WorldWideScience

Sample records for single stream reach

  1. Stream Habitat Reach Summary - NCWAP [ds158

    Data.gov (United States)

    California Natural Resource Agency — The Stream Habitat - NCWAP - Reach Summary [ds158] shapefile contains in-stream habitat survey data summarized to the stream reach level. It is a derivative of the...

  2. Stream Habitat Reach Summary - North Coast [ds63

    Data.gov (United States)

    California Natural Resource Agency — The shapefile is based on habitat unit level data summarized at the stream reach level. The database represents salmonid stream habitat surveys from 645 streams of...

  3. Reach-scale stream restoration in agricultural streams of southern Minnesota alters structural and functional responses of macroinvertebrates

    Science.gov (United States)

    Dolph, Christine L.; Eggert, Susan L.; Magner, Joe; Ferrington, Leonard C.; Vondracek, Bruce C.

    2015-01-01

    Recent studies suggest that stream restoration at the reach scale may not increase stream biodiversity, raising concerns about the utility of this conservation practice. We examined whether reach-scale restoration in disturbed agricultural streams was associated with changes in macroinvertebrate community structure (total macroinvertebrate taxon richness, total macroinvertebrate density, Ephemeroptera, Plecoptera, Trichoptera [EPT] taxon richness, % abundance of EPT taxa) or secondary production (macroinvertebrate biomass over time). We collected macroinvertebrate samples over the course of 1 y from restored and unrestored reaches of 3 streams in southern Minnesota and used generalized least-square (GLS) models to assess whether measures of community structure were related to reach type, stream site, or sampling month. After accounting for effects of stream site and time, we found no significant difference in total taxon richness or % abundance of EPT taxa between restored and unrestored reaches. However, the number of EPT taxa and macroinvertebrate density were significantly higher in restored than in unrestored reaches. We compared secondary production estimates among study reaches based on 95th-percentile confidence intervals generated via bootstrapping. In each study stream, secondary production was significantly (2–3×) higher in the restored than in the unrestored reach. Higher productivity in the restored reaches was largely a result of the disproportionate success of a few dominant, tolerant taxa. Our findings suggest that reach-scale restoration may have ecological effects that are not detected by measures of total taxon richness alone.

  4. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    Science.gov (United States)

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  5. Reach-scale land use drives the stress responses of a resident stream fish.

    Science.gov (United States)

    Blevins, Zachary W; Wahl, David H; Suski, Cory D

    2014-01-01

    Abstract To date, relatively few studies have tried to determine the practicality of using physiological information to help answer complex ecological questions and assist in conservation actions aimed at improving conditions for fish populations. In this study, the physiological stress responses of fish were evaluated in-stream between agricultural and forested stream reaches to determine whether differences in these responses can be used as tools to evaluate conservation actions. Creek chub Semotilus atromaculatus sampled directly from forested and agricultural stream segments did not show differences in a suite of physiological indicators. When given a thermal challenge in the laboratory, creek chub sampled from cooler forested stream reaches had higher cortisol levels and higher metabolic stress responses to thermal challenge than creek chub collected from warmer and more thermally variable agricultural reaches within the same stream. Despite fish from agricultural and forested stream segments having different primary and secondary stress responses, fish were able to maintain homeostasis of other physiological indicators to thermal challenge. These results demonstrate that local habitat conditions within discrete stream reaches may impact the stress responses of resident fish and provide insight into changes in community structure and the ability of tolerant fish species to persist in agricultural areas.

  6. New Stream-reach Development: A Comprehensive Assessment of Hydropower Energy Potential in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shih-Chieh [ORNL; McManamay, Ryan A [ORNL; Stewart, Kevin M [ORNL; Samu, Nicole M [ORNL; Hadjerioua, Boualem [ORNL; DeNeale, Scott T [ORNL; Yeasmin, Dilruba [California State University, Fresno; Pasha, M. Fayzul K. [California State University, Fresno; Oubeidillah, Abdoul A [ORNL; Smith, Brennan T [ORNL

    2014-04-01

    The rapid development of multiple national geospatial datasets related to topography, hydrology, and environmental characteristics in the past decade have provided new opportunities for the refinement of hydropower resource potential from undeveloped stream-reaches. Through 2011 to 2013, the Oak Ridge National Laboratory (ORNL) was tasked by the Department of Energy (DOE) Water Power Program to evaluate the new stream-reach development (NSD) resource potential for more than 3 million US streams. A methodology was designed that contains three main components: (1) identification of stream-reaches with high energy density, (2) topographical analysis of stream-reaches to estimate inundated surface area and reservoir storage, and (3) environmental attribution to spatially join information related to the natural ecological systems, social and cultural settings, policies, management, and legal constraints to stream-reaches of energy potential. An initial report on methodology (Hadjerioua et al., 2013) was later reviewed and revised based on the comments gathered from two peer review workshops. After implementing the assessment across the entire United States, major findings were summarized in this final report. The estimated NSD capacity and generation, including both higher-energy-density (>1 MW per reach) and lower-energy-density (<1 MW per reach) stream-reaches is 84.7 GW, around the same size as the existing US conventional hydropower nameplate capacity (79.5 GW; NHAAP, 2013). In terms of energy, the total undeveloped NSD generation is estimated to be 460 TWh/year, around 169% of average 2002 2011 net annual generation from existing conventional hydropower plants (272 TWh/year; EIA, 2013). Given the run-of-river assumption, NSD stream-reaches have higher capacity factors (53 71%), especially compared with conventional larger-storage peaking-operation projects that usually have capacity factors of around 30%. The highest potential is identified in the Pacific Northwest

  7. Uncertainty of solute flux estimation in ungauged small streams: potential implications for input-output nutrient mass balances at stream reach scale

    Directory of Open Access Journals (Sweden)

    A. Butturini

    2005-01-01

    Full Text Available Input-output mass balances within stream reaches provide in situ estimates of stream nutrient retention/release under a wide spectrum of hydrological conditions. Providing good estimates of the mass balances for nutrients depends on precise hydrological monitoring and good chemical characterisation of stream water at the input and output ends of the stream reach. There is a need to optimise the hydrological monitoring and the frequencies of water sampling to yield precise annual mass balances, so as to avoid undue cost - high resolution monitoring and subsequent chemical analysis can be labour intensive and costly. In this paper, simulation exercises were performed using a data set created to represent the instantaneous discharge and solute dynamics at the input and output ends of a model stream reach during a one year period. At the output end, stream discharge and water chemistry were monitored continuously, while the input end was assumed to be ungauged; water sampling frequency was changed arbitrarily. Instantaneous discharge at the ungauged sampling point was estimated with an empirical power model linking the discharge to the catchment area (Hooper, 1986. The model thus substitutes for the additional gauge station. Simulations showed that 10 days was the longest chemical sampling interval which could provide reach annual mass balances of acceptable precision. Presently, the relationship between discharge and catchment area is usually assumed to be linear but simulations indicate that small departures from the linearity of this relationship could cause dramatic changes in the mass balance estimations.

  8. Gaining, losing, and dry stream reaches at Bear Creek Valley, Oak Ridge, Tennessee, March and September 1994

    International Nuclear Information System (INIS)

    Robinson, J.A.; Mitchell, R.L. III.

    1996-01-01

    A study was conducted, to delineate stream reaches that were gaining flow, losing flow, or that were dry in the upper reaches of Bear Creek Valley near the Y-12 Plant in Oak Ridge, Tennessee. The study included a review of maps and discharge data from a seepage investigation conducted at Bear Creek Valley; preparation of tables showing site identification and discharge and stream reaches that were gaining flow, losing flow, or that were dry; and preparation of maps showing measurement site locations and discharge measurements, and gaining, losing, and dry stream reaches. This report will aid in developing a better understanding of ground-water and surface-water interactions in the upper reaches of Bear Creek

  9. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  10. The role of natural vegetative disturbance in determining stream reach characteristics in central Idaho and western Montana

    Science.gov (United States)

    Roper, B.B.; Jarvis, B.; Kershner, J.L.

    2007-01-01

    We evaluated the relationship between natural vegetative disturbance and changes in stream habitat and macroinvertebrate metrics within 33 randomly selected minimally managed watersheds in central Idaho and western Montana. Changes in stream reach conditions were related to vegetative disturbance for the time periods from 1985 to 1993 and 1993 to 2000, respectively, at the following three spatial scales; within the stream buffer and less than 1 km from the evaluated reach, within the watershed and within 1 km of the stream reach, and within the watershed. Data for stream reaches were based on field surveys and vegetative disturbance was generated for the watershed above the sampled reach using remotely sensed data and geographical information systems. Large scale (>100 ha) vegetative disturbance was common within the study area. Even though natural vegetative disturbance rates were high, we found that few of the measured attributes were related to the magnitude of vegetative disturbance. The three physical habitat attributes that changed significantly were sinuosity, median particle size, and percentage of undercut bank; each was related to the disturbance in the earlier (1985-1993) time frame. There was a significant relationship between changes in two macroinvertebrate metrics, abundance and percent collectors/filterers, and the magnitude of disturbance during the more recent time period (1993-2000). We did not find a consistent relationship between the location of the disturbance within the watershed and changes in stream conditions. Our findings suggest that natural vegetative disturbance within the northern Rocky Mountains is complex but likely does not result in substantial short-term changes in the characteristics of most stream reaches. ?? 2007 by the Northwest Scientific Association. All rights reserved.

  11. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  12. Simulating stream response to floodplain connectivity, reforestation and wetland restoration from reach to catchment scales

    Science.gov (United States)

    Singh, N.; Bomblies, A.; Wemple, B. C.; Ricketts, T.

    2017-12-01

    Natural infrastructure (e.g., floodplains, forests) can offer multiple ecosystem services (ES), including flood resilience and water quality improvement. In order to maintain these ES, state, federal and non-profit organizations may consider various interventions, such as increased floodplain connectivity, reforestation, and wetland restoration to minimize flood peaks and erosion during events. However, the effect of these interventions on hydro-geomorphic responses of streams from reach to catchment scales (>100 km2) are rarely quantified. We used stream geomorphic assessment datasets with a hydraulic model to investigate the influence of above mentioned interventions on stream power (SP), water depth (WD) and channel velocity (VEL) during floods of 2yr and 100yr return periods for three catchments in the Lake Champlain basin, Vermont. To simulate the effect of forests and wetlands, we changed the Manning's coefficient in the model, and to simulate the increased connectivity of the floodplain, we edited the LIDAR data to lower bank elevations. We find that the wetland scenario resulted in the greatest decline in WD and SP, whereas forested scenario exhibited maximum reduction in VEL. The connectivity scenario showed a decline in almost all stream responses, but the magnitude of change was relatively smaller. On average, 35% (2yr) and 50% (100yr) of altered reaches demonstrated improvement over baseline, and 39% (2yr) and 31% (100yr) of altered reaches showed degradation over baseline, across all interventions. We also noted changes in stream response along unaltered reaches (>30%), where we did not make interventions. Overall, these results point to the complexity related to stream interventions and suggest careful evaluation of spatially explicit tradeoffs of these interventions on river-floodplain ecosystem. The proposed approach of simulating and understanding stream's response to interventions, prior to the implementation of restoration activities, may lead to

  13. Hyporheic invertebrate assemblages at reach scale in a Neotropical stream in Brazil.

    Science.gov (United States)

    Mugnai, R; Messana, G; Di Lorenzo, T

    2015-11-01

    In the Neotropical Region, information concerning hyporheic communities is virtually non-existent. We carried out a sampling survey in the hyporheic zone of the Tijuca River, in the Tijuca National Park, located in the urban area of the city of Rio de Janeiro. Biological samples from the hyporheic zone were collected in three different stream reaches, in June 2012. The main objectives were: 1) to describe the structure of invertebrate assemblages in the hyporheic zone of a neotropical stream; 2) to apply a reach-scale approach in order to investigate spatial patterns of the hyporheic assemblages in relation to hydrology, depth and microhabitat typology. A total of 1460 individuals were collected and identified in 31 taxa belonging to Nematoda, Annelida, Crustacea, Hydrachnidia and Insecta. The class Insecta dominated the upper layer of the hyporheic zone. Copepods were the most abundant taxon among crustaceans and occurred mostly in the upwelling areas of the reaches. The results of this study represent one of the few contributions so far about hyporheic invertebrate assemblages of the Neotropical Region.

  14. Recovery of Three Arctic Stream Reaches From Experimental Nutrient Enrichment.

    Science.gov (United States)

    Green, A. C.; Benstead, J. P.; Deegan, L. A.; Peterson, B. J.; Bowden, W. B.; Huryn, A. D.; Slavik, K.; Hershey, A. E.

    2005-05-01

    We examined multi-year patterns in community recovery from experimental low-concentration nutrient (N+P and P only) enrichment in three reaches of two Arctic tundra streams (Kuparuk River and Oksrukuyik Creek) on the North Slope of Alaska (USA). Rates of recovery varied among community components and depended on duration of enrichment (2 to 13 consecutive growing seasons). Biomass and C:P ratio of epilithic algae returned to reference levels rapidly (within 2 years), regardless of enrichment duration. Bryophyte cover, which increased greatly after long-term enrichment (>8 years), recovered to reference levels only after 7 years, when a storm scoured most remnant moss in the recovering reach. Persistence of bryophytes slowed recovery rates of insect taxa that had either been positively (e.g., Ephemerella, most chironomid taxa) or negatively (e.g., Orthocladius rivulorum) affected by this shift in dominant primary producer and its consequence for benthic habitat. Growth of Arctic grayling (adults and young-of-year), the top predator, returned to reference rates within two years. Recovery of these Arctic stream ecosystems from nutrient enrichment was consequently controlled largely by interactions between duration of enrichment and physical disturbance, mediated through physical habitat shifts caused by bryophytes.

  15. Basin Visual Estimation Technique (BVET) and Representative Reach Approaches to Wadeable Stream Surveys: Methodological Limitations and Future Directions

    Science.gov (United States)

    Lance R. Williams; Melvin L. Warren; Susan B. Adams; Joseph L. Arvai; Christopher M. Taylor

    2004-01-01

    Basin Visual Estimation Techniques (BVET) are used to estimate abundance for fish populations in small streams. With BVET, independent samples are drawn from natural habitat units in the stream rather than sampling "representative reaches." This sampling protocol provides an alternative to traditional reach-level surveys, which are criticized for their lack...

  16. A Rapid Method to Score Stream Reaches Based on the Overall Performance of Their Main Ecological Functions

    Science.gov (United States)

    Rowe, David K.; Parkyn, Stephanie; Quinn, John; Collier, Kevin; Hatton, Chris; Joy, Michael K.; Maxted, John; Moore, Stephen

    2009-06-01

    A method was developed to score the ecological condition of first- to third-order stream reaches in the Auckland region of New Zealand based on the performance of their key ecological functions. Such a method is required by consultants and resource managers to quantify the reduction in ecological condition of a modified stream reach relative to its unmodified state. This is a fundamental precursor for the determination of fair environmental compensation for achieving no-net-loss in overall stream ecological value. Field testing and subsequent use of the method indicated that it provides a useful measure of ecological condition related to the performance of stream ecological functions. It is relatively simple to apply compared to a full ecological study, is quick to use, and allows identification of the degree of impairment of each of the key ecological functions. The scoring system was designed so that future improvements in the measurement of stream functions can be incorporated into it. Although the methodology was specifically designed for Auckland streams, the principles can be readily adapted to other regions and stream types.

  17. Environmental stressors afflicting tailwater stream reaches across the United States

    Science.gov (United States)

    Miranda, Leandro E.; Krogman, R. M.

