International Nuclear Information System (INIS)
Martin Sanchez, A.; Vera Tome, F.; Caceres Marzal, D.; Bland, C.J.
1994-01-01
A pulse-height spectrum of alpha-particle emissions at discrete energies can be fitted by the peak-shape functions generated by combining asymmetric truncated exponential functions with a symmetric Gaussian distribution. These functions have been applied successfully by several workers. A correlation was previously found between the variance of the symmetric Gaussian portion of the fitting function, and the parameter characterising the principal exponential tailing function. The results of a more detailed experimental study are reported, which involve varying the angle and the distance between the source and the detector. This analysis shows that the parameters of the symmetric and asymmetric parts of the fitted functions seem to depend on either the detector or the source. These parameters are influenced by the energy loss suffered by the alpha-particles as well as by the efficiency of charge collection in the solid-state detector. (orig.)
Symmetricity analysis of time to peak parameter of indocyanine green dynamics
An, Yuri; Lee, Jungsul; Choi, Chulhee
2013-03-01
We have previously discovered that near-infrared optical imaging of indocyanine green (ICG) signal and analyzing its dynamics can be applied for measurement of blood perfusion rate and detection of Raynaud's phenomenon (RP). Especially, RP is closely associated with abnormal vasomotor responses and can progress to tissue necrosis due to excessively sustained vasoconstriction. Therefore, early detecting of RP is one of important implication to prevent tissue damage from peripheral vascular disorders. In the present study, we propose new analysis and scoring method of symmetricity of Tmax value of left and right extremities. Moreover, this symmetricity analysis can give further information about microvascular insufficiency. For validation of the proposed method, we tested whether the segmental and paired analysis of Tmax value (time-to-peak) of ICG dynamics can be used for sensitive diagnosis of microvascular abnormalities which cannot be detected by conventional methods. From the near-infrared images of diabetes mellitus patients with vascular complications, the trend of asymmetry in Tmax value was observed. We assumed that decreasing local blood perfusion by autonomic nerve dysfunction causes the asymmetric Tmax value of right and left feet. These results collectively indicate that the proposed method can be used as a useful diagnostic tool for RP or other microvascular disorders.
Quasi-single helicity spectra in the Madison Symmetric Torus
International Nuclear Information System (INIS)
Marrelli, L.; Martin, P.; Spizzo, G.; Franz, P.; Chapman, B.E.; Craig, D.; Sarff, J.S.; Biewer, T.M.; Prager, S.C.; Reardon, J.C.
2002-01-01
Evidence of a self-organized collapse towards a narrow spectrum of magnetic instabilities in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] reversed field pinch device is presented. In this collapsed state, dubbed quasi-single helicity (QSH), the spectrum of magnetic modes condenses spontaneously to one dominant mode more completely than ever before observed. The amplitudes of all but the largest of the m=1 modes decrease in QSH states. New results about thermal features of QSH spectra and the identification of global control parameters for their onset are also discussed
Waterbomb base: a symmetric single-vertex bistable origami mechanism
International Nuclear Information System (INIS)
Hanna, Brandon H; Lund, Jason M; Magleby, Spencer P; Howell, Larry L; Lang, Robert J
2014-01-01
The origami waterbomb base is a single-vertex bistable origami mechanism that has unique properties which may prove useful in a variety of applications. It also shows promise as a test bed for smart materials and actuation because of its straightforward geometry and multiple phases of motion, ranging from simple to more complex. This study develops a quantitative understanding of the symmetric waterbomb base's kinetic behavior. This is done by completing kinematic and potential energy analyses to understand and predict bistable behavior. A physical prototype is constructed and tested to validate the results of the analyses. Finite element and virtual work analyses based on the prototype are used to explore the locations of the stable equilibrium positions and the force–deflection response. The model results are verified through comparisons to measurements on a physical prototype. The resulting models describe waterbomb base behavior and provide an engineering tool for application development. (paper)
Fathallah, F A; Marras, W S; Parnianpour, M
1999-09-01
Most biomechanical assessments of spinal loading during industrial work have focused on estimating peak spinal compressive forces under static and sagittally symmetric conditions. The main objective of this study was to explore the potential of feasibly predicting three-dimensional (3D) spinal loading in industry from various combinations of trunk kinematics, kinetics, and subject-load characteristics. The study used spinal loading, predicted by a validated electromyography-assisted model, from 11 male participants who performed a series of symmetric and asymmetric lifts. Three classes of models were developed: (a) models using workplace, subject, and trunk motion parameters as independent variables (kinematic models); (b) models using workplace, subject, and measured moments variables (kinetic models); and (c) models incorporating workplace, subject, trunk motion, and measured moments variables (combined models). The results showed that peak 3D spinal loading during symmetric and asymmetric lifting were predicted equally well using all three types of regression models. Continuous 3D loading was predicted best using the combined models. When the use of such models is infeasible, the kinematic models can provide adequate predictions. Finally, lateral shear forces (peak and continuous) were consistently underestimated using all three types of models. The study demonstrated the feasibility of predicting 3D loads on the spine under specific symmetric and asymmetric lifting tasks without the need for collecting EMG information. However, further validation and development of the models should be conducted to assess and extend their applicability to lifting conditions other than those presented in this study. Actual or potential applications of this research include exposure assessment in epidemiological studies, ergonomic intervention, and laboratory task assessment.
The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks
Directory of Open Access Journals (Sweden)
Kasey O. Greenland
2013-06-01
Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.
Directory of Open Access Journals (Sweden)
Suzana Sopčić
2018-05-01
Full Text Available Electrochemical impedance spectroscopy (EIS technique is used for characterization of single cell symmetric capacitors having different mass loadings of activated carbon (AC. Relevant values of charge storage capacitance (CT and internal resistance (ESR were evaluated by the single frequency and multi-frequency analyses of measured impedance spectra. Curve fittings were based on the non-ideal R-C model that takes into account the parasitic inductance, contributions from electrode materials/contacts and the effects of AC porosity. Higher CT and lower ESR values were obtained not only for the cell with higher mass of AC, but also using the single vs. multi-frequency approach. Lower CT and higher values of ESR that are generally obtained using the multi-frequency method and curve fittings should be related to the not ideal capacitive response of porous AC material and too high frequency chosen in applying the single frequency analysis.
The Point Zoro Symmetric Single-Step Procedure for Simultaneous Estimation of Polynomial Zeros
Directory of Open Access Journals (Sweden)
Mansor Monsi
2012-01-01
Full Text Available The point symmetric single step procedure PSS1 has R-order of convergence at least 3. This procedure is modified by adding another single-step, which is the third step in PSS1. This modified procedure is called the point zoro symmetric single-step PZSS1. It is proven that the R-order of convergence of PZSS1 is at least 4 which is higher than the R-order of convergence of PT1, PS1, and PSS1. Hence, computational time is reduced since this procedure is more efficient for bounding simple zeros simultaneously.
International Nuclear Information System (INIS)
Guang-Ming Zhang; Lu Yu
1998-10-01
We consider the symmetric single-impurity Anderson model in the presence of pairing fluctuations. In the isotropic limit, the degrees of freedom of the local impurity are separated into hybridizing and non-hybridizing modes. The self-energy for the hybridizing modes can be obtained exactly, leading to two subbands centered at ±U/2. For the non-hybridizing modes, the second order perturbation yields a singular resonance of the marginal Fermi liquid form. By multiplicative renormalization, the self-energy is derived exactly, showing the resonance is pinned at the Fermi level, while its strength is weakened by renormalization. (author)
Role of bumpy fields on single particle orbit in near quasihelically symmetric stellarators
International Nuclear Information System (INIS)
Seol, JaeChun; Hegna, C.C.
2004-01-01
The role of symmetry breaking on single particle orbits in near helically symmetric stellarators is investigated. In particular, the effect of a symmetry-breaking bumpy term is included in the analysis of trapped particle orbits. It is found that all trapped particle drift orbits are determined by surfaces on which vertical bar B vertical bar min is constant. Trapped particle orbits reside on these surfaces regardless of pitch angle and are determined solely by the initial position and the shape of the vertical bar B vertical bar min contour. Since vertical bar B vertical bar min contours do not depend on the direction of the banana center motion, superbanana orbits do not appear
Single molecule diffusion and the solution of the spherically symmetric residence time equation.
Agmon, Noam
2011-06-16
The residence time of a single dye molecule diffusing within a laser spot is propotional to the total number of photons emitted by it. With this application in mind, we solve the spherically symmetric "residence time equation" (RTE) to obtain the solution for the Laplace transform of the mean residence time (MRT) within a d-dimensional ball, as a function of the initial location of the particle and the observation time. The solutions for initial conditions of potential experimental interest, starting in the center, on the surface or uniformly within the ball, are explicitly presented. Special cases for dimensions 1, 2, and 3 are obtained, which can be Laplace inverted analytically for d = 1 and 3. In addition, the analytic short- and long-time asymptotic behaviors of the MRT are derived and compared with the exact solutions for d = 1, 2, and 3. As a demonstration of the simplification afforded by the RTE, the Appendix obtains the residence time distribution by solving the Feynman-Kac equation, from which the MRT is obtained by differentiation. Single-molecule diffusion experiments could be devised to test the results for the MRT presented in this work. © 2011 American Chemical Society
Non-symmetric approach to single-screw expander and compressor modeling
Ziviani, Davide; Groll, Eckhard A.; Braun, James E.; Horton, W. Travis; De Paepe, M.; van den Broek, M.
2017-08-01
Single-screw type volumetric machines are employed both as compressors in refrigeration systems and, more recently, as expanders in organic Rankine cycle (ORC) applications. The single-screw machine is characterized by having a central grooved rotor and two mating toothed starwheels that isolate the working chambers. One of the main features of such machine is related to the simultaneous occurrence of the compression or expansion processes on both sides of the main rotor which results in a more balanced loading on the main shaft bearings with respect to twin-screw machines. However, the meshing between starwheels and main rotor is a critical aspect as it heavily affects the volumetric performance of the machine. To allow flow interactions between the two sides of the rotor, a non-symmetric modelling approach has been established to obtain a more comprehensive model of the single-screw machine. The resulting mechanistic model includes in-chamber governing equations, leakage flow models, heat transfer mechanisms, viscous and mechanical losses. Forces and moments balances are used to estimate the loads on the main shaft bearings as well as on the starwheel bearings. An 11 kWe single-screw expander (SSE) adapted from an air compressor operating with R245fa as working fluid is used to validate the model. A total of 60 steady-steady points at four different rotational speeds have been collected to characterize the performance of the machine. The maximum electrical power output and overall isentropic efficiency measured were 7.31 kW and 51.91%, respectively.
Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels
International Nuclear Information System (INIS)
Liu, Hong; Li, Peiwen
2013-01-01
Highlights: ► We addressed an issue of distributing a flow to a number of flow channels uniformly. ► The flow distribution is accomplished through bifurcation of channels. ► Some key parameters to the flow distribution uniformity have been identified. ► Flow uniformity was studied for several versions of flow distributor designs. ► A novel fluid packaging device of high efficiency was provided. -- Abstract: This study addresses a fundamental issue of distributing a single-phase fluid flow into a number of flow channels uniformly. A basic mechanism of flow distribution is accomplished through bifurcation of channels that symmetrically split one flow channel into two downstream channels. Applying the basic mechanism, cascades flow distributions are designed to split one flow into a large number of downstream flows uniformly. Some key parameters decisive to the flow distribution uniformity in such a system have been identified, and the flow distribution uniformity of air was studied for several versions of flow distributor designs using CFD analysis. The effect of the key parameters of the flow channel designs to the flow distribution uniformity was investigated. As an example of industrial application, a novel fluid packaging device of high efficiency was proposed and some CFD analysis results for the device were provided. The optimized flow distributor makes a very good uniform flow distribution which will significantly improve the efficiency of fluid packaging. The technology is expected to be of great significance to many industrial devices that require high uniformity of flow distribution
Peak effect in untwinned YBa 2Cu 3O 7-δ single crystals
D'Anna, G.; André, M.-O.; Indenbom, M. V.; Benoit, W.
1994-12-01
We report on the observation of a weak effect of the critical current density in untwinned YBa 2Cu 3O 7-δ single crystals of different purity, using a low frequency torsion pendulum. We construct the peak effect line and the irreversibility line.
Simulating double-peak hydrographs from single storms over mixed-use watersheds
Yang Yang; Theodore A. Endreny; David J. Nowak
2015-01-01
Two-peak hydrographs after a single rain event are observed in watersheds and storms with distinct volumes contributing as fast and slow runoff. The authors developed a hydrograph model able to quantify these separate runoff volumes to help in estimation of runoff processes and residence times used by watershed managers. The model uses parallel application of two...
International Nuclear Information System (INIS)
Lehtinen, Ossi; Geiger, Dorin; Lee, Zhongbo; Whitwick, Michael Brian; Chen, Ming-Wei; Kis, Andras; Kaiser, Ute
2015-01-01
Here, we present a numerical post-processing method for removing the effect of anti-symmetric residual aberrations in high-resolution transmission electron microscopy (HRTEM) images of weakly scattering 2D-objects. The method is based on applying the same aberrations with the opposite phase to the Fourier transform of the recorded image intensity and subsequently inverting the Fourier transform. We present the theoretical justification of the method, and its verification based on simulated images in the case of low-order anti-symmetric aberrations. Ultimately the method is applied to experimental hardware aberration-corrected HRTEM images of single-layer graphene and MoSe 2 resulting in images with strongly reduced residual low-order aberrations, and consequently improved interpretability. Alternatively, this method can be used to estimate by trial and error the residual anti-symmetric aberrations in HRTEM images of weakly scattering objects
International Nuclear Information System (INIS)
Thakur, A.D.; Ramakrishnan, S.; Grover, A.K.; Chandrasekhar Rao, T.V.; Uji, S.; Terashima, T.; Higgins, M.J.
2005-01-01
The classical peak effect (CPE) and the second magnetization peak (SMP) are two distinct anomalies in critical current of superconductors. A nascent pinned single crystal sample of 2HNbSe 2 (T c (0) ∼7.2 K) shows only the sharp CPE. In a moderately pinned sample (T c (0) ∼6 K), the sharp CPE broadens with the addition of characteristic structure (stepwise amorphization) between the onset and the peak positions of the CPE. Also, there emerges another anomalous peak akin to SMP prior to the CPE. We have looked at samples of 2H-NbSe 2 with intermediate levels of quenched random pinning (T c (0) ∼ 7.1 K) and successfully explored the two peaks down to 50 mK. (author)
Kondo peak splitting and Kondo dip in single molecular magnet junctions
Energy Technology Data Exchange (ETDEWEB)
Niu, Pengbin, E-mail: 120233951@qq.com [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Shi, Yunlong; Sun, Zhu [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Nie, Yi-Hang [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)
2016-01-15
Many factors containing bias, spin–orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin–orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments. - Highlights: • We study Kondo peak splitting in single molecular magnets. • We study Kondo effect by Hubbard operator Green's function method. • We find Kondo peak splitting structures and a Kondo dip at Fermi level. • The exchange coupling and magnetic anisotropy induce fine splitting structure. • The splitting structures are explained by inter-level or intra-level transitions.
Lucey, Siobhan M; Santini, Ario; Roebuck, Elizabeth M
2015-03-01
There is a lack of data on polymerization of resin-based materials (RBMs) used in paediatric dentistry, using dual-peak light-emitting diode (LED) light-curing units (LCUs). To evaluate the degree of conversion (DC) of RBMs cured with dual-peak or single-peak LED LCUs. Samples of Vit-l-escence (Ultradent) and Herculite XRV Ultra (Kerr) and fissure sealants Delton Clear and Delton Opaque (Dentsply) were prepared (n = 3 per group) and cured with either one of two dual-peak LCUs (bluephase(®) G2; Ivoclar Vivadent or Valo; Ultradent) or a single-peak (bluephase(®) ; Ivoclar Vivadent). High-performance liquid chromatography and nuclear magnetic resonance spectroscopy were used to confirm the presence or absence of initiators other than camphorquinone. The DC was determined using micro-Raman spectroscopy. Data were analysed using general linear model anova; α = 0.05. With Herculite XRV Ultra, the single-peak LCU gave higher DC values than either of the two dual-peak LCUs (P < 0.05). Both fissure sealants showed higher DC compared with the two RBMs (P < 0.05); the DC at the bottom of the clear sealant was greater than the opaque sealant, (P < 0.05). 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Lucirin(®) TPO) was found only in Vit-l-escence. Dual-peak LED LCUs may not be best suited for curing non-Lucirin(®) TPO-containing materials. A clear sealant showed a better cure throughout the material and may be more appropriate than opaque versions in deep fissures. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Peak effect and vortex dynamics in superconducting MgB2 single crystals
International Nuclear Information System (INIS)
Lee, Hyun-Sook; Jang, Dong-Jin; Kim, Heon-Jung; Kang, Byeongwon; Lee, Sung-Ik
2007-01-01
The dynamic nature of the vortex state of MgB 2 single crystals near the peak effect (PE) region, which is very different either from that of conventional low-temperature superconductors or from that of high-temperature cuprate superconductors, is introduced in this article. Relaxation from a disordered, metastable field-cooled (FC) state to an ordered, stable zero-field-cooled (ZFC) state of the MgB 2 single crystals under an applied magnetic field and current is investigated. From an analysis of the noise properties in the ZFC state, a dynamic vortex phase diagram of the MgB 2 is obtained near the PE region. Between the onset and the peak region in the critical current vs. magnetic field diagram, crossovers from a high-noise state to a noise-free state are observed with increasing current. Above the peak, however, an opposite phenomenon, crossovers from a noise-free to a high-noise state, is observed which has not been observed in any other superconductors. The hysteresis in the I-V curves and the two-level random telegraph noise in the time evolution of the voltage response under an constant applied current at the ZFC state are also studied in detail
Zhang, Shen; Guo, Yuyu; Li, Xingying; Wu, Xu; Li, Zhe
2018-06-01
Physicochemical properties of Pd/Al2O3-TiO2 catalysts with different amounts of TiO2 contents were investigated by XRD, nitrogen adsorption-desorption, FTIR, NH3-TPD, H2-TPR and XPS techniques. Catalysts of different compositions were tested in the ethanol oxidation reaction to study the effects of TiO2 contents. Double peaks and symmetric path phenomena were observed at certain temperatures with the increase in TiO2 contents. The symmetric peak phenomena and the diverse activity fluctuations have been ascribed to the controlling factors such as temperature and compositions. With the increase in TiO2 content, the surface area, adsorbed oxygen contents and surface acid quantity decreased gradually. The large surface area and adsorbed oxygen contents were conducive to the performance, while increased acid amounts were not beneficial for ethanol oxidation. At 150 and 175 °C, Pd/AT(X1
High peak-power kilohertz laser system employing single-stage multi-pass amplification
Shan, Bing; Wang, Chun; Chang, Zenghu
2006-05-23
The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.
DEFF Research Database (Denmark)
Blaabjerg, Frede; Nami, A.; Zare, F.
2008-01-01
In this paper, a different configuration based on different DC bus voltage for a diode-clamped multilevel inverter has been presented. Two different symmetrical and asymmetrical arrangements of a four-level diode clamped inverters have been compared, in order to find an optimum arrangement...... compared with the conventional four-level inverter and this will lead to the reduction of harmonic content of output voltage. A predictive current control technique has been carried out to verify the viability of new configuration. The advantages of this control method are simplicity and applicability...
International Nuclear Information System (INIS)
Kim, M. S.; Park, S. J.
2006-01-01
The effect of the single escape peak of 1173 keV gamma-rays from Co-60 on the detection of Cs-137 activity is analyzed. The single escape peak of 1173 keV gamma-rays from Co-60 is located at the 662 keV, which is very close to the energy of gamma-rays from Cs-137. This single escape peak may be mistaken for the gamma-ray peak from Cs-137 activity in the case of large area of 1173 keV peak. The detection of Cs-137 is very important to the judgment of the contamination or the leakage of the material containing the fission product like reactor pool water and in the several experiments for reactor physics such as burn-up estimation. In this work, the areas of the single escape peak of the 1173 keV gamma-rays from Co-60 are measured with several full energy peak areas by using the HPGe detector. The critical limit by which we can decide whether the net count of 662 keV peak due to Co-60 would be significant or not is deduced. For this detection system, when the area of full energy peak is larger than 4.5 million, the single escape peak of 1173 keV gamma-rays from Co-60 can be regarded as the single significant peak. Therefore, it is confirmed that the detection of the Cs-137 activity is affected by the Co-60 in this case. Conservatively, for this detection system, it is recommended that the area of 1173 keV peak of Co-60 would be less than 2 million for neglecting the effect of Co-60. (authors)
Capacity Bounds on the Downlink of Symmetric, Multi-Relay, Single-Receiver C-RAN Networks
Directory of Open Access Journals (Sweden)
Shirin Saeedi Bidokhti
2017-11-01
Full Text Available The downlink of symmetric Cloud Radio Access Networks (C-RANs with multiple relays and a single receiver is studied. Lower and upper bounds are derived on the capacity. The lower bound is achieved by Marton’s coding, which facilitates dependence among the multiple-access channel inputs. The upper bound uses Ozarow’s technique to augment the system with an auxiliary random variable. The bounds are studied over scalar Gaussian C-RANs and are shown to meet and characterize the capacity for interesting regimes of operation.
The replacement principle in networked economies with single-peaked preferences
DEFF Research Database (Denmark)
Szwagrzak, Karol
2016-01-01
disequilibrium prices, etc. In these contexts suppliers and demanders naturally have single-peaked preferences. We evaluate transfer rules on the basis of the “replacement principle” (Thomson, J Econ Theory 76(1):145–168 1997; Moulin, Q J Econ 102:769–783 1987), the requirement that a change in an agent......’s preferences affects all other agents in the same direction in terms of welfare. We find that the only Pareto-efficient, participation-compatible, replication-invariant, and envy-free rule satisfying an appropriate formulation of the replacement principle is the “egalitarian rule” introduced by Bochet et al....... (Theor Econ 7:395–423 2012)....
Study of energy transfer in single and multi-emissive layer using Gaussian peak fitting
International Nuclear Information System (INIS)
Yoon, Ju-An; Kim, You-Hyun; Kim, Nam Ho; Moon, Chang-Bum; He, Gufeng; Kim, Woo Young
2014-01-01
White organic light-emitting diodes(WOLEDs) were fabricated with the device structure of ITO(1800 Å)/NPB(700 Å)/emissive layer(300 Å)/Bphen(300 Å)/Liq(20 Å)/Al(1200 Å) using the two complementary colors method. Then, we investigated their electrical and optical characteristics to determine luminous efficiency, luminance and color coordinates of single, double, triple and quadruple emissive layered-WOLED. Thickness of emissive layer was fixed at 30 Å, and DPASN and BAlq were used for blue emissive host material and DCJTB was added as red dopant in the emissive layer. Then, we investigated the performance of OLEDs via its charge blocking structure and its different emissive region with emissive layers. Luminous efficiency of 5.30 cd/A at 50 mA/cm 2 of current density is obtained in WOLED device with double emissive layer of DPASN:DCJTB-0.1% (150 Å)/BAlq:DCJTB-0.1% (150 Å) and these are 80% higher than WOLED device with single emissive layer of DPASN:DCJTB-0.1% (300 Å). - Highlights: • White OLEDs with multiple-emissive layer were fabricated using p- and n-type emissive materials. • We fabricated WOLEDs only using a small quantity of fluorescent red dopant materials. • The spectroscopic analysis using multi-peak fits with a Gaussian function. • The explain electroluminescence spectra of white OLEDs with the multiple-emissive layer. • We examine changes in the number of emissive layer about white OLEDs performance
The origin of transverse anisotropy in axially symmetric single molecule magnets.
Barra, Anne-Laure; Caneschi, Andrea; Cornia, Andrea; Gatteschi, Dante; Gorini, Lapo; Heiniger, Leo-Philipp; Sessoli, Roberta; Sorace, Lorenzo
2007-09-05
Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.
Influence of photo- and thermal bleaching on pre-irradiation low water peak single mode fibers
Yin, Jianchong; Wen, Jianxiang; Luo, Wenyun; Xiao, Zhongyin; Chen, Zhenyi; Wang, Tingyun
2011-12-01
Reducing the radiation-induced transmission loss in low water peak single mode fiber (LWP SMF) has been investigated by using photo-bleaching method with 980nm pump light source and using thermal-bleaching method with temperature control system. The results show that the radiation-induced loss of pre-irradiation optical fiber can be reduced effectively with the help of photo-bleaching or thermal-bleaching. Although the effort of photo-bleaching is not as significant as thermal-bleaching, by using photo-bleaching method, the loss of fiber caused by radiation-induced defects can be reduced best up to 49% at 1310nm and 28% at 1550nm in low pre-irradiation condition, the coating of the fiber are not destroyed, and the rehabilitating time is just several hours, while self-annealing usually costs months' time. What's more, the typical high power LASER for photo-bleaching can be 980nm pump Laser Diode, which is very accessible.
Directory of Open Access Journals (Sweden)
Panagiotis eMergos
2015-07-01
Full Text Available This paper presents a new methodology for the displacement-based seismic design of symmetric single-storey wood-frame buildings. Previous displacement-based design efforts were based on the direct displacement-based design (DDBD approach, which uses a substitute linear system with an appropriate stiffness and viscous damping combination. Despite the fact that this method has shown to produce promising results for wood structures, it does not fit into the framework of the Eurocode 8 (EC8 provisions. The methodology presented herein is based on the N2 method, which is incorporated in EC8 and combines the non-linear pushover analysis with the response spectrum method. The N2 method has been mostly applied to reinforced concrete and steel structures. In order to properly implement the N2 method for the case of wood-frame buildings new behavior factor – displacement ductility relationships are proposed. These relationships were derived from inelastic time history analyses of 35 SDOF systems subjected to 80 different ground motion records. Furthermore, the validity of the N2 method is examined for the case of a timber shear wall tested on a shake table and satisfactory predictions are obtained. Last, the proposed design methodology is applied to the displacement-based seismic design of a realistic symmetric single-storey wood-frame building in order to meet the performance objectives of EC8. It is concluded that the simplicity and computational efficiency of the adopted methodology make it a valuable tool for the seismic design of this category of wood-frame buildings, while the need for extending the method to more complex wood-frame buildings is also highlighted.
Decoupling of fluctuating power in single-phase systems through a symmetrical half-bridge circuit
DEFF Research Database (Denmark)
Tang, Yi; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
Single-phase AC/DC or DC/AC systems inherently subject to harmonic disturbance which is caused by the well-known double line frequency ripple power. This issue can be eased through the installation of bulky electrolytic capacitors in the dc-link, but such passive filtering approach may inevitably...
International Nuclear Information System (INIS)
Lee, H. W.
1999-01-01
Wh study phase coherent transport in a single channel system using the scattering matrix approach. It is show that the Friedel sum rule and the time-reversal symmetry result in the generic appearance of transmission zeros in quasi-1d systems. The transmission zeros naturally lead to abrupt phase changes (without any intrinsic energy scale) and in-phase resonances, thus providing insights to recent experiments on phase coherent transport through a quantum dot
A neutron polarisation analysis study of the 'central' peak in single-crystal praseodymium
International Nuclear Information System (INIS)
Burke, S.K.; Stirling, W.G.; McEwen, K.A.; Salford Univ.
1981-01-01
The technique of neutron polarisation analysis has been used to examine the broad 'central' peak in paramagnetic praseodymium. Measurements over the temperature range 1.2-25 K show that these peaks, observed at reciprocal space positions (Q 1 , 0, 2m + 1) with Q 1 = 0.11 tau 100 , are entirely magnetic in character. The relationship between these short-range magnetic correlations and the long-range antiferromagnetic ordering process is discussed. (author)
Dynamic vortex-phase diagram of MgB2 single crystals near the peak-effect region
International Nuclear Information System (INIS)
Kim, Heon-Jung; Lee, Hyun-Sook; Kang, Byeongwon; Chowdhury, P.; Kim, Kyung-Hee; Park, Min-Seok; Lee, Sung-Ik
2006-01-01
The dynamic vortex-phase diagram of MgB 2 single crystals has been constructed by using voltage noise characteristics. Between the onset (H on ) and the peak (H p ) magnetic fields, crossovers from a state with large noises to a noise-free state were observed with increasing current while above H p , a reverse behavior was found. We will discuss the dynamic vortex phase diagram and the possible origins of the crossovers
Anelastic relaxation peaks in single crystals of zirconium-oxygen alloys
International Nuclear Information System (INIS)
Ritchie, I.G.; Sprungmann, K.W.; Atrens, A.; Rosinger, H.E.; CEA Centre d'Etudes Nucleaires de Grenoble, 38
1977-01-01
Relaxations of the compliances S 11 -S 12 and S 44 have been observed in single crystals of zirconium-oxygen alloys tested in flexure and in torsion respectively. The relaxations are attributed to the stress-induced reorientation of substitutional impurity atoms (s) paired with interstitial oxygen atoms (i). The results demonstrate that the jump of the interstitial parallel to the basal plane dominates in the reorientation of the s-i pair
DEFF Research Database (Denmark)
Li, Kerui; Shen, Yanfeng; Yang, Yongheng
2018-01-01
and thus low leakage currents in PV applications. The symmetric Z-source HERIC inverter requires two extra active switches. Nevertheless, the operation frequency of the two switches is the line frequency, leading to negligible losses. More importantly, the performance in terms of low leakage currents...... and harmonics is improved. Experimental tests are performed to validate the analysis and performance of the proposed system....
International Nuclear Information System (INIS)
Ramond, P.
1993-01-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures
International Nuclear Information System (INIS)
Vasil'chenko, E.; Kudryavtseva, I.; Lushchik, A.; Lushchik, Ch.; Nagirnyi, V.
2005-01-01
Processes of radiation creation and annealing of Frenkel defects as well as electron-hole processes have been studied in LiF single crystals with a various content of impurity ions by means of highly sensitive method of thermally stimulated luminescence (TSL) and other optical methods. In highly pure LiF crystals, X-irradiated at 4.2 K, the TSL peaks connected with the annealing of interstitial fluorine ions (25-40 K) or atoms, i.e. H centres (50-65 K) and self-trapped holes (120-140 K) have been separated. For the first time, the creation spectra of the TSL peaks at 480 and 550 K by 10-33 eV-photon irradiation at 295 K have been measured. The anomalously high creation efficiency of the TSL peak at 480 K by 11.7-12.3 eV and 26-27 eV photons is interpreted as the creation of near-impurity electronic excitations both, directly by photons and by hot conduction electrons. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Directory of Open Access Journals (Sweden)
Xujian Shu
2018-03-01
Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.
Kozak, J; Paluch, J; Węgrzecka, A; Kozak, M; Wieczorek, M; Kochana, J; Kościelniak, P
2016-02-01
Spectrophotometric sequential injection system (SI) is proposed to automate the method of simultaneous determination of Fe(II) and Fe(III) on the basis of parameters of a single peak. In the developed SI system, sample and mixture of reagents (1,10-phenanthroline and sulfosalicylic acid) are introduced into a vessel, where in an acid environment (pH≅3) appropriate compounds of Fe(II) and Fe(III) with 1,10-phenanthroline and sulfosalicylic acid are formed, respectively. Then, in turn, air, sample, EDTA and sample again, are introduced into a holding coil. After the flow reversal, a segment of air is removed from the system by an additional valve and as EDTA replaces sulfosalicylic acid forming a more stable colorless compound with Fe(III), a complex signal is registered. Measurements are performed at wavelength 530 nm. The absorbance measured at minimum of the negative peak and the area or the absorbance measured at maximum of the signal can be used as measures corresponding to Fe(II) and Fe(III) concentrations, respectively. The time of the peak registration is about 2 min. Two-component calibration has been applied to analysis. Fe(II) and Fe(III) can be determined within the concentration ranges of 0.04-4.00 and 0.1-5.00 mg L(-1), with precision less than 2.8% and 1.7% (RSD), respectively and accuracy better than 7% (RE). The detection limit is 0.04 and 0.09 mg L(-1) for Fe(II) and Fe(III), respectively. The method was applied to analysis of artesian water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Multiparty symmetric sum types
DEFF Research Database (Denmark)
Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei
2010-01-01
This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...
Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong
2016-06-01
The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.
James F. Fowler; Carolyn Hull Sieg
2011-01-01
Packera franciscana (Greene) W. A. Weber and A. Love is endemic to treeline and alpine habitats of the San Francisco Peaks, Arizona, USA and was listed as a threatened species under the Endangered Species Act in 1983. Species abundance data are limited in scope, yet are critical for recovery of the species, especially in light of predictions of its future extinction...
Mahaki, M; Mi'mar, R; Mahaki, B
2015-10-01
Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.
System effects in sample self-stacking CZE: Single analyte peak splitting of salt-containing samples
Czech Academy of Sciences Publication Activity Database
Malá, Zdeňka; Gebauer, Petr; Boček, Petr
2009-01-01
Roč. 30, č. 5 (2009), s. 866-874 ISSN 0173-0835 R&D Projects: GA ČR GA203/08/1536; GA AV ČR IAA400310609; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : CZE * peak splitting * self-stacking Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.077, year: 2009
International Nuclear Information System (INIS)
Kshetri, R
2012-01-01
In two recent papers (R. Kshetri, JINST 2012 7 P04008; ibid., P07006), a probabilistic formalism was introduced to predict the response of encapsulated type composite germanium detectors like the SPI (spectrometer for INTEGRAL satellite). Predictions for the peak-to-total and peak-to-background ratios are given at 1.3 MeV for the addback mode of operation. The application of the formalism to clover germanium detector is discussed in two separate papers (R. Kshetri, JINST 2012 7 P07008; ibid., P08015). Using the basic approach developed in those papers, for the first time we present a procedure for calculating the peak-to-total ratio of the cluster detector for γ-energies up to 8 MeV. Results are shown for both bare and suppressed detectors as well as for the single crystal and addback modes of operation. We have considered the experimental data of (i) peak-to-total ratio at 1.3 MeV, and (ii) single detector efficiency and addback factor for other energies up to 8 MeV. Using this data, an approximate method of calculating the peak-to-total ratio of other composite detectors, is shown. Experimental validation of our approach (for energies up to 8 MeV) has been confirmed considering the data of the SPI spectrometer. We have discussed about comparisons between various modes of operation and suppression cases. The present paper is the fifth in the series of papers on composite germanium detectors and for the first time discusses about the change in fold distribution and peak-to-total ratio for sophisticated detectors consisting of several modules of miniball, cluster and SPI detectors. Our work could provide a guidance in designing new composite detectors and in performing experimental studies with the existing detectors for high energy gamma-rays.
Kshetri, R.
2012-12-01
In two recent papers (R. Kshetri, JINST 2012 7 P04008; ibid., P07006), a probabilistic formalism was introduced to predict the response of encapsulated type composite germanium detectors like the SPI (spectrometer for INTEGRAL satellite). Predictions for the peak-to-total and peak-to-background ratios are given at 1.3 MeV for the addback mode of operation. The application of the formalism to clover germanium detector is discussed in two separate papers (R. Kshetri, JINST 2012 7 P07008; ibid., P08015). Using the basic approach developed in those papers, for the first time we present a procedure for calculating the peak-to-total ratio of the cluster detector for γ-energies up to 8 MeV. Results are shown for both bare and suppressed detectors as well as for the single crystal and addback modes of operation. We have considered the experimental data of (i) peak-to-total ratio at 1.3 MeV, and (ii) single detector efficiency and addback factor for other energies up to 8 MeV. Using this data, an approximate method of calculating the peak-to-total ratio of other composite detectors, is shown. Experimental validation of our approach (for energies up to 8 MeV) has been confirmed considering the data of the SPI spectrometer. We have discussed about comparisons between various modes of operation and suppression cases. The present paper is the fifth in the series of papers on composite germanium detectors and for the first time discusses about the change in fold distribution and peak-to-total ratio for sophisticated detectors consisting of several modules of miniball, cluster and SPI detectors. Our work could provide a guidance in designing new composite detectors and in performing experimental studies with the existing detectors for high energy gamma-rays.
