designed and developed at the basis of having only the air circulator and the heater controlled by hand.

  20. TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories

    Science.gov (United States)

    Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.

    2009-10-01

    For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.

  1. A portable telescope based on the ALIBAVA system for test beam studies

    International Nuclear Information System (INIS)

    Bernabeu, J.; Casse, G.; Garcia, C.; Greenall, A.; Lacasta, C.; Lozano, M.; Marti-Garcia, S.; Pellegrini, G.; Rodriguez, J.; Ullan, M.; Tsurin, I.

    2013-01-01

    A test beam telescope has been built using the ALIBAVA system to drive its data acquisition. The basic telescope planes consist of four XYT stations. Each station is built from a detector board with two strip sensors, mounted one in each side (strips crossing at 90°). The ensemble is coupled to an ALIBAVA daughter board. These stations act as reference frame and allow a precise track reconstruction. The system is triggered by the coincidence signal of the two scintillators located up and down stream. The telescope can hold several devices under tests. Each ALIBAVA daughter board is linked to its corresponding mother board. The system can hold up to 16 mother boards. A master board synchronizes and controls all the mother boards and collects their data. The off-line analysis software has been developed to study the charge collection, cluster width, tracking efficiency, resolution, etc., of the devices under test. Moreover, the built-in ALIBAVA TDC allows the analysis of the time profile of the device signal. The ALIBAVA telescope has been successfully operated in two test runs at the DESY and CERN-SPS beam lines

  2. Development of telescope readout system based on FELIX for testbeam experiments

    CERN Document Server

    Wu, Weihao; Chen, Hucheng; Chen, Kai; Lacobucci, Giuseppe; Lanni, Francessco; Liu, Hongbin; Barrero Pinto, Mateus Vicente; Xu, Lailin

    2017-01-01

    The High Voltage CMOS (HV-CMOS) sensors are extensively investigated by the ATLAS collaboration in the High-Luminosity LHC (HL-LHC) upgrade of the Inner Tracker (ITk) detector. A testbeam telescope, based on the ATLAS IBL (Insertable B-Layer) silicon pixel modules, has been built to characterize the HV-CMOS sensor prototypes. The Front-End LInk eXchange (FELIX) system is a new approach to function as the gateway between front-ends and the commodity switched network in the different detectors of the ATLAS upgrade. A FELIX based readout system has been developed for the readout of the testbeam telescope, which includes a Telescope Readout FMC Card as interface between the IBL DC (double-chip) modules and a Xilinx ZC706 evaluation board. The test results show that the FELIX based telescope readout system is capable of sensor calibration and readout of a high-density pixel detector in test beam experiments in an effective way.

  3. Design of a telescope control system using an ARM microcontroller with embedded RTOS

    Science.gov (United States)

    Peñuela Pico, Cristian R.; Atara Montañez, Fabian A.; Cuervo, Juan C.; Gonzalez-Llorente, Jesus

    2014-08-01

    This work presents the design of a wireless control system that allows driving all the necessary instruments to control the orientation of an equatorial mounting telescope through a real time operative system (RTOS) that runs over ARM microcontroller. The control system is commanded through a user-interface which works under Android platform giving the user the option to control the tracking mode, right ascension, and declination. The system was successfully deployed and tested during a one-hour observation of the Moon. The frequency measured by the oscilloscope is 66.67 Hz which equals the sidereal speed. The telescope control systems allows the user to have a better precision when locating a star but also to cover long-duration tracking processes

  4. Shutter heating system of Antarctic bright star survey telescope

    Science.gov (United States)

    Chen, Jie; Dong, Shucheng; Jiang, Fengxin; Zhang, Hongfei; Wang, Jian

    2016-07-01

    A heat preservation system for mechanical shutter in Antarctic is introduced in the paper. The system consists of the heat preservation chamber, the host controller STM32F103C8T6 with peripheral circuit and the control algorithm. The whole design is carried out on the basis of the low temperature requirement, including the cavity structure and thermal insulation. The heat preservation chamber is used to keep the shutter warm and support the weight of the camera. Using PT100 as the temperature sensor, the signal processing circuit converts the temperature to the voltage which is then digitized by the 12 bit ADC in the STM32. The host controller transforms the voltage data into temperature, and through the tuning of the Fussy PID algorithm which controls the duty cycle of the MOSFET, the temperature control of chamber is realized. The System has been tested in the cryogenic environment for a long time, with characteristic of low temperature resistance, small volume, high accuracy of temperature control as well as remote control and detection.

  5. The Argonne beamline-B telescope control system: A study of adaptability

    International Nuclear Information System (INIS)

    Fuka, M.A.; Clout, P.N.; Conley, A.P.; Hill, J.O.; Rothrock, R.B.; Trease, L.L.; Zander, M.E.

    1987-01-01

    A beam-expanding telescope to study high-precision H - particle optics and beam sensing was designed by the Accelerator Technology Division at Los Alamos National Laboratory and will be installed on beamline-B at Argonne National Laboratory. The control system for this telescope was developed in a relatively short period of time using experience gained from building the Proton Storage Ring (PSR) control system. The designers modified hardware and software to take advantage of new technology as well as to meet the requirements of the new system. This paper discusses lessons learned in the process of adapting hardware and software from an existing control system to one with rather different requirements

  6. A reusable automatically generated software system for the control of the Large Millimeter Telescope

    Science.gov (United States)

    Souccar, Kamal; Wallace, Gary; Malin, Daniella

    2002-12-01

    A telescope system is composed of a set of real-world objects that are mapped onto software objects whose properties are described in XML configuration files. These XML files are processed to automatically generate user interfaces, underlying communication mechanisms, and extendible source code. Developers need not write user interfaces or communication methods but can focus on the production of scientific results. Any modifications or additions of objects can be easily achieved by editing or generating corresponding XML files and compiling them into the system. This framework can be utilized to implement servo controllers, device drivers, observing algorithms and instrument controllers; and is applicable to any problem domain that requires a user-based interaction with the inputs and outputs of a particular resource or program. This includes telescope systems, instruments, data reduction methods, and database interfaces. The system is implemented using Java, C++, and CORBA.

  7. The design of common aperture and multi-band optical system based on day light telescope

    Science.gov (United States)

    Chen, Jiao; Wang, Ling; Zhang, Bo; Teng, Guoqi; Wang, Meng

    2017-02-01

    As the development of electro-optical weapon system, the technique of common path and multi-sensor are used popular, and becoming a trend. According to the requirement of miniaturization and lightweight for electro-optical stabilized sighting system, a day light telescope/television viewing-aim system/ laser ranger has been designed in this thesis, which has common aperture. Thus integration scheme of multi-band and common aperture has been adopted. A day light telescope has been presented, which magnification is 8, field of view is 6°, and distance of exit pupil is more than 20mm. For 1/3" CCD, television viewing-aim system which has 156mm focal length, has been completed. In addition, laser ranging system has been designed, with 10km raging distance. This paper outlines its principle which used day light telescope as optical reference of correcting the optical axis. Besides, by means of shared objective, reserved image with inverting prism and coating beam-splitting film on the inclined plane of the cube prism, the system has been applied to electro-optical weapon system, with high-resolution of imaging and high-precision ranging.

  8. Reliability Analysis of Main-axis Control System of the Equatorial Antarctica Astronomical Telescope Based on Fault Tree

    Science.gov (United States)

    LI, Y.; Yang, S. H.

    2017-05-01

    The Antarctica astronomical telescopes work chronically on the top of the unattended South Pole, and they have only one chance to maintain every year. Due to the complexity of the optical, mechanical, and electrical systems, the telescopes are hard to be maintained and need multi-tasker expedition teams, which means an excessive awareness is essential for the reliability of the Antarctica telescopes. Based on the fault mechanism and fault mode of the main-axis control system for the equatorial Antarctica astronomical telescope AST3-3 (Antarctic Schmidt Telescopes 3-3), the method of fault tree analysis is introduced in this article, and we obtains the importance degree of the top event from the importance degree of the bottom event structure. From the above results, the hidden problems and weak links can be effectively found out, which will indicate the direction for promoting the stability of the system and optimizing the design of the system.

  9. Astronomic Telescope Facility: Preliminary systems definition study report. Volume 2: Technical description

    Science.gov (United States)

    Sobeck, Charlie (Editor)

    1987-01-01

    The Astrometric Telescope Facility (AFT) is to be an earth-orbiting facility designed specifically to measure the change in relative position of stars. The primary science investigation for the facility will be the search for planets and planetary systems outside the solar system. In addition the facility will support astrophysics investigations dealing with the location or motions of stars. The science objective and facility capabilities for astrophysics investigations are discussed.

  10. Modular and Reusable Power System Design for the BRRISON Balloon Telescope

    Science.gov (United States)

    Truesdale, Nicholas A.

    High altitude balloons are emerging as low-cost alternatives to orbital satellites in the field of telescopic observation. The near-space environment of balloons allows optics to perform near their diffraction limit. In practice, this implies that a telescope similar to the Hubble Space Telescope could be flown for a cost of tens of millions as opposed to billions. While highly feasible, the design of a balloon telescope to rival Hubble is limited by funding. Until a prototype is proven and more support for balloon science is gained, projects remain limited in both hardware costs and man hours. Thus, to effectively create and support balloon payloads, engineering designs must be efficient, modular, and if possible reusable. This thesis focuses specifically on a modular power system design for the BRRISON comet-observing balloon telescope. Time- and cost-saving techniques are developed that can be used for future missions. A modular design process is achieved through the development of individual circuit elements that span a wide range of capabilities. Circuits for power conversion, switching and sensing are designed to be combined in any configuration. These include DC-DC regulators, MOSFET drivers for switching, isolated switches, current sensors and voltage sensing ADCs. Emphasis is also given to commercially available hardware. Pre-fabricated DC-DC converters and an Arduino microcontroller simplify the design process and offer proven, cost-effective performance. The design of the BRRISON power system is developed from these low-level circuits elements. A board for main power distribution supports the majority of flight electronics, and is extensible to additional hardware in future applications. An ATX computer power supply is developed, allowing the use of a commercial ATX motherboard as the flight computer. The addition of new capabilities is explored in the form of a heater control board. Finally, the power system as a whole is described, and its overall

  11. Optical Telescope System-Level Design Considerations for a Space-Based Gravitational Wave Mission

    Science.gov (United States)

    Livas, Jeffrey C.; Sankar, Shannon R.

    2016-01-01

    The study of the Universe through gravitational waves will yield a revolutionary new perspective on the Universe, which has been intensely studied using electromagnetic signals in many wavelength bands. A space-based gravitational wave observatory will enable access to a rich array of astrophysical sources in the measurement band from 0.1 to 100 mHz, and nicely complement observations from ground-based detectors as well as pulsar timing arrays by sampling a different range of compact object masses and astrophysical processes. The observatory measures gravitational radiation by precisely monitoring the tiny change in the proper distance between pairs of freely falling proof masses. These masses are separated by millions of kilometers and, using a laser heterodyne interferometric technique, the change in their proper separation is detected to approx. 10 pm over timescales of 1000 seconds, a fractional precision of better than one part in 10(exp 19). Optical telescopes are essential for the implementation of this precision displacement measurement. In this paper we describe some of the key system level design considerations for the telescope subsystem in a mission context. The reference mission for this purpose is taken to be the enhanced Laser Interferometry Space Antenna mission (eLISA), a strong candidate for the European Space Agency's Cosmic Visions L3 launch opportunity in 2034. We will review the flow-down of observatory level requirements to the telescope subsystem, particularly pertaining to the effects of telescope dimensional stability and scattered light suppression, two performance specifications which are somewhat different from the usual requirements for an image forming telescope.

  12. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model

    OpenAIRE

    Zoulinakis, Georgios; Ferrer-Blasco, Teresa

    2017-01-01

    Purpose. To design an intraocular telescopic system (ITS) for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses’ placement in the eye model and their powers. Ray tracing in bot...

  13. Remote observing from the bottom up: the architecture of the WIYN telescope control system

    Science.gov (United States)

    Percival, Jeffrey W.

    1995-06-01

    Remote observing has many definitions, ranging from unattended batch-mode use through simple remote logins to fully faithful off-site observing centers indistinguishable from the on- site telescope control room. There are problems with each of these ideas: batch mode operation, for example, precludes remote interactive target acquisition and remote access to targets of opportunity. Simple remote login suffers from network problems such as full-duplex character latency; shipping screens instead of the underlying data can cause bandwidth problems and interferes with analyzing or archiving data. Brute-force reproduction of the control room requires expensive fiber or satellite connections. The WIYN Telescope control system was designed to be inexpensive to build and inexpensive to maintain. We emphasized the use of standard tools, portable implementations, and network friendliness. These techniques and features are precisely those that underlie a powerful remote observing capability. The WIYN Telescope control system therefore supports remote observing from the very lowest levels, and does so effectively and inexpensively using a carefully planned architecture, standard software and network tools, and innovative methods to ship large digital images over low bandwidth connections such as phone lines. Even before the construction was complete, these techniques proved their value by allowing remote access for the purposes of eavesdropping, troubleshooting, and servo tuning. This paper presents a block diagram and detailed descriptions of the WIYN Telescope control system architecture. Each aspect of the control system is discussed with respect to its contribution to the overall goal of remote observing, including multi-user access, bandwidth conservation, interoperability, and portability.

  14. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  15. The control, monitor, and alarm system for the ICT equipment of the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, Fulvio; Fioretti, Valentina; Tanci, Claudio; Conforti, Vito; Tacchini, Alessandro; Leto, Giuseppe; Gallozzi, Stefano; Bulgarelli, Andrea; Trifoglio, Massimo; Malaguti, Giuseppe; Zoli, Andrea

    2014-07-01

    ASTRI is an Italian flagship project whose first goal is the realization of an end-to-end telescope prototype, named ASTRI SST-2M, for the Cherenkov Telescope Array (CTA). The prototype will be installed in Italy during Fall 2014. A second goal will be the realization of the ASTRI/CTA mini-array which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The Information and Communication Technology (ICT) equipment necessary to drive the infrastructure for the ASTRI SST-2M prototype is being designed as a complete and stand-alone computer center. The design goal is to obtain basic ICT equipment that might be scaled, with a low level of redundancy, for the ASTRI/CTA mini-array, taking into account the necessary control, monitor and alarm system requirements. The ICT equipment envisaged at the Serra La Nave observing station in Italy, where the ASTRI SST-2M telescope prototype will operate, includes computers, servers and workstations, network devices, an uninterruptable power supply system, and air conditioning systems. Suitable hardware and software tools will allow the parameters related to the behavior and health of each item of equipment to be controlled and monitored. This paper presents the proposed architecture and technical solutions that integrate the ICT equipment in the framework of the Observatory Control System package of the ASTRI/CTA Mini- Array Software System, MASS, to allow their local and remote control and monitoring. An end-toend test case using an Internet Protocol thermometer is reported in detail.

  16. Heavy ion identification system by using a gas proportional counter telescope

    International Nuclear Information System (INIS)

    Yanokura, Minoru; Kohno, Isao; Nakahara, Hiromichi; Yamakoshi, Kazuo.

    1980-01-01

    For detection and identification of heavy particle charges produced by heavy-ion induced reactions, a very thin ΔE-E counter telescope and a new particle identification program were developed and their performance tested. The telescope consisted of a gas proportional counter (70 mm long) filled with 20 Torr PR gas as a ΔE counter, and of a surface-barrier silicon detector (300 μm) as an E counter. The particle identification from the ΔE and E data was carried out by using the semi-empirical range-energy data reported by Northcliffe and Schilling as a reference. The overall ability of the present system for detection and identification was found satisfactory for charges from 5 through 20 produced by the 145 MeV 20 Ne induced reaction on chromium. (author)

  17. Active optics system for the 4m telescope of the Eastern Anatolia Observatory (DAG)

    Science.gov (United States)

    Lousberg, Gregory P.; Mudry, Emeric; Bastin, Christian; Schumacher, Jean-Marc; Gabriel, Eric; Pirnay, Olivier; Flebus, Carlo

    2016-07-01

    An active optics system is being developed by AMOS for the new 4m-class telescope for the Turkish Eastern Anatolia Observatory (DAG). It consists in (a) an adjustable support for the primary mirror and (b) two hexapods supporting M2 and M3. The M1 axial support consists of 66 pneumatic actuators (for mirror shape corrections) associated with 9 hydraulic actuators that are arranged in three independent circuits so as to fix the axial position of the mirror. Both M1 support and the hexapods are actively controlled during regular telescope operations, either with look-up tables (openloop control) or using optical feedback from a wavefront sensor (closed-loop control).

  18. High-stability 48-core bendable and movable optical cable for FAST telescope optical transmission system

    Science.gov (United States)

    Liu, Hongfei; Pan, Gaofeng; Lin, Zhong; Liu, Cheng; Zhu, Wenbai; Nan, Rendong; Li, Chunsheng; Gao, Guanjun; Luo, Wenyong; Jin, Chengjin; Song, Jinyou

    2017-11-01

    The construction of FAST telescope was completed in Guizhou province of China in September 2016, and a kind of novel high-stability 48-core bendable and movable optical cable was developed and applied in analog data optical transmission system of FAST. Novel structure and selective material of this optical cable ensure high stability of optical power in the process of cables round-trip motion when telescope is tracking a radio source. The 105 times bend and stretch accelerated experiment for this optical cable was implemented, and real-time optical and RF signal power fluctuation were measured. The physical structure of optical cables after 105 times round-trip motion is in good condition; the real-time optical power attenuation fluctuation is smaller than 0.044 dB; the real-time RF power fluctuation is smaller than 0.12 dB. The optical cable developed in this letter meets the requirement of FAST and has been applied in FAST telescope.

  19. A new energy-efficient control approach for astronomical telescope drive system

    Science.gov (United States)

    Zhou, W.; Wang, Y.

    2012-12-01

    Drive control makes the astronomical telescope accurately tracking celestial bodies in spite of external and internal disturbances, which is a key technique to the performance of telescopes. In this paper, we propose a nonlinear ad, aptive observer based on power reversible approach for high precision telescope position tracking. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be evidently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. During the period of the mount slowing down, the armature current of drive motor goes through the two path-wise diodes to charge the battery. Thus, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an evaluation function which is made up of a weighted sum of position errors and energy consumption.The outputs of the controller are applied to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.

  20. Power and Submarine Cable Systems for the KM3NeT kilometre cube Neutrino Telescope

    CERN Document Server

    Sedita, M; Hallewell, G

    2009-01-01

    The KM3NeT EU-funded consortium, pursuing a cubic kilometre scale neutrino telescope in the Mediterranean Sea, is developing technical solutions for the construction of this challenging project, to be realized several kilometres below the sea level. In this framework a proposed DC/DC power system has been designed, maximizing reliability and minimizing difficulties and expensive underwater activities. The power conversion, delivery, transmission and distribution network will be described with particular attention to: the main electro-optical cable, on shore and deep sea power conversion, the subsea distribution network and connection systems, together with installation and maintenance issues.

  1. A Balloon-Borne Telescope System for Planetary Atmosphere and Plasma Studies

    Science.gov (United States)

    Taguchi, M.; Yoshida, K.; Sakamoto, Y.; Kanazawa, T.; Shoji, Y.; Sawakami, T.; Takahashi, Y.; Hoshino, N.; Sato, T.; Sakanoi, T.

    2007-12-01

    A telescope floating in the polar stratosphere can continuously monitor planets for more than 24 hours. Thin, clear and stable air of the stratosphere makes it possible to observe planets in a condition free from cloud with fine seeing and high atmospheric transmittance. Moreover, a balloon-borne telescope system is less expensive compared with a huge terrestrial telescope or a direct planetary probe mission. Targets of a balloon-borne telescope system will extend over various atmospheric and plasma phenomena on almost all the planets, i.e., a sodium tail of Mercury, lightning, airglow and aurora in the atmospheres of Venus, Jupiter and Saturn, escaping atmospheres of the Earth-type planets, satellite-induced luminous events in the Jovian atmosphere, etc. The first target is global dynamics of the Venusian atmosphere by detecting cloud motion in UV and NIR imagery. A decoupling mechanism and a pair of control moment gyros (CMGs) are mounted at the top of the gondola. The decoupling mechanism isolates the gondola from a balloon and also transfers an excess angular momentum of the CMGs to the balloon. The attitude of the gondola is stabilized at a constant sun azimuthal angle so that a solar cell panel faces to the sun. A 300 mm F30 Schmidt-Cassegrain telescope is installed at the bottom of the gondola. DC/DC converters, a PC, a high voltage power supply for a piezo-electrically moving mirror and digital video recorders are contained in a sealed cell. The azimuthal angle is detected by a sun-sensor. A PC processes sensor output to control DC motors used in the decoupling mechanism and CMGs with an accuracy in azimuthal attitude of about 0.5 deg. The two-axis gimbal mount of the telescope is controlled by the same PC, guiding an object within a field-of-view of a guide telescope. Residual tracking error is detected by a position sensitive photomultiplier tube and corrected by the two-axis moving mirror installed in the optical system. The optical path is divided into

  2. The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-based Astrometry

    Science.gov (United States)

    Bond, Howard E.; Schaefer, Gail H.; Gilliland, Ronald L.; Holberg, Jay B.; Mason, Brian D.; Lindenblad, Irving W.; Seitz-McLeese, Miranda; Arnett, W. David; Demarque, Pierre; Spada, Federico; Young, Patrick A.; Barstow, Martin A.; Burleigh, Matthew R.; Gudehus, Donald

    2017-05-01

    Sirius, the seventh-nearest stellar system, is a visual binary containing the metallic-line A1 V star Sirius A, the brightest star in the sky, orbited in a 50.13 year period by Sirius B, the brightest and nearest white dwarf (WD). Using images obtained over nearly two decades with the Hubble Space Telescope (HST), along with photographic observations covering almost 20 years and nearly 2300 historical measurements dating back to the 19th century, we determine precise orbital elements for the visual binary. Combined with the parallax and the motion of the A component, these elements yield dynamical masses of 2.063+/- 0.023 {M}⊙ and 1.018+/- 0.011 {M}⊙ for Sirius A and B, respectively. Our precise HST astrometry rules out third bodies orbiting either star in the system, down to masses of ˜15-25 {M}{Jup}. The location of Sirius B in the Hertzsprung-Russell diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass, and implies a cooling age of ˜126 Myr. The position of Sirius B on the mass-radius plane is also consistent with WD theory, assuming a carbon-oxygen core. Including the pre-WD evolutionary timescale of the assumed progenitor, the total age of Sirius B is about 228 ± 10 Myr. We calculated evolutionary tracks for stars with the dynamical mass of Sirius A, using two independent codes. We find it necessary to assume a slightly subsolar metallicity, of about 0.85 {Z}⊙ , to fit its location on the luminosity-radius plane. The age of Sirius A based on these models is about 237-247 Myr, with uncertainties of ±15 Myr, consistent with that of the WD companion. We discuss astrophysical puzzles presented by the Sirius system, including the probability that the two stars must have interacted in the past, even though there is no direct evidence for this and the orbital eccentricity remains high. Based in part on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, and from

  3. Detection of an Impact Flash Candidate on the Moon with an Educational Telescope System

    Directory of Open Access Journals (Sweden)

    Eunsol Kim

    2015-06-01

    Full Text Available At the suggestion of the NASA Meteoroid Environment Office (NASA/MEO, which promotes lunar impact monitoring worldwide during NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE mission period (launched Sept. 2013, we set up a video observation system for lunar impact flashes using a 16-inch educational telescope at Chungnam National University. From Oct. 2013 through Apr. 2014, we recorded 80 hours of video observation of the unilluminated part of the crescent moon in the evening hours. We found a plausible candidate impact flash on Feb. 3, 2014 at selenographic longitude 2.1° and latitude 25.4°. The flash lasted for 0.2 s and the light curve was asymmetric with a slow decrease after a peak brightness of 8.7 ± 0.3 mag. Based on a star-like distribution of pixel brightness and asymmetric light curve, we conclude that the observed flash was due to a meteoroid impact on the lunar surface. Since unequivocal detection of an impact flash requires simultaneous observation from at least two sites, we strongly recommend that other institutes and universities in Korea set up similar inexpensive monitoring systems involving educational or amateur telescopes, and that they collaborate in the near future.

  4. A new energy-efficient control approach for space telescope drive system

    Science.gov (United States)

    Zhou, Wangping; Wang, Yong

    Drive control makes the telescope accurately track celestial bodies in spite of external and in-ternal disturbances, and is a key technique to the performance of telescopes. In this paper, we propose a nonlinear adaptive observer based on power reversible approach for high preci-sion position tracking, i.e., space telescopes. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be ev-idently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. A pair of diagonal sections is switched on for speeding up the reaction wheel and the other pair act in reverse. During the period of the wheel slowing down, the armature current of drive motor goes through the two path-wise diodes to discharge the battery. Thusly, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an eval-uation function which is made up of a weighted sum of position errors and energy consumption. The outputs of the controller are amplified to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.

  5. The W. M. Keck Telescope segmented primary mirror active control system software

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R.W. (Lawrence Berkeley Lab., CA (USA) California Association for Research in Astronomy, Kamuela, HI (USA)); Andreae, S.; Biocca, A.K.; Jared, R.C.; Llacer, J.; Meng, J.D.; Minor, R.H.; Orayani, M. (Lawrence Berkeley Lab., CA (USA))

    1989-07-01

    The active control system (ACS) uses both parallel and distributed processing techniques to measure and control the positions of the 36 segments of the Keck Observatory Telescope primary mirror. The main function of the software is to maintain the mirror figure; to accomplish this goal the software uses a predictive, feed-forward'' mechanism which effectively increases the system bandwidth for the most important sources of perturbation. The software executes on a set of twelve 68000-family processors under the supervision of a VAX workstation. An array of nine parallel I/O processors collect and process data from 168 displacement sensors and transmit motion commands to 108 actuators. Three additional processors simultaneously compute actuator commands, monitor system performance, compute sensor control parameters and communicate with other observatory computers. The software is highly optimized for speed. 6 refs., 7 figs.

  6. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements

    Science.gov (United States)

    Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali

    2018-01-01

    We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period 1dplanets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more "puffed up" compared with that around metal-poor hosts. In two period–radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets (2R⊕≲Rp≲6R⊕), dubbed "Hoptunes." Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About 1% of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a "valley" at approximately Saturn size (in the range of 6R⊕≲Rp≲10R⊕), and this "hot-Saturn valley' represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical "kinship" between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.

  7. LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements.

    Science.gov (United States)

    Dong, Subo; Xie, Ji-Wei; Zhou, Ji-Lin; Zheng, Zheng; Luo, Ali

    2018-01-09

    We discover a population of short-period, Neptune-size planets sharing key similarities with hot Jupiters: both populations are preferentially hosted by metal-rich stars, and both are preferentially found in Kepler systems with single-transiting planets. We use accurate Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Data Release 4 (DR4) stellar parameters for main-sequence stars to study the distributions of short-period [Formula: see text] Kepler planets as a function of host star metallicity. The radius distribution of planets around metal-rich stars is more "puffed up" compared with that around metal-poor hosts. In two period-radius regimes, planets preferentially reside around metal-rich stars, while there are hardly any planets around metal-poor stars. One is the well-known hot Jupiters, and the other one is a population of Neptune-size planets ([Formula: see text]), dubbed "Hoptunes." Also like hot Jupiters, Hoptunes occur more frequently in systems with single-transiting planets although the fraction of Hoptunes occurring in multiples is larger than that of hot Jupiters. About [Formula: see text] of solar-type stars host Hoptunes, and the frequencies of Hoptunes and hot Jupiters increase with consistent trends as a function of [Fe/H]. In the planet radius distribution, hot Jupiters and Hoptunes are separated by a "valley" at approximately Saturn size (in the range of [Formula: see text]), and this "hot-Saturn valley" represents approximately an order-of-magnitude decrease in planet frequency compared with hot Jupiters and Hoptunes. The empirical "kinship" between Hoptunes and hot Jupiters suggests likely common processes (migration and/or formation) responsible for their existence.

  8. Telescoping of isotherms beneath the South Tibetan Detachment System, Mount Everest Massif

    Science.gov (United States)

    Law, R. D.; Jessup, M. J.; Searle, M. P.; Francsis, M. K.; Waters, D. J.; Cottle, J. M.

    2011-11-01

    Petrologic and microstructural/crystal fabric data indicate that isotherms recorded in Greater Himalayan Series (GHS) schists and gneisses in the footwall to the South Tibetan Detachment System (STDS) have undergone extreme telescoping during penetrative flow associated with southward extrusion of the GHS. In the Rongbuk Valley, to the north of Mount Everest, we have made three vertical sampling traverses from the STDS down into the GHS and estimated temperatures associated with penetrative deformation using the opening angles of quartz c-axis fabrics measured on dynamically recrystallized grains. From north to south, the deformation temperature data indicate apparent thermal field gradients of 369, 385 and 420 °C per km for our three traverses, traced over a maximum vertical sampling distance of 0.5 km. Adopting a differential flow path model, simple geometric analysis using sections drawn parallel to the local transport direction indicates that detachment-parallel transport magnitudes of 25-170 km are needed to explain the extreme telescoping of isotherms in the immediate footwall to the STDS, depending on assumed original geothermal gradient, dip of detachment, etc. These particle transport estimates are similar to those previously calculated from barometry data of GHS rocks in the Everest region and are compatible with channel flow models for extrusion and exhumation of the GHS.

  9. Subdivision Error Analysis and Compensation for Photoelectric Angle Encoder in a Telescope Control System

    Directory of Open Access Journals (Sweden)

    Yanrui Su

    2015-01-01

    Full Text Available As the position sensor, photoelectric angle encoder affects the accuracy and stability of telescope control system (TCS. A TCS-based subdivision error compensation method for encoder is proposed. Six types of subdivision error sources are extracted through mathematical expressions of subdivision signals first. Then the period length relationships between subdivision signals and subdivision errors are deduced. And the error compensation algorithm only utilizing the shaft position of TCS is put forward, along with two control models; Model I is that the algorithm applies only to the speed loop of TCS and Model II is applied to both speed loop and position loop. Combined with actual project, elevation jittering phenomenon of the telescope is discussed to decide the necessity of DC-type subdivision error compensation. Low-speed elevation performance before and after error compensation is compared to help decide that Model II is preferred. In contrast to original performance, the maximum position error of the elevation with DC subdivision error compensation is reduced by approximately 47.9% from 1.42″ to 0.74″. The elevation gets a huge decrease in jitters. This method can compensate the encoder subdivision errors effectively and improve the stability of TCS.

  10. Prototype of a production system for Cherenkov Telescope Array with DIRAC

    CERN Document Server

    Arrabito, L; Haupt, A; Graciani Diaz, R; Stagni, F; Tsaregorodtsev, A

    2015-01-01

    The Cherenkov Telescope Array (CTA) — an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale — is the next generation instrument in the field of very high energy gamma-ray astronomy. CTA will operate as an open observatory providing data products to the scientific community. An average data stream of about 10 GB/s for about 1000 hours of observation per year, thus producing several PB/year, is expected. Large CPU time is required for data-processing as well for massive Monte Carlo simulations needed for detector calibration purposes. The current CTA computing model is based on a distributed infrastructure for the archive and the data off-line processing. In order to manage the off-line data-processing in a distributed environment, CTA has evaluated the DIRAC (Distributed Infrastructure with Remote Agent Control) system, which is a general framework for the management of tasks over distributed heterogeneous computing environments. In particular, a production sy...

  11. Absolute gain calibration system for the 349-pixel imaging element of the tactic telescope array

    International Nuclear Information System (INIS)

    Tickoo, A.K.; Dhar, V.K.; Venugopal, K.; Kaul, S.K.; Koul, R.; Bhatt, N.; Goyal, H.C.; Bhat, C.L.

    2001-01-01

    The imaging Element of the 4-element TACTIC telescope array has been in operation at Mt. Abu since 1997, for carrying detailed investigations of gamma-ray sources in the TeV energy range. In order to characterize the progenitor particle (Gamma-ray/cosmic-ray), a relative gain calibration system, based on a high intensity LED, has been in operation. However, for calorimetric purposes, an absolute gain calibration system is necessary and has been developed for an on-line calibration of 4 out of 349-pixels of its imaging camera, using 241 Am based light pulsers. The details of the experimental set-up and the results obtained so far are presented in this paper. (author)

  12. Results from a prototype MAPS sensor telescope and readout system with zero suppression for the heavy flavor tracker at STAR

    International Nuclear Information System (INIS)

    Greiner, L.; Matis, H.S.; Ritter, H.G.; Rose, A.; Stezelberger, T.; Sun, X.; Szelezniak, M.; Thomas, J.; Vu, C.; Wieman, H.

    2008-01-01

    We describe a three Mimostar-2 Monolithic Active Pixel Sensor (MAPS) sensor telescope prototype with an accompanying readout system incorporating on-the-fly data sparsification. The system has been characterized and we report on the measured performance of the sensor telescope and readout system in beam tests conducted both at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) and in the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). This effort is part of the development and prototyping work that will lead to a vertex detector for the STAR experiment

  13. Development of the ACS+OPC UA based control system for a CTA medium size telescope prototype

    Science.gov (United States)

    Behera, Bagmeet; Oya, Igor; Birsin, Emrah; Köppel, Hendryk; Melkumyan, David; Schlenstedt, Stefan; Schmidt, Torsten; Schwanke, Ullrich; Wegner, Peter; Wiesand, Stephan; Winde, Michael

    2012-09-01

    The Cherenkov Telescope Array (CTA) is the next generation Very High Energy (VHE, defined as > 50GeV to several 100TeV) telescope facility, currently in the design and prototyping phase, and expected to come on-line around 2016. The array would have both a Northern and Southern hemisphere site, together delivering nearly complete sky coverage. The CTA array is planned to have ~100 telescopes of several different sizes to fulfill the sensitivity and energy coverage needs. Each telescope has a number of subsystems with varied hardware and control mechanisms; a drive system that gets commands and inputs via OPC UA (OPC Unified Architecture), mirror alignment systems based on XBee/ZigBee protocol and/or CAN bus, weather monitor accessed via serial/Ethernet ports, CCD cameras for calibration, Cherenkov camera, and the data read out electronics, etc. Integrating the control and data-acquisitions of such a distributed heterogeneous system calls for a framework that can handle such a multi-platform, multi-protocol scenario. The CORBA based ALMA Common software satisfies these needs very well and is currently being evaluated as the base software for developing the control system for CTA. A prototype for a Medium Size Telescope (MST, ~12m) is being developed and will be deployed in Berlin, by end of 2012. We present the development being carried out to integrate and control the various hardware subsystems of this MST prototype using ACS.

  14. Prototype of a production system for Cherenkov Telescope Array with DIRAC

    International Nuclear Information System (INIS)

    Arrabito, L; Bregeon, J; Haupt, A; Graciani Diaz, R; Stagni, F; Tsaregorodtsev, A

    2015-01-01

    The Cherenkov Telescope Array (CTA) — an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale — is the next generation instrument in the field of very high energy gamma-ray astronomy. CTA will operate as an open observatory providing data products to the scientific community. An average data stream of about 10 GB/s for about 1000 hours of observation per year, thus producing several PB/year, is expected. Large CPU time is required for data-processing as well for massive Monte Carlo simulations needed for detector calibration purposes. The current CTA computing model is based on a distributed infrastructure for the archive and the data off-line processing. In order to manage the off-line data-processing in a distributed environment, CTA has evaluated the DIRAC (Distributed Infrastructure with Remote Agent Control) system, which is a general framework for the management of tasks over distributed heterogeneous computing environments. In particular, a production system prototype has been developed, based on the two main DIRAC components, i.e. the Workload Management and Data Management Systems. After three years of successful exploitation of this prototype, for simulations and analysis, we proved that DIRAC provides suitable functionalities needed for the CTA data processing. Based on these results, the CTA development plan aims to achieve an operational production system, based on the DIRAC Workload Management System, to be ready for the start of CTA operation phase in 2017-2018. One more important challenge consists of the development of a fully automatized execution of the CTA workflows. For this purpose, we have identified a third DIRAC component, the so-called Transformation System, which offers very interesting functionalities to achieve this automatisation. The Transformation System is a ’data-driven’ system, allowing to automatically trigger data-processing and data management operations according to pre

  15. Neutrino telescopes

    CERN Document Server

    Carr, J

    2002-01-01

    This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).

  16. Identification of single-input-single-output quantum linear systems

    Science.gov (United States)

    Levitt, Matthew; GuÅ£ǎ, Mǎdǎlin

    2017-03-01

    The purpose of this paper is to investigate system identification for single-input-single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016), 10.1109/TAC.2015.2448491] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix.

  17. Advances in Telescope and Detector Technologies - Impacts on the Study and Understanding of Binary Star and Exoplanet Systems

    Science.gov (United States)

    Guinan, Edward F.; Engle, Scott; Devinney, Edward J.

    2012-04-01

    Current and planned telescope systems (both on the ground and in space) as well as new technologies will be discussed with emphasis on their impact on the studies of binary star and exoplanet systems. Although no telescopes or space missions are primarily designed to study binary stars (what a pity!), several are available (or will be shortly) to study exoplanet systems. Nonetheless those telescopes and instruments can also be powerful tools for studying binary and variable stars. For example, early microlensing missions (mid-1990s) such as EROS, MACHO and OGLE were initially designed for probing dark matter in the halos of galaxies but, serendipitously, these programs turned out to be a bonanza for the studies of eclipsing binaries and variable stars in the Magellanic Clouds and in the Galactic Bulge. A more recent example of this kind of serendipity is the Kepler Mission. Although Kepler was designed to discover exoplanet transits (and so far has been very successful, returning many planetary candidates), Kepler is turning out to be a ``stealth'' stellar astrophysics mission returning fundamentally important and new information on eclipsing binaries, variable stars and, in particular, providing a treasure trove of data of all types of pulsating stars suitable for detailed Asteroseismology studies. With this in mind, current and planned telescopes and networks, new instruments and techniques (including interferometers) are discussed that can play important roles in our understanding of both binary star and exoplanet systems. Recent advances in detectors (e.g. laser frequency comb spectrographs), telescope networks (both small and large - e.g. Super-WASP, HAT-net, RoboNet, Las Combres Observatory Global Telescope (LCOGT) Network), wide field (panoramic) telescope systems (e.g. Large Synoptic Survey Telescope (LSST) and Pan-Starrs), huge telescopes (e.g. the Thirty Meter Telescope (TMT), the Overwhelming Large Telescope (OWL) and the Extremely Large Telescope (ELT

  18. James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings

    Science.gov (United States)

    Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z-Y.; Zhang, Z-W.; Vilenius, E.; Mueller, Th.; Ortiz, J. L.; Braga-Ribas, F.; hide

    2016-01-01

    In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun–Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.

  19. Apparent magnitudes of high-redshift galaxies in UBVRI and space telescope photometric systems

    Science.gov (United States)

    Guiderdoni, B.; Rocca-Volmerange, B.

    1988-08-01

    Tables reporting predictions of apparent magnitudes and colors for distant galaxies are computed from a model of spectrophotometric evolution of high-redshift galaxies proposed by Guiderdoni and Rocca-Volmerange (1987). The template synthetic spectra used for these calculations are obtained from standard scenarios of galaxy evolution reproducing the range of observational properties for nearby galaxies of the Hubble sequence. The tables are given with two cosmological models Ho = 50 km/s/Mpc, Omega(0) = 0.1 and 1. The tabulated filters are UBVRI from Johnson's system, U+, J+, F+ N+ from Kron (1980) and Koo (1981), gr from Thuan and Gunn (1976), and some broad-band filters from the Faint Object Camera (FOC) and the Wide Field Camera (WFC) of the Hubble Space Telescope. Tables with the relative contributions of nebular emission and internal extinction are also given.

  20. Performance of the Primary Mirror Center-of-Curvature Optical Metrology System during Cryogenic Testing of the JWST Pathfinder Telescope

    Science.gov (United States)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.

  1. YOUNG PLANETARY NEBULAE: HUBBLE SPACE TELESCOPE IMAGING AND A NEW MORPHOLOGICAL CLASSIFICATION SYSTEM

    International Nuclear Information System (INIS)

    Sahai, Raghvendra; Villar, Gregory G.; Morris, Mark R.

    2011-01-01

    Using Hubble Space Telescope images of 119 young planetary nebulae (PNs), most of which have not previously been published, we have devised a comprehensive morphological classification system for these objects. This system generalizes a recently devised system for pre-planetary nebulae, which are the immediate progenitors of PNs. Unlike previous classification studies, we have focused primarily on young PNs rather than all PNs, because the former best show the influences or symmetries imposed on them by the dominant physical processes operating at the first and primary stage of the shaping process. Older PNs develop instabilities, interact with the ambient interstellar medium, and are subject to the passage of photoionization fronts, all of which obscure the underlying symmetries and geometries imposed early on. Our classification system is designed to suffer minimal prejudice regarding the underlying physical causes of the different shapes and structures seen in our PN sample, however, in many cases, physical causes are readily suggested by the geometry, along with the kinematics that have been measured in some systems. Secondary characteristics in our system, such as ansae, indicate the impact of a jet upon a slower-moving, prior wind; a waist is the signature of a strong equatorial concentration of matter, whether it be outflowing or in a bound Keplerian disk, and point symmetry indicates a secular trend, presumably precession, in the orientation of the central driver of a rapid, collimated outflow.

  2. ATST telescope mount: telescope of machine tool

    Science.gov (United States)

    Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans

    2012-09-01

    The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.

  3. Software Development for the Hobby-Eberly Telescope's Segment Alignment Maintenance System using LABView

    Science.gov (United States)

    Hall, Drew P.; Ly, William; Howard, Richard T.; Weir, John; Rakoczy, John; Roe, Fred (Technical Monitor)

    2002-01-01

    The software development for an upgrade to the Hobby-Eberly Telescope (HET) was done in LABView. In order to improve the performance of the HET at the McDonald Observatory, a closed-loop system had to be implemented to keep the mirror segments aligned during periods of observation. The control system, called the Segment Alignment Maintenance System (SAMs), utilized inductive sensors to measure the relative motions of the mirror segments. Software was developed in LABView to tie the sensors, operator interface, and mirror-control motors together. Developing the software in LABView allowed the system to be flexible, understandable, and able to be modified by the end users. Since LABView is built using block diagrams, the software naturally followed the designed control system's block and flow diagrams, and individual software blocks could be easily verified. LABView's many built-in display routines allowed easy visualization of diagnostic and health-monitoring data during testing. Also, since LABView is a multi-platform software package, different programmers could develop the code remotely on various types of machines. LABView s ease of use facilitated rapid prototyping and field testing. There were some unanticipated difficulties in the software development, but the use of LABView as the software "language" for the development of SAMs contributed to the overall success of the project.

  4. IPS observation system for the Miyun 50 m radio telescope and its commissioning observation

    International Nuclear Information System (INIS)

    Zhu Xinying; Zhang Xizhen; Zhang Hongbo; Kong Deqing; Qu Huipeng

    2012-01-01

    Ground-based observation of Interplanetary Scintillation (IPS) is an important approach for monitoring solar wind. A ground-based IPS observation system has been newly implemented on a 50 m radio telescope at Miyun station, managed by the National Astronomical Observatories, Chinese Academy of Sciences. This observation system has been constructed for the purpose of observing solar wind speed and the associated scintillation index by using the normalized cross-spectrum of a simultaneous dual-frequency IPS measurement. The system consists of a universal dual-frequency front-end and a dual-channel multi-function back-end specially designed for IPS. After careful calibration and testing, IPS observations on source 3C 273B and 3C 279 have been successfully carried out. The preliminary observation results show that this newly-developed observation system is capable of performing IPS observation. The system's sensitivity for IPS observation can reach over 0.3 Jy in terms of an IPS polarization correlator with 4 MHz bandwidth and 2 s integration time. (research papers)

  5. WorldWide Telescope: A Newly Open Source Astronomy Visualization System

    Science.gov (United States)

    Fay, Jonathan; Roberts, Douglas A.