    2014-01-01

    The tailwater is the reach of a stream immediately below an impoundment that is hydrologically, physicochemically and biologically altered by the presence and operation of a dam. The overall goal of this study was to gain a nationwide awareness of the issues afflicting tailwater reaches in the United States. Specific objectives included the following: (i) estimate the percentage of reservoirs that support tailwater reaches with environmental conditions suitable for fish assemblages throughout the year, (ii) identify and quantify major sources of environmental stress in those tailwaters that do support fish assemblages and (iii) identify environmental features of tailwater reaches that determine prevalence of key fish taxa. Data were collected through an online survey of fishery managers. Relative to objective 1, 42% of the 1306 reservoirs included in this study had tailwater reaches with sufficient flow to support a fish assemblage throughout the year. The surface area of the reservoir and catchment most strongly delineated reservoirs maintaining tailwater reaches with or without sufficient flow to support a fish assemblage throughout the year. Relative to objective 2, major sources of environmental stress generally reflected flow variables, followed by water quality variables. Relative to objective 3, zoogeography was the primary factor discriminating fish taxa in tailwaters, followed by a wide range of flow and water quality variables. Results for objectives 1–3 varied greatly among nine geographic regions distributed throughout the continental United States. Our results provide a large-scale view of the effects of reservoirs on tailwater reaches and may help guide research and management needs.

  18. SST: Single-Stream Temporal Action Proposals

    KAUST Repository

    Buch, Shyamal; Escorcia, Victor; Shen, Chuanqi; Ghanem, Bernard; Niebles, Juan Carlos

    2017-01-01

    Our paper presents a new approach for temporal detection of human actions in long, untrimmed video sequences. We introduce Single-Stream Temporal Action Proposals (SST), a new effective and efficient deep architecture for the generation of temporal action proposals. Our network can run continuously in a single stream over very long input video sequences, without the need to divide input into short overlapping clips or temporal windows for batch processing. We demonstrate empirically that our model outperforms the state-of-the-art on the task of temporal action proposal generation, while achieving some of the fastest processing speeds in the literature. Finally, we demonstrate that using SST proposals in conjunction with existing action classifiers results in improved state-of-the-art temporal action detection performance.

  19. SST: Single-Stream Temporal Action Proposals

    KAUST Repository

    Buch, Shyamal

    2017-11-09

    Our paper presents a new approach for temporal detection of human actions in long, untrimmed video sequences. We introduce Single-Stream Temporal Action Proposals (SST), a new effective and efficient deep architecture for the generation of temporal action proposals. Our network can run continuously in a single stream over very long input video sequences, without the need to divide input into short overlapping clips or temporal windows for batch processing. We demonstrate empirically that our model outperforms the state-of-the-art on the task of temporal action proposal generation, while achieving some of the fastest processing speeds in the literature. Finally, we demonstrate that using SST proposals in conjunction with existing action classifiers results in improved state-of-the-art temporal action detection performance.

  20. New Stream-reach Development (NSD): A Comprehensive Assessment of Hydropower Energy Potential in the United States Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-04-25

    The U.S. Department of Energy (DOE) Water Power Program tasked Oak Ridge National Laboratory with evaluating the new stream-reach development (NSD) resource potential of more than 3 million U.S. streams in order to help individuals and organizations evaluate the feasibility of developing new hydropower sources in the United States.

  1. The effects of road crossings on prairie stream habitat and function

    Science.gov (United States)

    Bouska, Wesley W.; Keane, Timothy; Paukert, Craig P.

    2010-01-01

    Improperly designed stream crossing structures may alter the form and function of stream ecosystems and habitat and prohibit the movement of aquatic organisms. Stream sections adjoining five concrete box culverts, five low-water crossings (concrete slabs vented by one or multiple culverts), and two large, single corrugated culvert vehicle crossings in eastern Kansas streams were compared to reference reaches using a geomorphologic survey and stream classification. Stream reaches were also compared upstream and downstream of crossings, and crossing measurements were used to determine which crossing design best mimicked the natural dimensions of the adjoining stream. Four of five low-water crossings, three of five box culverts, and one of two large, single corrugated pipe culverts changed classification from upstream to downstream of the crossings. Mean riffle spacing upstream at low-water crossings (8.6 bankfull widths) was double that of downstream reaches (mean 4.4 bankfull widths) but was similar upstream and downstream of box and corrugated pipe culverts. There also appeared to be greater deposition of fine sediments directly upstream of these designs. Box and corrugated culverts were more similar to natural streams than low-water crossings at transporting water, sediments, and debris during bankfull flows.

  2. Relationships of sedimentation and benthic macroinvertebrate assemblages in headwater streams using systematic longitudinal sampling at the reach scale.

    Science.gov (United States)

    Longing, S D; Voshell, J R; Dolloff, C A; Roghair, C N

    2010-02-01

    Investigating relationships of benthic invertebrates and sedimentation is challenging because fine sediments act as both natural habitat and potential pollutant at excessive levels. Determining benthic invertebrate sensitivity to sedimentation in forested headwater streams comprised of extreme spatial heterogeneity is even more challenging, especially when associated with a background of historical and intense watershed disturbances that contributed unknown amounts of fine sediments to stream channels. This scenario exists in the Chattahoochee National Forest where such historical timber harvests and contemporary land-uses associated with recreation have potentially affected the biological integrity of headwater streams. In this study, we investigated relationships of sedimentation and the macroinvertebrate assemblages among 14 headwater streams in the forest by assigning 30, 100-m reaches to low, medium, or high sedimentation categories. Only one of 17 assemblage metrics (percent clingers) varied significantly across these categories. This finding has important implications for biological assessments by showing streams impaired physically by sedimentation may not be impaired biologically, at least using traditional approaches. A subsequent multivariate cluster analysis and indicator species analysis were used to further investigate biological patterns independent of sedimentation categories. Evaluating the distribution of sedimentation categories among biological reach clusters showed both within-stream variability in reach-scale sedimentation and sedimentation categories generally variable within clusters, reflecting the overall physical heterogeneity of these headwater environments. Furthermore, relationships of individual sedimentation variables and metrics across the biological cluster groups were weak, suggesting these measures of sedimentation are poor predictors of macroinvertebrate assemblage structure when using a systematic longitudinal sampling design

  3. From bottles to stream reaches and networks: Consequences of scale in how we interpret the function of freshwaters in the carbon cycle

    Science.gov (United States)

    Hotchkiss, E. R.

    2017-12-01

    Freshwater biological processes can alter the quantity and quality of organic carbon (OC) inputs from land before they are transported downstream, but the relative role of hydrologic transport and in-stream processing is still not well quantified at the scale of fluvial networks. Despite much research on the role of biology and hydrology in governing the form and fate of C in inland waters, conclusions about the function of freshwater ecosystems in modifying OC still largely depend on where we draw our ecosystem boundaries, i.e., the spatial scale of measurements used to assess OC transformations. Here I review freshwater OC uptake rates derived from bioassay incubations, synoptic modeling, reach-scale experiments, and ecosystem OC spiraling estimates. Median OC uptake velocities from standard bioassay incubations (0.02 m/d) and synoptic modeling (0.04 m/d) are 1-2 orders of magnitude lower than reach-scale experimental DOC additions and ecosystem OC spiraling estimates (2.2 and 0.27 m/d, respectively) in streams and rivers. Together, ecosystem metabolism and OC fluxes can be used to estimate the distance OC travels before being consumed and respired as CO2 through biological processes (i.e., OC spiraling), allowing for a more mechanistic understanding of the role of ecosystem processes and hydrologic fluxes in modifying downstream OC transport. Beyond the reach scale, data from stream network and stream-lake-river modeling simulations show how we may use linked sampling sites within networks to better understand the integrated sources and fate of OC in freshwaters. We currently underestimate the role of upstream processes in contributing to downstream fluxes: moving from single-ecosystem comparisons to linked-ecosystem simulations increases the contribution of in situ OC processing to CO2 emissions from 30% to >40%. Insights from literature reviews, ecosystem process measurements, and model simulations provide a framework for future considerations of integrated C

  4. Occurrence of Hirudinea species in a post urban reach of a Patagonian mountain stream

    Directory of Open Access Journals (Sweden)

    M. Laura Miserendino

    2014-09-01

    Full Text Available Temporal (May 2005 to February 2006 and habitat distribution (pools and riffles of Hirudinea species was analyzed at a post urban reach from Esquel stream (Chubut province, Patagonia, Argentina. Site was located 5.7 km downstream a Waste Treatment Plant. Mean values of nutrients: ammonia, nitrates and soluble reactive phosphate, as well water conductivity, turbidity and total suspended solids indicated physical and organic pollution. Leeches assemblage was composed by the glossiphonids: Helobdella scutifera Blanchard, 1900, H. michaelseni (Blanchard, 1900, H. simplex (Moore, 1911, Helobdella sp., H. hyalina Ringuelet, 1942, H. obscura Ringuelet, 1942 and the semiscolecid Patagoniobdella variabilis (Blanchard, 1900. From these H. hyalina and H. obscura are new records for Chubut province. Helobdella hyalina (810 ind.m-2 and H. simplex (465 ind. m-2 clearly dominated the assemblage at the reach. Only H. simplex displayed a spatial preference being significantly more abundant in pools than in riffle habitats (p<0.001. Species recruitment occurred mostly at September, December and March when juveniles were very abundant. Although several species of Helobdella were able to live in the disturbed section of the stream, only H. simplex and H. hyalina sustained large populations at the site and can be considered as tolerant to organic enrichment. This information is valuable to future studies on stream condition assessment in mountainous areas in Patagonia, and in other areas in which these species are present.

  5. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  6. Stream profile analysis using a step backwater model for selected reaches in the Chippewa Creek basin in Medina, Wayne, and Summit Counties, Ohio

    Science.gov (United States)

    Straub, David E.; Ebner, Andrew D.

    2011-01-01

    The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.

  7. Variability of streambed hydraulic conductivity in an intermittent stream reach regulated by Vented Dams: A case study

    Science.gov (United States)

    Naganna, Sujay Raghavendra; Deka, Paresh Chandra

    2018-07-01

    The hydro-geological properties of streambed together with the hydraulic gradients determine the fluxes of water, energy and solutes between the stream and underlying aquifer system. Dam induced sedimentation affects hyporheic processes and alters substrate pore space geometries in the course of progressive stabilization of the sediment layers. Uncertainty in stream-aquifer interactions arises from the inherent complex-nested flow paths and spatio-temporal variability of streambed hydraulic properties. A detailed field investigation of streambed hydraulic conductivity (Ks) using Guelph Permeameter was carried out in an intermittent stream reach of the Pavanje river basin located in the mountainous, forested tract of western ghats of India. The present study reports the spatial and temporal variability of streambed hydraulic conductivity along the stream reach obstructed by two Vented Dams in sequence. Statistical tests such as Levene's and Welch's t-tests were employed to check for various variability measures. The strength of spatial dependence and the presence of spatial autocorrelation among the streambed Ks samples were tested by using Moran's I statistic. The measures of central tendency and dispersion pointed out reasonable spatial variability in Ks distribution throughout the study reach during two consecutive years 2016 and 2017. The streambed was heterogeneous with regard to hydraulic conductivity distribution with high-Ks zones near the backwater areas of the vented dam and low-Ks zones particularly at the tail water section of vented dams. Dam operational strategies were responsible for seasonal fluctuations in sedimentation and modifications to streambed substrate characteristics (such as porosity, grain size, packing etc.), resulting in heterogeneous streambed Ks profiles. The channel downstream of vented dams contained significantly more cohesive deposits of fine sediment due to the overflow of surplus suspended sediment-laden water at low velocity

  8. The Effect of Beaver Activity on the Ammonium Uptake and Water Residence Time Characteristics of a Third-Order Stream Reach

    Science.gov (United States)

    Briggs, M.; Gooseff, M. N.; Wollheim, W. M.; Peterson, B. J.; Morkeski, K.

    2009-12-01

    Increasing beaver populations within low gradient basins in the northeastern United States are fundamentally changing the way water and dissolved nutrients are exported through these stream networks to the coast. Beaver dams can increase water residence time and contact with organic material, promote anoxic conditions and enhance both surface and hyporheic transient storage; all of these may have an impact on biogeochemical reactivity and nutrient retention. To quantitatively assess some of these effects we co-injected NaCl and NH4+ into the same 3rd-order stream reach in Massachusetts, USA under pre- and post-dam conditions. These experiments were done at similar discharge rates to isolate the impacts of a large natural beaver dam (7 m X 1.3 m) on the low-gradient (0.002) system where variable discharge also imparts a strong control on residence time. During the post-dam experiment there was an estimated 2300 m3 of water impounded behind the structure, which influenced more than 300 m of the 650 m stream reach. Our results showed that median transport time through the reach increased by 160% after dam construction. Additionally the tracer tailing time normalized to the corresponding median transport time increased from 1.08 to 1.51, indicating a pronounced tailing of the tracer signal in the post-dam condition. Data collected within the beaver pond just upstream of the dam indicated poor mixing and the presence of preferential flow paths through the generally stagnant zone. The uptake length (Sw) for NH4+ was 1250 m under the pre-dam condition, and may have changed for the post-dam reach in part because of the observed changes in residence time. As beaver population growth continues within these basins the consequences may be a smoothing of the outlet hydrograph and increased nutrient and organic matter removal and storage along the stream network.

  9. ESTIMATION OF THE TEMPERATURE RISE OF A MCU ACID STREAM PIPE IN NEAR PROXIMITY TO A SLUDGE STREAM PIPE

    International Nuclear Information System (INIS)

    Fondeur, F; Michael Poirier, M; Samuel Fink, S

    2007-01-01

    Effluent streams from the Modular Caustic-Side Solvent Extraction Unit (MCU) will transfer to the tank farms and to the Defense Waste Processing Facility (DWPF). These streams will contain entrained solvent. A significant portion of the Strip Effluent (SE) pipeline (i.e., acid stream containing Isopar(reg s ign) L residues) length is within one inch of a sludge stream. Personnel envisioned the sludge stream temperature may reach 100 C during operation. The nearby SE stream may receive heat from the sludge stream and reach temperatures that may lead to flammability issues once the contents of the SE stream discharge into a larger reservoir. To this end, personnel used correlations from the literature to estimate the maximum temperature rise the SE stream may experience if the nearby sludge stream reaches boiling temperature. Several calculation methods were used to determine the temperature rise of the SE stream. One method considered a heat balance equation under steady state that employed correlation functions to estimate heat transfer rate. This method showed the maximum temperature of the acid stream (SE) may exceed 45 C when the nearby sludge stream is 80 C or higher. A second method used an effectiveness calculation used to predict the heat transfer rate in single pass heat exchanger. By envisioning the acid and sludge pipes as a parallel flow pipe-to-pipe heat exchanger, this method provides a conservative estimation of the maximum temperature rise. Assuming the contact area (i.e., the area over which the heat transfer occurs) is the whole pipe area, the results found by this method nearly matched the results found with the previous calculation method. It is recommended that the sludge stream be maintained below 80 C to minimize a flammable vapor hazard from occurring

  10. Using heat to characterize streambed water flux variability in four stream reaches

    Science.gov (United States)

    Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.

    2008-01-01

    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  11. Reach Address Database (RAD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reach Address Database (RAD) stores the reach address of each Water Program feature that has been linked to the underlying surface water features (streams,...

  12. Morphology of a Wetland Stream

    Science.gov (United States)

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  13. Identifying ephemeral and perennial stream reaches using apparent thermal inertia for an ungauged basin: The Rio Salado, Central New Mexico

    Science.gov (United States)

    Night and day temperature images from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing images are used to identify ephemeral and perennial stream reaches for use in the calibration of an integrated hydrologic model of an ungauged basin. The concept is based on a...

  14. Stream Crossings

    Data.gov (United States)

    Vermont Center for Geographic Information — Physical measurements and attributes of stream crossing structures and adjacent stream reaches which are used to provide a relative rating of aquatic organism...

  15. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    Science.gov (United States)

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each

  16. Groundwater flux estimation in streams: A thermal equilibrium approach

    Science.gov (United States)

    Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon

    2018-06-01

    Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.