Linde, Lukas D; Archibald, Jessica; Lampert, Eve C; Srbely, John Z
2017-07-17
Females suffer 4-6 times more non-contact anterior cruciate ligament (ACL) injuries than males due to neuromuscular control deficits of the hip musculature leading to increases in hip adduction angle, knee abduction angle, and knee abduction moment during dynamic tasks such as single-leg squats. Lateral trunk displacement has been further related to ACL injury risk in females, leading to the incorporation of core strength/stability exercises in ACL preventative training programs. However, the direct mechanism relating lateral trunk displacement and lower limb ACL risk factors is not well established. To assess the relationship between lateral trunk displacement and lower limb measures of ACL injury risk by altering trunk control through abdominal activation techniques during single-leg squats in healthy females. Interventional Study Setting: Movement and Posture Laboratory Participants: 13 healthy females (21.3±0.88y, 1.68±0.07m, 58.27±5.46kg) Intervention: Trunk position and lower limb kinematics were recorded using an optoelectric motion capture system during single-leg squats under differing conditions of abdominal muscle activation (abdominal hollowing, abdominal bracing, control), confirmed via surface electromyography. Lateral trunk displacement, peak hip adduction angle, peak knee abduction angle/moment, and average muscle activity from bilateral internal oblique, external oblique, and erector spinae muscles. No differences were observed for peak lateral trunk displacement, peak hip adduction angle or peak knee abduction angle/moment. Abdominal hollowing and bracing elicited greater muscle activation than the control condition, and bracing was greater than hollowing in four of six muscles recorded. The lack of reduction in trunk, hip, and knee measures of ACL injury risk during abdominal hollowing and bracing suggests that these techniques alone may provide minimal benefit in ACL injury prevention training.
Bose, Purnandhu; Ravikumar, I; Ghosh, Pradyut
2011-11-07
Tris(2-aminoethyl)amine (tren) based pentafluorophenyl-substituted tripodal L, tris[[(2,3,4,5,6-pentafluorobenzyl)amino]ethyl]amine receptor is synthesized in good yield and characterized by single crystal X-ray diffraction analysis. Detailed structural aspects of binding of different anionic guests toward L in its triprotonated form are examined thoroughly. Crystallographic results show binding of fluoride in the C(3v)-symmetric cavity of [H(3)L](3+) where spherical anion fluoride is in tricoordinated geometry via (N-H)(+)···F interaction in the complex [H(3)L(F)]·[F](2)·2H(2)O, (3). In the case of complexes [H(3)L(OTs)]·[OTs](2), (4) and [H(3)L(OTs)]·[NO(3)]·[OTs], (5), tetrahedral p-toluenesulphonate ion is engulfed in the cavity of [H(3)L](3+) via (N-H)(+)···O interactions. Interestingly, complex [(H(3)L)(2)(SiF(6))]·[BF(4)](4)·CH(3)OH·H(2)O, (6) shows encapsulation of octahedral hexafluorosilicate in the dimeric capsular assembly of two [H(3)L](3+) units, via a number of (N-H)(+)···F interactions. The kinetic parameters of L upon binding with different anions are evaluated using a potentiometric study in solution state. The potentiometric titration experiments in a polar protic methanol/water (1:1 v/v) binary solvent system show high affinity of the receptor toward more basic fluoride and acetate anions, with a lesser affinity for other inorganic anions (e.g., chloride, bromide, nitrate, sulfate, dihydrogenphosphate, and p-toluenesulphonate). © 2011 American Chemical Society
Peak effect studies in single crystals CeRu2 and 2H-NbS2
Indian Academy of Sciences (India)
vibrating sample magnetometer (VSM) (Oxford Instruments, UK) on single crystal sam- ples of CeRu2 and 2H-NbS2. All the measurements were carried out by cooling the sample in zero field (ZFC mode) and then by applying the magnetic field. The measurements were carried out with the magnetic field parallel to the cube ...
Probabilistic cloning of three symmetric states
International Nuclear Information System (INIS)
Jimenez, O.; Bergou, J.; Delgado, A.
2010-01-01
We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.
Olafsson, Gestur; Helgason, Sigurdur
1996-01-01
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
Pulsed high-peak-power and single-frequency fibre laser design for LIDAR aircraft safety application
Liégeois, Flavien; Vercambre, Clément; Hernandez, Yves; Salhi, Mohamed; Giannone, Domenico
2006-09-01
Laser wind velocimeters work by monitoring the Doppler shift induced on the backscattered light by aerosols that are present in the air. Recently there has been a growing interest in the scientific community for developing systems operating at wavelengths near 1.5 μm and based on all-fibre lasers configuration. In this paper, we propose a new all-fibre laser source that is suitable for Doppler velocimetry in aircraft safety applications. The all-fibre laser has been specifically conceived for aircraft safety application. Our prototype has a conveniently narrow linewidth (9 kHz) and is modulated and amplified through an all fibre Master Oscillator Power Amplifier (MOPA) configuration. According to the measurements, we performed the final characteristics of the laser consist in a maximum peak power of 2.7 kW and an energy of 27 μJ energy per pulses of 10 ns at 30 kHz repetition rate. The only limiting factor of these performances is the Stimulated Brillouin Scattering.
Inokuchi, Shota; Yamashita, Yasuhiro; Nishimura, Kazuma; Nakanishi, Hiroaki; Saito, Kazuyuki
2017-11-01
Phenomena known as null alleles and peak imbalance can occur because of mutations in the primer binding sites used for DNA typing. In these cases, an accurate statistical evaluation of DNA typing is difficult. The estimated likelihood ratio is incorrectly calculated because of the null allele and allele dropout caused by mutation-induced peak imbalance. Although a number of studies have attempted to uncover examples of these phenomena, few reports are available on the human identification kit manufactured by Qiagen. In this study, 196 Japanese individuals who were heterozygous at D2S1360 were genotyped using an Investigator HDplex Kit with optimal amounts of DNA. A peak imbalance was frequently observed at the D2S1360 locus. We performed a sequencing analysis of the area surrounding the D2S1360 repeat motif to identify the cause for peak imbalance. A point mutation (G>A transition) 136 nucleotides upstream from the D2S1360 repeat motif was discovered in a number of samples. The allele frequency of the mutation was 0.0566 in the Japanese population. Therefore, human identification or kinship testing using the Investigator HDplex Kit requires caution because of the higher frequency of single nucleotide polymorphisms at the primer binding site of D2S1360 locus in the Japanese population.
Keyser, R E; Rodgers, M M; Gardner, E R; Russell, P J
1999-10-01
To determine if a single-stage, submaximal fatigue test on a wheelchair ergometer would result in higher than expected energy expenditure. An experimental survey design contrasting physiologic responses during peak graded exercise tests and fatigue tests. A rehabilitation science laboratory that included a prototypical wheelchair ergometer, open-circuit spirometry system, and heart rate monitor. Nine able-bodied non-wheelchair users (the NWC group: 6 men and 3 women, mean +/- SD age 30 +/- 7yrs) and 15 manual wheelchair users (the WC group: 12 men and 3 women, age 40 +/- 9yrs, time in wheelchair 16 +/- 9yrs). No subject had any disease, medication regimen, or upper body neurologic, orthopedic, or other condition that would limit wheelchair exercise. Peak oxygen uptake (VO2) for graded exercise testing and during fatigue testing, using a power output corresponding to 75% peak aerobic capacity on graded exercise test. In the WC group, VO2 at 6 minutes of fatigue testing was not significantly different from peak VO2. In the NWC group, VO2 was similar to the expected level throughout fatigue testing. Energy expenditure was higher than expected in the WC group but not in the NWC group. Fatigue testing may provide a useful evaluation of cardiorespiratory status in manual wheelchair users.
Optical energy gaps and photoluminescence peaks of BaGa2S4:Er3+ and BaGa2Se4:Er3+ single crystals
International Nuclear Information System (INIS)
Choe, Sung-Hyu; Jin, Moon-Seog; Kim, Wha-Tek
2005-01-01
BaGa 2 S 4 :Er 3+ and BaGa 2 Se 4 :Er 3+ single crystals were grown by using the chemical transport reaction method. The optical energy gaps of the BaGa 2 S 4 :Er 3+ and the BaGa 2 Se 4 :Er 3+ single crystals were found to be 4.045 eV and 3.073 eV, respectively, at 11 K. The temperature dependence of the optical energy gap was well fitted by the Varshni equation. Sharp emission peaks were observed in the photoluminescence spectra of the single crystals and assigned to radiation recombination between split Stark levels of the Er 3+ ion.
International Nuclear Information System (INIS)
Liang, Y Y; Yoon, S F; Loke, W K; Ngo, C Y; Fitzgerald, E A
2012-01-01
GaAs-based quantum dot (QD) systems, especially InAs/InGaAs/GaAs QDs, have demonstrated superior device performances as compared with higher dimensional systems. However, to realize high-speed optical interconnects for Si-based electronics, one will need to grow the QDs on Si substrates. While it is promising to integrate the InAs/InGaAs/GaAs QDs on Si with the use of germanium-on-insulator-on-silicon (GeOI) substrates, reported results exhibit bimodal QD sizes and double emission peaks, i.e. unsatisfactory for realistic applications. In this paper, we showed that with an optimized GaAs buffer, single-peak 1.33 µm room-temperature emission can be obtained from InAs/InGaAs/GaAs QDs on GeOI substrates. (paper)
Diagrams for symmetric product orbifolds
International Nuclear Information System (INIS)
Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.
2009-01-01
We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.
International Nuclear Information System (INIS)
Kawaguchi, K.; Sone, T.; Tsuboi, H.; Sassa, H.; Okumura, K.; Hashimoto, H.; Ito, T.; Satake, T.
1991-01-01
To test the hypothesis that simultaneous dual energy single photon emission computed tomography (SPECT) with technetium-99m (99mTc) pyrophosphate and thallium-201 (201TI) can provide an accurate estimate of the size of myocardial infarction and to assess the correlation between infarct size and peak serum creatine kinase activity, 165 patients with acute myocardial infarction underwent SPECT 3.2 +/- 1.3 (SD) days after the onset of acute myocardial infarction. In the present study, the difference in the intensity of 99mTc-pyrophosphate accumulation was assumed to be attributable to difference in the volume of infarcted myocardium, and the infarct volume was corrected by the ratio of the myocardial activity to the osseous activity to quantify the intensity of 99mTc-pyrophosphate accumulation. The correlation of measured infarct volume with peak serum creatine kinase activity was significant (r = 0.60, p less than 0.01). There was also a significant linear correlation between the corrected infarct volume and peak serum creatine kinase activity (r = 0.71, p less than 0.01). Subgroup analysis showed a high correlation between corrected volume and peak creatine kinase activity in patients with anterior infarctions (r = 0.75, p less than 0.01) but a poor correlation in patients with inferior or posterior infarctions (r = 0.50, p less than 0.01). In both the early reperfusion and the no reperfusion groups, a good correlation was found between corrected infarct volume and peak serum creatine kinase activity (r = 0.76 and r = 0.76, respectively; p less than 0.01)
Jiang, Haiyong
2016-04-11
We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.
Symmetrization of Facade Layouts
Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng
2016-01-01
We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.
Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng
2016-01-01
We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.
Symmetrization of Facade Layouts
Jiang, Haiyong
2016-02-26
We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.
DEFF Research Database (Denmark)
Liu, Haichun; Xu, Can T.; Dumlupinar, Gökhan
2013-01-01
We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic...... quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging depths and shorter data acquisition times compared with continuous wave excitation, while simultaneously keeping...... therapy and remote activation of biomolecules in deep tissues....
International Nuclear Information System (INIS)
Burtraw, Dallas; Palmer, Karen; Kahn, Danny
2010-01-01
How to set policy in the presence of uncertainty has been central in debates over climate policy. Concern about costs has motivated the proposal for a cap-and-trade program for carbon dioxide, with a 'safety valve' that would mitigate against spikes in the cost of emission reductions by introducing additional emission allowances into the market when marginal costs rise above the specified allowance price level. We find two significant problems, both stemming from the asymmetry of an instrument that mitigates only against a price increase. One is that most important examples of price volatility in cap-and-trade programs have occurred not when prices spiked, but instead when allowance prices collapsed. Second, a single-sided safety valve may have unintended consequences for investment. We illustrate that a symmetric safety valve provides environmental and welfare improvements relative to the conventional one-sided approach.
Diakaridia, Sanogo; Pan, Yue; Xu, Pengbai; Zhou, Dengwang; Wang, Benzhang; Teng, Lei; Lu, Zhiwei; Ba, Dexin; Dong, Yongkang
2017-07-24
In distributed Brillouin optical fiber sensor when the length of the perturbation to be detected is much smaller than the spatial resolution that is defined by the pulse width, the measured Brillouin gain spectrum (BGS) experiences two or multiple peaks. In this work, we propose and demonstrate a technique using differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) based on double-peak BGS to enhance small-scale events detection capability, where two types of single mode fiber (main fiber and secondary fiber) with 116 MHz Brillouin frequency shift (BFS) difference have been used. We have realized detection of a 5-cm hot spot at the far end of 24-km single mode fiber by employing a 50-cm spatial resolution DPP-BOTDA with only 1GS/s sampling rate (corresponding to 10 cm/point). The BFS at the far end of 24-km sensing fiber has been measured with 0.54 MHz standard deviation which corresponds to a 0.5°C temperature accuracy. This technique is simple and cost effective because it is implemented using the similar experimental setup of the standard BOTDA, however, it should be noted that the consecutive small-scale events have to be separated by a minimum length corresponding to the spatial resolution defined by the pulse width difference.
Shen, Yue; Liu, Xin; Greene, Jenny E.; Strauss, Michael A.
2011-07-01
Approximately 1% of low-redshift (z interpreted as either due to kinematics, such as biconical outflows and/or disk rotation of the narrow line region (NLR) around single black holes, or due to the relative motion of two distinct NLRs in a merging pair of AGNs. Here, we report follow-up near-infrared (NIR) imaging and optical slit spectroscopy of 31 double-peaked [O III] type 2 AGNs drawn from the Sloan Digital Sky Survey (SDSS) parent sample presented in Liu et al. The NIR imaging traces the old stellar population in each galaxy, while the optical slit spectroscopy traces the NLR gas. These data reveal a mixture of origins for the double-peaked feature. Roughly 10% of our objects are best explained by binary AGNs at (projected) kpc-scale separations, where two stellar components with spatially coincident NLRs are seen. ~50% of our objects have [O III] emission offset by a few kpc, corresponding to the two velocity components seen in the SDSS spectra, but there are no spatially coincident double stellar components seen in the NIR imaging. For those objects with sufficiently high-quality slit spectra, we see velocity and/or velocity dispersion gradients in [O III] emission, suggestive of the kinematic signatures of a single NLR. The remaining ~40% of our objects are ambiguous and will need higher spatial resolution observations to distinguish between the two scenarios. Our observations therefore favor the kinematics scenario with a single AGN for the majority of these double-peaked [O III] type 2 AGNs. We emphasize the importance of combining imaging and slit spectroscopy in identifying kpc-scale binary AGNs, i.e., in no cases does one of these alone allow an unambiguous identification. We estimate that ~0.5%-2.5% of the z ~ 150 km s-1. Based in part on observations obtained with the 6.5 m Magellan telescopes located at Las Campanas Observatory, Chile, and with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research
Golden, Ryan; Cho, Ilwoo
2015-01-01
In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...
International Nuclear Information System (INIS)
Chevallier, Bruno; Moncomble, Jean-Eudes; Sigonney, Pierre; Vially, Rolland; Bosseboeuf, Didier; Chateau, Bertrand
2012-01-01
This article reports a workshop which addressed several energy issues like the objectives and constraints of energy mix scenarios, the differences between the approaches in different countries, the cost of new technologies implemented for this purposes, how these technologies will be developed and marketed, which will be the environmental and societal acceptability of these technical choices. Different aspects and issues have been more precisely presented and discussed: the peak oil, development of shale gases and their cost (will non conventional hydrocarbons modify the peak oil and be socially accepted?), energy efficiency (its benefits, its reality in France and other countries, its position in front of the challenge of energy transition), and strategies in the transport sector (challenges for mobility, evolution towards a model of sustainable mobility)
Jacques, Alain
2016-12-01
The dislocation-based modeling of the high-temperature creep of two-phased single-crystal superalloys requires input data beyond strain vs time curves. This may be obtained by use of in situ experiments combining high-temperature creep tests with high-resolution synchrotron three-crystal diffractometry. Such tests give access to changes in phase volume fractions and to the average components of the stress tensor in each phase as well as the plastic strain of each phase. Further progress may be obtained by a new method making intensive use of the Fast Fourier Transform, and first modeling the behavior of a representative volume of material (stress fields, plastic strain, dislocation densities…), then simulating directly the corresponding diffraction peaks, taking into account the displacement field within the material, chemical variations, and beam coherence. Initial tests indicate that the simulated peak shapes are close to the experimental ones and are quite sensitive to the details of the microstructure and to dislocation densities at interfaces and within the soft γ phase.
Using a commercial symmetric multiprocessor for lattice QCD
International Nuclear Information System (INIS)
Brower, R.C.; Chen, D.; Negele, J.W.
1998-01-01
In its evolution, the computer industry has reached the point when considerable computing power can be packaged on a single microprocessor chip. At the same time, costs of designing a computer system around such a CPU are growing. For these reasons we decided to explore a possibility of using commercially available symmetric multiprocessors (SMP) as building blocks for the LQCD computer. Careful analysis of the architecture allowed us to build a QCD primitive library running close to the peak performance on the UltraSPARC processor. As a result, multithreaded QCD code (both the heatbath and the Wilson fermion inverter) runs at about 50% efficiency on a single SMP. The communication between different CPUs is handled by a coherent memory system. Currently we are planning to connect several SMPs with a high bandwidth network into a single system. (orig.)
Sheikh, Mohammad; Feig, Jennifer; Gee, Becky; Li, Song; Savva, Michalakis
2003-06-01
A novel series of symmetric double-chained primary and tertiary 1,3-dialkoylamido monovalent cationic lipids were synthesized and evaluated for their transfection activities. In the absence of the helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), only the primary and tertiary dioleoyl derivatives 1,3lmp5 and 1,3lmt5, respectively elicited transfection activity. This is a striking difference between symmetrical 1,2-diacyl glycerol-based monovalent cationic lipids that always found both dioleoyl and dimyristoyl analogues being efficient transfection reagents. In the presence of helper lipid, all cationic derivatives induced marker gene expression, except the dilauroyl analogues 1,3lmp1 and 1,3lmt1 that elicited no transfection activity. Combining electrophoretic mobility data of the lipoplexes at different charge ratios with transfection activity suggested two requirements for high transfection activity with monovalent double-chained cationic lipids, that is, binding/association of the lipid to the plasmid DNA and membrane fusion properties of the lipid layers surrounding the DNA.
Symmetric cryptographic protocols
Ramkumar, Mahalingam
2014-01-01
This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees. • Provides detailed coverage of symmetric key protocols • Describes various applications of symmetric building blocks • Includes strategies for constructing compact and efficient digests of dynamic databases
Effects of symmetrical voltage sags on squirrel-cage induction motors
Energy Technology Data Exchange (ETDEWEB)
Pedra, Joaquin; Sainz, Luis; Corcoles, Felipe [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal, 647, 08028 Barcelona (Spain)
2007-10-15
This paper analyzes the symmetrical voltage sag consequences on the induction motor behavior when single- and double-cage models are considered, namely current and torque peaks, and speed loss. These effects depend on several variables like sag type, duration and depth. Voltage sag effects are studied by using single- and double-cage models for three motors of different rated power. The double-cage model always predicts torque and current peaks higher than those of the single-cage model. The single-cage model predicts that voltage sags can produce motor instability, whereas the double-cage model is always stable. Therefore, the double-cage model must be used for the simulation of the squirrel-cage induction motor, because the single-cage model can give erroneous results in some situations. (author)
Centrioles in Symmetric Spaces
Quast, Peter
2011-01-01
We describe all centrioles in irreducible simply connected pointed symmetric spaces of compact type in terms of the root system of the ambient space, and we study some geometric properties of centrioles.
A symmetrical rail accelerator
International Nuclear Information System (INIS)
Igenbergs, E.
1991-01-01
This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator
International Nuclear Information System (INIS)
Matsuki, Takayuki
1976-01-01
Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)
Counting with symmetric functions
Mendes, Anthony
2015-01-01
This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...
Symmetric Tensor Decomposition
DEFF Research Database (Denmark)
Brachat, Jerome; Comon, Pierre; Mourrain, Bernard
2010-01-01
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....
International Nuclear Information System (INIS)
Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen
2013-01-01
Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage
Energy Technology Data Exchange (ETDEWEB)
Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2013-06-15
Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage.
Distributed Searchable Symmetric Encryption
Bösch, C.T.; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter H.; Jonker, Willem
Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes
Kshetri, Ritesh
2012-01-01
In two recent papers (R. Kshetri, JINST 2012 7 P04008; ibid., P07006), a probabilistic formalism was introduced to predict the response of encapsulated type composite germanium detectors like the SPI (spectrometer for INTEGRAL satellite). Predictions for the peak-to-total and peak-to-background ratios are given at 1.3 MeV for the addback mode of operation. The application of the formalism to clover germanium detector is discussed in two separate papers (R. Kshetri, JINST 2012 7 P07008; ibid.,...
Chouhan, Vijay; Kato, Shigeki; Nii, Keisuke; Yamaguchi, Takanori; Sawabe, Motoaki; Hayano, Hitoshi; Ida, Yoshiaki
2017-08-01
A detailed study on vertical electropolishing (VEP) of a 1.3-GHz single-cell niobium coupon cavity, which contains six coupons and four viewports at different positions, is reported. The cavity was vertically electropolished using a conventional rod and three types of unique cathodes named as Ninja cathodes, which were designed to have four retractable blades made of either an insulator or a metal or a combination of both. This study reveals the effect of the cathodes and their rotation speed on uniformity in removal thickness and surface morphology at different positions inside the cavity. Removal thickness was measured at several positions of the cavity using an ultrasonic thickness gauge and the surface features of the coupons were examined by an optical microscope and a surface profiler. The Ninja cathode with partial metallic blades was found to be effective not only in reducing asymmetric removal, which is one of the major problems in VEP and might be caused by the accumulation of hydrogen (H2 ) gas bubbles on the top iris of the cavity, but also in yielding a smooth surface of the entire cavity. A higher rotation speed of the Ninja cathode prevents bubble accumulation on the upper iris, and might result in a viscous layer of similar thickness in the cavity cell. Moreover, a higher electric field at the equator owing to the proximity of partial metallic blades to the equator surface resulted in a smooth surface. The effects of H2 gas bubbles and stirring were also observed in lab EP experiments.
Directory of Open Access Journals (Sweden)
Vijay Chouhan
2017-08-01
Full Text Available A detailed study on vertical electropolishing (VEP of a 1.3-GHz single-cell niobium coupon cavity, which contains six coupons and four viewports at different positions, is reported. The cavity was vertically electropolished using a conventional rod and three types of unique cathodes named as Ninja cathodes, which were designed to have four retractable blades made of either an insulator or a metal or a combination of both. This study reveals the effect of the cathodes and their rotation speed on uniformity in removal thickness and surface morphology at different positions inside the cavity. Removal thickness was measured at several positions of the cavity using an ultrasonic thickness gauge and the surface features of the coupons were examined by an optical microscope and a surface profiler. The Ninja cathode with partial metallic blades was found to be effective not only in reducing asymmetric removal, which is one of the major problems in VEP and might be caused by the accumulation of hydrogen (H_{2} gas bubbles on the top iris of the cavity, but also in yielding a smooth surface of the entire cavity. A higher rotation speed of the Ninja cathode prevents bubble accumulation on the upper iris, and might result in a viscous layer of similar thickness in the cavity cell. Moreover, a higher electric field at the equator owing to the proximity of partial metallic blades to the equator surface resulted in a smooth surface. The effects of H_{2} gas bubbles and stirring were also observed in lab EP experiments.
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
Symmetric vectors and algebraic classification
International Nuclear Information System (INIS)
Leibowitz, E.
1980-01-01
The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed
Representations of locally symmetric spaces
International Nuclear Information System (INIS)
Rahman, M.S.
1995-09-01
Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs
Symmetric configurations highlighted by collective quantum coherence
Energy Technology Data Exchange (ETDEWEB)
Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)
2017-11-15
Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)
Chiu, Ming-Chung; Huang, Chin-Gi; Wu, Wen-Jer; Shiao, Shiuh-Feng
2016-06-01
The life cycle of the freshwater horsehair worm typically includes a free-living phase (adult, egg, larva) and a multiple-host parasitic phase (aquatic paratenic host, terrestrial definitive host). Such a life cycle involving water and land can improve energy flow in riparian ecosystems; however, its temporal dynamics in nature have rarely been investigated. This study examined seasonal infection with cysts in larval Chironominae (Diptera: Chironomidae) in northern Taiwan. In the larval chironomids, cysts of 3 horsehair worm species were identified. The cysts of the dominant species were morphologically similar to those of Chordodes formosanus. Infection with these cysts increased suddenly and peaked 2 mo after the reproductive season of the adult horsehair worms. Although adult C. formosanus emerged several times in a year, only 1 distinct infection peak was detected in September in the chironomid larvae. Compared with the subfamily Chironominae, samples from the subfamilies Tanypodinae and Orthocladiinae were less parasitized. This indicates that the feeding behavior of the chironomid host likely affects horsehair worm cyst infections; however, bioconcentration in predatory chironomids was not detected.
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Chemical shift imprint of intersubunit communication in a symmetric homodimer
Falk, Bradley T.; Sapienza, Paul J.; Lee, Andrew L.
2016-01-01
Allosteric communication is critical for protein function and cellular homeostasis, and it can be exploited as a strategy for drug design. However, unlike many protein–ligand interactions, the structural basis for the long-range communication that underlies allostery is not well understood. This lack of understanding is most evident in the case of classical allostery, in which a binding event in one protomer is sensed by a second symmetric protomer. A primary reason why study of interdomain signaling is challenging in oligomeric proteins is the difficulty in characterizing intermediate, singly bound species. Here, we use an NMR approach to isolate and characterize a singly ligated state (“lig1”) of a homodimeric enzyme that is otherwise obscured by rapid exchange with apo and saturated forms. Mixed labeled dimers were prepared that simultaneously permit full population of the lig1 state and isotopic labeling of either protomer. Direct visualization of peaks from lig1 yielded site-specific ligand-state multiplets that provide a convenient format for assessing mechanisms of intersubunit communication from a variety of NMR measurements. We demonstrate this approach on thymidylate synthase from Escherichia coli, a homodimeric enzyme known to be half-the-sites reactive. Resolving the dUMP1 state shows that active site communication occurs not upon the first dUMP binding, but upon the second. Surprisingly, for many sites, dUMP1 peaks are found beyond the limits set by apo and dUMP2 peaks, indicating that binding the first dUMP pushes the enzyme ensemble to further conformational extremes than the apo or saturated forms. The approach used here should be generally applicable to homodimers. PMID:27466406
Symmetric extendibility of quantum states
Nowakowski, Marcin L.
2015-01-01
Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...
Directory of Open Access Journals (Sweden)
Giuseppe Dattoli
1996-05-01
Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.
Energy Technology Data Exchange (ETDEWEB)
Choe, Sung-Hyu [Chosun University, Kwangju (Korea, Republic of); Jin, Moon-Seog [Dongshin University, Naju (Korea, Republic of); Kim, Wha-Tek [Chonnam National University, Kwangju (Korea, Republic of)
2005-12-15
BaGa{sub 2}S{sub 4}:Er{sup 3+} and BaGa{sub 2}Se{sub 4}:Er{sup 3+} single crystals were grown by using the chemical transport reaction method. The optical energy gaps of the BaGa{sub 2}S{sub 4}:Er{sup 3+} and the BaGa{sub 2}Se{sub 4}:Er{sup 3+} single crystals were found to be 4.045 eV and 3.073 eV, respectively, at 11 K. The temperature dependence of the optical energy gap was well fitted by the Varshni equation. Sharp emission peaks were observed in the photoluminescence spectra of the single crystals and assigned to radiation recombination between split Stark levels of the Er{sup 3+} ion.
Symmetric Pin Diversion Detection using a Partial Defect Detector (PDET)
International Nuclear Information System (INIS)
Sitaraman, S.; Ham, Y.S.
2009-01-01
Since the signature from the Partial Defect Detector (PDET) is principally dependent on the geometric layout of the guide tube locations, the capability of the technique in detecting symmetric diversion of pins needs to be determined. The Monte Carlo simulation study consisted of cases where pins were removed in a symmetric manner and the resulting signatures were examined. In addition to the normalized gamma-to-neutron ratios, the neutron and gamma signatures normalized to their maximum values, were also examined. Examination of the shape of the three curves as well as of the peak-to-valley differences in excess of the maximum expected in intact assemblies, indicated pin diversion. A set of simulations with various symmetric patterns of diversion were examined. The results from these studies indicated that symmetric diversions as low as twelve percent could be detected by this methodology
Conformally symmetric traversable wormholes
International Nuclear Information System (INIS)
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-01-01
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced
Soft theorems for shift-symmetric cosmologies
Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca
2018-03-01
We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.
Color symmetrical superconductivity in a schematic nuclear quark model
DEFF Research Database (Denmark)
Bohr, Henrik; Providencia, C.; da Providencia, J.
2010-01-01
In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle...... states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color...
Harris-Love, Michael O; Shrader, Joseph A; Davenport, Todd E; Joe, Galen; Rakocevic, Goran; McElroy, Beverly; Dalakas, Marinos
2014-04-01
Repeated heel raises have been proposed as a method of ankle plantar-flexor strength testing that circumvents the limitations of manual muscle testing (MMT). The study objective was to examine the relationships among ankle plantar-flexion isometric maximum voluntary contraction (MVC), repeated single-limb heel raises (SLHRs), and MMT in people with myositis. This was a cross-sectional study with a between-group design. The ability to complete 1 SLHR determined group assignment (SLHR group, n=24; no-SLHR group, n=19). Forty-three participants with myositis (13 women; median age=64.9 years) participated. Outcome measures included MVC, predicted MVC, Kendall MMT, and Daniels-Worthingham MMT. The Kendall MMT was unable to detect significant ankle plantar-flexor weakness established by quantitative methods and was unable to discriminate between participants who could and those who could not perform the SLHR task. Ankle plantar-flexion MVC was not associated with the number of heel-raise repetitions in the SLHR group (pseudo R(2)=.13). No significant relationship was observed between MVC values and MMT grades in the SLHR and no-SLHR groups. However, a moderate relationship between MVC values and MMT grades was evident in a combined-group analysis (ρ=.50-.67). The lower half of both MMT grading scales was not represented in the study despite the profound weakness of the participants. Both Kendall MMT and Daniels-Worthingham MMT had limited utility in the assessment of ankle plantar-flexor strength. Repeated SLHRs should not be used as a proxy measure of ankle plantar-flexion MVC in people with myositis.
Peak effect in twinned superconductors
International Nuclear Information System (INIS)
Larkin, A.I.; Marchetti, M.C.; Vinokur, V.M.
1995-01-01
A sharp maximum in the critical current J c as a function of temperature just below the melting point of the Abrikosov flux lattice has recently been observed in both low- and high-temperature superconductors. This peak effect is strongest in twinned crystals for fields aligned with the twin planes. We propose that this peak signals the breakdown of the collective pinning regime and the crossover to strong pinning of single vortices on the twin boundaries. This crossover is very sharp and can account for the steep drop of the differential resistivity observed in experiments. copyright 1995 The American Physical Society
Mesotherapy for benign symmetric lipomatosis.
Hasegawa, Toshio; Matsukura, Tomoyuki; Ikeda, Shigaku
2010-04-01
Benign symmetric lipomatosis, also known as Madelung disease, is a rare disorder characterized by fat distribution around the shoulders, arms, and neck in the context of chronic alcoholism. Complete excision of nonencapsulated lipomas is difficult. However, reports describing conservative therapeutic measures for lipomatosis are rare. The authors present the case of a 42-year-old man with a diagnosis of benign symmetric lipomatosis who had multiple, large, symmetrical masses in his neck. Multiple phosphatidylcholine injections in the neck were administered 4 weeks apart, a total of seven times to achieve lipolysis. The patient's lipomatosis improved in response to the injections, and he achieved good cosmetic results. Intralesional injection, termed mesotherapy, using phosphatidylcholine is a potentially effective therapy for benign symmetric lipomatosis that should be reconsidered as a therapeutic option for this disease.
Looking for symmetric Bell inequalities
Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano
2010-01-01
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell e...
Symmetric scrolled packings of multilayered carbon nanoribbons
Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.
2016-06-01
Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.
Scott, Daniel G.; Evans, Jessica
2010-01-01
This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…
DEFF Research Database (Denmark)
Raalskov, Jesper; Warming-Rasmussen, Bent
Peak-interviewet er en særlig effektiv metode til at gøre ubevidste menneskelige ressourcer bevidste. Fokuspersonen (den interviewede) interviewes om en selvvalgt, personlig succesoplevelse. Terapeuten/coachen (intervieweren) spørger ind til processen, som ledte hen til denne succes. Herved afdæk...... fokuspersonen ønsker at tage op (nye mål eller nye processer). Nærværende workingpaper beskriver, hvad der menes med et peak-interview, peakinterviwets teoretiske fundament samt metodikken til at foretage et tillidsfuldt og effektiv peak-interview....
Harmonic analysis on symmetric spaces
Terras, Audrey
This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.
Looking for symmetric Bell inequalities
International Nuclear Information System (INIS)
Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano
2010-01-01
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
Symmetric normalisation for intuitionistic logic
DEFF Research Database (Denmark)
Guenot, Nicolas; Straßburger, Lutz
2014-01-01
We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...
Looking for symmetric Bell inequalities
Energy Technology Data Exchange (ETDEWEB)
Bancal, Jean-Daniel; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 20 rue de l' Ecole-de Medecine, CH-1211 Geneva 4 (Switzerland); Pironio, Stefano, E-mail: jean-daniel.bancal@unige.c [Laboratoire d' Information Quantique, Universite Libre de Bruxelles (Belgium)
2010-09-24
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
Symmetric autocompensating quantum key distribution
Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.
2004-08-01
We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.
Moyer, R.D.
A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.
Centers responsible for the TL peaks of willemite mineral estimated by EPR analysis
Energy Technology Data Exchange (ETDEWEB)
Gundu Rao, T.K. [Instituto de Física, Universidade de São Paulo, Rua do Matão, Travessa R, 187, CEP 05508-090, São Paulo, SP (Brazil); Cano, Nilo F., E-mail: nilo.cano@unifesp.br [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Doutor Carvalho de Mendonça, 144, CEP 11070-102, Santos, SP (Brazil); Silva-Carrera, Betzabel N.; Ferreira, Reinaldo M. [Instituto de Física, Universidade de São Paulo, Rua do Matão, Travessa R, 187, CEP 05508-090, São Paulo, SP (Brazil); Javier-Ccallata, Henry S., E-mail: henrysjc@gmail.com [Escuela Profesional de Física, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín (UNSA), Av. Independencia S/N, Arequipa (Peru); Watanabe, Shigueo, E-mail: watanabe@if.usp.br [Instituto de Física, Universidade de São Paulo, Rua do Matão, Travessa R, 187, CEP 05508-090, São Paulo, SP (Brazil)
2016-09-15
The mineral willemite (Zn{sub 2}SiO{sub 4}) exhibits five thermoluminescence (TL) peaks approximately at 160, 225, 260, 310 and 400 °C. Electron paramagnetic resonance (EPR) studies were carried out to study the defect centers induced in the mineral by gamma irradiation and also to identify the centers responsible for the TL process. Room temperature EPR spectrum of irradiated mineral is a superposition of at least four distinct centers. One of the centers (center I) with an isotropic g factor 2.0114 is attributable to an intrinsic O{sup −} type center and the center correlates with the TL peak at 160 °C. Center II exhibiting hyperfine lines is also tentatively assigned to an O{sup −} ion and is related to the low temperature TL peak at 160 °C. Center III is characterized by an axially symmetric g-tensor with principal values g{sub ||}=2.0451 and g{sub ⊥}=2.011 and is identified as an O{sub 2}{sup −} ion. This center appears to be related to 160, 225 and 260 °C TL peaks. Center IV with principal g-values g{sub ||}=2.0025 and g{sub ⊥}=2.0088 is attributed to an F{sup +}-type center (singly ionized oxygen vacancy) and is the likely recombination center for TL peaks between 160 and 310 °C.
Peak Oil, Peak Coal and Climate Change
Murray, J. W.
2009-05-01
Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be
Symmetric relations of finite negativity
Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H
2006-01-01
We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.
Tilting-connected symmetric algebras
Aihara, Takuma
2010-01-01
The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.
Symmetric group representations and Z
Adve, Anshul; Yong, Alexander
2017-01-01
We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.