    2016-01-01

    After eight years of development by Microsoft Research, WorldWide Telescope (WWT) was made an open source project at the end of June 2015. WWT was motivated by the desire to put new surveys of objects, such as the Sloan Digital Sky Survey in the context of the night sky. The development of WWT under Microsoft started with the creation of a Windows desktop client that is widely used in various education, outreach and research projects. Using this, users can explore the data built into WWT as well as data that is loaded in. Beyond exploration, WWT can be used to create tours that present various datasets a narrative format.In the past two years, the team developed a collection of web controls, including an HTML5 web client, which contains much of the functionality of the Windows desktop client. The project under Microsoft has deep connections with several user communities such as education through the WWT Ambassadors program, http://wwtambassadors.org/ and with planetariums and museums such as the Adler Planetarium. WWT can also support research, including using WWT to visualize the Bones of the Milky Way and rich connections between WWT and the Astrophysical Data Systems (ADS, http://labs.adsabs.harvard.edu/adsabs/). One important new research connection is the use of WWT to create dynamic and potentially interactive supplements to journal articles, which have been created in 2015.Now WWT is an open source community lead project. The source code is available in GitHub (https://github.com/WorldWideTelescope). There is significant developer documentation on the website (http://worldwidetelescope.org/Developers/) and an extensive developer workshops (http://wwtworkshops.org/?tribe_events=wwt-developer-workshop) has taken place in the fall of 2015.Now that WWT is open source anyone who has the interest in the project can be a contributor. As important as helping out with coding, the project needs people interested in documentation, testing, training and other roles.

  6. Parametric Cost Models for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  7. Parametric cost models for space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtnay

    2017-11-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  8. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model

    Directory of Open Access Journals (Sweden)

    Georgios Zoulinakis

    2017-01-01

    Full Text Available Purpose. To design an intraocular telescopic system (ITS for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses’ placement in the eye model and their powers. Ray tracing in both centered and decentered situations was carried out for both ITS while visual Strehl ratio (VSOTF was computed using custom-made MATLAB code. Results. The results show that between 0.4 and 0.8 mm of decentration, the VSOTF does not change much either for far or near target distances. The image projection for these decentrations is in the parafoveal zone, and the quality of the image projected is quite similar. Conclusion. Both systems display similar quality while they differ in size; therefore, the choice between them would need to take into account specific parameters from the patient’s eye. Quality does not change too much between 0.4 and 0.8 mm of decentration for either system which gives flexibility to the clinician to adjust decentration to avoid areas of retinal damage.

  9. Intraocular Telescopic System Design: Optical and Visual Simulation in a Human Eye Model.

    Science.gov (United States)

    Zoulinakis, Georgios; Ferrer-Blasco, Teresa

    2017-01-01

    Purpose. To design an intraocular telescopic system (ITS) for magnifying retinal image and to simulate its optical and visual performance after implantation in a human eye model. Methods. Design and simulation were carried out with a ray-tracing and optical design software. Two different ITS were designed, and their visual performance was simulated using the Liou-Brennan eye model. The difference between the ITS was their lenses' placement in the eye model and their powers. Ray tracing in both centered and decentered situations was carried out for both ITS while visual Strehl ratio (VSOTF) was computed using custom-made MATLAB code. Results. The results show that between 0.4 and 0.8 mm of decentration, the VSOTF does not change much either for far or near target distances. The image projection for these decentrations is in the parafoveal zone, and the quality of the image projected is quite similar. Conclusion. Both systems display similar quality while they differ in size; therefore, the choice between them would need to take into account specific parameters from the patient's eye. Quality does not change too much between 0.4 and 0.8 mm of decentration for either system which gives flexibility to the clinician to adjust decentration to avoid areas of retinal damage.

  10. Theoretical colours and isochrones for some Hubble Space Telescope colour systems. II

    Science.gov (United States)

    Paltoglou, G.; Bell, R. A.

    1991-01-01

    A grid of synthetic surface brightness magnitudes for 14 bandpasses of the Hubble Space Telescope Faint Object Camera is presented, as well as a grid of UBV, uvby, and Faint Object Camera surface brightness magnitudes derived from the Gunn-Stryker spectrophotometric atlas. The synthetic colors are used to examine the transformations between the ground-based Johnson UBV and Stromgren uvby systems and the Faint Object Camera UBV and uvby. Two new four-color systems, similar to the Stromgren system, are proposed for the determination of abundance, temperature, and surface gravity. The synthetic colors are also used to calculate color-magnitude isochrones from the list of theoretical tracks provided by VandenBerg and Bell (1990). It is shown that by using the appropriate filters it is possible to minimize the dependence of this color difference on metallicity. The effects of interstellar reddening on various Faint Object Camera colors are analyzed as well as the observational requirements for obtaining data of a given signal-to-noise for each of the 14 bandpasses.

  11. DDS as middleware of the Southern African Large Telescope control system

    Science.gov (United States)

    Maartens, Deneys S.; Brink, Janus D.

    2016-07-01

    The Southern African Large Telescope (SALT) software control system1 is realised as a distributed control system, implemented predominantly in National Instruments' LabVIEW. The telescope control subsystems communicate using cyclic, state-based messages. Currently, transmitting a message is accomplished by performing an HTTP PUT request to a WebDAV directory on a centralised Apache web server, while receiving is based on polling the web server for new messages. While the method works, it presents a number of drawbacks; a scalable distributed communication solution with minimal overhead is a better fit for control systems. This paper describes our exploration of the Data Distribution Service (DDS). DDS is a formal standard specification, defined by the Object Management Group (OMG), that presents a data-centric publish-subscribe model for distributed application communication and integration. It provides an infrastructure for platform- independent many-to-many communication. A number of vendors provide implementations of the DDS standard; RTI, in particular, provides a DDS toolkit for LabVIEW. This toolkit has been evaluated against the needs of SALT, and a few deficiencies have been identified. We have developed our own implementation that interfaces LabVIEW to DDS in order to address our specific needs. Our LabVIEW DDS interface implementation is built against the RTI DDS Core component, provided by RTI under their Open Community Source licence. Our needs dictate that the interface implementation be platform independent. Since we have access to the RTI DDS Core source code, we are able to build the RTI DDS libraries for any of the platforms on which we require support. The communications functionality is based on UDP multicasting. Multicasting is an efficient communications mechanism with low overheads which avoids duplicated point-to-point transmission of data on a network where there are multiple recipients of the data. In the paper we present a performance

  12. Model-based thermal system design optimization for the James Webb Space Telescope

    Science.gov (United States)

    Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.

    2017-10-01

    Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.

  13. Improved Weather Forecasting for the Dynamic Scheduling System of the Green Bank Telescope

    Science.gov (United States)

    Henry, Kari; Maddalena, Ronald

    2018-01-01

    The Robert C Byrd Green Bank Telescope (GBT) uses a software system that dynamically schedules observations based on models of vertical weather forecasts produced by the National Weather Service (NWS). The NWS provides hourly forecasted values for ~60 layers that extend into the stratosphere over the observatory. We use models, recommended by the Radiocommunication Sector of the International Telecommunications Union, to derive the absorption coefficient in each layer for each hour in the NWS forecasts and for all frequencies over which the GBT has receivers, 0.1 to 115 GHz. We apply radiative transfer models to derive the opacity and the atmospheric contributions to the system temperature, thereby deriving forecasts applicable to scheduling radio observations for up to 10 days into the future. Additionally, the algorithms embedded in the data processing pipeline use historical values of the forecasted opacity to calibrate observations. Until recently, we have concentrated on predictions for high frequency (> 15 GHz) observing, as these need to be scheduled carefully around bad weather. We have been using simple models for the contribution of rain and clouds since we only schedule low-frequency observations under these conditions. In this project, we wanted to improve the scheduling of the GBT and data calibration at low frequencies by deriving better algorithms for clouds and rain. To address the limitation at low frequency, the observatory acquired a Radiometrics Corporation MP-1500A radiometer, which operates in 27 channels between 22 and 30 GHz. By comparing 16 months of measurements from the radiometer against forecasted system temperatures, we have confirmed that forecasted system temperatures are indistinguishable from those measured under good weather conditions. Small miss-calibrations of the radiometer data dominate the comparison. By using recalibrated radiometer measurements, we looked at bad weather days to derive better models for forecasting the

  14. Using model based systems engineering for the development of the Large Synoptic Survey Telescope's operational plan

    Science.gov (United States)

    Selvy, Brian M.; Claver, Charles; Willman, Beth; Petravick, Don; Johnson, Margaret; Reil, Kevin; Marshall, Stuart; Thomas, Sandrine; Lotz, Paul; Schumacher, German; Lim, Kian-Tat; Jenness, Tim; Jacoby, Suzanne; Emmons, Ben; Axelrod, Tim

    2016-08-01

    We† provide an overview of the Model Based Systems Engineering (MBSE) language, tool, and methodology being used in our development of the Operational Plan for Large Synoptic Survey Telescope (LSST) operations. LSST's Systems Engineering (SE) team is using a model-based approach to operational plan development to: 1) capture the topdown stakeholders' needs and functional allocations defining the scope, required tasks, and personnel needed for operations, and 2) capture the bottom-up operations and maintenance activities required to conduct the LSST survey across its distributed operations sites for the full ten year survey duration. To accomplish these complimentary goals and ensure that they result in self-consistent results, we have developed a holistic approach using the Sparx Enterprise Architect modeling tool and Systems Modeling Language (SysML). This approach utilizes SysML Use Cases, Actors, associated relationships, and Activity Diagrams to document and refine all of the major operations and maintenance activities that will be required to successfully operate the observatory and meet stakeholder expectations. We have developed several customized extensions of the SysML language including the creation of a custom stereotyped Use Case element with unique tagged values, as well as unique association connectors and Actor stereotypes. We demonstrate this customized MBSE methodology enables us to define: 1) the rolls each human Actor must take on to successfully carry out the activities associated with the Use Cases; 2) the skills each Actor must possess; 3) the functional allocation of all required stakeholder activities and Use Cases to organizational entities tasked with carrying them out; and 4) the organization structure required to successfully execute the operational survey. Our approach allows for continual refinement utilizing the systems engineering spiral method to expose finer levels of detail as necessary. For example, the bottom-up, Use Case

  15. Development of a beam test telescope based on the Alibava readout system

    International Nuclear Information System (INIS)

    Marco-Hernandez, R

    2011-01-01

    A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectronica (CNM) of Barcelona and Instituto de Fisica Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.

  16. Goddard Robotic Telescope

    International Nuclear Information System (INIS)

    Sakamoto, Takanori; Donato, Davide; Gehrels, Neil; Okajima, Takashi; Ukwatta, Tilan N.

    2009-01-01

    We are constructing the 14'' fully automated optical robotic telescope, Goddard Robotic Telescope (GRT), at the Goddard Geophysical and Astronomical Observatory. The aims of our robotic telescope are 1) to follow-up the Swift/Fermi Gamma-Ray Bursts (GRBs) and 2) to perform the coordinated optical observations of the Fermi/Large Area Telescope (LAT) Active Galactic Nuclei (AGN). Our telescope system consists of the 14'' Celestron Optical Telescope Assembly (OTA), the Astro-Physics 1200GTO mount, the Apogee U47 CCD camera, the JMI's electronic focuser, and the Finger Lake Instrumentation's color filter wheel with U, B, V, R and I filters. With the focal reducer, 20'x20' field of view has been achieved. The observatory dome is the Astro Haven's 7 ft clam-shell dome. We started the scientific observations on mid-November 2008. While not observing our primary targets (GRBs and AGNs), we are planning to open our telescope time to the public for having a wider use of our telescope in both a different research field and an educational purpose.

  17. The Trigger and Data Acquisition System for the KM3NeT-Italy neutrino telescope

    Science.gov (United States)

    Chiarusi, T.; Favaro, M.; Giacomini, F.; Manzali, M.; Margiotta, A.; Pellegrino, C.

    2017-10-01

    KM3NeT-Italy is an INFN project that will develop the central part of a submarine cubic-kilometer neutrino telescope in the Ionian Sea, at about 80 km from the Sicilian coast (Italy). It will use hundreds of distributed optical modules to measure the Cherenkov light emitted by high-energy muons, whose signal-to-noise ratio is quite disfavoured. In this contribution the Trigger and Data Acquisition System (TriDAS) developed for the KM3NeT-Italy detector is presented. The “all data to shore” approach is adopted to reduce the complexity of the submarine detector: at the shore station the TriDAS collects, processes and filters all the data coming from the detector, storing triggered events to a permanent storage for subsequent analysis. Due to the large optical background in the sea from 40K decays and bioluminescence, the throughput from the sea can range up to 30 Gbps. This puts strong constraints on the performances of the TriDAS processes and the related network infrastructure.

  18. Mission Systems Engineering (MSE) for the Cosmic Evolution Through UV Spectroscopy (CETUS) Space Telescope Concept

    Science.gov (United States)

    Purves, Lloyd R.

    2017-01-01

    The basic objectives of the CETUS mission are to significantly improve our understanding of the evolution of galaxies at a redshift (z) of approximately 1 and to meet the cost constraints (1$B) for a NASA Probe-Class mission. What makes these galaxies so interesting is that their light, which has taken about 7 billion years to reach us, comes from a time when star-formation in the observable universe peaked, and the processes behind this peaking are far from well understood. To accomplish its science goals, CETUS needs to get UV spectra of 105 of these galaxies. To help meet its cost constraints, CETUS will only observe galaxies for which VIS spectra are already available, which means that CETUS has to survey a specific portion of the sky. The combination of the CETUS measurement goals and costs constraints strongly influence the design of virtually every aspect of the mission starting from the telescope and instruments, through to orbit and launch vehicle selection, and including the design of most of the SC Bus sub-systems, such as structure, ACS, power, communications, and thermal control.

  19. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  20. Characterizing the Evolution of Circumstellar Systems with the Hubble Space Telescope and the Gemini Planet Imager

    Science.gov (United States)

    Wolff, Schuyler; Schuyler G. Wolff

    2018-01-01

    The study of circumstellar disks at a variety of evolutionary stages is essential to understand the physical processes leading to planet formation. The recent development of high contrast instruments designed to directly image the structures surrounding nearby stars, such as the Gemini Planet Imager (GPI) and coronagraphic data from the Hubble Space Telescope (HST) have made detailed studies of circumstellar systems possible. In my thesis work I detail the observation and characterization of three systems. GPI polarization data for the transition disk, PDS 66 shows a double ring and gap structure with a temporally variable azimuthal asymmetry. This evolved morphology could indicate shadowing from some feature in the innermost regions of the disk, a gap-clearing planet, or a localized change in the dust properties of the disk. Millimeter continuum data of the DH Tau system places limits on the dust mass that is contributing to the strong accretion signature on the wide-separation planetary mass companion, DH Tau b. The lower than expected dust mass constrains the possible formation mechanism, with core accretion followed by dynamical scattering being the most likely. Finally, I present HST scattered light observations of the flared, edge-on protoplanetary disk ESO H$\\alpha$ 569. I combine these data with a spectral energy distribution to model the key structural parameters such as the geometry (disk outer radius, vertical scale height, radial flaring profile), total mass, and dust grain properties in the disk using the radiative transfer code MCFOST. In order to conduct this work, I developed a new tool set to optimize the fitting of disk parameters using the MCMC code \\texttt{emcee} to efficiently explore the high dimensional parameter space. This approach allows us to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in

  1. New Solar System Researches expected by a New Telescope Project at Mt. Haleakala, Hawaii

    Science.gov (United States)

    Kagitani, Masato; Okano, S.; Kasaba, Y.; Kuhn, J.; Berdyugina, S.

    2009-09-01

    We Tohoku University starts the project for the new ground-based telescope dedicated to planets and exoplanets, in collaboration with the Institute for Astronomy of University of Hawaii(IfA/UH) and ETH Zurich. The summit of Mt. Haleakala in Maui, Hawaii is one of the best sites with clear skies, good seeing, and low humidity conditions as well as good accessibility despite its high altitude (elv. 3,000m). Haleakala High Altitude Observatory is operated by IfA/UH, and we have been making observation of planets there since 2000. Currently, our observation facility consists of a 40cm telescope. We have been making observations of faint atmospheric and plasma features around bright planets, Io plasma torus, Mercury and Lunar sodium tail, and so on. Atmospheric escapes from Mars and Venus, the exoplanets close to mother stars are also possible future important topics. When we try to observe those faint emissions surrounding the bright objects, intense scattered light causes a serious problem. The new telescope shall avoid the diffraction due to a spider structure that holds a secondary mirror and to minimize the scattered light from mirror surfaces as far as possible. Such telescope with a wide dynamic range dedicated to planetary and exoplanetary sciences does not exist yet. The project, called PLANETS (Poralized Light from Atmospheres of Nearby Extra Terrestrial Planets), develops a new telescope (tentatively named as JHET; Japan Hawaii Europe Telescope) which consists of an off-axis primary mirror with a diameter of 1.8m, and Gregorian optics on an equatorial mount. State-of-art adaptive optics and masking technologies will also be adopted to eliminate the scattering light. This telescope will enables us to do spectro-polarimetric observations and faint plasma and atmospheres around the bright bodies. We will introduce the progress of our ground-based observations and the future plan involving the wide area of the international communities.

  2. Gamma-telescopes Fermi/LAT and GAMMA-400 Trigger Systems Event Recognizing Methods Comparison

    Science.gov (United States)

    Arkhangelskaja, I. V.; Murchenko, A. E.; Chasovikov, E. N.; Arkhangelskiy, A. I.; Kheymits, M. D.

    Usually instruments for high-energy γ-quanta registration consists of converter (where γ-quanta produced pairs) and calorimeter for particles energy measurements surrounded by anticoincidence shield used to events identification (whether incident particle was charged or neutral). The influence of pair formation by γ-quanta in shield and the backsplash (moved in the opposite direction particles created due high energy γ-rays interact with calorimeter) should be taken into account. It leads to decrease both effective area and registration efficiency at E>10 GeV. In the presented article the event recognizing methods used in Fermi/LAT trigger system is considered in comparison with the ones applied in counting and triggers signals formation system of gamma-telescope GAMMA-400. The GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the new high-apogee space γ-observatory. The GAMMA-400 consist of converter-tracker based on silicon-strip coordinate detectors interleaved with tungsten foils, imaging calorimeter make of 2 layers of double (x, y) silicon strip coordinate detectors interleaved with planes of CsI(Tl) crystals and the electromagnetic calorimeter CC2 consists only of CsI(Tl) crystals. Several plastics detections systems used as anticoincidence shield, for particles energy and moving direction estimations. The main differences of GAMMA-400 constructions from Fermi/LAT one are using the time-of-flight system with base of 50 cm and double layer structure of plastic detectors provides more effective particles direction definition and backsplash rejection. Also two calorimeters in GAMMA-400 composed the total absorbtion spectrometer with total thickness ∼ 25 X0 or ∼1.2 λ0 for vertical incident particles registration and 54 X0 or 2.5 λ0 for laterally incident ones (where λ0 is nuclear interaction length). It provides energy resolution 1-2% for 10 GeV-3.0×103 GeV events while the Fermi/LAT energy resolution does not reach such a

  3. Single-Dish Radio Polarimetry in the F-GAMMA Program with the Effelsberg 100-m Radio Telescope

    Directory of Open Access Journals (Sweden)

    Beuchert Tobias

    2013-12-01

    Full Text Available Studying the variability of polarized AGN jet emission in the radio band is crucial for understanding the dynamics of moving shocks as well as the structure of the underlying magnetic field. The 100-m Effelsberg Telescope is a high-quality instrument for studying the long-term variability of both total and polarized intensity as well as the electric-vector position angle. Since 2007, the F-GAMMA program has been monitoring the linear polarized emission of roughly 60 blazars at 11 frequencies between 2.7 and 43 GHz. Here, we describe the calibration of the polarimetric data at 5 and 10 GHz and the resulting F-GAMMA full-Stokes light curves for the exemplary case of the radio galaxy 3C 111.

  4. Thermally activated, single component epoxy systems

    KAUST Repository

    Unruh, David A.

    2011-08-23

    A single component epoxy system in which the resin and hardener components found in many two-component epoxies are combined onto the same molecule is described. The single molecule precursor to the epoxy resin contains both multiple epoxide moieties and a diamine held latent by thermally degradable carbamate linkages. These bis-carbamate "single molecule epoxies" have an essentially infinite shelf life and access a significant range in curing temperatures related to the structure of the carbamate linkages used. © 2011 American Chemical Society.

  5. Observing distant solar system objects with James Webb Space Telescope (JWST)

    Science.gov (United States)

    Balzano, Vicki; Isaacs, John C.; Nelan, Edmund P.

    2008-07-01

    The James Webb Space Telescope will provide a unique capability to observe Solar System objects such as Kuiper Belt Objects, comets, asteroids, and the outer planets and their moons in the near and mid-infrared. A recent study developed the conceptual design for a capability to track and observe these objects. In this paper, we describe how the requirements and operations concept were derived from the scientific goals and were distributed among the Observatory and Ground Segment components in order to remain consistent with the current event-driven operations concept of JWST. In the event-driven operations concept, the Ground Segment produces a high-level Observation Plan that is interpreted by on-board scripts to generate commands and monitor telemetry responses. This approach allows efficient and flexible execution of planned observations; precise or conservative timing models are not required, and observations may be skipped if guide star or target acquisition fails. The efficiency of this approach depends upon most observations having large time intervals in which they can execute. Solar System objects require a specification of how to track the object with the Observatory, and a guide star that remains within the field of view of the guider during the observation. We describe how tracking and guiding will be handled with JWST to retain the efficient and flexible execution characteristics of event-driven operations. We also describe how the implementation is distributed between the Spacecraft, Fine Guidance Sensor, On-board Scripts, and Proposal Planning Subsystem, preserving the JWST operations concept.

  6. Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-based Observations

    Science.gov (United States)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Matins, R. Vieira; Berthier, J.; Vachier, F.; hide

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 microns using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric light curves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq > 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia (Lambda thermally insulating regolith. The smaller (surface-equivalent system diameter Deff < 17 km) asteroids also show some emission lines of minerals, but they are significantly weaker, consistent with regoliths with coarser grains, than those of the large binary asteroids. The average bulk densities of these multiple asteroids vary from 0.7-1.7 g/cu cm (P-, C-type) to approx. 2 g/cu cm (S-type). The highest density is estimated for the M-type (22) Kalliope (3.2 +/- 0.9 g/cu cm). The spectral energy distributions (SEDs) and emissivity spectra, made available as a supplement document, could help to constrain the surface compositions of these asteroids.

  7. PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Calen B., E-mail: henderson@astronomy.ohio-state.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2015-02-10

    I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by (1) imaging the lens once it is spatially resolved from the source, (2) measuring the elongation of the point-spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and (3) taking prompt follow-up photometry. In each case I simulate the observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO on the Very Large Telescope), future ground-based AO facilities (GMTIFS on the Giant Magellan Telescope, GMT), and future space telescopes (NIRCAM on the James Webb Space Telescope, JWST). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of σ{sub H{sub ℓ}}≤0.1 for ≳60% of planet detections ≥5 yr after each microlensing event for a simulated observing program using GMT, which images resolved lenses. NIRCAM on JWST would be able to carry out equivalently high-precision measurements for ∼28% of events Δt = 10 yr after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., >50% fractional uncertainty in the inferred lens mass) for ≲ (16 · f {sub bin})% of planet detections, where f {sub bin} is the binary fraction, with the majority of these failures occurring for host stars with mass ≲0.3 M {sub ☉}.

  8. Cost Modeling for Space Telescope

    Science.gov (United States)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  9. Design Development of a Combined Deployment and Pointing System for the International Space Station Neutron Star Interior Composition Explorer Telescope

    Science.gov (United States)

    Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, TOdd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa; hide

    2016-01-01

    This paper describes the design of a unique suite of mechanisms that make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses four stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.

  10. The OmegaCAM 16K x 16K CCD detector system for the ESO VLT Survey Telescope (VST)

    NARCIS (Netherlands)

    Iwert, Olaf; Baade, D.; Balestra, A.; Baruffolo, A.; Bortolussi, A.; Christen, F.; Cumani, C.; Deiries, S.; Downing, M.; Geimer, C.; Hess, G.; Hess, J.; Kuijken, K.; Lizon, J.; Muschielok, B.; Nicklas, H.; Reiss, R.; Reyes, J.; Silber, A.; Thillerup, J.; Valentijn, E.; Dorn, David A.; Holland, Andrew D.

    A 16K x 16K, 1 degree x 1 degree field, detector system was developed by ESO for the OmegaCAM instrument for use on the purpose built ESO VLT Survey Telescope (VST). The focal plane consists of an 8 x 4 mosaic of 2K x 4K 15um pixel e2v CCDs and four 2K x 4K CCDs on the periphery for the

  11. Weather monitor station and 225 GHz radiometer system installed at Sierra Negra: the Large Millimeter Telescope site

    Science.gov (United States)

    Ferrusca, D.; Contreras R., J.

    2014-07-01

    The Large Millimeter Telescope (LMT) is a 50-m dish antenna designed to observe in the wavelength range of 0.85 to 4 mm at an altitude of 4600 m on the summit of Sierra Negra Puebla, Mexico. The telescope has a new atmospheric monitoring system that allows technical staff and astronomers to evaluate the conditions at the site and have enough information to operate the antenna in safe conditions, atmospheric data is also useful to schedule maintenance activities and conduct scientific observations, opacity data is used to calibrate the astronomical data and evaluate the quality of the sky at millimeter wavelengths. In this paper we describe the integration of a weather atmospheric monitoring system and a 225 GHz radiometer to the facilities around the telescope and also describe the hardware integration of these systems and the software methodology used to save and process the data and then make it available in real time to the astronomers and outside world through an internet connection. Finally we present a first set of atmospheric measurements and statistics taken with this new equipment during the wet and dry seasons of 2013/2014.

  12. The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope

    Science.gov (United States)

    Drory, N.; MacDonald, N.; Bershady, M. A.; Bundy, K.; Gunn, J.; Law, D. R.; Smith, M.; Stoll, R.; Tremonti, C. A.; Wake, D. A.; Yan, R.; Weijmans, A. M.; Byler, N.; Cherinka, B.; Cope, F.; Eigenbrot, A.; Harding, P.; Holder, D.; Huehnerhoff, J.; Jaehnig, K.; Jansen, T. C.; Klaene, M.; Paat, A. M.; Percival, J.; Sayres, C.

    2015-02-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 104 local galaxies covering 360-1030 nm at R˜ 2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3-7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput and

  13. The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope

    International Nuclear Information System (INIS)

    Drory, N.; MacDonald, N.; Byler, N.; Bershady, M. A.; Smith, M.; Tremonti, C. A.; Wake, D. A.; Eigenbrot, A.; Jaehnig, K.; Bundy, K.; Gunn, J.; Law, D. R.; Cherinka, B.; Stoll, R.; Yan, R.; Weijmans, A. M.; Cope, F.; Holder, D.; Huehnerhoff, J.; Harding, P.

    2015-01-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10 4 local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput

  14. The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope

    Energy Technology Data Exchange (ETDEWEB)

    Drory, N. [McDonald Observatory, The University of Texas at Austin, 1 University Station, Austin, TX 78712 (United States); MacDonald, N.; Byler, N. [Department of Astronomy, University of Washington, Box 351580 Seattle, WA 98195 (United States); Bershady, M. A.; Smith, M.; Tremonti, C. A.; Wake, D. A.; Eigenbrot, A.; Jaehnig, K. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Bundy, K. [Kavli Institute for the Physics and Mathematics of The Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwa, Japan 277-8583 (Japan); Gunn, J. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Law, D. R.; Cherinka, B. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St, Toronto, ON M5S 3H4 (Canada); Stoll, R. [C Technologies, Inc., 757 Route 202/206, Bridgewater, NJ 08807 (United States); Yan, R. [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, 40506-0055 (United States); Weijmans, A. M. [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Cope, F.; Holder, D.; Huehnerhoff, J. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Harding, P., E-mail: drory@astro.as.utexas.edu [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); and others

    2015-02-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10{sup 4} local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of

  15. Multiple asteroid systems : Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations

    NARCIS (Netherlands)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Vieira Martins, R.; Berthier, J.; Vachier, F.; Cruikshank, D. P.; Lim, L. F.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; LaCluyze, A. P.

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 μm using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric lightcurves were also obtained for 14 of them during the Spitzer observations to provide the context of the

  16. Single Bit Radar Systems for Digital Integration

    OpenAIRE

    Bjørndal, Øystein

    2017-01-01

    Small, low cost, radar systems have exciting applications in monitoring and imaging for the industrial, healthcare and Internet of Things (IoT) sectors. We here explore, and show the feasibility of, several single bit square wave radar architectures; that benefits from the continuous improvement in digital technologies for system-on-chip digital integration. By analysis, simulation and measurements we explore novel and harmonic-rich continuous wave (CW), stepped-frequency CW (SFCW) and freque...

  17. The James Webb Space Telescope's Plan for Operations and Instrument Capabilities for Observations in the Solar System

    Science.gov (United States)

    Milam, Stefanie N.; Stansberry, John A.; Sonneborn, George; Thomas, Cristina

    2016-01-01

    The James Webb Space Telescope (JWST) is optimized for observations in the near- and mid-infrared and will provide essential observations for targets that cannot be conducted from the ground or other missions during its lifetime. The state-of-the-art science instruments, along with the telescope's moving target tracking, will enable the infrared study, with unprecedented detail, for nearly every object (Mars and beyond) in the Solar System. The goals of this special issue are to stimulate discussion and encourage participation in JWST planning among members of the planetary science community. Key science goals for various targets, observing capabilities for JWST, and highlights for the complementary nature with other missions/observatories are described in this paper.

  18. The ICT monitoring system of the ASTRI SST-2M prototype proposed for the Cherenkov Telescope Array

    Science.gov (United States)

    Gianotti, F.; Bruno, P.; Tacchini, A.; Conforti, V.; Fioretti, V.; Tanci, C.; Grillo, A.; Leto, G.; Malaguti, G.; Trifoglio, M.

    2016-08-01

    In the framework of the international Cherenkov Telescope Array (CTA) observatory, the Italian National Institute for Astrophysics (INAF) has developed a dual mirror, small sized, telescope prototype (ASTRI SST-2M), installed in Italy at the INAF observing station located at Serra La Nave, Mt. Etna. The ASTRI SST-2M prototype is the basis of the ASTRI telescopes that will form the mini-array proposed to be installed at the CTA southern site during its preproduction phase. This contribution presents the solutions implemented to realize the monitoring system for the Information and Communication Technology (ICT) infrastructure of the ASTRI SST-2M prototype. The ASTRI ICT monitoring system has been implemented by integrating traditional tools used in computer centers, with specific custom tools which interface via Open Platform Communication Unified Architecture (OPC UA) to the Alma Common Software (ACS) that is used to operate the ASTRI SST-2M prototype. The traditional monitoring tools are based on Simple Network Management Protocol (SNMP) and commercial solutions and features embedded in the devices themselves. They generate alerts by email and SMS. The specific custom tools convert the SNMP protocol into the OPC UA protocol and implement an OPC UA server. The server interacts with an OPC UA client implemented in an ACS component that, through the ACS Notification Channel, sends monitor data and alerts to the central console of the ASTRI SST-2M prototype. The same approach has been proposed also for the monitoring of the CTA onsite ICT infrastructures.

  19. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  20. Improving a 1 meter telescope in order to follow giant planets in a pro-am collaboration. Next step : an affordable adaptive optic system.=

    Science.gov (United States)

    Dauvergne, J.-L.; Colas, F.; Delcroix, M.; Lecacheux, J.

    2017-09-01

    We already have very good result with the 1 meter telescope of Pic du Midi. Our goal is to have more and more people in the team in order to make a survey has long as possible of Jupiter, Uranus and Neptune. The next step is an OA system, we want to make it work on the 1 meter telescope and also make it available on the market to help other observatories to produce high resolution images of the solar system with middle size telescopes.

  1. Wide-Field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399*

    Science.gov (United States)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-01-01

    We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, thecentral giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys(ACS) aboard theHubble Space Telescope(HST).Using a novel technique to construct drizzled point-spreadfunction libraries for HSTACS data, we accurately determine the fidelity of GC structural parameter measurementsfrom detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius,rh,compared with other GC structural parameters, such as King core and tidal radius. The measurement ofrhfor themajor fraction of the NGC 1399 GC system reveals a trend of increasingrhversus galactocentric distance,Rgal,out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found tohave a mean size ratio ofrh,redrh,blue0.820.11 at all galactocentric radii from the core regions of the galaxyout to40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanismsrelated to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regionstorh2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended darkmatter halo, andor tidal stress induced by the increased stochasticity in the dwarf halo substructure at largergalactocentric distances. We compare our results with the GCrhdistribution functions in various galaxies and findthat the fraction of extended GCs withrh5 pc is systematically larger in late-type galaxies compared with GCsystems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies.We match our GCrhmeasurements with radial velocity data from the literature and split the resulting sample at

  2. Optical Correction Of Space-Based Telescopes Using A Deformable Mirror System

    Science.gov (United States)

    2016-12-01

    Experimental work first studied a severely degraded one-meter carbon fiber reinforced polymer mirror to establish a baseline. Simulations were...telescope. Experimental work first studied a severely degraded one-meter carbon fiber reinforced polymer mirror to establish a baseline. Simulations...the rays at the exit pupil. The magnification relationship allows for Equation 4.1 to be written as 4 4( , ) cos( ) ( , ) cos( )R PM PM DM PMd x y d

  3. Design and verification of focal plane assembly thermal control system of one space-based astronomy telescope

    Science.gov (United States)

    Yang, Wen-gang; Fan, Xue-wu; Wang, Chen-jie; Wang, Ying-hao; Feng, Liang-jie; Du, Yun-fei; Ren, Guo-rui; Wang, Wei; Li, Chuang; Gao, Wei

    2015-10-01

    One space-based astronomy telescope will observe astronomy objects whose brightness should be lower than 23th magnitude. To ensure the telescope performance, very low system noise requirements need extreme low CCD operating temperature (lower than -65°C). Because the satellite will be launched in a low earth orbit, inevitable space external heat fluxes will result in a high radiator sink temperature (higher than -65°C). Only passive measures can't meet the focal plane cooling specification and active cooling technologies must be utilized. Based on detailed analysis on thermal environment of the telescope and thermal characteristics of focal plane assembly (FPA), active cooling system which is based on thermo-electric cooler (TEC) and heat rejection system (HRS) which is based on flexible heat pipe and radiator have been designed. Power consumption of TECs is dependent on the heat pumped requirements and its hot side temperature. Heat rejection capability of HRS is mainly dependent on the radiator size and temperature. To compromise TEC power consumption and the radiator size requirement, thermal design of FPA must be optimized. Parasitic heat loads on the detector is minimized to reduce the heat pumped demands of TECs and its power consumption. Thermal resistance of heat rejection system is minimized to reject the heat dissipation of TECs from the hot side to the radiator efficiently. The size and surface coating of radiator are optimized to compromise heat reject ion requirements and system constraints. Based on above work, transient thermal analysis of FPA is performed. FPA prototype model has been developed and thermal vacuum/balance test has been accomplished. From the test, temperature of key parts and working parameters of TECs in extreme cases have been acquired. Test results show that CCD can be controlled below -65°C and all parts worked well during the test. All of these verified the thermal design of FPA and some lessons will be presented in this

  4. Systems interaction and single failure criterion

    International Nuclear Information System (INIS)

    1981-01-01

    This report documents the results of a six-month study to evaluate the ongoing research programs of the U.S. Nuclear Regulatory Commission (NRC) and U.S. commercial nuclear station owners which address the safety significance of systems interaction and the regulatory adequacy of the single failure criterion. The evaluation of system interactions provided is the initial phase of a more detailed study leading to the development and application of methodology for quantifying the relative safety of operating nuclear plants. (Auth.)

  5. Single event upsets in spacecraft digital systems

    Science.gov (United States)

    Leukowicz, P. E.; Richter, L. J.

    This paper describes the physical environments that can result in random bit changes in spaceborne memory systems. The impact of bit flips in digital telemetry systems is emphasized, with special attention paid to software requirements for protection from single event upset (SEU) effects. Some observations on incidence rates are presented along with an outline of hardware and software methods that can be taken to prevent future SEU problems. Several conclusions are drawn about strategies for preventing data corruption on the next generation of satellites in the presence of SEU-inducing particles.

  6. A free market in telescope time?

    Science.gov (United States)

    Etherton, Jason; Steele, Iain A.; Mottram, Christopher J.

    2004-09-01

    As distributed systems are becoming more and more diverse in application there is a growing need for more intelligent resource scheduling. eSTAR Is a geographically distributed network of Grid-enabled telescopes, using grid middleware to provide telescope users with an authentication and authorisation method, allowing secure, remote access to such resources. The eSTAR paradigm is based upon this secure, single sign-on, giving astronomers or their agent proxies direct access to these telescopes. This concept, however, involves the complex issue of how to schedule observations stored within physically distributed media, on geographically distributed resources. This matter is complicated further by the varying degrees of constraints placed upon observations such as timeliness, atmospheric and meteorological conditions, and sky brightness to name a few. This paper discusses a free market approach to this scheduling problem, where astronomers are given credit, instead of time, from their respective TAGs to spend on telescopes as they see fit. This approach will ultimately provide a community-driven schedule, genuine indicators of the worth of specific telescope time and promote a more efficient use of that time, as well as demonstrating a 'survival of the fittest' type selection.

  7. Theoretical colours and isochrones for some Hubble Space Telescope colour systems

    Science.gov (United States)

    Edvardsson, B.; Bell, R. A.

    1989-01-01

    Synthetic spectra for effective temperatures of 4000-7250 K, logarithmic surface gravities typical of dwarfs and subgiants, and metallicities from solar values to 0.001 of the solar metallicity were used to derive a grid of synthetic surface brightness magnitudes for 21 of the Hubble Space Telescope Wide Field Camera (WFC) band passes. The absolute magnitudes of these 21 band passes are also obtained for a set of globular cluster isochrones with different helium abundances, metallicities, oxygen abundances, and ages. The usefulness and efficiency of different sets of broad and intermediate bandwidth WFC colors for determining ages and metallicities for globular clusters are evaluated.

  8. The Globular Cluster System in NGC 5866: Optical Observations from Hubble Space Telescope Advanced Camera for Surveys

    Science.gov (United States)

    Cantiello, Michele; Blakeslee, John P.; Raimondo, Gabriella

    2007-10-01

    We perform a detailed study of the globular cluster (GC) system in the galaxy NGC 5866 based on F435W, F555W, and F625W (~B, V, and R) Hubble Space Telescope Advanced Camera for Surveys images. Adopting color, size, and shape selection criteria, the final list of GC candidates comprises 109 objects, with small estimated contamination from background galaxies, and foreground stars. The color distribution of the final GC sample has a bimodal form. Adopting color to metallicity transformations derived from the Teramo-SPoT simple stellar population model, we estimate a metallicity [Fe/H]~-1.5 and -0.6 dex for the blue and red peaks, respectively. A similar result is found if the empirical color-metallicity relations derived from Galactic GC data are used. The two subpopulations show some of the features commonly observed in the GC system of other galaxies, like a ``blue tilt,'' higher central concentrations of the red subsystem, and larger half-light radii at larger galactocentric distances. However, we do not find evidence of a substantial difference between the average sizes of red and blue clusters. Our analysis of the GC luminosity function indicates a V-band turnover magnitude VTOM0=23.46+/-0.06, or MTOMV,0~-7.29+/-0.10 mag, using the distance modulus derived from the average of surface brightness fluctuation (SBF) and the planetary nebula luminosity function (PNLF) distances. The absolute turnover magnitude obtained agrees well with calibrations from literature. The specific frequency is measured to be SN=1.4+/-0.3, typical for galaxies of this type. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  9. Front-end electronics and data acquisition system for imaging atmospheric Cherenkov telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.T., E-mail: chenytao@ynu.edu.cn [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Yunnan University, 650091 Kunming (China); La Taille, C. de [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Suomijärvi, T. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Cao, Z. [Institute of High Energy Physics, 100049 Beijing (China); Deligny, O. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Dulucq, F. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Ge, M.M. [Yunnan University, 650091 Kunming (China); Lhenry-Yvon, I. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Martin-Chassard, G. [OMEGA (UMS 3605) - IN2P3/CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Nguyen Trung, T.; Wanlin, E. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Xiao, G.; Yin, L.Q. [Institute of High Energy Physics, 100049 Beijing (China); Yun Ky, B. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex (France); Zhang, L. [Yunnan University, 650091 Kunming (China); Zhang, H.Y. [Tsinghua University, 100084 Beijing (China); Zhang, S.S.; Zhu, Z. [Institute of High Energy Physics, 100049 Beijing (China)

    2015-09-21

    In this paper, a front-end electronics based on an application-specific integrated circuit (ASIC) is presented for the future imaging atmospheric Cherenkov telescopes (IACTs). To achieve this purpose, a 16-channel ASIC chip, PARISROC 2 (Photomultiplier ARray Integrated in SiGe ReadOut Chip) is used in the analog signal processing and digitization. The digitized results are sent to the server by a user-defined User Datagram Protocol/Internet Protocol (UDP/IP) hardcore engine through Ethernet that is managed by a FPGA. A prototype electronics fulfilling the requirements of the Wide Field of View Cherenkov Telescope Array (WFCTA) of the Large High Altitude Air Shower Observatory (LHAASO) project has been designed, fabricated and tested to prove the concept of the design. A detailed description of the development with the results of the test measurements are presented. By using a new input structure and a new configuration of the ASIC, the dynamic range of the circuit is extended. A highly precise-time calibrating algorithm is also proposed, verified and optimized for the mass production. The test results suggest that the proposed electronics design fulfills the general specification of the future IACTs.

  10. Single-Shell tank system description

    International Nuclear Information System (INIS)

    FIELD, J.G.

    2003-01-01

    The Hanford Site single-shell tank (SST) system consists of 149 underground SSTs and processing equipment designed and constructed between 1940 and 1964 to transport and store radioactive hazardous/dangerous wastes generated from irradiated nuclear fuel processing. The tanks, designed to store waste, vary in size from between 190,000 to 3,800,000 L (50,000 gal to 1,000,000 gal) and contain a variety of solid and liquid waste. The system also includes miscellaneous underground storage tanks (IMUST). In addition to the tanks, there is a large amount of ancillary equipment associated with the system and although not designed to store wastes, the ancillary equipment is contaminated through contact with the waste. Waste was routed to the tanks through a network of underground piping, with interconnections provided in concrete pits that allowed changes to the routing through instrumentation. Processing vaults used during waste handling operations, evaporators used to reduce the waste stored in the system, and other miscellaneous structures used for a variety of waste handling operations are also included in the system. The SST system was taken out of service in 1980 and no additional waste has been added to the tanks. The SSTs and ancillary equipment were designed and constructed before promulgation of Resource Conservation and Recovery Act (RCRA) in 1986. The purpose of this document is to describe the SST system for use in performing an engineering and compliance assessment in support of M-23 milestones (Ecology, et al. 2000). This system description provides estimated locations and volumes of waste within the SST system, including storage tanks, transfer systems, evaporators aid miscellaneous support facilities

  11. Neutrino Telescope

    International Nuclear Information System (INIS)

    Mezzetto, M.

    2011-01-01

    The Conference Series 'Un Altro Modo di guardare il Cielo', held in Venice, started in 1988. It included 13.editions of 'Neutrino Telescopes' and four editions of 'Neutrino Oscillations in Venice'. The conference Series ideated , created and conducted by Prof. Milla Baldo Ceolin, after her guidance 'Un Altro Modo di guardare il Cielo' became one of the most important fixed appointments of thr neutrino physics and astrophysics community.

  12. Schmidt Telescope

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    A type of telescope, invented by the Estonian optician Bernhard Schmidt (1879-1935), that is used to photograph large areas of the sky. Because, in its original design, it was useable only for photography, the instrument is also known as the Schmidt camera. The Schmidt uses a concave spherical mirror as its light collector and corrects for the optical defect, known as spherical aberration, that i...