  17. 10 Gb/s bidirectional single fibre long reach PON link with distributed Raman amplification

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Kjær, Rasmus; Jeppesen, Palle

    2006-01-01

    We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only.......We report operation of a single fibre bidirectional 80 km long reach PON link with symmetric up- and-downstream data rate of 10 Gb/s supported by distributed Raman fibre amplification only....

  18. Stream-Groundwater Interaction Buffers Seasonal Changes in Urban Stream Water Quality

    Science.gov (United States)

    Ledford, S. H.; Lautz, L. K.

    2013-12-01

    Urban streams in the northeastern United States have large road salt inputs during winter, increased nonpoint sources of inorganic nitrogen, and decreased short-term and permanent storage of nutrients. Meadowbrook Creek, a first order stream in Syracuse, New York, flows along a negative urbanization gradient, from a channelized and armored stream running through the middle of a roadway to a pool-riffle stream meandering through a broad, vegetated floodplain with a riparian aquifer. In this study we investigated how reconnection to groundwater and introduction of riparian vegetation impacted surface water chemistry by making bi-weekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. Chloride concentrations in the upstream, urban reach of Meadowbrook Creek were strongly influenced by discharge of road salt to the creek during snow melt events in winter and by the chemistry of water draining an upstream retention basin in summer. Chloride concentrations ranged from 161.2 mg/L in August to 2172 mg/L in February. Chloride concentrations in the downstream, 'connected' reach had less temporal variation, ranging from 252.0 mg/L in August to 1049 mg/L in January, and were buffered by groundwater discharge, as the groundwater chloride concentrations during the sampling period ranged from 84.0 to 655.4 mg/L. Groundwater discharge resulted in higher chloride concentrations in summer and lower concentrations in winter in the connected reach relative to the urban reach, minimizing annual variation. In summer, there was little-to-no nitrate in the urban reach due to a combination of limited sources and high primary productivity. In contrast, during the summer, nitrate concentrations reached over 1 mg N/L in the connected reach due to the presence of riparian vegetation and lower nitrate uptake due to cooler temperatures and shading. During the winter, when temperatures fell below freezing, nitrate concentrations in the urban reach

  19. Experimental measure of arm stiffness during single reaching movements with a time-frequency analysis

    OpenAIRE

    Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R.

    2013-01-01

    We tested an innovative method to estimate joint stiffness and damping during multijoint unfettered arm movements. The technique employs impulsive perturbations and a time-frequency analysis to estimate the arm's mechanical properties along a reaching trajectory. Each single impulsive perturbation provides a continuous estimation on a single-reach basis, making our method ideal to investigate motor adaptation in the presence of force fields and to study the control of movement in impaired ind...

  20. A morphological comparison of narrow, low-gradient streams traversing wetland environments to alluvial streams.

    Science.gov (United States)

    Jurmu, Michael C

    2002-12-01

    Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.

  1. Influence of Beaver Dams on Channel Complexity, Hydrology, and Temperature Regime in a Mountainous Stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2013-12-01

    Beaver dams and beaver activity affect hydrologic processes, sediment transport, channel complexity and water quality of streams. Beaver ponds, which form behind beaver dams, increase in-channel water storage affecting the timing and volume of flow and resulting in the attenuation and flattening of the hydrograph. Channel complexity also increases the potential for transient storage (both surface and subsurface) and influences stream temperature. Impacts of beaver dams and beaver activity on stream responses are difficult to quantify because responses are dynamic and spatially variable. Few studies have focused on the reach scale temporal influences on stream responses and further research is needed particularly in quantifying the influence of beaver dams and their role in shaping the stream habitat. This study explores the changing hydrology and temperature regime of Curtis Creek, a mountainous stream located in Northern Utah, in a 560 m long reach where groundwater exchanges and temperature differences were observed over a three-year period. We have collected continuous stream discharge, stream temperature data and performed tracer experiments. During the first year, we were able to capture the pre-beaver activity. In the second year, we captured the impacts of some beaver activity with only a few dams built in the reach, while the third year included the effects of an entire active beaver colony. By the end of the study period, a single thread channel had been transformed into a channel with side channels and backwaters at multiple locations therefore increasing channel complexity. The cumulative influence of beaver dams on reach scale discharge resulted in a slightly losing reach that developed into a gaining reach. At the smaller sub-reach scale, both losing to gaining and gaining to losing transformations were observed. Temperature differences showed a warming effect of beaver dams at the reach scale. The reach stream temperature difference increased on

  2. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater‑facility-impacted stream reach

    Science.gov (United States)

    Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.

    2016-01-01

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.

  3. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.

  4. Phenomena and characteristics of barrier river reaches in the middle and lower Yangtze River, China

    Science.gov (United States)

    You, Xingying; Tang, Jinwu

    2017-06-01

    Alluvial river self-adjustment describes the mechanism whereby a river that was originally in an equilibrium state of sediment transport encounters some disturbance that destroys the balance and results in responses such as riverbed deformation. A systematic study of historical and recent aerial photographs and topographic maps in the Middle and Lower Reaches of the Yangtze River (MLYR) shows that river self-adjustment has the distinguishing feature of transferring from upstream to downstream, which may affect flood safety, waterway morphology, bank stability, and aquatic environmental safety over relatively long reaches downstream. As a result, it is necessary to take measures to control or block this transfer. Using the relationship of the occurrence time of channel adjustments between the upstream and downstream, 34 single-thread river reaches in the MLYR were classified into four types: corresponding, basically corresponding, basically not corresponding, not corresponding. The latter two types, because of their ability to prevent upstream channel adjustment from transferring downstream, are called barrier river reaches in this study. Statistics indicate that barrier river reaches are generally single thread and slightly curved, with a narrow and deep cross-sectional morphology, and without flow deflecting nodes in the upper and middle parts of reaches. Moreover, in the MLYR, barrier river reaches have a hydrogeometric coefficient of {}1.2‱, a silty clay content of the concave bank {>}{9.5}%, and a median diameter of the bed sediment {>}{0.158} mm. The barrier river reach mechanism lies in that can effectively centralise the planimetric position of the main stream from different upstream directions, meaning that no matter how the upper channel adjusts, the main stream shows little change, providing relatively stable inflow conditions for the lower reaches. Regarding river regulation, it is necessary to optimise the benefits of barrier river reaches; long river

  5. Analysis of hydraulic characteristics for stream diversion in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jin; Jun, Kye-Won [Chungbuk National University, Cheongju(Korea)

    2001-10-31

    This study is the analysis of hydraulic characteristics for stream diversion reach by numerical model test. Through it we can provide the basis data in flood, and in grasping stream flow characteristics. Analysis of hydraulic characteristics in Seoknam stream were implemented by using computer model HEC-RAS(one-dimensional model) and RMA2(two-dimensional finite element model). As a result we became to know that RMA2 to simulate left, main channel, right in stream is more effective method in analysing flow in channel bends, steep slope, complex bed form effect stream flow characteristics, than HEC-RAS. (author). 13 refs., 3 tabs., 5 figs.

  6. Quantifying Forested Riparian Buffer Ability to Ameliorate Stream Temperature in a Missouri Ozark Border Stream of the Central U.S

    Science.gov (United States)

    Bulliner, E. A.; Hubbart, J. A.

    2009-12-01

    Riparian buffers play an important role in modulating stream water quality, including temperature. There is a need to better understand riparian form and function to validate and improve contemporary management practices. Further studies are warranted to characterize energy attenuation by forested riparian canopy layers that normally buffer stream temperature, particularly in the central hardwood forest regions of the United States where relationships between canopy density and stream temperature are unknown. To quantify these complex processes, two intensively instrumented hydroclimate stations were installed along two stream reaches of a riparian stream in central Missouri, USA in the winter of 2008. Hydroclimate stations are located along stream reaches oriented in both cardinal directions, which will allow interpolation of results to other orientations. Each station consists of an array of instrumentation that senses the flux of water and energy into and out of the riparian zone. Reference data are supplied from a nearby flux tower (US DOE) located on top of a forested ridge. The study sites are located within a University of Missouri preserved wildland area on the border of the southern Missouri’s Ozark region, an ecologically distinct region in the central United States. Limestone underlies the study area, resulting in a distinct semi-Karst hydrologic system. Vegetation forms a complex, multi-layered canopy extending from the stream edge through the riparian zone and into surrounding hills. Climate is classified as humid continental, with approximate average annual temperature and precipitation of 13.2°C and 970mm, respectively. Preliminary results (summer 2009 data) indicate incoming short-wave radiation is 24.9% higher at the N-S oriented stream reach relative to the E-W oriented reach. Maximum incoming short wave radiation during the period was 64.5% lower at the N-S reach relative to E-W reach. Average air temperature for the E-W reach was 0.3°C lower

  7. Effects of turbulent hyporheic mixing on reach-scale solute transport

    Science.gov (United States)

    Roche, K. R.; Li, A.; Packman, A. I.

    2017-12-01

    Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of

  8. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams.

    Science.gov (United States)

    Lorion, Christopher M; Kennedy, Brian P

    2009-03-01

    Riparian forest buffers may play a critical role in moderating the impacts of deforestation on tropical stream ecosystems, but very few studies have examined the ecological effects of riparian buffers in the tropics. To test the hypothesis that riparian forest buffers can reduce the impacts of deforestation on tropical stream biota, we sampled fish assemblages in lowland headwater streams in southeastern Costa Rica representing three different treatments: (1) forested reference stream reaches, (2) stream reaches adjacent to pasture with a riparian forest buffer averaging at least 15 m in width on each bank, and (3) stream reaches adjacent to pasture without a riparian forest buffer. Land cover upstream from the study reaches was dominated by forest at all of the sites, allowing us to isolate the reach-scale effects of the three study treatments. Fish density was significantly higher in pasture reaches than in forest and forest buffer reaches, mostly due to an increase in herbivore-detritivores, but fish biomass did not differ among reach types. Fish species richness was also higher in pasture reaches than in forested reference reaches, while forest buffer reaches were intermediate. Overall, the taxonomic and trophic structure of fish assemblages in forest and forest buffer reaches was very similar, while assemblages in pasture reaches were quite distinct. These patterns were persistent across three sampling periods during our 15-month study. Differences in stream ecosystem conditions between pasture reaches and forested sites, including higher stream temperatures, reduced fruit and seed inputs, and a trend toward increased periphyton abundance, appeared to favor fish species normally found in larger streams and facilitate a native invasion process. Forest buffer reaches, in contrast, had stream temperatures and allochthonous inputs more similar to forested streams. Our results illustrate the importance of riparian areas to stream ecosystem integrity in the tropics

  9. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats...... and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled...... along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored...

  10. Thumb Reach of Indonesian Young Adult When Interacting with Touchscreen of Single-Handed Device: A Preliminary Study

    Science.gov (United States)

    Umami, M. K.

    2018-01-01

    This study is a preliminary survey on thumb reach of Indonesian population when interacting with single-handed device. This study was aimed to know the thumb reach envelope on the screen of mobile phone. The correlation between the thumb reach vs. the hand length and thumb length was also identified. Thirty young adults participated in the study. All participants had normal body stature and were right-handed person. In the observational phase, the participant was asked to colour the canvas area on the screen of the mobile phone by using his/her thumb. The participant had to complete the task by applying the single hand interaction. The participant should grab the mobile phone as he/she use it normally in his/her daily activities. The thumb reach envelope of participants was identified from the coloured area of the canvas. The results of this study found that participants with a large hand length and thumb length tend to have a large thumb reach. The results of this study also show the thumb reach area of the participants is forming an elliptical shape that runs from the northeast to southwest on the device screen.

  11. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge

    Science.gov (United States)

    Constantz, Jim; Thomas, Carole L.; Zellweger, Gary W.

    1994-01-01

    We demonstrate that for losing reaches with significant diurnal variations in stream temperature, the effect of stream temperature on streambed seepage is a major factor contributing to reduced afternoon streamflows. An explanation is based on the effect of stream temperature on the hydraulic conductivity of the streambed, which can be expected to double in the 0° to 25°C temperature range. Results are presented for field experiments in which stream discharge and temperature were continuously measured for several days over losing reaches at St. Kevin Gulch, Colorado, and Tijeras Arroyo, New Mexico. At St. Kevin Gulch in July 1991, the diurnal stream temperature in the 160-m study reach ranged from about 4° to 18°C, discharges ranged from 10 to 18 L/s, and streamflow loss in the study reach ranged from 2.7 to 3.7 L/s. On the basis of measured stream temperature variations, the predicted change in conductivity was about 38%; the measured change in stream loss was about 26%, suggesting that streambed temperature varied less than the stream temperature. At Tijeras Arroyo in May 1992, diurnal stream temperature in the 655-m study reach ranged from about 10° to 25°C and discharge ranged from 25 to 55 L/s. Streamflow loss was converted to infiltration rates by factoring in the changing stream reach surface area and streamflow losses due to evaporation rates as measured in a hemispherical evaporation chamber. Infiltration rates ranged from about 0.7 to 2.0 m/d, depending on time and location. Based on measured stream temperature variations, the predicted change in conductivity was 29%; the measured change in infiltration was also about 27%. This suggests that high infiltration rates cause rapid convection of heat to the streambed. Evapotranspiration losses were estimated for the reach and adjacent flood plain within the arroyo. On the basis of these estimates, only about 5% of flow loss was consumed via stream evaporation and stream-side evapotranspiration

  12. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    Science.gov (United States)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (hour). The high temporal sampling resolution of the sensors permits a more realistic

  13. Estimating occurrence and detection probabilities for stream-breeding salamanders in the Gulf Coastal Plain

    Science.gov (United States)

    Lamb, Jennifer Y.; Waddle, J. Hardin; Qualls, Carl P.

    2017-01-01

    Large gaps exist in our knowledge of the ecology of stream-breeding plethodontid salamanders in the Gulf Coastal Plain. Data describing where these salamanders are likely to occur along environmental gradients, as well as their likelihood of detection, are important for the prevention and management of amphibian declines. We used presence/absence data from leaf litter bag surveys and a hierarchical Bayesian multispecies single-season occupancy model to estimate the occurrence of five species of plethodontids across reaches in headwater streams in the Gulf Coastal Plain. Average detection probabilities were high (range = 0.432–0.942) and unaffected by sampling covariates specific to the use of litter bags (i.e., bag submergence, sampling season, in-stream cover). Estimates of occurrence probabilities differed substantially between species (range = 0.092–0.703) and were influenced by the size of the upstream drainage area and by the maximum proportion of the reach that dried. The effects of these two factors were not equivalent across species. Our results demonstrate that hierarchical multispecies models successfully estimate occurrence parameters for both rare and common stream-breeding plethodontids. The resulting models clarify how species are distributed within stream networks, and they provide baseline values that will be useful in evaluating the conservation statuses of plethodontid species within lotic systems in the Gulf Coastal Plain.

  14. Sampling the stream landscape: Improving the applicability of an ecoregion-level capture probability model for stream fishes

    Science.gov (United States)

    Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.

    2018-01-01

    Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.

  15. Red River Stream Improvement Final Design Nez Perce National Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Watershed Consulting, LLC

    2007-03-15

    This report details the final stream improvement design along the reach of Red River between the bridge below Dawson Creek, upstream for approximately 2 miles, Idaho County, Idaho. Geomorphic mapping, hydrologic profiles and cross-sections were presented along with existing fish habitat maps in the conceptual design report. This information is used to develop a stream improvement design intended to improve aquatic habitat and restore riparian health in the reach. The area was placer mined using large bucket dredges between 1938 and 1957. This activity removed most of the riparian vegetation in the stream corridor and obliterated the channel bed and banks. The reach was also cut-off from most valley margin tributaries. In the 50 years since large-scale dredging ceased, the channel has been re-established and parts of the riparian zone have grown in. However, the recruitment of large woody debris to the stream has been extremely low and overhead cover is poor. Pool habitat makes up more than 37% of the reach, and habitat diversity is much better than the project reach on Crooked River. There is little large woody debris in the stream to provide cover for spawning and juvenile rearing, because the majority of the woody debris does not span a significant part of the channel, but is mainly on the side slopes of the stream. Most of the riparian zone has very little soil or subsoil left after the mining and so now consists primarily of unconsolidated cobble tailings or heavily compacted gravel tailings. Knapweed and lodgepole pine are the most successful colonizers of these post mining landforms. Tributary fans which add complexity to many other streams in the region, have been isolated from the main reach due to placer mining and road building.