Symmetric Key Authentication Services Revisited
Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.
2004-01-01
Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area
Quantum systems and symmetric spaces
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1978-01-01
Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained
The symmetric longest queue system
van Houtum, Geert-Jan; Adan, Ivo; van der Wal, Jan
1997-01-01
We derive the performance of the exponential symmetric longest queue system from two variants: a longest queue system with Threshold Rejection of jobs and one with Threshold Addition of jobs. It is shown that these two systems provide lower and upper bounds for the performance of the longest queue
Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy
Provazza, Justin; Coker, David F.
2018-05-01
The symmetrical quasi-classical approach for propagation of a many degree of freedom density matrix is explored in the context of computing linear spectra. Calculations on a simple two state model for which exact results are available suggest that the approach gives a qualitative description of peak positions, relative amplitudes, and line broadening. Short time details in the computed dipole autocorrelation function result in exaggerated tails in the spectrum.
Symmetric imaging findings in neuroradiology
International Nuclear Information System (INIS)
Zlatareva, D.
2015-01-01
Full text: Learning objectives: to make a list of diseases and syndromes which manifest as bilateral symmetric findings on computed tomography and magnetic resonance imaging; to discuss the clinical and radiological differential diagnosis for these diseases; to explain which of these conditions necessitates urgent therapy and when additional studies and laboratory can precise diagnosis. There is symmetry in human body and quite often we compare the affected side to the normal one but in neuroradiology we might have bilateral findings which affected pair structures or corresponding anatomic areas. It is very rare when clinical data prompt diagnosis. Usually clinicians suspect such an involvement but Ct and MRI can reveal symmetric changes and are one of the leading diagnostic tool. The most common location of bilateral findings is basal ganglia and thalamus. There are a number of diseases affecting these structures symmetrically: metabolic and systemic diseases, intoxication, neurodegeneration and vascular conditions, toxoplasmosis, tumors and some infections. Malformations of cortical development and especially bilateral perisylvian polymicrogyria requires not only exact report on the most affected parts but in some cases genetic tests or combination with other clinical symptoms. In the case of herpes simplex encephalitis bilateral temporal involvement is common and this finding very often prompt therapy even before laboratory results. Posterior reversible encephalopathy syndrome (PReS) and some forms of hypoxic ischemic encephalopathy can lead to symmetric changes. In these acute conditions MR plays a crucial role not only in diagnosis but also in monitoring of the therapeutic effect. Patients with neurofibromatosis type 1 or type 2 can demonstrate bilateral optic glioma combined with spinal neurofibroma and bilateral acoustic schwanoma respectively. Mirror-image aneurysm affecting both internal carotid or middle cerebral arteries is an example of symmetry in
Microphase separation of a symmetric poly(styrene-B-paramethylstyrene) diblock copolymer
DEFF Research Database (Denmark)
Bartels, V.T.; Abetz, V.; Mortensen, K.
1994-01-01
The microphase separation in a symmetric diblock copolymer consisting of polystyrene and polyparamethylstyrene has been studied by small-angle neutron scattering. The observed peak changes with temperature in intensity, shape and position. The peak position shifts at the microphase separation tra...
International Nuclear Information System (INIS)
Gao, Z. |; Ren, Z.; Li, Z.; Zhu, R.
2005-01-01
A peak regulation right concept and corresponding transaction mechanism for an electricity market was presented. The market was based on a power pool and independent system operator (ISO) model. Peak regulation right (PRR) was defined as a downward regulation capacity purchase option which allowed PRR owners to buy certain quantities of peak regulation capacity (PRC) at a specific price during a specified period from suppliers. The PRR owner also had the right to decide whether or not they would buy PRC from suppliers. It was the power pool's responsibility to provide competitive and fair peak regulation trading markets to participants. The introduction of PRR allowed for unit capacity regulation. The PRR and PRC were rated by the supplier, and transactions proceeded through a bidding process. PRR suppliers obtained profits by selling PRR and PRC, and obtained downward regulation fees regardless of whether purchases are made. It was concluded that the peak regulation mechanism reduced the total cost of the generating system and increased the social surplus. 6 refs., 1 tab., 3 figs
A cascaded three-phase symmetrical multistage voltage multiplier
International Nuclear Information System (INIS)
Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G
2006-01-01
A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM
Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...
Automated asteroseismic peak detections
DEFF Research Database (Denmark)
de Montellano, Andres Garcia Saravia Ortiz; Hekker, S.; Themessl, N.
2018-01-01
Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However......, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible...... of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler....
A New Symmetrical Unit for Breakwater Armour : First Tests
Salauddin, M.; Broere, A.; Van der Meer, J.W.; Verhagen, H.J.; Bijl, E.
2015-01-01
A new and symmetrical single layer armour unit, the crablock, has been designed in the UAE. One breakwater was reconstructed with crablock, but very limited testing had been performed. Just to become more acquainted with this new unit, pre-competitive research at a university has been performed,
Automated asteroseismic peak detections
García Saravia Ortiz de Montellano, Andrés; Hekker, S.; Themeßl, N.
2018-05-01
Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible in a power density spectrum. Identification of oscillation modes is usually done by visual inspection that is time-consuming and has a degree of subjectivity. Here, we present a peak-detection algorithm especially suited for the detection of solar-like oscillations. It reliably characterizes the solar-like oscillations in a power density spectrum and estimates their parameters without human intervention. Furthermore, we provide a metric to characterize the false positive and false negative rates to provide further information about the reliability of a detected oscillation mode or the significance of a lack of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler.
Symmetric bends how to join two lengths of cord
Miles, Roger E
1995-01-01
A bend is a knot securely joining together two lengths of cord (or string or rope), thereby yielding a single longer length. There are many possible different bends, and a natural question that has probably occurred to many is: "Is there a 'best' bend and, if so, what is it?"Most of the well-known bends happen to be symmetric - that is, the two constituent cords within the bend have the same geometric shape and size, and interrelationship with the other. Such 'symmetric bends' have great beauty, especially when the two cords bear different colours. Moreover, they have the practical advantage o
Norm estimates of complex symmetric operators applied to quantum systems
International Nuclear Information System (INIS)
Prodan, Emil; Garcia, Stephan R; Putinar, Mihai
2006-01-01
This paper communicates recent results in the theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schroedinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schroedinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schroedinger operators appearing in the complex scaling theory of resonances
Parity-Time Symmetric Photonics
Zhao, Han
2018-01-17
The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.
Homotheties of cylindrically symmetric static spacetimes
International Nuclear Information System (INIS)
Qadir, A.; Ziad, M.; Sharif, M.
1998-08-01
In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)
Maximally Symmetric Composite Higgs Models.
Csáki, Csaba; Ma, Teng; Shu, Jing
2017-09-29
Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.
On symmetric structures of order two
Directory of Open Access Journals (Sweden)
Michel Bousquet
2008-04-01
Full Text Available Let (ω n 0 < n be the sequence known as Integer Sequence A047749 http://www.research.att.com/ njas/sequences/A047749 In this paper, we show that the integer ω n enumerates various kinds of symmetric structures of order two. We first consider ternary trees having a reflexive symmetry and we relate all symmetric combinatorial objects by means of bijection. We then generalize the symmetric structures and correspondences to an infinite family of symmetric objects.
Symmetric spaces and the Kashiwara-Vergne method
Rouvière, François
2014-01-01
Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's or...
Baryon symmetric big bang cosmology
International Nuclear Information System (INIS)
Stecker, F.W.
1978-01-01
It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)
Symmetric functions and orthogonal polynomials
Macdonald, I G
1997-01-01
One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.
Immanant Conversion on Symmetric Matrices
Directory of Open Access Journals (Sweden)
Purificação Coelho M.
2014-01-01
Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.
International Nuclear Information System (INIS)
Courtin, E.; Grund, K.; Traub, S.; Zeeb, H.
1975-01-01
The peak reading detector circuit serves for picking up the instants during which peaks of a given polarity occur in sequences of signals in which the extreme values, their time intervals, and the curve shape of the signals vary. The signal sequences appear in measuring the foetal heart beat frequence from amplitude-modulated ultrasonic, electrocardiagram, and blood pressure signals. In order to prevent undesired emission of output signals from, e. g., disturbing intermediate extreme values, the circuit consists of the series connections of a circuit to simulate an ideal diode, a strong unit, a discriminator for the direction of charging current, a time-delay circuit, and an electronic switch lying in the decharging circuit of the storage unit. The time-delay circuit thereby causes storing of a preliminary maximum value being used only after a certain time delay for the emission of the output signal. If a larger extreme value occurs during the delay time the preliminary maximum value is cleared and the delay time starts running anew. (DG/PB) [de
Helically symmetric experiment, (HSX) goals, design and status
International Nuclear Information System (INIS)
Anderson, F.S.B.; Almagri, A.F.; Anderson, D.T.; Matthews, P.G.; Talmadge, J.N.; Shohet, J.L.
1995-01-01
HSX is a quasi-helically symmetric (QHS) stellarator currently under construction at the Torsatron-Stellarator Laboratory of the University of Wisconsin-Madison. This device is unique in its magnetic design in that the magnetic field spectrum possesses only a single dominant (helical) component. This design avoids the large direct orbit losses and the low-collisionality neoclassical losses associated with conventional stellarators. The restoration of symmetry to the confining magnetic field makes the neoclassical confinement in this device analogous to an axisymmetric q=1/3 tokamak. The HSX device has been designed with a clear set of primary physics goals: demonstrate the feasibility of construction of a QHS device, examine single particle confinement of injected ions with regard to magnetic field symmetry breaking, compare density and temperature profiles in this helically symmetric system to those for axisymmetric tokamaks and conventional stellarators, examine electric fields and plasma rotation with edge biasing in relation to L-H transitions in symmetric versus non-symmetric stellarator systems, investigate QHS effects on 1/v regime electron confinement, and examine how greatly-reduced neoclassical electron thermal conductivity compares to the experimental χ e profile. 3 refs., 4 figs., 1 tab
Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer?
Directory of Open Access Journals (Sweden)
Leili Shahriyari
Full Text Available Traditionally, it has been held that a central characteristic of stem cells is their ability to divide asymmetrically. Recent advances in inducible genetic labeling provided ample evidence that symmetric stem cell divisions play an important role in adult mammalian homeostasis. It is well understood that the two types of cell divisions differ in terms of the stem cells' flexibility to expand when needed. On the contrary, the implications of symmetric and asymmetric divisions for mutation accumulation are still poorly understood. In this paper we study a stochastic model of a renewing tissue, and address the optimization problem of tissue architecture in the context of mutant production. Specifically, we study the process of tumor suppressor gene inactivation which usually takes place as a consequence of two "hits", and which is one of the most common patterns in carcinogenesis. We compare and contrast symmetric and asymmetric (and mixed stem cell divisions, and focus on the rate at which double-hit mutants are generated. It turns out that symmetrically-dividing cells generate such mutants at a rate which is significantly lower than that of asymmetrically-dividing cells. This result holds whether single-hit (intermediate mutants are disadvantageous, neutral, or advantageous. It is also independent on whether the carcinogenic double-hit mutants are produced only among the stem cells or also among more specialized cells. We argue that symmetric stem cell divisions in mammals could be an adaptation which helps delay the onset of cancers. We further investigate the question of the optimal fraction of stem cells in the tissue, and quantify the contribution of non-stem cells in mutant production. Our work provides a hypothesis to explain the observation that in mammalian cells, symmetric patterns of stem cell division seem to be very common.
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
Nonlinear PT-symmetric plaquettes
International Nuclear Information System (INIS)
Li Kai; Kevrekidis, P G; Malomed, Boris A; Günther, Uwe
2012-01-01
We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT-symmetric lattices. For each configuration, we develop a dynamical model and examine its PTsymmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain–loss coefficient, γ. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions are unstable. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Relativistic fluids in spherically symmetric space
International Nuclear Information System (INIS)
Dipankar, R.
1977-12-01
Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat
Universal parametric correlations of conductance peaks in quantum dots
International Nuclear Information System (INIS)
Alhassid, Y.; Attias, H.
1996-01-01
We compute the parametric correlation function of the conductance peaks in chaotic and weakly disordered quantum dots in the Coulomb blockade regime and demonstrate its universality upon an appropriate scaling of the parameter. For a symmetric dot we show that this correlation function is affected by breaking time-reversal symmetry but is independent of the details of the channels in the external leads. We derive a new scaling which depends on the eigenfunctions alone and can be extracted directly from the conductance peak heights. Our results are in excellent agreement with model simulations of a disordered quantum dot. copyright 1996 The American Physical Society
Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback
Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.
2018-02-01
We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.
Assessing peak aerobic capacity in Dutch law enforcement officers
Wittink, Harriet; Takken, Tim; de Groot, Janke; Reneman, Michiel; Peters, Roelof; Vanhees, Luc
2015-01-01
Objectives: To cross-validate the existing peak rate of oxygen consumption (VO2peak) prediction equations in Dutch law enforcement officers and to determine whether these prediction equations can be used to predict VO2peak for groups and in a single individual. A further objective was to report
Assessing peak aerobic capacity in Dutch law enforcement officers.
Wittink, H.; Takken, T.; Groot, J.F. de; Reneman, M.; Peters, R.; Vanhees, L.
2015-01-01
Objectives: To cross-validate the existing peak rate of oxygen consumption (VO2peak) prediction equations in Dutch law enforcement officers and to determine whether these prediction equations can be used to predict VO2peak for groups and in a single individual. A further objective was to report
Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.
Foley, Joe P; Blackney, Donna M; Ennis, Erin J
2017-11-10
The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum
International Nuclear Information System (INIS)
Wang Yunhua; Hou Weiwei; Liu Ruihong; He Jianjun; Zhi Ke
2009-01-01
Objective: To study 64-MSCT perfusion imaging features about renal corticomedullary differentiation, contrast between renal cortex and medulla (CMC), renal cortex and medulla CT peak value in normal and hydronephrotic kidneys, and to explore the relationship between them and the unilateral renal function. Methods: Thirty-six patients with obstructive nephrohydrosis underwent 64-MSCT perfusion scanning. The split renal glomerular filtration rates (GFR) of their kidneys were measured by SPECT renal dynamic imaging. The 72 kidneys were divided into groups of normal renal function group, mild and severe renal impairment groups according to GFR. Renal corticomedullary differentiation on CT images was graded as clear, obscure, part clear. The CT intensity of cortex and medulla was measured in order to calculate contrast between renal cortex and medulla (CMC). Using Pearson correlation test, the correlation between them and renal GFR were examined. Results: (1) In the 24 kidneys of normal group, all kidneys showed clear CMD. In the 21 kidneys of mild renal impairment group, 14 kidneys showed clear CMD, 2 showed obscure CMD and 5 showed part clear of CMD. In the 27 kidneys of severe renal impairment group, 7 kidneys showed clear CMD, 5 showed obscure CMD and 15 showed part clear of CMD. (2)The CMC of normal group was 0.62 ± 0.20, while it was 0.52 ± 0.14 and 0.37 ± 0.11 for mild renal impairment group and severe renal impairment group CMC respectively. The CMC had positive linear correlation with GFR (r=0.536,P<0.05). (3) The renal cortex and medulla CT peak value of normal group were (133 ± 22) and (104 ± 16) HU; The renal cortex and medulla CT peak value of mild renal impairment group were (91 ± 29) and (76 ± 25) HU; The renal cortex and medulla CT peak value of severe renal impairment group were (68 ± 24) and (57 ± 21) HU(F=42.76 and 32.68,P<0.05). The renal cortex and medulla CT peak value had positive linear correlation with GFR (r=0.672 and 0.623, P<0
Comprehensive asynchronous symmetric rendezvous algorithm in ...
Indian Academy of Sciences (India)
Meenu Chawla
2017-11-10
Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.
Symmetric splitting of very light systems
International Nuclear Information System (INIS)
Grotowski, K.; Majka, Z.; Planeta, R.
1985-01-01
Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV
Spherically symmetric charged compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)
2015-08-15
In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)
Exact axially symmetric galactic dynamos
Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.
2018-05-01
We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Substring-Searchable Symmetric Encryption
Directory of Open Access Journals (Sweden)
Chase Melissa
2015-06-01
Full Text Available In this paper, we consider a setting where a client wants to outsource storage of a large amount of private data and then perform substring search queries on the data – given a data string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an encryption paradigm that we call queryable encryption, which generalizes searchable symmetric encryption (SSE and structured encryption. Then, we construct a queryable encryption scheme for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn time and produces a ciphertext of size O(λn, and querying for a substring of length m that occurs k times takes O(λm+k time and three rounds of communication. Our security definition guarantees correctness of query results and privacy of data and queries against a malicious adversary. Following the line of work started by Curtmola et al. (ACM CCS 2006, in order to construct more efficient schemes we allow the query protocol to leak some limited information that is captured precisely in the definition. We prove security of our substring-searchable encryption scheme against malicious adversaries, where the query protocol leaks limited information about memory access patterns through the suffix tree of the encrypted string.
Beig, Robert; Siddiqui, Azad A.
2007-11-01
It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.
M. Aamri; A. Bassou; S. Bennani; D. El Moutawakil
2007-01-01
The main purpose of this paper is to give some common fixed point theorems of mappings and set-valued mappings of a symmetric space with some applications to probabilistic spaces. In order to get these results, we define the concept of E-weak compatibility between set-valued and single-valued mappings of a symmetric space.
Synthesis of novel symmetrical macrocycle via oxidative homocoupling of bisalkyne
Energy Technology Data Exchange (ETDEWEB)
Kamalulazmy, Nurulain; Hassan, Nurul Izzaty [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)
2014-09-03
A novel symmetrical macrocycle has been synthesised via oxidative homocoupling of bisalkyne, diprop-2-ynyl pyridine-2,6-dicarboxylate mediated by copper (I) iodide (CuI) and 4-dimethylaminopyridine (DMAP). The precursor compound was synthesised from 2,6-pyridine dicarbonyl dichloride and propargyl alcohol in the presence of triethylamine. The reaction mixture was stirred overnight and further purified via column chromatograpy with 76% yield. Single crystal for X-ray study was obtained by recrystallization from acetone. Subsequently, a symmetrical macrocycle was synthesised from oxidative homocoupling of precursor compound in open atmosphere. The crude product was purified by column chromatography to furnish macrocycle compound with 5% yield. Both compounds were characterised by IR, {sup 1}H and {sup 13}C NMR and mass spectral techniques. The unusual conformation of the bisalkyne and twisted conformation of designed macrocycle has influence the percentage yield. This has been studied thoroughly by X-ray crystallography and electronic structure calculations.
Symmetrical and overloaded effect of diffusion in information filtering
Zhu, Xuzhen; Tian, Hui; Chen, Guilin; Cai, Shimin
2017-10-01
In physical dynamics, mass diffusion theory has been applied to design effective information filtering models on bipartite network. In previous works, researchers unilaterally believe objects' similarities are determined by single directional mass diffusion from the collected object to the uncollected, meanwhile, inadvertently ignore adverse influence of diffusion overload. It in some extent veils the essence of diffusion in physical dynamics and hurts the recommendation accuracy and diversity. After delicate investigation, we argue that symmetrical diffusion effectively discloses essence of mass diffusion, and high diffusion overload should be published. Accordingly, in this paper, we propose an symmetrical and overload penalized diffusion based model (SOPD), which shows excellent performances in extensive experiments on benchmark datasets Movielens and Netflix.
The symmetric extendibility of quantum states
International Nuclear Information System (INIS)
Nowakowski, Marcin L
2016-01-01
Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states. (paper)
Averaging in spherically symmetric cosmology
International Nuclear Information System (INIS)
Coley, A. A.; Pelavas, N.
2007-01-01
The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis
Linac design algorithm with symmetric segments
International Nuclear Information System (INIS)
Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.
1996-01-01
The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design
Symmetric nuclear matter with Skyrme interaction
International Nuclear Information System (INIS)
Manisa, K.; Bicer, A.; Atav, U.
2010-01-01
The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.
Performance limitations of translationally symmetric nonimaging devices
Bortz, John C.; Shatz, Narkis E.; Winston, Roland
2001-11-01
The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.
Symmetrical parahiliar infiltrated, cough and dyspnoea
International Nuclear Information System (INIS)
Giraldo Estrada, Horacio; Escalante, Hector
2004-01-01
It is the case a patient to who is diagnosed symmetrical parahiliar infiltrated; initially she is diagnosed lymphoma Hodgkin, treaty with radiotherapy and chemotherapy, but the X rays of the thorax demonstrated parahiliars and paramediastinals infiltrated
Introduction to left-right symmetric models
International Nuclear Information System (INIS)
Grimus, W.
1993-01-01
We motivate left-right symmetric models by the possibility of spontaneous parity breaking. Then we describe the multiplets and the Lagrangian of such models. Finally we discuss lower bounds on the right-handed scale. (author)
A cosmological problem for maximally symmetric supergravity
International Nuclear Information System (INIS)
German, G.; Ross, G.G.
1986-01-01
Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)
Theorem on axially symmetric gravitational vacuum configurations
Energy Technology Data Exchange (ETDEWEB)
Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare
1977-01-24
A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.
Symmetric Imidazolium-Based Paramagnetic Ionic Liquids
2017-11-29
Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generatin...... large sets of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...... of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Kabir, K.; Saha, S.; Nath, L.M.
1987-09-01
Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs
Pion condensation in symmetric nuclear matter
Kabir, K.; Saha, S.; Nath, L. M.
1988-01-01
Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.
A symmetric positive definite formulation for monolithic fluid structure interaction
Robinson-Mosher, Avi; Schroeder, Craig; Fedkiw, Ronald
2011-01-01
In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) [4]. © 2010 Elsevier Inc.
Symmetric large momentum transfer for atom interferometry with BECs
Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration
2017-04-01
We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).
A symmetric positive definite formulation for monolithic fluid structure interaction
Robinson-Mosher, Avi
2011-02-01
In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) [4]. © 2010 Elsevier Inc.
Peak oil: The four stages of a new idea
Energy Technology Data Exchange (ETDEWEB)
Bardi, Ugo [Dipartimento di Chimica, Universita di Firenze, Association for the Study of Peak Oil and Gas (ASPO), Polo Scientifico di Sesto Fiorentino, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi) (Italy)
2009-03-15
The present paper reviews the reactions and the path of acceptance of the theory known as ''peak oil''. The theory was proposed for the first time by M.K. Hubbert in the 1950s as a way to describe the production pattern of crude oil. According to Hubbert, the production curve is ''bell shaped'' and approximately symmetric. Hubbert's theory was verified with good approximation for the case of oil production in the United States that peaked in 1971, and is now being applied to the worldwide oil production. It is generally believed that the global peak of oil production (''peak oil'') will take place during the first decade of the 21st century, and some analysts believe that it has already occurred in 2005 or 2006. The theory and its consequences have unpleasant social and economical implications. The present paper is not aimed at assessing the peak date but offers a discussion on the factors that affect the acceptance and the diffusion of the concept of ''peak oil'' with experts and with the general public. The discussion is based on a subdivision of ''four stages of acceptance'', loosely patterned after a sentence by Thomas Huxley. (author)
Dispersion in a bent-solenoid channel with symmetric focusing
Energy Technology Data Exchange (ETDEWEB)
Wang, Chun-xi [Argonne National Lab. (ANL), Argonne, IL (United States)
2001-08-21
Longitudinal ionization cooling of a muon beam is essential for muon colliders and will be useful for neutrino factories. Bent-solenoid channels with symmetric focusing has been considered for beam focusing and for generating the required dispersion in the ``emittance exchange'' scheme of longitudinal cooling. In this paper, we derive the Hamiltonian that governs the linear beam dynamics of a bent-solenoid channel, solve the single-particle dynamics, and give equations for determining the lattice functions, in particular, the dispersion functions.
Analysis of Peak-to-Peak Current Ripple Amplitude in Seven-Phase PWM Voltage Source Inverters
Directory of Open Access Journals (Sweden)
Gabriele Grandi
2013-08-01
Full Text Available Multiphase systems are nowadays considered for various industrial applications. Numerous pulse width modulation (PWM schemes for multiphase voltage source inverters with sinusoidal outputs have been developed, but no detailed analysis of the impact of these modulation schemes on the output peak-to-peak current ripple amplitude has been reported. Determination of current ripple in multiphase PWM voltage source inverters is important for both design and control purposes. This paper gives the complete analysis of the peak-to-peak current ripple distribution over a fundamental period for multiphase inverters, with particular reference to seven-phase VSIs. In particular, peak-to-peak current ripple amplitude is analytically determined as a function of the modulation index, and a simplified expression to get its maximum value is carried out. Although reference is made to the centered symmetrical PWM, being the most simple and effective solution to maximize the DC bus utilization, leading to a nearly-optimal modulation to minimize the RMS of the current ripple, the analysis can be readily extended to either discontinuous or asymmetrical modulations, both carrier-based and space vector PWM. A similar approach can be usefully applied to any phase number. The analytical developments for all different sub-cases are verified by numerical simulations.
A new automatic fixed peak technology of microcontroller
International Nuclear Information System (INIS)
Huang Liguo; Wang Dequan; Zhang Damin; Li Jun; Liu Yuwen; Guo Qingxue; Wang Guifeng
1999-01-01
The microcontroller automatic fixed peak technology which differs from fashion half channel fixed peak is described. It bases on the principles of selecting double single channel and readjusting the voltage of power source. This technology is suitable to the industrial isotope instruments with various radioactive sources
International Nuclear Information System (INIS)
Helene, O.A.M.
1982-08-01
The determination of the upper limit of peak area in a multi-channel spectra, with a known significance level is discussed. This problem is specially important when the peak area is masked by the background statistical fluctuations. The problem is exactly solved and, thus, the results are valid in experiments with small number of events. The results are submitted to a Monte Carlo test and applied to the 92 Nb beta decay. (Author) [pt
Globally optimal superconducting magnets part II: symmetric MSE coil arrangement.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
A globally optimal superconducting magnet coil design procedure based on the Minimum Stored Energy (MSE) current density map is outlined. The method has the ability to arrange coils in a manner that generates a strong and homogeneous axial magnetic field over a predefined region, and ensures the stray field external to the assembly and peak magnetic field at the wires are in acceptable ranges. The outlined strategy of allocating coils within a given domain suggests that coils should be placed around the perimeter of the domain with adjacent coils possessing alternating winding directions for optimum performance. The underlying current density maps from which the coils themselves are derived are unique, and optimized to possess minimal stored energy. Therefore, the method produces magnet designs with the lowest possible overall stored energy. Optimal coil layouts are provided for unshielded and shielded short bore symmetric superconducting magnets.
Crossing-symmetric solutions to low equations
International Nuclear Information System (INIS)
McLeod, R.J.; Ernst, D.J.
1985-01-01
Crossing symmetric models of the pion-nucleon interaction in which crossing symmetry is kept to lowest order in msub(π)/msub(N) are investigated. Two iterative techniques are developed to solve the crossing-symmetric Low equation. The techniques are used to solve the original Chew-Low equations and their generalizations to include the coupling to the pion-production channels. Small changes are found in comparison with earlier results which used an iterative technique proposed by Chew and Low and which did not produce crossing-symmetric results. The iterative technique of Chew and Low is shown to fail because of its inability to produce zeroes in the amplitude at complex energies while physical solutions to the model require such zeroes. We also prove that, within the class of solutions such that phase shifts approach zero for infinite energy, the solution to the Low equation is unique. (orig.)
Revisiting the Optical PT-Symmetric Dimer
Directory of Open Access Journals (Sweden)
José Delfino Huerta Morales
2016-08-01
Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.
PT symmetric Aubry–Andre model
International Nuclear Information System (INIS)
Yuce, C.
2014-01-01
PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists
PT symmetric Aubry–Andre model
Energy Technology Data Exchange (ETDEWEB)
Yuce, C., E-mail: cyuce@anadolu.edu.tr
2014-06-13
PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.
Peak Oil and other threatening peaks-Chimeras without substance
International Nuclear Information System (INIS)
Radetzki, Marian
2010-01-01
The Peak Oil movement has widely spread its message about an impending peak in global oil production, caused by an inadequate resource base. On closer scrutiny, the underlying analysis is inconsistent, void of a theoretical foundation and without support in empirical observations. Global oil resources are huge and expanding, and pose no threat to continuing output growth within an extended time horizon. In contrast, temporary or prolonged supply crunches are indeed plausible, even likely, on account of growing resource nationalism denying access to efficient exploitation of the existing resource wealth.
Electricity Portfolio Management: Optimal Peak / Off-Peak Allocations
Huisman, Ronald; Mahieu, Ronald; Schlichter, Felix
2007-01-01
textabstractElectricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to address the concept of structuring the portfolio and focuses on how to allocate optimal positions in peak and off-peak forward contracts. It is shown that the optimal allocations are based on the difference in risk premiums per unit of day-ahead risk as a measure of relati...
Ultrasonic Transducer Peak-to-Peak Optical Measurement
Directory of Open Access Journals (Sweden)
Pavel Skarvada
2012-01-01
Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.
All-optical symmetric ternary logic gate
Chattopadhyay, Tanay
2010-09-01
Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.
Symmetry theorems via the continuous steiner symmetrization
Directory of Open Access Journals (Sweden)
L. Ragoub
2000-06-01
Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.
The Axially Symmetric One-Monopole
International Nuclear Information System (INIS)
Wong, K.-M.; Teh, Rosy
2009-01-01
We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.
Symmetric splitting of very light systems
International Nuclear Information System (INIS)
Grotowski, K.; Majka, Z.; Planeta, R.
1984-01-01
Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV 12 C+ 40 Ca, 141 MeV 9 Be+ 40 Ca, and 153 MeV 6 Li+ 40 Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics
International Nuclear Information System (INIS)
Morioka, Noboru; Kato, Yasuji; Yokoi, M.
1975-01-01
Output peaking factor often plays an important role in the safety and operation of nuclear reactors. The meaning of the peaking factor of PWRs is categorized into two features or the peaking factor in core (FQ-core) and the peaking factor on the basis of accident analysis (or FQ-limit). FQ-core is the actual peaking factor realized in nuclear core at the time of normal operation, and FQ-limit should be evaluated from loss of coolant accident and other abnormal conditions. If FQ-core is lower than FQ-limit, the reactor may be operated at full load, but if FQ-core is larger than FQ-limit, reactor output should be controlled lower than FQ-limit. FQ-core has two kinds of values, or the one on the basis of nuclear design, and the other actually measured in reactor operation. The first FQ-core should be named as FQ-core-design and the latter as FQ-core-measured. The numerical evaluation of FQ-core-design is as follows; FQ-core-design of three-dimensions is synthesized with FQ-core horizontal value (X-Y) and FQ-core vertical value, the former one is calculated with ASSY-CORE code, and the latter one with one dimensional diffusion code. For the evaluation of FQ-core-measured, on-site data observation from nuclear reactor instrumentation or off-site data observation is used. (Iwase, T.)
Can double-peaked lines indicate merging effects in AGNs?
Directory of Open Access Journals (Sweden)
Popović L.Č.
2000-01-01
Full Text Available The influence of merging effects in the central part of an Active Galactic Nucleus (AGN on the emission spectral line shapes are discussed. We present a model of close binary Broad Line Region. The numerical experiments show that the merging effects can explain double peaked lines. The merging effects may also be present in the center of AGNs, although they emit slightly asymmetric as well as symmetric and relatively stable (in profile shape spectral lines. Depending on the black hole masses and their orbit elements such model may explain some of the line profile shapes observed in AGNs. This work shows that if one is looking for the merging effects in the central region as well as in the wide field structure of AGNs, he should first pay attention to objects which have double peaked lines.
How to use your peak flow meter
... meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...
Analysis of generic insertions made of two symmetric triplets
D'Amico, T E
1998-01-01
This paper reports on the study undertaken to explore the capabilities of a symmetric triplet to achieve the optics constraints required by the inner triplet of an insertion and more generally of a co mplete insertion made of two symmetric triplets to match a double focus to a FODO lattice. It is based on analytical treatment formulating a number of constraints equal to the parameters available. Th is thorough and systematic analysis made it possible to establish for an inner triplet as well as for a complete insertion the existence of solutions and to explicitly find out all the solutions, with out resorting to unguided numerical searches. As a by-product, a lattice transformer, made of a single triplet, that matches two different FODO cells has been singled out and studied in details. The r esults should be profitable in a number of cases. Here, the method is applied to an insertion of the type of an experimental LHC insertion in order to investigate its domain of validity and tunability .
The spatial resolution of epidemic peaks.
Directory of Open Access Journals (Sweden)
Harriet L Mills
2014-04-01
Full Text Available The emergence of novel respiratory pathogens can challenge the capacity of key health care resources, such as intensive care units, that are constrained to serve only specific geographical populations. An ability to predict the magnitude and timing of peak incidence at the scale of a single large population would help to accurately assess the value of interventions designed to reduce that peak. However, current disease-dynamic theory does not provide a clear understanding of the relationship between: epidemic trajectories at the scale of interest (e.g. city; population mobility; and higher resolution spatial effects (e.g. transmission within small neighbourhoods. Here, we used a spatially-explicit stochastic meta-population model of arbitrary spatial resolution to determine the effect of resolution on model-derived epidemic trajectories. We simulated an influenza-like pathogen spreading across theoretical and actual population densities and varied our assumptions about mobility using Latin-Hypercube sampling. Even though, by design, cumulative attack rates were the same for all resolutions and mobilities, peak incidences were different. Clear thresholds existed for all tested populations, such that models with resolutions lower than the threshold substantially overestimated population-wide peak incidence. The effect of resolution was most important in populations which were of lower density and lower mobility. With the expectation of accurate spatial incidence datasets in the near future, our objective was to provide a framework for how to use these data correctly in a spatial meta-population model. Our results suggest that there is a fundamental spatial resolution for any pathogen-population pair. If underlying interactions between pathogens and spatially heterogeneous populations are represented at this resolution or higher, accurate predictions of peak incidence for city-scale epidemics are feasible.
The dislocation-internal friction peak γ in tantalum
International Nuclear Information System (INIS)
Baur, J.; Benoit, W.; Schultz, H.
1989-01-01
Torsion-pendulum measurements were carried out on high-purity single crystal specimens of tantalum, having extremely low oxygen contents ( 2 peak, which appears close to γ is small traces of oxygen are presents. The γ 2 peak was formerly explained as a ''dislocation-enhanced Snoek peak''. The γ peak recovers at the peak temperature, whereas the γ 2 peak is more stable. On the basis of their results, and making use of earlier investigations of Rodrian and Schultz, the authors suggest that γ 2 is modified γ relaxation, related to screw-dislocation segments, stabilized by oxygen-decorated kinks. The stability of the γ 2 peak allows an accurate determination of the activation energy, found to be 1.00 +- 0.03 eV. This value is distinctly lower than the activation energy of the oxygen Snoek effect (1.10 eV) and is related here to the mechanism of ''kink-pair formation'' in screw dislocations, as the original γ peak. The numerical value is compatible with recent values derived from flow-stress measurements. The peak γ 2 shows increasing stability with increasing oxygen content. This is explained by single- and multi-decorated kinks
Small diameter symmetric networks from linear groups
Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.
1992-01-01
In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.
Sobolev spaces on bounded symmetric domains
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
Roč. 60, č. 12 ( 2015 ), s. 1712-1726 ISSN 1747-6933 Institutional support: RVO:67985840 Keywords : bounded symmetric domain * Sobolev space * Bergman space Subject RIV: BA - General Mathematics Impact factor: 0.466, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/17476933. 2015 .1043910
Cuspidal discrete series for semisimple symmetric spaces
DEFF Research Database (Denmark)
Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik
2012-01-01
We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...
Exact solutions of the spherically symmetric multidimensional ...
African Journals Online (AJOL)
The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...
Super-symmetric informationally complete measurements
Energy Technology Data Exchange (ETDEWEB)
Zhu, Huangjun, E-mail: hzhu@pitp.ca
2015-11-15
Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.
Harmonic maps of the bounded symmetric domains
International Nuclear Information System (INIS)
Xin, Y.L.
1994-06-01
A shrinking property of harmonic maps into R IV (2) is proved which is used to classify complete spacelike surfaces of the parallel mean curvature in R 4 2 with a reasonable condition on the Gauss image. Liouville-type theorems of harmonic maps from the higher dimensional bounded symmetric domains are also established. (author). 25 refs
On isotropic cylindrically symmetric stellar models
International Nuclear Information System (INIS)
Nolan, Brien C; Nolan, Louise V
2004-01-01
We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model
The Mathematics of Symmetrical Factorial Designs
Indian Academy of Sciences (India)
The Mathematics of Symmetrical Factorial Designs. Mausumi Bose (nee Sen) obtained her MSc degree in. Statistics from the Calcutta. University and PhD degree from the Indian Statistical. Institute. She is on the faculty of the Indian. Statistical Institute. Her main field of research interest is design and analysis of experiments.