  13. LGS adaptive optics system with long-pulsed sodium laser on Lijiang 1.8 meter telescope 2014-2016 observation campaign

    Science.gov (United States)

    Wei, Kai; Li, Min; Jiang, Changchun; Wei, Ling; Zheng, Wenjia; Li, Wenru; Ma, Xiaoyu; Zhou, Luchun; Jin, Kai; Bo, Yong; Zuo, Junwei; Wang, Pengyuan; Cheng, Feng; Zhang, Xiaojun; Chen, Donghong; Deng, Jijiang; Gao, Yang; Shen, Yu; Bian, Qi; Yao, Ji; Huang, Jiang; Dong, Ruoxi; Deng, Keran; Peng, Qinjun; Rao, Changhui; Xu, Zuyan; Zhang, Yudong

    2016-07-01

    During 2014-2016, the Laser guide star (LGS) adaptive optics (AO) system observation campaign has been carried out on Lijiang 1.8 meter telescope. During the campaign, two generation LGS AO systems have been developed and installed. In 2014, a long-pulsed solid Sodium prototype laser with 20W@400Hz, a beam transfer optical (BTO) system, and a laser launch telescope (LLT) with 300mm diameter were mounted onto the telescope and moved with telescope azimuth journal. At the same time, a 37-elements compact LGS AO system had been mounted on the Bent-Cassegrain focus and got its first light on observing HIP43963 (mV= 8.18mv) and reached Sr=0.27 in J Band after LGS AO compensation. In 2016, the solid Sodium laser has been upgrade to stable 32W@800Hz while D2a plus D2b repumping is used to increase the photon return, and a totally new LGS AO system with 164-elements Deformable Mirror, Linux Real Time Controller, inner closed loop Tip/tilt mirror, Multiple-PMT tracking detector is established and installed on the telescope. And the throughput for the BTO/LLT is improved nearly 20%. The campaign process, the performance of the two LGS AO systems especially the latter one, the characteristics of the BTO/LLT system and the result are present in this paper.

  14. ATHENA: system design and implementation for a next-generation x-ray telescope

    Science.gov (United States)

    Ayre, M.; Bavdaz, M.; Ferreira, I.; Wille, E.; Lumb, D.; Linder, M.; Stefanescu, A.

    2017-08-01

    ATHENA, Europe's next generation x-ray telescope, is currently under Assessment Phase study with parallel candidate industrial Prime contractors after selection for the 'L2' slot in ESA's Cosmic Vision Programme, with a mandate to address the 'Hot and Energetic Universe' Cosmic Vision science theme. This paper will consider the main technical requirements of the mission, and their mapping to resulting design choices at both mission and spacecraft level. The reference mission architecture and current reference spacecraft design will then be described, with particular emphasis given to description of the Science Instrument Module (SIM) design, currently under the responsibility of the ESA Study Team. The SIM is a very challenging item due primarily to the need to provide to the instruments (i) a soft ride during launch, and (ii) a very large ( 3 kW) heat dissipation capability at varying interface temperatures and locations.

  15. Neutrino Telescope

    International Nuclear Information System (INIS)

    Coelin Baldo, Milla

    2009-01-01

    The present volume contains the proceedings of the 13. International Workshop on 'Neutrino Telescope', 17. of the series 'Un altro modo di guardare il cielo', held in Venice at the 'Istituto Veneto di Scienze, Lettere ed Arti' from March 10 to March 13, 2009. This series started in Venice 21 years ago, in 1988, motivated by the growing interest in the exciting field of the neutrino physics and astrophysics, with the aim to bring together experimentalists and theorists and encourage discussion on the most recent results and to chart the direction of future researchers.

  16. The Breakthrough Listen Search for Intelligent Life: A Wideband Data Recorder System for the Robert C. Byrd Green Bank Telescope

    Science.gov (United States)

    MacMahon, David H. E.; Price, Danny C.; Lebofsky, Matthew; Siemion, Andrew P. V.; Croft, Steve; DeBoer, David; Enriquez, J. Emilio; Gajjar, Vishal; Hellbourg, Gregory; Isaacson, Howard; Werthimer, Dan; Abdurashidova, Zuhra; Bloss, Marty; Brandt, Joe; Creager, Ramon; Ford, John; Lynch, Ryan S.; Maddalena, Ronald J.; McCullough, Randy; Ray, Jason; Whitehead, Mark; Woody, Dave

    2018-04-01

    The Breakthrough Listen Initiative is undertaking a comprehensive search for radio and optical signatures from extraterrestrial civilizations. An integral component of the project is the design and implementation of wide-bandwidth data recorder and signal processing systems. The capabilities of these systems, particularly at radio frequencies, directly determine survey speed; further, given a fixed observing time and spectral coverage, they determine sensitivity as well. Here, we detail the Breakthrough Listen wide-bandwidth data recording system deployed at the 100 m aperture Robert C. Byrd Green Bank Telescope. The system digitizes up to 6 GHz of bandwidth at 8 bits for both polarizations, storing the resultant 24 GB s‑1 of data to disk. This system is among the highest data rate baseband recording systems in use in radio astronomy. A future system expansion will double recording capacity, to achieve a total Nyquist bandwidth of 12 GHz in two polarizations. In this paper, we present details of the system architecture, along with salient configuration and disk-write optimizations used to achieve high-throughput data capture on commodity compute servers and consumer-class hard disk drives.

  17. A new era for the 2-4 meters class observatories: an innovative integrated system telescope-dome

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; De Lorenzi, S.; Rampini, F.; Perna, C.; Vettolani, G.

    2012-09-01

    The experience and the lessons learned gained in two decades of activity in astronomical industry in projects like NTT, VLT, LBT, VST VISTA and finally E-ELT brought to study a flexible fully integrated system which could address every astronomic institute to approach astronomy with a complete self standing facility including a dome, a telescope with 2 to 4 meters class optics and relative instruments with which it is possible to match the desired science cases and objectives. This paper describes the aspects of the flexibility which is so important to adapt the design to the specifications in order to fulfil the institutes science goals in the least time possible through the latest design tools such as CAD CAE FEM etc and the best and more cost effective technology experienced along the projects mentioned before.

  18. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node

    Energy Technology Data Exchange (ETDEWEB)

    Real, Diego [IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, C/Catedrático José Beltrán, 2, 46980 Paterna (Spain); Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocol used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board.

  19. Gravisensing in single-celled systems

    Science.gov (United States)

    Braun, M.; Limbach, C.

    Single-celled systems are favourable cell types for studying several aspects of gravisensing and gravitropic responses. Whether and how actin is involved in both processes in higher plant statocytes is still a matter of intensive debate. In single-celled and tip-growing characean rhizoids and protonemata, however, there is clear evidence that actin is a central keyplayer controlling polarized growth and the mechanisms of gravity sensing and growth reorientation. Both cell types exhibit a unique actin polymerization in the extending tip, strictly colocalized with the prominent ER-aggregate in the center of the Spitzenkoerper. The local accumulation of ADF and profilin in this central array suggest that actin polymerization is controlled by these actin-binding proteins, which can be regulated by calcium, pH and a variety of other parameters. Distinct actin filaments extend even into the outermost tip and form a dense meshwork in the apical and subapical region, before they become bundled by villin to form two populations of thick actin cables that generate rotational cytoplasmic streaming in the basal region. Actomyosin not only mediates the delivery of secretory vesicles to the growing tip and controls the incorporation pattern of cell wall material, but also coordinates the tip-focused distribution pattern of calcium channels in the apical membrane. They establish the tip-high calcium gradient, a prerequisite for exocytosis. Microgravity experiments have added much to our understanding that both cell types use an efficient actomyosin-based system to control and correct the position of their statoliths and to direct sedimenting statoliths to confined graviperception sites at the plasma membrane. Actin's involvement in the graviresponses is more indirect. The upward growth of negatively gravitropic protonemata was shown to be preceded by a statolith-induced relocalization the Ca2+-calcium gradient to the upper flank that does not occur in positively gravitropic

  20. Constraints on the Progenitor System of the Type Ia Supernova 2014J from Pre-Explosion Hubble Space Telescope Imaging

    Science.gov (United States)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  1. Operating a heterogeneous telescope network

    Science.gov (United States)

    Allan, Alasdair; Bischoff, Karsten; Burgdorf, Martin; Cavanagh, Brad; Christian, Damien; Clay, Neil; Dickens, Rob; Economou, Frossie; Fadavi, Mehri; Frazer, Stephen; Granzer, Thomas; Grosvenor, Sandy; Hessman, Frederic V.; Jenness, Tim; Koratkar, Anuradha; Lehner, Matthew; Mottram, Chris; Naylor, Tim; Saunders, Eric S.; Solomos, Nikolaos; Steele, Iain A.; Tuparev, Georg; Vestrand, W. Thomas; White, Robert R.; Yost, Sarah

    2006-06-01

    In the last few years the ubiquitous availability of high bandwidth networks has changed the way both robotic and non-robotic telescopes operate, with single isolated telescopes being integrated into expanding "smart" telescope networks that can span continents and respond to transient events in seconds. The Heterogeneous Telescope Networks (HTN)* Consortium represents a number of major research groups in the field of robotic telescopes, and together we are proposing a standards based approach to providing interoperability between the existing proprietary telescope networks. We further propose standards for interoperability, and integration with, the emerging Virtual Observatory. We present the results of the first interoperability meeting held last year and discuss the protocol and transport standards agreed at the meeting, which deals with the complex issue of how to optimally schedule observations on geographically distributed resources. We discuss a free market approach to this scheduling problem, which must initially be based on ad-hoc agreements between the participants in the network, but which may eventually expand into a electronic market for the exchange of telescope time.

  2. 'Good' events selection efficiency of the scintillation time-of-flight system of the Gamma-1 telescope in the 30-300 MeV energy range

    Science.gov (United States)

    Grigor'ev, V. A.

    The scintillation time-of-flight triggering system of the Gamma-1 gamma-ray telescope provides for both the time-of-flight discrimination and the pulse height discrimination of the secondary particles. The paper gives some experimental results for energy dependence of the instrument efficiency in 30 - 300 MeV energy range for different trigger logics.

  3. `Good' events selection efficiency of the scintillation time-of-flight system of the Gamma-1 telescope in the 30 300 MeV energy range

    Science.gov (United States)

    Grigoriev, V. A.

    1989-01-01

    The scintillation time-of-flight triggering system of the Gamma-1 gamma-ray telescope provides for both the time-of-flight discrimination and the pulse height discrimination of the secondary particles. The paper gives some experimental results for energy dependence of the instrument efficiency in 30 300 MeV energy range for different trigger logics.

  4. Features of structural and technological solutions for receiving system of small radio telescopes

    Directory of Open Access Journals (Sweden)

    Gluschechenko E. N.

    2016-05-01

    Full Text Available The article presents new technological solutions and structural approaches for design of radiometric receiving systems for small diameter antennas. Problems which need to be dealt with in the process of realization of such systems are formulated. All of the considered problems, both structural and technological, encountered when creating radiometric receiving systems for small diameter antennas, were not only tested on the mockups, but also successfully implemented in three sets of radiometric systems of modern radio astronomy facilities. In addition, the described approach to solving these problems is recommended for the wide application by the international VLBI service.

  5. Design of visible and IR infrared dual-band common-path telescope system

    Science.gov (United States)

    Guo, YuLin; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    The use of visible and IR infrared dual-band combination can effectively improve the performance of photoelectric detection system,TV and IR system were designed with the common path by the common reflection optical system.A TV/IR infrared common-caliber and common-path system is designed,which can realize the Remote and all-day information.For the 640×512 cooled focal plane array,an infrared middle wave system was presented with a focal length of 600mm F number of 4 field of view(FOV) of 0.38°×0.43°, the system uses optical passive thermal design, has o compact structure and can meet 100% cold shield efficiency,meanwhile it meets the design requirements of lightweight and athermalization. For the 1920×1080 pixels CCD,a visible (TV) system ,which had 500mm focal length, 4F number,was completed.The final optical design along with their modulation transfer function is presented,showing excellent imaging performance in dual-band at the temperature range between -40° and 60°.

  6. Program computes single-point failures in critical system designs

    Science.gov (United States)

    Brown, W. R.

    1967-01-01

    Computer program analyzes the designs of critical systems that will either prove the design is free of single-point failures or detect each member of the population of single-point failures inherent in a system design. This program should find application in the checkout of redundant circuits and digital systems.

  7. 34 CFR 200.12 - Single State accountability system.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Single State accountability system. 200.12 Section 200... Improving Basic Programs Operated by Local Educational Agencies State Accountability System § 200.12 Single State accountability system. (a)(1) Each State must demonstrate in its State plan that the State has...

  8. The control system of the 12-m medium-size telescope prototype: a test-ground for the CTA array control

    Science.gov (United States)

    Oya, I.; Anguner, E. A.; Behera, B.; Birsin, E.; Fuessling, M.; Lindemann, R.; Melkumyan, D.; Schlenstedt, S.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.

    2014-07-01

    The Cherenkov Telescope Array (CTA) will be the next generation ground-based very-high energy -ray observatory. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different sizes and types and in addition numerous auxiliary devices. In order to provide a test-ground for the CTA array control, the steering software of the 12-m medium size telescope (MST) prototype deployed in Berlin has been implemented using the tools and design concepts under consideration to be used for the control of the CTA array. The prototype control system is implemented based on the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) control middleware, with components implemented in Java, C++ and Python. The interfacing to the hardware is standardized via the Object Linking and Embedding for Process Control Unified Architecture (OPC UA). In order to access the OPC UA servers from the ACS framework in a common way, a library has been developed that allows to tie the OPC UA server nodes, methods and events to the equivalents in ACS components. The front-end of the archive system is able to identify the deployed components and to perform the sampling of the monitoring points of each component following time and value change triggers according to the selected configurations. The back-end of the archive system of the prototype is composed by two different databases: MySQL and MongoDB. MySQL has been selected as storage of the system configurations, while MongoDB is used to have an efficient storage of device monitoring data, CCD images, logging and alarm information. In this contribution, the details and conclusions on the implementation of the control software of the MST prototype are presented.

  9. Unvented single stack sanitary drainage system I

    DEFF Research Database (Denmark)

    Najman, Z.

    This report forms the basis of the preparation of design recommendations. In the observation tables all single results from 147 tests of charging are dispersed on 53 test set-ups. At test set-ups in 1 till 4 floors height discharge pipes with dimensions of 100, 125, and 150 mm were tested with di...

  10. Initial Single-Shell Tank Retrieval System mission analysis report

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    This document provides the mission analysis for the Initial Single-Shell Tank Retrieval System task, which supports the Single-Shell Tank Waste Retrieval Program in its commitment to remove waste from single-shell tanks for treatment and final closure

  11. Computer systems for annotation of single molecule fragments

    Science.gov (United States)

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  12. Hubble Space Telescope-Illustration

    Science.gov (United States)

    1989-01-01

    This illustration depicts a side view of the Hubble Space Telescope (HST). The HST is the product of a partnership between NASA, European Space Agency Contractors, and the international community of astronomers. It is named after Edwin P. Hubble, an American Astronomer who discovered the expanding nature of the universe and was the first to realize the true nature of galaxies. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The major elements of the HST are the Optical Telescope Assembly (OTA), the Support System Module (SSM), and the Scientific Instruments (SI). The HST is approximately the size of a railroad car, with two cylinders joined together and wrapped in a silvery reflective heat shield blanket. Wing-like solar arrays extend horizontally from each side of these cylinders, and dish-shaped anternas extend above and below the body of the telescope. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  13. A readout system for a cosmic ray telescope using Resistive Plate Chambers

    International Nuclear Information System (INIS)

    Cussans, D; Baesso, P; Thomay, C; Velthuis, J; Burns, J; Quillin, S; Steer, C

    2013-01-01

    Resistive Plate Chambers (RPCs) are widely used in high energy physics for both tracking and triggering purposes. They have good time resolution and with finely segmented readout can also give a spatial resolution of better than 1 mm. RPCs can be produced cost-effectively on large scales, are of rugged build, and have excellent detection efficiency for charged particles. Our group has successfully built a Muon Scattering Tomography (MST) prototype, using 12 RPCs to obtain tracking information of muons going through a target volume of ∼ 50 cm × 50 cm × 70 cm, reconstructing both the incoming and outgoing muon tracks. We describe a readout system for fine-pitch RPCs using MAROC3 readout chips capable of scaling to a large system.

  14. Visualization Techniques for Single Channel DPF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Heather E.; Maupin, Gary D.; Carlson, Shelley J.; Saenz, Natalio T.; Gallant, Thomas R.

    2007-04-01

    New techniques have been developed to visualize soot deposition in both traditional and new diesel particulate filter (DPF) substrate materials using a modified cyanoacrylate fuming technique. Loading experiments have been conducted on a variety of single channel DPF substrates to develop a deeper understanding of soot penetration, soot deposition characteristics, and to confirm modeling results. Early results indicate that stabilizing the soot layer using a vapor adhesive may allow analysis of the layer with new methods.

  15. Preliminary Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  16. Systems interaction and single failure criterion

    International Nuclear Information System (INIS)

    1983-10-01

    This study is a continued assessment of US research. All three of the systems interaction review methodologies which NRC's Systems Interaction Section (SIS) is studying are recommended. They are the Digraph-Matrix Analysis and Interactive Fault Tree/Failure Modes and Effects Analysis methodologies. A third methodology was developed for the Indian Point 3 system interaction review. It is recommended to developing the capability to perform and evaluate systems interaction reviews at Swedish nuclear plants. The Swedish demonstration studies should be performed on BWR's. (G.B.)

  17. Using All-Sky Imaging to Improve Telescope Scheduling (Abstract)

    Science.gov (United States)

    Cole, G. M.

    2017-12-01

    (Abstract only) Automated scheduling makes it possible for a small telescope to observe a large number of targets in a single night. But when used in areas which have less-than-perfect sky conditions such automation can lead to large numbers of observations of clouds and haze. This paper describes the development of a "sky-aware" telescope automation system that integrates the data flow from an SBIG AllSky340c camera with an enhanced dispatch scheduler to make optimum use of the available observing conditions for two highly instrumented backyard telescopes. Using the minute-by-minute time series image stream and a self-maintained reference database, the software maintains a file of sky brightness, transparency, stability, and forecasted visibility at several hundred grid positions. The scheduling software uses this information in real time to exclude targets obscured by clouds and select the best observing task, taking into account the requirements and limits of each instrument.

  18. WHITE DWARF-RED DWARF SYSTEMS RESOLVED WITH THE HUBBLE SPACE TELESCOPE. II. FULL SNAPSHOT SURVEY RESULTS

    International Nuclear Information System (INIS)

    Farihi, J.; Hoard, D. W.; Wachter, S.

    2010-01-01

    Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low-mass stellar and substellar companions. Of the 72 targets that remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. For 68 systems where a comparison is possible, 50% have significant photometric distance mismatches between their white dwarf and M dwarf components, suggesting that white dwarf parameters derived spectroscopically are often biased due to the cool companion. Interestingly, 9 of the 30 binaries known to have emission lines are found to be visual pairs and hence widely separated, indicating an intrinsically active cool star and not irradiation from the white dwarf. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low-mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of years. No intermediate projected separations of a few to several AU are found among these pairs. However, a few double M dwarfs (within triples) are spatially resolved in this range, empirically demonstrating that such separations were readily detectable among the binaries with white dwarfs. A straightforward and testable prediction emerges: all spatially unresolved, low-mass stellar and substellar companions to white dwarfs should be in short-period orbits. This result has implications for substellar companion and

  19. Thirty Meter Telescope (TMT) Narrow Field Infrared Adaptive Optics System (NFIRAOS) real-time controller preliminary architecture

    Science.gov (United States)

    Kerley, Dan; Smith, Malcolm; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi

    2016-08-01

    The Narrow Field Infrared Adaptive Optics System (NFIRAOS) is the first light Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). A critical component of NFIRAOS is the Real-Time Controller (RTC) subsystem which provides real-time wavefront correction by processing wavefront information to compute Deformable Mirror (DM) and Tip/Tilt Stage (TTS) commands. The National Research Council of Canada - Herzberg (NRC-H), in conjunction with TMT, has developed a preliminary design for the NFIRAOS RTC. The preliminary architecture for the RTC is comprised of several Linux-based servers. These servers are assigned various roles including: the High-Order Processing (HOP) servers, the Wavefront Corrector Controller (WCC) server, the Telemetry Engineering Display (TED) server, the Persistent Telemetry Storage (PTS) server, and additional testing and spare servers. There are up to six HOP servers that accept high-order wavefront pixels, and perform parallelized pixel processing and wavefront reconstruction to produce wavefront corrector error vectors. The WCC server performs low-order mode processing, and synchronizes and aggregates the high-order wavefront corrector error vectors from the HOP servers to generate wavefront corrector commands. The Telemetry Engineering Display (TED) server is the RTC interface to TMT and other subsystems. The TED server receives all external commands and dispatches them to the rest of the RTC servers and is responsible for aggregating several offloading and telemetry values that are reported to other subsystems within NFIRAOS and TMT. The TED server also provides the engineering GUIs and real-time displays. The Persistent Telemetry Storage (PTS) server contains fault tolerant data storage that receives and stores telemetry data, including data for Point-Spread Function Reconstruction (PSFR).

  20. Hubble Space Telescope: The Telescope, the Observations & the Servicing Mission

    Science.gov (United States)

    1999-11-01

    replaced by COSTAR. During the second Servicing Mission instruments and other equipment were repaired and updated. The Space Telescope Imaging Spectrograph (STIS) replaced the Goddard High Resolution Spectrograph (GHRS) and the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) replaced the Faint Object Spectrograph (FOS). Servicing mission 3A The original Servicing Mission 3 (initially planned for June 2000) has been split into two missions - SM3A and SM3B - due in part to its complexity, and in part to the urgent need to replace the failed gyroscopes on board. Three gyroscopes must function to meet the telescope's very precise pointing requirements. With only two new operational, observations have had to be suspended, but the telescope will remain safely in orbit until the servicing crew arrives. During this servicing mission * all six gyroscopes will be replaced, * a Fine Guidance Sensor will be replaced, * the spacecraft's computer will be replaced by a new one which will reduce the burden of flight software maintenance and significantly lower costs, * six voltage/temperature kits will be installed to protect spacecraft batteries from overcharging and overheating if the spacecraft enters safe mode, * a new S-Band Single Access Transmitter will replace a failed spare currently aboard the spacecraft, * a solid-state recorder will be installed to replace the tape recorder, * degraded telescope thermal insulation will be replaced if time allows; this insulation is necessary to control the internal temperature on HST. For the mission to be fully successful the gyroscopes, the Fine Guidance Sensor, the computer and the voltage/temperature kits must be installed. The minimum mission success criterion is that HST will have 5 operational gyros after the mission, 4 of them newly installed. The Future During SM3B (presently scheduled for 2001) the astronauts will replace the Faint Object Camera with the Advanced Camera for Surveys (ACS), install a cooling system for

  1. The New Horizons and Hubble Space Telescope search for rings, dust, and debris in the Pluto-Charon system

    Science.gov (United States)

    Lauer, Tod R.; Throop, Henry B.; Showalter, Mark R.; Weaver, Harold A.; Stern, S. Alan; Spencer, John R.; Buie, Marc W.; Hamilton, Douglas P.; Porter, Simon B.; Verbiscer, Anne J.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly; New Horizons Science Team

    2018-02-01

    We conducted an extensive search for dust or debris rings in the Pluto-Charon system before, during, and after the New Horizons encounter in July 2015. Methodologies included attempting to detect features by back-scattered light during the approach to Pluto (phase angle α ∼ 15°), in situ detection of impacting particles, a search for stellar occultations near the time of closest approach, and by forward-scattered light imaging during departure (α ∼ 165°). An extensive search using the Hubble Space Telescope (HST) prior to the encounter also contributed to the final ring limits. No rings, debris, or dust features were observed, but our new detection limits provide a substantially improved picture of the environment throughout the Pluto-Charon system. Searches for rings in back-scattered light covered the range 35,000-250,000 km from the system barycenter, a zone that starts interior to the orbit of Styx, the innermost minor satellite, and extends out to four times the orbital radius of Hydra, the outermost known satellite. We obtained our firmest limits using data from the New Horizons LORRI camera in the inner half of this region. Our limits on the normal I/F of an unseen ring depends on the radial scale of the rings: 2 ×10-8 (3σ) for 1500 km wide rings, 1 ×10-8 for 6000 km rings, and 7 ×10-9 for 12,000 km rings. Beyond ∼ 100, 000 km from Pluto, HST observations limit normal I/F to ∼ 8 ×10-8 . Searches for dust features from forward-scattered light extended from the surface of Pluto to the Pluto-Charon Hill sphere (rHill = 6.4 ×106 km). No evidence for rings or dust clouds was detected to normal I/F limits of ∼ 8.9 ×10-7 on ∼ 104 km scales. Four stellar occulation observations also probed the space interior to Hydra, but again no dust or debris was detected. The Student Dust Counter detected one particle impact 3.6 × 106 km from Pluto, but this is consistent with the interplanetary space environment established during the cruise of New

  2. Single board system for fuzzy inference

    Science.gov (United States)

    Symon, James R.; Watanabe, Hiroyuki

    1991-01-01

    The very large scale integration (VLSI) implementation of a fuzzy logic inference mechanism allows the use of rule-based control and decision making in demanding real-time applications. Researchers designed a full custom VLSI inference engine. The chip was fabricated using CMOS technology. The chip consists of 688,000 transistors of which 476,000 are used for RAM memory. The fuzzy logic inference engine board system incorporates the custom designed integrated circuit into a standard VMEbus environment. The Fuzzy Logic system uses Transistor-Transistor Logic (TTL) parts to provide the interface between the Fuzzy chip and a standard, double height VMEbus backplane, allowing the chip to perform application process control through the VMEbus host. High level C language functions hide details of the hardware system interface from the applications level programmer. The first version of the board was installed on a robot at Oak Ridge National Laboratory in January of 1990.

  3. Hubble Space Telescope faint object spectrograph Quasar Absorption System Snapshot Survey (AbSnap). 1: Astrometric optical positions and finding charts of 269 bright QSO

    Science.gov (United States)

    Bowen, David V.; Osmer, Samantha J.; Blades, J. Chris; Tytler, David; Cottrell, Lance; Fan, Xiao-Ming; Lanzetta, Kenneth M.

    1994-01-01

    We present finding charts and optical positions accurate to less than 1 arcsec for 269 bright (V less than or = 18.5) Quasi-Stellar Objects (QSOs). These objects were selected as candidates for the Hubble Space Telescope (HST) Quasar Absorption System Snapshot Survey (AbSnap), a program designed to use the Faint Object Spectrograph (FOS) to obtain short exposure ultraviolet (UV) spectra of bright QSOs. Many quasars were included because of their proximity to bright, low redshift galaxies and positions of these QSOs are measured accurately for the first time. Data were obtained using the digitized sky survey produced by the Space Telescope Science Institute's Guide Stars Selection System Astrometric Support Program.

  4. Family Systems and the Single Client.

    Science.gov (United States)

    Baldwin, Cynthia

    1997-01-01

    Describes how a counselor used a combination of systemic family counseling techniques with a divorced middle-aged male client. The counselor states that it proved to be an efficient and honoring combination that helped the client move differently, with more freedom and self-assurance, toward his goals. (MKA)

  5. The structure, logic of operation and distinctive features of the system of triggers and counting signals formation for gamma-telescope GAMMA-400

    Science.gov (United States)

    Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.

    2017-01-01

    Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.

  6. eSTAR: a distributed telescope network

    Science.gov (United States)

    Steele, Iain A.; Naylor, Tim; Allan, Alisdair; Etherton, Jason; Mottram, C. J.

    2002-11-01

    The e-STAR (e-Science Telescopes for Astronomical Research) project uses GRID techniques to develop the software infrastructure for a global network of robotic telescopes. The basic architecture is based around Intelligent Agents which request data from Discovery Nodes that may be telescopes or databases. Communication is based on a development of the XML RTML language secured using the Globus I/O library, with status serving provided via LDAP. We describe the system architecture and protocols devised to give a distributed approach to telescope scheduling, as well as giving details of the implementation of prototype Intelligent Agent and Discovery Node systems.

  7. Optical Space Telescope Assembly

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Space Telescope Assembly (OSTA) task is to demonstrate the technology readiness of assembling large space telescopes on orbit in 2015. This task is an...

  8. Comparing NEO Search Telescopes

    Science.gov (United States)

    Myhrvold, Nathan

    2016-04-01

    Multiple terrestrial and space-based telescopes have been proposed for detecting and tracking near-Earth objects (NEOs). Detailed simulations of the search performance of these systems have used complex computer codes that are not widely available, which hinders accurate cross-comparison of the proposals and obscures whether they have consistent assumptions. Moreover, some proposed instruments would survey infrared (IR) bands, whereas others would operate in the visible band, and differences among asteroid thermal and visible-light models used in the simulations further complicate like-to-like comparisons. I use simple physical principles to estimate basic performance metrics for the ground-based Large Synoptic Survey Telescope and three space-based instruments—Sentinel, NEOCam, and a Cubesat constellation. The performance is measured against two different NEO distributions, the Bottke et al. distribution of general NEOs, and the Veres et al. distribution of Earth-impacting NEO. The results of the comparison show simplified relative performance metrics, including the expected number of NEOs visible in the search volumes and the initial detection rates expected for each system. Although these simplified comparisons do not capture all of the details, they give considerable insight into the physical factors limiting performance. Multiple asteroid thermal models are considered, including FRM, NEATM, and a new generalized form of FRM. I describe issues with how IR albedo and emissivity have been estimated in previous studies, which may render them inaccurate. A thermal model for tumbling asteroids is also developed and suggests that tumbling asteroids may be surprisingly difficult for IR telescopes to observe.

  9. High-power periodic-pulse YAG:Nd3+-laser system with telescopic unstable resonator and two-stage amplifier

    Science.gov (United States)

    Apanasevich, P. A.; Kvach, V. V.; Koptev, V. G.; Orlovich, V. A.; Stavrov, A. A.; Shkadarevich, A. P.

    1987-10-01

    A high-power YAG:Nd (3+) laser system is described which incorporates a master oscillator with an unstable telescopic resonator, polarizational radiation dumping, and a two-stage amplifier. Energetic, temporal, spectral, and spatial characteristics of the master oscillator are studied as well as those of the system as a whole. The system makes it possible to generate radiation pulses with a power greater than 70 MW upon divergence close to the diffraction limit and a pulse repetition frequency of 10 Hz.

  10. ARTICLES: High-power system based on a pulse-periodic YAG:Nd3+ laser with an unstable telescopic resonator and a two-stage amplifier

    Science.gov (United States)

    Apanasevich, Pavel A.; Kvach, V. V.; Koptev, V. G.; Orlovich, V. A.; Stavrov, A. A.; Shkadarevich, A. P.

    1987-02-01

    A description is given of a high-power YAG:Nd3+ laser system including a master oscillator with an unstable telescopic resonator, polarization coupling-out of radiation, and a two-stage amplifier. The energy, time, spectral, and spatial characteristics of the master oscillator and of the system as a whole were investigated. The system was capable of generating radiation pulses of 10 Hz repetition frequency with a divergence close to the diffraction limit and an output power in excess of 70 MW.

  11. A high-power laser system based on a repetitively pulsed YAG:Nd 3+ laser with an unstable telescopic resonator and a two-stage amplifier

    Science.gov (United States)

    Apanasevich, P. A.; Kvach, V. V.; Koptev, V. G.; Orlovich, V. A.; Stavrov, A. A.

    1987-02-01

    A high-power YAG:Nd 3+ laser system is described which incorporates a master oscillator with an unstable telescopic resonator, polarizational radiation dumping, and a two-stage amplifier. Energetic, temporal, spectral, and spatial characteristics of the master oscillator are studied as well as those of the system as a whole. The system makes it possible to generate radiation pulses with a power greater than 70 MW upon divergence close to the diffraction limit and a pulse repetition frequency of 10 Hz.

  12. Process tomography via sequential measurements on a single quantum system

    CSIR Research Space (South Africa)

    Bassa, H

    2015-09-01

    Full Text Available The authors utilize a discrete (sequential) measurement protocol to investigate quantum process tomography of a single two-level quantum system, with an unknown initial state, undergoing Rabi oscillations. The ignorance of the dynamical parameters...

  13. Mixing Ventilation System in a Single-Aisle Aircraft Cabin

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Zhang, Chen; Wojcik, Kamil

    2014-01-01

    and present a design procedure of the system. Finally, a personalised ventilation system will be described, which can be used together with the mixing ventilation system. The experiments are made in a full-scale, left side mock-up of a single-aisle (Boeing 737) cabin with four seats. The four passengers...

  14. Canadian very large optical telescope technical studies

    Science.gov (United States)

    Roberts, Scott C.; Morbey, Christopher L.; Crabtree, Dennis R.; Carlberg, Ray; Crampton, David; Davidge, Timothy J.; Fitzsimmons, Joeleff T.; Gedig, Michael H.; Halliday, David J.; Hesser, James E.; Herriot, Glen; Oke, J. Beverly; Pazder, John S.; Szeto, Kei; Veran, Jean-Pierre

    2003-01-01

    A design is proposed for a 20 m Canadian Very Large Optical Telescope (VLOT). This design meets the science, schedule, and availability requirements of the Canadian astronomical community. The telescope could be operational by early in the next decade to complement the science discoveries of the Next Generation Space Telescope (NGST) and Atacama Large Millimeter Array (ALMA). This design is suitable for location on the Mauna Kea summit ridge, and could replace the current 3.6 m CFHT telescope. The telescope structure provides room for two vertically oriented Nasmyth instruments, implements a very stiff monocoque mirror cell, and offers a short and direct load path to the telescope mount. A Calotte style dome structure offers many advantages over current designs including lower and more even power requirements, and a circular aperture that will better protect the telescope structure from wind buffeting. The science requirements are presented, and the telescope optical design, primary mirror pupil segmentation options, including hexagonal segments and a radial segment design with a central 8 m mirror, are considered. Point spread function plots and encircled energy calculations show that there is no significant diffraction performance difference between the options except that hexagonal segments in the 1 m point-to-point range appear to deliver poorer PSF's as compared to 2 m and larger segments. Plans for implementation of a Matlab based integrated telescope model are discussed. A summary of adaptive optics system issues for large telescopes is presented along with plans for future research in AO.

  15. TAPAS, a VO archive at the IRAM 30-m telescope

    Science.gov (United States)

    Leon, Stephane; Espigares, Victor; Ruíz, José Enrique; Verdes-Montenegro, Lourdes; Mauersberger, Rainer; Brunswig, Walter; Kramer, Carsten; Santander-Vela, Juan de Dios; Wiesemeyer, Helmut

    2012-07-01

    Astronomical observatories are today generating increasingly large volumes of data. For an efficient use of them, databases have been built following the standards proposed by the International Virtual Observatory Alliance (IVOA), providing a common protocol to query them and make them interoperable. The IRAM 30-m radio telescope, located in Sierra Nevada (Granada, Spain) is a millimeter wavelength telescope with a constantly renewed, extensive choice of instruments, and capable of covering the frequency range between 80 and 370 GHz. It is continuously producing a large amount of data thanks to the more than 200 scientific projects observed each year. The TAPAS archive at the IRAM 30-m telescope is aimed to provide public access to the headers describing the observations performed with the telescope, according to a defined data policy, making as well the technical data available to the IRAM staff members. A special emphasis has been made to make it Virtual Observatory (VO) compliant, and to offer a VO compliant web interface allowing to make the information available to the scientific community. TAPAS is built using the Django Python framework on top of a relational MySQL database, and is fully integrated with the telescope control system. The TAPAS data model (DM) is based on the Radio Astronomical DAta Model for Single dish radio telescopes (RADAMS), to allow for easy integration into the VO infrastructure. A metadata modeling layer is used by the data-filler to allow an implementation free from assumptions about the control system and the underlying database. TAPAS and its public web interface ( http://tapas.iram.es ) provides a scalable system that can evolve with new instruments and observing modes. A meta description of the DM has been introduced in TAPAS in order to both avoid undesired coupling between the code and the DM and to provide a better management of the archive. A subset of the header data stored in TAPAS will be made available at the CDS.

  16. Surface colour photometry of galaxies with Schmidt telescopes.

    Science.gov (United States)

    Wray, J. D.

    1972-01-01

    A method is described which owes its practicality to the capability of Schmidt telescopes to record a number of galaxy images on a single plate and to the existence of high speed computer controlled area-scanning precision microdensitometers such as the Photometric Data Systems model 1010. The method of analysis results in quantitative color-index information which is displayed in a manner that allows any user to effectively study the morphological properties of the distribution of color-index in galaxies.

  17. LSST Telescope and Optics Status

    Science.gov (United States)

    Gressler, William; Krabbendam, V. L.; Andrew, J. R.; Barr, J. D.; DeVries, J.; Hileman, E.; Liang, M.; Neill, D. R.; Sebag, J.; Stubbs, C.; Wiecha, O.; LSST Collaboration

    2010-01-01

    Progress continues on the final design of key elements of the LSST Telescope system thanks to private support. Rear surface polishing of the unique 8.4m M1/M3 monolithic mirror has been completed with the subsequent attachment of support loadspreaders and hardpoints. The mirror will now undergo the final two year planned effort of front surface grinding and polishing. The LSST telescope cell design has matured to accommodate on-telescope mirror support, pointing, and thermal conditioning requirements in addition to off-telescope optical coating requirements. Performance and environmental testing of hardware components has commenced to assist with prototyping and final design selection of the M1/M3 mirror support system. LSST plans to design, fabricate, assemble, and deliver qualified subassemblies for integration of the M1/M3 and telescope cell in early 2012. Corning has completed and delivered the M2 ULE™ substrate. This 3.5m diameter, 100mm thick meniscus substrate has been acid etched to passivate any stress features and the convex surface has been finished via precision contour grinding to near net final shape. The substrate awaits construction funding to enable final optical polishing. The LSST Calibration System design utilizes a fiber-fed reflective projector system. An array of these projectors provides uniform illumination across the telescope field of view in tunable wavelength bands to calibrate the LSST camera detector elements. Finally, advancement continues forward on LSST support facility development via the award of an A&E contract to provide specific site design and development activities.

  18. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  19. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

  20. Realization of single-phase single-stage grid-connected PV system

    Directory of Open Access Journals (Sweden)

    Osama M. Arafa

    2017-05-01

    Full Text Available This paper presents a single phase single stage grid-tied PV system. Grid angle detection is introduced to allow operation at any arbitrary power factor but unity power factor is chosen to utilize the full inverter capacity. The system ensures MPPT using the incremental conductance method and it can track the changes in insolation level without oscillations. A PI voltage controller and a dead-beat current controller are used to ensure high quality injected current to the grid. The paper investigates the system structure and performance through numerical simulation using Matlab/Simulink. An experimental setup controlled by the MicrolabBox DSP prototyping platform is utilized to realize the system and study its performance. The precautions for smooth and safe system operation including the startup sequence are fully considered in the implementation.

  1. Origins Space Telescope

    Science.gov (United States)

    Cooray, Asantha; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, our completed first mission concept and an introduction to the second concept that will be studied at the study center in 2018. This presentation will also summarize key science drivers and the key study milestones between 2018 and 2020.

  2. Load compensation for single phase system using series active filter ...

    African Journals Online (AJOL)

    In this paper a new control strategy for series active filter has been proposed for improvement of power quality problems in single phase system. Since the non linear loads in the system comprises of both voltage source harmonic and current source harmonic loads and the dominancy of each type of load varies from time to ...

  3. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...... component (101) has an entrance pupil with a first diameter D1, and an optical component system which is arranged for forming an first image (136) of the back-focal plane (132) of the objective optical component (100), which has a diameter (given by the diameter of a circle enclosing all optical paths...

  4. A monolithic silicon detector telescope

    International Nuclear Information System (INIS)

    Cardella, G.; Amorini, F.; Cabibbo, M.; Di Pietro, A.; Fallica, G.; Franzo, G.; Figuera, P.; Papa, M.; Pappalardo, G.; Percolla, G.; Priolo, F.; Privitera, V.; Rizzo, F.; Tudisco, S.

    1996-01-01

    An ultrathin silicon detector (1 μm) thick implanted on a standard 400 μm Si-detector has been built to realize a monolithic telescope detector for simultaneous charge and energy determination of charged particles. The performances of the telescope have been tested using standard alpha sources and fragments emitted in nuclear reactions with different projectile-target colliding systems. An excellent charge resolution has been obtained for low energy (less than 5 MeV) light nuclei. A multi-array lay-out of such detectors is under construction to charge identify the particles emitted in reactions induced by low energy radioactive beams. (orig.)

  5. Proxy magnetometry with the Dutch Open Telescope

    NARCIS (Netherlands)

    Rutten, R.J.; Hammerschlag, R.H.; Sütterlin, P.; Bettonvil, F.C.M.

    1999-01-01

    Superb movies from the Dutch Open Telescope (DOT) on La Palma have proven the validity of the open concept of this innovative telescope for high-resolution imaging of the solar atmosphere. A five- camera speckle-burst registration system is being installed that should permit consistent and

  6. MPC of Single Phase Inverter for PV System

    OpenAIRE

    Irtaza M. Syed; Kaamran Raahemifar

    2014-01-01

    This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regula...

  7. System and method for single-phase, single-stage grid-interactive inverter

    Science.gov (United States)

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  8. Monster telescope hunts blue planets

    CERN Multimedia

    Leake, J

    2003-01-01

    BRITAIN is to back a project to build the world's biggest telescope - so powerful that it could see life-bearing planets in other solar systems. It will need the largest mirror ever built at about 100 metres in diameter (1/2 page).

  9. A single-chip computer analysis system for liquid fluorescence

    International Nuclear Information System (INIS)

    Zhang Yongming; Wu Ruisheng; Li Bin

    1998-01-01

    The single-chip computer analysis system for liquid fluorescence is an intelligent analytic instrument, which is based on the principle that the liquid containing hydrocarbons can give out several characteristic fluorescences when irradiated by strong light. Besides a single-chip computer, the system makes use of the keyboard and the calculation and printing functions of a CASIO printing calculator. It combines optics, mechanism and electronics into one, and is small, light and practical, so it can be used for surface water sample analysis in oil field and impurity analysis of other materials

  10. The great Melbourne telescope

    CERN Document Server

    Gillespie, Richard

    2011-01-01

    Erected at Melbourne Observatory in 1869, the telescope was the second largest in the world, designed to explore the nature of the nebulae in the southern skies. Richard Gillespie, head of the History and Technology department at the Melbourne museum has written an entertaining account of the telescope's extraordinary history and tells the story through an amazing cast of characters whose lives intersected with the telescope.

  11. TCS and peripheral robotization and upgrade on the ESO 1-meter telescope at La Silla Observatory

    Science.gov (United States)

    Ropert, S.; Suc, V.; Jordán, A.; Tala, M.; Liedtke, P.; Royo, S.

    2016-07-01

    In this work we describe the robotization and upgrade of the ESO 1m telescope located at La Silla Observatory. The ESO 1m telescope was the first telescope installed in La Silla, in 1966. It now hosts as a main instrument the FIber Dual EchellE Optical Spectrograph (FIDEOS), a high resolution spectrograph designed for precise Radial Velocity (RV) measurements on bright stars. In order to meet this project's requirements, the Telescope Control System (TCS) and some of its mechanical peripherals needed to be upgraded. The TCS was also upgraded into a modern and robust software running on a group of single board computers interacting together as a network with the CoolObs TCS developed by ObsTech. One of the particularities of the CoolObs TCS is that it allows to fuse the input signals of 2 encoders per axis in order to achieve high precision and resolution of the tracking with moderate cost encoders. One encoder is installed on axis at the telescope and the other on axis at the motor. The TCS was also integrated with the FIDEOS instrument system so that all the system can be controlled through the same remote user interface. Our modern TCS unit allows the user to run observations remotely through a secured internet web interface, minimizing the need of an on-site observer and opening a new age in robotic astronomy for the ESO 1m telescope.

  12. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid......In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve...... the performance and efficiency of SR motor. However, the inherent characteristic of this motor is that the negative torque is very sensitive with the excitation current near the turn-on angle. The slow excitation current limits the torque generation region and reduces the average torque. Therefore, a novel single...