  16. The Morphology of Streams Restored for Market and Nonmarket Purposes: Insights From a Mixed Natural-Social Science Approach

    Science.gov (United States)

    Singh, J.; Doyle, M.; Lave, R.; Robertson, M.

    2015-12-01

    Stream restoration is increasingly driven by compensatory mitigation; impacts to streams associated with typical land development activities must be offset via restoration of streams elsewhere. This policy creates an environment where restored stream 'credits' are traded under market-like conditions, comparable to wetland mitigation, carbon offsets, or endangered species habitat banking. The effect of mitigation on restoration design and construction is unknown. We use geomorphic surveys to quantify the differences between restored and nonrestored streams, and the difference between streams restored for market purposes (compensatory mitigation) from those restored for nonmarket programs. Physical study sites are located in the state of North Carolina, USA. We also analyze the social and political-economic drivers of the stream restoration and mitigation industry using analysis of policy documents and interviews with key personnel including regulators, mitigation bankers, stream designers, and scientists. Restored streams are typically wider, shallower and geomorphically more homogeneous than nonrestored streams. For example, nonrestored streams are typically characterized by more than an order of magnitude variability in radius of curvature and meander wavelength within a single study reach. By contrast, the radius of curvature in many restored streams does not vary for nearly the entire project reach. Streams restored for the mitigation market are typically headwater streams and part of a large, complex of long restored main channels, and many restored tributaries; streams restored for nonmarket purposes are typically shorter and consist of the main channel only. Interviews reveal that social forces shape the morphology of restored streams. Designers integrate many influences including economic and regulatory constraints, but traditions of practice have a large influence as well. Home to a fairly mature stream mitigation banking market, North Carolina can provide

  17. Subsurface Controls on Stream Intermittency in a Semi-Arid Landscape

    Science.gov (United States)

    Dohman, J.; Godsey, S.; Thackray, G. D.; Hale, R. L.; Wright, K.; Martinez, D.

    2017-12-01

    Intermittent streams currently constitute 30% to greater than 50% of the global river network. In addition, the number of intermittent streams is expected to increase due to changes in land use and climate. These streams provide important ecosystem services, such as water for irrigation, increased biodiversity, and high rates of nutrient cycling. Many hydrological studies have focused on mapping current intermittent flow regimes or evaluating long-term flow records, but very few have investigated the underlying causes of stream intermittency. The disconnection and reconnection of surface flow reflects the capacity of the subsurface to accommodate flow, so characterizing subsurface flow is key to understanding stream drying. We assess how subsurface flow paths control local surface flows during low-flow periods, including intermittency. Water table dynamics were monitored in an intermittent reach of Gibson Jack Creek in southeastern Idaho. Four transects were delineated with a groundwater well located in the hillslope, riparian zone, and in the stream, for a total of 12 groundwater wells. The presence or absence of surface flow was determined by frequent visual observations as well as in situ loggers every 30m along the 200m study reach. The rate of surface water drying was measured in conjunction with temperature, precipitation, subsurface hydraulic conductivity, hillslope-riparian-stream connectivity and subsurface travel time. Initial results during an unusually wet year suggest different responses in reaches that were previously observed to occasionally cease flowing. Flows in the intermittent reaches had less coherent and lower amplitude diel variations during base flow periods than reaches that had never been observed to dry out. Our findings will help contribute to our understanding of mechanisms driving expansion and contraction cycles in intermittent streams, increase our ability to predict how land use and climate change will affect flow regimes, and

  18. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  19. Impact of stream restoration on flood waves

    Science.gov (United States)

    Sholtes, J.; Doyle, M.

    2008-12-01

    Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.

  20. Stream-groundwater exchange and hydrologic turnover at the network scale

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  1. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Science.gov (United States)

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  2. Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment

    Science.gov (United States)

    Lieder, Ernestine; Weiler, Markus; Blume, Theresa

    2017-04-01

    Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing

  3. Using high-frequency nitrogen and carbon measurements to decouple temporal dynamics of catchment and in-stream transport and reaction processes in a headwater stream

    Science.gov (United States)

    Blaen, P.; Riml, J.; Khamis, K.; Krause, S.

    2017-12-01

    Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.

  4. Streams in the urban heat island: spatial and temporal variability in temperature

    Science.gov (United States)

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization

  5. Combined effects of hydrologic alteration and cyprinid fish in mediating biogeochemical processes in a Mediterranean stream.

    Science.gov (United States)

    Rubio-Gracia, Francesc; Almeida, David; Bonet, Berta; Casals, Frederic; Espinosa, Carmen; Flecker, Alexander S; García-Berthou, Emili; Martí, Eugènia; Tuulaikhuu, Baigal-Amar; Vila-Gispert, Anna; Zamora, Lluis; Guasch, Helena

    2017-12-01

    Flow regimes are important drivers of both stream community and biogeochemical processes. However, the interplay between community and biogeochemical responses under different flow regimes in streams is less understood. In this study, we investigated the structural and functional responses of periphyton and macroinvertebrates to different densities of the Mediterranean barbel (Barbus meridionalis, Cyprinidae) in two stream reaches differing in flow regime. The study was conducted in Llémena Stream, a small calcareous Mediterranean stream with high nutrient levels. We selected a reach with permanent flow (permanent reach) and another subjected to flow regulation (regulated reach) with periods of flow intermittency. At each reach, we used in situ cages to generate 3 levels of fish density. Cages with 10 barbels were used to simulate high fish density (>7indm -2 ); cages with open sides were used as controls (i.e. exposed to actual fish densities of each stream reach) thus having low fish density; and those with no fish were used to simulate the disappearance of fish that occurs with stream drying. Differences in fish density did not cause significant changes in periphyton biomass and macroinvertebrate density. However, phosphate uptake by periphyton was enhanced in treatments lacking fish in the regulated reach with intermittent flow but not in the permanent reach, suggesting that hydrologic alteration hampers the ability of biotic communities to compensate for the absence of fish. This study indicates that fish density can mediate the effects of anthropogenic alterations such as flow intermittence derived from hydrologic regulation on stream benthic communities and associated biogeochemical processes, at least in eutrophic streams. Copyright © 2017. Published by Elsevier B.V.

  6. Ecoregions and stream morphology in eastern Oklahoma

    Science.gov (United States)

    Splinter, D.K.; Dauwalter, D.C.; Marston, R.A.; Fisher, W.L.

    2010-01-01

    Broad-scale variables (i.e., geology, topography, climate, land use, vegetation, and soils) influence channel morphology. How and to what extent the longitudinal pattern of channel morphology is influenced by broad-scale variables is important to fluvial geomorphologists and stream ecologists. In the last couple of decades, there has been an increase in the amount of interdisciplinary research between fluvial geomorphologists and stream ecologists. In a historical context, fluvial geomorphologists are more apt to use physiographic regions to distinguish broad-scale variables, while stream ecologists are more apt to use the concept of an ecosystem to address the broad-scale variables that influence stream habitat. For this reason, we designed a study using ecoregions, which uses physical and biological variables to understand how landscapes influence channel processes. Ecoregions are delineated by similarities in geology, climate, soils, land use, and potential natural vegetation. In the fluvial system, stream form and function are dictated by processes observed throughout the fluvial hierarchy. Recognizing that stream form and function should differ by ecoregion, a study was designed to evaluate how the characteristics of stream channels differed longitudinally among three ecoregions in eastern Oklahoma, USA: Boston Mountains, Ozark Highlands, and Ouachita Mountains. Channel morphology of 149 stream reaches was surveyed in 1st- through 4th-order streams, and effects of drainage area and ecoregion on channel morphology was evaluated using multiple regressions. Differences existed (?????0.05) among ecoregions for particle size, bankfull width, and width/depth ratio. No differences existed among ecoregions for gradient or sinuosity. Particle size was smallest in the Ozark Highlands and largest in the Ouachita Mountains. Bankfull width was larger in the Ozark Highlands than in the Boston Mountains and Ouachita Mountains in larger streams. Width/depth ratios of the

  7. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.

    2018-02-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  8. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.

    2018-01-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  9. Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network

    Science.gov (United States)

    Ward, Adam S.; Schmadel, Noah M.; Wondzell, Steven M.

    2018-04-01

    Headwater stream networks expand and contract in response to changes in stream discharge. The changes in the extent of the stream network are also controlled by geologic or geomorphic setting - some reaches go dry even under relatively wet conditions, other reaches remain flowing under relatively dry conditions. While such patterns are well recognized, we currently lack tools to predict the extent of the stream network and the times and locations where the network is dry within large river networks. Here, we develop a perceptual model of the river corridor in a headwater mountainous catchment, translate this into a reduced-complexity mechanistic model, and implement the model to examine connectivity and network extent over an entire water year. Our model agreed reasonably well with our observations, showing that the extent and connectivity of the river network was most sensitive to hydrologic forcing under the lowest discharges (Qgauge 10 L s-1) the extent of the network was relatively insensitive to hydrologic forcing and was instead determined by the network topology. We do not expect that the specific thresholds observed in this study would be transferable to other catchments with different geology, topology, or hydrologic forcing. However, we expect that the general pattern should be robust: the dominant controls will shift from hydrologic forcing to geologic setting as discharge increases. Furthermore, our method is readily transferable as the model can be applied with minimal data requirements (a single stream gauge, a digital terrain model, and estimates of hydrogeologic properties) to estimate flow duration or connectivity along the river corridor in unstudied catchments. As the available information increases, the model could be better calibrated to match site-specific observations of network extent, locations of dry reaches, or solute break through curves as demonstrated in this study. Based on the low initial data requirements and ability to later tune

  10. Direct and indirect effects of multiple stressors on stream invertebrates across watershed, reach and site scales: A structural equation modelling better informing on hydromorphological impacts.

    Science.gov (United States)

    Villeneuve, B; Piffady, J; Valette, L; Souchon, Y; Usseglio-Polatera, P

    2018-01-15

    The purpose of our approach was to take into account the nested spatial scales driving stream functioning in the description of pressures/ecological status links by analysing the results of a hierarchical model. The development of this model has allowed us to answer the following questions: Does the consideration of the indirect links between anthropogenic pressures and stream ecological status modify the hierarchy of pressure types impacting benthic invertebrates? Do the different nested scales play different roles in the anthropogenic pressures/ecological status relationship? Does this model lead to better understanding of the specific role of hydromorphology in the evaluation of stream ecological status? To achieve that goal, we used the Partial Least Square (PLS) path modelling method to develop a structural model linking variables describing (i) land use and hydromorphological alterations at the watershed scale, (ii) hydromorphological alterations at the reach scale, (iii) nutrients-organic matter contamination levels at the site scale, and (iv) substrate characteristics at the sampling site scale, to explain variation in values of a macroinvertebrate-based multimetric index: the French I 2 M 2 . We have highlighted the importance of land use effects exerted on both hydromorphological and chemical characteristics of streams observed at finer scales and their subsequent indirect impact on stream ecological status. Hydromorphological alterations have an effect on the substrate mosaic structure and on the concentrations of nutrients and organic matter at site scale. This result implies that stream hydromorphology can have a major indirect effect on macroinvertebrate assemblages and that the hierarchy of impacts of anthropogenic pressures on stream ecological status generally described in the literature - often determining strategic restoration priorities - has to be re-examined. Finally, the effects of nutrients and organic matter on macroinvertebrate assemblages

  11. Toward Design Guidelines for Stream Restoration Structures: Measuring and Modeling Unsteady Turbulent Flows in Natural Streams with Complex Hydraulic Structures

    Science.gov (United States)

    Lightbody, A.; Sotiropoulos, F.; Kang, S.; Diplas, P.

    2009-12-01

    Despite their widespread application to prevent lateral river migration, stabilize banks, and promote aquatic habitat, shallow transverse flow training structures such as rock vanes and stream barbs lack quantitative design guidelines. Due to the lack of fundamental knowledge about the interaction of the flow field with the sediment bed, existing engineering standards are typically based on various subjective criteria or on cross-sectionally-averaged shear stresses rather than local values. Here, we examine the performance and stability of in-stream structures within a field-scale single-threaded sand-bed meandering stream channel in the newly developed Outdoor StreamLab (OSL) at the St. Anthony Falls Laboratory (SAFL). Before and after the installation of a rock vane along the outer bank of the middle meander bend, high-resolution topography data were obtained for the entire 50-m-long reach at 1-cm spatial scale in the horizontal and sub-millimeter spatial scale in the vertical. In addition, detailed measurements of flow and turbulence were obtained using acoustic Doppler velocimetry at twelve cross-sections focused on the vicinity of the structure. Measurements were repeated at a range of extreme events, including in-bank flows with an approximate flow rate of 44 L/s (1.4 cfs) and bankfull floods with an approximate flow rate of 280 L/s (10 cfs). Under both flow rates, the structure reduced near-bank shear stresses and resulted in both a deeper thalweg and near-bank aggradation. The resulting comprehensive dataset has been used to validate a large eddy simulation carried out by SAFL’s computational fluid dynamics model, the Virtual StreamLab (VSL). This versatile computational framework is able to efficiently simulate 3D unsteady turbulent flows in natural streams with complex in-stream structures and as a result holds promise for the development of much-needed quantitative design guidelines.

  12. Salmon carcass movements in forest streams

    Science.gov (United States)

    Burke Strobel; Daniel R. Shivley; Brett B. Roper

    2009-01-01

    The movements of salmon carcasses over time were studied in two forest streams in the context of a large-scale salmon carcass supplementation program. The objectives were to assess both the level of treatment after stream flows had displaced carcasses and to evaluate whether the magnitude of carcass movements outside of a given reach could be predicted. The movements...

  13. Influences on wood load in mountain streams of the Bighorn National Forest, Wyoming, USA.

    Science.gov (United States)

    Nowakowski, Amy L; Wohl, Ellen

    2008-10-01

    We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.

  14. Comparison of active and passive stream restoration

    DEFF Research Database (Denmark)

    Kristensen, Esben Astrup; Thodsen, Hans; Dehli, Bjarke

    2013-01-01

    Modification and channelization of streams and rivers have been conducted extensively throughout the world during the past century. Subsequently, much effort has been directed at re-creating the lost habitats and thereby improving living conditions for aquatic organisms. However, as restoration...... methods are plentiful, it is difficult to determine which one to use to get the anticipated result. The aim of this study was to compare two commonly used methods in small Danish streams to improve the physical condition: re-meandering and passive restoration through cease of maintenance. Our...... investigation included measurement of the physical conditions in 29 stream reaches covering four different groups: (1) re-meandered streams, (2) LDC streams (the least disturbed streams available), (3) passively restored streams (>10 years stop of aintenance) and (4) channelized and non-restored streams. The in...

  15. Rotenone persistence model for montane streams

    Science.gov (United States)

    Brown, Peter J.; Zale, Alexander V.