Symmetric intersections of Rauzy fractals | Sellami | Quaestiones ...
African Journals Online (AJOL)
In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is re ection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is ...
Fourier inversion on a reductive symmetric space
Ban, E.P. van den
1999-01-01
Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we
A viewpoint on nearly conformally symmetric manifold
International Nuclear Information System (INIS)
Rahman, M.S.
1990-06-01
Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs
Harmonic analysis on reductive symmetric spaces
Ban, E.P. van den; Schlichtkrull, H.
2000-01-01
We give a relatively non-technical survey of some recent advances in the Fourier theory for semisimple symmetric spaces. There are three major results: An inversion formula for the Fourier transform, a Palley-Wiener theorem, which describes the Fourier image of the space of completely supported
Fourier transforms on a semisimple symmetric space
Ban, E.P. van den; Schlichtkrull, H.
1994-01-01
Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation
Fourier transforms on a semisimple symmetric space
Ban, E.P. van den; Carmona, J.; Delorme, P.
1997-01-01
Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation
Hubbert's Peak -- A Physicist's View
McDonald, Richard
2011-04-01
Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.
Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.
We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.
Acquisition of peak responding: what is learned?
Balci, Fuat; Gallistel, Charles R; Allen, Brian D; Frank, Krystal M; Gibson, Jacqueline M; Brunner, Daniela
2009-01-01
We investigated how the common measures of timing performance behaved in the course of training on the peak procedure in C3H mice. Following fixed interval (FI) pre-training, mice received 16 days of training in the peak procedure. The peak time and spread were derived from the average response rates while the start and stop times and their relative variability were derived from a single-trial analysis. Temporal precision (response spread) appeared to improve in the course of training. This apparent improvement in precision was, however, an averaging artifact; it was mediated by the staggered appearance of timed stops, rather than by the delayed occurrence of start times. Trial-by-trial analysis of the stop times for individual subjects revealed that stops appeared abruptly after three to five sessions and their timing did not change as training was prolonged. Start times and the precision of start and stop times were generally stable throughout training. Our results show that subjects do not gradually learn to time their start or stop of responding. Instead, they learn the duration of the FI, with robust temporal control over the start of the response; the control over the stop of response appears abruptly later.
Neto, A.; LLombart, N.; Gerini, G.; Maagt, P.J. de
2009-01-01
The use of Planar Circularly Symmetric (PCS) Electromagnetic Band-Gap (EBG) structures for optimizing the performances of single antenna elements and arrays is been discussed. The key advantage of using this sort of super structures is that they are planar and thus very cheap to manufacture with
Neto, A.; Llombart, N.; Gerini, G.; de Maagt, P.J.I.
2009-01-01
The use of planar circularly symmetric (PCS) electromagnetic band-gap (EBG) structures for optimizing the performances of single antenna elements and arrays is been discussed. The key advantage of using this sort of super structures is that they are planar and thus very cheap to manufacture with
SPANISH PEAKS PRIMITIVE AREA, MONTANA.
Calkins, James A.; Pattee, Eldon C.
1984-01-01
A mineral survey of the Spanish Peaks Primitive Area, Montana, disclosed a small low-grade deposit of demonstrated chromite and asbestos resources. The chances for discovery of additional chrome resources are uncertain and the area has little promise for the occurrence of other mineral or energy resources. A reevaluation, sampling at depth, and testing for possible extensions of the Table Mountain asbestos and chromium deposit should be undertaken in the light of recent interpretations regarding its geologic setting.
Neurofeedback training for peak performance
Marek Graczyk; Maria Pąchalska; Artur Ziółkowski; Grzegorz Mańko; Beata Łukaszewska; Kazimierz Kochanowicz; Andrzej Mirski; Iurii D. Kropotov
2014-01-01
[b]aim[/b]. One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneou...
Power peaking nuclear reliability factors
International Nuclear Information System (INIS)
Hassan, H.A.; Pegram, J.W.; Mays, C.W.; Romano, J.J.; Woods, J.J.; Warren, H.D.
1977-11-01
The Calculational Nuclear Reliability Factor (CNRF) assigned to the limiting power density calculated in reactor design has been determined. The CNRF is presented as a function of the relative power density of the fuel assembly and its radial local. In addition, the Measurement Nuclear Reliability Factor (MNRF) for the measured peak hot pellet power in the core has been evaluated. This MNRF is also presented as a function of the relative power density and radial local within the fuel assembly
Evaluation of concurrent peak responses
International Nuclear Information System (INIS)
Wang, P.C.; Curreri, J.; Reich, M.
1983-01-01
This report deals with the problem of combining two or more concurrent responses which are induced by dynamic loads acting on nuclear power plant structures. Specifically, the acceptability of using the square root of the sum of the squares (SRSS) value of peak values as the combined response is investigated. Emphasis is placed on the establishment of a simplified criterion that is convenient and relatively easy to use by design engineers
International Nuclear Information System (INIS)
Silagadze, Z.K.
2007-01-01
Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems
Bistable states of TM polarized non-linear waves guided by symmetric layered structures
International Nuclear Information System (INIS)
Mihalache, D.
1985-04-01
Dispersion relations for TM polarized non-linear waves propagating in a symmetric single film optical waveguide are derived. The system consists of a layer of thickness d with dielectric constant epsilon 1 bounded at two sides by a non-linear medium characterized by the diagonal dielectric tensor epsilon 11 =epsilon 22 =epsilon 0 , epsilon 33 =epsilon 0 +α|E 3 | 2 , where E 3 is the normal electric field component. For sufficiently large d/lambda (lambda is the wavelength) we predict bistable states of both symmetric and antisymmetric modes provided that the power flow is the control parameter. (author)
Sirius-T, a symmetrically illuminated ICF tritium production facility
International Nuclear Information System (INIS)
Sviatoslavsky, I.N.; Sawan, M.E.; Moses, G.A.; Kulcinski, G.L.; Engelstad, R.L.; Larsen, E.; Lovell, E.; MacFarlane, J.; Peterson, R.R.; Wittenberg, L.J.
1989-01-01
A scoping study of a symmetrically illuminated ICF tritium production facility utilizing a KrF laser is presented. A single shell ICF target is illuminated by 92 beams symmetrically distributed around a spherical cavity filled with xenon gas at 1.0 torr. The driver energy and target gain are taken to be 2 MJ and 50 for the optimistic case and 1 MJ and 100 for the conservative case. Based on a graphite dry wall evaporation rate of 0.1 cm/y for a 100 MJ yield, the authors estimate a cavity radius of 3.5 m for a rep-rate of 10 Hz and 3.0 m for 5 Hz. A spherical structural frame has been scoped out capable of supporting 92 blanket modules, each with a beam port in the center. They have selected liquid lithium in vanadium structure as the primary breeding concept utilizing beryllium as a neutron multiplier. A tritium breeding ratio of 1.83 can be achieved in the 3 m radius cavity which at 10 Hz and an availability of 75% provides an annual tritium surplus of 32.6 kg. Assuming 100% debt financing over a 30 year reactor lifetime, the production cost of T 2 for the 2 MJ driver case is $7,325/g for a 5% interest rate and $12,370/g for a 10% interest rate. 8 refs., 3 figs., 4 tabs
Closed Form Aliasing Probability For Q-ary Symmetric Errors
Directory of Open Access Journals (Sweden)
Geetani Edirisooriya
1996-01-01
Full Text Available In Built-In Self-Test (BIST techniques, test data reduction can be achieved using Linear Feedback Shift Registers (LFSRs. A faulty circuit may escape detection due to loss of information inherent to data compaction schemes. This is referred to as aliasing. The probability of aliasing in Multiple-Input Shift-Registers (MISRs has been studied under various bit error models. By modeling the signature analyzer as a Markov process we show that the closed form expression derived for aliasing probability previously, for MISRs with primitive polynomials under q-ary symmetric error model holds for all MISRs irrespective of their feedback polynomials and for group cellular automata signature analyzers as well. If the erroneous behaviour of a circuit can be modelled with q-ary symmetric errors, then the test circuit complexity and propagation delay associated with the signature analyzer can be minimized by using a set of m single bit LFSRs without increasing the probability of aliasing.
Representations of the infinite symmetric group
Borodin, Alexei
2016-01-01
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.
Symmetric, discrete fractional splines and Gabor systems
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2006-01-01
In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....
Overlap-free symmetric D 0 Lwords
Directory of Open Access Journals (Sweden)
Anna Frid
2001-12-01
Full Text Available A D0L word on an alphabet Σ={0,1,…,q-1} is called symmetric if it is a fixed point w=φ(w of a morphism φ:Σ * → Σ * defined by φ(i= t 1 + i t 2 + i … t m + i for some word t 1 t 2 … t m (equal to φ(0 and every i ∈ Σ; here a means a mod q. We prove a result conjectured by J. Shallit: if all the symbols in φ(0 are distinct (i.e., if t i ≠ t j for i ≠ j, then the symmetric D0L word w is overlap-free, i.e., contains no factor of the form axaxa for any x ∈ Σ * and a ∈ Σ.
Young—Capelli symmetrizers in superalgebras†
Brini, Andrea; Teolis, Antonio G. B.
1989-01-01
Let Supern[U [unk] V] be the nth homogeneous subspace of the supersymmetric algebra of U [unk] V, where U and V are Z2-graded vector spaces over a field K of characteristic zero. The actions of the general linear Lie superalgebras pl(U) and pl(V) span two finite-dimensional K-subalgebras B and [unk] of EndK(Supern[U [unk] V]) that are the centralizers of each other. Young—Capelli symmetrizers and Young—Capelli *-symmetrizers give rise to K-linear bases of B and [unk] containing orthogonal systems of idempotents; thus they yield complete decompositions of B and [unk] into minimal left and right ideals, respectively. PMID:16594014
Factored Facade Acquisition using Symmetric Line Arrangements
Ceylan, Duygu
2012-05-01
We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.
Commutative curvature operators over four-dimensional generalized symmetric
Directory of Open Access Journals (Sweden)
Ali Haji-Badali
2014-12-01
Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
Luo, Xin; Wu, Ching-Chih
2016-12-01
In cochlear implants (CIs), standard partial tripolar (pTP) mode reduces current spread by returning a fraction of the current to two adjacent flanking electrodes within the cochlea. Symmetric electrode spanning (i.e., separating both the apical and basal return electrodes from the main electrode by one electrode) has been shown to increase the pitch of pTP stimuli, when the ratio of intracochlear return current was fixed. To explain the pitch increase caused by symmetric spanning in pTP mode, this study measured the electrical potentials of both standard and symmetrically spanned pTP stimuli on a main electrode EL8 in five CI ears using electrical field imaging (EFI). In addition, the spatial profiles of evoked compound action potentials (ECAP) and the psychophysical forward masking (PFM) patterns were also measured for both stimuli. The EFI, ECAP, and PFM patterns of a given stimulus differed in shape details, reflecting the different levels of auditory processing and different ratios of intracochlear return current across the measurement methods. Compared to the standard pTP stimuli, the symmetrically spanned pTP stimuli significantly reduced the areas under the curves of the normalized EFI and PFM patterns, without shifting the pattern peaks and centroids (both around EL8). The more focused excitation patterns with symmetric spanning may have caused the previously reported pitch increase, due to an interaction between pitch and timbre perception. Being able to reduce the spread of excitation, pTP mode symmetric spanning is a promising stimulation strategy that may further increase spectral resolution and frequency selectivity with CIs.
Drivers of peak sales for pharmaceutical brands
Fischer, Marc; Leeflang, Peter S. H.; Verhoef, Peter C.
2010-01-01
Peak sales are an important metric in the pharmaceutical industry. Specifically, managers are focused on the height-of-peak-sales and the time required achieving peak sales. We analyze how order of entry and quality affect the level of peak sales and the time-to-peak-sales of pharmaceutical brands.
Irreducible complexity of iterated symmetric bimodal maps
Directory of Open Access Journals (Sweden)
J. P. Lampreia
2005-01-01
Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.
A symmetric Roos bound for linear codes
Duursma, I.M.; Pellikaan, G.R.
2006-01-01
The van Lint–Wilson AB-method yields a short proof of the Roos bound for the minimum distance of a cyclic code. We use the AB-method to obtain a different bound for the weights of a linear code. In contrast to the Roos bound, the role of the codes A and B in our bound is symmetric. We use the bound
Symmetric voltage-controlled variable resistance
Vanelli, J. C.
1978-01-01
Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.
Resistor Networks based on Symmetrical Polytopes
Directory of Open Access Journals (Sweden)
Jeremy Moody
2015-03-01
Full Text Available This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors. The method is applied to a number of cases that have not been studied earlier such as the Archimedean polyhedra and their duals in three dimensions, the regular polytopes in four dimensions and the hypercube in any number of dimensions.
Symmetric vs. asymmetric punishment regimes for bribery
Engel, Christoph; Goerg, Sebastian J.; Yu, Gaoneng
2012-01-01
In major legal orders such as UK, the U.S., Germany, and France, bribers and recipients face equally severe criminal sanctions. In contrast, countries like China, Russia, and Japan treat the briber more mildly. Given these differences between symmetric and asymmetric punishment regimes for bribery, one may wonder which punishment strategy is more effective in curbing corruption. For this purpose, we designed and ran a lab experiment in Bonn (Germany) and Shanghai (China) with exactly the same...
Is the Universe matter-antimatter symmetric
International Nuclear Information System (INIS)
Alfven, H.
1976-09-01
According to the symmetric cosmology there should be antimatter regions in space which are equally as large as the matter regions. The regions of different kind are separated by Leidenfrost layers, which may be very thin and not observable from a distance. This view has met resistance which in part is based on the old view that the dilute interstellar and intergalactic medium is more or less homogeneous. However, through space research in the magnetosphere and interplanetary space we know that thin layers, dividing space into regions of different magnetisation, exist and based on this it is concluded that space in general has a cellular structure. This result may break down the psychological resistance to the symmetric theory. The possibility that every second star in our galaxy consists of antimatter is discussed, and it is shown that this view is not in conflict with any observations. As most stars are likely to be surrounded by solar systems of a structure like our own, it is concluded that collisions between comets and antistars (or anticomets and stars) would be rather frequent. Such collisions would result in phenomena of the same type as the observed cosmic γ-ray bursts. Another support for the symmetric cosmology is the continuous X-ray background radiation. Also many of the observed large energy releases in cosmos are likely to be due to annihilation
Energy Technology Data Exchange (ETDEWEB)
Yu, Xiang-Long, E-mail: xlyu@theory.issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Liu, Da-Yong; Quan, Ya-Min; Zheng, Xiao-Jun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Zou, Liang-Jian, E-mail: zou@theory.issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Department of Physics, University of Science and Technology of China, Hefei 230026 (China)
2015-12-15
Highlights: • Effects of single interstitial impurity are studied in iron-based superconductors. • Bound states within the superconducting gap can be induced. • The interstitial impurity can induce a π phase shift of pairing order parameter. • For strong magnetic scattering the bound-state peak can appear at the Fermi level. - Abstract: We employ the self-consistent Bogoliubov-de Gennes (BdG) formulation to investigate the effect of single interstitial nonmagnetic/magnetic impurity in iron-based superconductors with s ± -wave pairing symmetry. We find that both the nonmagnetic and magnetic impurities can induce bound states within the superconducting (SC) gap and a π phase shift of SC order parameter at the impurity site. However, different from the interstitial-nonmagnetic-impurity case characterized by two symmetric peaks with respect to zero energy, the interstitial magnetic one only induces single bound-state peak. In the strong scattering regime this peak can appear at the Fermi level, which has been observed in the recent scanning tunneling microscope (STM) experiment of Fe(Te,Se) superconductor with interstitial Fe impurities (Yin et al. 2015 [44]). This novel single in-gap peak feature also distinguishes the interstitial case from the substitutional one with two peaks. These results provide important information for comparing the different impurity effects in the iron-based superconductors.
Single-peak solitary wave solutions for the variant Boussinesq ...
Indian Academy of Sciences (India)
ear dispersive waves in shallow water. This equation has attracted a lot of attention ... which is a model for water waves (a = 0), where u(x, t) is the velocity, H(x, t) is the total depth and the subscripts denote partial ... cusped solitary wave solutions of the osmosis K(2, 2) equation. Zhang and Chen [6] obtained new types of ...
On the harmonic starlike functions with respect to symmetric ...
African Journals Online (AJOL)
In the present paper, we introduce the notions of functions harmonic starlike with respect to symmetric, conjugate and symmetric conjugate points. Such results as coefficient inequalities and structural formulae for these function classes are proved. Keywords: Harmonic functions, harmonic starlike functions, symmetric points, ...
International Nuclear Information System (INIS)
Arellano, M. Soledad; Serra, Pablo
2007-01-01
This article extends the traditional electricity peak-load pricing model to include transmission costs. In the context of a two-node, two-technology electric power system, where suppliers face inelastic demand, we show that when the marginal plant is located at the energy-importing center, generators located away from that center should pay the marginal capacity transmission cost; otherwise, consumers should bear this cost through capacity payments. Since electric power transmission is a natural monopoly, marginal-cost pricing does not fully cover costs. We propose distributing the revenue deficit among users in proportion to the surplus they derive from the service priced at marginal cost. (Author)
Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane
Vanichchapongjaroen, Pichet
2018-02-01
We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.
Relaxation peak near 200 K in NiTi alloy
Zhu, J. S.; Schaller, R.; Benoit, W.
1989-10-01
Internal friction (IF), frequency ( f), electrical resistance ( R) and zero point movement of the torsion pendulum (ɛ) have been measured in near equi-atomic NiTi alloy in order to clarify the mechanism for the relaxation peak near 200 K. The height of the relaxation peak decreases successively with thermal cycling and settles down to a lower stable value in running 15 cycles. However, the electrical resistance of the sample shows a variation in contrast with the internal friction. Both of them will return to the initial state after a single annealing at 773 K for 1 h. The probable mechanism of this relaxation peak was discussed.
Optimum detection for extracting maximum information from symmetric qubit sets
International Nuclear Information System (INIS)
Mizuno, Jun; Fujiwara, Mikio; Sasaki, Masahide; Akiba, Makoto; Kawanishi, Tetsuya; Barnett, Stephen M.
2002-01-01
We demonstrate a class of optimum detection strategies for extracting the maximum information from sets of equiprobable real symmetric qubit states of a single photon. These optimum strategies have been predicted by Sasaki et al. [Phys. Rev. A 59, 3325 (1999)]. The peculiar aspect is that the detections with at least three outputs suffice for optimum extraction of information regardless of the number of signal elements. The cases of ternary (or trine), quinary, and septenary polarization signals are studied where a standard von Neumann detection (a projection onto a binary orthogonal basis) fails to access the maximum information. Our experiments demonstrate that it is possible with present technologies to attain about 96% of the theoretical limit
A Fully Symmetric and Completely Decoupled MEMS-SOI Gyroscope
Directory of Open Access Journals (Sweden)
Abdelhameed SHARAF
2011-04-01
Full Text Available This paper introduces a novel MEMS gyroscope that is capable of exciting the drive mode differentially. The structure also decouples the drive and sense modes via an intermediate mass and decoupling beams. Both drive and sense modes are fully differential enabling control over the zero-rate-output for the former and maximizing output sensitivity using a bridge circuit for the latter. Further, the structure is fully symmetric about the x- and y- axes which results in minimizing the temperature sensitivity problem. Complete analytical analysis based on the equations of motion was performed and verified using two commercially available finite element software packages. Results from both methods are in good agreement. The analysis of the sensor shows an electrical sensitivity of 1.14 (mV/(º/s. The gyroscope was fabricated using single mask and deep reactive ion etching. The measurement of the resonance frequency performed showing a good agreement with the analytical and numerical analysis.
Emittance growth in non-symmetric beam configurations
International Nuclear Information System (INIS)
Anderson, O.A.
1996-06-01
Emittance growth in intense beams due to nonuniformity, mismatch, and misalignment has been analyzed by Reiser for the special case of axisymmetry. A more complex problem occurs in cases where a number of discrete beamlets are to be merged into a single focusing channel, for example, in designs for Heavy Ion Fusion drivers or Magnetic Fusion negative-ion systems. Celata, assuming the system to be perfectly matched and aligned, analyzed the case of four round beamlets arranged in a square array. We generalize these previous studies and analyze emittance growth in systems that are less symmetric. We include beam systems that are not necessarily matched and where the x and y moments may be unequal. We also include the possibility of initial convergence velocities that may differ in the two planes and allow for misalignment of the beam center-of-mass position and direction
International Nuclear Information System (INIS)
Lutz, Christian; Lehr, Ulrike; Wiebe, Kirsten S.
2012-01-01
Assuming that global oil production peaked, this paper uses scenario analysis to show the economic effects of a possible supply shortage and corresponding rise in oil prices in the next decade on different sectors in Germany and other major economies such as the US, Japan, China, the OPEC or Russia. Due to the price-inelasticity of oil demand the supply shortage leads to a sharp increase in oil prices in the second scenario, with high effects on GDP comparable to the magnitude of the global financial crises in 2008/09. Oil exporting countries benefit from high oil prices, whereas oil importing countries are negatively affected. Generally, the effects in the third scenario are significantly smaller than in the second, showing that energy efficiency measures and the switch to renewable energy sources decreases the countries' dependence on oil imports and hence reduces their vulnerability to oil price shocks on the world market. - Highlights: ► National and sectoral economic effects of peak oil until 2020 are modelled. ► The price elasticity of oil demand is low resulting in high price fluctuations. ► Oil shortage strongly affects transport and indirectly all other sectors. ► Global macroeconomic effects are comparable to the 2008/2009 crisis. ► Country effects depend on oil imports and productivity, and economic structures.
Application of direct peak analysis to energy dispersive x-ray fluorescence spectra
International Nuclear Information System (INIS)
Nielson, K.K.
1977-07-01
A modified Covell method for direct peak analysis has been applied to energy dispersive x-ray fluorescence spectra. The method is background independent and is well-suited to computerized data reduction. It provides acceptable precision, minimizes errors from instrumental gain shift, and permits peak overlap correction. Peak overlap errors exhibit both positive and negative nodes as a function of peak separation distance, and are corrected using concentration ratios determined from thin, single-element standards. Peak precisions and overlaps are evaluated as a function of window width to aid in width selection. Least-square polynomial smoothing prior to peak analysis significantly improves peak area precisions without significantly affecting their accuracies
Peak-locking reduction for particle image velocimetry
International Nuclear Information System (INIS)
Michaelis, Dirk; Wieneke, Bernhard; Neal, Douglas R
2016-01-01
A parametric study of the factors contributing to peak-locking, a known bias error source in particle image velocimetry (PIV), is conducted using synthetic data that are processed with a state-of-the-art PIV algorithm. The investigated parameters include: particle image diameter, image interpolation techniques, the effect of asymmetric versus symmetric window deformation, number of passes and the interrogation window size. Some of these parameters are found to have a profound effect on the magnitude of the peak-locking error. The effects for specific PIV cameras are also studied experimentally using a precision turntable to generate a known rotating velocity field. Image time series recorded using this experiment show a linear range of pixel and sub-pixel shifts ranging from 0 to ±4 pixels. Deviations in the constant vorticity field (ω z ) reveal how peak-locking can be affected systematically both by varying parameters of the detection system such as the focal distance and f -number, and also by varying the settings of the PIV analysis. A new a priori technique for reducing the bias errors associated with peak-locking in PIV is introduced using an optical diffuser to avoid undersampled particle images during the recording of the raw images. This technique is evaluated against other a priori approaches using experimental data and is shown to perform favorably. Finally, a new a posteriori anti peak-locking filter (APLF) is developed and investigated, which shows promising results for both synthetic data and real measurements for very small particle image sizes. (paper)
Diffraction peaks in x-ray spectroscopy: Friend or foe?
International Nuclear Information System (INIS)
Tissot, R.G.; Goehner, R.P.
1992-01-01
Diffraction peaks can occur as unidentifiable peaks in the energy spectrum of an x-ray spectrometric analysis. Recently, there has been increased interest in oriented polycrystalline films and epitaxial films on single crystal substrates for electronic applications. Since these materials diffract x-rays more efficiently than randomly oriented polycrystalline materials, diffraction peaks are being observed more frequently in x-ray fluorescent spectra. In addition, micro x-ray spectrometric analysis utilizes a small, intense, collimated x-ray beam that can yield well defined diffraction peaks. In some cases these diffraction peaks can occur at the same position as elemental peaks. These diffraction peaks, although a possible problem in qualitative and quantitative elemental analysis, can give very useful information about the crystallographic structure and orientation of the material being analyzed. The observed diffraction peaks are dependent on the geometry of the x-ray spectrometer, the degree of collimation and the distribution of wavelengths (energies) originating from the x-ray tube and striking the sample
Assessing peak aerobic capacity in Dutch law enforcement officers
Directory of Open Access Journals (Sweden)
Harriet Wittink
2015-06-01
Full Text Available Objectives: To cross-validate the existing peak rate of oxygen consumption (VO2peak prediction equations in Dutch law enforcement officers and to determine whether these prediction equations can be used to predict VO2peak for groups and in a single individual. A further objective was to report normative absolute and relative VO2peak values of a sample of law enforcement officers in the Netherlands. Material and Methods: The peak rate of oxygen consumption (ml×kg–1×min–1 was measured using a maximal incremental bicycle test in 1530 subjects, including 1068 male and 461 female police officers. Validity of the prediction equations for groups was assessed by comparing predicted VO2peak with measured VO2peak using paired t-tests. For individual differences limits of agreement (LoA were calculated. Equations were considered valid for individuals when the difference between measured and predicted VO2peak did not exceed ±1 metabolic equivalent (MET in 95% of individuals. Results: None of the equations met the validity criterion of 95% of individuals having ±1 MET difference or less than the measured value. Limits of agreement (LoAs were large in all predictions. At the individual level, none of the equations were valid predictors of VO2peak (ml×kg–1×min–1. Normative values for Dutch law enforcement officers were presented. Conclusions: Substantial differences between measured and predicted VO2peak (ml×kg–1×min–1 were found. Most tested equations were invalid predictors of VO2peak at group level and all were invalid at individual levels.
Peak performance: remote memory revisited
Mühleisen, H.; Gonçalves, R.; Kersten, M.; Johnson, R.; Kemper, A.
2013-01-01
Many database systems share a need for large amounts of fast storage. However, economies of scale limit the utility of extending a single machine with an arbitrary amount of memory. The recent broad availability of the zero-copy data transfer protocol RDMA over low-latency and high-throughput
Spherically symmetric self-similar universe
Energy Technology Data Exchange (ETDEWEB)
Dyer, C C [Toronto Univ., Ontario (Canada)
1979-10-01
A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.
Dijet rates with symmetric Et cuts
International Nuclear Information System (INIS)
Banfi, Andrea; Dasgupta, Mrinal
2004-01-01
We consider dijet production in the region where symmetric cuts on the transverse energy, E t , are applied to the jets. In this region next-to-leading order calculations are unreliable and an all-order resummation of soft gluon effects is needed, which we carry out. Although, for illustrative purposes, we choose dijets produced in deep inelastic scattering, our general ideas apply additionally to dijets produced in photoproduction or gamma-gamma processes and should be relevant also to the study of prompt di-photon E t spectra in association with a recoiling jet, in hadron-hadron processes. (author)
Covariant, chirally symmetric, confining model of mesons
International Nuclear Information System (INIS)
Gross, F.; Milana, J.
1991-01-01
We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented
Symmetric Logic Synthesis with Phase Assignment
Benschop, N. F.
2001-01-01
Decomposition of any Boolean Function BF_n of n binary inputs into an optimal inverter coupled network of Symmetric Boolean functions SF_k (k \\leq n) is described. Each SF component is implemented by Threshold Logic Cells, forming a complete and compact T-Cell Library. Optimal phase assignment of input polarities maximizes local symmetries. The "rank spectrum" is a new BF_n description independent of input ordering, obtained by mapping its minterms onto an othogonal n \\times n grid of (transi...
Elastic energy for reflection-symmetric topologies
International Nuclear Information System (INIS)
Majumdar, A; Robbins, J M; Zyskin, M
2006-01-01
Nematic liquid crystals in a polyhedral domain, a prototype for bistable displays, may be described by a unit-vector field subject to tangent boundary conditions. Here we consider the case of a rectangular prism. For configurations with reflection-symmetric topologies, we derive a new lower bound for the one-constant elastic energy. For certain topologies, called conformal and anticonformal, the lower bound agrees with a previous result. For the remaining topologies, called nonconformal, the new bound is an improvement. For nonconformal topologies we derive an upper bound, which differs from the lower bound by a factor depending only on the aspect ratios of the prism
Nanotribology of Symmetric and Asymmetric Liquid Lubricants
Directory of Open Access Journals (Sweden)
Shinji Yamada
2010-03-01
Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.
Unary self-verifying symmetric difference automata
CSIR Research Space (South Africa)
Marais, Laurette
2016-07-01
Full Text Available stream_source_info Marais_2016_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 796 Content-Encoding ISO-8859-1 stream_name Marais_2016_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 18th... International Workshop on Descriptional Complexity of Formal Systems, 5 - 8 July 2016, Bucharest, Romania Unary self-verifying symmetric difference automata Laurette Marais1,2 and Lynette van Zijl1(B) 1 Department of Computer Science, Stellenbosch...
Characterisation of an AGATA symmetric prototype detector
International Nuclear Information System (INIS)
Nelson, L.; Dimmock, M.R.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Nolan, P.J.; Lazarus, I.; Simpson, J.; Medina, P.; Santos, C.; Parisel, C.
2007-01-01
The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A 137 Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented
How Symmetrical Assumptions Advance Strategic Management Research
DEFF Research Database (Denmark)
Foss, Nicolai Juul; Hallberg, Hallberg
2014-01-01
We develop the case for symmetrical assumptions in strategic management theory. Assumptional symmetry obtains when assumptions made about certain actors and their interactions in one of the application domains of a theory are also made about this set of actors and their interactions in other...... application domains of the theory. We argue that assumptional symmetry leads to theoretical advancement by promoting the development of theory with greater falsifiability and stronger ontological grounding. Thus, strategic management theory may be advanced by systematically searching for asymmetrical...
Characterisation of an AGATA symmetric prototype detector
Energy Technology Data Exchange (ETDEWEB)
Nelson, L. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ln@ns.ph.liv.ac.uk; Dimmock, M.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: mrd@ns.ph.liv.ac.uk; Boston, A.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom)]. E-mail: ajb@ns.ph.liv.ac.uk; Boston, H.C. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Nolan, P.J. [Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Medina, P. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Santos, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France); Parisel, C. [Institut de Recherches Subatomiques, Strasbourg BP28 67037 (France)
2007-04-01
The Advanced GAmma Tracking Array (AGATA) symmetric prototype detector has been tested at University of Liverpool. A {sup 137}Ce source, collimated to a 2 mm diameter, was scanned across the front face of the detector and data were acquired utilising digital electronics. Pulse shapes from a selection of well-defined photon interaction positions have been analysed to investigate the position sensitivity of the detector. Furthermore, the application of the electric field simulation software, Multi Geometry Simulation (MGS) to generate theoretical pulse shapes for AGATA detectors has been presented.
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.
1991-01-01
We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)
Baryon symmetric big-bang cosmology
Energy Technology Data Exchange (ETDEWEB)
Stecker, F.W.
1978-04-01
The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.
Baryon symmetric big-bang cosmology
International Nuclear Information System (INIS)
Stecker, F.W.
1978-04-01
The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation
Geometrodynamics of spherically symmetric Lovelock gravity
International Nuclear Information System (INIS)
Kunstatter, Gabor; Taves, Tim; Maeda, Hideki
2012-01-01
We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchar (1994 Phys. Rev. D 50 3961) in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes. (fast track communication)
Automatic fitting of Gaussian peaks using abductive machine learning
Abdel-Aal, R. E.
1998-02-01
Analytical techniques have been used for many years for fitting Gaussian peaks in nuclear spectroscopy. However, the complexity of the approach warrants looking for machine-learning alternatives where intensive computations are required only once (during training), while actual analysis on individual spectra is greatly simplified and quickened. This should allow the use of simple portable systems for fast and automated analysis of large numbers of spectra, particularly in situations where accuracy may be traded for speed and simplicity. This paper proposes the use of abductive networks machine learning for this purpose. The Abductory Induction Mechanism (AIM) tool was used to build models for analyzing both single and double Gaussian peaks in the presence of noise depicting statistical uncertainties in collected spectra. AIM networks were synthesized by training on 1000 representative simulated spectra and evaluated on 500 new spectra. A classifier network determines the multiplicity of single/double peaks with an accuracy of 5.8%. With statistical uncertainties corresponding to a peak count of 100, average percentage absolute errors for the height, position, and width of single peaks are 4.9, 2.9, and 4.2%, respectively. For double peaks, these average errors are within 7.0, 3.1, and 5.9%, respectively. Models have been developed which account for the effect of a linear background on a single peak. Performance is compared with a neural network application and with an analytical curve-fitting routine, and the new technique is applied to actual data of an alpha spectrum.
Automatic fitting of Gaussian peaks using abductive machine learning
International Nuclear Information System (INIS)
Abdel-Aal, R.E.
1998-01-01
Analytical techniques have been used for many years for fitting Gaussian peaks in nuclear spectroscopy. However, the complexity of the approach warrants looking for machine-learning alternatives where intensive computations are required only once (during training), while actual analysis on individual spectra is greatly simplified and quickened. This should allow the use of simple portable systems for fast and automated analysis of large numbers of spectra, particularly in situations where accuracy may be traded for speed and simplicity. This paper proposes the use of abductive networks machine learning for this purpose. The Abductory Induction Mechanism (AIM) tool was used to build models for analyzing both single and double Gaussian peaks in the presence of noise depicting statistical uncertainties in collected spectra. AIM networks were synthesized by training on 1,000 representative simulated spectra and evaluated on 500 new spectra. A classifier network determines the multiplicity of single/double peaks with an accuracy of 98%. With statistical uncertainties corresponding to a peak count of 100, average percentage absolute errors for the height, position, and width of single peaks are 4.9, 2.9, and 4.2%, respectively. For double peaks, these average errors are within 7.0, 3.1, and 5.9%, respectively. Models have been developed which account for the effect of a linear background on a single peak. Performance is compared with a neural network application and with an analytical curve-fitting routine, and the new technique is applied to actual data of an alpha spectrum
Electroweak Baryogenesis in R-symmetric Supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin
2013-03-01
We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.
Establishment of peak bone mass.
Mora, Stefano; Gilsanz, Vicente
2003-03-01
Among the main areas of progress in osteoporosis research during the last decade or so are the general recognition that this condition, which is the cause of so much pain in the elderly population, has its antecedents in childhood and the identification of the structural basis accounting for much of the differences in bone strength among humans. Nevertheless, current understanding of the bone mineral accrual process is far from complete. The search for genes that regulate bone mass acquisition is ongoing, and current results are not sufficient to identify subjects at risk. However, there is solid evidence that BMD measurements can be helpful for the selection of subjects that presumably would benefit from preventive interventions. The questions regarding the type of preventive interventions, their magnitude, and duration remain unanswered. Carefully designed controlled trials are needed. Nevertheless, previous experience indicates that weight-bearing activity and possibly calcium supplements are beneficial if they are begun during childhood and preferably before the onset of puberty. Modification of unhealthy lifestyles and increments in exercise or calcium assumption are logical interventions that should be implemented to improve bone mass gains in all children and adolescents who are at risk of failing to achieve an optimal peak bone mass.
Neurofeedback training for peak performance
Directory of Open Access Journals (Sweden)
Marek Graczyk
2014-11-01
Full Text Available [b]aim[/b]. One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneous EEG and event related potentials (ERPs. [b]case study[/b]. The case is presented of an Olympic athlete who has lost his performance confidence after injury in sport. He wanted to resume his activities by means of neurofeedback training. His QEEG/ERP parameters were assessed before and after 4 intensive sessions of neurotherapy. Dramatic and statistically significant changes that could not be explained by error measurement were observed in the patient. [b]conclusion[/b]. Neurofeedback training in the subject under study increased the amplitude of the monitoring component of ERPs generated in the anterior cingulate cortex, accompanied by an increase in beta activity over the medial prefrontal cortex. Taking these changes together, it can be concluded that that even a few sessions of neurofeedback in a high performance brain can significantly activate the prefrontal cortical areas associated with increasing confidence in sport performance.