  13. The experimental research of the systems for measuring the angle rotations and line shifts of the large aperture radio-telescope components

    Science.gov (United States)

    Konyakhin, Igor; Timofeev, Alexandr; Usik, Alexandr; Zhukov, Dmitry

    2010-08-01

    The main mirror construction of the radiotelescope for the millimetre wave range requires to measure the line deformation of mirror's surface and shifts of the secondary mirror relatively main mirror. There is a necessity to construct the new radio-telescope RT-70 Suffa, Russia). The 3-D parabola main mirror of this radio telescope has a diameter 70 meters, and the elliptical secondary mirror with the diameter 3 meters are placed on the distance 21 meter relatively main mirror. Following issues dealing with this problem are described in this article: 1) the possibility of the design of deformation measurement system based on triangular method 2) the new scheme of optic-electronic measurement system. The great attention during the research was paid to the experimental approval of the theoretical results. The experimental setup of the described system had the following characteristics: infrared emission diode AL107B by power 15 mWt as sources of radiation; the objective by the focal length 450 mm as aperture of receiver video-camera, the CMOS matrix receiver by type OV05620 Color CMOS QSXGA with 2592*1944 pixels and one pixel size (2.2*2.2) μm2 produced OmniVision as image analyzer . The computer simulation error and the experimental error measurement was 0.1 mm at the

  14. The Performance of the Robo-AO Laser Guide Star Adaptive Optics System at the Kitt Peak 2.1 m Telescope

    Science.gov (United States)

    Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Salama, Maïssa; Baranec, Christoph; Law, Nicholas M.; Kulkarni, S. R.; Ramprakash, A. N.

    2018-01-01

    Robo-AO is an autonomous laser guide star adaptive optics (AO) system recently commissioned at the Kitt Peak 2.1 m telescope. With the ability to observe every clear night, Robo-AO at the 2.1 m telescope is the first dedicated AO observatory. This paper presents the imaging performance of the AO system in its first 18 months of operations. For a median seeing value of 1.″44, the average Strehl ratio is 4% in the i\\prime band. After post processing, the contrast ratio under sub-arcsecond seeing for a 2≤slant i\\prime ≤slant 16 primary star is five and seven magnitudes at radial offsets of 0.″5 and 1.″0, respectively. The data processing and archiving pipelines run automatically at the end of each night. The first stage of the processing pipeline shifts and adds the rapid frame rate data using techniques optimized for different signal-to-noise ratios. The second “high-contrast” stage of the pipeline is eponymously well suited to finding faint stellar companions. Currently, a range of scientific programs, including the synthetic tracking of near-Earth asteroids, the binarity of stars in young clusters, and weather on solar system planets are being undertaken with Robo-AO.

  15. Single-cell technologies to study the immune system.

    Science.gov (United States)

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.

  16. A performance comparison of single product kanban control systems

    Directory of Open Access Journals (Sweden)

    Alvin Ang

    2015-01-01

    Full Text Available This paper presents a simulation experiment comparing the Single Stage, Single Product Base Stock (BS, Traditional Kanban Control System (TKCS and Extended Kanban Control System (EKCS. The results showed that BS incurs the highest cost in all scenarios; while EKCS is found to be effective only in a very niche scenario. TKCS is still a very powerful factory management system to date; and EKCS did not perform exceptionally well. The only time EKCS did outperform TKCS was during low demand arrival rates and low Backorder (Cb and Shortage costs (Cs. That is because during then, it holds no stock. The most important discovery made here is that EKCS becomes TKCS once it has base stock (or dispatched kanbans. The results have also evinced the strength of the pure kanban system, the TKCS over BS. Hence managers using BS should consider upgrading to TKCS to save cost.

  17. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua

    2014-01-01

    Three differently designed intelligent solar heating systems are investigated experimentally in a test facility. The systems provide all the needed yearly heating demand in single family houses. The systems are based on highly stratified tanks with variable auxiliary heated volumes. The tank...... is a tank in tank heat storage with domestic hot water in the inner tank and space heating water in the outer tank. The total tank volume is 750 liters and the solar collector area is 9 m2. The auxiliary energy supply system is based on electrical heating element(s)/heat pump and is different for all three...... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys...

  18. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    Melo G and Canesin C A 2013 Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 60(3): 1156–1167. [7] Jain S and Agarwal V 2007 Comparison of the perfor- mance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems.

  19. Water Flow Experiments: Single and Double Bottle Systems

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 23; Issue 1. Water Flow Experiments: Single and Double Bottle Systems ... Jain International Residential School, Jakkasandra Post, Kanakapura Road, Ramanagara Dist., Karnataka 562 112, India. Room No 425, SH-3 Ashoka University, Near Rai Police ...

  20. Bilateral single system ectopic ureters: Case report with literature ...

    African Journals Online (AJOL)

    Bilateral single system ureteral ectopia (BSSEU) is one of the rarest entities in urology, with less than 80 cases reported so far. Incontinence resulting from the underlying anomaly can be devastating to the child. It is generally agreed that suitable urinary continence and long dry intervals are seldom obtainable because of ...

  1. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    This paper presents a control scheme for single phase grid connected photovoltaic (PV) system operating under both grid connected and isolated grid mode. The control techniques include voltage and current control of grid-tie PV inverter. During grid connected mode, grid controls the amplitude and frequency of the PV ...

  2. Multivariable parametric cost model for space and ground telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd

    2016-09-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost (X) D (1.75 +/- 0.05) λ (-0.5 +/- 0.25) T-0.25 e (-0.04) Y Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).

  3. TWO-MOTOR ELEVATION DRIVE OF THE PRECISION TWIN TELESCOPE

    Directory of Open Access Journals (Sweden)

    V. N. Drozdov

    2015-03-01

    Full Text Available Subject of research. Control system of a four-mass object (twin telescope with dual motor drive is considered. Method. The reducing ability of an object model to the third order is used for simplification of control system. The synthesis of a discrete controller algorithm is completed based on the reduced model of the object. Characteristics of the system which consists of four-mass object with dual motor drive and obtained regulator are investigated. Control synthesis based on the modified design method of an optimal control with guaranteed degree of stability is used. Reduced-order observer is used in the control system since only one parameter of the plant can be measured — angular velocity of one lumped inertia. System robustness is verified by changing the nominal parameters of the plant in 10% range. Main results. In case of using a single motor drive a regulator can be built only on the basis of the model of object slow motions. System performance (bandwidth should be enough low not to excite elastic vibrations. Control rate then is limited by the lowest resonating frequency of the plant. Numerical simulation reveals that transition time of the system with single motor drive significantly exceeds transition time of the system with dual motor drive. Both systems maintain the properties of robustness with changing parameter Practical relevance. The results can be used in the control systems design of the complex electromechanical mechanisms with elastic couplings such as telescope main drive axis.

  4. Observing the Sun with Coronado telescopes telescopes

    CERN Document Server

    Pugh, Philip

    2007-01-01

    The Sun provides amateur astronomers with one of the few opportunities for daytime astronomy. In order to see the major features of our nearest star, special telescopes that have a very narrow visible bandwidth are essential. The bandwidth has to be as narrow as 1 A- 10-10 m (1 Angstrom) and centred on the absorption line of neutral hydrogen. This makes many major features of the Suna (TM)s chromosphere visible to the observer. Such narrow-band "Fabry-Perot etalon filters" are high technology, and until the introduction of the Coronado range of solar telescopes, were too expensive for amateur use. The entry-level Coronado telescope, the PST (Personal Solar Telescope) costs under 500. Solar prominences (vast columns of plasma, best seen at the edge of the solar disk), filaments, flares, sunspots, plage and active regions are all visible and can be imaged to produce spectacular solar photographs. Philip Pugh has assembled a team of contributors who show just how much solar work can be done with Coronado telesco...

  5. Large Binocular Telescope Project

    Science.gov (United States)

    Hill, John M.; Salinari, Piero

    1998-08-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. With the addition of the partners from Ohio State and Germany in February 1997, the Large Binocular Telescope Corporation has the funding required to build the full telescope populated with both 8.4 meter optical trans. The first of two 8.4 meter borosilicate honeycomb primary mirrors for LBT was cast at the Steward Observatory Mirror Lab in 1997. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane. The interferometric focus combining the light from the two 8.4 meter primaries will reimage the two folded Gregorian focal planes to three central locations. The telescope elevation structure accommodates swing arms which allow rapid interchange of the various secondary and tertiary mirrors. Maximum stiffness and minimal thermal disturbance were important drivers for the design of the telescope in order to provide the best possible images for interferometric observations. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The detailed design of the telescope structure was completed in 1997 by ADS Italia (Lecco) and European Industrial Engineering (Mestre). A series of contracts for the fabrication and machining of the telescope structure had been placed at the end of 1997. The final enclosure design was completed at M3 Engineering & Technology (Tucson), EIE and ADS Italia. During 1997, the telescope pier and the concrete ring wall for the rotating enclosure were completed along with the steel structure of the fixed portion of the enclosure. The erection of the steel structure for the rotating portion of the enclosure will begin in the Spring of 1998.

  6. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  7. Image analysis driven single-cell analytics for systems microbiology.

    Science.gov (United States)

    Balomenos, Athanasios D; Tsakanikas, Panagiotis; Aspridou, Zafiro; Tampakaki, Anastasia P; Koutsoumanis, Konstantinos P; Manolakos, Elias S

    2017-04-04

    Time-lapse microscopy is an essential tool for capturing and correlating bacterial morphology and gene expression dynamics at single-cell resolution. However state-of-the-art computational methods are limited in terms of the complexity of cell movies that they can analyze and lack of automation. The proposed Bacterial image analysis driven Single Cell Analytics (BaSCA) computational pipeline addresses these limitations thus enabling high throughput systems microbiology. BaSCA can segment and track multiple bacterial colonies and single-cells, as they grow and divide over time (cell segmentation and lineage tree construction) to give rise to dense communities with thousands of interacting cells in the field of view. It combines advanced image processing and machine learning methods to deliver very accurate bacterial cell segmentation and tracking (F-measure over 95%) even when processing images of imperfect quality with several overcrowded colonies in the field of view. In addition, BaSCA extracts on the fly a plethora of single-cell properties, which get organized into a database summarizing the analysis of the cell movie. We present alternative ways to analyze and visually explore the spatiotemporal evolution of single-cell properties in order to understand trends and epigenetic effects across cell generations. The robustness of BaSCA is demonstrated across different imaging modalities and microscopy types. BaSCA can be used to analyze accurately and efficiently cell movies both at a high resolution (single-cell level) and at a large scale (communities with many dense colonies) as needed to shed light on e.g. how bacterial community effects and epigenetic information transfer play a role on important phenomena for human health, such as biofilm formation, persisters' emergence etc. Moreover, it enables studying the role of single-cell stochasticity without losing sight of community effects that may drive it.

  8. Single-system ureteroceles in infants and children: imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Zerin, J.M.; Baker, D.R. [Dept. of Radiology, Indiana University Medical Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN (United States); Casale, J.A. [Dept. of Urology, Indiana University Medical Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN (United States)

    2000-03-01

    Purpose. The purpose of this manuscript is to describe the clinical and imaging findings in children who have single-system ureteroceles.Materials and methods. We reviewed the urology records and imaging studies in 32 consecutive infants and children who were diagnosed in our department with single-system ureteroceles.Results. There were 35 ureteroceles in the 32 patients - 29 were unilateral (14 right-sided, 15 left-sided) and 3 were bilateral. Twenty-five patients were boys (78 %) and 7 girls. Mean age at presentation was 0.7 years (0-9.2 years). Prenatally detected hydronephrosis or cystic renal dysplasia was the most common presentation (24 patients). Four presented with urinary infection, 2 with abdominal mass, 1 had myelomeningocele, and 1 had hypospadias. Three patients also had multiple non-urologic, congenital anomalies. Thirty-three ureteroceles were intravesical, and 2 were ectopic to the bladder neck. Twenty-four ureteroceles were associated with ipsilateral hydroureteronephrosis and 10 with ipsilateral multicystic dysplastic kidney. One patient had a normal ipsilateral kidney and a contralateral multicystic dysplastic kidney. The ureterocele was identified on at least one imaging study in each patient. Sixteen ureteroceles (47 %) everted at VCUG, mimicking paraureteral diverticula. Other variations included ureterocele prolapse and inadvertent ureterocele catheterization (1 each).Conclusions. Single-system ureterocele is an important, although uncommon cause of hydronephrosis and renal dysplasia in infants and children. Single-system ureterocele is distinguished clinically from the more common duplex-system ureterocele by its frequent occurrence in boys and its association with multicystic dysplastic kidney. Because these ureteroceles are frequently small and have a propensity to evert at VCUG, they can be mistaken for paraureteral diverticula. (orig.)

  9. Model Based Control of Single-Phase Marine Cooling Systems

    DEFF Research Database (Denmark)

    Hansen, Michael

    2014-01-01

    these systems. Traditionally, control for this type of cooling system has been limited to open-loop control of pumps combined with a couple of local PID controllers for bypass valves to keep critical temperatures within design limits. This research considers improvements in a retrofit framework to the control...... linearization, an H∞-control design is applied to the resulting linear system. Disturbance rejection capabilities and robustness of performance for this control design methodology is compared to a baseline design derived from classical control theory. This shows promising results for the nonlinear robust design......This thesis is concerned with the problem of designing model-based control for a class of single-phase marine cooling systems. While this type of cooling system has been in existence for several decades, it is only recently that energy efficiency has become a focus point in the design and operation...

  10. Development of a Single-Axis Edge Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Hanshaw, R.A.

    2000-02-18

    A SIP (Societe Genevoise d'Instruments de Physique) Trioptic coordinate measuring machine was modified for calibration of high quality single-axis glass standards to an uncertainty of {+-}0.000020 inch. The modification was accomplished through the addition of a frame grabber board, vision software, a high-resolution camera, stepper motors, a two-axis motor controller, and an HP-IB interface card. An existing temperature system (hygrometer, barometer, laser interferometer system, and optics) was retained as part of the system. An existing Hewlett Packard computer was replaced with a personal computer to accommodate the frame grabber board. Each component was integrated into the existing system using Visual Basic. The system was automated for unattended measurements by creating a machine programming language, which is recognized within the main program.

  11. Development of an air heating system for single family housing

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gunner, Amalie; Nikolaisen, Christian Grønborg

    2017-01-01

    The initial objective of the project was to break with common thinking about Space heating and to document that air heating can be used as the sole source of heating in a single Family house. The basic idea is that the ventilation must be installed in any case and it may equally well form the heat...... source of the house - Thus the waterborne heating system can be eliminated....

  12. On the origin of nonclassicality in single systems

    International Nuclear Information System (INIS)

    Aravinda, S; Srikanth, R; Pathak, Anirban

    2017-01-01

    In the framework of certain general probability theories of single systems, we identify various nonclassical features such as incompatibility, multiple pure-state decomposability, measurement disturbance, no-cloning and the impossibility of certain universal operations, with the non-simpliciality of the state space. This is shown to naturally suggest an underlying simplex as an ontological model. Contextuality turns out to be an independent nonclassical feature, arising from the intransitivity of compatibility. (paper)

  13. Launch Window Trade Analysis for the James Webb Space Telescope

    Science.gov (United States)

    Yu, Wayne H.; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  14. James Webb Space Telescope Launch Window Trade Analysis

    Science.gov (United States)

    Yu, Wayne; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-EarthMoon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  15. The AMANDA neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Andres, E.C.; Askebjer, P.; Barwick, S.W.; Bay, R.C.; Bergstroem, L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Conrad, J.; Costa, C.G.S.; Cowen, D.; Dalberg, E.; DeYoung, T.; Edsjoe, J.; Ekstroem, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hart, S.; He, Y.; Heros, C.P. de los; Hill, G.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Jones, A.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.C.; Miocinovic, P.; Mock, P.C.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren, D.; Porrata, R.; Potter, D.; Price, P.B.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriquez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwartz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch, C.H.; Wischnewski, R.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S

    1999-05-01

    With an effective telescope area of order 10{sup 4} m{sup 2} for TeV neutrinos, a threshold near {approx}50 GeV and a pointing accuracy of 2.5 degrees per muon track, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe early results on the calibration of natural deep ice as a particle detector as well as on AMANDA's performance as a neutrino telescope.

  16. The AMANDA neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Andres, E.C.; Askebjer, P.; Barwick, S.W.; Bay, R.C.; Bergstrom,L.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson,M.; Chinowsky, W.; Chirkin, D.; Conrad,J.; Costa, C.G.S.; Cowen, D.; Dalberg, E.; DeYoung, T.; Edsjo, J.; Ekstrom, P.; Goobar, A.; Gray, L.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hart, S.; He, Y.; de, los, Heros,C.P.; Hill, G.; Hulth, PO.; Hundertmark, S.; Jacobsen, J.; Jones, A.; Kandhadai, V.; Karle, A.; Kim, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.; Marciniewski, P.; Miller, T.C.; Miocinovic, P.; Mock, P.C.; Morse, R.; Newcomer, M.; Niessen, P.; Nygren,D.; Porrata, R.; Potter, D.; Price, P.B.; Przybylski, G.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Smoot, G.; Solarz, M.; Sorin, V.; Spiering, C.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thon, T.; Tilav, S.; Walck, C.; Wiebusch,C.H.; Wischnewski, R.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.; AMANDACollaboration

    1999-04-01

    With an effective telescope area of order 10(4) m(2) for TeVneutrinos, a threshold near similar to 50 GeV and a pointing accuracy of2.5 degrees per muon track, the AMANDA detector represents the first of anew generation of high energy neutrino telescopes, reaching a scaleenvisaged over 25 years ago. We describe early results on the calibrationof natural deep ice as a particle detector as well as on AMANDA'sperformance as a neutrino telescope.

  17. James Clerk Maxwell Telescope

    Science.gov (United States)

    The James Clerk Maxwell Telescope (JCMT) is a 15 m diameter telescope of high surface accuracy, operating in the millimeter and submillimeter bands, and is situated on Mauna Kea in Hawaii. The JCMT facility is described and a scientific report which includes a variety of scientific results over the years 1989 and 1990 showing the range of astronomical problems tackled with the telescope is presented. Operations, which note the decrease in both the time lost to faults and the time required for engineering and commissioning work, are described. Objectives and progress of the instrumentation program are described. A financial statement is presented.

  18. Overdenture dengan Pegangan Telescopic Crown

    Directory of Open Access Journals (Sweden)

    Pambudi Santoso

    2014-06-01

    pasien. Perawatan GTS kerangka logam dengan kaitan presisi telescopic crown dipilih untuk meningkatkan estetik, retensi gigi, stabilisasi, dan mempertahankan gigi yang masih ada. Overdenture with Telescopic Crown. Attachment retained overdentures helps in distribution of masticatory forces, minimizes trauma to abutments and soft tissues, attenuate ridge resorption, improves the esthetics and retains proprioception. The purpose of this paper is provide information about the rehabilitation of partially edentulous maxilla patients with telescopic crowns. A 45 years old female came with mastication and aesthetic problems. She had missing teeth as in 11 12 15 16 17 21 22 24 25 26 and 27. In the upper jaw, the remaining tooth 13 and 14, were fabricated as  telescopic  crowns with parallel-sided system combined with metal framework denture. Fabrication of telescopic crown began by making of study model with preliminary bite record. As in preliminary treatment, root canal treatment was done on 13, proceeded with the cementation of fiber post and rewalling of missing buccal wall. Full crown preparation was done on 13 and 14, and impression was made with double impression technique. Laboratorium procedures for making the primary crowns, secondary crowns and metalwork denture base were finished and the primary crowns were cemented on the abutment teeth. Secondary crowns soldered with metalwork denture base were tried in the patient, bite registration was done, proceeded with impression taking which bite registration embedded inside of the impression. Artificial teeth were arranged and tried to the patient, continued with processing and insertion of the denture. Metal framework removable partial denture with telescopic crown is chosen for this case to improve retention and to preserve the healthy remaining tooth.

  19. Introduction of a single chip TLD system for patient dosimetry

    International Nuclear Information System (INIS)

    Hranitzky, C.; Halda, M.; Mueller, G.; Stadtmann, H.; Obryk, B.

    2008-01-01

    A thermoluminescence dosimetry system with single detector chips was developed for patient dosimetry applications. LiF:Mg,Cu,P detector chips, dosimetry protocol, calibration, and dose calculation were prepared for measurements inside phantoms for determining organ and effective doses in medical diagnostic examinations. The first step was optimizing the readout time-temperature-profile for reaching a well resolved dosimetric peak and stability of the glow curves. A number of parameters was varied for the optimization process, e.g. preheating and heating rate. Individual chip sensitivities, residual dose and dose linearity were studied for establishing a reliable and accurate TL dosimetry system. (author)

  20. Synchronization of uncertain chaotic systems using a single transmission channel

    International Nuclear Information System (INIS)

    Feng Yong; Yu Xinghuo; Sun Lixia

    2008-01-01

    This paper proposes a robust sliding mode observer for synchronization of uncertain chaotic systems with multi-nonlinearities. A new control strategy is proposed for the construction of the robust sliding mode observer, which can avoid the strict conditions in the design process of Walcott-Zak observer. A new method of multi-dimensional signal transmission via single transmission channel is proposed and applied to chaos synchronization of uncertain chaotic systems with multi-nonlinearities. The simulation results are presented to validate the method

  1. Grid-Observing: Creating a Global Network of Telescopes

    Science.gov (United States)

    Hessman, F. V.; Gelderman, R.; Naylor, T.; Pennypacker, C.; Steele, I.

    2004-12-01

    With the increasing switch from classical observing campaigns to service observations, the decreasing pressure on a large number of 1 - 2m telescopes, and the rapid growth in the number of robotic, autonomous telescopes, it has become possible to create a truly global network of telescopes - what we call ``Grid-Observing." Such a network would permit a variety of photometric and spectroscopic monitoring and temporal survey projects which cannot be performed either with current or proposed larger telescopes (e.g. LSST) or with individual telescopes operated by a single institution. Participating observatories can be ``paid" for the services they provide to the network by being able to extract an equivalent amount of time on other telescopes, scaled by aperture, spectral resolution, atmospheric conditions, and the costs of operation or willingness to provide such a service. An XML interface - Remote Telescope Markup Language - insures that communications within the network are simple and relatively easily adapted to existent observatory software and procedures. An eBay-like mechanism for the automatic scheduling of telescopes can provide the necessary flexibility needed to perform time-critical projects as well as insure that the participating institutions retain full control over their telescopes. We are planning on networking several robotic telescope in the near future and expect that many other robotic and non-robotic telescopes will follow.

  2. Optical design of the STAR-X telescope

    Science.gov (United States)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2017-08-01

    Top-level science objectives of the Survey and Time-domain Astrophysical Research eXplorer (STAR-X) include: investigations of most violent explosions in the universe, study of growth of black holes across cosmic time and mass scale, and measure how structure formation heats majority of baryons in the universe. To meet these objectives, the STAR-X telescope requires a field of view of about 1 square-degree, an angular resolution of 5 arc-seconds or better across large part of the field of view. The on-axis effective area at 1 keV should be about 2,000 cm2 . Payload cost and launch considerations limit the outer diameter, focal length, and mass to 1.3 meters, 5 meters, and 250 kilograms, respectively. Telescope design is based on a segmented meta-shell approach we have developed at Goddard Space Flight Center. The telescope mirror shells are divided into segments. Individual shells are nested inside each other to meet the effective area requirements in 0.5 - 6.0 keV range. We consider Wolter-Schwarzschild, and Modified-WolterSchwarzschild telescopes. These designs offer an excellent PSF over a large field of view. Nested shells are vulnerable to stray light problems. We have designed a multi-component baffle system to eliminate direct and single-reflection light paths inside the mirror assembly. Large numbers of internal and external baffles are required to prevent stray rays from reaching the focal plane. We have developed a simple ray-trace tool to determine the dimensions and locations of the baffles. In this paper, we present the results of our trade studies, baffle design studies, and optical performance analyses of the STAR-X telescope.

  3. The GCT camera for the Cherenkov Telescope Array

    Science.gov (United States)

    Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-12-01

    The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.

  4. Nickel-Titanium Single-file System in Endodontics.

    Science.gov (United States)

    Dagna, Alberto

    2015-10-01

    This work describes clinical cases treated with a innovative single-use and single-file nickel-titanium (NiTi) system used in continuous rotation. Nickel-titanium files are commonly used for root canal treatment but they tend to break because of bending stresses and torsional stresses. Today new instruments used only for one treatment have been introduced. They help the clinician to make the root canal shaping easier and safer because they do not require sterilization and after use have to be discarded. A new sterile instrument is used for each treatment in order to reduce the possibility of fracture inside the canal. The new One Shape NiTi single-file instrument belongs to this group. One Shape is used for complete shaping of root canal after an adequate preflaring. Its protocol is simple and some clinical cases are presented. It is helpful for easy cases and reliable for difficult canals. After 2 years of clinical practice, One Shape seems to be helpful for the treatment of most of the root canals, with low risk of separation. After each treatment, the instrument is discarded and not sterilized in autoclave or re-used. This single-use file simplifies the endodontic therapy, because only one instrument is required for canal shaping of many cases. The respect of clinical protocol guarantees predictable good results.

  5. New catadioptric telescope

    Science.gov (United States)

    Richter, J. L.

    1981-01-01

    The Acme telescope is a compound telescope that resembles the familiar Cassegrain type except that the main mirror is spherical and the secondary is an achromatic doublet mangin mirror. Three 6-in. aperture f/15 telescope designs are described. With a cemented, all spherical surface achromangin mirror, there is a small amount of coma which can be eliminated by redesigning with an air space between the crown and flint elements of the achromangin mirror, or by cementing them with one of the concave external surfaces of achromangin figured to an hyperboloid. In the examples, the spherical aberration is nil and the chromatic residual is roughly half that of an achromatic objective of the same speed, aperture, and glass types. Readily available crown and flint glasses such as Schott BK-7 and F-2 are entirely satisfactory for the achromangin mirror. Also considered are two examples of Acme-like telescopes with paraboloidal instead of spherical main mirrors.

  6. Goddard Robotic Telescope (GRT)

    Data.gov (United States)

    National Aeronautics and Space Administration — Since it is not possible to predict when a Gamma-Ray Burst (GRB) occurs, the follow-up ground telescopes must be distributed as uniform as possible all over the...

  7. Telescopes in History

    Science.gov (United States)

    Bond, P.; Murdin, P.

    2000-11-01

    The precise origins of the optical telescope are hidden in the depths of time. In the thirteenth century Roger Bacon claimed to have devised a combination of lenses which enabled him to see distant objects as if they were near. Others who have an unsubstantiated claim to have invented the telescope in the sixteenth century include an Englishman, Leonard DIGGES, and an Italian, Giovanni Batista Po...

  8. MUSTANG2: a large focal plan array for the 100 meter Green Bank Telescope

    Science.gov (United States)

    Dicker, S. R.; Ade, P. A. R.; Aguirre, J.; Brevik, J. A.; Cho, H. M.; Datta, R.; Devlin, M. J.; Dober, B.; Egan, D.; Ford, J.; Ford, P.; Hilton, G.; Hubmayr, J.; Irwin, K. D.; Mason, B. S.; Marganian, P.; Mello, M.; McMahon, J. J.; Mroczkowski, T.; Romero, C.; Stanchfield, S.; Tucker, C.; Vale, L.; White, S.; Whitehead, M.; Young, A. H.

    2014-07-01

    MUSTANG 2 is a 223 element focal plane that operates between 75 and 105 GHz on the 100 meter Green Bank Telescope. It shares many of the science goals of its predecessor, MUSTANG, but will have fifteen times the sensitivity and five times the field-of-view. Angular scales from 900 to 60 will be recovered with high fidelity providing a unique overlap between high resolution instruments such as ALMA and lower resolution single dish telescopes such as ACT or SPT. Individual TES bolometers are placed behind feedhorns spaced by 1.9λ f and are read out using a microwave SQUID multiplexing system.

  9. Eclipse telescope design factors

    Science.gov (United States)

    Hull, Tony; Trauger, John T.; Macenka, Steven A.; Moody, Dwight; Olarte, Guillermo; Sepulveda, Cesar; Tsuha, Walter; Cohen, David

    2003-02-01

    Very high contrast imagery, required for exoplanet image acquisition, imposes significantly different criteria upon telescope architecture than do the requirements imposed upon most spaceborne telescopes. For the Eclipse Mission, the fundamental figure-of-merit is a stellar contrast, or brightness reduction ratio, reaching a factor of 10-9 or better at star-planet distances as close as the 4th Airy ring. Factors necessary to achieve such contrast ratios are both irrelevant and largely ignored in contemporary telescope design. Although contemporary telescoeps now meet Hubble Space Telescope performance at substantially lower mass and cost than HST, control of mid-spatial-frequency (MSF) errors, crucial to coronagraphy, has not been emphasized. Accordingly, roughness at MSF has advanced little since HST. Fortunately, HST primary mirror smoothness would nearly satisfy Eclipse requirements, although other aspects of HST are undesirable for stellar coronagraphy. Conversely, the narrow field required for Eclipse eases other drivers of traditional telescope design. A systematic approach to telescope definition, with primary and sub-tier figures-of-merit, will be discussed in the context of the Eclipse Mission.

  10. Software and electronic developments for TUG - T60 robotic telescope

    Science.gov (United States)

    Parmaksizoglu, M.; Dindar, M.; Kirbiyik, H.; Helhel, S.

    2014-12-01

    A robotic telescope is a telescope that can make observations without hands-on human control. Its low level behavior is automatic and computer-controlled. Robotic telescopes usually run under the control of a scheduler, which provides high-level control by selecting astronomical targets for observation. TUBITAK National Observatory (TUG) T60 Robotic Telescope is controlled by open source OCAAS software, formally named TALON. This study introduces the improvements on TALON software, new electronic and mechanic designs. The designs and software improvements were implemented in the T60 telescope control software and tested on the real system successfully.

  11. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  12. Using a single chip FEC for satellite systems

    Science.gov (United States)

    Onotera, L.; Nicholson, R.

    Information transmission over digital satellite communication channels is primarily power-limited, where forward error correction (FEC) codes can significantly improve performance. The use of FEC can reduce the required signal to noise ratio to sustain a given bit error rate. The use of forward error correction has become a standard part of present day digital satellite communication systems. Means of applying a new very large scale integration (VLSI) integrated circuit FEC chip into various kinds of systems is discussed. Specifically, some of the considerations and tradeoffs in continuous single channel per carrier (SCPC), multiple channels per carrier (MCPC), and burst systems are related to the new design. This new chip will provide an effective space and cost advantage by inserting a powerful forward error correction capability into most types of satellite digital communication links.

  13. The ATHENA telescope and optics status

    DEFF Research Database (Denmark)

    Bavdaz, Marcos; Wille, Eric; Ayre, Mark

    2017-01-01

    chosen for ATHENA is the Silicon Pore Optics (SPO), which hinges on technology spin-in from the semiconductor industry, and uses a modular approach to produce large effective area lightweight telescope optics with a good angular resolution. Both system studies and the technology developments are guided...... by ESA and implemented in industry, with participation of institutional partners. In this paper an overview of the current status of the telescope optics accommodation and technology development activities is provided....

  14. The Robotic Super-LOTIS Telescope: Results & Future Plans

    OpenAIRE

    Williams, G. G.; Milne, P. A.; Park, H. S.; Barthelmy, S. D.; Hartmann, D. H.; Updike, A.; Hurley, K.

    2008-01-01

    We provide an overview of the robotic Super-LOTIS (Livermore Optical Transient Imaging System) telescope and present results from gamma-ray burst (GRB) afterglow observations using Super-LOTIS and other Steward Observatory telescopes. The 0.6-m Super-LOTIS telescope is a fully robotic system dedicated to the measurement of prompt and early time optical emission from GRBs. The system began routine operations from its Steward Observatory site atop Kitt Peak in April 2000 and currently operates ...

  15. Simple test system for single molecule recognition force microscopy

    International Nuclear Information System (INIS)

    Riener, Christian K.; Stroh, Cordula M.; Ebner, Andreas; Klampfl, Christian; Gall, Alex A.; Romanin, Christoph; Lyubchenko, Yuri L.; Hinterdorfer, Peter; Gruber, Hermann J.

    2003-01-01

    We have established an easy-to-use test system for detecting receptor-ligand interactions on the single molecule level using atomic force microscopy (AFM). For this, avidin-biotin, probably the best characterized receptor-ligand pair, was chosen. AFM sensors were prepared containing tethered biotin molecules at sufficiently low surface concentrations appropriate for single molecule studies. A biotin tether, consisting of a 6 nm poly(ethylene glycol) (PEG) chain and a functional succinimide group at the other end, was newly synthesized and covalently coupled to amine-functionalized AFM tips. In particular, PEG 800 diamine was glutarylated, the mono-adduct NH 2 -PEG-COOH was isolated by ion exchange chromatography and reacted with biotin succinimidylester to give biotin-PEG-COOH which was then activated as N-hydroxysuccinimide (NHS) ester to give the biotin-PEG-NHS conjugate which was coupled to the aminofunctionalized AFM tip. The motional freedom provided by PEG allows for free rotation of the biotin molecule on the AFM sensor and for specific binding to avidin which had been adsorbed to mica surfaces via electrostatic interactions. Specific avidin-biotin recognition events were discriminated from nonspecific tip-mica adhesion by their typical unbinding force (∼40 pN at 1.4 nN/s loading rate), unbinding length (<13 nm), the characteristic nonlinear force-distance relation of the PEG linker, and by specific block with excess of free d-biotin. The convenience of the test system allowed to evaluate, and compare, different methods and conditions of tip aminofunctionalization with respect to specific binding and nonspecific adhesion. It is concluded that this system is well suited as calibration or start-up kit for single molecule recognition force microscopy

  16. Electron-assisted magnetization tunneling in single spin systems

    Science.gov (United States)

    Balashov, Timofey; Karlewski, Christian; Märkl, Tobias; Schön, Gerd; Wulfhekel, Wulf

    2018-01-01

    Magnetic excitations of single atoms on surfaces have been widely studied experimentally in the past decade. Lately, systems with unprecedented magnetic stability started to emerge. Here, we present a general theoretical investigation of the stability of rare-earth magnetic atoms exposed to crystal or ligand fields of various symmetry and to exchange scattering with an electron bath. By analyzing the properties of the atomic wave function, we show that certain combinations of symmetry and total angular momentum are inherently stable against first or even higher-order interactions with electrons. Further, we investigate the effect of an external magnetic field on the magnetic stability.

  17. A Transformer-less Single Phase Inverter For photovoltaic Systems

    DEFF Research Database (Denmark)

    Mostaan, Ali; Alizadeh, Ebrahim; Qu, Ying

    2017-01-01

    A single phase transformer-less inverter is introduced in this paper. The negative polarities of the input voltage and output terminal have common ground. Therefore, the leakage current problem that is common in PV systems is eliminated naturally. In addition, the proposed inverter has fewer...... components compared with its counterparts and only one switch conducts during the active states which enhance the inverter efficiency. The proposed inverter is analyzed in details and compared with some existing topologies. The performance of the proposed inverter is validated using the simulation results....

  18. The South Pole Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  19. The IRTS (Infrared Telescope in Space) Mission

    Science.gov (United States)

    Murakami, Hiroshi; Freund, Minoru M.; Ganga, Ken; Guo, Hongfeng; Hirao, Takanori; Hiromoto, Norihisa; Kawada, Mitsunobu; Lange, Andrew E.; Makiuti, Sin'itirou; Matsuhara, Hideo; Matsumoto, Toshio; Matsuura, Shuji; Murakami, Masahide; Nakagawa, Takao; Narita, Masanao; Noda, Manabu; Okuda, Haruyuki; Okumura, Ken'ichi; Onaka, Takashi; Roellig, Thomas L.; Sato, Shinji; Shibai, Hiroshi; Smith, Beverly J.; Tanabe, Toshihiko; Tanaka, Masahiro; Watabe, Toyoki; Yamamura, Issei; Yuen, Lunming

    1996-10-01

    The Japanese satellite-borne infrared telescope, the Infrared Telescope in Space (IRTS), has completed a successful survey of a portion of the infrared sky. The IRTS consists of a 15 cm telescope cooled with superfluid liquid helium, and is installed on board the Space Flyer Unit (SFU) spacecraft. The SFU was launched on 1995 March 18 UT. The sky survey by the IRTS started on March 29 UT, and was completed on April 25 UT after exhausting its liquid helium. The cryogenic system operated as designed, and maintained the telescope and the focal-plane instruments at a stable temperature of 1.9 K for 38 days. The four focal-plane instruments, which together covered almost the entire infrared wavelength range, observed a sky area of about 2700 deg(2) and returned a wealth of new data on a variety of objects, including the zodiacal light, interstellar gas and dust, near-infrared cosmic background light and point sources.

  20. a New Concept of Agile Telescope

    Directory of Open Access Journals (Sweden)

    Michael Valasek

    2010-01-01

    Full Text Available The paper deals with the description of a new concept for a spherical mechanism for agile telescopes. It is based on redundantly actuated parallel kinematical structure. Due to the three times overactuated structure and application of several further innovative concepts, the Hexasphere achieves the movability of ±100 degrees. This enables the use of a Hexasphere as the basis for mounts of telescopes. Such telescopes can be optimized for minimum weight or for maximum dynamics. The proposed mechanism is expected to play a role in novel robotic telescopes nowadays used in many fields of astronomy and astrophysics, with emphasis on automated systems for alert observations of celestial gamma-ray bursts.

  1. The ATHENA telescope and optics status

    Science.gov (United States)

    Bavdaz, Marcos; Wille, Eric; Ayre, Mark; Ferreira, Ivo; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Vacanti, Giuseppe; Barriere, Nicolas; Landgraf, Boris; Haneveld, Jeroen; van Baren, Coen; Zuknik, Karl-Heintz; Della Monica Ferreira, Desiree; Massahi, Sonny; Christensen, Finn; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Spiga, Daniele; Valsecchi, Giuseppe; Vernani, Dervis; Oliver, Paul; Seidel, André

    2017-08-01

    The work on the definition and technological preparation of the ATHENA (Advanced Telescope for High ENergy Astrophysics) mission continues to progress. In parallel to the study of the accommodation of the telescope, many aspects of the X-ray optics are being evolved further. The optics technology chosen for ATHENA is the Silicon Pore Optics (SPO), which hinges on technology spin-in from the semiconductor industry, and uses a modular approach to produce large effective area lightweight telescope optics with a good angular resolution. Both system studies and the technology developments are guided by ESA and implemented in industry, with participation of institutional partners. In this paper an overview of the current status of the telescope optics accommodation and technology development activities is provided.

  2. The James Webb Space Telescope

    Science.gov (United States)

    Nowak, Maria; Eichorn, William; Hill, Michael; Hylan, Jason; Marsh, James; Ohl, Raymond; Sampler, Henry; Wright, Geraldine; Crane, Allen; Herrera, Acey; hide

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM optical metering structure is a roughly 2.2x1.7x2.2mY, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISM structure must meet its requirements at the approx.40K cryogenic operating temperature. The SIs are aligned to the structure s coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified.

  3. Single bunch transfer system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Sheehan, J.; Singh, O.; Rambo, W.

    1983-01-01

    The accelerator system at the National Synchrotron Light Source consists of an S-band 85 MeV linac and three synchrotron rings. The electron beam from the linac is accelerated by the booster ring to 600 MeV and transferred to one of the two storage rings. The smaller of the two rings operates between 300 and 800 MeV emtting photons in the vacuum ultraviolet (VUV), while the larger storage ring operates up to 2.5 GeV and emits photons in the x-ray spectrum. A system is described for loading the storage rings by filling a single-phase space bunch in the booster ring and transferring it at the end of each booster cycle into a selected bucket in one of the storage rings. By controlling the timing of the transfer on successive transfer cycles, many fill patterns may be obtained

  4. Single Station System and Method of Locating Lightning Strikes

    Science.gov (United States)

    Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)

    2003-01-01

    An embodiment of the present invention uses a single detection system to approximate a location of lightning strikes. This system is triggered by a broadband RF detector and measures a time until the arrival of a leading edge of the thunder acoustic pulse. This time difference is used to determine a slant range R from the detector to the closest approach of the lightning. The azimuth and elevation are determined by an array of acoustic sensors. The leading edge of the thunder waveform is cross-correlated between the various acoustic sensors in the array to determine the difference in time of arrival, AT. A set of AT S is used to determine the direction of arrival, AZ and EL. The three estimated variables (R, AZ, EL) are used to locate a probable point of the lightning strike.

  5. Synchronization of impacting mechanical systems with a single constraint

    Science.gov (United States)

    Baumann, Michael; Biemond, J. J. Benjamin; Leine, Remco I.; van de Wouw, Nathan

    2018-01-01

    This paper addresses the synchronization problem of mechanical systems subjected to a single geometric unilateral constraint. The impacts of the individual systems, induced by the unilateral constraint, generally do not coincide even if the solutions are arbitrarily 'close' to each other. The mismatch in the impact time instants demands a careful choice of the distance function to allow for an intuitively correct comparison of the discontinuous solutions resulting from the impacts. We propose a distance function induced by the quotient metric, which is based on an equivalence relation using the impact map. The distance function obtained in this way is continuous in time when evaluated along jumping solutions. The property of maximal monotonicity, which is fulfilled by most commonly used impact laws, is used to significantly reduce the complexity of the distance function. Based on the simplified distance function, a Lyapunov function is constructed to investigate the synchronization problem for two identical one-dimensional mechanical systems. Sufficient conditions for the uncoupled individual systems are provided under which local synchronization is guaranteed. Furthermore, we present an interaction law which ensures global synchronization, also in the presence of grazing trajectories and accumulation points (Zeno behavior). The results are illustrated using numerical examples of a 1-DOF mechanical impact oscillator which serves as stepping stone in the direction of more general systems.

  6. Active optics for next generation space telescopes

    Science.gov (United States)

    Costes, V.; Perret, L.; Laubier, D.; Delvit, J. M.; Imbert, C.; Cadiergues, L.; Faure, C.

    2017-09-01

    High resolution observation systems need bigger and bigger telescopes. The design of such telescopes is a key issue for the whole satellite. In order to improve the imaging resolution with minimum impact on the satellite, a big effort must be made to improve the telescope compactness. Compactness is also important for the agility of the satellite and for the size and cost of the launcher. This paper shows how compact a high resolution telescope can be. A diffraction limited telescope can be less than ten times shorter than its focal length. But the compactness impacts drastically the opto-mechanical sensitivity and the optical performances. Typically, a gain of a factor of 2 leads to a mechanical tolerance budget 6 times more difficult. The need to implement active optics for positioning requirements raises very quickly. Moreover, the capability to compensate shape defaults of the primary mirror is the way to simplify the mirror manufacture, to mitigate the development risks and to minimize the cost. The larger the primary mirror is, the more interesting it is to implement active optics for shape compensations. CNES is preparing next generation of earth observation satellite in the frame of OTOS (Observation de la Terre Optique Super-Résolue; High resolution earth observing optical system). OTOS is a technology program. In particular, optical technological developments and breadboards dedicated to active optics are on-going. The aim is to achieve TRL 5 to TRL6 for these new technologies and to validate the global performances of such an active telescope.

  7. Corot telescope (COROTEL)

    Science.gov (United States)

    Viard, Thierry; Mathieu, Jean-Claude; Fer, Yann; Bouzou, Nathalie; Spalinger, Etienne; Chataigner, Bruno; Bodin, Pierre; Magnan, Alain; Baglin, Annie

    2017-11-01

    COROTEL is the telescope of the COROT Satellite which aims at measuring stellar flux variations very accurately. To perform this mission, COROTEL has to be very well protected against straylight (from Sun and Earth) and must be very stable with time. Thanks to its high experience in this field, Alcatel Alenia Space has proposed, manufactured and tested an original telescope concept associated with a high baffling performance. Since its delivery to LAM (Laboratoire d'Astrophysique de Marseille, CNRS) the telescope has passed successfully the qualification tests at instrument level performed by CNES. Now, the instrument is mounted on a Proteus platform and should be launched end of 2006. The satellite should bring to scientific community for the first time precious data coming from stars and their possible companions.