    2012-01-01

    The efficient and effective use of rotenone is hindered by its unknown persistence in streams. Environmental conditions degrade rotenone, but current label instructions suggest fortifying the chemical along a stream based on linear distance or travel time rather than environmental conditions. Our objective was to develop models that use measurements of environmental conditions to predict rotenone persistence in streams. Detailed measurements of ultraviolet radiation, water temperature, dissolved oxygen, total dissolved solids (TDS), conductivity, pH, oxidation–reduction potential (ORP), substrate composition, amount of organic matter, channel slope, and travel time were made along stream segments located between rotenone treatment stations and cages containing bioassay fish in six streams. The amount of fine organic matter, biofilm, sand, gravel, cobble, rubble, small boulders, slope, pH, TDS, ORP, light reaching the stream, energy dissipated, discharge, and cumulative travel time were each significantly correlated with fish death. By using logistic regression, measurements of environmental conditions were paired with the responses of bioassay fish to develop a model that predicted the persistence of rotenone toxicity in streams. This model was validated with data from two additional stream treatment reaches. Rotenone persistence was predicted by a model that used travel time, rubble, and ORP. When this model predicts a probability of less than 0.95, those who apply rotenone can expect incomplete eradication and should plan on fortifying rotenone concentrations. The significance of travel time has been previously identified and is currently used to predict rotenone persistence. However, rubble substrate, which may be associated with the degradation of rotenone by adsorption and volatilization in turbulent environments, was not previously considered.

  16. C, N, P export regimes from headwater catchments to downstream reaches

    Science.gov (United States)

    Dupas, R.; Musolff, A.; Jawitz, J. W.; Rao, P. S.; Jaeger, C. G.; Fleckenstein, J. H.; Rode, M.; Borchardt, D.

    2017-12-01

    Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke river continuum from headwaters draining 1 - 3 km² catchments to downstream reaches representing spatially integrated signals from 184 - 456 km² catchments (part of TERENO - Terrestrial Environmental Observatories, in Germany). Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal, which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.

  17. Coupled Spatio-Temporal Patterns of Solute Transport, Metabolism and Nutrient Uptake in Streams

    Science.gov (United States)

    Kurz, M. J.; Schmidt, C.

    2017-12-01

    Slower flow velocities and longer residence times within stream transient storage (TS) zones facilitate interaction between solutes and microbial communities, potentially increasing local rates of metabolic activity. Multiple factors, including channel morphology and substrate, variable hydrology, and seasonal changes in biological and physical parameters, result in changes in the solute transport dynamics and reactivity of TS zones over time and space. These changes would be expected to, in turn, influence rates of whole-stream ecosystem functions such as metabolism and nutrient uptake. However, the linkages between solute transport and ecosystem functioning within TS zones, and the contribution of TS zones to whole-stream functioning, are not always so straight forward. This may be due, in part, to methodological challenges. In this study we investigated the influence of stream channel hydro-morphology and substrate type on reach (103 m) and sub-reach (102 m) scale TS and ecosystem functioning. Patterns in solute transport, metabolism and nitrate uptake were tracked from April through October in two contrasting upland streams using several methods. The two streams, located in the Harz Mountains, Germany, are characterized by differing size (0.02 vs. 0.3 m3/s), dominant stream channel substrate (bedrock vs. alluvium) and sub-reach morphology (predominance of pools, riffles and glides). Solute transport parameters and respiration rates at the reach and sub-reach scale were estimated monthly from coupled pulse injections of the reactive tracer resazurin (Raz) and conservative tracers uranine and salt. Raz, a weakly fluorescent dye, irreversibly transforms to resorufin (Rru) under mildly reducing conditions, providing a proxy for aerobic respiration. Daily rates of primary productivity, respiration and nitrate retention at the reach scale were estimated using the diel cycles in dissolved oxygen and nitrate concentrations measured by in-situ sensors. Preliminary

  18. Effects of acid mine drainage on a headwater stream ecosystem in Colorado

    International Nuclear Information System (INIS)

    Niyogi, D.K.; Lewis, W.M. Jr.; McKnight, D.M.

    1994-01-01

    The ecological effects of acid mine drainage were investigated during the summer of 1993 on St. Kevin Gulch, a headwater stream near Leadville, Colorado. The stream currently receives acidic water from an abandoned mine. The pH downstream of the mine is between 3.5 and 4.5, and several metals exceed concentrations toxic to aquatic organisms. Zinc is present at especially high concentrations (1 to 10 mg/L) Furthermore, the stream bottom is covered with a thick layer of iron hydroxide precipitates. Effects on stream biota have been dramatic. Aquatic flora in the affected reach is limited to a green filamentous alga, Ulothrix subtilissima. Macroinvertebrate densities are significantly lower in the affected reach (mean = 99 indiv/m 2 ; SD = 88 indiv/M 2 ) compared to an upstream (pristine) reference reach (mean = 1,735 indiv/m 2 ; SD = 652 indiv/M 2 ). Functional processes were also studied in the stream. Net primary production (NPP) was measured during midday with recirculating chambers. Production was significantly lower in the affected reach (mean NPP 13.3 MgO 2 hr -1 m -2 ; SD = 87 MgO 2 hr -1 m -2 ) than the upstream reference reach (NPP = 64.1 MgO 2 hr -1 m -2 ; SD = 27.7 MgO 2 hr -1 m -2 ). Decomposition, measured with litter bags, was also lower in the affected reach than the upstream site. In 1994, St. Kevin Gulch is scheduled to undergo remediation that will treat the acidic water from the mine. Further studies on this stream will provide information on the recovery processes in lotic ecosystems

  19. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  20. U.S. EPA River Reach File Version 1.0

    Data.gov (United States)

    Kansas Data Access and Support Center — Reach File Version 1.0 (RF1) is a vector database of approximately 700,000 miles of streams and open waters in the conterminous United States. It is used extensively...

  1. Predictive Models of the Hydrological Regime of Unregulated Streams in Arizona

    Science.gov (United States)

    Anning, David W.; Parker, John T.C.

    2009-01-01

    Three statistical models were developed by the U.S. Geological Survey in cooperation with the Arizona Department of Environmental Quality to improve the predictability of flow occurrence in unregulated streams throughout Arizona. The models can be used to predict the probabilities of the hydrological regime being one of four categories developed by this investigation: perennial, which has streamflow year-round; nearly perennial, which has streamflow 90 to 99.9 percent of the year; weakly perennial, which has streamflow 80 to 90 percent of the year; or nonperennial, which has streamflow less than 80 percent of the year. The models were developed to assist the Arizona Department of Environmental Quality in selecting sites for participation in the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program. One model was developed for each of the three hydrologic provinces in Arizona - the Plateau Uplands, the Central Highlands, and the Basin and Range Lowlands. The models for predicting the hydrological regime were calibrated using statistical methods and explanatory variables of discharge, drainage-area, altitude, and location data for selected U.S. Geological Survey streamflow-gaging stations and a climate index derived from annual precipitation data. Models were calibrated on the basis of streamflow data from 46 stations for the Plateau Uplands province, 82 stations for the Central Highlands province, and 90 stations for the Basin and Range Lowlands province. The models were developed using classification trees that facilitated the analysis of mixed numeric and factor variables. In all three models, a threshold stream discharge was the initial variable to be considered within the classification tree and was the single most important explanatory variable. If a stream discharge value at a station was below the threshold, then the station record was determined as being nonperennial. If, however, the stream discharge was above the threshold

  2. A Kine-chemical Investigation of the AB Dor Moving Group "Stream"

    Science.gov (United States)

    Barenfeld, Scott A.; Bubar, Eric J.; Mamajek, Eric E.; Young, Patrick A.

    2013-03-01

    The AB Dor Moving Group consists of a "nucleus" of ~10 stars at d ~= 20 pc, along with dozens of purported "stream" members distributed across the sky. We perform a chemical and kinematic analysis of a subsample of AB Dor stream stars to test whether they constitute a physical stellar group. We use the NEMO Galactic kinematic code to investigate the orbits of the stream members, and perform a chemical abundance analysis using high resolution spectra taken with the Magellan Clay 6.5 m telescope. Using a χ2 test with the measured abundances for 10 different elements, we find that only half of the purported AB Dor stream members could possibly constitute a statistically chemically homogeneous sample. Some stream members with three-dimensional velocities were hundreds of parsecs from the AB Dor nucleus ~108 yr ago, and hence were unlikely to share a common origin. We conclude that the published lists of AB Dor moving group stream members are unlikely to represent the dispersed remnant of a single star formation episode. A subsample of the stream stars appears to be both statistically chemically homogeneous and in the vicinity of the AB Dor nucleus at birth. Their mean metallicity is [Fe/H] = 0.02 ± 0.02 dex, which we consider representative for the AB Dor group. Finally, we report a strong lower limit on the age of the AB Dor nucleus of >110 Myr based on the pre-main sequence contraction times for K-type members which have reached the main sequence.

  3. On the Organization of Parallel Operation of Some Algorithms for Finding the Shortest Path on a Graph on a Computer System with Multiple Instruction Stream and Single Data Stream

    Directory of Open Access Journals (Sweden)

    V. E. Podol'skii

    2015-01-01

    Full Text Available The paper considers the implementing Bellman-Ford and Lee algorithms to find the shortest graph path on a computer system with multiple instruction stream and single data stream (MISD. The MISD computer is a computer that executes commands of arithmetic-logical processing (on the CPU and commands of structures processing (on the structures processor in parallel on a single data stream. Transformation of sequential programs into the MISD programs is a labor intensity process because it requires a stream of the arithmetic-logical processing to be manually separated from that of the structures processing. Algorithms based on the processing of data structures (e.g., algorithms on graphs show high performance on a MISD computer. Bellman-Ford and Lee algorithms for finding the shortest path on a graph are representatives of these algorithms. They are applied to robotics for automatic planning of the robot movement in-situ. Modification of Bellman-Ford and Lee algorithms for finding the shortest graph path in coprocessor MISD mode and the parallel MISD modification of these algorithms were first obtained in this article. Thus, this article continues a series of studies on the transformation of sequential algorithms into MISD ones (Dijkstra and Ford-Fulkerson 's algorithms and has a pronouncedly applied nature. The article also presents the analysis results of Bellman-Ford and Lee algorithms in MISD mode. The paper formulates the basic trends of a technique for parallelization of algorithms into arithmetic-logical processing stream and structures processing stream. Among the key areas for future research, development of the mathematical approach to provide a subsequently formalized and automated process of parallelizing sequential algorithms between the CPU and structures processor is highlighted. Among the mathematical models that can be used in future studies there are graph models of algorithms (e.g., dependency graph of a program. Due to the high

  4. Nitrogen and phosphorus uptake in two Idaho (USA) headwater wilderness streams.

    Science.gov (United States)

    Davis, Jeffrey C; Minshall, G Wayne

    1999-05-01

    Nitrate and phosphate solutions were released into two reaches of two central Idaho streams to determine within- and between-stream variability in uptake lengths, uptake rates, and mass transfer coefficients. Physical and biotic stream characteristics and periphyton nitrate-uptake rates in recirculating chambers were measured to determine their influence on nutrient dynamics. Phosphate uptake length did not differ among the four reaches. There were no within-stream differences in nitrate uptake lengths but they did differ between the two streams. Long nitrate uptake lengths likely were due to instream concentrations above saturation but also may have been influenced by differences in active surface area and algal abundance. Nitrate and phosphate uptake lengths were longer, and uptake rates higher, than most other published values. However, mass transfer coefficients were comparable to measurements in other streams. Mass transfer coefficients may be a better parameter for temporal and spatial comparisons of instream nutrient dynamics, and for determining the underlying causes of variability in uptake length.

  5. Determinants of fish assemblage structure in Northwestern Great Plains streams

    Science.gov (United States)

    Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.

    2011-01-01

    Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American

  6. Hydrologic and Hydraulic Analyses of Selected Streams in Lorain County, Ohio, 2003

    Science.gov (United States)

    Jackson, K. Scott; Ostheimer, Chad J.; Whitehead, Matthew T.

    2003-01-01

    Hydrologic and hydraulic analyses were done for selected reaches of nine streams in Lorain County Ohio. To assess the alternatives for flood-damage mitigation, the Lorain County Engineer and the U.S. Geological Survey (USGS) initiated a cooperative study to investigate aspects of the hydrology and hydraulics of the nine streams. Historical streamflow data and regional regression equations were used to estimate instantaneous peak discharges for floods having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Drainage areas of the nine stream reaches studied ranged from 1.80 to 19.3 square miles. The step-backwater model HEC-RAS was used to determine water-surface-elevation profiles for the 10-year-recurrence-interval (10-year) flood along a selected reach of each stream. The water-surface pro-file information was used then to generate digital mapping of flood-plain boundaries. The analyses indicate that at the 10-year flood elevation, road overflow results at numerous hydraulic structures along the nine streams.

  7. Stream Clustering of Growing Objects

    Science.gov (United States)

    Siddiqui, Zaigham Faraz; Spiliopoulou, Myra

    We study incremental clustering of objects that grow and accumulate over time. The objects come from a multi-table stream e.g. streams of Customer and Transaction. As the Transactions stream accumulates, the Customers’ profiles grow. First, we use an incremental propositionalisation to convert the multi-table stream into a single-table stream upon which we apply clustering. For this purpose, we develop an online version of K-Means algorithm that can handle these swelling objects and any new objects that arrive. The algorithm also monitors the quality of the model and performs re-clustering when it deteriorates. We evaluate our method on the PKDD Challenge 1999 dataset.

  8. Stream Classification Tool User Manual: For Use in Applications in Hydropower-Related Evironmental Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Troia, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Christopher R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Samu, Nicole M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    Stream classifications are an inventory of different types of streams. Classifications help us explore similarities and differences among different types of streams, make inferences regarding stream ecosystem behavior, and communicate the complexities of ecosystems. We developed a nested, layered, and spatially contiguous stream classification to characterize the biophysical settings of stream reaches within the Eastern United States (~ 900,000 reaches). The classification is composed of five natural characteristics (hydrology, temperature, size, confinement, and substrate) along with several disturbance regime layers, and each was selected because of their relevance to hydropower mitigation. We developed the classification at the stream reach level using the National Hydrography Dataset Plus Version 1 (1:100k scale). The stream classification is useful to environmental mitigation for hydropower dams in multiple ways. First, it creates efficiency in the regulatory process by creating an objective and data-rich means to address meaningful mitigation actions. Secondly, the SCT addresses data gaps as it quickly provides an inventory of hydrology, temperature, morphology, and ecological communities for the immediate project area, but also surrounding streams. This includes identifying potential reference streams as those that are proximate to the hydropower facility and fall within the same class. These streams can potentially be used to identify ideal environmental conditions or identify desired ecological communities. In doing so, the stream provides some context for how streams may function, respond to dam regulation, and an overview of specific mitigation needs. Herein, we describe the methodology in developing each stream classification layer and provide a tutorial to guide applications of the classification (and associated data) in regulatory settings, such as hydropower (re)licensing.