Reactor power peaking information display
International Nuclear Information System (INIS)
Book, T.L.; Kochendarfer, R.A.
1986-01-01
This patent describes a system for monitoring operating conditions within a nuclear reactor. The system consists of a method for measuring the operating parameters within the nuclear reactor, including the position of axial power shaping rods and regulating control rod. It also includes a method for determining from the operating parameters the operating limits before a power peaking condition exists within the nuclear reactor, and a method for displaying the operating limits which consists of a visual display permitting the continuous monitoring of the operating conditions within the nuclear reactor as a graph of the shaping rod position vs the regulating rod position having a permissible area and a restricted area. The permissible area is further divided into a recommended operating area for steady state operation and a cursor located on the graph to indicate the present operating condition of the nuclear reactor to allow an operator to view any need for corrective action based on the movement of the cursor out of the recommended operating area and to take any corrective transient action within the permissible area
Neurofeedback training for peak performance.
Graczyk, Marek; Pąchalska, Maria; Ziółkowski, Artur; Mańko, Grzegorz; Łukaszewska, Beata; Kochanowicz, Kazimierz; Mirski, Andrzej; Kropotov, Iurii D
2014-01-01
One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneous EEG and event related potentials (ERPs). The case is presented of an Olympic athlete who has lost his performance confidence after injury in sport. He wanted to resume his activities by means of neurofeedback training. His QEEG/ERP parameters were assessed before and after 4 intensive sessions of neurotherapy. Dramatic and statistically significant changes that could not be explained by error measurement were observed in the patient. Neurofeedback training in the subject under study increased the amplitude of the monitoring component of ERPs generated in the anterior cingulate cortex, accompanied by an increase in beta activity over the medial prefrontal cortex. Taking these changes together, it can be concluded that that even a few sessions of neurofeedback in a high performance brain can significantly activate the prefrontal cortical areas associated with increasing confidence in sport performance.
Advancements of ultra-high peak power laser diode arrays
Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.
2018-02-01
Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.
Effects of equipment and technique on peak flow measurements
Directory of Open Access Journals (Sweden)
O'Driscoll B Ronan
2006-06-01
Full Text Available Abstract Background Different lung function equipment and different respiratory manoeuvres may produce different Peak Expiratory Flow (PEF results. Although the PEF is the most common lung function test, there have been few studies of these effects and no previous study has evaluated both factors in a single group of patients. Methods We studied 36 subjects (PEF range 80–570 l/min. All patients recorded PEF measurements using a short rapid expiration following maximal inspiration (PEF technique or a forced maximal expiration to residual volume (FVC technique. Measurements were made using a Wright's peak flow meter, a turbine spirometer and a Fleisch pneumotachograph spirometer. Results The mean PEF was 8.7% higher when the PEF technique was used (compared with FVC technique, p Conclusion Peak flow measurements are affected by the instruction given and by the device and Peak Flow scale used. Patient management decisions should not be based on PEF measurement made on different instruments.
Probabilistic peak detection for first-order chromatographic data.
Lopatka, M; Vivó-Truyols, G; Sjerps, M J
2014-03-19
We present a novel algorithm for probabilistic peak detection in first-order chromatographic data. Unlike conventional methods that deliver a binary answer pertaining to the expected presence or absence of a chromatographic peak, our method calculates the probability of a point being affected by such a peak. The algorithm makes use of chromatographic information (i.e. the expected width of a single peak and the standard deviation of baseline noise). As prior information of the existence of a peak in a chromatographic run, we make use of the statistical overlap theory. We formulate an exhaustive set of mutually exclusive hypotheses concerning presence or absence of different peak configurations. These models are evaluated by fitting a segment of chromatographic data by least-squares. The evaluation of these competing hypotheses can be performed as a Bayesian inferential task. We outline the potential advantages of adopting this approach for peak detection and provide several examples of both improved performance and increased flexibility afforded by our approach. Copyright © 2014 Elsevier B.V. All rights reserved.
On the symmetric α-stable distribution with application to symbol error rate calculations
Soury, Hamza
2016-12-24
The probability density function (PDF) of the symmetric α-stable distribution is investigated using the inverse Fourier transform of its characteristic function. For general values of the stable parameter α, it is shown that the PDF and the cumulative distribution function of the symmetric stable distribution can be expressed in terms of the Fox H function as closed-form. As an application, the probability of error of single input single output communication systems using different modulation schemes with an α-stable perturbation is studied. In more details, a generic formula is derived for generalized fading distribution, such as the extended generalized-k distribution. Later, simpler expressions of these error rates are deduced for some selected special cases and compact approximations are derived using asymptotic expansions.
Geometric inequalities for axially symmetric black holes
International Nuclear Information System (INIS)
Dain, Sergio
2012-01-01
A geometric inequality in general relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse; they are closely related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problems is presented. (topical review)
A symmetric bipolar nebula around MWC 922.
Tuthill, P G; Lloyd, J P
2007-04-13
We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A.
Minimal Left-Right Symmetric Dark Matter.
Heeck, Julian; Patra, Sudhanwa
2015-09-18
We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.
Design and Analysis of Symmetric Primitives
DEFF Research Database (Denmark)
Lauridsen, Martin Mehl
. In the second part, we delve into the matter of the various aspects of designing a symmetric cryptographic primitive. We start by considering generalizations of the widely acclaimed Advanced Encryption Standard (AES) block cipher. In particular, our focus is on a component operation in the cipher which permutes...... analyze and implement modes recommended by the National Institute of Standards and Technology (NIST), as well as authenticated encryption modes from the CAESAR competition, when instantiated with the AES. The data processed in our benchmarking has sizes representative to that of typical Internet traffic...... linear cryptanalysis. We apply this model to the standardized block cipher PRESENT. Finally, we present very generic attacks on two authenticated encryption schemes, AVALANCHE and RBS, by pointing out severe design flaws that can be leveraged to fully recover the secret key with very low complexity...
Quasiaxially symmetric stellarators with three field periods
International Nuclear Information System (INIS)
Garabedian, P.; Ku, L.
1999-01-01
Compact hybrid configurations with two field periods have been studied recently as candidates for a proof of principle experiment at the Princeton Plasma Physics Laboratory. This project has led us to the discovery of a family of quasiaxially symmetric stellarators with three field periods that have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit will be at least as high as 4% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. copyright 1999 American Institute of Physics
Primordial two-component maximally symmetric inflation
Enqvist, K.; Nanopoulos, D. V.; Quirós, M.; Kounnas, C.
1985-12-01
We propose a two-component inflation model, based on maximally symmetric supergravity, where the scales of reheating and the inflation potential at the origin are decoupled. This is possible because of the second-order phase transition from SU(5) to SU(3)×SU(2)×U(1) that takes place when φ≅φcinflation at the global minimum, and leads to a reheating temperature TR≅(1015-1016) GeV. This makes it possible to generate baryon asymmetry in the conventional way without any conflict with experimental data on proton lifetime. The mass of the gravitinos is m3/2≅1012 GeV, thus avoiding the gravitino problem. Monopoles are diluted by residual inflation in the broken phase below the cosmological bounds if φcUSA.
Lovelock black holes with maximally symmetric horizons
Energy Technology Data Exchange (ETDEWEB)
Maeda, Hideki; Willison, Steven; Ray, Sourya, E-mail: hideki@cecs.cl, E-mail: willison@cecs.cl, E-mail: ray@cecs.cl [Centro de Estudios CientIficos (CECs), Casilla 1469, Valdivia (Chile)
2011-08-21
We investigate some properties of n( {>=} 4)-dimensional spacetimes having symmetries corresponding to the isometries of an (n - 2)-dimensional maximally symmetric space in Lovelock gravity under the null or dominant energy condition. The well-posedness of the generalized Misner-Sharp quasi-local mass proposed in the past study is shown. Using this quasi-local mass, we clarify the basic properties of the dynamical black holes defined by a future outer trapping horizon under certain assumptions on the Lovelock coupling constants. The C{sup 2} vacuum solutions are classified into four types: (i) Schwarzschild-Tangherlini-type solution; (ii) Nariai-type solution; (iii) special degenerate vacuum solution; and (iv) exceptional vacuum solution. The conditions for the realization of the last two solutions are clarified. The Schwarzschild-Tangherlini-type solution is studied in detail. We prove the first law of black-hole thermodynamics and present the expressions for the heat capacity and the free energy.
Polyhomogeneous expansions from time symmetric initial data
Gasperín, E.; Valiente Kroon, J. A.
2017-10-01
We make use of Friedrich’s construction of the cylinder at spatial infinity to relate the logarithmic terms appearing in asymptotic expansions of components of the Weyl tensor to the freely specifiable parts of time symmetric initial data sets for the Einstein field equations. Our analysis is based on the assumption that a particular type of formal expansions near the cylinder at spatial infinity corresponds to the leading terms of actual solutions to the Einstein field equations. In particular, we show that if the Bach tensor of the initial conformal metric does not vanish at the point at infinity then the most singular component of the Weyl tensor decays near null infinity as O(\\tilde{r}-3\\ln \\tilde{r}) so that spacetime will not peel. We also provide necessary conditions on the initial data which should lead to a peeling spacetime. Finally, we show how to construct global spacetimes which are candidates for non-peeling (polyhomogeneous) asymptotics.
From Symmetric Glycerol Derivatives to Dissymmetric Chlorohydrins
Directory of Open Access Journals (Sweden)
Gemma Villorbina
2011-03-01
Full Text Available The anticipated worldwide increase in biodiesel production will result in an accumulation of glycerol for which there are insufficient conventional uses. The surplus of this by-product has increased rapidly during the last decade, prompting a search for new glycerol applications. We describe here the synthesis of dissymmetric chlorohydrin esters from symmetric 1,3-dichloro-2-propyl esters obtained from glycerol. We studied the influence of two solvents: 1,4-dioxane and 1-butanol and two bases: sodium carbonate and 1-butylimidazole, on the synthesis of dissymmetric chlorohydrin esters. In addition, we studied the influence of other bases (potassium and lithium carbonates in the reaction using 1,4-dioxane as the solvent. The highest yield was obtained using 1,4-dioxane and sodium carbonate.
Bidding behavior in a symmetric Chinese auction
Directory of Open Access Journals (Sweden)
Mauricio Benegas
2015-01-01
Full Text Available This paper purposes a symmetric all-pay auction where the bidders compete neither for an object nor the object itself but for a lottery on receive. That lottery is determined endogenously through the bids. This auction is known as chance auction or more popularly as Chinese auction. The model considers the possibility that for some bidders the optimal strategy is to bid zero and to rely on luck. It showed that bidders become less aggressive when the lottery satisfies a variational condition. It was also shown that luck factor is decisive to determine if the expected payoff in Chinese auction is bigger or smaller than expected payoff in standard all-pay auction.
Canonical quantization of static spherically symmetric geometries
International Nuclear Information System (INIS)
Christodoulakis, T; Dimakis, N; Terzis, P A; Doulis, G; Grammenos, Th; Melas, E; Spanou, A
2013-01-01
The conditional symmetries of the reduced Einstein–Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''
Cryptanalysis of Some Lightweight Symmetric Ciphers
DEFF Research Database (Denmark)
Abdelraheem, Mohamed Ahmed Awadelkareem Mohamed Ahmed
In recent years, the need for lightweight encryption systems has been increasing as many applications use RFID and sensor networks which have a very low computational power and thus incapable of performing standard cryptographic operations. In response to this problem, the cryptographic community...... on a variant of PRESENT with identical round keys. We propose a new attack named the Invariant Subspace Attack that was specifically mounted against the lightweight block cipher PRINTcipher. Furthermore, we mount several attacks on a recently proposed stream cipher called A2U2....... of the international standards in lightweight cryptography. This thesis aims at analyzing and evaluating the security of some the recently proposed lightweight symmetric ciphers with a focus on PRESENT-like ciphers, namely, the block cipher PRESENT and the block cipher PRINTcipher. We provide an approach to estimate...
Cosmic ray antimatter and baryon symmetric cosmology
Stecker, F. W.; Protheroe, R. J.; Kazanas, D.
1982-01-01
The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.
Symmetric Topological Phases and Tensor Network States
Jiang, Shenghan
Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.
The radiation chemistry of symmetric aliphatic polyesters
International Nuclear Information System (INIS)
Babanalbandi, A.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.
1996-01-01
Full text: Naturally occurring, symmetric polyesters, including polyglycolic acid, polylactic acid and polyhydroxybutyrate, have found biomedical applications in areas as diverse as the controlled release of pharmaceuticals and the manufacture of surgical sutures. As biomedical products, the materials require sterilization by high energy radiation. This has provided the motivation for the present work. D'Alelio et al. have reported that linear, asymmetric polyesters undergo scission on irradiation, but that branched polyesters containing a methyl group in the diol segments undergo crosslinking. However, for the symmetric polyhydroxybutyrate, Carswell-Pomerantz et al. have reported that only scission occurs on radiolysis, with the evolution of CO and CO 2 as a result of the loss of ester linkages. These workers also found that G(CO + CO 2 ) was approximately equal to G(S) for this polyester. By contrast, Collett et al. have reported that G(S) = 1.26 and G(X) = 0.53 for polylactic acid, which indicates that the polymer undergoes nett crosslinking on radiolysis to form a gel. They have also reported that poly(lactic-co-glycolic acid) should form a gel on radiolysis, since G(S) = 1.66 and G(X) = 0.65 for a 1:1 copolymer composition. In the present work the radiolysis of polylactic acid and poly(lactic-co-glycolic acid) have been reinvestigated in order to resolve the differences between the work of Collett et al. and that of Carswell-Pomerantz et al. In these studies, ESR has been used to study the radicals formed, GPC has been used to investigate scission and crosslinking, GC has been used to study the small molecule volatile products and NMR spectroscopy has been used to identify and measure the new chemical structures formed in the polymers
FFLP problem with symmetric trapezoidal fuzzy numbers
Directory of Open Access Journals (Sweden)
Reza Daneshrad
2015-04-01
Full Text Available The most popular approach for solving fully fuzzy linear programming (FFLP problems is to convert them into the corresponding deterministic linear programs. Khan et al. (2013 [Khan, I. U., Ahmad, T., & Maan, N. (2013. A simplified novel technique for solving fully fuzzy linear programming problems. Journal of Optimization Theory and Applications, 159(2, 536-546.] claimed that there had been no method in the literature to find the fuzzy optimal solution of a FFLP problem without converting it into crisp linear programming problem, and proposed a technique for the same. Others showed that the fuzzy arithmetic operation used by Khan et al. (2013 had some problems in subtraction and division operations, which could lead to misleading results. Recently, Ezzati et al. (2014 [Ezzati, R., Khorram, E., & Enayati, R. (2014. A particular simplex algorithm to solve fuzzy lexicographic multi-objective linear programming problems and their sensitivity analysis on the priority of the fuzzy objective functions. Journal of Intelligent and Fuzzy Systems, 26(5, 2333-2358.] defined a new operation on symmetric trapezoidal fuzzy numbers and proposed a new algorithm to find directly a lexicographic/preemptive fuzzy optimal solution of a fuzzy lexicographic multi-objective linear programming problem by using new fuzzy arithmetic operations, but their model was not fully fuzzy optimization. In this paper, a new method, by using Ezzati et al. (2014’s fuzzy arithmetic operation and a fuzzy version of simplex algorithm, is proposed for solving FFLP problem whose parameters are represented by symmetric trapezoidal fuzzy number without converting the given problem into crisp equivalent problem. By using the proposed method, the fuzzy optimal solution of FFLP problem can be easily obtained. A numerical example is provided to illustrate the proposed method.
Axially symmetric Lorentzian wormholes in general relativity
International Nuclear Information System (INIS)
Schein, F.
1997-11-01
The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)
All static spherically symmetric perfect-fluid solutions of Einstein's equations
International Nuclear Information System (INIS)
Lake, Kayll
2003-01-01
An algorithm based on the choice of a single monotone function (subject to boundary conditions) is presented which generates all regular static spherically symmetric perfect-fluid solutions of Einstein's equations. For physically relevant solutions the generating functions must be restricted by nontrivial integral-differential inequalities. Nonetheless, the algorithm is demonstrated here by the construction of an infinite number of previously unknown physically interesting exact solutions
Synthesis and Structure of D3h-Symmetric Triptycene Trimaleimide
Directory of Open Access Journals (Sweden)
Anthony Linden
2010-01-01
Full Text Available A new D3h symmetric triptycene derivative has been synthesized with the aim of obtaining molecules that are able to assemble into porous structures, and can be used in the development of new ligands. The synthesis involves a Diels-Alder reaction as the key step, followed by an oxidation and the formation of a maleimide ring. Triptycene trimaleimide furnished single crystals which have been analyzed by means of X-ray diffraction.
MODELING OF SYMMETRIC THREE-PHASE ASYNCHRONOUS ELECTRIC MOTOR IN ASYMMETRIC CONNECTION TO NETWORK
Directory of Open Access Journals (Sweden)
V. I. Lukovnikov
2005-01-01
Full Text Available The paper shows how to solve the problem concerning reveal of changes in mathematical models and electric parameters of symmetric three-phase short-circuited asynchronous electric motors in case of their connection to single- or two-phase network in comparison with their connection to three-phase network. The uniform methodological approach permitting to generalize the known data and receive new results is offered in the paper.
A non-parametric peak calling algorithm for DamID-Seq.
Directory of Open Access Journals (Sweden)
Renhua Li
Full Text Available Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS of double sex (DSX-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq. One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only. After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1 reads resampling; 2 reads scaling (normalization and computing signal-to-noise fold changes; 3 filtering; 4 Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC. We also used irreproducible discovery rate (IDR analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.
A non-parametric peak calling algorithm for DamID-Seq.
Li, Renhua; Hempel, Leonie U; Jiang, Tingbo
2015-01-01
Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.
Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.
2008-02-01
The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.
Investigation of Universal Behavior in Symmetric Diblock Copolymer Melts
Medapuram, Pavani
Coarse-grained theories of dense polymer liquids such as block copolymer melts predict a universal dependence of equilibrium properties on a few dimensionless parameters. For symmetric diblock copolymer melts, such theories predict a universal dependence on only chieN and N¯, where chie is an effective interaction parameter, N is the degree of polymerization, and N¯ is a measure of overlap. This thesis focuses on testing the universal behavior hypothesis by comparing results for various properties obtained from different coarse-grained simulation models to each other. Specifically, results from pairs of simulations of different models that have been designed to have matched values of N¯ are compared over a range of values of chiN. The use of vastly different simulation models allows us to cover a vast range of chi eN ≃ 200 - 8000 that includes most of the experimentally relevant range. Properties studied here include collective and single-chain correlations in the disordered phase, block and chain radii of gyration in the disordered phase, the value of chieN at the order-disorder transition (ODT), the free energy per chain, the latent heat of transition, the layer spacing, the composition profile, and compression modulus in the ordered phase. All results strongly support the universal scaling hypothesis, even for rather short chains, confirming that it is indeed possible to give an accurate universal description of simulation models that differ in many details. The underlying universality becomes apparent, however, only if data are analyzed using an adequate estimate of chie, which we obtained by fitting the structure factor S( q) in the disordered state to predictions of the recently developed renormalized one-loop (ROL) theory. The ROL theory is shown to provide an excellent description of the dependence of S(q on chain length and thermodynamic conditions for all models, even for very short chains, if we allow for the existence of a nonlinear dependence of
Entangling capabilities of symmetric two-qubit gates
Indian Academy of Sciences (India)
Com- putational investigation of entanglement of such ensembles is therefore impractical for ... the computational complexity. Pairs of spin-1 ... tensor operators which can also provide different symmetric logic gates for quantum pro- ... that five of the eight, two-qubit symmetric quantum gates expressed in terms of our newly.
SUSY formalism for the symmetric double well potential
Indian Academy of Sciences (India)
symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique. Keywords. SUSY; moving boundary condition; exactly solvable; symmetric double well; NH3 molecule. PACS Nos 02.30.Ik; 03.50.
A New Formulation for Symmetric Implicit Runge-Kutta-Nystrom ...
African Journals Online (AJOL)
In this paper we derive symmetric stable Implicit Runge-Kutta –Nystrom Method for the Integration of General Second Order ODEs by using the collocation approach.The block hybrid method obtained by the evaluation of the continuous interpolant at different nodes of the polynomial is symmetric and suitable for stiff intial ...
Crossing symmetric solution of the Chew-Low equation
International Nuclear Information System (INIS)
McLeod, R.J.; Ernst, D.J.
1982-01-01
An N/D dispersion theory is developed which solves crossing symmetric Low equations. The method is used to generate crossing symmetric solutions to the Chew-Low model. We show why the technique originally proposed by Chew and Low was incapable of producing solutions. (orig.)
Sparse symmetric preconditioners for dense linear systems in electromagnetism
Carpentieri, Bruno; Duff, Iain S.; Giraud, Luc; Monga Made, M. Magolu
2004-01-01
We consider symmetric preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. In particular, we report on the numerical behaviour of the classical incomplete Cholesky factorization as well as some of its recent
Stability of transparent spherically symmetric thin shells and wormholes
International Nuclear Information System (INIS)
Ishak, Mustapha; Lake, Kayll
2002-01-01
The stability of transparent spherically symmetric thin shells (and wormholes) to linearized spherically symmetric perturbations about static equilibrium is examined. This work generalizes and systematizes previous studies and explores the consequences of including the cosmological constant. The approach shows how the existence (or not) of a domain wall dominates the landscape of possible equilibrium configurations
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.
Radon transformation on reductive symmetric spaces: support theorems
Kuit, J.J.|info:eu-repo/dai/nl/313872589
2011-01-01
In this thesis we introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and study some of their properties. In particular we obtain a generalization of Helgason's support theorem for the horospherical transform on a Riemannian symmetric space.
New approach to solve symmetric fully fuzzy linear systems
Indian Academy of Sciences (India)
In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefﬁcient matrix. The symmetric coefﬁcient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.
Synthesis & Characterization of New bis-Symmetrical Adipoyl ...
African Journals Online (AJOL)
Full Title: Synthesis and Characterization of New bis-Symmetrical Adipoyl, Terepthaloyl, Chiral Diimido-di-L-alanine Diesters and Chiral Phthaloyl-L-alanine Ester of Tripropoxy p-tert-Butyl Calix[4]arene and Study of Their Hosting Ability for Alanine and Na+. Bis-symmetrical tripropoxy p-tert-butyl calix[4]arene esters were ...
FACES WITH LARGE DIAMETER ON THE SYMMETRICAL TRAVELING SALESMAN POLYTOPE
SIERKSMA, G; TIJSSEN, GA
This paper deals with the symmetric traveling salesman polytope and contains three main theorems. The first one gives a new characterization of (non)adjacency. Based on this characterization a new upper bound for the diameter of the symmetric traveling salesman polytope (conjectured to be 2 by M.
Fast clustering using adaptive density peak detection.
Wang, Xiao-Feng; Xu, Yifan
2017-12-01
Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.
An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.
Yuan, Xueyin; Mayanovic, Robert A
2017-10-01
Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H 2 O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman
Symmetric metamaterials based on flower-shaped structure
International Nuclear Information System (INIS)
Tuong, P.V.; Park, J.W.; Rhee, J.Y.; Kim, K.W.; Cheong, H.; Jang, W.H.; Lee, Y.P.
2013-01-01
We proposed new models of metamaterials (MMs) based on a flower-shaped structure (FSS), whose “meta-atoms” consist of two flower-shaped metallic parts separated by a dielectric layer. Like the non-symmetric MMs based on cut-wire-pairs or electric ring resonators, the symmetrical FSS demonstrates the negative permeability at GHz frequencies. Employing the results, we designed a symmetric negative-refractive-index MM [a symmetric combined structure (SCS)], which is composed of FSSs and cross continuous wires. The MM properties of the FSS and the SCS are presented numerically and experimentally. - Highlights: • A new designed of sub-wavelength metamaterial, flower-shaped structure was proposed. • Flower-shaped meta-atom illustrated effective negative permeability. • Based on the meta-atom, negative refractive index was conventionally gained. • Negative refractive index was demonstrated with symmetric properties for electromagnetic wave. • Dimensional parameters were studied under normal electromagnetic wave
On the Laws of Total Local Times for -Paths and Bridges of Symmetric Lévy Processes
Directory of Open Access Journals (Sweden)
Masafumi Hayashi
2013-01-01
Full Text Available The joint law of the total local times at two levels for -paths of symmetric Lévy processes is shown to admit an explicit representation in terms of the laws of the squared Bessel processes of dimensions two and zero. The law of the total local time at a single level for bridges is also discussed.
Symmetric weak ternary quantum homomorphic encryption schemes
Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao
2016-03-01
Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.
Skyrmions and vector mesons: a symmetric approach
International Nuclear Information System (INIS)
Caldi, D.G.
1984-01-01
We propose an extension of the effective, low-energy chiral Lagrangian known as the Skyrme model, to one formulated by a non-linear sigma model generalized to include vector mesons in a symmetric way. The model is based on chiral SU(6) x SU(6) symmetry spontaneously broken to static SU(6). The rho and other vector mesons are dormant Goldstone bosons since they are in the same SU(6) multiplet as the pion and other pseudoscalars. Hence the manifold of our generalized non-linear sigma model is the coset space (SU(6) x SU(6))/Su(6). Relativistic effects, via a spin-dependent mass term, break the static SU(6) and give the vectors a mass. The model can then be fully relativistic and covariant. The lowest-lying Skyrmion in this model is the whole baryonic 56-plet, which splits into the octet and decuplet in the presence of relativistic SU(6)-breaking. Due to the built-in SU(6) and the presence of vector mesons, the model is expected to have better phenomenological results, as well as providing a conceptually more unified picture of mesons and baryons. 29 references
Randomized Symmetric Crypto Spatial Fusion Steganographic System
Directory of Open Access Journals (Sweden)
Viswanathan Perumal
2016-06-01
Full Text Available The image fusion steganographic system embeds encrypted messages in decomposed multimedia carriers using a pseudorandom generator but it fails to evaluate the contents of the cover image. This results in the secret data being embedded in smooth regions, which leads to visible distortion that affects the imperceptibility and confidentiality. To solve this issue, as well as to improve the quality and robustness of the system, the Randomized Symmetric Crypto Spatial Fusion Steganography System is proposed in this study. It comprises three-subsystem bitwise encryption, spatial fusion, and bitwise embedding. First, bitwise encryption encrypts the message using bitwise operation to improve the confidentiality. Then, spatial fusion decomposes and evaluates the region of embedding on the basis of sharp intensity and capacity. This restricts the visibility of distortion and provides a high embedding capacity. Finally, the bitwise embedding system embeds the encrypted message through differencing the pixels in the region by 1, checking even or odd options and not equal to zero constraints. This reduces the modification rate to avoid distortion. The proposed heuristic algorithm is implemented in the blue channel, to which the human visual system is less sensitive. It was tested using standard IST natural images with steganalysis algorithms and resulted in better quality, imperceptibility, embedding capacity and invulnerability to various attacks compared to other steganographic systems.
Triple symmetric key cryptosystem for data security
Fuzail, C. Md; Norman, Jasmine; Mangayarkarasi, R.
2017-11-01
As the technology is getting spreads in the macro seconds of speed and in which the trend changing era from human to robotics the security issue is also getting increased. By means of using machine attacks it is very easy to break the cryptosystems in very less amount of time. Cryptosystem is a process which provides the security in all sorts of processes, communications and transactions to be done securely with the help of electronical mechanisms. Data is one such thing with the expanded implication and possible scraps over the collection of data to secure predominance and achievement, Information Security is the process where the information is protected from invalid and unverified accessibilities and data from mishandling. So the idea of Information Security has risen. Symmetric key which is also known as private key.Whereas the private key is mostly used to attain the confidentiality of data. It is a dynamic topic which can be implemented over different applications like android, wireless censor networks, etc. In this paper, a new mathematical manipulation algorithm along with Tea cryptosystem has been implemented and it can be used for the purpose of cryptography. The algorithm which we proposed is straightforward and more powerful and it will authenticate in harder way and also it will be very difficult to break by someone without knowing in depth about its internal mechanisms.
Experimental pseudo-symmetric trap EPSILON
International Nuclear Information System (INIS)
Skovoroda, A.A.; Arsenin, V.V.; Dlougach, E.D.; Kulygin, V.M.; Kuyanov, A.Yu.; Timofeev, A.V.; Zhil'tsov, V.A.; Zvonkov, A.V.
2001-01-01
Within the framework of the conceptual project 'Adaptive Plasma EXperiment' a trap with the closed magnetic field lines 'Experimental Pseudo-Symmetric trap' is examined. The project APEX is directed at the theoretical and experimental development of physical foundations for stationary thermonuclear reactor on the basis of an alternative magnetic trap with tokamak-level confinement of high β plasma. The fundamental principle of magnetic field pseudosymmetry that should be satisfied for plasma to have tokamak-like confinement is discussed. The calculated in paraxial approximation examples of pseudosymmetric curvilinear elements with poloidal direction of B isolines are adduced. The EPSILON trap consisting of two straight axisymmetric mirrors linked by two curvilinear pseudosymmetric elements is considered. The plasma currents are short-circuited within the curvilinear element what increases the equilibrium β. The untraditional scheme of MHD stabilization of a trap with the closed field lines by the use of divertor inserted into axisymmetric mirror is analyzed. The experimental installation EPSILON-OME that is under construction for experimental check of divertor stabilization is discussed. The possibility of ECR plasma production in EPSILON-OME under conditions of high density and small magnetic field is examined. (author)
Left-right symmetric superstring supergravitation
International Nuclear Information System (INIS)
Burova, M.V.; Ter-Martirosyan, K.E.
1988-01-01
A left-right (L-R) symmetric model of four-dimensional supergravitation with a SO(10) gauge group obtained as the low-energy limit is superstring theory is considered. The spectrum of the gauge fields and their interactions are in agreement with the Weinberg-Salam theory. In addition, the model includes heavy W R ± and Z μ ' bosons. Beside the N g =3 generations of the 16-plets the SO(10) model includes the fragments of such generations which play the role of Higgs particles and also scalar chiral filds, the number of which exceeds by one the number of generations. As a result the neutrinos of each generation obtain a stable small Majorana mass. It is shown that the scalar field potential leads to spontaneous violation of the SU(2) R group and L-R symmetry and at low energies the standard Weinberg-Salam theory appears. However, reasonable values of X bosons masses M x and sun 2 Θ W (Θ W is the Weinberg angle) can be obtained in the model only in the case of high mass scale M R ∼10 10 -10 12 GeV of the right group SU(2) R violation
Symmetric charge transfer cross section of uranium
International Nuclear Information System (INIS)
Shibata, Takemasa; Ogura, Koichi
1995-03-01
Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d 3/2 electron in the U atom transfers into the d-electron site of U + ( 4 I 9/2 ) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10 -15 cm 2 ) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U + ion. Charge transfer cross section between U + in the first excited state (289 cm -1 ) and U in the ground state was also obtained. (author)
Simultaneous collection method of on-peak window image and off-peak window image in Tl-201 imaging
International Nuclear Information System (INIS)
Murakami, Tomonori; Noguchi, Yasushi; Kojima, Akihiro; Takagi, Akihiro; Matsumoto, Masanori
2007-01-01
Tl-201 imaging detects the photopeak (71 keV, in on-peak window) of characteristic X-rays of Hg-201 formed from Tl-201 decay. The peak is derived from 4 rays of different energy and emission intensity and does not follow in Gaussian distribution. In the present study, authors made an idea for the method in the title to attain the more effective single imaging, which was examined for its accuracy and reliability with phantoms and applied clinically to Tl-201 scintigraphy in a patient. The authors applied the triple energy window method for data acquisition: the energy window setting was made on Hg-201 X-rays photopeak in three of the lower (3%, L), main (72 keV, M) and upper (14%, U) windows with the gamma camera with 2-gated detector (Toshiba E. CAM/ICON). L, M and U images obtained simultaneously were then constructed to images of on-peak (L+M, Mock on-peak) and off-peak (M+U) window settings for evaluation. Phantoms for line source with Tl-201-containing swab and for multi-defect with acrylic plate containing Tl-201 solution were imaged in water. The female patient with thyroid cancer was subjected to preoperative scintigraphy under the defined conditions. Mock on-, off-peak images were found to be equivalent to the true (ordinary, clinical) on-, off-peak ones, and the present method was thought usable for evaluation of usefulness of off-peak window data. (R.T.)
High precision electrostatic potential calculations for cylindrically symmetric lenses
International Nuclear Information System (INIS)
Edwards, David Jr.
2007-01-01
A method is developed for a potential calculation within cylindrically symmetric electrostatic lenses using mesh relaxation techniques, and it is capable of considerably higher accuracies than currently available. The method involves (i) creating very high order algorithms (orders of 6, 8, and 10) for determining the potentials at points in the net using surrounding point values, (ii) eliminating the effect of the large errors caused by singular points, and (iii) reducing gradients in the high gradient regions of the geometry, thereby allowing the algorithms used in these regions to achieve greater precisions--(ii) and (iii) achieved by the use of telescopic multiregions. In addition, an algorithm for points one unit from a metal surface is developed, allowing general mesh point algorithms to be used in these situations, thereby taking advantage of the enhanced precision of the latter. A maximum error function dependent on a sixth order gradient of the potential is defined. With this the single point algorithmic errors are able to be viewed over the entire net. Finally, it is demonstrated that by utilizing the above concepts and procedures, the potential of a point in a reasonably high gradient region of a test geometry can realize a precision of less than 10 -10
Symmetric airfoil geometry effects on leading edge noise.
Gill, James; Zhang, X; Joseph, P
2013-10-01
Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.
Propagation dynamics of off-axis symmetrical and asymmetrical vortices embedded in flat-topped beams
Zhang, Xu; Wang, Haiyan
2017-11-01
In this paper, propagation dynamics of off-axis symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams have been explored numerically based on rigorous scalar diffraction theory. The distribution properties of phase and intensity play an important role in driving the propagation dynamics of OVs. Numerical results show that the single off-axis vortex moves in a straight line. The displacement of the single off-axis vortex becomes smaller, when either the order of flatness N and the beam size ω0are increased or the off-axis displacement d is decreased. In addition, the phase singularities of high order vortex beams can be split after propagating a certain distance. It is also demonstrated that the movement of OVs are closely related with the spatial symmetrical or asymmetrical distribution of vortex singularities field. Multiple symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams can interact and rotate. The investment of the propagation dynamics of OVs may have many applications in optical micro-manipulation and optical tweezers.
International Nuclear Information System (INIS)
Xiao, D B; Li, Q S; Hou, Z Q; Wang, X H; Chen, Z H; Xia, D W; Wu, X Z
2016-01-01
This paper presents a novel differential capacitive silicon micro-accelerometer with symmetrical double-sided serpentine beam-mass sensing structure and glass–silicon–glass sandwich structure. The symmetrical double-sided serpentine beam-mass sensing structure is fabricated with a novel pre-buried mask fabrication technology, which is convenient for manufacturing multi-layer sensors. The glass–silicon–glass sandwich structure is realized by a double anodic bonding process. To solve the problem of the difficulty of leading out signals from the top and bottom layer simultaneously in the sandwich sensors, a silicon pillar structure is designed that is inherently simple and low-cost. The prototype is fabricated and tested. It has low noise performance (the peak to peak value is 40 μg) and μg-level Allan deviation of bias (2.2 μg in 1 h), experimentally demonstrating the effectiveness of the design and the novel fabrication technology. (paper)
Passive radio frequency peak power multiplier
Farkas, Zoltan D.; Wilson, Perry B.
1977-01-01
Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.
Practical load management - Peak shaving using photovoltaics
International Nuclear Information System (INIS)
Berger, W.
2009-01-01
This article takes a look at how photovoltaic (PV) power generation can be used in a practical way to meet peak demands for electricity. Advice is provided on how photovoltaics can provide peak load 'shaving' through the correlation between its production and the peak loads encountered during the day. The situation regarding feed-in tariffs in Italy is discussed, as are further examples of installations in Germany and Austria. Further, an initiative of the American Southern California Edison utility is discussed which foresees the installation of large PV plant on the roofs of commercial premises to provide local generation of peak energy and thus relieve demands on their power transportation network.
The geomorphic structure of the runoff peak
Directory of Open Access Journals (Sweden)
R. Rigon
2011-06-01
Full Text Available This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.
Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis.
Yang, Chao; He, Zengyou; Yu, Weichuan
2009-01-06
In mass spectrometry (MS) based proteomic data analysis, peak detection is an essential step for subsequent analysis. Recently, there has been significant progress in the development of various peak detection algorithms. However, neither a comprehensive survey nor an experimental comparison of these algorithms is yet available. The main objective of this paper is to provide such a survey and to compare the performance of single spectrum based peak detection methods. In general, we can decompose a peak detection procedure into three consequent parts: smoothing, baseline correction and peak finding. We first categorize existing peak detection algorithms according to the techniques used in different phases. Such a categorization reveals the differences and similarities among existing peak detection algorithms. Then, we choose five typical peak detection algorithms to conduct a comprehensive experimental study using both simulation data and real MALDI MS data. The results of comparison show that the continuous wavelet-based algorithm provides the best average performance.
[A peak recognition algorithm designed for chromatographic peaks of transformer oil].
Ou, Linjun; Cao, Jian
2014-09-01
In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.
On the use of the Kodama vector field in spherically symmetric dynamical problems
Energy Technology Data Exchange (ETDEWEB)
Racz, Istvan [MTA KFKI, Reszecske- es Magfizikai Kutatointezet, H-1121 Budapest, Konkoly Thege Miklos ut 29-33, (Hungary)
2006-01-07
It is shown that by making use of the Kodama vector field, as a preferred time evolution vector field, in spherically symmetric dynamical systems unexpected simplifications arise. In particular, the evolution equations relevant for the case of a massless scalar field minimally coupled to gravity are investigated. The simplest form of these equations in the 'canonical gauge' is known to possess the character of a mixed first-order elliptic-hyperbolic system. The advantages related to the use of the Kodama vector field are twofold although they show up simultaneously. First, it is found that the true degrees of freedom separate. Second, a subset of the field equations possessing the form of a first-order symmetric hyperbolic system for these preferred degrees of freedom is singled out. It is also demonstrated, in the appendix, that the above results generalize straightforwardly to the case of a generic self-interacting scalar field.
Comparison of eigensolvers for symmetric band matrices.
Moldaschl, Michael; Gansterer, Wilfried N
2014-09-15
We compare different algorithms for computing eigenvalues and eigenvectors of a symmetric band matrix across a wide range of synthetic test problems. Of particular interest is a comparison of state-of-the-art tridiagonalization-based methods as implemented in Lapack or Plasma on the one hand, and the block divide-and-conquer (BD&C) algorithm as well as the block twisted factorization (BTF) method on the other hand. The BD&C algorithm does not require tridiagonalization of the original band matrix at all, and the current version of the BTF method tridiagonalizes the original band matrix only for computing the eigenvalues. Avoiding the tridiagonalization process sidesteps the cost of backtransformation of the eigenvectors. Beyond that, we discovered another disadvantage of the backtransformation process for band matrices: In several scenarios, a lot of gradual underflow is observed in the (optional) accumulation of the transformation matrix and in the (obligatory) backtransformation step. According to the IEEE 754 standard for floating-point arithmetic, this implies many operations with subnormal (denormalized) numbers, which causes severe slowdowns compared to the other algorithms without backtransformation of the eigenvectors. We illustrate that in these cases the performance of existing methods from Lapack and Plasma reaches a competitive level only if subnormal numbers are disabled (and thus the IEEE standard is violated). Overall, our performance studies illustrate that if the problem size is large enough relative to the bandwidth, BD&C tends to achieve the highest performance of all methods if the spectrum to be computed is clustered. For test problems with well separated eigenvalues, the BTF method tends to become the fastest algorithm with growing problem size.
Survival and transmission of symmetrical chromosomal aberrations
International Nuclear Information System (INIS)
Savage, J.R.K.
1979-01-01
The interaction between the lesions to produce chromosomal structural changes may be either asymmetrical (A) or symmetrical (S). In A, one or more acentric fragments are always produced, and there may also be the mechanical separation problems resulting from bridges at anaphase, while S-changes never produce fragment, and pose no mechanical problem in cell division. If A and S events occur with equal frequency, it might be an indication that they are truly the alternative modes of lesion interaction. Unstimulated lymphocytes were irradiated with 2.68 Gy 250 kV X-ray, and metaphases were sampled at 50 h after the stimulation. Preparations were complete diploid cells, and any obvious second division cells were rejected. So far as dermal repair and fibroblast functions are concerned, aberration burden seems to have little consequence from the view-point of the long-term survival in vivo. Large numbers of aberrations (mainly S translocation and terminal deletion) were found in the samples taken up to 60 years after therapy. Skin biopsies were removed 1 day and 6 months after irradiation and cultured. In irradiated cells, reciprocal translocations dominated, followed by terminal deletions, then inversions, while no chromosome-type aberration was seen in the control cells. a) The relative occurrence of A : S changes, b) long-term survival in vivo, c) the possibility of in vivo repair, and d) some unusual features of translocation found in Syrian hamsters are reviewed. The relevance or importance of major S events is clearly dependent upon the cells, the tissues or the organisms in which they occur. (Yamashita, S.)
Radon transformation on reductive symmetric spaces:Support theorems
DEFF Research Database (Denmark)
Kuit, Job Jacob
2013-01-01
We introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and derive support theorems for these transforms. A reductive symmetric space is a homogeneous space G/H for a reductive Lie group G of the Harish-Chandra class, where H is an open sub...... is based on the relation between the Radon transform and the Fourier transform on G/H, and a Paley–Wiener-shift type argument. Our results generalize the support theorem of Helgason for the Radon transform on a Riemannian symmetric space....
Nilpotent orbits in real symmetric pairs and stationary black holes
International Nuclear Information System (INIS)
Dietrich, Heiko; De Graaf, Willem A.; Ruggeri, Daniele; Trigiante, Mario
2017-01-01
In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL 2 (R)) 4 acting on the fourth tensor power of the natural 2-dimensional SL 2 (R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.
Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying
2012-07-30
We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.
Geometric characteristics of aberrations of plane-symmetric optical systems
International Nuclear Information System (INIS)
Lu Lijun; Deng Zhiyong
2009-01-01
The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.
Employer Attitudes towards Peak Hour Avoidance
Vonk Noordegraaf, D.M.; Annema, J.A.
2012-01-01
Peak Hour Avoidance is a relatively new Dutch mobility management measure. To reduce congestion frequent car drivers are given a financial reward for reducing the proportion of trips that they make during peak hours on a specific motorway section. Although previous studies show that employers are
Employer attitudes towards peak hour avoidance
Noordegraaf, D.M.V.; Annema, J.A.
2012-01-01
Peak Hour Avoidance is a relatively new Dutch mobility management measure. To reduce congestion frequent car drivers are given a financial reward for reducing the proportion of trips that they make during peak hours on a specific motorway section. Although previous studies show that employers are
Peak load pricing lowers generation costs
International Nuclear Information System (INIS)
Lande, R.H.
1980-01-01
Before a utility implements peak load pricing for different classes of consumers, the costs and the benefits should be compared. The methodology described enables a utility to determine whether peak load pricing should be introduced for specific users. Cost-benefit analyses for domestic consumers and commercial/industrial consumers, showing break-even points are presented. (author)
Peak Shaving Considering Streamflow Uncertainties | Iwuagwu ...
African Journals Online (AJOL)
The main thrust of this paper is peak shaving with a Stochastic hydro model. In peak sharing, the amount of hydro energy scheduled may be a minimum but it serves to replace less efficient thermal units. The sample system is die Kainji hydro plant and the thermal units of the National Electric Power Authority. The random ...
The peak in neutron powder diffraction
International Nuclear Information System (INIS)
Laar, B. van; Yelon, W.B.
1984-01-01
For the application of Rietveld profile analysis to neutron powder diffraction data a precise knowledge of the peak profile, in both shape and position, is required. The method now in use employs a Gaussian shaped profile with a semi-empirical asymmetry correction for low-angle peaks. The integrated intensity is taken to be proportional to the classical Lorentz factor calculated for the X-ray case. In this paper an exact expression is given for the peak profile based upon the geometrical dimensions of the diffractometer. It is shown that the asymmetry of observed peaks is well reproduced by this expression. The angular displacement of the experimental profile with respect to the nominal Bragg angle value is larger than expected. Values for the correction to the classical Lorentz factor for the integrated intensity are given. The exact peak profile expression has been incorporated into a Rietveld profile analysis refinement program. (Auth.)
Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo
2011-01-01
Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.
Multiscale peak detection in wavelet space.
Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng
2015-12-07
Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .
International Nuclear Information System (INIS)
Vatazhuk, E.N.; Natsik, V.D.
2011-01-01
The temperature-frequency dependence of internal friction in the nanostructured samples of Cu and fibred composite C-32 vol.%Nb with the sizes of structure fragments approx 200 nm is analyzed. Experiments are used as initial information for such analysis. The characteristic for the heavily deformed copper Bordoni peak, located nearby a temperature 90 K, was recorded on temperature dependence of vibration decrement (frequencies 73-350 kHz) in previous experiments. The peak is due to the resonance interaction of sound with the system of thermal activated relaxators, and its width considerably greater in comparison with the width of standard internal friction peak with the single relaxation time. Statistical analysis of the peak is made in terms of assumption that the reason of broadening is random activation energy dispersion of relaxators as a result of intense distortion of copper crystal structure. Good agreement of experimental data and Seeger theory considers thermal activated paired kinks at linear segments of dislocation lines, placed in potential Peierls relief valley, as relaxators of Bordoni peak, was established. It is shown that the registered peak height in experiment correspond to presence at the average one dislocation segment in the interior of crystalline grain with size of 200 nm. Empirical estimates for the critical Peierls stress σp ∼ 2x10 7 Pa and integrated density of the interior grain dislocations ρ d ∼ 10 13 m -2 are made. Nb fibers in the composite Cu-Nb facilitate to formation of nanostructured copper, but do not influence evidently on the Bordoni peak.
Path integral representation of the symmetric Rosen-Morse potential
International Nuclear Information System (INIS)
Duru, I.H.
1983-09-01
An integral formula for the Green's function of symmetric Rosen-Morse potential is obtained by solving path integrals. The correctly normalized wave functions and bound state energy spectrum are derived. (author)
The geometrical theory of diffraction for axially symmetric reflectors
DEFF Research Database (Denmark)
Rusch, W.; Sørensen, O.
1975-01-01
The geometrical theory of diffraction (GTD) (cf. [1], for example) may be applied advantageously to many axially symmetric reflector antenna geometries. The material in this communication presents analytical, computational, and experimental results for commonly encountered reflector geometries...
Filtering microfluidic bubble trains at a symmetric junction.
Parthiban, Pravien; Khan, Saif A
2012-02-07
We report how a nominally symmetric microfluidic junction can be used to sort all bubbles of an incoming train exclusively into one of its arms. The existence of this "filter" regime is unexpected, given that the junction is symmetric. We analyze this behavior by quantifying how bubbles modulate the hydrodynamic resistance in microchannels and show how speeding up a bubble train whilst preserving its spatial periodicity can lead to filtering at a nominally symmetric junction. We further show how such an asymmetric traffic of bubble trains can be triggered in symmetric geometries by identifying conditions wherein the resistance to flow decreases with an increase in the number of bubbles in the microchannel and derive an exact criterion to predict the same.
Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices
Glaister, P.
2008-01-01
The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.
A Paley-Wiener theorem for reductive symmetric spaces
Ban, E.P. van den; Schlichtkrull, H.
2006-01-01
Let X = G/H be a reductive symmetric space and K a maximal compact subgroup of G. The image under the Fourier transform of the space of K-finite compactly supported smooth functions on X is characterized.
Report on the Dynamical Evolution of an Axially Symmetric Quasar ...
Indian Academy of Sciences (India)
retical arguments together with some numerical evidence. The evolution of the orbits is studied, as mass is transported from the disk to the nucleus. ... galaxies and non-axially symmetric quasar models (see Papadopoulos & Caranicolas.
first principles derivation of a stress function for axially symmetric
African Journals Online (AJOL)
HOD
governing partial differential equations of linear isotropic elasticity were reduced to the solution of the biharmonic ... The stress function was then applied to solve the axially symmetric ..... [1] Borg S.K.: Fundamentals of Engineering Elasticity,.
Symmetrization of mathematical model of charge transport in semiconductors
Directory of Open Access Journals (Sweden)
Alexander M. Blokhin
2002-11-01
Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.
An algebraic approach to the non-symmetric Macdonald polynomial
International Nuclear Information System (INIS)
Nishino, Akinori; Ujino, Hideaki; Wadati, Miki
1999-01-01
In terms of the raising and lowering operators, we algebraically construct the non-symmetric Macdonald polynomials which are simultaneous eigenfunctions of the commuting Cherednik operators. We also calculate Cherednik's scalar product of them
Hardware Realization of Chaos Based Symmetric Image Encryption
Barakat, Mohamed L.
2012-01-01
This thesis presents a novel work on hardware realization of symmetric image encryption utilizing chaos based continuous systems as pseudo random number generators. Digital implementation of chaotic systems results in serious degradations
Experimental technique of calibration of symmetrical air pollution ...
Indian Academy of Sciences (India)
Based on the inherent property of symmetry of air pollution models, a Symmetrical Air Pollution. Model ... process is in compliance with air pollution regula- ..... Ground simulation is achieved through MATLAB package which is based on least-.
Hardware Realization of Chaos-based Symmetric Video Encryption
Ibrahim, Mohamad A.
2013-01-01
This thesis reports original work on hardware realization of symmetric video encryption using chaos-based continuous systems as pseudo-random number generators. The thesis also presents some of the serious degradations caused by digitally
Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits
International Nuclear Information System (INIS)
Maldonado, Delis
2012-01-01
The Oak Ridge Institute for Science and Education (ORISE), a U.S. Department of Energy (DOE) prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct a peak dose assessment in support of the Authorized Limits Request for Solid Waste Disposal at Landfill C-746-U at the Paducah Gaseous Diffusion Plant (DOE-PPPO 2011a). The peak doses were calculated based on the DOE-PPPO Proposed Single Radionuclides Soil Guidelines and the DOE-PPPO Proposed Authorized Limits (AL) Volumetric Concentrations available in DOE-PPPO 2011a. This work is provided as an appendix to the Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (ORISE 2012). The receptors evaluated in ORISE 2012 were selected by the DOE-PPPO for the additional peak dose evaluations. These receptors included a Landfill Worker, Trespasser, Resident Farmer (onsite), Resident Gardener, Recreational User, Outdoor Worker and an Offsite Resident Farmer. The RESRAD (Version 6.5) and RESRAD-OFFSITE (Version 2.5) computer codes were used for the peak dose assessments. Deterministic peak dose assessments were performed for all the receptors and a probabilistic dose assessment was performed only for the Offsite Resident Farmer at the request of the DOE-PPPO. In a deterministic analysis, a single input value results in a single output value. In other words, a deterministic analysis uses single parameter values for every variable in the code. By contrast, a probabilistic approach assigns parameter ranges to certain variables, and the code randomly selects the values for each variable from the parameter range each time it calculates the dose (NRC 2006). The receptor scenarios, computer codes and parameter input files were previously used in ORISE 2012. A few modifications were made to the parameter input files as appropriate for this effort. Some of these changes
Invariant subspaces in some function spaces on symmetric spaces. II
International Nuclear Information System (INIS)
Platonov, S S
1998-01-01
Let G be a semisimple connected Lie group with finite centre, K a maximal compact subgroup of G, and M=G/K a Riemannian symmetric space of non-compact type. We study the problem of describing the structure of closed linear subspaces in various function spaces on M that are invariant under the quasiregular representation of the group G. We consider the case when M is a symplectic symmetric space of rank 1
Symmetric coupling of four spin-1/2 systems
Suzuki, Jun; Englert, Berthold-Georg
2012-06-01
We address the non-binary coupling of identical angular momenta based upon the representation theory for the symmetric group. A correspondence is pointed out between the complete set of commuting operators and the reference-frame-free subsystems. We provide a detailed analysis of the coupling of three and four spin-1/2 systems and discuss a symmetric coupling of four spin-1/2 systems.
Multiple symmetrical lipomatosis (Madelung's disease) - a case report
International Nuclear Information System (INIS)
Vieira, Marcelo Vasconcelos; Abreu, Marcelo de; Furtado, Claudia Dietz; Silveira, Marcio Fleck da; Furtado, Alvaro Porto Alegre; Genro, Carlos Horacio; Grazziotin, Rossano Ughini
2001-01-01
Multiple symmetrical lipomatosis (Madelung's disease) is a rare disorder characterized by deep accumulation of fat tissue, involving mainly the neck, shoulders and chest. This disease is associated with heavy alcohol intake and it is more common in men of Mediterranean origin. This disease can cause severe aesthetic deformities and progressive respiratory dysfunction. We report a case of a patient with multiple symmetrical lipomatosis and describe the clinical and radiological features of this disorder. (author)
Symmetrized neutron transport equation and the fast Fourier transform method
International Nuclear Information System (INIS)
Sinh, N.Q.; Kisynski, J.; Mika, J.
1978-01-01
The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations
Isotope resolution of the iron peak
International Nuclear Information System (INIS)
Henke, R.P.; Benton, E.V.
1977-01-01
A stack of Lexan detectors from the Apollo 17 mission has been analyzed to obtain Z measurements of sufficient accuracy to resolve the iron peak into its isotopic components. Within this distribution several peaks are present. With the centrally located, most populated peak assumed to be 56 Fe, the measurements imply that the abundances of 54 Fe and 58 Fe are appreciable fractions of the 56 Fe abundance. This result is in agreement with those of Webber et al. and Siegman et al. but in disagreement with the predictions of Tsao et al. (Auth.)
Peak load arrangements : Assessment of Nordel guidelines
Energy Technology Data Exchange (ETDEWEB)
2009-07-01
Two Nordic countries, Sweden and Finland, have legislation that empowers the TSO to acquire designated peak load resources to mitigate the risk for shortage situations during the winter. In Denmark, the system operator procures resources to maintain a satisfactory level of security of supply. In Norway the TSO has set up a Regulation Power Option Market (RKOM) to secure a satisfactory level of operational reserves at all times, also in winter with high load demand. Only the arrangements in Finland and Sweden fall under the heading of Peak Load Arrangements defined in Nordel Guidelines. NordREG has been invited by the Electricity Market Group (EMG) to evaluate Nordel's proposal for 'Guidelines for transitional Peak Load Arrangements'. The EMG has also financed a study made by EC Group to support NordREG in the evaluation of the proposal. The study has been taken into account in NordREG's evaluation. In parallel to the EMG task, the Swedish regulator, the Energy Markets Inspectorate, has been given the task by the Swedish government to investigate a long term solution of the peak load issue. The Swedish and Finnish TSOs have together with Nord Pool Spot worked on finding a harmonized solution for activation of the peak load reserves in the market. An agreement accepted by the relevant authorities was reached in early January 2009, and the arrangement has been implemented since 19th January 2009. NordREG views that the proposed Nordel guidelines have served as a starting point for the presently agreed procedure. However, NordREG does not see any need to further develop the Nordel guidelines for peak load arrangements. NordREG agrees with Nordel that the market should be designed to solve peak load problems through proper incentives to market players. NordREG presumes that the relevant authorities in each country will take decisions on the need for any peak load arrangement to ensure security of supply. NordREG proposes that such decisions should be
Li, Hong; Qin, Yuan; Yang, Yingying; Yao, Man; Wang, Xudong; Xu, Haixuan; Phillpot, Simon R.
2018-03-01
Molecular dynamics method is used and scheme of calculational tests is designed. The atomic evolution view of the interaction between grain boundary (GB) and irradiation-induced point defects is given in six symmetric tilt GB structures of bcc tungsten with the energy of the primary knock-on atom (PKA) EPKA of 3 and 5 keV and the simulated temperature of 300 K. During the collision cascade with GB structure there are synergistic mechanisms to reduce the number of point defects: one is vacancies recombine with interstitials, and another is interstitials diffuse towards the GB with vacancies almost not move. The larger the ratio of the peak defect zone of the cascades overlaps with the GB region, the statistically relative smaller the number of surviving point defects in the grain interior (GI); and when the two almost do not overlap, vacancy-intensive area generally exists nearby GBs, and has a tendency to move toward GB with the increase of EPKA. In contrast, the distribution of interstitials is relatively uniform nearby GBs and is affected by the EPKA far less than the vacancy. The GB has a bias-absorption effect on the interstitials compared with vacancies. It shows that the number of surviving vacancies statistically has increasing trend with the increase of the distance between PKA and GB. While the number of surviving interstitials does not change much, and is less than the number of interstitials in the single crystal at the same conditions. The number of surviving vacancies in the GI is always larger than that of interstitials. The GB local extension after irradiation is observed for which the interstitials absorbed by the GB may be responsible. The designed scheme of calculational tests in the paper is completely applicable to the investigation of the interaction between other types of GBs and irradiation-induced point defects.
Automated Peak Picking and Peak Integration in Macromolecular NMR Spectra Using AUTOPSY
Koradi, Reto; Billeter, Martin; Engeli, Max; Güntert, Peter; Wüthrich, Kurt
1998-12-01
A new approach for automated peak picking of multidimensional protein NMR spectra with strong overlap is introduced, which makes use of the program AUTOPSY (automatedpeak picking for NMRspectroscopy). The main elements of this program are a novel function for local noise level calculation, the use of symmetry considerations, and the use of lineshapes extracted from well-separated peaks for resolving groups of strongly overlapping peaks. The algorithm generates peak lists with precise chemical shift and integral intensities, and a reliability measure for the recognition of each peak. The results of automated peak picking of NOESY spectra with AUTOPSY were tested in combination with the combined automated NOESY cross peak assignment and structure calculation routine NOAH implemented in the program DYANA. The quality of the resulting structures was found to be comparable with those from corresponding data obtained with manual peak picking.
Ghatak, Ananya; Das, Tanmoy
2018-01-01
Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.
Rotationally Symmetric Operators for Surface Interpolation
1981-11-01
Computational Geometry for design and rianufacture , Fills Horwood, Chichester UK, 1979. [111 Gladwell 1. and Wait. R. (eds.). Survey of numerical...from an image," Computer Graphics and Image Processing 3(1974), 277-299. 1161 Horn B. K. P. "The curve of least energy," MIT, Al Memo 610, 1981. 117...an object from a single view," Artificial Intelligence 17 (1981), 409-460. [21] Knuth 1). E. "Mathematical typography ," Bull. Amer. Math. Soc. (new
Bayesian Peak Picking for NMR Spectra
Cheng, Yichen
2014-02-01
Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.
Peak-Seeking Control for Trim Optimization
National Aeronautics and Space Administration — Innovators have developed a peak-seeking algorithm that can reduce drag and improve performance and fuel efficiency by optimizing aircraft trim in real time. The...
Instream flow needs below peaking hydroelectric projects
International Nuclear Information System (INIS)
Milhous, R.T.
1991-01-01
This paper reports on a method developed to assist in the determination of instream flow needs below hydroelectric projects operated in a peaking mode. Peaking hydroelectric projects significantly change streamflow over a short period of time; consequently, any instream flow methodology must consider the dual flows associated with peaking projects. The dual flows are the lowest flow and the maximum generation flow of a peaking cycle. The methodology is based on elements of the Physical Habitat Simulation System of the U.S. Fish and Wildlife Service and uses habitat, rather than fish numbers or biomas, as at basic response variable. All aquatic animals are subject to the rapid changes in streamflow which cause rapid swings in habitat quality. Some aquatic organisms are relatively fixed in location in the stream while others can move when flows change. The habitat available from a project operated in peaking mode is considered to be the minimum habitat occurring during a cycle of habitat change. The methodology takes in to consideration that some aquatic animals can move and others cannot move during a peaking cycle
S-HAMMER: hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images.
Wu, Guorong; Kim, Minjeong; Wang, Qian; Shen, Dinggang
2014-03-01
Deformable registration has been widely used in neuroscience studies for spatial normalization of brain images onto the standard space. Because of possible large anatomical differences across different individual brains, registration performance could be limited when trying to estimate a single directed deformation pathway, i.e., either from template to subject or from subject to template. Symmetric image registration, however, offers an effective way to simultaneously deform template and subject images toward each other until they meet at the middle point. Although some intensity-based registration algorithms have nicely incorporated this concept of symmetric deformation, the pointwise intensity matching between two images may not necessarily imply the matching of correct anatomical correspondences. Based on HAMMER registration algorithm (Shen and Davatzikos, [2002]: IEEE Trans Med Imaging 21:1421-1439), we integrate the strategies of hierarchical attribute matching and symmetric diffeomorphic deformation to build a new symmetric-diffeomorphic HAMMER registration algorithm, called as S-HAMMER. The performance of S-HAMMER has been extensively compared with 14 state-of-the-art nonrigid registration algorithms evaluated in (Klein et al., [2009]: NeuroImage 46:786-802) by using real brain images in LPBA40, IBSR18, CUMC12, and MGH10 datasets. In addition, the registration performance of S-HAMMER, by comparison with other methods, is also demonstrated on both elderly MR brain images (>70 years old) and the simulated brain images with ground-truth deformation fields. In all experiments, our proposed method achieves the best registration performance over all other registration methods, indicating the high applicability of our method in future neuroscience and clinical applications. Copyright © 2013 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Shukla, P. [Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sudarsan, V.; Vatsa, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Nayak, S.K. [Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Chattopadhyay, S., E-mail: schatt@barc.gov.i [Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)
2010-10-15
Complexes of Eu{sup 3+} ion and ligands like dibenzoylmethane (DBM) as well as flouro- and methoxy-substituted DBMs have been prepared and characterized. Peak maxima and line shapes of the {pi}-{pi}{sup *} transitions arising from the ligands in these complexes were very sensitive to the nature of the substituents attached to the phenyl groups of DBM. Symmetric substitution at both the phenyl groups led to improved luminescence in terms of higher quantum yields of emission and longer lifetime of the excited state ({sup 5}D{sub 0}) of Eu{sup 3+} ions. Effective averaging/cancellation of the dipole-dipole interactions in symmetrically substituted ligands and the associated decrease in the extent of quenching were responsible for the improved luminescence from such complexes.
Directory of Open Access Journals (Sweden)
Joong-Han Yoon
2013-01-01
Full Text Available A triple-band rectangular ring, open-ended monopole antenna with symmetric L strips for wireless local area network (WLAN/Worldwide Interoperability of Microwave Access (WiMAX applications is proposed. The proposed antenna consists of two symmetric folded arms and L strips. Based on the concept, a prototype of the proposed triple antenna has been designed, fabricated, and tested. The numerical and experimental results demonstrated that the proposed antenna satisfied the −10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. Furthermore, this paper presented and discussed the 2D radiation patterns and 3D gains according to the results of the experiment. The proposed antenna’s peak gain varied between 2.17 and 4.93 dBi, and its average gain varied between −2.97 and −0.53 dBi.
International Nuclear Information System (INIS)
Yokoi, H; Effendi, Mukhtar; Minami, N; Takeyama, S
2011-01-01
Singlet excitonic states at the first subband-edge in single-walled carbon nanotubes (SWCNTs) have been studied through near-infrared magneto-absorption spectroscopy under magnetic fields to 105.9 T. Well-resolved absorption spectra of stretch-aligned SWCNT(CoMoCAT)-gelatin films were obtained above 100 T. By the application of magnetic fields in parallel to the alignment of SWCNTs, peak shift toward the lower energy was observed for (8, 4) and (7, 6) tubes and the opposite behavior was observed for (7, 5) and (6, 5) tubes. Above 28.8 T, new peaks emerged at the higher energy side of the peak for the (8, 4) and (7, 6) tubes, and at the lower energy side of the peaks for the (7, 5) and (6, 5) tubes. The magnetic splitting between the existing peak and the new peak was symmetric for every tube, which is in line with the energy splitting due to the Aharonov-Bohm effect. Judging from the energetic positions where the new peaks emerged, the singlet dark excitonic state locates at the lower energy than the singlet bright one in the (7, 5) and (6, 5) tubes while it is suggested strongly that the bright one locates at the lower energy in the (8, 4) and (7, 6) tubes.
MERGERS IN DOUBLE-PEAKED [O III] ACTIVE GALACTIC NUCLEI
International Nuclear Information System (INIS)
Fu Hai; Djorgovski, S. G.; Myers, Adam D.; Yan Lin
2011-01-01
As a natural consequence of galaxy mergers, binary active galactic nuclei (AGNs) should be commonplace. Nevertheless, observational confirmations are rare, especially for binaries with separations less than 10 kpc. Such a system may show two sets of narrow emission lines in a single spectrum owing to the orbital motion of the binary. We have obtained high-resolution near-infrared images of 50 double-peaked [O III]λ5007 AGNs with the Keck II laser guide star adaptive optics system. The Sloan Digital Sky Survey sample is compiled from the literature and consists of 17 type-1 AGNs between 0.18 BH -σ * relation because of overestimated stellar velocity dispersions, illustrating the importance of removing mergers from the samples defining the M BH -σ * relations. Finally, we find that the emission-line properties are indistinguishable for spatially resolved and unresolved sources, emphasizing that scenarios involving a single AGN can produce the same double-peaked line profiles and they account for at least 70% of the double-peaked [O III] AGNs.
Inelastic transport and low-bias rectification in a single-molecule diode.
Hihath, Joshua; Bruot, Christopher; Nakamura, Hisao; Asai, Yoshihiro; Díez-Pérez, Ismael; Lee, Youngu; Yu, Luping; Tao, Nongjian
2011-10-25
Designing, controlling, and understanding rectification behavior in molecular-scale devices has been a goal of the molecular electronics community for many years. Here we study the transport behavior of a single molecule diode, and its nonrectifying, symmetric counterpart at low temperatures, and at both low and high biases to help elucidate the electron-phonon interactions and transport mechanisms in the rectifying system. We find that the onset of current rectification occurs at low biases, indicating a significant change in the elastic transport pathway. However, the peaks in the inelastic electron tunneling (IET) spectrum are antisymmetric about zero bias and show no significant changes in energy or intensity in the forward or reverse bias directions, indicating that despite the change in the elastic transmission probability there is little impact on the inelastic pathway. These results agree with first principles calculations performed to evaluate the IETS, which also allow us to identify which modes are active in the single molecule junction.
Fan fault diagnosis based on symmetrized dot pattern analysis and image matching
Xu, Xiaogang; Liu, Haixiao; Zhu, Hao; Wang, Songling
2016-07-01
To detect the mechanical failure of fans, a new diagnostic method based on the symmetrized dot pattern (SDP) analysis and image matching is proposed. Vibration signals of 13 kinds of running states are acquired on a centrifugal fan test bed and reconstructed by the SDP technique. The SDP pattern templates of each running state are established. An image matching method is performed to diagnose the fault. In order to improve the diagnostic accuracy, the single template, multiple templates and clustering fault templates are used to perform the image matching.
Energy Technology Data Exchange (ETDEWEB)
Edwards, David, E-mail: dej@kingcon.com [IJL Research Center, Newark, VT 05871 (United States)
2011-07-21
This paper is a review of multi-region FDM, a numerical technique for accurately determining electrostatic potentials in cylindrically symmetric geometries. Multi-region FDM can be thought of as the union of various individual elements: a single region FDM process: a method for algorithmic development; a method for auto creating a multi-region structure; the process for the relaxation of multi-region structures. Each element will be briefly described along with its integration into the multi-region relaxation process itself.
Sunta, C M; Piters, T M; Watanabe, S
1999-01-01
This paper shows the limitation of general order peak fitting and peak shape methods for determining the activation energy of the thermoluminescence glow peaks in the cases in which retrapping probability is much higher than the recombination probability and the traps are filled up to near saturation level. Right values can be obtained when the trap occupancy is reduced by using small doses or by post-irradiation partial bleaching. This limitation in the application of these methods has not been indicated earlier. In view of the unknown nature of kinetics in the experimental samples, it is recommended that these methods of activation energy determination should be applied only at doses well below the saturation dose.
Some effects of horizontal discretization on linear baroclinic and symmetric instabilities
Barham, William; Bachman, Scott; Grooms, Ian
2018-05-01
The effects of horizontal discretization on linear baroclinic and symmetric instabilities are investigated by analyzing the behavior of the hydrostatic Eady problem in ocean models on the B and C grids. On the C grid a spurious baroclinic instability appears at small wavelengths. This instability does not disappear as the grid scale decreases; instead, it simply moves to smaller horizontal scales. The peak growth rate of the spurious instability is independent of the grid scale as the latter decreases. It is equal to cf /√{Ri} where Ri is the balanced Richardson number, f is the Coriolis parameter, and c is a nondimensional constant that depends on the Richardson number. As the Richardson number increases c increases towards an upper bound of approximately 1/2; for large Richardson numbers the spurious instability is faster than the Eady instability. To suppress the spurious instability it is recommended to use fourth-order centered tracer advection along with biharmonic viscosity and diffusion with coefficients (Δx) 4 f /(32√{Ri}) or larger where Δx is the grid scale. On the B grid, the growth rates of baroclinic and symmetric instabilities are too small, and converge upwards towards the correct values as the grid scale decreases; no spurious instabilities are observed. In B grid models at eddy-permitting resolution, the reduced growth rate of baroclinic instability may contribute to partially-resolved eddies being too weak. On the C grid the growth rate of symmetric instability is better (larger) than on the B grid, and converges upwards towards the correct value as the grid scale decreases.
Smelter, Andrey; Rouchka, Eric C; Moseley, Hunter N B
2017-08-01
Peak lists derived from nuclear magnetic resonance (NMR) spectra are commonly used as input data for a variety of computer assisted and automated analyses. These include automated protein resonance assignment and protein structure calculation software tools. Prior to these analyses, peak lists must be aligned to each other and sets of related peaks must be grouped based on common chemical shift dimensions. Even when programs can perform peak grouping, they require the user to provide uniform match tolerances or use default values. However, peak grouping is further complicated by multiple sources of variance in peak position limiting the effectiveness of grouping methods that utilize uniform match tolerances. In addition, no method currently exists for deriving peak positional variances from single peak lists for grouping peaks into spin systems, i.e. spin system grouping within a single peak list. Therefore, we developed a complementary pair of peak list registration analysis and spin system grouping algorithms designed to overcome these limitations. We have implemented these algorithms into an approach that can identify multiple dimension-specific positional variances that exist in a single peak list and group peaks from a single peak list into spin systems. The resulting software tools generate a variety of useful statistics on both a single peak list and pairwise peak list alignment, especially for quality assessment of peak list datasets. We used a range of low and high quality experimental solution NMR and solid-state NMR peak lists to assess performance of our registration analysis and grouping algorithms. Analyses show that an algorithm using a single iteration and uniform match tolerances approach is only able to recover from 50 to 80% of the spin systems due to the presence of multiple sources of variance. Our algorithm recovers additional spin systems by reevaluating match tolerances in multiple iterations. To facilitate evaluation of the
Cotangent bundles over all the Hermitian symmetric spaces
International Nuclear Information System (INIS)
Arai, Masato; Baba, Kurando
2016-01-01
We construct the N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. In order to construct them we use the projective superspace formalism which is an N = 2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N =1 superfields, once the Kähler potentials of the base manifolds are obtained. Starting with N = 1 supersymmetric Kähler nonlinear sigma models on the Hermitian symmetric spaces, we extend them into the N = 2 supersymmetric models by using the projective superspace formalism and derive the general formula for the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. We apply to the formula for the non-compact Hermitian symmetric space E 7 /E 6 × U(1) 1 . (paper)
Optomechanically induced absorption in parity-time-symmetric optomechanical systems
Zhang, X. Y.; Guo, Y. Q.; Pei, P.; Yi, X. X.
2017-06-01
We explore the optomechanically induced absorption (OMIA) in a parity-time- (PT -) symmetric optomechanical system (OMS). By numerically calculating the Lyapunov exponents, we find out the stability border of the PT -symmetric OMS. The results show that in the PT -symmetric phase the system can be either stable or unstable depending on the coupling constant and the decay rate. In the PT -symmetric broken phase the system can have a stable state only for small gain rates. By calculating the transmission rate of the probe field, we find that there is an inverted optomechanically induced transparency (OMIT) at δ =-ωM and an OMIA at δ =ωM for the PT -symmetric optomechanical system. At each side of δ =-ωM there is an absorption window due to the resonance absorption of the two generated supermodes. Comparing with the case of optomechanics coupled to a passive cavity, we find that the active cavity can enhance the resonance absorption. The absorption rate at δ =ωM increases as the coupling strength between the two cavities increases. Our work provides us with a promising platform for controlling light propagation and light manipulation in terms of PT symmetry, which might have potential applications in quantum information processing and quantum optical devices.