  8. Telescopes and Techniques

    CERN Document Server

    Kitchin, C R

    2013-01-01

    Telescopes and Techniques has proved itself in its first two editions, having become probably one of the most widely used astronomy texts, both for amateur astronomers and astronomy and astrophysics undergraduates. Both earlier editions of the book were widely used for introductory practical astronomy courses in many universities. In this Third Edition the author guides the reader through the mathematics, physics and practical techniques needed to use today's telescopes (from the smaller models to the larger instruments installed in many colleges) and how to find objects in the sky. Most of the physics and engineering involved is described fully and requires little prior knowledge or experience. Both visual and electronic imaging techniques are covered, together with an introduction to how data (measurements) should be processed and analyzed. A simple introduction to radio telescopes is also included. Brief coverage of the more advanced topics of photometry and spectroscopy are included, but mainly to enable ...

  9. Reflecting telescope optics

    CERN Document Server

    Wilson, Raymond N

    2004-01-01

    R.N. Wilson's two-volume treatise on reflecting telescope optics has become a classic in its own right. It is intended to give a complete treatment of the subject, addressing professionals in research and industry as well as students of astronomy and amateur astronomers. This first volume, Basic Design Theory and its Historical Development, is devoted to the theory of reflecting telescope optics and systematically recounts the historical progress. The author's approach is morphological, with strong emphasis on the historical development. The book is richly illustrated including spot-diagrams a

  10. HUBBLE SPACE TELESCOPE

    Science.gov (United States)

    Godon, Patrick; Sion, Edward M; Starrfield, Sumner; Livio, Mario; Williams, Robert E; Woodward, Charles E; Kuin, Paul; Page, Kim L

    2014-04-01

    With six recorded nova outbursts, the prototypical recurrent nova T Pyxidis (T Pyx) is the ideal cataclysmic variable system to assess the net change of the white dwarf mass within a nova cycle. Recent estimates of the mass ejected in the 2011 outburst ranged from a few ~10 -5 M ⊙ to 3.3 × 10 -4 M ⊙ , and assuming a mass accretion rate of 10 -8 -10 -7 M ⊙ yr -1 for 44 yr, it has been concluded that the white dwarf in T Pyx is actually losing mass. Using NLTE disk modeling spectra to fit our recently obtained Hubble Space Telescope COS and STIS spectra, we find a mass accretion rate of up to two orders of magnitude larger than previously estimated. Our larger mass accretion rate is due mainly to the newly derived distance of T Pyx (4.8 kpc, larger than the previous 3.5 kpc estimate), our derived reddening of E ( B - V ) = 0.35 (based on combined IUE and GALEX spectra), and NLTE disk modeling (compared to blackbody and raw flux estimates in earlier works). We find that for most values of the reddening (0.25 ≤ E ( B - V ) ≤ 0.50) and white dwarf mass (0.70 M ⊙ ≤ M wd ≤ 1.35 M ⊙ ) the accreted mass is larger than the ejected mass. Only for a low reddening (~0.25 and smaller) combined with a large white dwarf mass (0.9 M ⊙ and larger) is the ejected mass larger than the accreted one. However, the best results are obtained for a larger value of reddening.

  11. A Single Deformed Bow Shock for Titan-Saturn System

    Science.gov (United States)

    Sulaiman, A. H.; Omidi, N.; Kurth, W. S.; Madanian, H.; Cravens, T.; Sergis, N.; Dougherty, M. K.; Edberg, N. J. T.

    2017-12-01

    During periods of high solar wind pressure, Saturn's bow shock is pushed inside Titan's orbit exposing the moon and its ionosphere to the supersonic solar wind. The Cassini spacecraft's T96 encounter with Titan occurred during such a period and is the subject of this presentation. The observations during this encounter show evidence for the presence of outbound and inbound shock crossings associated with Saturn and Titan. They also reveal the presence of two foreshocks: one between the outbound Kronian and inbound Titan bow shocks (foreshock-1) and the other between the outbound Titan and inbound Kronian bow shocks (foreshock-2). Using electromagnetic hybrid (kinetic ions, fluid electrons) simulations and Cassini observations we show that the origin of foreshock-1 is tied to the formation of a single deformed bow shock for the Titan-Saturn system. We also report for the first time, the observations of spontaneous hot flow anomalies (SHFAs) in foreshock-1 making Saturn the fourth planet this phenomenon has been observed and indicating its universal nature. The results of hybrid simulations also show the generation of oblique fast magnetosonic waves upstream of the outbound Titan bow shock in agreement with the observations of large amplitude magnetosonic pulsations in foreshock-2. The formation of a single deformed bow shock results in unique foreshock-bow shock or foreshock-foreshock geometries. For example, the presence of Saturn's foreshock upstream of Titan's quasi-perpendicular bow shock result in ion acceleration through a combination of shock drift and Fermi processes. We also discuss the implications of a single deformed bow shock for Saturn's magnetopause and magnetosphere.

  12. Launch Will Create a Radio Telescope Larger than Earth

    Science.gov (United States)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  13. A Search for Technosignatures from 14 Planetary Systems in the Kepler Field with the Green Bank Telescope at 1.15–1.73 GHz

    Science.gov (United States)

    Margot, Jean-Luc; Greenberg, Adam H.; Pinchuk, Pavlo; Shinde, Akshay; Alladi, Yashaswi; Prasad MN, Srinivas; Bowman, M. Oliver; Fisher, Callum; Gyalay, Szilard; McKibbin, Willow; Miles, Brittany; Nguyen, Donald; Power, Conor; Ramani, Namrata; Raviprasad, Rashmi; Santana, Jesse; Lynch, Ryan S.

    2018-05-01

    Analysis of Kepler mission data suggests that the Milky Way includes billions of Earth-sized planets in the habitable zone of their host stars. Current technology enables the detection of technosignatures emitted from a large fraction of the Galaxy. We describe a search for technosignatures that is sensitive to Arecibo-class transmitters located within ∼420 ly of Earth and transmitters that are 1000 times more effective than Arecibo within ∼13000 ly of Earth. Our observations focused on 14 planetary systems in the Kepler field and used the L-band receiver (1.15–1.73 GHz) of the 100 m diameter Green Bank Telescope. Each source was observed for a total integration time of 5 minutes. We obtained power spectra at a frequency resolution of 3 Hz and examined narrowband signals with Doppler drift rates between ±9 Hz s‑1. We flagged any detection with a signal-to-noise ratio in excess of 10 as a candidate signal and identified approximately 850,000 candidates. Most (99%) of these candidate signals were automatically classified as human-generated radio-frequency interference (RFI). A large fraction (>99%) of the remaining candidate signals were also flagged as anthropogenic RFI because they have frequencies that overlap those used by global navigation satellite systems, satellite downlinks, or other interferers detected in heavily polluted regions of the spectrum. All 19 remaining candidate signals were scrutinized and none were attributable to an extraterrestrial source.

  14. Performance characterization of pneumatic single pellet injection system

    International Nuclear Information System (INIS)

    Schuresko, D.D.; Milora, S.L.; Hogan, J.T.; Foster, C.A.; Combs, S.K.

    1982-01-01

    The Oak Ridge National Laboratory single-shot pellet injector, which has been used in plasma fueling experiments on ISX and PDX, has been upgraded and extensively instrumented in order to study the gas dynamics of pneumatic pellet injection. An improved pellet transport line was developed which utilizes a 0.3-cm-diam by 100-cm-long guide tube. Pellet gun performance was characterized by measurements of breech and muzzle dynamic pressures and by pellet velocity and mass determinations. Velocities up to 1.4 km/s were achieved for intact hydrogen pellets using hydrogen propellant at 5-MPa breech pressure. These data have been compared with new pellet acceleration calculations which include the effects of propellant friction, heat transfer, time-dependent boundary conditions, and finite gun geometry. These results provide a basis for the extrapolation of present-day pneumatic injection system performance to velocities in excess of 2 km/s

  15. An improved system of detecting single event effect in SRAM

    International Nuclear Information System (INIS)

    Tong Teng; Wang Xiaohui; Zhang Zhangang; Liu Tianqi; Gu Song; Yang Zhenlei; Su Hong; Liu Jie

    2014-01-01

    The material research center in Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS) have made a fruitful achievements in the research of single event effects (SEEs) occurring in static random access memory (SRAM). However, there are some drawbacks exist in the two systems of detecting SEE owning by the material research center. Therefore, an improved method of detecting SEE is proposed, and the method functionality is implemented in a circuit. Further, a sequence of experiments are carried out in the beam radiation terminal of the Heavy Ion Facility in Lanzhou (HIRFL), and a bunch of experimental data are collected. The irradiation tests were carried out using 129 Xe for the SEE research of 65 nm SRAMs; Using 12 C for the SEE research of the 65, 130 and 150 nm SRAMs with ECC module; Using 129 Xe for the SEL research of the common commercial SRAMs and so on. These experiments provide a statistical evidence of the effectiveness and robustness of the improved system. It is believed that the proposed system will be beneficial for detecting SEE in diverse settings, and it could be taken advantage of as a platform for future research on SEE tests in more intricate devices. (authors)

  16. Memory under stress: from single systems to network changes.

    Science.gov (United States)

    Schwabe, Lars

    2017-02-01

    Stressful events have profound effects on learning and memory. These effects are mainly mediated by catecholamines and glucocorticoid hormones released from the adrenals during stressful encounters. It has been known for long that both catecholamines and glucocorticoids influence the functioning of the hippocampus, a critical hub for episodic memory. However, areas implicated in other forms of memory, such as the insula or the dorsal striatum, can be affected by stress as well. Beyond changes in single memory systems, acute stress triggers the reconfiguration of large scale neural networks which sets the stage for a shift from thoughtful, 'cognitive' control of learning and memory toward more reflexive, 'habitual' processes. Stress-related alterations in amygdala connectivity with the hippocampus, dorsal striatum, and prefrontal cortex seem to play a key role in this shift. The bias toward systems proficient in threat processing and the implementation of well-established routines may facilitate coping with an acute stressor. Overreliance on these reflexive systems or the inability to shift flexibly between them, however, may represent a risk factor for psychopathology in the long-run. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. A Simple "Tubeless" Telescope

    Science.gov (United States)

    Straulino, S.; Bonechi, L.

    2010-01-01

    Two lenses make it possible to create a simple telescope with quite large magnification. The set-up is very simple and can be reproduced in schools, provided the laboratory has a range of lenses with different focal lengths. In this article, the authors adopt the Keplerian configuration, which is composed of two converging lenses. This instrument,…

  18. Taiwan Automated Telescope Network

    Directory of Open Access Journals (Sweden)

    Dean-Yi Chou

    2010-01-01

    can be operated either interactively or fully automatically. In the interactive mode, it can be controlled through the Internet. In the fully automatic mode, the telescope operates with preset parameters without any human care, including taking dark frames and flat frames. The network can also be used for studies that require continuous observations for selected objects.

  19. The Falcon Telescope Network

    Science.gov (United States)

    Chun, F.; Tippets, R.; Dearborn, M.; Gresham, K.; Freckleton, R.; Douglas, M.

    2014-09-01

    The Falcon Telescope Network (FTN) is a global network of small aperture telescopes developed by the Center for Space Situational Awareness Research in the Department of Physics at the United States Air Force Academy (USAFA). Consisting of commercially available equipment, the FTN is a collaborative effort between USAFA and other educational institutions ranging from two- and four-year colleges to major research universities. USAFA provides the equipment (e.g. telescope, mount, camera, filter wheel, dome, weather station, computers and storage devices) while the educational partners provide the building and infrastructure to support an observatory. The user base includes USAFA along with K-12 and higher education faculty and students. Since the FTN has a general use purpose, objects of interest include satellites, astronomical research, and STEM support images. The raw imagery, all in the public domain, will be accessible to FTN partners and will be archived at USAFA in the Cadet Space Operations Center. FTN users will be able to submit observational requests via a web interface. The requests will then be prioritized based on the type of user, the object of interest, and a user-defined priority. A network wide schedule will be developed every 24 hours and each FTN site will autonomously execute its portion of the schedule. After an observational request is completed, the FTN user will receive notification of collection and a link to the data. The Falcon Telescope Network is an ambitious endeavor, but demonstrates the cooperation that can be achieved by multiple educational institutions.

  20. The Dutch Open Telescope

    NARCIS (Netherlands)

    Rutten, R.J.; Hammerschlag, R.H.; Bettonvil, F.C.M.

    1997-01-01

    The Dutch Open Telescope is now being installed at La Palma. It is intended for optical solar observations with high spatial resolution. Its open design aims to minimize disturbances of the local air ow and so re- duce the locally-generated component of the atmospheric seeing. This paper brie y

  1. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W.B.; /UC, Santa Cruz; Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Anderson, B. /UC, Santa Cruz; Axelsson, M.; /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bartelt, J.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bederede, D.; /DAPNIA, Saclay; Bellardi, F.; /INFN, Pisa; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bignami, G.F.; /Pavia U.; Bisello, D.; /INFN, Padua /Padua U.; Bissaldi, E.; /Garching, Max Planck Inst., MPE; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Pisa /INFN, Pisa /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /INFN, Padua /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /Kalmar U. /Royal Inst. Tech., Stockholm /DAPNIA, Saclay /ASI, Rome /INFN, Pisa /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2009-05-15

    The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy {gamma}-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy {gamma}-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3

  2. Experimental induction of a perceived telescoped limb using a full-body illusion

    Directory of Open Access Journals (Sweden)

    Laura eSchmalzl

    2011-04-01

    Full Text Available Phantom limbs refer to the sensation that an amputated or missing limb is still attached to the body. Phantom limbs may be perceived as continuous with the stump so as to resemble a normal limb, or as telescoped with the more distal portion of the phantom being perceived as having withdrawn within the stump. Telescoping tends to be related to increased levels of phantom pain, making it a clinically relevant phenomenon to investigate. In the current study we show that a full-body illusion can be used to induce the sensation of a telescoped limb in healthy individuals. For the induction of the full-body illusion, participants saw the body of a mannequin from a first person perspective while being subjected to synchronized visuo-tactile stimulation through stroking. Crucially, the mannequin was missing its left hand so as to resemble an amputee. By manipulating the positioning of the strokes applied to the mannequin’s stump with respect to the participants’ hand we were able to evoke the sensation of the participants’ hand being located either below the stump or, more crucially, inside the stump, i.e. telescoped. In three separate experiments these effects were supported by complementary subjective data from questionnaires, verbally reported perceived location of the hand, and manual pointing movements indicating hand position (proprioceptive drift. Taken together our results show that healthy individuals can experience the body of an upper limb amputee as their own, and that this can be associated with telescoping sensations. This is a theoretically important observation as it shows that ownership of an entire body can be evoked in the context of gross anatomical incongruence for a single limb, and that telescoping sensations occur as a consequence of the body representation system trying to reduce this incongruence. Furthermore, the present study might provide a new platform for future studies of the relationship between telescoping and

  3. A telescopic method for photographing within 8x8 cm minirhizotrons

    NARCIS (Netherlands)

    Poelman, G; vandeKoppel, J

    1996-01-01

    A system for photographing within 8 x 8 cm minirhizotrons is described, that uses a telescopic lens instead of an endoscope. A comparison was made between the telescope system and the commonly used endoscope system. Photographs obtained with the telescope system are of superior quality as compared

  4. The Large Millimeter Telescope

    Science.gov (United States)

    Hughes, David H.; Jáuregui Correa, Juan-Carlos; Schloerb, F. Peter; Erickson, Neal; Romero, Jose Guichard; Heyer, Mark; Reynoso, David Huerta; Narayanan, Gopal; Perez-Grovas, Alfonso Serrano; Souccar, Kamal; Wilson, Grant; Yun, Min

    2010-07-01

    This paper describes the current status of the Large Millimeter Telescope (LMT), the near-term plans for the telescope and the initial suite of instrumentation. The LMT is a bi-national collaboration between Mexico and the USA, led by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and the University of Massachusetts at Amherst, to construct, commission and operate a 50m-diameter millimeter-wave radio telescope. Construction activities are nearly complete at the 4600m LMT site on the summit of Volcán Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. The commissioning and scientific operation of the LMT is divided into two major phases. As part of phase 1, the installation of precision surface segments for millimeter-wave operation within the inner 32m-diameter of the LMT surface is now complete. The alignment of these surface segments is underway. The telescope (in its 32-m diameter format) will be commissioned later this year with first-light scientific observations at 1mm and 3mm expected in early 2011. In phase 2, we will continue the installation and alignment of the remainder of the reflector surface, following which the final commissioning of the full 50-m LMT will take place. The LMT antenna, outfitted with its initial complement of scientific instruments, will be a world-leading scientific research facility for millimeter-wave astronomy.

  5. On sky testing and preliminary sensor alignment for the SOFIA Telescope

    Science.gov (United States)

    Harms, Franziska; Waddell, Patrick; Suess, Martin; Roeser, Hans-Peter

    2006-06-01

    The telescope pointing control of the Stratospheric Observatory for Infrared Astronomy (SOFIA) is achieved during science observations by an array of sensors including three imagers, gyroscopes and accelerometers. In addition, throughout alignment and calibration of the telescope assembly, the High-speed Imaging Photometer for Occultation (HIPO) is used as a reference instrument. A summary of the telescope pointing control concept is given and how HIPO is used to calibrate the telescope reference systems on the sky. A method is introduced using simple maneuvers to perform initial alignment of HIPO, the imagers and the gyroscopes by means of single star observations. During the first on sky testing of the SOFIA telescope, these maneuvers were carried out and the alignment could be improved iteratively. The corresponding alignment accuracies are identified considering repeated measurements, environmental and sensor noise. Inertial and non-inertial observations, as well as measurements over the entire operational elevation range provide additional alignment and sensor performance information. Finally, an overview is presented for future improvements in alignment.

  6. Flagellates as model system for gravity detection of single cells

    Science.gov (United States)

    Lebert, Michael; Richter, Peter; Daiker, Viktor; Schuster, Martin; Tebart, Jenny; Strauch, Sebastian M.; Donat-Peter, H.

    Euglena gracilis is a unicellular, photosynthetic organism which uses light and gravity as en-vironmental hints to reach and stay in horizons of the water column which are optimal for growth and reproduction. The orientation in respect to light (so called positive and nega-tive phototaxis, i.e. movement toward or away of a light source) was well known and fairly good understood. In contrast, knowledge about the movement away from the centre of gravity (negative gravitaxis) was rather scarce. Over a century it was unclear whether orientation in respect to the gravity vector is based on a physical or a physiological mechanism. Recent results clearly favour the latter. Knock-down mutants (RNAi) were characterized which define certain key components of the gravitactic signal transduction chain. These key components include a TRP-like channel, a gravitaxis-specific calmodulin and a protein kinase A. The molecular characterization of these components is currently performed and will be presented. Euglena is not only a model system for the close understanding of gravity detection in single cells, but can also be used as photosynthetic component, i.e. oxygen source and carbon dioxide as well as nitrogenic components sink in Closed Environmental Systems (CES). Due CES are systems of choice in times of scarce flight opportunities. They allow a massive sample sharing and combine possibilities to do microgravity research for biologists but also for engineers, physicists and material scientists. Recent attempts include Aquacells and Omegahab. In the near future miniaturized systems (Chinese ShenZhou) as well as advanced CES will be flown or tested, respectively. Current attempts and plans will be presented.

  7. RTML - a standard for use of remote telescopes. Enabling ubiquitous use of remote telescopes

    Science.gov (United States)

    Pennypacker, C.; Boer, M.; Denny, R.; Hessman, F. V.; Aymon, J.; Duric, N.; Gordon, S.; Barnaby, D.; Spear, G.; Hoette, V.

    2002-11-01

    The scientific need for a homogenous remote telescope image request system is rapidly escalating as more remote or robotic telescopes are brought to function and scientific programs are created or adapted to use such powerful telescopes. To respond to this need, we have drafted a protocol - ``Remote Telescope Markup Language" (Version 2.1) - which has enabled us to implement a non-homogeneous network of imaging telescopes capable of processing requests for the acquisition and retrieval of simple astronomical images. This protocol is designed to be independent of the specific instrumentation and software that control the remote and/or robotic telescopes. It embeds traditional astronomical features such as coordinates and exposure times, and allows for prioritized queue scheduling of telescopes while protecting the telescope operating system. The prioritization supports high-stakes interruption of other observations - ``Targets of Opportunity" like optical detection of gamma-ray bursts or other transient events. Some generality in this definition and flexibility is desirable, so that a broad variety of objects and observations can be accommodated within this standard. A number of professional observatories, telescope hardware/software companies, and amateur astronomers are already working with this version of RTML and a large body of additional professional and amateur users willing to share observing time and/or provide observations for scientific or educational use could easily adopt this protocol. The next generation mark-up language (RTML 3) will include elements necessary to schedule more complex observations, enabling its use in practically all ground-based and satellite observatories.

  8. A flat array large telescope concept for use on the moon, earth, and in space

    Science.gov (United States)

    Woodgate, Bruce E.

    1991-01-01

    An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.

  9. Radio Wavelength Studies of the Galactic Center Source N3, Spectroscopic Instrumentation For Robotic Telescope Systems, and Developing Active Learning Activities for Astronomy Laboratory Courses

    Science.gov (United States)

    Ludovici, Dominic Alesio

    2017-08-01

    The mysterious radio source N3 appears to be located within the vicinity of the Radio Arc region of the Galactic Center. To investigate the nature of this source, we have conducted radio observations with the VLA and the VLBA. Continuum observations between 2 and 50 GHz reveal that N3 is an extremely compact and bright source with a non-thermal spectrum. Molecular line observations with the VLA reveal a compact molecular cloud adjacent to N3 in projection. The properties of this cloud are consistent with other galactic center clouds. We are able to rule out several hypotheses for the nature of N3, though a micro-blazar origin cannot be ruled out. Robotic Telescope systems are now seeing widespread deployment as both teaching and research instruments. While these systems have traditionally been able to produce high quality images, these systems have lacked the capability to conduct spectroscopic observations. To enable spectroscopic observations on the Iowa Robotic Observatory, we have developed a low cost (˜ 500), low resolution (R ˜ 300) spectrometer which mounts inside a modified filter wheel and a moderate cost (˜ 5000), medium resolution (R ˜ 8000) fiber-fed spectrometer. Software has been developed to operate both instruments robotically and calibration pipelines are being developed to automate calibration of the data. The University of Iowa offers several introductory astronomy laboratory courses taken by many hundreds of students each semester. To improve student learning in these laboratory courses, we have worked to integrate active learning into laboratory activities. We present the pedagogical approaches used to develop and update the laboratory activities and present an inventory of the current laboratory exercises. Using the inventory, we make observations of the strengths and weaknesses of the current exercises and provide suggestions for future refinement of the astronomy laboratory curriculum.

  10. Knowledge-based engineering of a PLC controlled telescope

    Science.gov (United States)

    Pessemier, Wim; Raskin, Gert; Saey, Philippe; Van Winckel, Hans; Deconinck, Geert

    2016-08-01

    As the new control system of the Mercator Telescope is being finalized, we can review some technologies and design methodologies that are advantageous, despite their relative uncommonness in astronomical instrumentation. Particular for the Mercator Telescope is that it is controlled by a single high-end soft-PLC (Programmable Logic Controller). Using off-the-shelf components only, our distributed embedded system controls all subsystems of the telescope such as the pneumatic primary mirror support, the hydrostatic bearing, the telescope axes, the dome, the safety system, and so on. We show how real-time application logic can be written conveniently in typical PLC languages (IEC 61131-3) and in C++ (to implement the pointing kernel) using the commercial TwinCAT 3 programming environment. This software processes the inputs and outputs of the distributed system in real-time via an observatory-wide EtherCAT network, which is synchronized with high precision to an IEEE 1588 (PTP, Precision Time Protocol) time reference clock. Taking full advantage of the ability of soft-PLCs to run both real-time and non real-time software, the same device also hosts the most important user interfaces (HMIs or Human Machine Interfaces) and communication servers (OPC UA for process data, FTP for XML configuration data, and VNC for remote control). To manage the complexity of the system and to streamline the development process, we show how most of the software, electronics and systems engineering aspects of the control system have been modeled as a set of scripts written in a Domain Specific Language (DSL). When executed, these scripts populate a Knowledge Base (KB) which can be queried to retrieve specific information. By feeding the results of those queries to a template system, we were able to generate very detailed "browsable" web-based documentation about the system, but also PLC software code, Python client code, model verification reports, etc. The aim of this paper is to

  11. SOFIA: Flying the Telescope

    Science.gov (United States)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    The primary focus of this paper is how the flight test team for the Stratospheric Observatory For Infrared Astronomy (SOFIA) re-cast an extensive developmental test program to meet key milestones while simultaneously ensuring safe certification of the airframe and delivery of an operationally relevant platform, ultimately saving the overall program from financial demise. Following a brief introduction to the observatory and what it is designed to do, SOFIAs planned developmental test program is summarized, including analysis and design philosophy, envelope expansion, model validation and airframe certification. How NASA used lessons learned from other aircraft that employed open cavities in flight is explained as well as how and why the chosen design was selected. The approach to aerodynamic analysis, including bare airframe testing, wind tunnel testing, computational fluid dynamics and finite element modeling proved absolutely critical. Despite a solid analytical foundation, many unknowns remained. History provides several examples of disastrous effects on both systems and flight safety if cavity design is not approached properly. For these reasons, an extensive test plan was developed to ensure a safe and thorough build-up for envelope expansion, airframe certification and early science missions. Unfortunately, as is often the case, because of chronic delays in overall program execution, severe schedule and funding pressures were present. If critical milestones were not met, domestic as well as international funding was in serious jeopardy, and the demise of the entire program loomed large. Concentrating on rigorous model validation, the test team challenged certification requirements, increased test efficiency and streamlined engineering analysis. This resulted in the safe reduction of test point count by 72%, meeting all program milestones and a platform that soundly satisfied all operational science requirements. Results from early science missions are shown

  12. Calibrating the Athena telescope

    Science.gov (United States)

    de Bruijne, J.; Guainazzi, M.; den Herder, J.; Bavdaz, M.; Burwitz, V.; Ferrando, P.; Lumb, D.; Natalucci, L.; Pajot, F.; Pareschi, G.

    2017-10-01

    Athena is ESA's upcoming X-ray mission, currently set for launch in 2028. With two nationally-funded, state-of-the-art instruments (a high-resolution spectrograph named X-IFU and a wide-field imager named WFI), and a telescope collecting area of 1.4-2 m^2 at 1 keV, the calibration of the spacecraft is a challenge in itself. This poster presents the current (spring 2017) plan of how to calibrate the Athena telescope. It is based on a hybrid approach, using bulk manufacturing and integration data as well as dedicated calibration measurements combined with a refined software model to simulate the full response of the optics.

  13. The COROT telescope

    Science.gov (United States)

    Viard, Thierry

    2017-11-01

    The COROT telescope, of which the customer is the French "INSU" / "CNES" (Institut National des Sciences de l'Univers / Centre National des Etudes Spatiales) is in fact a very precise and stable imaging instrument, which will be pointed towards fixed areas in the sky (each containing more than 3000 target stars) for periods of at least 5 months, in order to carry out its two missions.

  14. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  15. [Galileo and his telescope].

    Science.gov (United States)

    Strebel, Christoph

    2006-01-01

    Galileo's publication of observations made with his newly reinvented telescope provoked a fierce debate. In April 1610 Martinus Horky, a young Bohemian astronomer, had an opportunity to make his own observations with Galileo's telescope in the presence of Antonio Magini and other astronomers. Horky and the other witnesses denied the adequacy of Galileo's telescope and therefore the bona fides of his discoveries. Kepler conjectured Horky as well as all his witnesses to be myopic. But Kepler's objection could not stop the publication of Horky's Peregrinatio contra nuncium sidereum (Modena, 1610), the first printed refutation of Galileo's Sidereus nuncius. In his treatise, Horky adresses four questions: 1) Do the four newly observed heavenly bodies actually exist? Horky denies their existence on various grounds: a) God, as every astronomer teaches, has created only seven moveable heavenly bodies and astronomical knowledge originates in God, too. b) Heavenly bodies are either stars or planets. Galileo's moveable heavenly bodies fit into neither category. c) If they do exist, why have they not already been observed by other scholars? Horky concludes that there are no such heavenly bodies. 2) What are these phenomena? They are purely artefactual, and produced by Galileo's telescope. 3) How are they like? Galileo's "stars" are so small as to be almost invisible. Galileo claims that he has measured their distances from each other. This however is impossible due to their diminutive size and other observational problems. Hence, Galileo's claim is a further proof that he is a fraud. 4) Why are they? For Galileo they are a chance to earn money but for astronomers like Horky they are a reason to offer thanks and honour to God. Horky's treatise was favourably received by the enemies of Galileo. But Kepler's critique was devastating. After calling on Kepler in Prague, Horky had to revoke the contents of his book.

  16. Electrical conduction and photoresponses of gamma-ray-irradiated single-stranded DNA/single-walled carbon nanotube composite systems

    Energy Technology Data Exchange (ETDEWEB)

    Hong, W.; Lee, E.M.; Kim, D.W.; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr

    2015-04-15

    Highlights: •Effects of gamma-ray irradiation on single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. •Barrier for thermally activated conduction in the composite systems modified by the gamma-ray irradiation. •Photoresponses reveal photoexcitation and oxygen photodesorption modified by gamma-ray irradiation. -- Abstract: Effects of gamma-ray irradiation on the electrical conductivity and photoresponse have been studied for single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite films. The temperature-dependent electrical conductivity of the ssDNA/SWNT composite films, well described by a fluctuation-induced tunneling model, indicated modification of the barrier for thermally activated conduction by the gamma-ray irradiation. Besides, the photoresponse measurements indicated modified photoexcited charge carrier generation and oxygen photodesorption in the composite systems due to the gamma-ray irradiation.

  17. Delayed Consensus Problem for Single and Double Integrator Systems

    Directory of Open Access Journals (Sweden)

    Martín Velasco-Villa

    2015-01-01

    Full Text Available This work deals with the analysis of the consensus problem for networks of agents constituted by single and double integrator systems. It is assumed that the communication among agents is affected by a constant time-delay. Previous and numerous analysis of the problem shows that the maximum communication time-delay that can be introduced to the network without affecting the consensus of the group of the agents depends on the considered topology. In this work, a control scheme that is based on the estimation of future states of the agents and that allows increasing the magnitude of a possible time-delay affecting the communication channels is proposed. How the proposed delay compensation strategy is independent of the network topology in the sense that the maximum allowable time-delay that could be supported by the network depends on a design parameter and not on the maximum eigenvalue of the corresponding Laplacian matrix is shown. It is formally proven that, under the proposed prediction scheme, the consensus of the group can be achieved by improving the maximum time-delay bounds previously reported in the literature. Numerical simulations show the effectiveness of the proposed solution.

  18. Single vs. dual color fire detection systems: operational tradeoffs

    Science.gov (United States)

    Danino, Meir; Danan, Yossef; Sinvani, Moshe

    2017-10-01

    In attempt to supply a reasonable fire plume detection, multinational cooperation with significant capital is invested in the development of two major Infra-Red (IR) based fire detection alternatives, single-color IR (SCIR) and dual-color IR (DCIR). False alarm rate was expected to be high not only as a result of real heat sources but mainly due to the IR natural clutter especially solar reflections clutter. SCIR uses state-of-the-art technology and sophisticated algorithms to filter out threats from clutter. On the other hand, DCIR are aiming at using additional spectral band measurements (acting as a guard), to allow the implementation of a simpler and more robust approach for performing the same task. In this paper we present the basics of SCIR & DCIR architecture and the main differences between them. In addition, we will present the results from a thorough study conducted for the purpose of learning about the added value of the additional data available from the second spectral band. Here we consider the two CO2 bands of 4-5 micron and of 2.5-3 micron band as well as off peak band (guard). The findings of this study refer also to Missile warning systems (MWS) efficacy, in terms of operational value. We also present a new approach for tunable filter to such sensor.

  19. Developments in gamma-ray spectrometry: systems, software, and methods-II. 3. Low-Energy Gamma-Ray Spectrometry Using a Compton-Suppressed Telescope Detector

    International Nuclear Information System (INIS)

    Sigg, R.A.; DiPrete, D.P.

    2001-01-01

    The Savannah River Technology Center (SRTC) utilizes gamma-ray spectrometry in studying numerous areas of applied interest to the Savannah River Site (SRS). For example, analyses of long-lived gamma-ray-emitting fission products and actinides are required to meet waste characterization, process holdup, environmental restoration, and decontamination and decommissioning efforts. A significant portion of the overall effort centers on measurements of gamma rays having energies below several hundred kilo-electron-volts. To assist these efforts, the SRTC recently acquired a spectrometer system that provides lower natural and Compton scattered background levels while achieving relatively high counting efficiencies for low-energy gamma rays. The combination of high efficiency and low background provides factor-of- 2-to-4 improvements in minimum detectable activities and allows meeting programmatic objectives with shorter measurement times. Numerous Compton-suppression spectrometers have been reported since the concept was first advanced. The spectrometer consists of two high-purity germanium detectors in a telescope configuration surrounded by a background /Compton-suppression sodium iodide detector. The front germanium detector is a 20-mm-thick x 60-mm-diam broad energy spectrometer, and the rear detector is a 40% efficient 61- mm-diam x 60-cm-thick closed-end coaxial spectrometer. The cryostat housing the germanium detectors (a) includes a carbon composite window for transmitting low-energy gamma rays, (b) is in a J-type configuration to mask the germanium detectors from natural activities in the cryo-pumping media, and (c) is fabricated from materials selected for low background. The telescope detector is in the 8.6-cm-inside-diameter annulus of a 22.9- x 22.9-cm sodium iodide detector encased in a 10-cm-thick lead shield. The counting system is located in a basement counting room having ∼60-cm-thick concrete walls. Initial tests show that the low-energy segment of

  20. Implementation of a single sign-on system between practice, research and learning systems.

    Science.gov (United States)

    Purkayastha, Saptarshi; Gichoya, Judy W; Addepally, Siva Abhishek

    2017-03-29

    Multiple specialized electronic medical systems are utilized in the health enterprise. Each of these systems has their own user management, authentication and authorization process, which makes it a complex web for navigation and use without a coherent process workflow. Users often have to remember multiple passwords, login/logout between systems that disrupt their clinical workflow. Challenges exist in managing permissions for various cadres of health care providers. This case report describes our experience of implementing a single sign-on system, used between an electronic medical records system and a learning management system at a large academic institution with an informatics department responsible for student education and a medical school affiliated with a hospital system caring for patients and conducting research. At our institution, we use OpenMRS for research registry tracking of interventional radiology patients as well as to provide access to medical records to students studying health informatics. To provide authentication across different users of the system with different permissions, we developed a Central Authentication Service (CAS) module for OpenMRS, released under the Mozilla Public License and deployed it for single sign-on across the academic enterprise. The module has been in implementation since August 2015 to present, and we assessed usability of the registry and education system before and after implementation of the CAS module. 54 students and 3 researchers were interviewed. The module authenticates users with appropriate privileges in the medical records system, providing secure access with minimal disruption to their workflow. No passwords requests were sent and users reported ease of use, with streamlined workflow. The project demonstrates that enterprise-wide single sign-on systems should be used in healthcare to reduce complexity like "password hell", improve usability and user navigation. We plan to extend this to work with other

  1. Standardization of direct drive servos in telescope applications

    Science.gov (United States)

    Gutierrez, Pablo

    2003-02-01

    This paper explores the use of direct drive servos in telescopes applications in the quest of standardization key concepts that might push to more reliable and cheaper solutions for future complex motion systems. Considerations related to different PWM Frequencies, Motor Phasing, position feedback, CAN-bus interfaces, etc. A collection of data from the VLT experience is presented showing the particular needs of the modern telescope"s drives. Can an industry standard amplifier meet the telescope specifications, and therefore be easier to maintain and offer a cheaper solution?

  2. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    Science.gov (United States)

    Feinberg, Lee; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2005-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid, segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (eg, Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate it s feasibility.

  3. End-to-end simulations and planning of a small space telescopes: Galaxy Evolution Spectroscopic Explorer: a case study

    Science.gov (United States)

    Heap, Sara; Folta, David; Gong, Qian; Howard, Joseph; Hull, Tony; Purves, Lloyd

    2016-08-01

    Large astronomical missions are usually general-purpose telescopes with a suite of instruments optimized for different wavelength regions, spectral resolutions, etc. Their end-to-end (E2E) simulations are typically photons-in to flux-out calculations made to verify that each instrument meets its performance specifications. In contrast, smaller space missions are usually single-purpose telescopes, and their E2E simulations start with the scientific question to be answered and end with an assessment of the effectiveness of the mission in answering the scientific question. Thus, E2E simulations for small missions consist a longer string of calculations than for large missions, as they include not only the telescope and instrumentation, but also the spacecraft, orbit, and external factors such as coordination with other telescopes. Here, we illustrate the strategy and organization of small-mission E2E simulations using the Galaxy Evolution Spectroscopic Explorer (GESE) as a case study. GESE is an Explorer/Probe-class space mission concept with the primary aim of understanding galaxy evolution. Operation of a small survey telescope in space like GESE is usually simpler than operations of large telescopes driven by the varied scientific programs of the observers or by transient events. Nevertheless, both types of telescopes share two common challenges: maximizing the integration time on target, while minimizing operation costs including communication costs and staffing on the ground. We show in the case of GESE how these challenges can be met through a custom orbit and a system design emphasizing simplification and leveraging information from ground-based telescopes.

  4. Origins Space Telescope: Study Plan

    Science.gov (United States)

    Nayyeri, Hooshang; Cooray, Asantha; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.

  5. Hard x-ray telescope mission

    DEFF Research Database (Denmark)

    Gorenstein, P.; Worrall, D.; Joensen, K.D.

    1996-01-01

    The Hard X-Ray Telescope was selected for study as a possible new intermediate size mission for the early 21st century. Its principal attributes are: (1) multiwavelength observing with a system of focussing telescopes that collectively observe from the UV to over 1 MeV, (2) much higher sensitivity...... and much better angular resolution in the 10 - 100 keV band, and (3) higher sensitivity for detecting gamma ray lines of known energy in the 100 keV to 1 MeV band. This paper emphasizes the mission aspects of the concept study such as the payload configuration and launch vehicle. An engineering team...

  6. Autonomous Dome for a Robotic Telescope

    Science.gov (United States)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  7. OPE3 : A model system for single-molecule transport

    NARCIS (Netherlands)

    Frisenda, R.

    2016-01-01

    In this dissertation, charge-transport through individual organic molecules is investigated. The single molecules are contacted with two-terminal mechanically controllable break junction gold electrodes and their electrical and mechanical behavior studied at room and low temperature.

  8. Modeling and control of antennas and telescopes

    CERN Document Server

    Gawronski, Wodek

    2008-01-01

    The book shows, step-by-step, the design, implementation, and testing of the antenna/telescope control system, from the design stage (analytical model) to fine tuning of the RF beam pointing (monopulse and conscan). It includes wide use of Matlab and Simulink..

  9. Vibration isolation systems, considered as systems with single degree of freedom

    Directory of Open Access Journals (Sweden)

    Zebilila Mohammed

    2017-01-01

    Full Text Available The research considers and analyzes vibration isolation systems, whose design schemes are single degree of freedom systems, including nonlinear elements - displacement limiter and viscous damper. Presented are calculation formulas in closed form for linear systems in operational modes (for harmonic and impulse loads, algorithms and examples of calculation of linear and nonlinear systems in operational and transient modes. The calculation method and the above dependences are written using the transfer (TF and impulse response functions (IRF of linear dynamical systems and dependencies that determine the relationship between these functions. The effectiveness of 2 options of vibration isolation systems in transient modes is analyzed. There is significant reduction of load from the equipment to the supporting structures in the starting-stopping modes by the use of displacement limiter.

  10. The TACTIC atmospheric Cherenkov imaging telescope

    International Nuclear Information System (INIS)

    Koul, R.; Tickoo, A.K.; Kaul, S.K.; Kaul, S.R.; Kumar, N.; Yadav, K.K.; Bhatt, N.; Venugopal, K.; Goyal, H.C.; Kothari, M.; Chandra, P.; Rannot, R.C.; Dhar, V.K.; Koul, M.K.; Kaul, R.K.; Kotwal, S.; Chanchalani, K.; Thoudam, S.; Chouhan, N.; Sharma, M.; Bhattacharyya, S.; Sahayanathan, S.

    2007-01-01

    The TACTIC (TeV Atomospheric Cherenkov Telescope with Imaging Camera) γ-ray telescope, equipped with a light collector of area ∼9.5m 2 and a medium resolution imaging camera of 349 pixels, has been in operation at Mt. Abu, India, since 2001. This paper describes the main features of its various subsystems and its overall performance with regard to (a) tracking accuracy of its two-axes drive system, (b) spot size of the light collector, (c) back-end signal processing electronics and topological trigger generation scheme, (d) data acquisition and control system and (e) relative and absolute gain calibration methodology. Using a trigger field-of-view of 11x11 pixels (∼3.4 a tx3.4 a t), the telescope records a cosmic ray event rate of ∼2.5Hz at a typical zenith angle of 15 a t. Monte Carlo simulation results are also presented in the paper for comparing the expected performance of the telescope with actual observational results. The consistent detection of a steady signal from the Crab Nebula above ∼1.2TeV energy, at a sensitivity level of ∼5.0σ in ∼25h, along with excellent matching of its energy spectrum with that obtained by other groups, reassures that the performance of the TACTIC telescope is quite stable and reliable. Furthermore, encouraged by the detection of strong γ-ray signals from Mrk 501 (during 1997 and 2006 observations) and Mrk 421 (during 2001 and 2005-2006 observations), we believe that there is considerable scope for the TACTIC telescope to monitor similar TeV γ-ray emission activity from other active galactic nuclei on a long-term basis

  11. Buried plastic scintillator muon telescope (BATATA)

    International Nuclear Information System (INIS)

    Alfaro, R.; De Donato, C.; D'Olivo, J.C.; Guzman, A.; Medina-Tanco, G.; Moreno Barbosa, E.; Paic, G.; Patino Salazar, E.; Salazar Ibarguen, H.; Sanchez, F.A.; Supanitsky, A.D.; Valdes-Galicia, J.F.; Vargas Trevino, A.D.; Vergara Limon, S.; Villasenor, L.M.

    2010-01-01

    Muon telescopes have multiple applications in the area of cosmic ray research. We are currently building such a detector with the objective of comparing the ground penetration of muon vs. electron-gamma signals originated in cosmic ray showers. The detector is composed by a set of three parallel dual-layer scintillator planes, buried at fixed depths ranging from 120 to 600g/cm 2 . Each layer is 4m 2 and is composed by 49 rectangular strips of 4cmx2m, oriented at a 90 0 angle with respect to its companion layer, which gives an xy-coincidence pixel of 4x4cm 2 . The scintillators are MINOS extruded polystyrene strips, with an embedded Bicron BC92 wavelength shifting (WLS) fibers, of 1.5 mm in diameter. Light is collected by Hamamatsu H7546B multi-anode PMTs of 64 pixels. The front-end (FE) electronics works in counting mode and signals are transmitted to the surface DAQ stage using low-voltage differential signaling (LVDS). Any strip signal above threshold opens a GPS-tagged 2μs data collection window. Data, including signal and background, are acquired by a system of FPGA (Spartan 2E) boards and a single-board computer (TS7800).

  12. Modal vibration testing of the DVA-1 radio telescope

    Science.gov (United States)

    Byrnes, Peter W. G.; Lacy, Gordon

    2016-07-01

    The Dish Verification Antenna 1 (DVA-1) is a 15m aperture offset Gregorian radio telescope featuring a rim-supported single piece molded composite primary reflector on an altitude-azimuth pedestal mount. Vibration measurements of the DVA-1 telescope were conducted over three days in October 2014 by NSI Herzberg engineers. The purpose of these tests was to measure the first several natural frequencies of the DVA-1 telescope. This paper describes the experimental approach, in particular the step-release method, and summarizes some interesting results, including unexpectedly high damping of the first mode over a narrow range of zenith angles.

  13. Precise Estimates of the Physical Parameters for the Exoplanet System HD 17156 Enabled by Hubble Space Telescope Fine Guidance Sensor Transit and Asteroseismic Observations

    DEFF Research Database (Denmark)

    Nutzman, Philip; Gilliland, Ronald L.; McCullough, Peter R.