  9. Memory-guided reaching in a patient with visual hemiagnosia.

    Science.gov (United States)

    Cornelsen, Sonja; Rennig, Johannes; Himmelbach, Marc

    2016-06-01

    The two-visual-systems hypothesis (TVSH) postulates that memory-guided movements rely on intact functions of the ventral stream. Its particular importance for memory-guided actions was initially inferred from behavioral dissociations in the well-known patient DF. Despite of rather accurate reaching and grasping movements to visible targets, she demonstrated grossly impaired memory-guided grasping as much as impaired memory-guided reaching. These dissociations were later complemented by apparently reversed dissociations in patients with dorsal damage and optic ataxia. However, grasping studies in DF and optic ataxia patients differed with respect to the retinotopic position of target objects, questioning the interpretation of the respective findings as a double dissociation. In contrast, the findings for reaching errors in both types of patients came from similar peripheral target presentations. However, new data on brain structural changes and visuomotor deficits in DF also questioned the validity of a double dissociation in reaching. A severe visuospatial short-term memory deficit in DF further questioned the specificity of her memory-guided reaching deficit. Therefore, we compared movement accuracy in visually-guided and memory-guided reaching in a new patient who suffered a confined unilateral damage to the ventral visual system due to stroke. Our results indeed support previous descriptions of memory-guided movements' inaccuracies in DF. Furthermore, our data suggest that recently discovered optic-ataxia like misreaching in DF is most likely caused by her parieto-occipital and not by her ventral stream damage. Finally, multiple visuospatial memory measurements in HWS suggest that inaccuracies in memory-guided reaching tasks in patients with ventral damage cannot be explained by visuospatial short-term memory or perceptual deficits, but by a specific deficit in visuomotor processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    Science.gov (United States)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude

  11. The effect of in-stream activities on the Njoro River, Kenya. Part I: Stream flow and chemical water quality

    Science.gov (United States)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    For shallow streams in sub-Saharan Africa, in-stream activities could be described as the actions by people and livestock, which take place within or besides stream channels. This study examined the nature of in-stream activities along a rural stream in Kenya and established the inequality in water allocation for various livelihood needs, as well as the negative impact they have on dry weather stream flow and chemical water quality. Seven locations along the stream were studied in wet and dry weather of 2006. Enumeration consisted of making head counts of people and livestock and tallying visitors at hourly intervals from 6 a.m. to 7 p.m. To estimate water abstraction, filled containers of known volume were counted and the stream was sampled to examine the impact on water quality. Water samples were obtained upstream and downstream of in-stream activities before (6 a.m.) and during (11 a.m., 6 p.m.) activities. Samples were analyzed for suspended solids, turbidity, BOD 5, total nitrogen and total phosphorus. The daily total abstraction at the middle reaches during dry weather was 120-150 m 3 day -1. More than 60% of abstraction was done by water vendors. Vended water from the stream was sold at US 3.5-7.5 per m 3 and vendors earned between US 3-6 a day. Abstracted water contributed approximately 40-60% of the total daily consumptive water use in the riparian area during dry weather but >30% of the morning stream flow was abstracted thereby upsetting stream flow in the lower reaches. The daily total water abstraction correlated positively ( R2, 0.98) and significantly ( p < 0.05) with the daily total human visit, which was diurnally periodic with two peaks, occurring between 9 a.m. and 10 a.m. and from 4 p.m. to 5 p.m. This diurnal pattern of visits and the corresponding in-stream activities affected water quality. In particular, suspended solids, turbidity and BOD 5 levels increased significantly ( p < 0.05) downstream during in-stream activities. It was concluded

  12. An initial SPARROW model of land use and in-stream controls on total organic carbon in streams of the conterminous United States

    Science.gov (United States)

    Shih, Jhih-Shyang; Alexander, Richard B.; Smith, Richard A.; Boyer, Elizabeth W.; Shwarz, Grogory E.; Chung, Susie

    2010-01-01

    Watersheds play many important roles in the carbon cycle: (1) they are a site for both terrestrial and aquatic carbon dioxide (CO2) removal through photosynthesis; (2) they transport living and decomposing organic carbon in streams and groundwater; and (3) they store organic carbon for widely varying lengths of time as a function of many biogeochemical factors. Using the U.S. Geological Survey (USGS) Spatially Referenced Regression on Watershed Attributes (SPARROW) model, along with long-term monitoring data on total organic carbon (TOC), this research quantitatively estimates the sources, transport, and fate of the long-term mean annual load of TOC in streams of the conterminous United States. The model simulations use surrogate measures of the major terrestrial and aquatic sources of organic carbon to estimate the long-term mean annual load of TOC in streams. The estimated carbon sources in the model are associated with four land uses (urban, cultivated, forest, and wetlands) and autochthonous fixation of carbon (stream photosynthesis). Stream photosynthesis is determined by reach-level application of an empirical model of stream chlorophyll based on total phosphorus concentration, and a mechanistic model of photosynthetic rate based on chlorophyll, average daily solar irradiance, water column light attenuation, and reach dimensions. It was found that the estimate of in-stream photosynthesis is a major contributor to the mean annual TOC load per unit of drainage area (that is, yield) in large streams, with a median share of about 60 percent of the total mean annual carbon load in streams with mean flows above 500 cubic feet per second. The interquartile range of the model predictions of TOC from in-stream photosynthesis is from 0.1 to 0.4 grams (g) carbon (C) per square meter (m-2) per day (day-1) for the approximately 62,000 stream reaches in the continental United States, which compares favorably with the reported literature range for net carbon fixation by

  13. Low-cost coherent receiver for long-reach optical access network using single-ended detection.

    Science.gov (United States)

    Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

    2014-09-15

    A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.

  14. PNW River Reach Files -- 1:100k LLID Routed Streams (routes)

    Data.gov (United States)

    Pacific States Marine Fisheries Commission — This feature class includes the ROUTE features from the 2001 version of the PNW River Reach files Arc/INFO coverage. Separate, companion feature classes are also...

  15. Altered stream-flow regimes and invasive plant species: The Tamarix case

    Science.gov (United States)

    Stromberg, J.C.; Lite, S.J.; Marler, R.; Paradzick, C.; Shafroth, P.B.; Shorrock, D.; White, J.M.; White, M.S.

    2007-01-01

    Aim: To test the hypothesis that anthropogenic alteration of stream-flow regimes is a key driver of compositional shifts from native to introduced riparian plant species. Location: The arid south-western United States; 24 river reaches in the Gila and Lower Colorado drainage basins of Arizona. Methods: We compared the abundance of three dominant woody riparian taxa (native Populus fremontii and Salix gooddingii, and introduced Tamarix) between river reaches that varied in stream-flow permanence (perennial vs. intermittent), presence or absence of an upstream flow-regulating dam, and presence or absence of municipal effluent as a stream water source. Results: Populus and Salix were the dominant pioneer trees along the reaches with perennial flow and a natural flood regime. In contrast, Tamarix had high abundance (patch area and basal area) along reaches with intermittent stream flows (caused by natural and cultural factors), as well as those with dam-regulated flows. Main conclusions: Stream-flow regimes are strong determinants of riparian vegetation structure, and hydrological alterations can drive dominance shifts to introduced species that have an adaptive suite of traits. Deep alluvial groundwater on intermittent rivers favours the deep-rooted, stress-adapted Tamarix over the shallower-rooted and more competitive Populus and Salix. On flow-regulated rivers, shifts in flood timing favour the reproductively opportunistic Tamarix over Populus and Salix, both of which have narrow germination windows. The prevailing hydrological conditions thus favour a new dominant pioneer species in the riparian corridors of the American Southwest. These results reaffirm the importance of reinstating stream-flow regimes (inclusive of groundwater flows) for re-establishing the native pioneer trees as the dominant forest type. ?? 2007 The Authors Journal compilation ?? 2007 Blackwell Publishing Ltd.

  16. Spatiotemporal Distribution and Assemblages of Fishes below the Lowermost Dam in Protected Reach in the Yangtze River Main Stream: Implications for River Management

    Science.gov (United States)

    Li, Junyi; Zhang, Hui; Lin, Danqing; Wu, Jinming; Wang, Chengyou; Xie, Xuan

    2016-01-01

    Now more and more ecologists concern about the impacts of dam construction on fish. However, studies of fishes downstream Gezhouba Dam were rarely reported except Chinese sturgeon (Acipenser sinensis Gray). In this study, catch investigations and five hydroacoustic detections were completed from 2015 to 2016 to understand the distribution, size, and categories of fishes and their relationship with the environmental factors below Gezhouba Dam in protected reach in the Yangtze River main stream. Results showed significant differences in fish distribution and TS (target strength) between wet and flood seasons. Mean TS in five hydroacoustic detections were −59.98 dB, −54.70 dB, −56.16 dB, −57.90 dB, and −59.17 dB, respectively, and dominant fish species are Coreius guichenoti (Bleeker), Siniperca chuatsi (Basilewsky), and Pelteobagrus vachelli (Richardson). In the longitudinal direction, fish preferred to stay in some specific sections like reaches 2, 4, 7, 8, 11, and 16. Since hydrology factors change greatly in different seasons, environmental characteristics vary along the reaches, and human activities play an important role in the fish behavior, it is concluded that great cross-season changes in hydrology lead to the differences in TS and fish assemblages and that geography characteristics, especially channel geography, together with human activities influence fish longitudinal distribution. This finding provides basic knowledge of spatiotemporal distribution and assemblages of fishes in the extended reaches downstream Gezhouba Dam. In addition, it offers implications for river management. It could also serve as reference of future research on fish habitat. PMID:27843943

  17. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquatic habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.

  18. Temporally variable macroinvertebrate-stone relationships in streams

    DEFF Research Database (Denmark)

    Jacobsen, D.

    2005-01-01

    of fauna parameter and stone variable from different sampling dates (n=9-11) were rarely correlated to any of the measures of stream stability, this study has demonstrated high temporal variability in fauna-stone relationships (CV's of regression slopes). Consequently, temporally un-replicated studies......Stones were used to sample macroinvertebrates and characterise microhabitats at monthly or bimonthly intervals in six Ecuadorian streams covering a gradient in four different stability measures and other stream characteristics. The physical variables current velocity, water depth, horizontal...... of families vs. individuals) were related to the physical characteristics of individual stone habitats. My second objective was to quantify temporal variability in fauna-stone relationships and to analyse if such variability was related to overall stability of stream reaches. Partial Least Squares (PLS...

  19. Jet Noise Scaling in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  20. Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions.

    Science.gov (United States)

    Christopoulos, Vassilios N; Bonaiuto, James; Kagan, Igor; Andersen, Richard A

    2015-08-19

    The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversibly inactivated the parietal reach region (PRR), the area of the PPC that is specialized for reaching movements, while two monkeys performed a memory-guided reaching or saccade task. The task included choices between two equally rewarded targets presented simultaneously in opposite visual fields. Free-choice trials were interleaved with instructed trials, in which a single cue presented in the peripheral visual field defined the reach and saccade target unequivocally. We found that PRR inactivation led to a strong reduction of contralesional choices, but only for reaches. On the other hand, saccade choices were not affected by PRR inactivation. Importantly, reaching and saccade movements to single instructed targets remained largely intact. These results cannot be explained as an effector-nonspecific deficit in spatial attention or awareness, since the temporary "lesion" had an impact only on reach choices. Hence, the PPR is a part of a network for reach decisions and not just reach planning. There has been an ongoing debate on whether the posterior parietal cortex (PPC) represents only spatial awareness, perception, and attention or whether it is also involved in decision making for actions. In this study we explore whether the parietal reach region (PRR), the region of the PPC that is specialized for reaches, is involved in the decision process. We inactivated the PRR while two monkeys performed reach and saccade choices between two targets presented simultaneously in both hemifields. We found that inactivation affected only the reach choices, while leaving saccade choices intact

  1. CO2 dynamics along Danish lowland streams

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Stæhr, Peter Anton

    2012-01-01

    conditions except during calm summer nights. Piston velocity from 0.4 to 21.6 cm h−1 was closely related to current velocity permitting calculation of evasion rates for entire streams. CO2 evasion rates were highest in midstream reaches (170–1,200 mmol m−2 day−1) where CO2-rich soil water entered fast stream...

  2. Identification of the Viscous Superlayer on the Low-Speed Side of a Single-Stream Shear Layer

    Science.gov (United States)

    Foss, John; Peabody, Jason

    2010-11-01

    Image pairs (elevation/plan views) have been acquired of a smoke streakline originating in the irrotational region on the low-speed side of a high Re single-stream shear layer of Morris and Foss (2003). The viscous superlayer (VSL) is identified as the terminus of the streak; 1800 such images provide VSL position statistics. Hot-wire data acquired concurrently at the shear layer edge and interior are used to investigate the relationship between these velocity magnitudes and the large-scale motions. Distinctive features (plumes) along the streakline are tracked between images to provide discrete irrotational region velocity magnitudes and material trajectories. A non-diffusive marker, introduced in the separating (high speed) boundary layer and imaged at x/θo=352, has revealed an unexpected bias in the streak-defined VSL locations. The interpretation of this bias clarifies the induced flow patterns in the entrainment region. The observations are consistent with a conception of the large-scale shear layer motions as "billows" of vortical fluid separated by re-entrant "wedges" of irrotational fluid, per Phillips (1972). Morris, S.C. and Foss, J.F. (2003). "Turbulent Boundary Layer to Single Stream Shear Layer: The Transition Region." Journal of Fluid Mechanics. Vol. 494, pp. 187-221. Phillips, O. M. (1972). "The Entrainment Interface." Journal of Fluid Mechanics. Vol. 51, pp. 97-118.

  3. Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2015-08-01

    Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater-surface water interactions, and changing fluvial processes within stream systems. We explored the impacts of beaver dams on hydrologic and temperature regimes at different spatial and temporal scales within a mountain stream in northern Utah over a 3-year period spanning pre- and post-beaver colonization. Using continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater elevation measurements, we documented pre-beaver conditions in the first year of the study. In the second year, we captured the initial effects of three beaver dams, while the third year included the effects of ten dams. After beaver colonization, reach-scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38 °C (3.8 %), which in part is explained by a 230 % increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created. Through the quantification of hydrologic and thermal changes at different spatial and temporal scales, we document increased variability during post-beaver colonization and highlight the need to understand the impacts of beaver dams on stream ecosystems and their potential role in stream restoration.

  4. Large wood influence on stream metabolism at a reach-scale in the Assabet River, Massachusetts

    Science.gov (United States)

    David, G. C. L.; Snyder, N. P.; Rosario, G. M.

    2016-12-01

    Total stream metabolism (TSM) represents the transfer of carbon through a channel by both primary production and respiration, and thus represents the movement of energy through a watershed. Large wood (LW) creates geomorphically complex channels by diverting flows, altering shear stresses on the channel bed and banks, and pool development. The increase in habitat complexity around LW is expected to increase TSM, but this change has not been directly measured. In this study, we measured changes in TSM around a LW jam in a Massachusetts river. Dissolved oxygen (DO) time series data are used to quantify gross primary production (GPP), ecosystem respiration (ER), which equal TSM when summed. Two primary objectives of this study are to (1) assess changes in TSM around LW and (2) compare empirical methods of deriving TSM to Grace et al.'s (2015) BASE model. We hypothesized that LW would increase TSM by providing larger pools, increasing coverage for fish and macroinvertebrates, increasing organic matter accumulation, and providing a place for primary producers to anchor and grow. The Assabet River is a 78 km2 drainage basin in central Massachusetts that provides public water supply to 7 towns. A change in TSM over a reach-scale was assessed using two YSI 6-Series Multiparameter Water Quality sondes over a 140 m long pool-riffle open meadow section. The reach included 6 pools and one LW jam. Every two weeks from July to November 2015, the sondes were moved to different pools. The sondes collected DO, temperature, depth, pH, salinity, light intensity, and turbidity at 15-minute intervals. Velocity (V) and discharge (Q) were measured weekly around the sondes and at established cross sections. Instantaneous V and Q were calculated for each sonde by modeling flows in HEC-RAS. Overall, TSM was heavily influenced by the pool size and indirectly to the LW jam which was associated with the largest pool. The largest error in TSM calculations is related to the empirically

  5. A multi-scaled approach to evaluating the fish assemblage structure within southern Appalachian streams USA.

    Science.gov (United States)

    Kirsch, Joseph; Peterson, James T.

    2014-01-01

    There is considerable uncertainty about the relative roles of stream habitat and landscape characteristics in structuring stream-fish assemblages. We evaluated the relative importance of environmental characteristics on fish occupancy at the local and landscape scales within the upper Little Tennessee River basin of Georgia and North Carolina. Fishes were sampled using a quadrat sample design at 525 channel units within 48 study reaches during two consecutive years. We evaluated species–habitat relationships (local and landscape factors) by developing hierarchical, multispecies occupancy models. Modeling results suggested that fish occupancy within the Little Tennessee River basin was primarily influenced by stream topology and topography, urban land coverage, and channel unit types. Landscape scale factors (e.g., urban land coverage and elevation) largely controlled the fish assemblage structure at a stream-reach level, and local-scale factors (i.e., channel unit types) influenced fish distribution within stream reaches. Our study demonstrates the utility of a multi-scaled approach and the need to account for hierarchy and the interscale interactions of factors influencing assemblage structure prior to monitoring fish assemblages, developing biological management plans, or allocating management resources throughout a stream system.