Statistics of peaks of Gaussian random fields
International Nuclear Information System (INIS)
Bardeen, J.M.; Bond, J.R.; Kaiser, N.; Szalay, A.S.; Stanford Univ., CA; California Univ., Berkeley; Cambridge Univ., England; Fermi National Accelerator Lab., Batavia, IL)
1986-01-01
A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of upcrossing points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima. 67 references
Peak Oil, threat or energy worlds' phantasm?
International Nuclear Information System (INIS)
Favennec, Jean-Pierre
2011-01-01
The concept of Peak Oil is based on the work of King Hubbert, a petroleum geologist who worked for Shell in the USA in the 1960's. Based on the fact that discoveries in America reached a maximum in the 1930's, he announced that American production would reach a maximum in 1969, which did actually occur. Geologists members of the Association for the Study of Peak Oil have extrapolated this result to a worldwide scale and, since oil discoveries reached a peak in the 1960's, argued that production will peak in the very near future. It is clear that hydrocarbon reserves are finite and therefore exhaustible. But little is known regarding the level of ultimate (i.e. total existing) reserves. There are probably very large reserves of non conventional oil in addition to the reserves of conventional oil. An increasing number of specialists put maximum production at less than 100 Mb/d more for geopolitical than physical reasons. Attainable peak production will probably vary from year to year and will depend on how crude oil prices develop
Electric peak power forecasting by year 2025
International Nuclear Information System (INIS)
Alsayegh, O.A.; Al-Matar, O.A.; Fairouz, F.A.; Al-Mulla Ali, A.
2005-01-01
Peak power demand in Kuwait up to the year 2025 was predicted using an artificial neural network (ANN) model. The aim of the study was to investigate the effect of air conditioning (A/C) units on long-term power demand. Five socio-economic factors were selected as inputs for the simulation: (1) gross national product, (2) population, (3) number of buildings, (4) imports of A/C units, and (5) index of industrial production. The study used socio-economic data from 1978 to 2000. Historical data of the first 10 years of the studied time period were used to train the ANN. The electrical network was then simulated to forecast peak power for the following 11 years. The calculated error was then used for years in which power consumption data were not available. The study demonstrated that average peak power rates increased by 4100 MW every 5 years. Various scenarios related to changes in population, the number of buildings, and the quantity of A/C units were then modelled to estimate long-term peak power demand. Results of the study demonstrated that population had the strongest impact on future power demand, while the number of buildings had the smallest impact. It was concluded that peak power growth can be controlled through the use of different immigration policies, increased A/C efficiency, and the use of vertical housing. 7 refs., 2 tabs., 6 figs
Electric peak power forecasting by year 2025
Energy Technology Data Exchange (ETDEWEB)
Alsayegh, O.A.; Al-Matar, O.A.; Fairouz, F.A.; Al-Mulla Ali, A. [Kuwait Inst. for Scientific Research, Kuwait City (Kuwait). Div. of Environment and Urban Development
2005-07-01
Peak power demand in Kuwait up to the year 2025 was predicted using an artificial neural network (ANN) model. The aim of the study was to investigate the effect of air conditioning (A/C) units on long-term power demand. Five socio-economic factors were selected as inputs for the simulation: (1) gross national product, (2) population, (3) number of buildings, (4) imports of A/C units, and (5) index of industrial production. The study used socio-economic data from 1978 to 2000. Historical data of the first 10 years of the studied time period were used to train the ANN. The electrical network was then simulated to forecast peak power for the following 11 years. The calculated error was then used for years in which power consumption data were not available. The study demonstrated that average peak power rates increased by 4100 MW every 5 years. Various scenarios related to changes in population, the number of buildings, and the quantity of A/C units were then modelled to estimate long-term peak power demand. Results of the study demonstrated that population had the strongest impact on future power demand, while the number of buildings had the smallest impact. It was concluded that peak power growth can be controlled through the use of different immigration policies, increased A/C efficiency, and the use of vertical housing. 7 refs., 2 tabs., 6 figs.
Hoijemberg, Pablo A; Pelczer, István
2018-01-05
A lot of time is spent by researchers in the identification of metabolites in NMR-based metabolomic studies. The usual metabolite identification starts employing public or commercial databases to match chemical shifts thought to belong to a given compound. Statistical total correlation spectroscopy (STOCSY), in use for more than a decade, speeds the process by finding statistical correlations among peaks, being able to create a better peak list as input for the database query. However, the (normally not automated) analysis becomes challenging due to the intrinsic issue of peak overlap, where correlations of more than one compound appear in the STOCSY trace. Here we present a fully automated methodology that analyzes all STOCSY traces at once (every peak is chosen as driver peak) and overcomes the peak overlap obstacle. Peak overlap detection by clustering analysis and sorting of traces (POD-CAST) first creates an overlap matrix from the STOCSY traces, then clusters the overlap traces based on their similarity and finally calculates a cumulative overlap index (COI) to account for both strong and intermediate correlations. This information is gathered in one plot to help the user identify the groups of peaks that would belong to a single molecule and perform a more reliable database query. The simultaneous examination of all traces reduces the time of analysis, compared to viewing STOCSY traces by pairs or small groups, and condenses the redundant information in the 2D STOCSY matrix into bands containing similar traces. The COI helps in the detection of overlapping peaks, which can be added to the peak list from another cross-correlated band. POD-CAST overcomes the generally overlooked and underestimated presence of overlapping peaks and it detects them to include them in the search of all compounds contributing to the peak overlap, enabling the user to accelerate the metabolite identification process with more successful database queries and searching all tentative
Layout of NALM fiber laser with adjustable peak power of generated pulses.
Smirnov, Sergey; Kobtsev, Sergey; Ivanenko, Alexey; Kokhanovskiy, Alexey; Kemmer, Anna; Gervaziev, Mikhail
2017-05-01
The Letter proposes a new layout of a passively mode-locked fiber laser based on a nonlinear amplifying loop mirror (NALM) with two stretches of active fiber and two independently controlled pump modules. In contrast with conventional NALM configurations using a single piece of active fiber that yields virtually constant peak power, the proposed novel laser features larger than a factor of 2 adjustment range of peak power of generated pulses. The proposed layout also provides independent adjustment of duration and peak power of generated pulses as well as power-independent control of generated pulse spectral width impossible in NALM lasers with a single piece of active fiber.
Forecasting Strategies for Predicting Peak Electric Load Days
Saxena, Harshit
Academic institutions spend thousands of dollars every month on their electric power consumption. Some of these institutions follow a demand charges pricing structure; here the amount a customer pays to the utility is decided based on the total energy consumed during the month, with an additional charge based on the highest average power load required by the customer over a moving window of time as decided by the utility. Therefore, it is crucial for these institutions to minimize the time periods where a high amount of electric load is demanded over a short duration of time. In order to reduce the peak loads and have more uniform energy consumption, it is imperative to predict when these peaks occur, so that appropriate mitigation strategies can be developed. The research work presented in this thesis has been conducted for Rochester Institute of Technology (RIT), where the demand charges are decided based on a 15 minute sliding window panned over the entire month. This case study makes use of different statistical and machine learning algorithms to develop a forecasting strategy for predicting the peak electric load days of the month. The proposed strategy was tested for a whole year starting May 2015 to April 2016 during which a total of 57 peak days were observed. The model predicted a total of 74 peak days during this period, 40 of these cases were true positives, hence achieving an accuracy level of 70 percent. The results obtained with the proposed forecasting strategy are promising and demonstrate an annual savings potential worth about $80,000 for a single submeter of RIT.
SPANISH PEAKS WILDERNESS STUDY AREA, COLORADO.
Budding, Karin E.; Kluender, Steven E.
1984-01-01
A geologic and geochemical investigation and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, in south-central Colorado. Anomalous gold, silver, copper, lead, and zinc concentrations in rocks and in stream sediments from drainage basins in the vicinity of the old mines and prospects on West Spanish Peak indicate a substantiated mineral-resource potential for base and precious metals in the area surrounding this peak; however, the mineralized veins are sparse, small in size, and generally low in grade. There is a possibility that coal may underlie the study area, but it would be at great depth and it is unlikely that it would have survived the intense igneous activity in the area. There is little likelihood for the occurrence of oil and gas because of the lack of structural traps and the igneous activity.
Analysis of fuel end-temperature peaking
Energy Technology Data Exchange (ETDEWEB)
Xu, Z.; Jiang, Q.; Lai, L.; Shams, M. [CANDU Energy Inc., Fuel Engineering Dept., Mississauga, Ontario (Canada)
2013-07-01
During normal operation and refuelling of CANDU® fuel, fuel temperatures near bundle ends will increase due to a phenomenon called end flux peaking. Similar phenomenon would also be expected to occur during a postulated large break LOCA event. The end flux peaking in a CANDU fuel element is due to the fact that neutron flux is higher near a bundle end, in contact with a neighbouring bundle or close to heavy water coolant, than in the bundle mid-plane, because of less absorption of thermal neutrons by Zircaloy or heavy water than by the UO{sub 2} material. This paper describes Candu Energy experience in analysing behaviour of bundle due to end flux peaking using fuel codes FEAT, ELESTRES and ELOCA. (author)
Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model
International Nuclear Information System (INIS)
Li Min; Xu Tao; Meng Dexin
2016-01-01
In this paper, via the generalized Darboux transformation, rational soliton solutions are derived for the parity-time-symmetric nonlocal nonlinear Schrödinger (NLS) model with the defocusing-type nonlinearity. We find that the first-order solution can exhibit the elastic interactions of rational antidark-antidark, dark-antidark, and antidark-dark soliton pairs on a continuous wave background, but there is no phase shift for the interacting solitons. Also, we discuss the degenerate case in which only one rational dark or antidark soliton survives. Moreover, we reveal that the second-order rational solution displays the interactions between two solitons with combined-peak-valley structures in the near-field regions, but each interacting soliton vanishes or evolves into a rational dark or antidark soliton as |z| → ∞. In addition, we numerically examine the stability of the first- and second-order rational soliton solutions. (author)
A broadband high-efficiency Doherty power amplifier using symmetrical devices
Cheng, Zhiqun; Zhang, Ming; Li, Jiangzhou; Liu, Guohua
2018-04-01
This paper proposes a method for broadband and high-efficiency amplification of Doherty power amplifier (DPA) using symmetric devices. In order to achieve the perfect load modulation, the carrier amplifier output circuit total power length is designed to odd multiple of 90°, and the peak amplifier output total power length is designed to even multiple of 180°. The proposed method is demonstrated by designing a broadband high-efficiency DPA using identical 10-W packaged GaN HEMT devices. Measurement results show that over 51% drain efficiency is achieved at 6-dB back-off power, over the frequency band of 1.9–2.4 GHz. Project supported by the National Natural Science Foundation of China (No. 60123456), the Zhejiang Provincial Natural Science Foundation of China (No. LZ16F010001), and the Zhejiang Provincial Public Technology Research Project (No. 2016C31070).
Baseline restoration technique based on symmetrical zero-area trapezoidal pulse shaper
Energy Technology Data Exchange (ETDEWEB)
Zeng, Guoqiang, E-mail: 24829500@qq.com [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China); Yang, Jian, E-mail: 22105653@qq.com [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China); Hu, Tianyu; Ge, Liangquan [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China); Ouyang, Xiaoping [Northwest Institute of Nuclear Technology, Xi’an 710024,China (China); Zhang, Qingxian; Gu, Yi [Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan, Chengdu University of Technology, Chengdu 610059 (China)
2017-06-21
Since the baseline of the unipolar pulse shaper have the direct-current (DC) offset and drift, an additional baseline estimator is need to obtain baseline values in real-time. The bipolar zero-area (BZA) pulse shapers can be used for baseline restoration, but they cannot restrain the baseline drift due to their asymmetrical shape. In this study, three trapezoids are synthesized as a symmetrical zero-area (SZA) shape, which can remove the DC offset and restrain the baseline drift. This baseline restoration technique can be easily implemented in digital pulse processing (DPP) systems base on the recursive algorithm. To strengthen our approach, the iron's characteristic x-ray was detected using a Si-PIN diode detector. Compared with traditional trapezoidal pulse shapers, the SZA trapezoidal pulse shaper improved the energy resolution from 237 eV to 216 eV for the 6.403 keV Kα peak.
Simulations of the lower-hybrid antenna in the Madison Symmetric Torus reversed-field pinch
International Nuclear Information System (INIS)
Carlsson, Johan; Smithe, David; Kaufman, Michael; Goetz, John; Thomas, Mark
2014-01-01
Due to constraints inherent to a reversed-field pinch plasma configuration, an unusual launch structure—the interdigital line—was used for lower-hybrid current-drive experiments in the Madison Symmetric Torus. The antenna design and performance were analyzed using an array of codes (including RANT3D/AORSA1D-H, Microwave Studio and VORPAL). It was found that the voltage phasing was not the intended one. As a result, the parallel-wavenumber spectrum of the launched wave peaks at a value lower than desired, making the accessibility marginal. Further simulations demonstrated that the error can largely be corrected by either lowering the antenna operating frequency or shortening the length of the resonators. (paper)
Decomposition of a symmetric second-order tensor
Heras, José A.
2018-05-01
In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.
Solitons in PT-symmetric potential with competing nonlinearity
International Nuclear Information System (INIS)
Khare, Avinash; Al-Marzoug, S.M.; Bahlouli, Hocine
2012-01-01
We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrödinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined. -- Highlights: ► Effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. ► Closed form solutions for localized states are. ► The transverse power flow associated with these complex solitons is also examined.
Nilpotent orbits in real symmetric pairs and stationary black holes
Energy Technology Data Exchange (ETDEWEB)
Dietrich, Heiko [School of Mathematical Sciences, Monash University, VIC (Australia); De Graaf, Willem A. [Department of Mathematics, University of Trento, Povo (Italy); Ruggeri, Daniele [Universita di Torino, Dipartimento di Fisica (Italy); INFN, Sezione di Torino (Italy); Trigiante, Mario [DISAT, Politecnico di Torino (Italy)
2017-02-15
In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL{sub 2}(R)){sup 4} acting on the fourth tensor power of the natural 2-dimensional SL{sub 2}(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Tourist Demand Reactions: Symmetric or Asymmetric across the Business Cycle?
Bronner, Fred; de Hoog, Robert
2017-09-01
Economizing and spending priorities on different types of vacations are investigated during two periods: an economic downturn and returning prosperity. Two nation-wide samples of vacationers are used: one during a downturn, the other one at the start of the recovery period. Through comparing the results, conclusions can be drawn about symmetric or asymmetric tourist demand across the business cycle. The main summer holiday has an asymmetric profile: being fairly crisis-resistant during a recession and showing considerable growth during an expansion. This does not apply to short vacations and day trips, each having a symmetric profile: during a recession they experience substantial reductions and during expansion comparable growth. So when talking about tourist demand in general , one cannot say that it is symmetric or asymmetric across the business cycle: it depends on the type of vacation. Differences in tourist demand are best explained by the role of Quality-of-Life for vacationers.
Rings with involution whose symmetric elements are central
Directory of Open Access Journals (Sweden)
Taw Pin Lim
1980-01-01
Full Text Available In a ring R with involution whose symmetric elements S are central, the skew-symmetric elements K form a Lie algebra over the commutative ring S. The classification of such rings which are 2-torsion free is equivalent to the classification of Lie algebras K over S equipped with a bilinear form f that is symmetric, invariant and satisfies [[x,y],z]=f(y,zx−f(z,xy. If S is a field of char ≠2, f≠0 and dimK>1 then K is a semisimple Lie algebra if and only if f is nondegenerate. Moreover, the derived algebra K′ is either the pure quaternions over S or a direct sum of mutually orthogonal abelian Lie ideals of dim≤2.
Kinetic-energy distribution for symmetric fission of 236U
International Nuclear Information System (INIS)
Brissot, R.; Bocquet, J.P.; Ristori, C.; Crancon, J.; Guet, C.R.; Nifenecker, H.A.; Montoya, M.
1980-01-01
Fission fragment kinetic-energy distributions have been measured at the Grenoble high-flux reactor with the Lohengrin facility. Spurious events were eliminated in the symmetric region by a coherence test based on a time-of-flight measurement of fragment velocities. A Monte-Carlo calculation is then performed to correct the experimental data for neutron evaporation. The difference between the most probable kinetic energy in symmetric fission and the fission in which the heavy fragment is 'magic' (Zsub(H)=50) is found to be approximately =30 MeV. The results suggest that for the symmetric case the total excitation energy available at scission is shared equally among the fragments. (author)
The discrete dynamics of symmetric competition in the plane.
Jiang, H; Rogers, T D
1987-01-01
We consider the generalized Lotka-Volterra two-species system xn + 1 = xn exp(r1(1 - xn) - s1yn) yn + 1 = yn exp(r2(1 - yn) - s2xn) originally proposed by R. M. May as a model for competitive interaction. In the symmetric case that r1 = r2 and s1 = s2, a region of ultimate confinement is found and the dynamics therein are described in some detail. The bifurcations of periodic points of low period are studied, and a cascade of period-doubling bifurcations is indicated. Within the confinement region, a parameter region is determined for the stable Hopf bifurcation of a pair of symmetrically placed period-two points, which imposes a second component of oscillation near the stable cycles. It is suggested that the symmetric competitive model contains much of the dynamical complexity to be expected in any discrete two-dimensional competitive model.
Bound states for non-symmetric evolution Schroedinger potentials
Energy Technology Data Exchange (ETDEWEB)
Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx
2001-09-14
We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)
Solution of generalized shifted linear systems with complex symmetric matrices
International Nuclear Information System (INIS)
Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo
2012-01-01
We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.
Parallel coupling of symmetric and asymmetric exclusion processes
International Nuclear Information System (INIS)
Tsekouras, K; Kolomeisky, A B
2008-01-01
A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins
Some curvature properties of quarter symmetric metric connections
International Nuclear Information System (INIS)
Rastogi, S.C.
1986-08-01
A linear connection Γ ji h with torsion tensor T j h P i -T i h P j , where T j h is an arbitrary (1,1) tensor field and P i is a 1-form, has been called a quarter-symmetric connection by Golab. Some properties of such connections have been studied by Rastogi, Mishra and Pandey, and Yano and Imai. In this paper based on the curvature tensor of quarter-symmetric metric connection we define a tensor analogous to conformal curvature tensor and study some properties of such a tensor. (author)
Exploring plane-symmetric solutions in f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Department of Sciences and Humanities (Pakistan)
2016-02-15
The modified theories of gravity, especially the f(R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f(R) gravity. We extend the work on static plane-symmetric vacuum solutions in f(R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f(R) models.
Characterization of Generalized Young Measures Generated by Symmetric Gradients
De Philippis, Guido; Rindler, Filip
2017-06-01
This work establishes a characterization theorem for (generalized) Young measures generated by symmetric derivatives of functions of bounded deformation (BD) in the spirit of the classical Kinderlehrer-Pedregal theorem. Our result places such Young measures in duality with symmetric-quasiconvex functions with linear growth. The "local" proof strategy combines blow-up arguments with the singular structure theorem in BD (the analogue of Alberti's rank-one theorem in BV), which was recently proved by the authors. As an application of our characterization theorem we show how an atomic part in a BD-Young measure can be split off in generating sequences.
Integrability and symmetric spaces. II- The coset spaces
International Nuclear Information System (INIS)
Ferreira, L.A.
1987-01-01
It shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a fundamental Poisson bracket relation, and consequently charges involution, is that it must be a symmetric space. The conditions a hamiltonian, or any function of the canonical variables, has to satisfy in order to commute with these charges are studied. It is shown that, for the case of non compact symmetric space, these conditions lead to an algebraic structure which plays an important role in the construction of conserved quantities. (author) [pt
Color-symmetric superconductivity in a phenomenological QCD model
DEFF Research Database (Denmark)
Bohr, Henrik; Providencia, C.; Providencia, J. da
2009-01-01
In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...
(Anti)symmetric multivariate exponential functions and corresponding Fourier transforms
International Nuclear Information System (INIS)
Klimyk, A U; Patera, J
2007-01-01
We define and study symmetrized and antisymmetrized multivariate exponential functions. They are defined as determinants and antideterminants of matrices whose entries are exponential functions of one variable. These functions are eigenfunctions of the Laplace operator on the corresponding fundamental domains satisfying certain boundary conditions. To symmetric and antisymmetric multivariate exponential functions there correspond Fourier transforms. There are three types of such Fourier transforms: expansions into the corresponding Fourier series, integral Fourier transforms and multivariate finite Fourier transforms. Eigenfunctions of the integral Fourier transforms are found
Positive projections of symmetric matrices and Jordan algebras
DEFF Research Database (Denmark)
Fuglede, Bent; Jensen, Søren Tolver
2013-01-01
An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model.......An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model....
Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems
International Nuclear Information System (INIS)
Scott, D.S.; Ward, R.C.
1981-01-01
Methods are presented for computing eigenpairs of the quadratic lambda-matrix, M lambda 2 + C lambda + K, where M, C, and K are large and sparse, and have special symmetry-type properties. These properties are sufficient to insure that all the eigenvalues are real and that theory analogous to the standard symmetric eigenproblem exists. The methods employ some standard techniques such as partial tri-diagonalization via the Lanczos Method and subsequent eigenpair calculation, shift-and- invert strategy and subspace iteration. The methods also employ some new techniques such as Rayleigh-Ritz quadratic roots and the inertia of symmetric, definite, quadratic lambda-matrices
Determination of symmetrical index for 3H in river waters
International Nuclear Information System (INIS)
Jankovic, M.; Todorovic, D.; Jankovic, B.; Nikolic, J.; Sarap, N.
2011-01-01
The paper presents the results of determining the symmetric index, which describes the magnitude of the tritium content changes with time, for samples of Sava and Danube river waters and Mlaka creek water. The results cover the period from 2003 to 2008. It was shown that the value of the symmetric index is the highest for Mlaka samples, which is in accordance with the fact that in these samples the highest concentration of tritium was found in comparison with samples of the Sava and Danube. [sr
Flat synchronizations in spherically symmetric space-times
International Nuclear Information System (INIS)
Herrero, Alicia; Morales-Lladosa, Juan Antonio
2010-01-01
It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.
Jones, Morgin; Wadi, Hasina; Ali, Halima; Punjabi, Alkesh
2009-04-01
The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in divertor tokamaks can be any coordinates for which a transformation to (ψt,θ,φ) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. ψt is toroidal magnetic flux, θ is poloidal angle, and φ is toroidal angle. This freedom is exploited to construct the symmetric quartic map such that the only parameter that determines magnetic geometry is the elongation of the separatrix surface. The poloidal flux inside the separatrix, the safety factor as a function of normalized minor radius, and the magnetic perturbation from the symplectic discretization are all held constant, and only the elongation is κ varied. The width of stochastic layer, the area, and the fractal dimension of the magnetic footprint and the average radial diffusion coefficient of magnetic field lines from the stochastic layer; and how these quantities scale with κ is calculated. The symmetric quartic map gives the correct scalings which are consistent with the scalings of coordinates with κ. The effects of m =1, n =±1 internal perturbation with the amplitude that is expected to occur in tokamaks are calculated by adding a term [H. Ali, A. Punjabi, A. H. Boozer, and T. Evans, Phys. Plasmas 11, 1908 (2004)] to the symmetric quartic map. In this case, the width of stochastic layer scales as 0.35 power of κ. The area of the footprint is roughly constant. The average radial diffusion coefficient of field lines near the X-point scales linearly with κ. The low mn perturbation changes the quasisymmetric structure of the footprint, and reorganizes it into a single, large scale, asymmetric structure. The symmetric quartic map is combined with the dipole map [A. Punjabi, H. Ali, and A. H. Boozer, Phys. Plasmas 10, 3992 (2003)] to calculate the effects of magnetic perturbation from a current carrying coil. The coil position and coil current coil are
International Nuclear Information System (INIS)
Jones, Morgin; Wadi, Hasina; Ali, Halima; Punjabi, Alkesh
2009-01-01
The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in divertor tokamaks can be any coordinates for which a transformation to (ψ t ,θ,φ) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. ψ t is toroidal magnetic flux, θ is poloidal angle, and φ is toroidal angle. This freedom is exploited to construct the symmetric quartic map such that the only parameter that determines magnetic geometry is the elongation of the separatrix surface. The poloidal flux inside the separatrix, the safety factor as a function of normalized minor radius, and the magnetic perturbation from the symplectic discretization are all held constant, and only the elongation is κ varied. The width of stochastic layer, the area, and the fractal dimension of the magnetic footprint and the average radial diffusion coefficient of magnetic field lines from the stochastic layer; and how these quantities scale with κ is calculated. The symmetric quartic map gives the correct scalings which are consistent with the scalings of coordinates with κ. The effects of m=1, n=±1 internal perturbation with the amplitude that is expected to occur in tokamaks are calculated by adding a term [H. Ali, A. Punjabi, A. H. Boozer, and T. Evans, Phys. Plasmas 11, 1908 (2004)] to the symmetric quartic map. In this case, the width of stochastic layer scales as 0.35 power of κ. The area of the footprint is roughly constant. The average radial diffusion coefficient of field lines near the X-point scales linearly with κ. The low mn perturbation changes the quasisymmetric structure of the footprint, and reorganizes it into a single, large scale, asymmetric structure. The symmetric quartic map is combined with the dipole map [A. Punjabi, H. Ali, and A. H. Boozer, Phys. Plasmas 10, 3992 (2003)] to calculate the effects of magnetic perturbation from a current carrying coil. The coil position and coil current coil are
Osteoporosis: Peak Bone Mass in Women
... bone density are seen even during childhood and adolescence. Hormonal factors. The hormone estrogen has an effect on peak bone mass. For example, women who had their first menstrual cycle at an early age and those who use oral contraceptives, which contain estrogen, often have high bone mineral ...
Facility Location with Double-peaked Preferences
DEFF Research Database (Denmark)
Filos-Ratsikas, Aris; Li, Minming; Zhang, Jie
2015-01-01
; this makes the problem essentially more challenging. As our main contribution, we present a simple truthful-in-expectation mechanism that achieves an approximation ratio of 1+b=c for both the social and the maximum, cost, where b is the distance of the agent from the peak and c is the minimum cost...
Robust Peak Recognition in Intracranial Pressure Signals
Directory of Open Access Journals (Sweden)
Bergsneider Marvin
2010-10-01
Full Text Available Abstract Background The waveform morphology of intracranial pressure pulses (ICP is an essential indicator for monitoring, and forecasting critical intracranial and cerebrovascular pathophysiological variations. While current ICP pulse analysis frameworks offer satisfying results on most of the pulses, we observed that the performance of several of them deteriorates significantly on abnormal, or simply more challenging pulses. Methods This paper provides two contributions to this problem. First, it introduces MOCAIP++, a generic ICP pulse processing framework that generalizes MOCAIP (Morphological Clustering and Analysis of ICP Pulse. Its strength is to integrate several peak recognition methods to describe ICP morphology, and to exploit different ICP features to improve peak recognition. Second, it investigates the effect of incorporating, automatically identified, challenging pulses into the training set of peak recognition models. Results Experiments on a large dataset of ICP signals, as well as on a representative collection of sampled challenging ICP pulses, demonstrate that both contributions are complementary and significantly improve peak recognition performance in clinical conditions. Conclusion The proposed framework allows to extract more reliable statistics about the ICP waveform morphology on challenging pulses to investigate the predictive power of these pulses on the condition of the patient.
Liquid waste processing at Comanche Peak
International Nuclear Information System (INIS)
Hughes-Edwards, L.M.; Edwards, J.M.
1996-01-01
This article describes the radioactive waste processing at Comanche Peak Steam Electric Station. Topics covered are the following: Reduction of liquid radioactive discharges (system leakage, outage planning); reduction of waste resin generation (waste stream segregation, processing methodology); reduction of activity released and off-site dose. 8 figs., 2 tabs
Avoiding the False Peaks in Correlation Discrimination
International Nuclear Information System (INIS)
Awwal, A.S.
2009-01-01
Fiducials imprinted on laser beams are used to perform video image based alignment of the 192 laser beams in the National Ignition Facility (NIF) of Lawrence Livermore National Laboratory. In many video images, matched filtering is used to detect the location of these fiducials. Generally, the highest correlation peak is used to determine the position of the fiducials. However, when the signal to-be-detected is very weak compared to the noise, this approach totally breaks down. The highest peaks act as traps for false detection. The active target images used for automatic alignment in the National Ignition Facility are examples of such images. In these images, the fiducials of interest exhibit extremely low intensity and contrast, surrounded by high intensity reflection from metallic objects. Consequently, the highest correlation peaks are caused by these bright objects. In this work, we show how the shape of the correlation is exploited to isolate the valid matches from hundreds of invalid correlation peaks, and therefore identify extremely faint fiducials under very challenging imaging conditions
Hubbert's Peak: the Impending World oil Shortage
Deffeyes, K. S.
2004-12-01
Global oil production will probably reach a peak sometime during this decade. After the peak, the world's production of crude oil will fall, never to rise again. The world will not run out of energy, but developing alternative energy sources on a large scale will take at least 10 years. The slowdown in oil production may already be beginning; the current price fluctuations for crude oil and natural gas may be the preamble to a major crisis. In 1956, the geologist M. King Hubbert predicted that U.S. oil production would peak in the early 1970s.1 Almost everyone, inside and outside the oil industry, rejected Hubbert's analysis. The controversy raged until 1970, when the U.S. production of crude oil started to fall. Hubbert was right. Around 1995, several analysts began applying Hubbert's method to world oil production, and most of them estimate that the peak year for world oil will be between 2004 and 2008. These analyses were reported in some of the most widely circulated sources: Nature, Science, and Scientific American.2 None of our political leaders seem to be paying attention. If the predictions are correct, there will be enormous effects on the world economy. Even the poorest nations need fuel to run irrigation pumps. The industrialized nations will be bidding against one another for the dwindling oil supply. The good news is that we will put less carbon dioxide into the atmosphere. The bad news is that my pickup truck has a 25-gallon tank.
Prediction of peak overlap in NMR spectra
International Nuclear Information System (INIS)
Hefke, Frederik; Schmucki, Roland; Güntert, Peter
2013-01-01
Peak overlap is one of the major factors complicating the analysis of biomolecular NMR spectra. We present a general method for predicting the extent of peak overlap in multidimensional NMR spectra and its validation using both, experimental data sets and Monte Carlo simulation. The method is based on knowledge of the magnetization transfer pathways of the NMR experiments and chemical shift statistics from the Biological Magnetic Resonance Data Bank. Assuming a normal distribution with characteristic mean value and standard deviation for the chemical shift of each observable atom, an analytic expression was derived for the expected overlap probability of the cross peaks. The analytical approach was verified to agree with the average peak overlap in a large number of individual peak lists simulated using the same chemical shift statistics. The method was applied to eight proteins, including an intrinsically disordered one, for which the prediction results could be compared with the actual overlap based on the experimentally measured chemical shifts. The extent of overlap predicted using only statistical chemical shift information was in good agreement with the overlap that was observed when the measured shifts were used in the virtual spectrum, except for the intrinsically disordered protein. Since the spectral complexity of a protein NMR spectrum is a crucial factor for protein structure determination, analytical overlap prediction can be used to identify potentially difficult proteins before conducting NMR experiments. Overlap predictions can be tailored to particular classes of proteins by preparing statistics from corresponding protein databases. The method is also suitable for optimizing recording parameters and labeling schemes for NMR experiments and improving the reliability of automated spectra analysis and protein structure determination.
The peak in anomalous magnetic viscosity
International Nuclear Information System (INIS)
Collocott, S.J.; Watterson, P.A.; Tan, X.H.; Xu, H.
2014-01-01
Anomalous magnetic viscosity, where the magnetization as a function of time exhibits non-monotonic behaviour, being seen to increase, reach a peak, and then decrease, is observed on recoil lines in bulk amorphous ferromagnets, for certain magnetic prehistories. A simple geometrical approach based on the motion of the state line on the Preisach plane gives a theoretical framework for interpreting non-monotonic behaviour and explains the origin of the peak. This approach gives an expression for the time taken to reach the peak as a function of the applied (or holding) field. The theory is applied to experimental data for bulk amorphous ferromagnet alloys of composition Nd 60−x Fe 30 Al 10 Dy x , x = 0, 1, 2, 3 and 4, and it gives a reasonable description of the observed behaviour. The role played by other key magnetic parameters, such as the intrinsic coercivity and fluctuation field, is also discussed. When the non-monotonic behaviour of the magnetization of a number of alloys is viewed in the context of the model, features of universal behaviour emerge, that are independent of alloy composition. - Highlights: • Development of a simple geometrical model based on the Preisach model which gives a complete explanation of the peak in the magnetic viscosity. • Geometrical approach is extended by considering equations that govern the motion of the state line. • The model is used to deduce the relationship between the holding field and the time it takes to reach the peak. • The model is tested with experimental results for a range of Nd–Fe–Al–Dy bulk amorphous ferromagnets. • There is good agreement between the model and the experimental data
Memory effects and peak effect in type II superconductors
International Nuclear Information System (INIS)
Pasquini, G.; Luna, D.; Eismann, B.; Bettachini, V.; Bekeris, V.
2007-01-01
A large amount of experimental and theoretical work has been devoted to understand memory effects (ME) in the solid vortex lattice (VL) but has remained, however, controversial until now. In the vicinity of the anomaly known as the peak effect (PE) both the VL mobility and the measured critical current density are found to be dependent of the dynamical history of the sample, in both low T c (LTS) and high T c (HTS) superconductors. Experiments in YBa 2 Cu 3 O 7 (YBCO) crystals have shown that the mobility of the VL increases after assisting the system with a symmetric AC field (or current) of moderated amplitude. On the other hand, after an asymmetric AC field assists vortices, the VL becomes less mobile. These features indicate that ME in these samples cannot be ascribed to an equilibration process, but probably are related to the organization of the lattice after nearest neighbor re-accommodation or induced plastic VL deformation. Recently, we have shown evidence that in YBCO the PE is a dynamic anomaly observed in the non-linear response, and is absent in the Labusch constant derived from the linear Campbell regime. However, this behavior seems not to be extensive to other systems as the traditional LTS NbSe 2 . In this work, the AC response in the PE region of NbSe 2 and YBCO samples are presented and compared. Very salient differences both in the linear and non-linear response as well as in the ME characteristics indicate that a different physics governs the PE phenomena in each case
Binary self-assembly of highly symmetric DNA nanocages via sticky-end engineering
Institute of Scientific and Technical Information of China (English)
Xiao-Rong Wu; Chen-Wei Wu; Fei Ding; Cheng Tian; Wen Jiang; Cheng-De Mao; Chuan Zhang
2017-01-01
Discrete and symmetric three-dimensional (3D) DNA nanocages have been revoked as excellent candidates for various applications,such as guest component encapsulation and organization (e.g.dye molecules,proteins,inorganic nanoparticles,etc.) to construct new materials and devices.To date,a large variety of DNA nanocages has been synthesized through assembling small individual DNA motifs into predesigned structures in a bottom-up fashion.Most of them rely on the assembly using multiple copies of single type of motifs and a few sophisticated nanostructures have been engineered by co-assembling multi-types of DNA tiles simultaneously.However,the availability of complex DNA nanocages is still limited.Herein,we demonstrate that highly symmetric DNA nanocages consisted of binary DNA pointstar motifs can be easily assembled by deliberately engineering the sticky-end interaction between the component building blocks.As such,DNA nanocages with new geometries,including elongated tetrahedron (E-TET),rhombic dodecahedron (R-DOD),and rhombic triacontahedron (R-TRI) are successfully synthesized.Moreover,their design principle,assembly process,and structural features are revealed by polyacryalmide gel electrophoresis (PAGE),atomic force microscope (AFM) imaging,and cryogenic transmission electron microscope imaging (cryo-TEM) associated with single particle reconstruction.
Analysis of the static properties of cluster formations in symmetric linear multiblock copolymers
International Nuclear Information System (INIS)
Fytas, N G; Theodorakis, P E
2011-01-01
We use molecular dynamics simulations to study the static properties of a single linear multiblock copolymer chain under poor solvent conditions varying the block length N, the number of blocks n, and the solvent quality by variation of the temperature T. We study the most symmetrical case, where the number of blocks of monomers of type A, n A , equals that of monomers B, n B (n A = n B = n/2), the length of all blocks is the same irrespective of their type, and the potential parameters are also chosen symmetrically, as for a standard Lennard-Jones fluid. Under poor solvent conditions the chains collapse and blocks with monomers of the same type form clusters, which are phase separated from the clusters with monomers of the other type. We study the dependence of the size of the clusters formed on n, N and T. Furthermore, we discuss our results with respect to recent simulation data on the phase behaviour of such macromolecules, providing a complete picture for the cluster formations in single multiblock copolymer chains under poor solvent conditions.