    2011-01-01

    We present observations of three distinct transits of HD 17156b obtained with the Fine Guidance Sensors on board the Hubble Space Telescope. We analyzed both the transit photometry and previously published radial velocities to find the planet-star radius ratio Rp /R sstarf = 0.07454 ± 0.00035, in...

  14. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...... and analyses light reflected from the polymer-based single- mode fibre-optic sensor system....

  15. The Large Synoptic Survey Telescope

    Science.gov (United States)

    Ivezic, Zeljko

    2007-05-01

    The Large Synoptic Survey Telescope (LSST) is currently by far the most ambitious proposed ground-based optical survey. With initial funding from the US National Science Foundation (NSF), Department of Energy (DOE) laboratories and private sponsors, the design and development efforts are well underway at many institutions, including top universities and leading national laboratories. The main science themes that drive the LSST system design are Dark Energy and Matter, the Solar System Inventory, Transient Optical Sky and the Milky Way Mapping. The LSST system, with its 8.4m telescope and 3,200 Megapixel camera, will be sited at Cerro Pachon in northern Chile, with the first light scheduled for 2014. In a continuous observing campaign, LSST will cover the entire available sky every three nights in two photometric bands to a depth of V=25 per visit (two 15 second exposures), with exquisitely accurate astrometry and photometry. Over the proposed survey lifetime of 10 years, each sky location would be observed about 1000 times, with the total exposure time of 8 hours distributed over six broad photometric bandpasses (ugrizY). This campaign will open a movie-like window on objects that change brightness, or move, on timescales ranging from 10 seconds to 10 years, and will produce a catalog containing over 10 billion galaxies and a similar number of stars. The survey will have a data rate of about 30 TB/night, and will collect over 60 PB of raw data over its lifetime, resulting in an incredibly rich and extensive public archive that will be a treasure trove for breakthroughs in many areas of astronomy and astrophysics.

  16. The GRASP telescope

    Science.gov (United States)

    Bignami, G. F.; Dean, A. J.; Durouchoux, Ph.; Hurley, K.; Lund, N.; McBreen, B.; Schönfelder, V.; Swanenburg, B. N.; Tomaschek, G.; Winkler, C.

    1989-01-01

    The GRASP mission Gamma-Ray Astronomy with Spectroscopy and Positioning addresses the scientific goals of fine spectroscopy with imaging and accurate positioning of gamma-ray sources, an unexplored area within gamma-ray astronomy. The assessment of GRASP as a future space astronomy mission in the mid-1990s has led to the design of the instrument outlined in this article. Thus GRASP is a third generation gamma-ray telescope and is designed to operate as a high quality spectral imager in the mid-1990s, when, following the GRO, SIGMA, and GAMMA-1 missions, there will be requirement for a more sophisticated instrument to maintain the momentum of advance in gamma-ray astronomy. The telescope will be capable of locating point sources with a precision of typically 1 arc min, whilst making a fine spectral analysis (E/ΔE ˜ 1000) of any gamma-ray line features. The high sensitivity of this instrument and the long (> 2 year) lifetime of the mission will enable a large number (˜ 1000) of astronomical objects to be studied. The GRASP mission has the potential to move gamma-ray astronomy from an era of basic exploration to one in which detailed and novel measurements can be used to gain a better understanding of many astrophysical problems.

  17. Deep space telescopes

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The short series of seminars will address results and aims of current and future space astrophysics as the cultural framework for the development of deep space telescopes. It will then present such new tools, as they are currently available to, or imagined by, the scientific community, in the context of the science plans of ESA and of all major world space agencies. Ground-based astronomy, in the 400 years since Galileo’s telescope, has given us a profound phenomenological comprehension of our Universe, but has traditionally been limited to the narrow band(s) to which our terrestrial atmosphere is transparent. Celestial objects, however, do not care about our limitations, and distribute most of the information about their physics throughout the complete electromagnetic spectrum. Such information is there for the taking, from millimiter wavelengths to gamma rays. Forty years astronomy from space, covering now most of the e.m. spectrum, have thus given us a better understanding of our physical Universe then t...

  18. Benefits of a single payment system: case study of Abu Dhabi health system reforms.

    Science.gov (United States)

    Vetter, Philipp; Boecker, Klaus

    2012-12-01

    In 2005 leaders in the wealthy Emirate of Abu Dhabi inherited an health system from their predecessors that was well-intentioned in its historic design, but that did not live up to aspirations in any dimension. First, the Emirate defined a vision to deliver "world-class" quality care in response to citizen's needs. It has since introduced tiered mandatory health insurance for all inhabitants linked to a single standard payment system, which generates accurate data as an invaluable by-product. A newly created independent health system regulator monitors these data and licenses, audits, and inspects all health service professionals, facilities, and insurers accordingly. We analyse these health system reforms using the "Getting Health Reform Right" framework. Our analysis suggests that an integrated set of reforms addressing all reform levers is critical to achieving the outcomes observed. The reform programme has improved access, by giving all residents health cards. The approximate doubling of demand has been matched by flexible supply, with the private sector adding 5 new hospitals and 93 clinics to the health system infrastructure since 2006. The focus on reliable raw-data flows through the single standard payment system functions as a motor for improvement services, innovation, and investment, for instance by allowing payers to 'pay for quality', which may well be applicable in other contexts. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. ASSESSMENT of POTENTIAL CARBON DIOXIDE-BASED DEMAND CONTROL VENTILATION SYSTEM PERFORMANCE in SINGLE ZONE SYSTEMS

    Science.gov (United States)

    2013-03-21

    requirements of a 400 m3 space in a multiuse facility in South Korea using two types of DCV systems—one CO2-based and the other uses a radio frequency...identification (RFID) device to detect zone occupancy 25 (Jeong et al., 2010). A dedicated outdoor air system supplies ventilation air to the zone...use a known control scheme (ASHRAE, 2010b). Carbon Dioxide Sensor Modeling Case Study 2 While the first case study examines a single multiuse

  20. Integrating Ground System Tools From Multiple Technologies Into a Single System Environment

    Science.gov (United States)

    Ritter, George H.

    2004-01-01

    With rapid technology changes and new and improved development techniques, it becomes extremely difficult to try to add capabilities to existing ground systems without wanting to replace the entire system. Replacing entire systems is not usually cost effective so there is a need to be able to slowly improve systems without long development times that introduce risk due to large amounts of change. The Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) ground system provides command, telemetry, and payload planning systems in support of the International Space Station. Our systems have continuously evolved with technology changes due to hardware end of life issues, and also due to user requirement changes. As changes have been implemented, we have tried to take advantage of some of the latest technologies while at the same time maintaining certain legacy capabilities that are not cost affective to replace. One of our biggest challenges is to integrate all of these implementations into a single system that is usable, maintainable, and scalable. Another challenge is to provide access to our tools in such a way that users are not aware of all the various implementation methods and tools being used. This approach not only makes our system much more usable, it allows us to continue to migrate capabilities and to add capabilities without impacting system usability. This paper will give an overview of the tools used for MSFC ISS payload operations and show an approach for integrating various technologies into a single environment that is maintainable, flexible, usable, cost effective, and that meets user needs.

  1. Construction of the Advanced Technology Solar Telescope

    Science.gov (United States)

    Rimmele, T. R.; Keil, S.; McMullin, J.; Knölker, M.; Kuhn, J. R.; Goode, P. R.; Rosner, R.; Casini, R.; Lin, H.; Tritschler, A.; Wöger, F.; ATST Team

    2012-12-01

    The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope and the world's leading ground-based resource for studying solar magnetism that controls the solar wind, flares, coronal mass ejections and variability in the Sun's output. The project has entered its construction phase. Major subsystems have been contracted. As its highest priority science driver ATST shall provide high resolution and high sensitivity observations of the dynamic solar magnetic fields throughout the solar atmosphere, including the corona at infrared wavelengths. With its 4m aperture, ATST will resolve features at 0.″03 at visible wavelengths and obtain 0.″1 resolution at the magnetically highly sensitive near infrared wavelengths. A high order adaptive optics system delivers a corrected beam to the initial set of state-of-the-art, facility class instrumentation located in the Coudé laboratory facility. The initial set of first generation instruments consists of five facility class instruments, including imagers and spectro-polarimeters. The high polarimetric sensitivity and accuracy required for measurements of the illusive solar magnetic fields place strong constraints on the polarization analysis and calibration. Development and construction of a four-meter solar telescope presents many technical challenges, including thermal control of the enclosure, telescope structure and optics and wavefront control. A brief overview of the science goals and observational requirements of the ATST will be given, followed by a summary of the design status of the telescope and its instrumentation, including design status of major subsystems, such as the telescope mount assembly, enclosure, mirror assemblies, and wavefront correction

  2. New electronics for the Cherenkov Telescope Array (NECTAr)

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L., E-mail: christopher.naumann@lpnhe.in2p3.fr [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Delagnes, E. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Bolmont, J.; Corona, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Dzahini, D. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); Gascon, D. [ICC-UB, Universitat Barcelona (Spain); Glicenstein, J.-F.; Guilloux, F. [IRFU, CEA/DSM, Saclay, Gif-sur-Yvette (France); Nayman, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Rarbi, F. [LPSC, Universite Joseph Fourier, INPG and IN2P3/CNRS, Grenoble (France); Sanuy, A. [ICC-UB, Universitat Barcelona (Spain); Tavernet, J.-P.; Toussenel, F.; Vincent, P. [LPNHE, IN2P3/CNRS Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Paris (France); Vorobiov, S. [LUPM, Universite Montpellier II and IN2P3/CNRS, Montpellier (France); DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)

    2012-12-11

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  3. New electronics for the Cherenkov Telescope Array (NECTAr)

    Science.gov (United States)

    Naumann, C. L.; Delagnes, E.; Bolmont, J.; Corona, P.; Dzahini, D.; Feinstein, F.; Gascón, D.; Glicenstein, J.-F.; Guilloux, F.; Nayman, P.; Rarbi, F.; Sanuy, A.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The international CTA consortium has recently entered into its preparatory phase towards the construction of the next-generation Cherenkov Telescope Array CTA. This experiment will be a successor, and based on the return of experience from the three major current-generation arrays H.E.S.S., MAGIC and VERITAS, and aims to significantly improve upon the sensitivity as well as the energy range of its highly successful predecessors. Construction is planned to begin by 2013, and when finished, CTA will be able to explore the highest-energy gamma ray sky in unprecedented detail. To achieve this increase in sensitivity and energy range, CTA will employ the order of 100 telescopes of three different sizes on two sites, with around 1000-4000 channels per camera, depending on the telescope size. To equip and reliably operate the order of 100000 channels of photodetectors (compared to 6000 of the H.E.S.S. array), a new kind of flexible and powerful yet inexpensive front-end hardware will be required. One possible solution is pursued by the NECTAr (New Electronics for the Cherenkov Telescope Array) project. Its main feature is the integration of as much as possible of the front-end electronics (amplifiers, fast analogue samplers, memory and ADCs) into a single ASIC, which will allow very fast readout performances while significantly reducing the cost and the power consumption per channel. Also included is a low-cost FPGA for digital treatment and online data processing, as well as an Ethernet connection. Other priorities of NECTAr are the modularity of the system, a high degree of flexibility in the trigger system as well as the possibility of flexible readout modes to optimise the signal-to-noise ratio while at the same time allowing a significant reduction of data rates, both of which could improve the sensitivity of CTA compared to current detection systems. This paper gives an overview over the development work for the Nectar system, with particular focus on its main

  4. Revisiting the Effectiveness of Large Optical Telescopes

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2015-01-01

    distortions in the optical path, which includes, actually, a laser resonator, a channel for transportation of powerful laser radiation with beam-deflecting mirrors to form the telescope with a compound main mirror;- forming the efficiency criteria of adaptive optical systems;- multi-loop system for adaptive correction of distortions.The paper discusses test results of transporting powerful laser radiation in the horizontal pathway and shows visual appearance of forming optical system of the test complex bench.It is convincingly proved that the use of offered postulates in development or modernization of optical complexes ensures the minimum level of residual distortions and the overall performance of adaptive optics.The offered postulates of adaptive correction of radiation wave-front and a positive experience of their use in full-scale optical complexes will substantially reduce terms and costs in creating effective aids to watch remote objects, as well as to form and supply the energy to the space objects for its various use such as power supply, communication, fight against space debris, ensuring asteroid safety, etc.It is possible to draw a conclusion that the state of domestic optical science, its potential in creation of adaptive means to provide formation and transportation of powerful laser radiation, and results of theoretical and pilot studies, encourage a reasonable hope for future creating a multi-purpose highly effective large-size optic-electronic facility.

  5. Automation Hardware & Software for the STELLA Robotic Telescope

    Science.gov (United States)

    Weber, M.; Granzer, Th.; Strassmeier, K. G.

    The STELLA telescope (a joint project of the AIP, Hamburger Sternwarte and the IAC) is to operate in fully robotic mode, with no human interaction necessary for regular operation. Thus, the hardware must be kept as simple as possible to avoid unnecessary failures, and the environmental conditions must be monitored accurately to protect the telescope in case of bad weather. All computers are standard PCs running Linux, and communication with specialized hardware is done via a RS232/RS485 bus system. The high level (java based) control software consists of independent modules to ease bug-tracking and to allow the system to be extended without changing existing modules. Any command cycle consists of three messages, the actual command sent from the central node to the operating device, an immediate acknowledge, and a final done message, both sent back from the receiving device to the central node. This reply-splitting allows a direct distinction between communication problems (no acknowledge message) and hardware problems (no or a delayed done message). To avoid bug-prone packing of all the sensor-analyzing software into a single package, each sensor-reading and interaction with other sensors is done within a self-contained thread. Weather-decision making is therefore totally decoupled from the core control software to avoid dead-locks in the core module.

  6. Load compensation for single phase system using series active filter

    African Journals Online (AJOL)

    user

    Abstract. The exponentially rising application of power electronics based appliances in Domestic Consumer Voltage Distribution. System (DCVDS) has enhanced power quality problems even at the lowest voltage level in distribution system. Starting from transmission system to low voltage distribution system, quite a good ...

  7. Automated Cloud Observation for Ground Telescope Optimization

    Science.gov (United States)

    Lane, B.; Jeffries, M. W., Jr.; Therien, W.; Nguyen, H.

    As the number of man-made objects placed in space each year increases with advancements in commercial, academic and industry, the number of objects required to be detected, tracked, and characterized continues to grow at an exponential rate. Commercial companies, such as ExoAnalytic Solutions, have deployed ground based sensors to maintain track custody of these objects. For the ExoAnalytic Global Telescope Network (EGTN), observation of such objects are collected at the rate of over 10 million unique observations per month (as of September 2017). Currently, the EGTN does not optimally collect data on nights with significant cloud levels. However, a majority of these nights prove to be partially cloudy providing clear portions in the sky for EGTN sensors to observe. It proves useful for a telescope to utilize these clear areas to continue resident space object (RSO) observation. By dynamically updating the tasking with the varying cloud positions, the number of observations could potentially increase dramatically due to increased persistence, cadence, and revisit. This paper will discuss the recent algorithms being implemented within the EGTN, including the motivation, need, and general design. The use of automated image processing as well as various edge detection methods, including Canny, Sobel, and Marching Squares, on real-time large FOV images of the sky enhance the tasking and scheduling of a ground based telescope is discussed in Section 2. Implementations of these algorithms on single and expanding to multiple telescopes, will be explored. Results of applying these algorithms to the EGTN in real-time and comparison to non-optimized EGTN tasking is presented in Section 3. Finally, in Section 4 we explore future work in applying these throughout the EGTN as well as other optical telescopes.

  8. The Large Binocular Telescope as an early ELT

    Science.gov (United States)

    Hill, John; Hinz, Philip; Ashby, David

    2013-12-01

    The Large Binocular Telescope (LBT) has two 8.4-m primary mirrors on a common AZ-EL mounting. The dual Gregorian optical configuration for LBT includes a pair of adaptive secondaries. The adaptive secondaries are working reliably for science observations as well as for the commissioning of new instruments. Many aspects of the LBT telescope design have been optimized for the combination of the two optical trains. The telescope structure is relatively compact and stiff with a lowest eigenfrequency near 8 Hz. A vibration measurement system of accelerometers (OVMS) has been installed to characterize the vibrations of the telescope. A first-generation of the binocular telescope control system has been deployed on-sky. Two instruments, LBTI and LINC-NIRVANA, have been built to take advantage of the 22.65-m diffraction baseline when the telescope is phased. This diffraction-limited imaging capability (beyond 20-m baseline) positions LBT as a forerunner of the new generation of extremely large telescopes (ELT). We discuss here some of the experiences ofphasing the two sides of the telescope starting in 2010. We also report some lessons learned during on-sky commissioning of the LBTI instrument.

  9. Design Concept for the Retrofit KAO 1m Robotic Telescope

    Directory of Open Access Journals (Sweden)

    Wonyong Han

    2000-12-01

    Full Text Available Korea Astronomy Observatory (KAO is working to retrofit its 1m robotic telescope in collaboration with a company (ACE, Astronomical Consultants & Equipment. The telescope system is being totally refurbished to make a fully automatic telescope which can operate in both interactive and fully autonomous robotic modes. Progress has been made in design and manufacturing of the telescope mount, mechanics, and optical performance system tests are being made for re-configured primary and secondary mirrors. The optical system is designed to collect 80% incident light within 0.5 arcsec with f/7.5 Ritchey-Chretien design. The telescope mount is an equatorial fork with a friction drive system. The design allows fully programmable tracking speeds with typical range of 15 arcsec/sec with accuracy of +/-5 arcsec/hour. The mount system has integral pointing model software to correct for refraction, and all mechanical errors and misalignments. The pointing model will permit positioning to better than 30 arcsec RMS within 75o from zenith and 45 arcsec RMS elsewhere on the sky. The software is designed for interactive, remote and robotic modes of operation. In interactive and remote mode the user can manually enter coordinates or retrieve them from a computer file. In robotic mode the telescope controller downloads the coordinates in the order determined by the scheduler. The telescope will be equipped with a CCD camera and will be accessible via the internet.

  10. The metagenomic telescope.

    Directory of Open Access Journals (Sweden)

    Balázs Szalkai

    Full Text Available Next generation sequencing technologies led to the discovery of numerous new microbe species in diverse environmental samples. Some of the new species contain genes never encountered before. Some of these genes encode proteins with novel functions, and some of these genes encode proteins that perform some well-known function in a novel way. A tool, named the Metagenomic Telescope, is described here that applies artificial intelligence methods, and seems to be capable of identifying new protein functions even in the well-studied model organisms. As a proof-of-principle demonstration of the Metagenomic Telescope, we considered DNA repair enzymes in the present work. First we identified proteins in DNA repair in well-known organisms (i.e., proteins in base excision repair, nucleotide excision repair, mismatch repair and DNA break repair; next we applied multiple alignments and then built hidden Markov profiles for each protein separately, across well-researched organisms; next, using public depositories of metagenomes, originating from extreme environments, we identified DNA repair genes in the samples. While the phylogenetic classification of the metagenomic samples are not typically available, we hypothesized that some very special DNA repair strategies need to be applied in bacteria and Archaea living in those extreme circumstances. It is a difficult task to evaluate the results obtained from mostly unknown species; therefore we applied again the hidden Markov profiling: for the identified DNA repair genes in the extreme metagenomes, we prepared new hidden Markov profiles (for each genes separately, subsequent to a cluster analysis; and we searched for similarities to those profiles in model organisms. We have found well known DNA repair proteins, numerous proteins with unknown functions, and also proteins with known, but different functions in the model organisms.

  11. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    A still booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the demand of “clean” power generation. Grid-connected PV systems will become an even active player in the future mixed power systems, which are linked by a vast of power electronics...

  12. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...

  13. Customized Pull Systems for Single-Product Flow Lines

    NARCIS (Netherlands)

    Gaury, E.G.A.; Kleijnen, J.P.C.; Pierreval, H.

    1998-01-01

    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage

  14. Towards a Multi-Variable Parametric Cost Model for Ground and Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd

    2016-01-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost approximately (X) D(exp (1.75 +/- 0.05)) lambda(exp(-0.5 +/- 0.25) T(exp -0.25) e (exp (-0.04)Y). Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).

  15. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    radio astronomers for more than half a century. To see a level of detail equal to that revealed by optical telescopes would require a radio-telescope dish miles across. In the 1950s, British and Australian scientists developed a technique that used smaller, widely-separated antennas, and combined their signals to produce resolving power equal to that of a single dish as large as the distance between the smaller dishes. This technique, called interferometry, is used by the VLA, with 27 antennas and a maximum separation of 20 miles, and the VLBA, with 10 antennas and a maximum separation of 5,000 miles. Systems such as the VLBA, in which the antennas are so widely separated that data must be individually tape-recorded at each site and combined after the observation, are called Very Long Baseline Interferometry (VLBI) systems. VLBI was developed by American and Canadian astronomers and was first successfully demonstrated in 1967. The VLBA, working with radio telescopes in Europe, represents the largest radio telescope that can be accommodated on the surface of the Earth. With an orbit that carries it more than 13,000 miles above the Earth, HALCA, working with the ground-based telescopes, extends the "sharp vision" of radio astronomy farther than ever before. Using HALCA, radio astronomers expect to routinely produce images with more than 100 times the detail seen by the Hubble Space Telescope. Astronomers around the world are waiting to use the satellite to seek answers to questions about some of the most distant and intriging objects in the universe. As much as one-third of the VLBA's observing time will be devoted to observations in conjunction with HALCA. Over the expected five-year lifetime of HALCA, scientists hope to observe hundreds of quasars, pulsars, galaxies, and other objects. Launched from Japan's Kagoshima Space Center, HALCA orbits the Earth every six hours, ranging from 350 to 13,200 miles high. The 1,830-pound satellite has a dish antenna 26 feet in

  16. Space telescopes capturing the rays of the electromagnetic spectrum

    CERN Document Server

    English, Neil

    2017-01-01

    Space telescopes are among humankind’s greatest scientific achievements of the last fifty years. This book describes the instruments themselves and what they were designed to discover about the Solar System and distant stars. Exactly how these telescopes were built and launched and the data they provided is explored. Only certain kinds of radiation can penetrate our planet's atmosphere, which limits what we can observe. But with space telescopes all this changed. We now have the means to "see" beyond Earth using ultraviolet, microwave, and infrared rays, X-rays and gamma rays. In this book we meet the pioneers and the telescopes that were built around their ideas. This book looks at space telescopes not simply chronologically but also in order of the electromagnetic spectrum, making it possible to understand better why they were made.

  17. Potential of the McMath-Pierce 1.6-Meter Solar Telescope for Speckle Interferometry

    Science.gov (United States)

    Harshaw, Richard; Jones, Gregory; Wiley, Edward; Boyce, Patrick; Branston, Detrick; Rowe, David; Genet, Russell

    2015-09-01

    We explored the aiming and tracking accuracy of the McMath-Pierce 1.6 m solar telescope at Kitt Peak National Observatory as part of an investigation of using this telescope for speckle interferometry of close visual double stars. Several slews of various lengths looked for hysteresis in the positioning system (we found none of significance) and concluded that the 1.6 m telescope would make a useful telescope for speckle interferometry.

  18. Design of tracking photovoltaic systems with a single vertical axis

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, E. [Ciudad Universitaria, Madrid (Spain). Instituto de Energeia Solar; Perez, M. [Pol Industrial La Nava, Naavarrsa (Spain). Alternativas Energeticas Solares; Ezpeleta, A. [Energia Hidroelectrica Navarra, Pamplona (Spain); Acedo, J. [Ingeteam SA, Pamplona (Spain)

    2002-07-01

    Solar tracking is used in large grid-connected photovoltaic plants to maximise solar radiation collection and, hence, to reduce the cost of delivered electricity. In particular, single vertical axis tracking, also called azimuth tracking, allows for energy gains up to 40%, compared with optimally tilted fully static arrays. This paper examines the theoretical aspects associated with the design of azimuth tracking, taking into account shadowing between different trackers and back-tracking features. Then, the practical design of the trackers installed at the 1.4 MW Tudela PV plant is presented and discussed. Finally, this tracking alternative is compared with the more conventional fully stationary approach. (author)

  19. Novel optical scanning cryptography using Fresnel telescope imaging.

    Science.gov (United States)

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  20. Launch telescope for astronomical adaptive optics

    Science.gov (United States)

    Caruso, Alberto; Novi, Andrea; Basile, Giuseppe

    2005-09-01

    The Launch Telescope Assembly (LTA) consists of a 50 cm class beam expander (angular magnification 12.5x) and it is an essential subsystem of Laser Guide Star Facility (LGSF), which provides an artificial reference star for adaptive compensation of atmospheric turbulence for one of the VLT (Very Large Telescope) 8-meters telescopes of ESO (European Southern Observatory). LTA is an afocal system, with parabolic primary and secondary mirrors, a flat 45° tertiary mirror and an exit window. It is fed with collimated Sodium laser beam, expanding and directing it along the line of sight of the 8-m telescope. Resonance backscatter from atmospheric Sodium layer at about 90 km altitude produces a point like artificial source at this altitude. The high optical quality requested for very fast optics, the severe constraints of the layout accommodation and the mass reduction made LTA a technological challenge that Galileo Avionica has been able to design, realise, align and test as requested. LTA will be positioned atop the secondary mirror unit of one of the four VLTs.

  1. Holographic Optical Elements as Scanning Lidar Telescopes

    Science.gov (United States)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2005-01-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  2. Profilographic detection system for single-track scanning device

    International Nuclear Information System (INIS)

    Silar, J.; Kula, J.

    1988-01-01

    A profilographic detection system is claimed for diagnosing the renal function by isotope nephrography, and the bladder filling in small children and infants. The configuration described guarantees good position resolution and sensitivity of the detection system. (E.J.). 2 figs

  3. Copenhagen's single system premise prevents a unified view of integer and fractional quantum Hall effect

    CERN Document Server

    Post, E J

    1999-01-01

    This essay presents conclusive evidence of the impermissibility of Copenhagen's single system interpretation of the Schroedinger process. The latter needs to be viewed as a tool exclusively describing phase and orientation randomized ensembles and is not be used for isolated single systems. Asymptotic closeness of single system and ensemble behavior and the rare nature of true single system manifestations have prevented a definitive identification of this Copenhagen deficiency over the past three quarter century. Quantum uncertainty so becomes a basic trade mark of phase and orientation disordered ensembles. The ensuing void of usable single system tools opens a new inquiry for tools without statistical connotations. Three, in part already known, period integrals here identified as flux, charge and action counters emerge as diffeo-4 invariant tools fully compatible with the demands of the general theory of relativity. The discovery of the quantum Hall effect has been instrumental in forcing a distinction betw...

  4. Novel Materials for Mirror Substrate in Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA solicitation S2 "Advanced Telescope Systems" under subtopic S2.05, "Optics Manufacturing and Metrology...

  5. Dutch Open Telescope: Status and Prospects

    NARCIS (Netherlands)

    Rutten, R.J.; Hammerschlag, R.H.; Bettonvil, F.C.M.

    1997-01-01

    The Dutch Open Telescope represents a new solar telescope concept. Being open rather than evacuated, it leads the way to large- aperture high resolution telescopes. It is now being installed on La Palma.

  6. European astronaut selected for the third Hubble Space Telescope

    Science.gov (United States)

    1998-08-01

    qualities of Claude and the other European astronauts. This is a sound basis for fruitful cooperation of mutual benefit on the International Space Station, where astronauts from the USA, Russia, Europe, Japan and Canada will work together closely as a single integrated crew. It is also very useful to the development work on the European-built Station elements," comments Jörg Feustel-Büechl, who, as ESA Director of Manned Spaceflight and Microgravity, is responsible not only for the European astronaut corps but for the European participation in the International Space Station as well. Feustel-Büechl also points out that "the Hubble servicingmission shows that men and women can significantly augment the efficiency and lifetime of complex systems in space. Humans have two essential 'built-in tools' which make them superior to any robot: their brain and their hands. No robot offers a comparable combination of high intelligence, adaptability to unexpected situations, mobility, dexterity and tactility. Robotic systems can perform pre-defined routine tasks and even support astronauts in their work, as the Shuttle's robotic arm shows, but they soon reach their inherent limitations when it comes to evaluating results and deciding what to do next. That is one of the key reasons why we are building and operating a manned space station." Additional information on Claude Nicollier, his NASA crewmates, the Hubble Space Telescope, the International Space Station and Europe's participation in the ISS programme can be found at the following Internet addresses: ESA astronauts: http://www.estec.esa.int/spaceflight/astronaut/ NASA astronauts: http://www.jsc.nasa.gov/Bios/ Hubble Space Telescope: http://sci.esa.int/hubble/ http://oposite.stsci.edu http://www.stsci.edu http://ecf.hq.eso.org International Space Station: http://station.nasa.gov European participation in the International Space Station: http://www.estec.esa.int/spaceflight More information on ESA can be found at: http://www.esa.int

  7. Seismic Imager Space Telescope

    Science.gov (United States)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  8. Epistemic planning for single- and multi-agent systems

    DEFF Research Database (Denmark)

    Bolander, Thomas; Andersen, Mikkel Birkegaard

    2011-01-01

    In this paper, we investigate the use of event models for automated planning. Event models are the action defining structures used to define a semantics for dynamic epistemic logic. Using event models, two issues in planning can be addressed: Partial observability of the environment and knowledge...... the specification of a more complex class of planning domains, than those simply concerned with simple facts about the world. We show how to model multi-agent planning problems using Kripke-models for representing world states, and event models for representing actions. Our mechanism makes use of slight....... In planning, partial observability gives rise to an uncertainty about the world. For single-agent domains, this uncertainty can come from incomplete knowledge of the starting situation and from the nondeterminism of actions. In multi-agent domains, an additional uncertainty arises from the fact that other...

  9. Calibration and testing of a prototype of the JEM-EUSO telescope on Telescope Array site

    Directory of Open Access Journals (Sweden)

    Tsunesada Y.

    2013-06-01

    Full Text Available Aim of the TA-EUSO project is to install a prototype of the JEM-EUSO telescope on the Telescope Array site in Black Rock Mesa, Utah and perform observation of natural and artificial ultraviolet light. The detector consists of one Photo Detector Module (PDM, identical to the 137 present on the JEM-EUSO focal surface. Each PDM is composed by 36 Hamamatsu multi-anode photomultipliers (64 channels per tube, for a total of 2304 channels. Front-End readout is performed by 36 ASICS, with trigger and readout tasks performed by two FPGA boards that send the data to a CPU and storage system. Two, 1 meter side square Fresnel lenses provide a field-of-view of 8 degrees. The telescope will be housed in a container located in front of the fluorescence detector of the Telescope Array collaboration, looking in the direction of the ELF (Electron Light Source and CLF (Central Laser Facility. Aim of the project is to calibrate the response function of the EUSO telescope with the TA fluorescence detector in presence of a shower of known intensity and distribution. An initial run of about six months starting from end 2012 is foreseen, during which we expect to observe, triggered by TA electronics, a few cosmic ray events which will be used to further refine the calibration of the EUSO-Ground with TA. Medium term plans include the increase of the number of PDM and therefore the field of view.

  10. Autonomous Manoeuvring Systems for Collision Avoidance on Single Carriageway Roads

    Science.gov (United States)

    Jiménez, Felipe; Naranjo, José Eugenio; Gómez, Óscar

    2012-01-01

    The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles’ positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed. PMID:23443391

  11. Autonomous manoeuvring systems for collision avoidance on single carriageway roads.

    Science.gov (United States)

    Jiménez, Felipe; Naranjo, José Eugenio; Gómez, Oscar

    2012-11-29

    The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles' positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed.

  12. Autonomous Manoeuvring Systems for Collision Avoidance on Single Carriageway Roads

    Directory of Open Access Journals (Sweden)

    Óscar Gómez

    2012-11-01

    Full Text Available The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles’ positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed.

  13. A chaotic system with a single unstable node

    Energy Technology Data Exchange (ETDEWEB)

    Sprott, J.C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Jafari, Sajad, E-mail: sajadjafari@aut.ac.ir [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Pham, Viet-Thanh [School of Electronics and Telecommunications, Hanoi University of Science and Technology, 01 Dai Co Viet, Hanoi (Viet Nam); Hosseini, Zahra Sadat [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of)

    2015-09-25

    This paper describes an unusual example of a three-dimensional dissipative chaotic flow with quadratic nonlinearities in which the only equilibrium is an unstable node. The region of parameter space with bounded solutions is relatively small as is the basin of attraction, which accounts for the difficulty of its discovery. Furthermore, for some values of the parameters, the system has an attracting torus, which is uncommon in three-dimensional systems, and this torus can coexist with a strange attractor or with a limit cycle. The limit cycle and strange attractor exhibit symmetry breaking and attractor merging. All the attractors appear to be hidden in that they cannot be found by starting with initial conditions in the vicinity of the equilibrium, and thus they represent a new type of hidden attractor with important and potentially problematic engineering consequences. - Highlights: • An unusual example of a three-dimensional dissipative chaotic flow is introduced. • In this system the only equilibrium is an unstable node. • For some values of the parameters, the system has an attracting torus. • This torus can coexist with a strange attractor or with a limit cycle. • These properties are uncommon in three-dimensional systems.

  14. The Large Millimeter Telescope- Gran Telescopio Milimetrico

    Science.gov (United States)

    Irvine, W. M.; Schloerb, F. P.; Carramiñana, A.; Carrasco, L.

    2004-11-01

    The Large Millimeter Telescope/Gran Telescopio Milimetrico (LMT) project is a collaboration between the University of Massachusetts and the Instituto Nacional de Astrofisica, Óptica y Electrónica to build a 50 m diameter telescope that will have good efficiency at wavelengths as short as 1 mm. The LMT will have an overall effective surface accuracy of 70 micrometers and an ultimate pointing accuracy of better than 1 arcsec, and will thus be the largest millimeter-wavelength telescope in the world. The LMT site is Sierra Negra in the state of Puebla, at 4,640 meters above sea level in Central Mexico. At 18° 59' N latitude, it offers good sky coverage of both hemispheres. The normally low humidity will allow operation of the radio telescope at frequencies as high as 345 GHz. The LMT will make use of recent advances in structural design and active control of surface elements to achieve the required surface and pointing accuracy. At the site the alidade has been erected and the back structure for the main reflector has been assembled, while the monitor and control system has been successfully tested on another telescope. The schedule calls for acceptance tests in 2006. The initial complement of instruments will include a 32 element, heterodyne focal plane array at 3mm; a large format, focal plane bolometer array; a unique wide band receiver and spectrometer to determine the redshifts of primordial galaxies, and a 4 element receiver for the 1mm band. With its excellent sensitivity and mapping speed, the LMT/GTM will be a powerful facility for planetary science. In particular, it will enable key observations of comets, planetary atmospheres, asteroids and KBOs.

  15. The Southern African Large Telescope project

    Science.gov (United States)

    Buckley, David A. H.; Charles, Philip A.; Nordsieck, Kenneth H.; O'Donoghue, Darragh

    The recently completed Southern African Large Telescope (SALT) is a low cost, innovative, 10 m class optical telescope, which began limited scientific operations in August 2005, just 5 years after ground-breaking. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous systems engineering approach has ensured that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array and a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable 10 m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900 nm) and featuring some niche observational capabilities, SALT will have an ability to conduct some unique science. This includes high time resolution studies, for which some initial results have already been obtained. Many of the versatile modes available with the RSS - which is currently being commissioned - are unique and provide unparallelled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (with slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot étalons and interference filters, will extend the multiplex advantage over resolutions from 300 to 9000 and fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (to between 1.5 to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror and AO. Finally, extrapolations of the SALT/HET designs to ELT proportions remain viable and are surely more affordable than conventional

  16. Completion of the Southern African Large Telescope

    Science.gov (United States)

    Buckley, D. A. H.; Charles, P. A.; O'Donoghue, D.; Nordsieck, K. H.

    2006-08-01

    The Southern African Large Telescope (SALT) is a low cost (19.7M), innovative, 10-m class optical telescope, which was inaugurated on 10 November 2005, just 5 years after ground-breaking. SALT and its first-light instruments are currently being commissioned, and full science operations are expected to begin later this year. This paper describes the design and construction of SALT, including the first-light instruments, SALTICAM and the Robert Stobie Spectrograph (RSS). A rigorous Systems Engineering approach was adopted to ensure that SALT was built to specification, on budget, close to the original schedule and using a relatively small project team. The design trade-offs, which include an active spherical primary mirror array in a fixed altitude telescope with a prime focus tracker, although restrictive in comparison to conventional telescopes, have resulted in an affordable and capable 10-m class telescope for South Africa and its ten partners. Coupled with an initial set of two seeing-limited instruments that concentrate on the UV-visible region (320 - 900nm) and featuring some unique observational capabilities, SALT will have an ability to conduct a wide range of science programs. These will include high time resolution studies, for which some initial results have already been obtained and are presented here. Many of the versatile modes available with the RSS will provide unparalleled opportunities for imaging polarimetry and spectropolarimetry. Likewise, Multi-Object Spectroscopy (using laser cut graphite slit masks) and imaging spectroscopy with the RSS, the latter using Fabry-Perot etalons and interference filters, will extend the multiplex advantage over resolutions from R = 300 to 9000 over fields of view of 2 to 8 arcminutes. Future instrumentation plans include an extremely stable, fibre-fed, high resolution échelle spectrograph and a near-IR (possibly to 1.7 μm) extension to the RSS. Future development possibilities include phasing the primary mirror

  17. Recurrent Neural Network for Single Machine Power System Stabilizer

    Directory of Open Access Journals (Sweden)

    Widi Aribowo

    2010-04-01

    Full Text Available In this paper, recurrent neural network (RNN is used to design power system stabilizer (PSS due to its advantage on the dependence not only on present input but also on past condition. A RNN-PSS is able to capture the dynamic response of a system without any delays caused by external feedback, primarily by the internal feedback loop in recurrent neuron. In this paper, RNNPSS consists of a RNN-identifier and a RNN-controller. The RNN-Identifier functions as the tracker of dynamics characteristics of the plant, while the RNN-controller is used to damp the system’s low frequency oscillations. Simulation results using MATLAB demonstrate that the RNNPSS can successfully damp out oscillation and improve the performance of the system.

  18. Selection of γ- and proton showers based on angular characteristics of Cherenkov radiation and estimation of angular resolution of the optical-telescope system

    International Nuclear Information System (INIS)

    Anokhina, A.M.; Galkin, V.I.; Ivanenko, I.P.; Roganova, T.M.

    1991-01-01

    Multidimensional criterion for isolation of showers from γ-quanta at the background of proton showers based on the angular shower image characteristics in an optical telescope with 3 deg x 3 deg field of vision, comprising 10x10 PEM, located in the focal plane of a spherical, mirror with the area of 5 m 2 , is described. Results of classification of artificial events using this criterion within 10 12 -10 14 eV primary energy range are presented. Evaluations of the accuracy of re-establishing the direction of γ quantum arrival are performed as well

  19. Large Millimeter Telescope (LMT) status

    Science.gov (United States)

    Schloerb, F. Peter; Carrasco, Luis; Wilson, Grant W.

    2003-02-01

    We present a summary of the Large Millimeter Telescope Project and its present status. The Large Millimeter Telescope (LMT) is a joint project of the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave telescope. The LMT is being built at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. Construction of the antenna is now well underway, and it is expected to be completed in 2004.

  20. Infrared up-conversion telescope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented to an up-conversion infrared telescope (110) arranged for imaging an associated scene (130), wherein the up-conversion infrared telescope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein a first optical...... at the plane of the external image) which is denominated D2 and wherein D1 is larger than a second diameter D2 and wherein the telescope further comprises a third optical component (103) and a fourth optical component (104); arranged for re-imaging the first image into a second image of the back-focal plane...

  1. High spectral efficient W-band optical/wireless system employing single-sideband single-carrier modulation.

    Science.gov (United States)

    Ho, Chun-Hung; Lin, Chun-Ting; Cheng, Yu-Hsuan; Huang, Hou-Tzu; Wei, Chia-Chien; Chi, Sien

    2014-02-24

    With broader available bandwidth, W-band wireless transmission has attracted a lot of interests for future Giga-bit communication. In this article, we experimentally demonstrate W-band radio-over-fiber (RoF) system employing single-sideband single-carrier (SSB-SC) modulation with lower peak-to-average-power ratio (PAPR) than orthogonal frequency division multiplex (OFDM). To overcome the inter-symbol interference (ISI) of the penalty from uneven frequency response and SSB-SC modulation, frequency domain equalizer (FDE) and decision feedback equalizer (DFE) are implemented. We discuss the maximum available bandwidth of different modulation formats between SSB-SC and OFDM signals at the BER below forward error correction (FEC) threshold (3.8 × 10(-3)). Up to 50-Gbps 32-QAM SSB-SC signals with spectral efficiency of 5 bit/s/Hz can be achieved.

  2. AXAF optical technology analysis. [effects of alignment figure errors on the performance of grazing incidence telescopes

    Science.gov (United States)

    Korsch, D.

    1979-01-01

    A grazing incidence telescope with six nested subsystems is investigated through the effects of misalignment and surface deformations on it's image quality. The axial rms-spot size serves as measure for the image quality. The surface deformations are simulated by ellipsoidal and sinusoidal deviation elements. Each type of defect is analyzed in the single two-element system. The full nested system is then analyzed in the presence of all possible defects on all twelve elements, whereby the magnitude of the defects is randomized within a given upper limit.

  3. Monte Carlo simulations of lattice models for single polymer systems

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Ping

    2014-01-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10 4 ). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior

  4. VLTI auxiliary telescopes: a full object-oriented approach

    Science.gov (United States)

    Chiozzi, Gianluca; Duhoux, Philippe; Karban, Robert

    2000-06-01

    The Very Large Telescope (VLT) Telescope Control Software (TCS) is a portable system. It is now in use or will be used in a whole family of ESO telescopes VLT Unit Telescopes, VLTI Auxiliary Telescopes, NTT, La Silla 3.6, VLT Survey Telescope and Astronomical Site Monitors in Paranal and La Silla). Although it has been developed making extensive usage of Object Oriented (OO) methodologies, the overall development process chosen at the beginning of the project used traditional methods. In order to warranty a longer lifetime to the system (improving documentation and maintainability) and to prepare for future projects, we have introduced a full OO process. We have taken as a basis the United Software Development Process with the Unified Modeling Language (UML) and we have adapted the process to our specific needs. This paper describes how the process has been applied to the VLTI Auxiliary Telescopes Control Software (ATCS). The ATCS is based on the portable VLT TCS, but some subsystems are new or have specific characteristics. The complete process has been applied to the new subsystems, while reused code has been integrated in the UML models. We have used the ATCS on one side to tune the process and train the team members and on the other side to provide a UML and WWW based documentation for the portable VLT TCS.

  5. Control Issues in Single-Stage Photovoltaic Systems

    DEFF Research Database (Denmark)

    A. Mastromauro, Rosa; Liserre, Marco; Dell’Aquila, Antonio

    2012-01-01

    Photovoltaic Systems (PVS) can be easily integrated in residential buildings hence they will be the main responsible of making low-voltage grid power flow bidirectional. Control issues on both the PV side and on the grid side have received much attention from manufacturers, competing for efficiency...

  6. Single-channel digital command-detection system

    Science.gov (United States)

    Carl, C. C.; Couvillon, L. A.; Goldstein, R. M.; Posner, E. C.; Green, R. R.

    1973-01-01

    System, fabricated of highly-reliable digital logic elements, operates on binary pulse-code-modulated signals and derives internal synchronization from data signal. All-digital implementation of detector develops synchronization from data signal by computer cross-correlation of command modulation signal with its expected forms in sequence and adjusts detector phases in accordance with correlation peaks.

  7. A single phase photovoltaic inverter control for grid connected system

    Indian Academy of Sciences (India)

    tracking (MPPT) controller is used which enables the maximum power extraction under varying irradiation and temperature conditions. The validity of the proposed system is verified through simulation as well as hardware implementation. Keywords. Current controller; MPPT; photovoltaic; PLL; PV inverter; voltage controller.