  6. Headwater streams in the EU Water Framework Directive: Evidence-based decision support to select streams for river basin management plans

    DEFF Research Database (Denmark)

    Baattrup-Pedersen, Annette; Larsen, Søren Erik; Andersen, Dagmar K.

    2018-01-01

    , however, it is intensely debated whether the small size and low slopes, typical of Danish streams, in combination with degraded habitat conditions obstruct their ability to fulfill the ecological quality objectives required by the EU Water Framework Directive (WFD). The purpose of this studywas to provide...... an analytically based framework for guiding the selection of headwater streams for RBMP. Specifically, the following hypotheses were addressed: i) stream slope, width, planform, and general physical habitat quality can act as criteria for selecting streams for the next generation of RBMPs, and ii) probability......-based thresholds for reaching good ecological status can be established for some or all of these criteria, thus creating a sound, scientifically based, and clear selection process. The hypotheses were tested using monitoring data on Danish streams from the period 2004–2015. Significant linear relationships were...

  7. Time-Based Data Streams: Fundamental Concepts for a Data Resource for Streams

    Energy Technology Data Exchange (ETDEWEB)

    Beth A. Plale

    2009-10-10

    Real time data, which we call data streams, are readings from instruments, environmental, bodily or building sensors that are generated at regular intervals and often, due to their volume, need to be processed in real time. Often a single pass is all that can be made on the data, and a decision to discard or keep the instance is made on the spot. Too, the stream is for all practical purposes indefinite, so decisions must be made on incomplete knowledge. This notion of data streams has a different set of issues from a file, for instance, that is byte streamed to a reader. The file is finite, so the byte stream is becomes a processing convenience more than a fundamentally different kind of data. Through the duration of the project we examined three aspects of streaming data: the first, techniques to handle streaming data in a distributed system organized as a collection of web services, the second, the notion of the dashboard and real time controllable analysis constructs in the context of the Fermi Tevatron Beam Position Monitor, and third and finally, we examined provenance collection of stream processing such as might occur as raw observational data flows from the source and undergoes correction, cleaning, and quality control. The impact of this work is severalfold. We were one of the first to advocate that streams had little value unless aggregated, and that notion is now gaining general acceptance. We were one of the first groups to grapple with the notion of provenance of stream data also.

  8. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Science.gov (United States)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  9. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    Science.gov (United States)

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst. © 2016 John Wiley & Sons Ltd.

  10. The relative influence of nutrients and habitat on stream metabolism in agricultural streams

    Science.gov (United States)

    Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.

    2010-01-01

    Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).

  11. Concurrent assessment of fish and habitat in warmwater streams in Wyoming

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2006-01-01

    Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.

  12. Stream Phosphorus Dynamics Along a Suburbanizing Gradient in Southern Ontario, Canada

    Science.gov (United States)

    Duval, T. P.

    2017-12-01

    While it is well known that urban streams are subject to impaired water quality relative to natural analogues, far less research has been directed at stream water quality during the process of (sub-) urbanization. This study determines the role of housing construction activities in Brampton, Canada on the concentration and flux of phosphorus (P) of a headwater stream. Prior to development the stream was engineered with a riffle-pool sequence, riparian plantings, and a floodplain corridor that was lined with sediment fencing. Stream sites were sampled daily over a period of six months at locations representing varying stages of subdivision completion (upper site -active construction; middle site -finished construction and natural vegetation; lower site -finished construction and active construction). A nearby urban stream site developed ten years prior to this study was selected as a reference site. There were no differences in total phosphorus (TP) levels or flux between the suburbanizing and urban streams; however, the forms of P differed between sites. The urban stream TP load was dominated by particulate phosphorus (PP) while suburbanizing stream P was mainly in the dissolved organic phosphorus (DOP) form. The importance of DOP to TP flux increased with the onset of the growing season. TP levels in all stream segments frequently exceeded provincial water quality guidelines during storm events but were generally low during baseflow conditions. During storm events PP and total suspended solid levels in the suburbanizing stream reached levels of the urban stream due to sediment fence failure at several locations along the construction-hillslope interface. Along the suburbanizing gradient, the hydrological connection to a mid-reach zone of no-construction activity / fallow field and native forest resulted in significantly lower P levels than the upper suburbanizing stream site. This suggests that stream channel design features as well as timing of construction

  13. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    Science.gov (United States)

    Wagner, Brian J.; Harvey, Judson W.

    1997-01-01

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute

  14. Stream habitat structure influences macroinvertebrate response to pesticides

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette

    2012-01-01

    Agricultural pesticide contamination in surface waters is increasingly threatening to impair the surface water ecosystems. Agricultural streams are furthermore often heavily maintained to optimise the transport of water away from fields. The physical habitat degradation that result from heavy...... stream maintenance probably introduce additional stress that may act in concert with pesticide stress. We surveyed pesticide contamination and macroinvertebrate community structure in 14 streams along a gradient of expected pesticide exposure. A paired-reach approach was applied to differentiate...... the effects of pesticides between sites with degraded and more undisturbed physical properties. The effect of pesticides on macroinvertebrate communities (measured as the relative abundance of SPEcies At Risk) was increased at stream sites with degraded physical habitats primarily due to the absence...

  15. Organic Seston Dynamics in Upland Neotropical Streams: Implications for Amphibian Declines

    Science.gov (United States)

    Peterson, S. D.; Colon-Gaud, C.; Whiles, M. R.; Hunte-Brown, M.; Connelly, S.; Kilham, S.; Pringle, C. M.; Lips, K. R.; Brenes, R.

    2005-05-01

    Organic seston represents food for filter feeders and a mechanism for downstream transport of energy and nutrients. As part of a study assessing the ecological impacts of stream-breeding anuran extirpations, we examined seston dynamics in 2 stream reaches with tadpoles (El Cope) and 2 without (Fortuna) in the Panamanian uplands. All reaches are high gradient with annual average discharge ranging from 46-102 L/s. Samples were collected multiple times per month at various discharges, sieved into fine (98μm) and very fine (1.6μm) fractions, and processed to estimate ash-free dry mass (AFDM), total C, and total N. Average annual concentrations ranged from 0.52- 2.51 mg/L (fine) and 2.04-3.14 mg/L (very fine), and total export ranged from 0.27-7,981 mg/s across all streams. On average, very fine particles comprised 78% of export from El Cope sites and 61% from Fortuna streams. Average total N export ranged from 5.32-30.53 mg/s in El Cope sites and 1.71-6.04 mg/s at Fortuna. Average particle quality (C/N) in El Cope streams was higher (7.6) than Fortuna streams (11.5). Lower export of very fine particles and lower seston quality in Fortuna streams suggests the loss of tadpoles may influence seston dynamics and quality in these systems.

  16. Shade and flow effects on ammonia retention in macrophyte-rich streams: implications for water quality

    International Nuclear Information System (INIS)

    Wilcock, Robert J.; Scarsbrook, Mike R.; Cooke, James G.; Costley, Kerry J.; Nagels, John W.

    2004-01-01

    Controlled releases of NH 4 -N and conservative tracers (Br - and Cl - ) to five reaches of four streams with contrasting macrophyte communities have shown differing retentions, largely as a result of the way plants interact with stream flow and velocity. First-order constants (k) were 1.0-4.8 d -1 and retention of NH 4 -N was 6-71% of amounts added to each reach. Distance travelled before a 50% reduction in concentration was achieved were 40-450 m in three streams under low-flow conditions, and 2400-3800 m at higher flows. Retention (%) of NH 4 -N can be approximated by a simple function of travel time and k, highlighting the importance of the relationship between macrophytes and stream velocity on nutrient processing. This finding has significant management implications, particularly with respect to restoration of riparian shade. Small streams with predominantly marginal emergent plants are likely to have improved retention of NH 4 -N as a result of shading or other means of reducing plant biomass. Streams dominated by submerged macrophytes will have impaired NH 4 -N retention if plant biomass is reduced because of reduced contact times between NH 4 -N molecules and reactive sites. In these conditions water resource managers should utilise riparian shading in concert with unshaded vegetated reaches to achieve a balance between enhanced in-stream habitat and nutrient processing capacity

  17. Effects of natural-channel-design restoration on habitat quality in Catskill Mountain streams, New York

    Science.gov (United States)

    Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark

    2010-01-01

    Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.

  18. Longitudinal and seasonal changes in functional organization of macroinvertebrate communities in four Oregon streams.

    OpenAIRE

    Hawkins, C. P.; Sedell, J. R.

    1981-01-01

    Relative numerical dominance and densities of invertebrate functional feeding groups are compared with longitudinal and seasonal changes in food resources in a Cascade Range stream system in Oregon. We also compare our data with hypothetical predictions of the River Continuum model. We found that both relative abundances and densities of functional groups fit qualitative characterization of stream reaches and the River Continuum model: Shredders dominated upper shaded reaches; scrapers were m...

  19. Dispersal of plant fragments in small streams

    DEFF Research Database (Denmark)

    Riis, T.; Sand-Jensen, K.

    2006-01-01

    1. Streams are subject to frequent natural and anthropogenic disturbances that cause sediment erosion and loss of submerged vegetation. This loss makes downstream transport and retention of vegetative propagules on the streambed very important for re-establishing vegetation cover. We measured...... with the relative contact between the flowing water and streambed, bank and vegetation. Thus, the retention coefficients were highest (0.02-0.12 m-1) in shallow reaches with a narrow, vegetation-free flow channel. Here there were no significant differences between E. canadensis and R. peltatus. Retention...... coefficients were lowest (0.0005-0.0135 m-1) in deeper reaches with wider vegetation-free flow channels. Retention of E. canadensis was up to 16 times more likely than retention of R. peltatus. 5. Overall, the longitudinal position in the stream system of source populations of species capable of producing...

  20. Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams

    International Nuclear Information System (INIS)

    Pizzo, V.J.

    1982-01-01

    The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream

  1. A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000

    Science.gov (United States)

    Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.

    2004-01-01

    The increasing concern for water and its quality require improved methods to evaluate the interaction between streams and aquifers and the strong influence that streams can have on the flow and transport of contaminants through many aquifers. For this reason, a new Streamflow-Routing (SFR1) Package was written for use with the U.S. Geological Survey's MODFLOW-2000 ground-water flow model. The SFR1 Package is linked to the Lake (LAK3) Package, and both have been integrated with the Ground-Water Transport (GWT) Process of MODFLOW-2000 (MODFLOW-GWT). SFR1 replaces the previous Stream (STR1) Package, with the most important difference being that stream depth is computed at the midpoint of each reach instead of at the beginning of each reach, as was done in the original Stream Package. This approach allows for the addition and subtraction of water from runoff, precipitation, and evapotranspiration within each reach. Because the SFR1 Package computes stream depth differently than that for the original package, a different name was used to distinguish it from the original Stream (STR1) Package. The SFR1 Package has five options for simulating stream depth and four options for computing diversions from a stream. The options for computing stream depth are: a specified value; Manning's equation (using a wide rectangular channel or an eight-point cross section); a power equation; or a table of values that relate flow to depth and width. Each stream segment can have a different option. Outflow from lakes can be computed using the same options. Because the wetted perimeter is computed for the eight-point cross section and width is computed for the power equation and table of values, the streambed conductance term no longer needs to be calculated externally whenever the area of streambed changes as a function of flow. The concentration of solute is computed in a stream network when MODFLOW-GWT is used in conjunction with the SFR1 Package. The concentration of a solute in a

  2. Isolating the impact of sediment toxicity in urban streams

    International Nuclear Information System (INIS)

    Marshall, Stephen; Pettigrove, Vincent; Carew, Melissa; Hoffmann, Ary

    2010-01-01

    Several factors can contribute to the ecological degradation of stream catchments following urbanization, but it is often difficult to separate their relative importance. We isolated the impact of polluted sediment on the condition of an urban stream in Melbourne, Australia, using two complementary approaches. Using a rapid bioassessment approach, indices of stream condition were calculated based on macroinvertebrate field surveys. Urban stream reaches supported impoverished macroinvertebrate communities, and contained potentially toxic concentrations of heavy metals and hydrocarbons. Using a field microcosm approach, a bioassay was carried out to assess sediment pollution effects on native macroinvertebrates. Sediment from urban sites substantially altered the microcosm macroinvertebrate community, most likely due to elevated heavy metal and hydrocarbon concentrations. Macroinvertebrate surveys combined with a bioassay approach based on field microcosms can help isolate the effect of stream pollutants in degraded ecosystems. - Field microcosms isolate the ecological impact of polluted sediment in an urban stream.

  3. Resource synergy in stream periphyton communities

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Walter [University of Illinois, Urbana-Champaign; Fanta, S.E. [University of Illinois; Roberts, Brian J [ORNL; Francoeur, Steven N. [Eastern Michigan University, Ypsilanti, MI

    2011-03-01

    efficient photon capture and higher photosynthetic rates. 5.Synthesis. Our results underscore the potential for resource colimitation, even in habitats where a single resource is as strongly limiting as is light in shaded streams. The capacity of autotrophic communities to respond to more than one limiting resource suggests that prevailing single-resource models of ecosystem productivity are overly simplistic.

  4. Are the streams of the Sinos River basin of good water quality? Aquatic macroinvertebrates may answer the question

    Directory of Open Access Journals (Sweden)

    L. Bieger

    Full Text Available Macroinvertebrate communities are one of the most used groups in assessments of water quality, since they respond directly to the level of contamination of aquatic ecosystems. The main objective of this study was the assessment of the water quality of the Sinos River basin (Rio Grande do Sul state, Brazil through biotic indices based on the macroinvertebrate community ("Family Biotic Index - FBI", and "Biological Monitoring Working Party Score System - BMWP". Three lower order streams (2nd order were selected in each one of three main regions of the basin. In each stream, the samplings were performed in three reaches (upper, middle, and lower, totalling 27 reaches. Two samplings were carried in each reach over one year (winter and summer. A total of 6,847 macroinvertebrates distributed among 54 families were sampled. The streams from the upper region were of better water quality than the lower region. The water quality did not change between the upper, middle and lower reaches of the streams. However, the upper reaches of the streams were of better water quality in all the regions of the basin. The water quality of the streams did not vary between the summer and the winter. This result demonstrated that water quality may be analysed in both studied seasons (summer and winter using biotic indices. The analysis of the results allows us to conclude that the biotic indices used reflected the changes related to the water quality along the longitudinal gradient of the basin. Thus, aquatic macroinvertebrates were important bioindicators of the water and environmental quality of the streams of the Sinos River basin.

  5. The response of macroinvertebrates to artificially enhanced detritus levels in plantation streams

    Science.gov (United States)

    Pretty, J. L.; Dobson, M.

    The leaves and wood from vegetation surrounding headwater streams constitute a major food source for aquatic invertebrates, providing they are retained upon the streambed and not transported downstream. This study investigated the response of aquatic invertebrates to artificially increased detritus retention, in an effort to reproduce the naturally occurring build up of dead organic matter associated with streams in old-growth forest. The background detrital standing stock in streams in Kielder Forest (Northumberland, UK) was low, approximately 32 gm-2. Two streams flowing through dense conifer plantation and one in open broadleaved woodland were manipulated by the addition of logs over a 10 m stream reach. After several months, log addition significantly enhanced detrital standing stocks in both conifer and broadleaved streams. Total invertebrate abundance, taxon richness and the numbers of certain numerically dominant families were significantly higher in experimental than reference reaches in both conifer and broadleaved streams. This response was most marked for detritivores, whilst non-detritivore groups often showed no response to the manipulation. Whilst in the short term the responses to enhanced retention may reflect a redistribution of the local fauna, it is argued that over a longer time-scale, a genuine increase in invertebrate density and diversity could occur. Allowing old-growth forest to develop in planted valley bottoms may be a viable management option for conservation. If established alongside streams, it would ensure continuous input of woody material and the fauna may benefit from the resulting increase in detritus retention.