Szent-Gyorgyi, Chris; Stanfield, Robyn L.; Andreko, Susan; Dempsey, Alison; Ahmed, Mushtaq; Capek, Sara; Waggoner, Alan; Wilson, Ian A.; Bruchez, Marcel P.
2013-01-01
We report that a symmetric small molecule ligand mediates the assembly of antibody light chain variable domains (VLs) into a correspondent symmetric ternary complex with novel interfaces. The L5* Fluorogen Activating Protein (FAP) is a VL domain that binds malachite green dye (MG) to activate intense fluorescence. Crystallography of liganded L5* reveals a 2:1 protein:ligand complex with inclusive C2 symmetry, where MG is almost entirely encapsulated between an antiparallel arrangement of the two VL domains. Unliganded L5* VL domains crystallize as a similar antiparallel VL/VL homodimer. The complementarity determining regions (CDRs) are spatially oriented to form novel VL/VL and VL/ligand interfaces that tightly constrain a propeller conformer of MG. Binding equilibrium analysis suggests highly cooperative assembly to form a very stable VL/MG/VL complex, such that MG behaves as a strong chemical inducer of dimerization. Fusion of two VL domains into a single protein tightens MG binding over 1,000-fold to low picomolar affinity without altering the large binding enthalpy, suggesting that bonding interactions with ligand and restriction of domain movements make independent contributions to binding. Fluorescence activation of a symmetrical fluorogen provides a selection mechanism for the isolation and directed evolution of ternary complexes where unnatural symmetric binding interfaces are favored over canonical antibody interfaces. As exemplified by L5*, these self-reporting complexes may be useful as modulators of protein association or as high affinity protein tags and capture reagents. PMID:23978698
Predictors of the peak width for networks with exponential links
Troutman, B.M.; Karlinger, M.R.
1989-01-01
We investigate optimal predictors of the peak (S) and distance to peak (T) of the width function of drainage networks under the assumption that the networks are topologically random with independent and exponentially distributed link lengths. Analytical results are derived using the fact that, under these assumptions, the width function is a homogeneous Markov birth-death process. In particular, exact expressions are derived for the asymptotic conditional expectations of S and T given network magnitude N and given mainstream length H. In addition, a simulation study is performed to examine various predictors of S and T, including N, H, and basin morphometric properties; non-asymptotic conditional expectations and variances are estimated. The best single predictor of S is N, of T is H, and of the scaled peak (S divided by the area under the width function) is H. Finally, expressions tested on a set of drainage basins from the state of Wyoming perform reasonably well in predicting S and T despite probable violations of the original assumptions. ?? 1989 Springer-Verlag.
Bilaterally symmetric Fourier approximations of the skull outlines of ...
Indian Academy of Sciences (India)
Present work illustrates a scheme of quantitative description of the shape of the skull outlines of temnospondyl amphibians using bilaterally symmetric closed Fourier curves. Some special points have been identified on the Fourier fits of the skull outlines, which are the local maxima, or minima of the distances from the ...
PEO nanocomposite polymer electrolyte for solid state symmetric
Indian Academy of Sciences (India)
Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites ...
Symmetric approximations of the Navier-Stokes equations
International Nuclear Information System (INIS)
Kobel'kov, G M
2002-01-01
A new method for the symmetric approximation of the non-stationary Navier-Stokes equations by a Cauchy-Kovalevskaya-type system is proposed. Properties of the modified problem are studied. In particular, the convergence as ε→0 of the solutions of the modified problem to the solutions of the original problem on an infinite interval is established
Duality, phase structures, and dilemmas in symmetric quantum games
International Nuclear Information System (INIS)
Ichikawa, Tsubasa; Tsutsui, Izumi
2007-01-01
Symmetric quantum games for 2-player, 2-qubit strategies are analyzed in detail by using a scheme in which all pure states in the 2-qubit Hilbert space are utilized for strategies. We consider two different types of symmetric games exemplified by the familiar games, the Battle of the Sexes (BoS) and the Prisoners' Dilemma (PD). These two types of symmetric games are shown to be related by a duality map, which ensures that they share common phase structures with respect to the equilibria of the strategies. We find eight distinct phase structures possible for the symmetric games, which are determined by the classical payoff matrices from which the quantum games are defined. We also discuss the possibility of resolving the dilemmas in the classical BoS, PD, and the Stag Hunt (SH) game based on the phase structures obtained in the quantum games. It is observed that quantization cannot resolve the dilemma fully for the BoS, while it generically can for the PD and SH if appropriate correlations for the strategies of the players are provided
SUSY formalism for the symmetric double well potential
Indian Academy of Sciences (India)
Using first- and second-order supersymmetric Darboüx formalism and starting with symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique.
Initial value formulation for the spherically symmetric dust solution
International Nuclear Information System (INIS)
Liu, H.
1990-01-01
An initial value formulation for the dust solution with spherical symmetry is given explicitly in which the initial distributions of dust and its velocity on an initial surface are chosen to be the initial data. As special cases, the Friedmann universe, the Schwarzschild solution in comoving coordinates, and a spherically symmetric and radially inhomogeneous cosmological model are derived
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
An exact solution is obtained for coupled dilaton and electromagnetic ﬁeld in a cylindrically symmetric spacetime where an axial magnetic ﬁeld as well as a radial electric ﬁeld both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric ﬁeld or to that ...
PT-Symmetric Waveguides and the Lack of Variational Techniques
Czech Academy of Sciences Publication Activity Database
Krejčiřík, David
2012-01-01
Roč. 73, č. 1 (2012), s. 1-2 ISSN 0378-620X Institutional support: RVO:61389005 Keywords : Robin Laplacian * non-self-adjoint boundary conditions * complex symmetric operator * PT-symmetry * waveguides * discrete and essential spectra Subject RIV: BA - General Mathematics Impact factor: 0.713, year: 2012
Confining but chirally symmetric dense and cold matter
International Nuclear Information System (INIS)
Glozman, L. Ya.
2012-01-01
The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.
Technical report: Electric field in not completely symmetric systems
International Nuclear Information System (INIS)
Vila, F.
1994-08-01
In this paper it is studied theoretically the electric field in the not completely symmetric system earthed metallic sphere-uniformly charged dielectric plan, for sphere surface points situated in the plan that contains sphere's center and vertical symmetry axe of dielectric plan. (author). 11 refs, 1 fig
Symmetrical waveguide devices fabricated by direct UV writing
DEFF Research Database (Denmark)
Færch, Kjartan Ullitz; Svalgaard, Mikael
2002-01-01
Power splitters and directional couplers fabricated by direct UV writing in index matched silica-on-silicon samples can suffer from an asymmetrical device performance, even though the UV writing is carried out in a symmetrical fashion. This effect originates from a reduced photosensitivity...
On the axially symmetric equilibrium of a magnetically confined plasma
International Nuclear Information System (INIS)
Lehnert, B.
1975-01-01
The axially symmetric equilibrium of a magnetically confined plasma is reconsidered, with the special purpose of studying high-beta schemes with a purely poloidal magnetic field. A number of special solutions of the pressure and magnetic flux functions are shown to exist, the obtained results may form starting-points in a further analysis of physically relevant configurations. (Auth.)
Symmetric structures of coherent states in superfluid helium-4
International Nuclear Information System (INIS)
Ahmad, M.
1981-02-01
Coherent States in superfluid helium-4 are discussed and symmetric structures are assigned to these states. Discrete and continuous series functions are exhibited for such states. Coherent State structure has been assigned to oscillating condensed bosons and their inter-relations and their effects on the superfluid system are analysed. (author)
Spectra of PT -symmetric Hamiltonians on tobogganic contours
Indian Academy of Sciences (India)
The term PT -symmetric quantum mechanics, although defined to be of a much broader use, was coined in tight connection with C. Bender's analysis of one- ... on the other hand, the other members of the family were strange Hamiltonians with imaginary potentials which do not appear physical at all. The aim of the.
Symmetrical and asymmetrical growth restriction in preterm-born children
Bocca-Tjeertes, Inger; Bos, Arend; Kerstjens, Jorien; de Winter, Andrea; Reijneveld, Sijmen
OBJECTIVE: To determine how symmetric (proportionate; SGR) and asymmetric (disproportionate; AGR) growth restriction influence growth and development in preterms from birth to 4 years. METHODS: This community-based cohort study of 810 children comprised 86 SGR, 61 AGR, and 663 non-growth restricted
Perception of the Symmetrical Patterning of Human Gait by Infants.
Booth, Amy E.; Pinto, Jeannine; Bertenthal, Bennett I.
2002-01-01
Two experiments tested infants' sensitivity to properties of point-light displays of a walker and a runner that were equivalent regarding the phasing of limb movements. Found that 3-, but not 5-month-olds, discriminated these displays. When the symmetrical phase-patterning of the runner display was perturbed by advancing two of its limbs by 25…
Rotationally symmetric numerical solutions to the sine-Gordon equation
DEFF Research Database (Denmark)
Olsen, O. H.; Samuelsen, Mogens Rugholm
1981-01-01
We examine numerically the properties of solutions to the spherically symmetric sine-Gordon equation given an initial profile which coincides with the one-dimensional breather solution and refer to such solutions as ring waves. Expanding ring waves either exhibit a return effect or expand towards...
Symmetrical Womanhood: The Educational Ideology of Activism at Wellesley.
Palmieri, Patricia Ann
1995-01-01
The ideology of higher education for women at Wellesley College in the late 19th and early 20th centuries is discussed in the context of feminism and the women's suffrage movement. "Symmetrical womanhood," a concept emphasizing balance of traditional roles and intellectual and community involvement, was a goal of Wellesley faculty of…
Normalizations of Eisenstein integrals for reductive symmetric spaces
van den Ban, E.P.; Kuit, Job
2017-01-01
We construct minimal Eisenstein integrals for a reductive symmetric space G/H as matrix coefficients of the minimal principal series of G. The Eisenstein integrals thus obtained include those from the \\sigma-minimal principal series. In addition, we obtain related Eisenstein integrals, but with
Analytic families of eigenfunctions on a reductive symmetric space
Ban, E.P. van den; Schlichtkrull, H.
2000-01-01
In harmonic analysis on a reductive symmetric space X an important role is played by families of generalized eigenfunctions for the algebra D (X) of invariant dierential operators. Such families arise for instance as matrix coeÆcients of representations that come in series, such as the (generalized)
Whittaker Vector of Deformed Virasoro Algebra and Macdonald Symmetric Functions
Yanagida, Shintarou
2016-03-01
We give a proof of Awata and Yamada's conjecture for the explicit formula of Whittaker vector of the deformed Virasoro algebra realized in the Fock space. The formula is expressed as a summation over Macdonald symmetric functions with factored coefficients. In the proof, we fully use currents appearing in the Fock representation of Ding-Iohara-Miki quantum algebra.
Plane Symmetric Cosmological Model with Quark and Strange ...
Indian Academy of Sciences (India)
Keywords. f(R,T) theory of gravity—plane symmetric space-time—quark and strange quark matter—constant deceleration parameter. 1. Introduction. Modern astrophysical observations point out that present expansion of the Universe is an accelerated epoch. The most fascinating evidence for this is found in measurements ...
Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery.
Wang, Yuhang; Zeng, Jiren; Cui, Xiaoqi; Zhang, Lijuan; Zheng, Gengfeng
2016-02-24
A separator-integrated, reversely connectable, symmetric lithium-ion battery is developed based on carbon-coated Li3V2(PO4)3 nanoparticles and polyvinylidene fluoride-treated separators. The Li3V2(PO4)3 nanoparticles are synthesized via a facile solution route followed by calcination in Ar/H2 atmosphere. Sucrose solution is used as the carbon source for uniform carbon coating on the Li3V2(PO4)3 nanoparticles. Both the carbon and the polyvinylidene fluoride treatments substantially improve the cycling life of the symmetric battery by preventing the dissolution and shuttle of the electroactive Li3V2(PO4)3. The obtained symmetric full cell exhibits a reversible capacity of ≈ 87 mA h g(-1), good cycling stability, and capacity retention of ≈ 70% after 70 cycles. In addition, this type of symmetric full cell can be operated in both forward and reverse connection modes, without any influence on the cycling of the battery. Furthermore, a new separator integration approach is demonstrated, which enables the direct deposition of electroactive materials for the battery assembly and does not affect the electrochemical performance. A 10-tandem-cell battery assembled without differentiating the electrode polarity exhibits a low thickness of ≈ 4.8 mm and a high output voltage of 20.8 V. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Strong orientational coordinates and orientational order parameters for symmetric objects
International Nuclear Information System (INIS)
Haji-Akbari, Amir; Glotzer, Sharon C
2015-01-01
Recent advancements in the synthesis of anisotropic macromolecules and nanoparticles have spurred an immense interest in theoretical and computational studies of self-assembly. The cornerstone of such studies is the role of shape in self-assembly and in inducing complex order. The problem of identifying different types of order that can emerge in such systems can, however, be challenging. Here, we revisit the problem of quantifying orientational order in systems of building blocks with non-trivial rotational symmetries. We first propose a systematic way of constructing orientational coordinates for such symmetric building blocks. We call the arising tensorial coordinates strong orientational coordinates (SOCs) as they fully and exclusively specify the orientation of a symmetric object. We then use SOCs to describe and quantify local and global orientational order, and spatiotemporal orientational correlations in systems of symmetric building blocks. The SOCs and the orientational order parameters developed in this work are not only useful in performing and analyzing computer simulations of symmetric molecules or particles, but can also be utilized for the efficient storage of rotational information in long trajectories of evolving many-body systems. (paper)
Is PT -symmetric quantum theory false as a fundamental theory?
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2016-01-01
Roč. 56, č. 3 (2016), s. 254-257 ISSN 1210-2709 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum mechanics * PT-symmetric representations of observables * masurement outcomes Subject RIV: BE - Theoretical Physics
On the random geometry of a symmetric matter antimatter universe
International Nuclear Information System (INIS)
Aldrovandi, R.; Goto, M.
1977-05-01
A statistical analysis is made of the randon geometry of an early symmetric matter-antimatter universe model. Such a model is shown to determine the total number of the largest agglomerations in the universe, as well as of some special configurations. Constraints on the time development of the protoagglomerations are also obtained
On Split Lie Algebras with Symmetric Root Systems
Indian Academy of Sciences (India)
... and any I j a well described ideal of , satisfying [ I j , I k ] = 0 if j ≠ k . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected.
On split Lie algebras with symmetric root systems
Indian Academy of Sciences (India)
ideal of L, satisfying [Ij ,Ik] = 0 if j = k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Keywords. Infinite dimensional Lie ...
A summary view of the symmetric cosmological model
International Nuclear Information System (INIS)
Aldrovandi, R.
1975-01-01
A brief analysis of cosmological models is done, beginning with the standard model and following with the symmetric model of Omnes. Some attempts have been made for the phase transition in thermal radiation at high temperatures, to the annihilation period and to coalescence. One model with equal amounts of matter and antimatter seems to be reasonable [pt
Compactons in PT-symmetric generalized Korteweg–de Vries ...
Indian Academy of Sciences (India)
... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 2. Compactons in P T -symmetric generalized Korteweg–de Vries equations. Carl M Bender Fred Cooper Avinash Khare Bogdan Mihaila Avadh Saxena. Volume 73 Issue 2 August 2009 ...
New algorithms for the symmetric tridiagonal eigenvalue computation
Energy Technology Data Exchange (ETDEWEB)
Pan, V. [City Univ. of New York, Bronx, NY (United States)]|[International Computer Sciences Institute, Berkeley, CA (United States)
1994-12-31
The author presents new algorithms that accelerate the bisection method for the symmetric eigenvalue problem. The algorithms rely on some new techniques, which include acceleration of Newton`s iteration and can also be further applied to acceleration of some other iterative processes, in particular, of iterative algorithms for approximating polynomial zeros.
Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy
Energy Technology Data Exchange (ETDEWEB)
Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P. G.; Parodi, K. [Department for Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748 (Germany); Kellnberger, S.; Omar, M.; Ntziachristos, V. [Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg 85764 (Germany); Moser, M.; Dollinger, G. [Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr, Werner-Heisenberg-Weg 39, Neubiberg 85577 (Germany)
2015-02-15
Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound
Lee, Myoung-Jae; Jung, Young-Dae
2018-05-01
The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma layer with the (r, q) distribution are investigated. The result shows that the wave frequency of the symmetric mode in the plasma layer decreases with an increase in the wave number. It is also shown that the wave frequency of the symmetric mode decreases with an increase in the spectral index r. However, the wave frequency of the anti-symmetric mode increases with an increase in the wave number. It is also found that the anti-symmetric mode wave frequency increases with an increase in the spectral index r. In addition, it is found that the influence of the self-gravitation on the symmetric mode wave frequency decreases with increasing scaled Jeans frequency. Moreover, it is found that the wave frequency of the symmetric mode increases with an increase in the dust charge; however, the anti-symmetric mode shows opposite behavior.
Stereotactic Bragg peak proton radiosurgery method
International Nuclear Information System (INIS)
Kjellberg, R.N.
1979-01-01
A brief description of the technical aspects of a stereotactic Bragg peak proton radiosurgical method for the head is presented. The preparatory radiographic studies are outlined and the stereotactic instrument and positioning of the patient are described. The instrument is so calibrated that after corrections for soft tissue and bone thickness, the Bragg peak superimposes upon the intracranial target. The head is rotated at specific intervals to allow predetermined portals of access for the beam path, all of which converge on the intracranial target. Normally, portals are arranged to oppose and overlap from both sides of the head. Using a number of beams (in sequence) on both sides of the head, the target dose is far greater than the path dose. The procedure normally takes 3/2-2 hours, following which the patient can walk away. (Auth./C.F.)
Central peaking of magnetized gas discharges
International Nuclear Information System (INIS)
Chen, Francis F.; Curreli, Davide
2013-01-01
Partially ionized gas discharges used in industry are often driven by radiofrequency (rf) power applied at the periphery of a cylinder. It is found that the plasma density n is usually flat or peaked on axis even if the skin depth of the rf field is thin compared with the chamber radius a. Previous attempts at explaining this did not account for the finite length of the discharge and the boundary conditions at the endplates. A simple 1D model is used to focus on the basic mechanism: the short-circuit effect. It is found that a strong electric field (E-field) scaled to electron temperature T e , drives the ions inward. The resulting density profile is peaked on axis and has a shape independent of pressure or discharge radius. This “universal” profile is not affected by a dc magnetic field (B-field) as long as the ion Larmor radius is larger than a
Peak Oil, Food Systems, and Public Health
Parker, Cindy L.; Kirschenmann, Frederick L.; Tinch, Jennifer; Lawrence, Robert S.
2011-01-01
Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all. PMID:21778492
Implementing peak load reduction algorithms for household electrical appliances
International Nuclear Information System (INIS)
Dlamini, Ndumiso G.; Cromieres, Fabien
2012-01-01
Considering household appliance automation for reduction of household peak power demand, this study explored aspects of the interaction between household automation technology and human behaviour. Given a programmable household appliance switching system, and user-reported appliance use times, we simulated the load reduction effectiveness of three types of algorithms, which were applied at both the single household level and across all 30 households. All three algorithms effected significant load reductions, while the least-to-highest potential user inconvenience ranking was: coordinating the timing of frequent intermittent loads (algorithm 2); moving period-of-day time-flexible loads to off-peak times (algorithm 1); and applying short-term time delays to avoid high peaks (algorithm 3) (least accommodating). Peak reduction was facilitated by load interruptibility, time of use flexibility and the willingness of users to forgo impulsive appliance use. We conclude that a general factor determining the ability to shift the load due to a particular appliance is the time-buffering between the service delivered and the power demand of an appliance. Time-buffering can be ‘technologically inherent’, due to human habits, or realised by managing user expectations. There are implications for the design of appliances and home automation systems. - Highlights: ► We explored the interaction between appliance automation and human behaviour. ► There is potential for considerable load shifting of household appliances. ► Load shifting for load reduction is eased with increased time buffering. ► Design, human habits and user expectations all influence time buffering. ► Certain automation and appliance design features can facilitate load shifting.
Peaking for optimal performance: Research limitations and future directions.
Pyne, David B; Mujika, Iñigo; Reilly, Thomas
2009-02-01
A key element of the physical preparation of athletes is the taper period in the weeks immediately preceding competition. Existing research has defined the taper, identified various forms used in contemporary sport, and examined the prescription of training volume, load, intensity, duration, and type (progressive or step). Current limitations include: the lack of studies on team, combative, racquet, and precision (target) sports; the relatively small number of randomized controlled trials; the narrow focus on a single competition (single peak) compared with multiple peaking for weekly, multi-day or multiple events; and limited understanding of the physiological, neuromuscular, and biomechanical basis of the taper. Future research should address these limitations, together with the influence of prior training on optimal tapering strategies, and the interactions between the taper and long-haul travel, heat, and altitude. Practitioners seek information on how to prescribe tapers from season to season during an athlete's career, or a team's progression through a domestic league season, or multi-year Olympic or World Cup cycle. Practical guidelines for planning effective tapers for the Vancouver 2010 and London 2012 Olympics will evolve from both experimental investigations and modelling of successful tapers currently employed in a wide range of sports.
Hanford Site peak gust wind speeds
International Nuclear Information System (INIS)
Ramsdell, J.V.
1998-01-01
Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site
Commodity hydrogen from off-peak electricity
Energy Technology Data Exchange (ETDEWEB)
Darrow, K.; Biederman, N.; Konopka, A.
1977-01-01
This paper considers the use of off-peak electrical power as an energy source for the electrolytic production of hydrogen. The present industrial uses for hydrogen are examined to determine if hydrogen produced in this fashion would be competitive with the industry's onsite production or existing hydrogen prices. The paper presents a technical and economic feasibility analysis of the various components required and of the operation of the system as a whole including production, transmission, storage, and markets.
Some practical aspects of peak kilovoltage measurements
International Nuclear Information System (INIS)
Irfan, A.Y.; Pugh, V.I.; Jeffery, C.D.
1985-01-01
The peak kilovoltage (kVsub(p)) across the X-ray tube electrodes in diagnostic X-ray machines is a most important parameter, affecting both radiation output and beam quality. Four commercially available non-invasive devices used for kVsub(p) measurement were tested using a selection of generator waveforms. The majority of the devices provided satisfactory measurements of the kVsub(p) to within approximately +- kV provided certain operating conditions are observed. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Barenboim, G.; Bernabeu, J.; Vives, O. [Universitat de Valencia, Departament de Fisica Teorica, Burjassot (Spain); Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain); Mitsou, V.A.; Romero, E. [Universitat de Valencia-CSIC, Parc Cientific U.V., IFIC, Paterna (Spain)
2016-02-15
Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E{sub T}{sup miss} > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m{sub g}
International Nuclear Information System (INIS)
Barenboim, G.; Bernabeu, J.; Vives, O.; Mitsou, V.A.; Romero, E.
2016-01-01
Recently the ATLAS experiment announced a 3 σ excess at the Z-peak consisting of 29 pairs of leptons together with two or more jets, E T miss > 225 GeV and HT > 600 GeV, to be compared with 10.6 ± 3.2 expected lepton pairs in the Standard Model. No excess outside the Z-peak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m g
Monitoring device for local power peaking coefficients
International Nuclear Information System (INIS)
Mihashi, Ishi
1987-01-01
Purpose: To determine and monitor the local power peaking coefficients by a method not depending on the combination of fuel types. Constitution: Representative values for the local power distribution can be obtained by determining corresponding burn-up degrees based on the burn-up degree of each of fuel assembly segments obtained in a power distribution monitor and by the interpolation and extrapolation of void coefficients. The typical values are multiplied with compensation coefficients for the control rod effect and coefficients for compensating the effect of adjacent fuel assemblies in a calculation device to obtain typical values for the present local power distribution compensated with all of the effects. Further, the calculation device compares them with typical values of the present local power distribution to obtain an aimed local power peaking coefficient as the maximum value thereof. According to the present invention, since the local power peaking coefficients can be determined not depending on the combination of the kind of fuels, if the combination of fuel assemblies is increased upon fuel change, the amount of operation therefor is not increased. (Kamimura, M.)
Chinese emissions peak: Not when, but how
International Nuclear Information System (INIS)
Spencer, Thomas; Colombier, Michel; Wang, Xin; Sartor, Oliver; Waisman, Henri
2016-07-01
It seems highly likely that China will overachieve its 2020 and 2030 targets, and peak its emissions before 2030 and possibly at a lower level than often assumed. This paper argues that the debate on the timing of the peak is misplaced: what matters is not when by why. For the peak to be seen as a harbinger of deep transformation, it needs to be based on significant macro-economic reform and restructuring, with attendant improvement in energy intensity. The Chinese economic model has been extraordinarily investment and resource intensive, and has driven the growth in GHG emissions. That model is no longer economically or environmentally sustainable. Therefore Chinese policy-makers are faced with a trade-off between slower short-term growth and economic reform, versus supporting short-term growth but slowing economic reform. The outcome will be crucial for the transition to a low-carbon economy. Overall, the 13. FYP (2016-2020) gives the impression of a cautious reflection of the new normal paradigm on the economic front, and a somewhat conservative translation of this shift into the energy and climate targets. Nonetheless, the 13. FYP targets set China well on the way to overachieving its 2020 pledge undertaken at COP15 in Copenhagen, and to potentially overachieving its INDC. It thus seems likely that China will achieve its emissions peak before 2030. However, the crucial question is not when China peaks, but whether the underlying transformation of the Chinese economy and energy system lays the basis for deep decarbonization thereafter. Thorough assessments of the implications of the 'new normal' for Chinese emissions and energy system trajectories, taking into account the link with the Chinese macro-economy, are needed. Scenarios provide a useful framework and should focus on a number of short-term uncertainties. Most energy system and emissions scenarios published today assume a continuity of trends between 2010-2015 and 2015-2020, which is at odds with clear
Niche-independent symmetrical self-renewal of a mammalian tissue stem cell.
Directory of Open Access Journals (Sweden)
Luciano Conti
2005-09-01
Full Text Available Pluripotent mouse embryonic stem (ES cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2 and epidermal growth factor (EGF is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying
International Nuclear Information System (INIS)
Lore, J.; Briesemeister, A.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.; Talmadge, J. N.; Zhai, K.; Guttenfelder, W.; Deng, C. B.; Spong, D. A.
2010-01-01
Electron cyclotron heated plasmas in the Helically Symmetric Experiment (HSX) feature strongly peaked electron temperature profiles; central temperatures are 2.5 keV with 100 kW injected power. These measurements, coupled with neoclassical predictions of large 'electron root' radial electric fields with strong radial shear, are evidence of a neoclassically driven thermal transport barrier. Neoclassical transport quantities are calculated using the PENTA code [D. A. Spong, Phys. Plasmas 12, 056114 (2005)], in which momentum is conserved and parallel flow is included. Unlike a conventional stellarator, which exhibits strong flow damping in all directions on a flux surface, quasisymmetric stellarators are free to rotate in the direction of symmetry, and the effect of momentum conservation in neoclassical calculations may therefore be significant. Momentum conservation is shown to modify the neoclassical ion flux and ambipolar ion root radial electric fields in the quasisymmetric configuration. The effect is much smaller in a HSX configuration where the symmetry is spoiled. In addition to neoclassical transport, a model of trapped electron mode turbulence is used to calculate the turbulent-driven electron thermal diffusivity. Turbulent transport quenching due to the neoclassically predicted radial electric field profile is needed in predictive transport simulations to reproduce the peaking of the measured electron temperature profile [Guttenfelder et al., Phys. Rev. Lett. 101, 215002 (2008)].
Martinet, Nicolas; Schneider, Peter; Hildebrandt, Hendrik; Shan, HuanYuan; Asgari, Marika; Dietrich, Jörg P.; Harnois-Déraps, Joachim; Erben, Thomas; Grado, Aniello; Heymans, Catherine; Hoekstra, Henk; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Nakajima, Reiko
2018-02-01
We study the statistics of peaks in a weak-lensing reconstructed mass map of the first 450 deg2 of the Kilo Degree Survey (KiDS-450). The map is computed with aperture masses directly applied to the shear field with an NFW-like compensated filter. We compare the peak statistics in the observations with that of simulations for various cosmologies to constrain the cosmological parameter S_8 = σ _8 √{Ω _m/0.3}, which probes the (Ωm, σ8) plane perpendicularly to its main degeneracy. We estimate S8 = 0.750 ± 0.059, using peaks in the signal-to-noise range 0 ≤ S/N ≤ 4, and accounting for various systematics, such as multiplicative shear bias, mean redshift bias, baryon feedback, intrinsic alignment, and shear-position coupling. These constraints are ˜ 25 per cent tighter than the constraints from the high significance peaks alone (3 ≤ S/N ≤ 4) which typically trace single-massive haloes. This demonstrates the gain of information from low-S/N peaks. However, we find that including S/N KiDS-450. Combining shear peaks with non-tomographic measurements of the shear two-point correlation functions yields a ˜20 per cent improvement in the uncertainty on S8 compared to the shear two-point correlation functions alone, highlighting the great potential of peaks as a cosmological probe.
Escape peak ratios in silicon X-ray charge coupled devices (CCDs)
International Nuclear Information System (INIS)
McCarthy, K.J.; Owens, A.; Keay, A.
1997-01-01
The intensity of the escape peak from the CCDs developed for the Joint European X-ray Telescope (JET-X) has been investigated over the energy range 2-10 keV. Both measured and calculated escape peak ratios (i.e., the ratio of counts in the escape peak to the sum of the counts in the escape and main peaks) are found to be in excellent agreement for all event sizes (i.e., single pixel events, 1 and 2 pixel events, etc.). Using a Monte Carlo simulation the escape peak ratio has been investigated as a function of pixel size and depletion depth. For completeness, we list the energy dependent parameterised forms for five CCDs used in three major astronomy missions. (orig.)
International Nuclear Information System (INIS)
Pehl, R.H.; Hull, E.L.; Madden, N.W.; Xing Jingshu; Friesel, D.L.
1996-01-01
A comparison of the characteristics of full-energy gamma-ray peaks and their corresponding escape peaks when high energy photons interact in radiation damaged reverse-electrode (n-type) germanium coaxial detectors is presented. Coaxial detector geometry is the dominant factor, causing charge collection to be dramatically better for interactions occurring near the outer periphery of the detector as well as increasing of the probability of escape events occurring in this region. It follows that the resolution of escape peaks is better than that of ordinary gamma-ray peaks. This is experimentally verified. A nearly identical but undamaged detector exhibited significant Doppler broadening of single escape peaks. Because double escape events preferentially occur at outer radii, energy shifts of double escape reflect extremely small amounts of charge trapping in undamaged detectors. (orig.)
Particle creation by peak electric field
Energy Technology Data Exchange (ETDEWEB)
Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)
2016-08-15
The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)
Octant vectorcardiography - the evaluation by peaks.
Laufberger, V
1982-01-01
From the Frank lead potentials a computer prints out an elementary table. Therein, the electrical space of left ventricle depolarization is divided into eight spatial parts labelled by numbers 1-8 and called octants. Within these octants six peaks are determined labelled with letters ALPR-IS. Their localization is described by six-digit topograms characteristic for each patient. From 300 cases of patients after myocardial infarction, three data bases were compiled enabling every case to be classified into classes, subclasses and types. The follow up of patients according to these principles gives an objective and detailed image about the progress of coronary artery disease.
Energy peaks: A high energy physics outlook
Franceschini, Roberto
2017-12-01
Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.
Method and apparatus for current-output peak detection
De Geronimo, Gianluigi
2017-01-24
A method and apparatus for a current-output peak detector. A current-output peak detector circuit is disclosed and works in two phases. The peak detector circuit includes switches to switch the peak detector circuit from the first phase to the second phase upon detection of the peak voltage of an input voltage signal. The peak detector generates a current output with a high degree of accuracy in the second phase.
Viable tensor-to-scalar ratio in a symmetric matter bounce
Nath Raveendran, Rathul; Chowdhury, Debika; Sriramkumar, L.
2018-01-01
Matter bounces refer to scenarios wherein the universe contracts at early times as in a matter dominated epoch until the scale factor reaches a minimum, after which it starts expanding. While such scenarios are known to lead to scale invariant spectra of primordial perturbations after the bounce, the challenge has been to construct completely symmetric bounces that lead to a tensor-to-scalar ratio which is small enough to be consistent with the recent cosmological data. In this work, we construct a model involving two scalar fields (a canonical field and a non-canonical ghost field) to drive the symmetric matter bounce and study the evolution of the scalar perturbations in the model. We find that the model can be completely described in terms of a single parameter, viz. the ratio of the scale associated with the bounce to the value of the scale factor at the bounce. We evolve the scalar perturbations numerically across the bounce and evaluate the scalar power spectra after the bounce. We show that, while the scalar and tensor perturbation spectra are scale invariant over scales of cosmological interest, the tensor-to-scalar ratio proves to be much smaller than the current upper bound from the observations of the cosmic microwave background anisotropies by the Planck mission. We also support our numerical analysis with analytical arguments.
Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2
Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui
2018-03-01
Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.
Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions
Directory of Open Access Journals (Sweden)
Derek K. Wise
2009-08-01
Full Text Available Einstein gravity in both 3 and 4 dimensions, as well as some interesting generalizations, can be written as gauge theories in which the connection is a Cartan connection for geometry modeled on a symmetric space. The relevant models in 3 dimensions include Einstein gravity in Chern-Simons form, as well as a new formulation of topologically massive gravity, with arbitrary cosmological constant, as a single constrained Chern-Simons action. In 4 dimensions the main model of interest is MacDowell-Mansouri gravity, generalized to include the Immirzi parameter in a natural way. I formulate these theories in Cartan geometric language, emphasizing also the role played by the symmetric space structure of the model. I also explain how, from the perspective of these Cartan-geometric formulations, both the topological mass in 3d and the Immirzi parameter in 4d are the result of non-simplicity of the Lorentz Lie algebra so(3,1 and its relatives. Finally, I suggest how the language of Cartan geometry provides a guiding principle for elegantly reformulating any 'gauge theory of geometry'.
PT-symmetric planar devices for field transformation and imaging
International Nuclear Information System (INIS)
Valagiannopoulos, C A; Monticone, F; Alù, A
2016-01-01
The powerful tools of transformation optics (TO) allow an effective distortion of a region of space by carefully engineering the material inhomogeneity and anisotropy, and have been successfully applied in recent years to control electromagnetic fields in many different scenarios, e.g., to realize invisibility cloaks and planar lenses. For various field transformations, it is not necessary to use volumetric inhomogeneous materials, and suitably designed ultrathin metasurfaces with tailored spatial or spectral responses may be able to realize similar functionalities within smaller footprints and more robust mechanisms. Here, inspired by the concept of metamaterial TO lenses, we discuss field transformations enabled by parity-time (PT) symmetric metasurfaces, which can emulate negative refraction. We first analyze a simple realization based on homogeneous and local metasurfaces to achieve negative refraction and imaging, and we then extend our results to arbitrary PT-symmetric two-port networks to realize aberration-free planar imaging. (paper)
Nonstandard jump functions for radically symmetric shock waves
International Nuclear Information System (INIS)
Baty, Roy S.; Tucker, Don H.; Stanescu, Dan
2008-01-01
Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.
Random matrix ensembles for PT-symmetric systems
International Nuclear Information System (INIS)
Graefe, Eva-Maria; Mudute-Ndumbe, Steve; Taylor, Matthew
2015-01-01
Recently much effort has been made towards the introduction of non-Hermitian random matrix models respecting PT-symmetry. Here we show that there is a one-to-one correspondence between complex PT-symmetric matrices and split-complex and split-quaternionic versions of Hermitian matrices. We introduce two new random matrix ensembles of (a) Gaussian split-complex Hermitian; and (b) Gaussian split-quaternionic Hermitian matrices, of arbitrary sizes. We conjecture that these ensembles represent universality classes for PT-symmetric matrices. For the case of 2 × 2 matrices we derive analytic expressions for the joint probability distributions of the eigenvalues, the one-level densities and the level spacings in the case of real eigenvalues. (fast track communication)