  8. Open Source Clinical NLP – More than Any Single System

    Science.gov (United States)

    Masanz, James; Pakhomov, Serguei V.; Xu, Hua; Wu, Stephen T.; Chute, Christopher G.; Liu, Hongfang

    2014-01-01

    The number of Natural Language Processing (NLP) tools and systems for processing clinical free-text has grown as interest and processing capability have surged. Unfortunately any two systems typically cannot simply interoperate, even when both are built upon a framework designed to facilitate the creation of pluggable components. We present two ongoing activities promoting open source clinical NLP. The Open Health Natural Language Processing (OHNLP) Consortium was originally founded to foster a collaborative community around clinical NLP, releasing UIMA-based open source software. OHNLP’s mission currently includes maintaining a catalog of clinical NLP software and providing interfaces to simplify the interaction of NLP systems. Meanwhile, Apache cTAKES aims to integrate best-of-breed annotators, providing a world-class NLP system for accessing clinical information within free-text. These two activities are complementary. OHNLP promotes open source clinical NLP activities in the research community and Apache cTAKES bridges research to the health information technology (HIT) practice. PMID:25954581

  9. Open Source Clinical NLP - More than Any Single System.

    Science.gov (United States)

    Masanz, James; Pakhomov, Serguei V; Xu, Hua; Wu, Stephen T; Chute, Christopher G; Liu, Hongfang

    2014-01-01

    The number of Natural Language Processing (NLP) tools and systems for processing clinical free-text has grown as interest and processing capability have surged. Unfortunately any two systems typically cannot simply interoperate, even when both are built upon a framework designed to facilitate the creation of pluggable components. We present two ongoing activities promoting open source clinical NLP. The Open Health Natural Language Processing (OHNLP) Consortium was originally founded to foster a collaborative community around clinical NLP, releasing UIMA-based open source software. OHNLP's mission currently includes maintaining a catalog of clinical NLP software and providing interfaces to simplify the interaction of NLP systems. Meanwhile, Apache cTAKES aims to integrate best-of-breed annotators, providing a world-class NLP system for accessing clinical information within free-text. These two activities are complementary. OHNLP promotes open source clinical NLP activities in the research community and Apache cTAKES bridges research to the health information technology (HIT) practice.

  10. Magmatic Processes and Systems Deduced from Single Crystals

    Science.gov (United States)

    Davidson, J.; Bezard, R. C.; Morgan, D. J.; Ginibre, C.

    2014-12-01

    When crystals grow in liquids the composition of their outermost layer will reflect that of the host with which they are in equilibrium and will therefore record the liquid composition, pressure and temperature.. Following separation from their sources, magmas differentiate. This change in liquid composition is driven largely by crystallisation in response to cooling or decompression. Other open system processes such as mixing and contamination are common. These can lead to abrupt changes in trace element and isotopic composition, accompanied by petrographic features, such as dissolution surfaces or zones of melt inclusions. Where such careful mineral-scale studies have been performed, the prevalence of open system processes is clear. In many cases these are shown by core-rim isotopic variations. Crystal-scale compositional variations in the context of whole rock compositions and petrography have allowed us to show crustal assimilation even from regions of supposedly oceanic crust such as the Lesser Antilles. In tandem with tracking magma evolution, core-rim analyses of appropriate crystals have also provided diffusion profiles which reflect timescales of magmatic processes. A key point, long recognised by Bruce Marsh, is that in situ geochemical data should be considered in a petrographic context in order to gain the most (and most credible) insights on the workings of magma systems from hand specimen to whole volcano/pluton scales: The petrographic microscope is not dead yet Identification of magmatic processes from in situ scrutiny allows us to synthesise the architectures and inner workings of magma systems. The evidence for interaction among magmas in many systems is compelling and suggests that many exist as stacked dike-sill arrangements with wall-rock focussed crystal growth and mush zones. These are consistent with many of the systematics suggested some time ago by Bruce Marsh

  11. Characterization and commissioning of the SST-1M camera for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [Université Libre Bruxelles, Faculté des Sciences, Avenue Franklin Roosevelt 50, 1050 Brussels (Belgium); DPNC - Université de Genéve, 24 Quai Ernest Ansermet, Genéve (Switzerland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); Bilnik, W. [AGH University of Science and Technology, al.Mickiewicza 30, Kraków (Poland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); Błocki, J. [Instytut Fizyki Jadrowej im. H. Niewodniczańskiego Polskiej Akademii Nauk, ul. Radzikowskiego 152, 31–342 Kraków (Poland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); Bogacz, L. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30–244 Kraków (Poland); Department of Information Technologies, Jagiellonian University, ul. prof. Stanisława Łojasiewicza 11, 30–348 Kraków (Poland); and others

    2017-02-11

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-rays observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The SSTs are dedicated to the observation of gamma-rays with energy between a few TeV and a few hundreds of TeV. The SST array is expected to have 70 telescopes of different designs. The single-mirror small size telescope (SST-1 M) is one of the proposed telescope designs under consideration for the SST array. It will be equipped with a 4 m diameter segmented mirror dish and with an innovative camera based on silicon photomultipliers (SiPMs). The challenge is not only to build a telescope with exceptional performance but to do it foreseeing its mass production. To address both of these challenges, the camera adopts innovative solutions both for the optical system and readout. The Photo-Detection Plane (PDP) of the camera is composed of 1296 pixels, each made of a hollow, hexagonal light guide coupled to a hexagonal SiPM designed by the University of Geneva and Hamamatsu. As no commercial ASIC would satisfy the CTA requirements when coupled to such a large sensor, dedicated preamplifier electronics have been designed. The readout electronics also use an innovative approach in gamma-ray astronomy by adopting a fully digital approach. All signals coming from the PDP are digitized in a 250 MHz Fast ADC and stored in ring buffers waiting for a trigger decision to send them to the pre-processing server where calibration and higher level triggers will decide whether the data are stored. The latest generation of FPGAs is used to achieve high data rates and also to exploit all the flexibility of the system. As an example each event can be flagged according to its trigger pattern. All of these features have been demonstrated in laboratory measurements on realistic elements and the results of these measurements will be presented in this contribution.

  12. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning

    Science.gov (United States)

    Ocaña, Francisco; Ibarra, Aitor; Racero, Elena; Montero, Ángel; Doubek, Jirí; Ruiz, Vicente

    2016-07-01

    The TBT project is being developed under ESA's General Studies and Technology Programme (GSTP), and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario within the Space Situational Awareness (SSA) programme of the European Space Agency (ESA). The goal of the project is to provide two fully robotic telescopes, which will serve as prototypes for development of a future network. The system consists of two telescopes, one in Spain and the second one in the Southern Hemisphere. The telescope is a fast astrograph with a large Field of View (FoV) of 2.5 x 2.5 square-degrees and a plate scale of 2.2 arcsec/pixel. The tube is mounted on a fast direct-drive mount moving with speed up to 20 degrees per second. The focal plane hosts a 2-port 4K x 4K back-illuminated CCD with readout speeds up to 1MHz per port. All these characteristics ensure good survey performance for transients and fast moving objects. Detection software and hardware are optimised for the detection of NEOs and objects in high Earth orbits (objects moving from 0.1-40 arcsec/second). Nominal exposures are in the range from 2 to 30 seconds, depending on the observational strategy. Part of the validation scenario involves the scheduling concept integrated in the robotic operations for both sensors. Every night it takes all the input needed and prepares a schedule following predefined rules allocating tasks for the telescopes. Telescopes are managed by RTS2 control software, that performs the real-time scheduling of the observation and manages all the devices at the observatory.1 At the end of the night the observing systems report astrometric positions and photometry of the objects detected. The first telescope was installed in Cebreros Satellite Tracking Station in mid-2015. It is currently in the commissioning phase and we present here the first results of the telescope. We evaluate the site characteristics and the performance of the TBT Cebreros

  13. Nature of the low-energy, γ-like background for the Cherenkov Telescope Array

    Science.gov (United States)

    Sitarek, Julian; Sobczyńska, Dorota; Szanecki, Michał; Adamczyk, Katarzyna; Cumani, Paolo; Moralejo, Abelardo

    2018-01-01

    The upcoming Cherenkov Telescope Array (CTA) project is expected to provide unprecedented sensitivity in the low-energy ( ≲ 100 GeV) range for Cherenkov telescopes. Most of the remaining background in this energy range results from misidentified hadron showers. In order to fully exploit the potential of the telescope systems it is worthwhile to look for ways to further improve the available analysis methods for γ/hadron separation. We study the composition of the background for the planned CTA-North array by identifying events composed mostly of a single electromagnetic subcascade or double subcascade from a π0 (or another neutral meson) decay. We apply the standard simulation chain and state-of-the-art analysis chain of CTA to evaluate the potential of the standard analysis to reject such events. Simulations show a dominant role of such single subcascade background for CTA up to energies ∼ 70 GeV. We show that a natural way of rejection of such events stems from a shifted location of the shower maximum, and that the standard stereo reconstruction method used by CTA already exploits most of expected separation.

  14. Double and triple entanglement in a single neutron system

    International Nuclear Information System (INIS)

    Erdösi, D.

    2015-01-01

    Single-neutron interferometry is used in various experiments to study the foundations of quantum mechanics. The drawback of this technique, however, is that the contrast of neutron interferometers is very prone to disturbances, in particular, temperature variations. In order to achieve very low degrading of the contrast, we develop new devices to manipulate the neutron-s spin and energy in the interferometer. These devices open the door for quantum state generation with much higher fidelities than it has been possible so far in neutron interferometry. Spin rotators with time-dependent (radio-frequency (RF)) field change both spin and energy. We improve our RF spin-rotators for the interferometer by equipping them with miniature Helmholtz coils, which allows to adjust the energy shift due to each RF coil independently. This is essential for the generation of certain quantum states. This improvement is made possible by a new coil cooling method. Furthermore, we also develop new Larmor precession accelerators and decelerators that do not consume energy and hence do not produce heat at all. We demonstrate two applications of the new spin and energy manipulators by generating bi- and tripartite entanglement between the neutron's spin, energy and path degrees of freedom in the interferometer: we succeed in generating a Bell-like state and GHZ- and W-like states. For Bell state generation we also introduce a convenient spin preparation scheme that uses our Larmor precession manipulator. We achieve a considerably more significant violation of a Bell-like inequality than with the previous method, thus further confirming quantum contextuality. With our RF spin rotators we achieve for the GHZ- and W-like states fidelities between 95 and 99%. (author) [de

  15. DEdicated MONitor of EXotransits and Transients (DEMONEXT): System Overview and Year One Results from a Low-cost Robotic Telescope for Followup of Exoplanetary Transits and Transients

    Science.gov (United States)

    Villanueva, Steven, Jr.; Gaudi, B. Scott; Pogge, Richard W.; Eastman, Jason D.; Stassun, Keivan G.; Trueblood, Mark; Trueblood, Patricia

    2018-01-01

    We report on the design and first year of operations of the DEdicated MONitor of EXotransits and Transients (DEMONEXT). DEMONEXT is a 20-inch (0.5-m) robotic telescope using a PlaneWave CDK20 telescope on a Mathis instruments MI-750/1000 fork mount. DEMONEXT is equipped with a 2048 × 2048 pixel Finger Lakes Instruments (FLI) detector; a 10-position filter wheel with an electronic focuser and B, V, R, and I, g\\prime , r\\prime , i\\prime , z\\prime ; and clear filters. DEMONEXT operates in a continuous observing mode and achieves 2-4 mmag raw, unbinned, precision on bright Vautomated software has produced 143 planetary candidate transit light curves for the KELT collaboration and 48 supernovae and transient light curves for the ASAS-SN supernovae group in the first year of operation. DEMONEXT has also observed for a number of ancillary science projects including Galactic microlensing, active galactic nuclei, stellar variability, and stellar rotation.

  16. Modelling and Simulation of Mobile Hydraulic Crane with Telescopic Arm

    DEFF Research Database (Denmark)

    Nielsen, Brian; Pedersen, Henrik Clemmensen; Andersen, Torben Ole

    2005-01-01

    paper a model of a loader crane with a flexible telescopic arm is presented, which may be used for evaluating control strategies. The telescopic arm is operated by four actuators connected hydraulically by a parallel circuit. The operating sequences of the individual actuators is therefore...... not controllable, but depends on the flow from the common control valve, flow resistances between the actuators and friction. The presented model incorporates structural flexibility of the telescopic arm and is capable of describing the dynamic behaviour of both the hydraulic and the mechanical system, including...

  17. Lightweighted ZERODUR for telescopes

    Science.gov (United States)

    Westerhoff, T.; Davis, M.; Hartmann, P.; Hull, T.; Jedamzik, R.

    2014-07-01

    The glass ceramic ZERODUR® from SCHOTT has an excellent reputation as mirror blank material for earthbound and space telescope applications. It is known for its extremely low coefficient of thermal expansion (CTE) at room temperature and its excellent CTE homogeneity. Recent improvements in CNC machining at SCHOTT allow achieving extremely light weighted substrates up to 90% incorporating very thin ribs and face sheets. In 2012 new ZERODUR® grades EXPANSION CLASS 0 SPECIAL and EXTREME have been released that offer the tightest CTE grades ever. With ZERODUR® TAILORED it is even possible to offer ZERODUR® optimized for customer application temperature profiles. In 2013 SCHOTT started the development of a new dilatometer setup with the target to drive the industrial standard of high accuracy thermal expansion metrology to its limit. In recent years SCHOTT published several paper on improved bending strength of ZERODUR® and lifetime evaluation based on threshold values derived from 3 parameter Weibull distribution fitted to a multitude of stress data. ZERODUR® has been and is still being successfully used as mirror substrates for a large number of space missions. ZERODUR® was used for the secondary mirror in HST and for the Wolter mirrors in CHANDRA without any reported degradation of the optical image quality during the lifetime of the missions. Some years ago early studies on the compaction effects of electron radiation on ZERODUR® were re analyzed. Using a more relevant physical model based on a simplified bimetallic equation the expected deformation of samples exposed in laboratory and space could be predicted in a much more accurate way. The relevant ingredients for light weighted mirror substrates are discussed in this paper: substrate material with excellent homogeneity in its properties, sufficient bending strengths, space radiation hardness and CNC machining capabilities.

  18. Study on irradiation effects of nucleus electromagnetic pulse on single chip computer system

    International Nuclear Information System (INIS)

    Hou Minsheng; Liu Shanghe; Wang Shuping

    2001-01-01

    Intense electromagnetic pulse, namely nucleus electromagnetic pulse (NEMP), lightning electromagnetic pulse (LEMP) and high power microwave (HPM), can disturb and destroy the single chip computer system. To study this issue, the authors made irradiation experiments by NEMPs generated by gigahertz transversal electromagnetic (GTEM) Cell. The experiments show that shutdown, restarting, communication errors of the single chip microcomputer system would occur when it was irradiated by the NEMPs. Based on the experiments, the cause on the effects on the single chip microcomputer system is discussed

  19. Method and apparatus for single-stepping coherence events in a multiprocessor system under software control

    Science.gov (United States)

    Blumrich, Matthias A.; Salapura, Valentina

    2010-11-02

    An apparatus and method are disclosed for single-stepping coherence events in a multiprocessor system under software control in order to monitor the behavior of a memory coherence mechanism. Single-stepping coherence events in a multiprocessor system is made possible by adding one or more step registers. By accessing these step registers, one or more coherence requests are processed by the multiprocessor system. The step registers determine if the snoop unit will operate by proceeding in a normal execution mode, or operate in a single-step mode.

  20. Applying Data Mining Techniques to Improve Information Security in the Cloud: A Single Cache System Approach

    OpenAIRE

    Amany AlShawi

    2016-01-01

    Presently, the popularity of cloud computing is gradually increasing day by day. The purpose of this research was to enhance the security of the cloud using techniques such as data mining with specific reference to the single cache system. From the findings of the research, it was observed that the security in the cloud could be enhanced with the single cache system. For future purposes, an Apriori algorithm can be applied to the single cache system. This can be applied by all cloud providers...

  1. Spherical Primary Optical Telescope Testbed

    Data.gov (United States)

    National Aeronautics and Space Administration — This IRAD proposes to continue operation of the Spherical Primary Optical Telescope (SPOT) testbed as an image-based wavefront sensing demonstrator. In addition to...

  2. Advanced Athermal Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed innovative athermal telescope design uses advanced lightweight and high-stiffness material of Beryllium-Aluminum (Be-38Al). Peregrine's expertise with...

  3. Automated telescope for variability studies

    Science.gov (United States)

    Ganesh, S.; Baliyan, K. S.; Chandra, S.; Joshi, U. C.; Kalyaan, A.; Mathur, S. N.

    PRL has installed a 50 cm telescope at Mt Abu, Gurushikhar. The backend instrument consists of a 1K × 1K EMCCD camera with standard UBVRI filters and also has polarization measurement capability using a second filter wheel with polaroid sheets oriented at different position angles. This 50 cm telescope observatory is operated in a robotic mode with different methods of scheduling of the objects being observed. This includes batch mode, fully manual as well as fully autonomous mode of operation. Linux based command line as well as GUI software are used entirely in this observatory. This talk will present the details of the telescope and associated instruments and auxiliary facilities for weather monitoring that were developed in house to ensure the safe and reliable operation of the telescope. The facility has been in use for a couple of years now and various objects have been observed. Some of the interesting results will also be presented.

  4. Limbic systems for emotion and for memory, but no single limbic system.

    Science.gov (United States)

    Rolls, Edmund T

    2015-01-01

    The concept of a (single) limbic system is shown to be outmoded. Instead, anatomical, neurophysiological, functional neuroimaging, and neuropsychological evidence is described that anterior limbic and related structures including the orbitofrontal cortex and amygdala are involved in emotion, reward valuation, and reward-related decision-making (but not memory), with the value representations transmitted to the anterior cingulate cortex for action-outcome learning. In this 'emotion limbic system' a computational principle is that feedforward pattern association networks learn associations from visual, olfactory and auditory stimuli, to primary reinforcers such as taste, touch, and pain. In primates including humans this learning can be very rapid and rule-based, with the orbitofrontal cortex overshadowing the amygdala in this learning important for social and emotional behaviour. Complementary evidence is described showing that the hippocampus and limbic structures to which it is connected including the posterior cingulate cortex and the fornix-mammillary body-anterior thalamus-posterior cingulate circuit are involved in episodic or event memory, but not emotion. This 'hippocampal system' receives information from neocortical areas about spatial location, and objects, and can rapidly associate this information together by the different computational principle of autoassociation in the CA3 region of the hippocampus involving feedback. The system can later recall the whole of this information in the CA3 region from any component, a feedback process, and can recall the information back to neocortical areas, again a feedback (to neocortex) recall process. Emotion can enter this memory system from the orbitofrontal cortex etc., and be recalled back to the orbitofrontal cortex etc. during memory recall, but the emotional and hippocampal networks or 'limbic systems' operate by different computational principles, and operate independently of each other except insofar as an

  5. Analyzing System on A Chip Single Event Upset Responses using Single Event Upset Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We are investigating the application of classical reliability performance metrics combined with standard single event upset (SEU) analysis data. We expect to relate SEU behavior to system performance requirements. Our proposed methodology will provide better prediction of SEU responses in harsh radiation environments with confidence metrics. single event upset (SEU), single event effect (SEE), field programmable gate array devises (FPGAs)

  6. Ultra-lightweight Telescope Technology

    Science.gov (United States)

    Chen, P. C.; Romeo, R. C.

    2003-12-01

    We report progress in the development of a new and rapidly maturing technology for astronomical telescopes and structures. By using carbon fiber composite materials, mirrors can be made that are far lighter and stiffer than are possible with traditional optical materials. Composite technology also permits the fabrication of mirrors with non-circular shapes, on-axis and off-axis figures, supersmooth surfaces, very thin to very thick substrates, and having very low sensitivity to temperature changes and thermal disturbances. Of special note is the ability to produce multiple identical units rapidly and at low cost. Significant achievements to date include the fabrication of extremely lightweight mirrors with areal density as low as 1 kg/sq.m., diffraction limited optical performance at visible wavelengths, a portable telescope with 0.5m mirror, large thin deformable mirrors for adaptive optics, 1m x 2m mirrors, reflectors and support structures for radio telescopes, and a six meter telescope platform. An observatory with a 1 meter composite mirror telescope is under construction. With further development, composite mirrors can become the enabling technology for new generations of extremely large telescopes (ELTs) on the ground and in space. This work is supported by the National Science Foundation under grant AST-0320784, B. Twarog (U. Kansas) PI.

  7. The Submillimeter Telescope (SMT) project

    International Nuclear Information System (INIS)

    Martin, R.N.; Baars, J.W.M.

    1990-01-01

    To exploit the potential of submillimeter astronomy, the Submillimeter Telescope (SMT) will be located at an altitude of 3178 meters on Emerald Peak 75 miles northeast of Tucson in Southern Arizona. The instrument is an altazimuth mounted f/13.8 Cassegrain homology telescope with two Nasmyth and bent Cassegrain foci. It will have diffraction limited performance at a wavelength of 300 microns and an operating overall figure accuracy of 15 microns rms. An important feature of the SMT is the construction of the primary and secondary reflectors out of aluminum-core CFRP face sheet sandwich panels, and the reflector backup structure and secondary support out of CFRP structural elements. This modern technology provides both a means for reaching the required precision of the SMT for both night and day operation (basically because of the low coefficient of thermal expansion and high strength-to-weight ratio of CFRP) and a potential route for the realization of lightweight telescopes of even greater accuracy in the future. The SMT will be the highest accuracy radio telescope ever built (at least a factor of 2 more accurate than existing telescopes). In addition, the SMT will be the first 10 m-class submillimeter telescope with a surface designed for efficient measurements at the important 350 microns wavelength atmospheric window. 9 refs

  8. Alt-Az Spacewatch Telescope

    Science.gov (United States)

    Gehrels, Tom

    1997-01-01

    This grant funded about one third of the cost of the construction of a telescope with an aperture 1.8 meters in diameter to discover asteroids and comets and investigate the statistics of their populations and orbital distributions. This telescope has been built to the PI's specifications and installed in a dome on Kitt Peak mountain in Arizona. Funds for the dome and building were provided entirely by private sources. The dome building and telescope were dedicated in a ceremony at the site on June 7, 1997. The attached abstract describes the parameters of the telescope. The telescope is a new item of capital property. It is permanently located in University of Arizona building number 910 in the Steward Observatory compound on Kitt Peak mountain in the Tohono O'odham Nation, Arizona. fts property tag number is A252107. This grant did not include funds for the coma corrector lens, instrument derotator, CCD detector, detector electronics, or computers to acquire or process the data. It also did not include funds to operate the telescope or conduct research with it. Funds for these items and efforts are pending from NASA and other sources.

  9. Single-Chip Computers With Microelectromechanical Systems-Based Magnetic Memory

    NARCIS (Netherlands)

    Carley, L. Richard; Bain, James A.; Fedder, Gary K.; Greve, David W.; Guillou, David F.; Lu, Michael S.C.; Mukherjee, Tamal; Santhanam, Suresh; Abelmann, Leon; Min, Seungook

    This article describes an approach for implementing a complete computer system (CPU, RAM, I/O, and nonvolatile mass memory) on a single integrated-circuit substrate (a chip)—hence, the name "single-chip computer." The approach presented combines advances in the field of microelectromechanical

  10. Joint impact of quantization and clipping on single- and multi-carrier block transmission systems

    NARCIS (Netherlands)

    Yang, H.; Schenk, T.C.W.; Smulders, P.F.M.; Fledderus, E.R.

    2008-01-01

    This work investigates the joint impact of quantization and clipping, caused by analog-to-digital converters (ADCs) with low bit resolutions, on single- and multi-carrier block transmission systems in wireless multipath environments. We consider single carrier block transmission with frequency

  11. Quantitative Synthesis and Component Analysis of Single-Participant Studies on the Picture Exchange Communication System

    Science.gov (United States)

    Tincani, Matt; Devis, Kathryn

    2011-01-01

    The "Picture Exchange Communication System" (PECS) has emerged as the augmentative communication intervention of choice for individuals with autism spectrum disorder (ASD), with a supporting body of single-participant studies. This report describes a meta-analysis of 16 single-participant studies on PECS with percentage of nonoverlapping data…

  12. Precoding Design for Single-RF Massive MIMO Systems: A Large System Analysis

    KAUST Repository

    Sifaou, Houssem

    2016-08-26

    This work revisits a recently proposed precoding design for massive multiple-input multiple output (MIMO) systems that is based on the use of an instantaneous total power constraint. The main advantages of this technique lie in its suitability to the recently proposed single radio frequency (RF) MIMO transmitter coupled with a very-high power efficiency. Such features have been proven using simulations for uncorrelated channels. Based on tools from random matrix theory, we propose in this work to analyze the performance of this precoder for more involved channels accounting for spatial correlation. The obtained expressions are then optimized in order to maximize the signalto- interference-plus-noise ratio (SINR). Simulation results are provided in order to illustrate the performance of the optimized precoder in terms of peak-to-average power ratio (PAPR) and signal-to-interference-plus-noise ratio (SINR). © 2012 IEEE.

  13. Attendance fingerprint identification system using arduino and single board computer

    Science.gov (United States)

    Muchtar, M. A.; Seniman; Arisandi, D.; Hasanah, S.

    2018-03-01

    Fingerprint is one of the most unique parts of the human body that distinguishes one person from others and is easily accessed. This uniqueness is supported by technology that can automatically identify or recognize a person called fingerprint sensor. Yet, the existing Fingerprint Sensor can only do fingerprint identification on one machine. For the mentioned reason, we need a method to be able to recognize each user in a different fingerprint sensor. The purpose of this research is to build fingerprint sensor system for fingerprint data management to be centralized so identification can be done in each Fingerprint Sensor. The result of this research shows that by using Arduino and Raspberry Pi, data processing can be centralized so that fingerprint identification can be done in each fingerprint sensor with 98.5 % success rate of centralized server recording.

  14. Mechanisms of gravitropism in single-celled systems

    Science.gov (United States)

    Greuel, Nicole; Braun, Markus; Hauslage, Jens; Wiemann, Katharina

    Physiological processes in plants are influenced by a variety of external stimuli. Gravity is the only constant factor that provides plants with reliable information for their orientation. Gravity-oriented growth responses, called gravitropism, enable plants to adapt to a diversity of habitats on Earth and to survive changing environmental conditions. For instance, the ability to respond gravitropically prevents crop, flattened by a windstorm, from decay. Even small deviations from the genetically programmed set-point angle of plant organs are recognized by specialized cells, the statocytes, in which dense particles, the statoliths, sediment in the direction of gravity and activate gravity sensors - membrane bound gravity-receptor proteins. Activation of receptor proteins creates a physiological signal that initiates a stimulus-specific signal transduction cascade causing the gravitropic response. To unravel the gravitropic signalling pathways in plant statocytes, our research focused on a unicellular model system, the rhizoid of the green alga Chara. Experiments under microgravity conditions during sounding-rocket and parabolic plane flights have shown that the actin cytoskeleton is a key element of the gravityinduced statolith-sedimentation process in characean rhizoids. Actomyosin, consisting of a dense meshwork of mainly axially oriented actin microfilaments and motor proteins (myosins), actively guides sedimenting statoliths to gravisensitive plasma membrane areas where gravireceptor molecules are exclusively located. TEXUS and MAXUS sounding rocket missions were performed to determine the threshold acceleration level (< 0.1g) required for lateral statolith displacement. parabolic flight experiments aboard the airbus A300 Zero-G have shown that sedimented but weightless statoliths are still capable of activating the membrane-bound gravireceptor in characean rhizoids. The results contradict the classical model of a mechanoreceptor that is activated by the

  15. Psoriasis in systemic lupus erythematosus: a single-center experience.

    Science.gov (United States)

    Tselios, Konstantinos; Yap, Kristy Su-Ying; Pakchotanon, Rattapol; Polachek, Ari; Su, Jiandong; Urowitz, Murray B; Gladman, Dafna D

    2017-04-01

    The coexistence of psoriasis with systemic lupus erythematosus (SLE) has been reported in limited case series, raising hypotheses about shared pathogenetic mechanisms. Nevertheless, important differences regarding treatment do exist. The aim of the present study was to determine the prevalence and characteristics of psoriasis in a defined cohort of lupus patients. Patients with psoriasis were retrieved from the University of Toronto Lupus Clinic from its inception in 1970 up to 2015. Charts were hand-searched to collect information concerning demographic, clinical, and therapeutic variables. Patients were matched with non-psoriasis lupus patients to identify the impact of supervening psoriasis on lupus activity, damage accrual, and venous thromboembolic (VTEs) and cardiovascular events (CVEs). Psoriasis was diagnosed in 63 patients (49 females, 14 males) for a prevalence of 3.46% (63/1823). The male-to-female ratio was significantly higher in non-psoriasis patients (0.286 vs. 0.138, p = 0.017). Plaque psoriasis was the most prominent type (55/63, 87.3%) whereas three patients had pustular disease; one had psoriatic arthritis. Nine patients (14.3%) were administered systemic treatment with methotrexate (n = 5), azathioprine (n = 1), ustekinumab (n = 3), and etanercept (n = 1). Psoriasis was definitely deteriorated by hydroxychloroquine in one patient. There was no significant impact of psoriasis on disease activity, damage accrual, VTEs, and CVEs. The prevalence of psoriasis was twice as high as that of the general Canadian population in this lupus cohort. Plaque psoriasis was the most prominent subtype, and topical treatment was adequate in the majority of patients. Supervening psoriasis had no significant impact on lupus activity and damage accrual.

  16. Single Center Experience with the AngioVac Aspiration System

    Energy Technology Data Exchange (ETDEWEB)

    Salsamendi, Jason, E-mail: jsalsamendi@med.miami.edu; Doshi, Mehul, E-mail: mdoshi@med.miami.edu; Bhatia, Shivank, E-mail: sbhatia1@med.miami.edu [University of Miami Miller School of Medicine/Jackson Memorial Hospital, Department of Vascular and Interventional Radiology (United States); Bordegaray, Matthew, E-mail: matthewbordegaray@gmail.com [University of Miami Miller School of Medicine/Jackson Memorial Hospital, Department Radiology (United States); Arya, Rahul, E-mail: rahul.arya@jhsmiami.org [University of Miami Miller School of Medicine/Jackson Memorial Hospital, Department of Vascular and Interventional Radiology (United States); Morton, Connor, E-mail: cmorton@med.miami.edu [University of Miami Miller School of Medicine (United States); Narayanan, Govindarajan, E-mail: gnarayanan@med.miami.edu [University of Miami Miller School of Medicine/Jackson Memorial Hospital, Department of Vascular and Interventional Radiology (United States)

    2015-08-15

    PurposeThe AngioVac catheter system is a mechanical suction device designed for removal of intravascular material using extracorporeal veno-venous bypass circuit. The purpose of this study is to present the outcomes in patients treated with the AngioVac aspiration system and to discuss its efficacy in different vascular beds.Materials and MethodsA retrospectively review was performed of seven patients treated with AngioVac between October 2013 and December 2014. In 6/7 cases, the AngioVac cannula was inserted percutaneously and the patient was placed on veno-venous bypass. In one of the cases, the cannula was inserted directly into the Fontan circuit after sternotomy and the patient was maintained on cardiopulmonary bypass. Thrombus location included iliocaval (2), SVC (1), pulmonary arteries (1), Fontan circuit and Glenn shunt with pulmonary artery extension (1), right atrium (1), and IVC with renal vein extension (1).ResultsThe majority of thrombus (50–95 %) was removed in 5/7 cases, and partial thrombus removal (<50 %) was confirmed in 2/7 cases. Mean follow-up was 205 days (range 64–403 days). All patients were alive at latest follow-up. Minor complications included three neck hematomas in two total patients. No major complications occurred.ConclusionAngioVac is a useful tool for acute thrombus removal in the large vessels. The setup and substantial cost may limit its application in straightforward cases. More studies are needed to establish the utility of AngioVac in treatment of intravascular and intracardiac material.

  17. Electrochemistry and bioelectrochemistry towards the single-molecule level: Theoretical notions and systems

    International Nuclear Information System (INIS)

    Zhang Jingdong; Chi Qijin; Albrecht, Tim; Kuznetsov, Alexander M.; Grubb, Mikala; Hansen, Allan G.; Wackerbarth, Hainer; Welinder, Anne C.; Ulstrup, Jens

    2005-01-01

    Surface structures controlled at the nanometer and single-molecule levels, with functions crucially determined by interfacial electron transfer (ET) are broadly reported in recent years, with different kinds of electrochemically controlled nanoscale/single molecule systems. One is the broad class of metallic and semiconductor-based nanoparticles, nano-arrays, nanotubes, and nanopits. Others are based on self-assembled molecular monolayers. The latter extend to bioelectrochemical systems with redox metalloproteins and DNA-based molecules as targets. We overview here some recent achievements in areas of interfacial electrochemical ET systems, mapped to the nanoscale and single-molecule levels. Focus is on both experimental and theoretical studies in our group. Systems addressed are organized monolayers of redox active transition metal complexes, and metalloproteins and metalloenzymes on single-crystal Au(1 1 1)-electrode surfaces. These systems have been investigated by voltammetry, spectroscopy, microcantilever technology, and scanning probe microscopy. A class of Os-complexes has shown suitable as targets for electrochemical in situ scanning tunnelling microscopy (STM), with close to single-molecule scanning tunnelling spectroscopic (STS) features. Mapping of redox metalloproteins from the three major classes, i.e. blue copper proteins, heme proteins, and iron-sulfur proteins, at the monolayer and single-molecule levels have also been achieved. In situ STM and spectroscopy of redox molecules and biomolecules have been supported by new theoretical frames, which extend established theory of interfacial electrochemical ET. The electrochemical nanoscale and single-molecule systems discussed are compared with other recent nanoscale and single-molecule systems with conspicuous device-like properties, particularly unimolecular rectifiers and single-molecule transistors. Both of these show analogies to electrochemical in situ STM features of redox molecules and

  18. The Large Millimeter Telescope (LMT)

    Science.gov (United States)

    Young, J. S.; Carrasco, L.; Schloerb, F. P.

    2002-05-01

    The Large Millimeter Telescope (LMT) project is a collaboration between the University of Massachusetts (UMass) in the USA and the Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico to build a 50m-diameter millimeter-wave antenna which will operate with good efficiency at wavelengths as short as 1 mm. The LMT is being built at an altitude of 4600 m atop Volcan Sierra Negra, an extinct volcanic peak in the state of Puebla, Mexico, approximately 100 km east of the city of Puebla. At 18 degrees 59' N latitude, the site offers an excellent view of the Galactic Center and good sky coverage of both hemispheres. Construction of the telescope is now well underway, and it is expected to be completed in late 2004. The LMT specifications call for an overall effective surface accuracy of 75 microns rms and a pointing accuracy of 1" rms. The strategy for meeting these performance goals supplements conventional antenna designs with various "active" systems to bring the final performance within the requirements. For surface accuracy, the LMT will rely on an open loop active surface which includes 180 moveable surface segments. For pointing accuracy, we will use traditional approaches supplemented by measurements to characterize the behavior of the structure, including inclinometers and temperature sensors which may be used with finite element models to determine structural deformations and predict pointing behavior. The initial complement of instruments will include a 32 element, heterodyne focal plane array at 3mm; a large format, focal plane bolometer array; a unique wide band receiver and spectrometer to determine the redshifts of primordial galaxies; and a 4 element receiver for the 1mm band. With its excellent sensitivity and angular resolution, the LMT will enable unique studies of the early universe and galaxy evolution, the interstellar medium and star formation in galaxies, and planetary science. In particular, with nearly 2000 m2 of collecting

  19. Single camera photogrammetry system for EEG electrode identification and localization.

    Science.gov (United States)

    Baysal, Uğur; Sengül, Gökhan

    2010-04-01

    In this study, photogrammetric coordinate measurement and color-based identification of EEG electrode positions on the human head are simultaneously implemented. A rotating, 2MP digital camera about 20 cm above the subject's head is used and the images are acquired at predefined stop points separated azimuthally at equal angular displacements. In order to realize full automation, the electrodes have been labeled by colored circular markers and an electrode recognition algorithm has been developed. The proposed method has been tested by using a plastic head phantom carrying 25 electrode markers. Electrode locations have been determined while incorporating three different methods: (i) the proposed photogrammetric method, (ii) conventional 3D radiofrequency (RF) digitizer, and (iii) coordinate measurement machine having about 6.5 mum accuracy. It is found that the proposed system automatically identifies electrodes and localizes them with a maximum error of 0.77 mm. It is suggested that this method may be used in EEG source localization applications in the human brain.

  20. A dynamical system perspective to understanding badminton singles game play.

    Science.gov (United States)

    Chow, Jia Yi; Seifert, Ludovic; Hérault, Romain; Chia, Shannon Jing Yi; Lee, Miriam Chang Yi

    2014-02-01

    By altering the task constraints of cooperative and competitive game contexts in badminton, insights can be obtained from a dynamical systems perspective to investigate the underlying processes that results in either a gradual shift or transition of playing patterns. Positional data of three pairs of skilled female badminton players (average age 20.5±1.38years) were captured and analyzed. Local correlation coefficient, which provides information on the relationship of players' displacement data, between each pair of players was computed for angle and distance from base position. Speed scalar product was in turn established from speed vectors of the players. The results revealed two patterns of playing behaviors (i.e., in-phase and anti-phase patterns) for movement displacement. Anti-phase relation was the dominant coupling pattern for speed scalar relationships among the pairs of players. Speed scalar product, as a collective variable, was different between cooperative and competitive plays with a greater variability in amplitude seen in competitive plays leading to a winning point. The findings from this study provide evidence for increasing stroke variability to perturb existing stable patterns of play and highlights the potential for speed scalar product to be a collective variable to distinguish different patterns of play (e.g., cooperative and competitive). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Single-layer Ultralight, Flexible, Shielding Tension Shell System for Extreme Heat and Radiation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a flexible thermal protection system (FTPS) with a Boron Nitride Nanotube (BNNT)-based single-layer, lightweight,...

  2. Single-Stage, Gelled Hydrazine System for Mars Ascent Vehicle Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm, Inc. in cooperation with Aerojet Rocketdyne is presenting an innovative approach to the Mars Ascent Vehicle (MAV). The single-stage monopropellant system...

  3. Applying Data Mining Techniques to Improve Information Security in the Cloud: A Single Cache System Approach

    Directory of Open Access Journals (Sweden)

    Amany AlShawi

    2016-01-01

    Full Text Available Presently, the popularity of cloud computing is gradually increasing day by day. The purpose of this research was to enhance the security of the cloud using techniques such as data mining with specific reference to the single cache system. From the findings of the research, it was observed that the security in the cloud could be enhanced with the single cache system. For future purposes, an Apriori algorithm can be applied to the single cache system. This can be applied by all cloud providers, vendors, data distributors, and others. Further, data objects entered into the single cache system can be extended into 12 components. Database and SPSS modelers can be used to implement the same.

  4. Buried plastic scintillator muon telescope

    Science.gov (United States)

    Sanchez, F.; Medina-Tanco, G.A.; D'Olivo, J.C.; Paic, G.; Patino Salazar, M.E.; Nahmad-Achar, E.; Valdes Galicia, J.F.; Sandoval, A.; Alfaro Molina, R.; Salazar Ibarguen, H.; Diozcora Vargas Trevino, M.A.; Vergara Limon, S.; Villasenor, L.M.

    Muon telescopes can have several applications, ranging from astrophysical to solar-terrestrial interaction studies, and fundamental particle physics. We show the design parameters, characterization and end-to-end simulations of a detector composed by a set of three parallel dual-layer scintillator planes, buried at fix depths ranging from 0.30 m to 3 m. Each layer is 4 m2 and is composed by 50 rectangular pixels of 4cm x 2 m, oriented at a 90 deg angle with respect to its companion layer. The scintillators are MINOS extruded polystyrene strips with two Bicron wavelength shifting fibers mounted on machined grooves. Scintillation light is collected by multi-anode PMTs of 64 pixels, accommodating two fibers per pixel. The front-end electronics has a time resolution of 7.5 nsec. Any strip signal above threshold opens a GPS-tagged 2 micro-seconds data collection window. All data, including signal and background, are saved to hard disk. Separation of extensive air shower signals from secondary cosmic-ray background muons and electrons is done offline using the GPS-tagged threefold coincidence signal from surface water cerenkov detectors located nearby in a triangular array. Cosmic-ray showers above 6 PeV are selected. The data acquisition system is designed to keep both, background and signals from extensive air showers for a detailed offline data.

  5. Simulated Guide Stars: Adapting the Robo-AO Telescope Simulator to UH 88”

    Science.gov (United States)

    Ashcraft, Jaren; Baranec, Christoph

    2018-01-01

    Robo-AO is an autonomous adaptive optics system that is in development for the UH 88” Telescope on the Mauna Kea Observatory. This system is capable of achieving near diffraction limited imaging for astronomical telescopes, and has seen successful deployment and use at the Palomar and Kitt Peak Observatories previously. A key component of this system, the telescope simulator, will be adapted from the Palomar Observatory design to fit the UH 88” Telescope. The telescope simulator will simulate the exit pupil of the UH 88” telescope so that the greater Robo-AO system can be calibrated before observing runs. The system was designed in Code V, and then further improved upon in Zemax for later development. Alternate design forms were explored for the potential of adapting the telescope simulator to the NASA Infrared Telescope Facility, where simulating the exit pupil of the telescope proved to be more problematic. A proposed design composed of solely catalog optics was successfully produced for both telescopes, and they await assembly as time comes to construct the new Robo-AO system.

  6. Analisa Kecepatan Transfer Data Pada Perancangan Hotspot Sederhana Dengan System Single Sign On Di Perkantoran

    Directory of Open Access Journals (Sweden)

    Bela Neziah Arum Pangesti

    2017-05-01

    Full Text Available The problems office in the utilization of wireless technology has widely used but sometimes without take into the number of users, so it is not mangkus. The networking system for small office can be use wireless simple system. Most of the office has applied hotspot but that is old system, one account for all people using internet access. Single sign-on is a system services of hotspot, this system verifying an account for each user so people have different and username dan a password. The methodology used is literature review, analysis, design, implementation, testing and analysis of the data transfer rate. The hotspot with a single sign-on system using mikrotik, and access point, the connected with networking devices in the office. Winbox tools is used to configuration. Testing with the user had been connected to the hotspot system single sign on. Methods of test to user login on the system single sign-on is the black box texting. Testing the speed of data transfer is used staff user and guest user who uploaded three types of files to the drive with diffrent bandwidth. Then the network sniffing is used tools wireshark. The results from this study is simple hotspot service with single sign-on system for office and from the analysis of the data transfer rate was known the data transfer rate on the staff user and guest user to the three types of file is a type of word files greater than PDF and PPT.

  7. Super-resolution optical telescopes with local light diffraction shrinkage

    OpenAIRE

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found ...

  8. Level-statistics in Disordered Systems: A single parametric scaling and Connection to Brownian Ensembles

    OpenAIRE

    Shukla, Pragya

    2004-01-01

    We find that the statistics of levels undergoing metal-insulator transition in systems with multi-parametric Gaussian disorders and non-interacting electrons behaves in a way similar to that of the single parametric Brownian ensembles \\cite{dy}. The latter appear during a Poisson $\\to$ Wigner-Dyson transition, driven by a random perturbation. The analogy provides the analytical evidence for the single parameter scaling of the level-correlations in disordered systems as well as a tool to obtai...

  9. Single event monitoring system based on Java 3D and XML data binding

    International Nuclear Information System (INIS)

    Wang Liang; Chinese Academy of Sciences, Beijing; Zhu Kejun; Zhao Jingwei

    2007-01-01

    Online single event monitoring is important to BESIII DAQ System. Java3D is extension of Java Language in 3D technology, XML data binding is more efficient to handle XML document than SAX and DOM. This paper mainly introduce the implementation of BESIII single event monitoring system with Java3D and XML data binding, and interface for track fitting software with JNI technology. (authors)

  10. 76 FR 66950 - Privacy Act; Notice of Revision of System of Records, the Single Family Housing Enterprise Data...

    Science.gov (United States)

    2011-10-28

    ... Revision of System of Records, the Single Family Housing Enterprise Data Warehouse AGENCY: Office of the... systems, the Single Family Housing Enterprise Data Warehouse (SFHEDW). The revision to the record system...: Single Family Housing Enterprise Data Warehouse (SFHEDW). System location: The HUD Data Center, Hewlett...

  11. System Architecture of Explorer Class Spaceborne Telescopes: A look at Optimization of Cost, Testability, Risk and Operational Duty Cycle from the Perspective of Primary Mirror Material Selection

    Science.gov (United States)

    Hull, Anthony B.; Westerhoff, Thomas

    2015-01-01

    Management of cost and risk have become the key enabling elements for compelling science to be done within Explorer or M-Class Missions. We trace how optimal primary mirror selection may be co-optimized with orbit selection. And then trace the cost and risk implications of selecting a low diffusivity low thermal expansion material for low and medium earth orbits, vs. high diffusivity high thermal expansion materials for the same orbits. We will discuss that ZERODUR®, a material that has been in space for over 30 years, is now available as highly lightweighted open-back mirrors, and the attributes of these mirrors in spaceborne optical telescope assemblies. Lightweight ZERODUR® solutions are practical from mirrors 4m in diameter. An example of a 1.2m lightweight ZERODUR® mirror will be discussed.

  12. Processing of data from innovative parabolic strip telescope.

    Science.gov (United States)

    Kosejk, Vladislav; Novy, J.; Chadzitaskos, Goce

    2015-12-01

    This paper presents an innovative telescope design based on the usage of a parabolic strip fulfilling the function of an objective. Isaac Newton was the first to solve the problem of chromatic aberration, which is caused by a difference in the refractive index of lenses. This problem was solved by a new kind of telescope with a mirror used as an objective. There are many different kinds of telescopes. The most basic one is the lens telescope. This type of a telescope uses a set of lenses. Another type is the mirror telescope, which employs the concave mirror, spherical parabolic mirror or hyperbolically shaped mirror as its objective. The lens speed depends directly on the surface of a mirror. Both types can be combined to form a telescope composed of at least two mirrors and a set of lenses. The light is reflected from the primary mirror to the secondary one and then to the lens system. This type is smaller-sized, with a respectively reduced lens speed. The telescope design presented in this paper uses a parabolic strip fulfilling the function of an objective. Observed objects are projected as lines in a picture plane. Each of the lines of a size equal to the size of the strip corresponds to the sum of intensities of the light coming perpendicular to the objective from an observed object. A series of pictures taken with a different rotation and processed by a special reconstruction algorithm is needed to get 2D pictures. The telescope can also be used for fast detection of objects. In this mode, the rotation and multiple pictures are not needed, just one picture in the focus of a mirror is required to be taken.

  13. QSpec: online control and data analysis system for single-cell Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Lihui Ren

    2014-06-01

    Full Text Available Single-cell phenotyping is critical to the success of biological reductionism. Raman-activated cell sorting (RACS has shown promise in resolving the dynamics of living cells at the individual level and to uncover population heterogeneities in comparison to established approaches such as fluorescence-activated cell sorting (FACS. Given that the number of single-cells would be massive in any experiment, the power of Raman profiling technique for single-cell analysis would be fully utilized only when coupled with a high-throughput and intelligent process control and data analysis system. In this work, we established QSpec, an automatic system that supports high-throughput Raman-based single-cell phenotyping. Additionally, a single-cell Raman profile database has been established upon which data-mining could be applied to discover the heterogeneity among single-cells under different conditions. To test the effectiveness of this control and data analysis system, a sub-system was also developed to simulate the phenotypes of single-cells as well as the device features.

  14. Line of Sight Stabilization of James Webb Space Telescope

    Science.gov (United States)

    Meza, Luis; Tung, Frank; Anandakrishnan, Satya; Spector, Victor; Hyde, Tupper

    2005-01-01

    The James Webb Space Telescope (JWST) builds upon the successful flight experience of the Chandra Xray Telescope by incorporating an additional LOS pointing servo to meet the more stringent pointing requirements. The LOS pointing servo, referred to in JWST as the Fine Guidance Control System (FGCS), will utilize a Fine Guidance Sensor (FGS) as the sensor, and a Fine Steering Mirror (FSM) as the actuator. The FSM is a part of the Optical Telescope Element (OTE) and is in the optical path between the tertiary mirror and the instrument focal plane, while the FGS is part of the Integrated Science Instrument Module (ISIM). The basic Chandra spacecraft bus attitude control and determination architecture, utilizing gyros, star trackers/aspect camera, and reaction wheels, is retained for JWST. This system has achieved pointing stability of better than 0.5 arcseconds. To reach the JWST requirements of milli-arcsecond pointing stability with this ACS hardware, the local FGCS loop is added to the optical path. The FGCS bandwidth is about 2.0 Hz and will therefore attenuate much of the spacecraft ACS induced low frequency jitter. In order to attenuate the higher frequency (greatet than 2.0 Hz) disturbances associated with reaction wheel static and dynamic imbalances, as well as bearing run-out, JWST will employ a two-stage passive vibration isolation system consisting of (1) 7.0 Hz reaction wheel isolators between each reaction wheel and the spacecraft bus, and (2) a 1.0 Hz tower isolator between the spacecraft bus and the Optical Telescope Element (OTE). In order to sense and measure the LOS, the FGS behaves much like an autonomous star tracker that has a very small field of view and uses the optics of the telescope. It performs the functions of acquisition, identification and tracking of stars in its 2.5 x 2.5 arcminute field of view (FOV), and provides the centroid and magnitude of the selected star for use in LOS control. However, since only a single star is being tracked

  15. Automation of the Lowell Observatory 0.8-m Telescope

    Science.gov (United States)

    Buie, M. W.

    2001-11-01

    In the past year I have converted the Lowell Observatory 0.8-m telescope from a classically scheduled and operated telescope to an automated facility. The new setup uses an existing CCD camera and the existing telescope control system. The key steps in the conversion were writing a new CCD control and data acquisition module plus writing communication and queue control software. The previous CCD control program was written for DOS and much of the code was reused for this project. The entire control system runs under Linux and consists of four daemons: MOVE, PCCD, CMDR, and PCTL. The MOVE daemon is a process that communciates with the telescope control system via an RS232 port, keeping track of its state and forwarding commands from other processes to the telescope. The PCCD daemon controls the CCD camera and collects data. The CMDR daemon maintains a FIFO queue of commands to be executed during the night. The PCTL daemon receives notification from any other deamon of execution failures and sends an error code to the on-duty observer via a numeric pager. This system runs through the night much as you would traditionally operate a telescope. However, this system permits queuing up all the commands for a night and they execute one after another in sequence. Additional commands are needed to replace the normal human interaction during observing (ie., target acquisition, field registration, focusing). Also, numerous temporal synchronization commands are required so that observations happen at the right time. The system was used for this year's photometric monitoring of Pluto and Triton and is in general use for 2/3 of time on the telescope. Pluto observations were collected on 30 nights out of a potential pool of 90 nights. Detailed system design and capabilites plus sample observations will be presented. Also, a live demonstration will be provided if the weather is good. This work was supported by NASA Grant NAG5-4210 and the NSF REU Program grant to NAU.

  16. A detector system for studying nuclear reactions relevant to Single Event Effects

    Energy Technology Data Exchange (ETDEWEB)

    Murin, Yu. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation)]. E-mail: murin@jinr.ru; Babain, Yu. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Chubarov, M. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Tuboltsev, Yu. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Pljuschev, V. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Zubkov, M. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Nomokonov, P. [High Energy Laboratory, Joint Institute for Nuclear Research, 141980 Moscow Region (Russian Federation); Voronin, A. [Moscow State University, 119992 Moscow (Russian Federation); Merkin, M. [Moscow State University, 119992 Moscow (Russian Federation); Kondratiev, V. [St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Olsson, N.; Blomgren, J. [Department of Neutron Research, Uppsala University, Box 525, SE 751 20 Uppsala (Sweden); Westerberg, L. [Department of Physics, Uppsala University, Box 530, SE 751 21 Uppsala (Sweden); Ekstroem, C.; Kolozhvari, A. [The Svedberg Laboratory, Uppsala University, Box 533, SE 751 21 Uppsala (Sweden); Jaederstroem, H. [Department of Nuclear and Particle Physics, Uppsala University, Box 531, SE 751 21 Uppsala (Sweden); Jakobsson, B.; Golubev, P. [Department of Physics, Lund University, Box 118, SE 221 00 Lund (Sweden); Bargholz, Chr.; Geren, L.; Tegner, P.-E.; Zartova, I. [Department of Physics, Stockholm University, AlbaNova, SE 10691 Stockholm (Sweden); Budzanowski, A.; Czech, B.; Skwirczynska, I. [H. Niewodniczanski Institute of Nuclear Physics, PL 31 342 Cracow (Poland); Tang, H.H.K. [IBM, T.J. Watson Research Center, Yorktown Heights, NY 10598 (United States)

    2007-08-01

    We describe a device to study reactions relevant for the Single Event Effect (SEE) in microelectronics by means of 200A and 300AMeV, inverse kinematics, Si+H and Si+D reactions. The work is focused on the possibility to measure Z=2-14 projectile fragments as efficiently as possible. During commissioning and first experiments the fourth quadrant of the CELSIUS storage ring acted as a spectrometer to register fragments in two planes of Si strip detectors in the angular region 0{sup a}t -0.6{sup a}t. A combination of ring-structured and sector-structured Si strip detector planes operated at angles 0.6{sup a}t-1.1{sup a}t. For specific event tagging a Si+ phoswich scintillator wall operated in the range 3.9{sup a}t-11.7{sup a}t and Si {delta}E-E telescopes of CHICSi type operated at large angles.

  17. San Pedro Martir Telescope: Mexican design endeavor

    Science.gov (United States)

    Toledo-Ramirez, Gengis K.; Bringas-Rico, Vicente; Reyes, Noe; Uribe, Jorge; Lopez, Aldo; Tovar, Carlos; Caballero, Xochitl; Del-Llano, Luis; Martinez, Cesar; Macias, Eduardo; Lee, William; Carramiñana, Alberto; Richer, Michael; González, Jesús; Sanchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Segura, Jose; Rubio, Saul; Gonzalez, German; Hernandez, Obed; García, Mary; Lazaro, Jose; Rosales-Ortega, Fabian; Herrera, Joel; Sierra, Gerardo; Serrano, Hazael

    2016-08-01

    two Nasmyth focal stations are contemplated, nominally with focal ratios of f/5 and f/11. The concept will allow the use of existing instruments like MMIRS and MEGACAM. Available experience from currently working ground-based telescopes will be integrated with up-to-date technology specially for control and information management systems. Its mount is the well-known azimuth-elevation configuration. The telescope total mass is estimated in about 245 metric tons, with a total azimuth load of 185 metric tons including around 110 metric tons as the total elevation load. A tracking error lower than 0.03 arcsec RMS is expected under steady wind up to 50 Km/h. An open-loop pointing accuracy between 10 and 2 arcsec is planned. The TSPM is in its design phase. It is the first large optical ground-based telescope to be designed and developed primarily by Mexican scientists and engineers. This endeavor will result in the improvement of the scientific and technical capabilities of Mexico including complex scientific instruments development, systems engineering and project management for large engineering projects. In this paper, which aims to gather the attention of the community for further discussions, we present the engineering preliminary design, the basic architecture and challenging technical endeavors of the TSPM project.

  18. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    Pushed by the booming installations of single-phase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of low voltage ride-through (LVRT) and the grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant detection and control strategies are discussed. Some faulty modes are studied experimentally...

  19. A single-system model predicts recognition memory and repetition priming in amnesia.

    Science.gov (United States)

    Berry, Christopher J; Kessels, Roy P C; Wester, Arie J; Shanks, David R

    2014-08-13

    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. Copyright © 2014 the authors 0270-6474/14/3410963-12$15.00/0.

  20. An Oxygen Scavenging System for Improvement of Dye Stability in Single-Molecule Fluorescence Experiments☆

    Science.gov (United States)

    Aitken, Colin Echeverría; Marshall, R. Andrew; Puglisi, Joseph D.

    2008-01-01

    The application of single-molecule fluorescence techniques to complex biological systems places demands on the performance of single fluorophores. We present an enzymatic oxygen scavenging system for improved dye stability in single-molecule experiments. We compared the previously described protocatechuic acid/protocatechuate-3,4-dioxygenase system to the currently employed glucose oxidase/catalase system. Under standardized conditions, we observed lower dissolved oxygen concentrations with the protocatechuic acid/protocatechuate-3,4-dioxygenase system. Furthermore, we observed increased initial lifetimes of single Cy3, Cy5, and Alexa488 fluorophores. We further tested the effects of chemical additives in this system. We found that biological reducing agents increase both the frequency and duration of blinking events of Cy5, an effect that scales with reducing potential. We observed increased stability of Cy3 and Alexa488 in the presence of the antioxidants ascorbic acid and n-propyl gallate. This new O2-scavenging system should have wide application for single-molecule fluorescence experiments. PMID:17921203

  1. Artificial intelligence applications for Hubble Space Telescope operations

    Science.gov (United States)

    Miller, Glenn

    Using Hubble Space Telescope operations as an example, this paper has shown practical applications of AI techniques to observatory operations including proposal preparation, proposal selection, proposal transformation, resource usage, duplication, observation monitoring and data analysis. Several of the systems are in routine use by operations staff and solve problems which formerly required highly trained human experts. The power of AI techniques results from several factors including sophisticated development tools, powerful ways to represent and reason with knowledge, and an expressive user interface. Although this paper has used the HST as a case study, most features of HST operations are common to other observatories, both space- and ground-based. NASA's great observatories such as the Advanced X-Ray Astrophysics Facility (AXAF), the Space Station, and ground-based telescopes such as the European Very Large Telescope and Texas-Penn State Spectrocopic Survey Telescope can benefit from applications of AI technology.

  2. The Atacama Cosmology Telescope: The Receiver and Instrumentation

    Science.gov (United States)

    Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.; hide

    2010-01-01

    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

  3. Science with the solar optical telescope

    Science.gov (United States)

    Jordan, S. D.; Hogan, G. D.

    1984-01-01

    The Solar Optical Telescope (SOT) is designed to provide the solar physics community with the data necessary for solving several fundamental problems in the energetics and dynamics of the solar atmosphere. Among these problems are questions on the origin and evolution of the sun's magnetic field, heating of the outer solar atmosphere, and sources of the solar wind in the lower lying regions of the outer atmosphere. The SOT will be built under the management of NASA's Goddard Space Flight Center, with science instruments provided by teams led by Principal Investigators. The telescope will be built by the Perkin-Elmer Corporation, and the science instruments selected for the first flight will be provided by the Lockheed Palo Alto Research Laboratory (LPARL) and the California Institute of Technology, with actual construction of a combined science instrument taking place at the LPARL. The SOT has a 1.3-meter-diameter primary mirror that will be capable of achieving diffraction-limited viewing in the visible of 0.1 arc-second. This dimension is less than a hydrodynamic scale-height or a mean-free-path of a continuum photon in the solar atmosphere. Image stability will be achieved by a control system in the telescope, which moves both the primary and tertiary mirrors in tandem, and will be further enhanced by a correlation tracker in the combined science instrument. The SOT Facility is currently scheduled for its first flight on Spacelab at the beginning of the 1990's.

  4. Demonstration of an efficient, photonic-based astronomical spectrograph on an 8-m telescope

    Science.gov (United States)

    Jovanovic, N.; Cvetojevic, N.; Norris, B.; Betters, C.; Schwab, C.; Lozi, J.; Guyon, O.; Gross, S.; Martinache, F.; Tuthill, P.; Doughty, D.; Minowa, Y.; Takato, N.; Lawrence, J.

    2017-07-01

    We demonstrate for the first time an efficient, photonic-based astronomical spectrograph on the 8-m Subaru Telescope. An extreme adaptive optics system is combined with pupil apodiziation optics to efficiently inject light directly into a single-mode fiber, which feeds a compact cross-dispersed spectrograph based on array waveguide grating technology. The instrument currently offers a throughput of 5% from sky-to-detector which we outline could easily be upgraded to ~13% (assuming a coupling efficiency of 50%). The isolated spectrograph throughput from the single-mode fiber to detector was 42% at 1550 nm. The coupling efficiency into the single-mode fiber was limited by the achievable Strehl ratio on a given night. A coupling efficiency of 47% has been achieved with ~60% Strehl ratio on-sky to date. Improvements to the adaptive optics system will enable 90% Strehl ratio and a coupling of up to 67% eventually. This work demonstrates that the unique combination of advanced technologies enables the realization of a compact and highly efficient spectrograph, setting a precedent for future instrument design on very-large and extremely-large telescopes.

  5. Growth of single T cells and single thymocytes in a high cloning efficiency filler-cell free microculture system.

    Science.gov (United States)

    Chen, W F; Ewing, T; Scollay, R; Shortman, K

    1988-01-01

    A high cloning-efficiency microculture system is described in which single T cells, stimulated to divide by phorbol ester and calcium ionophore, grow rapidly under the influence of purified growth factors in the absence of other cells. The kinetics of clonal growth has been monitored over a five day period by phase-contrast microscopy. Mature peripheral T cells, and mature subpopulations from the thymus, responded with a cloning efficiency over 80%; they required IL-2 as a minimum but several other factors enhanced growth. Ly2+L3T4- thymocytes (mean doubling time 10.4 hr) grew more rapidly than Ly2-L3T4+ thymocytes (mean doubling time 15.2 hr). Early (Ly2-L3T4-) thymocytes responded with a cloning efficiency of 60%; their efficient growth was dependent on both IL-1 and IL-2. The typical Ly2+L3T4+ cortical thymocyte did not grow under these conditions.

  6. A single mode method for the analysis and identification of nonlinear MDOF systems

    Science.gov (United States)

    Huang, Liping; Iwan, W. D.

    In order to apply mode approach to describe a nonlinear system, the concept of modal response of nonlinear systems is examined, and an amplitude-dependent modal model is presented based on an analysis of a single mode of response. The effectiveness of this model is examined under different types and various levels of excitation. A corresponding identification procedure for cubic systems is proposed and applied to the analysis of a 3DOF soltening nonlinear system.

  7. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  8. Trick or Treat and Telescopes

    Science.gov (United States)

    Buratti, Bonnie J.; Meinke, Bonnie K.; Schmude, Richard W.

    2017-10-01

    Based on an activity that DPS member Richard Schmude Jr. has been doing for years, with over 5000 children reached, DPS initiated in 2016 a pilot program entitled “Trick-or-Treat and Telescopes.” DPS encouraged its members to put out their telescopes during trick-or-treat time on Halloween, in their own lawns or in a neighbor’s lawn with better viewing (or more traffic). The program will be continued in 2017. This year should offer good viewing with a waxing gibbous moon and Saturn visible. The program was also advertised though the Night Sky Network, a consortium of astronomy clubs. The following website gives advice and connections to resources.https://dps.aas.org/education/trick-or-treat-and-telescopes acknowledged.

  9. Scientific management of Space Telescope

    Science.gov (United States)

    Odell, C. R.

    1981-01-01

    A historical summay is given on the science management of the Space Telescope, the inception of which began in 1962, when scientists and engineers first recommended the development of a nearly diffraction limited substantial-size optical telescope. Phase A, the feasibility requirements generation phase, began in 1971 and consisted largely of NASA scientists and a NASA design. Phase B, the preliminary design phase, established a tiered structure of scientists, led by the Large Space Telescope operations and Management Work Group. A Mission Operations Working Group headed six instrument definition teams to develop the essential instrument definitions. Many changes took place during Phase B, before design and development, which began in 1978 and still continues today.

  10. Measuring Visual Double Stars with Robotic Telescopes

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady; Genet, Russell M.; Faisal Al-Zaben, Dewei Li, Yongyao Li, Aren Dennis, Zhixin Cao, Junyao Li, Steven Qu, Jeff Li, Michael Fene, Allen Priest, Stephen Priest, Rex Qiu, , and, Bill Riley

    2016-06-01

    The Astronomy Research Seminars introduce students to scientific research by carrying out the entire process: planning a scientific research project, writing a research proposal, gathering and analyzing observational data, drawing conclusions, and presenting the research results in a published paper and presentation.In 2015 Cuesta College and Russell Genet sponsored a new hybrid format for the seminar enabling distance learning. Boyce Research Initiatives and Education Foundation (BRIEF) conducted the course at The Army and Navy Academy (ANA) in Carlsbad, California, in the spring and fall of 2015.The course objective is to complete the research and publish the paper within one semester. Our program schedule called for observations to be performed within a two week period. Measurement of visual binary stars was chosen because sufficient observations could be made in just two evenings of good weather. We quickly learned that our location by the ocean did not provide reliable weather to use local telescopes.The iTelescope network of robotic telescopes located in Australia, Spain and the U.S. solved the problem. Reservations for these systems are booked online and include date, time, exposure and filters. The high quality telescopes range from 4" to 27" in size with excellent cameras. By watching the weather forecasts for the sites, we were able to schedule our observations within the two week time frame required.Timely and reliable data reduction was the next hurdle. The students were using widely varying equipment (PCs, MACs, tablets, smart phones) with incompatible software. After wasting time trying to be computer technicians, we settled a on standard set of software relying on Mirametrics' Mira Pro x64. We installed the software on an old laptop, downloaded the iTelescope data files, gave the students remote access using GoToMyPC.These efficiencies enabled us to meet the demanding one semester schedule and assure a better learning experience. We have been able to

  11. An automated system for high-throughput single cell-based breeding

    Science.gov (United States)

    Yoshimoto, Nobuo; Kida, Akiko; Jie, Xu; Kurokawa, Masaya; Iijima, Masumi; Niimi, Tomoaki; Maturana, Andrés D.; Nikaido, Itoshi; Ueda, Hiroki R.; Tatematsu, Kenji; Tanizawa, Katsuyuki; Kondo, Akihiko; Fujii, Ikuo; Kuroda, Shun'ichi

    2013-01-01

    When establishing the most appropriate cells from the huge numbers of a cell library for practical use of cells in regenerative medicine and production of various biopharmaceuticals, cell heterogeneity often found in an isogenic cell population limits the refinement of clonal cell culture. Here, we demonstrated high-throughput screening of the most suitable cells in a cell library by an automated undisruptive single-cell analysis and isolation system, followed by expansion of isolated single cells. This system enabled establishment of the most suitable cells, such as embryonic stem cells with the highest expression of the pluripotency marker Rex1 and hybridomas with the highest antibody secretion, which could not be achieved by conventional high-throughput cell screening systems (e.g., a fluorescence-activated cell sorter). This single cell-based breeding system may be a powerful tool to analyze stochastic fluctuations and delineate their molecular mechanisms. PMID:23378922

  12. Comparison of the accuracy of the calibration model on the double and single integrating sphere systems

    CSIR Research Space (South Africa)

    Singh

    2011-05-01

    Full Text Available The accuracy of the calibration model for the single and double integrating sphere systems are compared for a white light system. A calibration model is created from a matrix of samples with known absorption and reduced scattering coefficients...

  13. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.

    2016-01-01

    of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral...

  14. Single-Mask Fabrication of Temperature Triggered MEMS Switch for Cooling Control in SSL System

    NARCIS (Netherlands)

    Wei, J.; Ye, H.; Van Zeijl, H.W.; Sarro, P.M.; Zhang, G.Q.

    2012-01-01

    A micro-electro-mechanical-system (MEMS) based, temperature triggered, switch is developed as a cost-effective solution for smart cooling control of solid-state-lighting systems. The switch (1.0x0.4 mm2) is embedded in a silicon substrate and fabricated with a single-mask 3D micro-machining process.

  15. System upgrade and its complications in patients with a single lead atrial pacemaker

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Andersen, Henning Rud; Nielsen, Jens Cosedis

    2013-01-01

    To investigate the indications for system upgrade with single lead atrial pacing (AAIR), complications associated with these re-interventions, and possible predictors for system upgrade among patients included in the Danish Multicenter Randomized Trial on AAIR vs. dual-chamber pacing (DDDR) in si...

  16. Modeling and Control of a Single-Phase Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2013-01-01

    This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

  17. Apically extruded dentin debris by reciprocating single-file and multi-file rotary system.

    Science.gov (United States)

    De-Deus, Gustavo; Neves, Aline; Silva, Emmanuel João; Mendonça, Thais Accorsi; Lourenço, Caroline; Calixto, Camila; Lima, Edson Jorge Moreira

    2015-03-01

    This study aims to evaluate the apical extrusion of debris by the two reciprocating single-file systems: WaveOne and Reciproc. Conventional multi-file rotary system was used as a reference for comparison. The hypotheses tested were (i) the reciprocating single-file systems extrude more than conventional multi-file rotary system and (ii) the reciprocating single-file systems extrude similar amounts of dentin debris. After solid selection criteria, 80 mesial roots of lower molars were included in the present study. The use of four different instrumentation techniques resulted in four groups (n = 20): G1 (hand-file technique), G2 (ProTaper), G3 (WaveOne), and G4 (Reciproc). The apparatus used to evaluate the collection of apically extruded debris was typical double-chamber collector. Statistical analysis was performed for multiple comparisons. No significant difference was found in the amount of the debris extruded between the two reciprocating systems. In contrast, conventional multi-file rotary system group extruded significantly more debris than both reciprocating groups. Hand instrumentation group extruded significantly more debris than all other groups. The present results yielded favorable input for both reciprocation single-file systems, inasmuch as they showed an improved control of apically extruded debris. Apical extrusion of debris has been studied extensively because of its clinical relevance, particularly since it may cause flare-ups, originated by the introduction of bacteria, pulpal tissue, and irrigating solutions into the periapical tissues.

  18. A single-system model predicts recognition memory and repetition priming in amnesia

    NARCIS (Netherlands)

    Berry, C.J.; Kessels, R.P.C.; Wester, A.J.; Shanks, D.R.

    2014-01-01

    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with

  19. A Single-System Account of the Relationship between Priming, Recognition, and Fluency

    Science.gov (United States)

    Berry, Christopher J.; Shanks, David R.; Henson, Richard N. A.

    2008-01-01

    A single-system computational model of priming and recognition was applied to studies that have looked at the relationship between priming, recognition, and fluency in continuous identification paradigms. The model was applied to 3 findings that have been interpreted as evidence for a multiple-systems account: (a) priming can occur for items not…

  20. Simulation of a quantum NOT gate for a single qutrit system

    Indian Academy of Sciences (India)

    level system; qutrit; three-level transitions; one-qutrit quantum gate. ... Because of the fact that the three-level atom defines a total normalized state composed of superposition of three different single-level states, it is assumed that such a system ...

  1. Superconductor lunar telescopes --Abstract only

    Science.gov (United States)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  2. The network of INTA telescopes

    Science.gov (United States)

    Cuesta, L.

    2008-06-01

    The Spanish Instituto Nacional de Técnica Aeroespacial has a network of three telescopes located at some of the best places for astronomy in mainland Spain. The first is at the Observatorio de Calar Alto in Almeria, at an altitude of more than 2100 m. The second is near Calatayud in Zaragoza, at the summit of a 1400-m high mountain. The last is on the campus of the Instituto Nacional de Técnica Aerospatial (INTA), in Madrid. The three telescopes are either 40 or 50 cm in diameter and will be available for communications and educational projects.

  3. Ultra high throughput four-reflection x-ray telescope for high resolution spectroscopy

    Science.gov (United States)

    Tawara, Yuzuru; Mitsuishi, Ikuyuki; Babazaki, Yasunori; Nakamichi, Ren; Bandai, Ayako

    2015-09-01

    The first application of four-times reflection X-ray optics is planned for the DIOS mission, in which very soft X-ray observation is expected. On the other hand, effective area of the telescope for higher X-ray energy (E < 10 keV) including iron K emission lines has been so far limited to about 1000 cm2 for assumed several meter focal length. However, if we introduce four-reflection optics to this energy range, we can get several times large effective area for single telescope with same several meter focal length. To prove this possibility, we performed ray tracing simulation for four-reflection telescope with 6 m focal length and found that effective area of 3100 cm2 at 6 keV can be obtained for single telescope. In this paper, we will discuss about other telescope performances, mechanical properties and application to fine spectroscopic mission using X-ray micro-calorimeter.

  4. A Comparison of Single and Multi-Stream Recycling Systems in Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Calvin Lakhan

    2015-06-01

    Full Text Available This study examines differences in cost and recycling performance between single and multi-stream recycling systems in Ontario, Canada. Using panel data from 223 provincial municipalities spanning a ten year period, focus is placed on analyzing: (a Are material management costs for municipalities who implement single stream collection less than those that implement multi stream collection? (b Are recycling rates for single stream municipalities higher than municipalities with multi stream collection? (c Do municipalities with multi stream collection realize higher revenues from the sale of recyclable material? The results of the analysis show that while single stream recycling programs recycle more than multi stream programs, they face significantly higher material management costs. This was contrary to the prevailing opinion that single stream recycling is a cheaper alternative to multi-stream recycling. As far as can be ascertained, this is one of the few studies of its kind to examine the differences in material management costs and recycling performance between single and multi-stream recycling systems. This topic is of increasing importance, as single stream recycling is being touted as preferred waste management option in both Ontario and abroad.

  5. Tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation

    Directory of Open Access Journals (Sweden)

    M Soltani

    2015-12-01

    Full Text Available In this work, we generalize the entanglement of three-qbit Bosonic systems beyond the single-mode approximation when one of the observers is accelerated. For this purpose, we review the effects of acceleration on field modes and quantum states. The single-mode approximation and beyond the single-mode approximation methods are introduced. After this brief introduction, the main problem of this paper, tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation is investigated. The tripartite entangled states have different classes with GHZ and W states being most important. Here, we choose &pi-tangle as a measure of tripartite entanglement. If the three parties share GHZ state, the corresponding &pi-tangle will increase by increasing acceleration for some Unruh modes. This phenomenon, increasing entanglement, has never been observed in the single-mode approximation for bosonic case. Moreover, the &pi-tangle dose not exhibit a monotonic behavior with increasing acceleration. In the infinite acceleration limit, the &pi-tangle goes to different nonzero values for distinct Unruh modes. Unlike GHZ state, the entanglement of the W state shows only monotonically increasing and decreasing behaviors with increasing acceleration. Also, the entanglement for all possible choices of Unruh modes approaches only 0.176 in the high acceleration limit. Therefore, according to the quantum entanglement, there is no distinction between the single-mode approximation and beyond the single-mode approximation methods in this limit.

  6. Single Microwave-Photon Detector using an Artificial Lambda-type Three-Level System

    Science.gov (United States)

    2016-01-11

    Single microwave -photon detector using an artificial Λ-type three-level system Kunihiro Inomata,1∗†, Zhirong Lin,1†, Kazuki Koshino,2, William D...are those of the author and are not necessarily endorsed by the United States Government. Single microwave -photon detector using an artificial Λ-type...in both the optical and the microwave domains. However, the energy of mi- crowave quanta are four to five orders of magnitude less than their optical

  7. Single Microfluidic Electrochemical Sensor System for Simultaneous Multi-Pulmonary Hypertension Biomarker Analyses

    OpenAIRE

    Lee, GeonHui; Lee, JuKyung; Kim, JeongHoon; Choi, Hak Soo; Kim, Jonghan; Lee, SangHoon; Lee, HeaYeon

    2017-01-01

    Miniaturized microfluidic biosensors have recently been advanced for portable point-of-care diagnostics by integrating lab-on-a-chip technology and electrochemical analysis. However, the design of a small, integrated, and reliable biosensor for multiple and simultaneous electrochemical analyses in a single device remains a challenge. Here, we present a simultaneous microfluidic electrochemical biosensing system to detect multiple biomarkers of pulmonary hypertension diseases in a single devic...

  8. Electrochemistry and bioelectrochemistry towards the single-molecule level: Theoretical notions and systems

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Albrecht, Tim

    2005-01-01

    Surface structures controlled at the nanometer and single-molecule levels, with functions crucially determined by interfacial electron transfer (ET) are broadly reported in recent years, with different kinds of electrochemically controlled nanoscale/single molecule systems. One is the broad class...... tunnelling spectroscopic (STS) features. Mapping of redox metalloproteins from the three major classes, i.e. blue copper proteins, heme proteins, and iron-sulfur proteins, at the monolayer and single-molecule levels have also been achieved. In situ STM and spectroscopy of redox molecules and biomolecules...

  9. First optical validation of a Schwarzschild Couder telescope: the ASTRI SST-2M Cherenkov telescope

    Science.gov (United States)

    Giro, E.; Canestrari, R.; Sironi, G.; Antolini, E.; Conconi, P.; Fermino, C. E.; Gargano, C.; Rodeghiero, G.; Russo, F.; Scuderi, S.; Tosti, G.; Vassiliev, V.; Pareschi, G.

    2017-12-01

    Context. The Cherenkov Telescope Array (CTA) represents the most advanced facility designed for Cherenkov Astronomy. ASTRI SST-2M has been developed as a demonstrator for the Small Size Telescope in the context of the upcoming CTA. Its main innovation consists in the optical layout which implements the Schwarzschild-Couder configuration and is fully validated for the first time. The ASTRI SST-2M optical system represents the first qualified example of a two-mirror telescope for Cherenkov Astronomy. This configuration permits us to (i) maintain high optical quality across a large field of view; (ii) demagnify the plate scale; and (iii) exploit new technological solutions for focal plane sensors. Aims: The goal of the paper is to present the optical qualification of the ASTRI SST-2M telescope. The qualification has been obtained measuring the point spread function (PSF) sizes generated in the focal plane at various distances from the optical axis. These values have been compared with the performances expected by design. Methods: After an introduction on Gamma-ray Astronomy from the ground, the optical design of ASTRI SST-2M and how it has been implemented is discussed. Moreover, the description of the set-up used to qualify the telescope over the full field of view is shown. Results: We report the results of the first-light optical qualification. The required specification of a flat PSF of 10 arcmin in a large field of view ( 10°) has been demonstrated. These results validate the design specifications, opening a new scenario for Cherenkov Gamma-ray Astronomy and, in particular, for the detection of high-energy (5-300 TeV) gamma rays and wide-field observations with CTA.

  10. Offset guiding through large space telescopes.

    Science.gov (United States)

    Schulte, D. H.

    1972-01-01

    Discussion of the merits of various space telescope system designs, both of the Ritchey-Chretien and Gregorian kinds. In particular design data for an f/2.2 to f/12.0 Ritchey-Chretien system with a five-element telecentric field corrector and for another f/3.3 to f/15.0 similar system with a two-cylindrical-element telecentric field corrector are reviewed, along with data for an f/2.5 to f/15.0 Ritchey-Chretien system with a fold mirror corrector and for an f/2.2 to f/12.0 coma-corrected Gregorian system with a five-element telecentric field corrector. The transverse aberrations, optical path differences, and other characteristics of these system design varieties are examined.-

  11. VISTA: Pioneering New Survey Telescope Starts Work

    Science.gov (United States)

    2009-12-01

    the Flame Nebula (NGC 2024), a spectacular star-forming cloud of gas and dust in the familiar constellation of Orion (the Hunter) and its surroundings. In visible light the core of the object is hidden behind thick clouds of dust, but the VISTA image, taken at infrared wavelengths, can penetrate the murk and reveal the cluster of hot young stars hidden within. The wide field of view of the VISTA camera also captures the glow of NGC 2023 and the ghostly form of the famous Horsehead Nebula. The second image is a mosaic of two VISTA views towards the centre of our Milky Way galaxy in the constellation of Sagittarius (the Archer). Vast numbers of stars are revealed - this single picture shows about one million stars - and the majority are normally hidden behind thick dust clouds and only become visible at infrared wavelengths. For the final image, VISTA has stared far beyond our galaxy to take a family photograph of a cluster of galaxies in the constellation of Fornax (the Chemical Furnace). The wide field allows many galaxies to be captured in a single image including the striking barred-spiral NGC 1365 and the big elliptical galaxy NGC 1399. VISTA will spend almost all of its time mapping the southern sky in a systematic fashion. The telescope is embarking on six major sky surveys with different scientific goals over its first five years. One survey will cover the entire southern sky and others will be dedicated to smaller regions to be studied in greater detail. VISTA's surveys will help our understanding of the nature, distribution and origin of known types of stars and galaxies, map the three-dimensional structure of our galaxy and the neighbouring Magellanic Clouds, and help determine the relation between the structure of the Universe and the mysterious dark energy and dark matter. The huge data volumes - typically 300 gigabytes per night or more than 100 terabytes per year - will flow back into the ESO digital archive and will be processed into images and

  12. Three-dimensional (3-D) video systems: bi-channel or single-channel optics?

    Science.gov (United States)

    van Bergen, P; Kunert, W; Buess, G F

    1999-11-01

    This paper presents the results of a comparison between two different three-dimensional (3-D) video systems, one with single-channel optics, the other with bi-channel optics. The latter integrates two lens systems, each transferring one half of the stereoscopic image; the former uses only one lens system, similar to a two-dimensional (2-D) endoscope, which transfers the complete stereoscopic picture. In our training centre for minimally invasive surgery, surgeons were involved in basic and advanced laparoscopic courses using both a 2-D system and the two 3-D video systems. They completed analog scale questionnaires in order to record a subjective impression of the relative convenience of operating in 2-D and 3-D vision, and to identify perceived deficiencies in the 3-D system. As an objective test, different experimental tasks were developed, in order to measure performance times and to count pre-defined errors made while using the two 3-D video systems and the 2-D system. Using the bi-channel optical system, the surgeon has a heightened spatial perception, and can work faster and more safely than with a single-channel system. However, single-channel optics allow the use of an angulated endoscope, and the free rotation of the optics relative to the camera, which is necessary for some operative applications.

  13. New telescope designs suitable for massively multiplexed spectroscopy

    Science.gov (United States)

    Pasquini, Luca; Delabre, B.; Ellis, R.; de Zeeuw, Tim

    2016-07-01

    We present two novel designs for a telescope suitable for massively-multiplexed spectroscopy. The first is a very wide field Cassegrain telescope optimised for fibre feeding. It provides a Field Of View (FOV) of 2.5 degrees diameter with a 10m primary mirror. It is telecentric and works at F/3, optimal for fibre injection. As an option, a gravity invariant focus for the central 10 arc-minutes can be added, to host, for instance, a giant integral field unit (IFU). It has acceptable performance in the 360-1300 nm wavelength range. The second concept is an innovative five mirror telescope design based on a Three Mirror Anastigmatic (TMA) concept. The design provides a large FOV in a convenient, gravityinvariant focal plane, and is scalable to a range of telescope diameters. As specific example, we present a 10m telescope with a 1.5 degree diameter FOV and a relay system that allows simultaneous spectroscopy with 10,000 mini-IFUs over a square degree, or, alternatively a 17.5 square arcminutes giant IFU, by using 240 MUSE-type spectrographs. We stress the importance of developing the telescope and instrument designs for both cases.

  14. Stray light field dependence for large astronomical space telescopes

    Science.gov (United States)

    Lightsey, Paul A.; Bowers, Charles W.

    2017-09-01

    Future large astronomical telescopes in space will have architectures that expose the optics to large angular extents of the sky. Options for reducing stray light coming from the sky range from enclosing the telescope in a tubular baffle to having an open telescope structure with a large sunshield to eliminate solar illumination. These two options are considered for an on-axis telescope design to explore stray light considerations. A tubular baffle design will limit the sky exposure to the solid angle of the cone in front of the telescope set by the aspect ratio of the baffle length to Primary Mirror (PM) diameter. Illumination from this portion of the sky will be limited to the PM and structures internal to the tubular baffle. Alternatively, an open structure design will allow a large portion of the sky to directly illuminate the PM and Secondary Mirror (SM) as well as illuminating sunshield and other structure surfaces which will reflect or scatter light onto the PM and SM. Portions of this illumination of the PM and SM will be scattered into the optical train as stray light. A Radiance Transfer Function (RTF) is calculated for the open architecture that determines the ratio of the stray light background radiance in the image contributed by a patch of sky having unit radiance. The full 4π steradian of sky is divided into a grid of patches, with the location of each patch defined in the telescope coordinate system. By rotating the celestial sky radiance maps into the telescope coordinate frame for a given pointing direction of the telescope, the RTF may be applied to the sky brightness and the results integrated to get the total stray light from the sky for that pointing direction. The RTF data generated for the open architecture may analyzed as a function of the expanding cone angle about the pointing direction. In this manner, the open architecture data may be used to directly compare to a tubular baffle design parameterized by allowed cone angle based on the

  15. Solar energy heating system design package for a single-family residence at New Castle, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    The design of a solar heating and hot water system for the New Castle Redevelopment Authority's single-family dwelling located at New Castle, Pennsylvania is described. Documentation submitted by the contractor for Government review of plans, specifications, cost trade studies and verification status for approval to commit the system to fabrication is presented. Also included are system integration drawings, major subsystems drawings, and architect's specifications and plans.

  16. Single-Server Queueing System with Markov-Modulated Arrivals and Service Times

    OpenAIRE

    Dimitrov, Mitko

    2011-01-01

    Key words: Markov-modulated queues, waiting time, heavy traffic. Markov-modulated queueing systems are those in which the input process or service mechanism is influenced by an underlying Markov chain. Several models for such systems have been investigated. In this paper we present heavy traffic analysis of single queueing system with Poisson arrival process whose arrival rate is a function of the state of Markov chain and service times depend on the state of the same Markov chain at the e...

  17. Comparison between Conventional OCDMA and Subcarrier Multiplexing SAC OCDMA System Based on Single Photodiode Detection

    OpenAIRE

    Ahmad N. A. A; Junita M. N; Aljunid Syed Alwi; Che Beson Mohd Rashidi; Endut Rosdisham

    2017-01-01

    This paper demonstrates the comparison between conventional OCDMA system and subcarrier multiplexing (SCM) SAC-OCDMA system by applying Recursive Combinatorial (RC) code based on single photodiode detection (SPD). SPD is used in the receiver part to reduce the effect of multiple access interference (MAI) which contributes as a dominant noise in incoherent SAC-OCDMA systems. From this analysis, the performance of SCM OCDMA network could be improved by using lower data rates and higher received...

  18. Setting Single Photon Detectors for Use with an Entangled Photon Distribution System

    Science.gov (United States)

    2017-12-01

    System by Daniel E Jones, Drew Weninger, and Michael Brodsky Approved for public release; distribution is unlimited...Laboratory Setting Single Photon Detectors for Use with an Entangled Photon Distribution System by Daniel E Jones and Michael Brodsky Computational...Use with an Entangled Photon Distribution System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Daniel E Jones

  19. Das James Webb Space Telescope

    Science.gov (United States)

    Lemke, Dietrich

    2005-07-01

    Nicht nach einem berühmten Astronomen, sondern nach einem ihrer erfolgreichen Behördenleiter hat die NASA ihr neues astronomisches Flaggschiff benannt: Im Jahre 2011 soll das James Webb Space Telescope (JWST) das Weltraumteleskop Hubble ablösen.

  20. Results from the AMANDA telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Bai, X.; Barwick, S.W.; Becka, T.; Becker, K.-H.; Bernardini, E.; Bertrand, D.; Binon, F.; Biron, A.; Boeser, S.; Botner, O.; Bouhali, O.; Burgess, T.; Carius, S.; Castermans, T.; Chirkin, D.; Conrad, J.; Cooley, J.; Cowen, D.F.; Davour, A.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Ekstroem, P.; Feser, T.; Gaisser, T.K.; Ganupati, R.; Gaug, M.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Herquet, Ph.; Hill, G.C.; Hulth, P.O.; Hultqvist, K.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Koepke, L.; Kuehn, K.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Madsen, J.; Mandli, K.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Messarius, T.; Minaeva, Y.; Miocinovic, P.; Morse, R.; Nahnhauer, R.; Neunhoeffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Resconi, E.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schinarakis, K.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Steele, D.; Steffen, P.; Stokstad, R.G.; Sudoff, P.; Sudoff, K.-H.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Tilav, S.; Wagner, W.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedemann, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Yodh, G.; Young, S

    2003-06-30

    We present results from the AMANDA high energy neutrino telescope located at the South Pole. They include measurements of the atmospheric neutrino flux, search for UHE point sources, and diffuse sources producing electromagnetic/hadronic showers at the detector or close to it.