  6. Stream classification of the Apalachicola-Chattahoochee-Flint River System to support modeling of aquatic habitat response to climate change

    Science.gov (United States)

    Elliott, Caroline M.; Jacobson, Robert B.; Freeman, Mary C.

    2014-01-01

    A stream classification and associated datasets were developed for the Apalachicola-Chattahoochee-Flint River Basin to support biological modeling of species response to climate change in the southeastern United States. The U.S. Geological Survey and the Department of the Interior’s National Climate Change and Wildlife Science Center established the Southeast Regional Assessment Project (SERAP) which used downscaled general circulation models to develop landscape-scale assessments of climate change and subsequent effects on land cover, ecosystems, and priority species in the southeastern United States. The SERAP aquatic and hydrologic dynamics modeling efforts involve multiscale watershed hydrology, stream-temperature, and fish-occupancy models, which all are based on the same stream network. Models were developed for the Apalachicola-Chattahoochee-Flint River Basin and subbasins in Alabama, Florida, and Georgia, and for the Upper Roanoke River Basin in Virginia. The stream network was used as the spatial scheme through which information was shared across the various models within SERAP. Because these models operate at different scales, coordinated pair versions of the network were delineated, characterized, and parameterized for coarse- and fine-scale hydrologic and biologic modeling. The stream network used for the SERAP aquatic models was extracted from a 30-meter (m) scale digital elevation model (DEM) using standard topographic analysis of flow accumulation. At the finer scale, reaches were delineated to represent lengths of stream channel with fairly homogenous physical characteristics (mean reach length = 350 m). Every reach in the network is designated with geomorphic attributes including upstream drainage basin area, channel gradient, channel width, valley width, Strahler and Shreve stream order, stream power, and measures of stream confinement. The reach network was aggregated from tributary junction to tributary junction to define segments for the

  7. Gas Hubs. South Stream. A grand geopolitical gamble

    International Nuclear Information System (INIS)

    Michaletos, I.

    2008-01-01

    June 2007, the Russian energy company Gazprom and the Italian oil company Eni, signed a momentous accord for the building of a 8,200 km long gas pipeline running from the Black Sea port of Beregovaya to various points in western and eastern Europe. The project, South Stream - the sister pipeline to the Nord Stream pipeline that is being built from Russia to Germany - has far-reaching economic and political ramifications, and will influence energy policies on a Pan-European scale

  8. Retrofitting of heat exchanger networks involving streams with variable heat capacity: Application of single and multi-objective optimization

    International Nuclear Information System (INIS)

    Sreepathi, Bhargava Krishna; Rangaiah, G.P.

    2015-01-01

    Heat exchanger network (HEN) retrofitting improves the energy efficiency of the current process by reducing external utilities. In this work, HEN retrofitting involving streams having variable heat capacity is studied. For this, enthalpy values of a stream are fitted to a continuous cubic polynomial instead of a stepwise approach employed in the previous studies [1,2]. The former methodology is closer to reality as enthalpy or heat capacity changes gradually instead of step changes. Using the polynomial fitting formulation, single objective optimization (SOO) and multi-objective optimization (MOO) of a HEN retrofit problem are investigated. The results obtained show an improvement in the utility savings, and MOO provides many Pareto-optimal solutions to choose from. Also, Pareto-optimal solutions involving area addition in existing heat exchangers only (but no new exchangers and no structural modifications) are found and provided for comparison with those involving new exchangers and structural modifications as well. - Highlights: • HEN retrofitting involving streams with variable heat capacities is studied. • A continuous approach to handle variable heat capacity is proposed and tested. • Better and practical solutions are obtained for HEN retrofitting in process plants. • Pareto-optimal solutions provide many alternate choices for HEN retrofitting

  9. Effects of urban stream burial on nitrogen uptake and ...

    Science.gov (United States)

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p < 0.01) and decreased nitrate uptake velocity and areal nitrate uptake rate by factors of 8.2 (p = 0.01) and 9.6 (p < 0.001), respectively. Stream burial decreased gross primary productivity by a factor of 9.2 (p < 0.05) and decreased ecosystem respiration by a factor of 4.2 (p = 0.06). From statistical analysis of Excitation Emissions Matrices (EEMs), buried streams were also found to have significantly less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage and water temperatures. Overall, differences in NO3- uptake and metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  10. The Blurred Line between Form and Process: A Comparison of Stream Channel Classification Frameworks.

    Directory of Open Access Journals (Sweden)

    Alan Kasprak

    Full Text Available Stream classification provides a means to understand the diversity and distribution of channels and floodplains that occur across a landscape while identifying links between geomorphic form and process. Accordingly, stream classification is frequently employed as a watershed planning, management, and restoration tool. At the same time, there has been intense debate and criticism of particular frameworks, on the grounds that these frameworks classify stream reaches based largely on their physical form, rather than direct measurements of their component hydrogeomorphic processes. Despite this debate surrounding stream classifications, and their ongoing use in watershed management, direct comparisons of channel classification frameworks are rare. Here we implement four stream classification frameworks and explore the degree to which each make inferences about hydrogeomorphic process from channel form within the Middle Fork John Day Basin, a watershed of high conservation interest within the Columbia River Basin, U.S.A. We compare the results of the River Styles Framework, Natural Channel Classification, Rosgen Classification System, and a channel form-based statistical classification at 33 field-monitored sites. We found that the four frameworks consistently classified reach types into similar groups based on each reach or segment's dominant hydrogeomorphic elements. Where classified channel types diverged, differences could be attributed to the (a spatial scale of input data used, (b the requisite metrics and their order in completing a framework's decision tree and/or, (c whether the framework attempts to classify current or historic channel form. Divergence in framework agreement was also observed at reaches where channel planform was decoupled from valley setting. Overall, the relative agreement between frameworks indicates that criticism of individual classifications for their use of form in grouping stream channels may be overstated. These

  11. A Statistical Method to Predict Flow Permanence in Dryland Streams from Time Series of Stream Temperature

    Directory of Open Access Journals (Sweden)

    Ivan Arismendi

    2017-12-01

    Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  12. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    Science.gov (United States)

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  13. Political and Economic Geomorphology: The Effect of Market Forces on Stream Restoration Designs

    Science.gov (United States)

    Singh, J.; Doyle, M. W.; Lave, R.; Robertson, M.

    2013-12-01

    Stream restoration in the U.S. is increasingly driven by compensatory mitigation; impacts to streams associated with typical land development activities must be offset via restoration of streams elsewhere. This policy application creates conditions in which restored stream ';credits' are traded under market-like conditions, comparable to wetland mitigation, carbon offsets, or endangered species habitat banking. The effect of this relatively new mechanism to finance stream restoration on design and construction is unknown. This research explores whether the introduction of a credit-based mitigation apparatus results in streams designed to maximize credit yields (i.e., ';credit-chasing') rather than focusing on restoring natural systems or functions. In other words, are market-based restored streams different from those designed for non-market purposes? We quantified geomorphic characteristics (e.g. hydraulic geometry, sinuosity, profile, bed sediment, LWD) of three types of streams: (1) a random sample of non-restored reaches, (2) streams restored for compensatory mitigation, and (3) streams restored under alternative funding sources (e.g., government grant programs, non-profit activities). We also compared the location of the types of stream reaches to determine whether there is a spatiality of restored streams. Physical data were complemented with a series of semi-structured interviews with key personnel in the stream restoration industry to solicit information on the influence of policy interpretation and market-driven factors on the design process. Preliminary analysis suggests that restoration is driving a directional shift in stream morphology in North Carolina. As a simple example, in the Piedmont, non-restored and restored channels had mean sinuosity of 1.17 and 1.23, respectively (p sale of restored stream credits, was seen as critically important rather than the marginal gains to be made by manipulating particular stream designs to glean more credits

  14. A study of the effects of implementing agricultural best management practices and in-stream restoration on suspended sediment, stream habitat, and benthic macroinvertebrates at three stream sites in Surry County, North Carolina, 2004-2007-Lessons learned

    Science.gov (United States)

    Smith, Douglas G.; Ferrell, G.M.; Harned, Douglas A.; Cuffney, Thomas F.

    2011-01-01

    The effects of agricultural best management practices and in-stream restoration on suspended-sediment concentrations, stream habitat, and benthic macroinvertebrate assemblages were examined in a comparative study of three small, rural stream basins in the Piedmont and Blue Ridge Physiographic Provinces of North Carolina and Virginia between 2004 and 2007. The study was designed to assess changes in stream quality associated with stream-improvement efforts at two sites in comparison to a control site (Hogan Creek), for which no improvements were planned. In the drainage basin of one of the stream-improvement sites (Bull Creek), several agricultural best management practices, primarily designed to limit cattle access to streams, were implemented during this study. In the drainage basin of the second stream-improvement site (Pauls Creek), a 1,600-foot reach of the stream channel was restored and several agricultural best management practices were implemented. Streamflow conditions in the vicinity of the study area were similar to or less than the long-term annual mean streamflows during the study. Precipitation during the study period also was less than normal, and the geographic distribution of precipitation indicated drier conditions in the southern part of the study area than in the northern part. Dry conditions during much of the study limited opportunities for acquiring high-flow sediment samples and streamflow measurements. Suspended-sediment yields for the three basins were compared to yield estimates for streams in the southeastern United States. Concentrations of suspended sediment and nutrients in samples from Bull Creek, the site where best management practices were implemented, were high compared to the other two sites. No statistically significant change in suspended-sediment concentrations occurred at the Bull Creek site following implementation of best management practices. However, data collected before and after channel stabilization at the Pauls

  15. Reducing equifinality using isotopes in a process-based stream nitrogen model highlights the flux of algal nitrogen from agricultural streams

    Science.gov (United States)

    Ford, William I.; Fox, James F.; Pollock, Erik

    2017-08-01

    The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development.

  16. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  17. The response of macroinvertebrates to artificially enhanced detritus levels in plantation streams

    Directory of Open Access Journals (Sweden)

    J. L. Pretty

    2004-01-01

    Full Text Available The leaves and wood from vegetation surrounding headwater streams constitute a major food source for aquatic invertebrates, providing they are retained upon the streambed and not transported downstream. This study investigated the response of aquatic invertebrates to artificially increased detritus retention, in an effort to reproduce the naturally occurring build up of dead organic matter associated with streams in old-growth forest. The background detrital standing stock in streams in Kielder Forest (Northumberland, UK was low, approximately 32 gm-2. Two streams flowing through dense conifer plantation and one in open broadleaved woodland were manipulated by the addition of logs over a 10 m stream reach. After several months, log addition significantly enhanced detrital standing stocks in both conifer and broadleaved streams. Total invertebrate abundance, taxon richness and the numbers of certain numerically dominant families were significantly higher in experimental than reference reaches in both conifer and broadleaved streams. This response was most marked for detritivores, whilst non-detritivore groups often showed no response to the manipulation. Whilst in the short term the responses to enhanced retention may reflect a redistribution of the local fauna, it is argued that over a longer time-scale, a genuine increase in invertebrate density and diversity could occur. Allowing old-growth forest to develop in planted valley bottoms may be a viable management option for conservation. If established alongside streams, it would ensure continuous input of woody material and the fauna may benefit from the resulting increase in detritus retention. Keywords: forestry, detritivores, old-growth conifers, river management, woody debris

  18. Parallel field line and stream line tracing algorithms for space physics applications

    Science.gov (United States)

    Toth, G.; de Zeeuw, D.; Monostori, G.

    2004-05-01

    Field line and stream line tracing is required in various space physics applications, such as the coupling of the global magnetosphere and inner magnetosphere models, the coupling of the solar energetic particle and heliosphere models, or the modeling of comets, where the multispecies chemical equations are solved along stream lines of a steady state solution obtained with single fluid MHD model. Tracing a vector field is an inherently serial process, which is difficult to parallelize. This is especially true when the data corresponding to the vector field is distributed over a large number of processors. We designed algorithms for the various applications, which scale well to a large number of processors. In the first algorithm the computational domain is divided into blocks. Each block is on a single processor. The algorithm folows the vector field inside the blocks, and calculates a mapping of the block surfaces. The blocks communicate the values at the coinciding surfaces, and the results are interpolated. Finally all block surfaces are defined and values inside the blocks are obtained. In the second algorithm all processors start integrating along the vector field inside the accessible volume. When the field line leaves the local subdomain, the position and other information is stored in a buffer. Periodically the processors exchange the buffers, and continue integration of the field lines until they reach a boundary. At that point the results are sent back to the originating processor. Efficiency is achieved by a careful phasing of computation and communication. In the third algorithm the results of a steady state simulation are stored on a hard drive. The vector field is contained in blocks. All processors read in all the grid and vector field data and the stream lines are integrated in parallel. If a stream line enters a block, which has already been integrated, the results can be interpolated. By a clever ordering of the blocks the execution speed can be

  19. Predicting Hyporheic Exchange of Water and Solutes in Streams on the Basis of a Priori Estimates of Stream Physical Characteristics

    Science.gov (United States)

    Stone, S. H.; Harvey, J.; Packman, A.; Worman, A.

    2005-12-01

    It is very important to accurately model solute transport in rivers in order to analyze contaminant transport, water quality, and a variety of ecological processes. The purpose of this research is to determine the physical characteristics of a stream or river that are sufficient to predict hyporheic exchange and downstream solute transport. In the fall of 2004, we conducted a bromide tracer injection and made physical measurements in Sugar Creek, a small agricultural stream in northwestern Indiana. As is typical for small mid-western agricultural streams, Sugar Creek has been ditched and straightened, and subsequent downcutting through glacial sediments and slumpage of bank sediments composed of finer grain sizes has created a stream of intermediate complexity. In order to relate the observed solute transport to more basic physical characteristics of the stream, we determined the bathymetry of Sugar Creek over a wide range of scales (centimeters to decameters), and measured velocity profiles, the water elevation surface profile, hydraulic conductivity via in situ measurements, and bed sediment grain size distributions throughout the study reach. Our most detailed topographic measurements revealed fine scale bed variations with wavelengths on the order of ten centimeters, while surveying of the entire study reach characterized large scale meanders with wavelengths on the order of five meters. The distribution of wavelengths influences the driving forces that cause solute to enter the bed and banks. Hydraulic conductivity determines the resistance to flow of stream water through the (meander) stream banks and streambed. We used a scaling approach to relate the geometric and hydrogeologic characteristics of the stream to solute transport and also applied a new analytical solution for the subsurface flows resulting from topographic variations over a wide range of spatial scales. These models captured the main features of the observed solute transport. The greatest

  20. Dispersal and colonisation of plants in lowland streams: success rates and bottlenecks

    DEFF Research Database (Denmark)

    Riis, Tenna

    2008-01-01

    -rich lowland streams. Rather, I conclude that primary colonisation is the main constraint to regaining vegetation in lowland streams in general and in vegetation-free rehabilitated streams in particular. Therefore, if plant colonisation is a target for stream rehabilitation, it is important to enhance......Plant dispersal and colonisation, including rates of dispersal, retention, colonisation and survival of dispersed propagules (shoots and seeds), were studied in a 300-m stream reach in a macrophyte-rich lowland stream during one growing season. Relationships between colonisation processes...... and simple flow parameters were tested. Each fortnight during a growing season, the number of dispersed plant propagules and the number of new and lost plant colonisations since the last sampling day were recorded. The retention of dispersing shoots was tested on two occasions during the growing season...

  1. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  2. Techniques for Minimizing and Monitoring the Impact of Pipeline Construction on Coastal Streams

    Science.gov (United States)

    Thomas W. Mulroy; John R. Storrer; Vincent J. Semonsen; Michael L. Dungan

    1989-01-01

    This paper describes specific measures recently employed for protection of riparian resources during construction of an oil and gas pipeline that crossed coastal reaches of 23 perennial and intermittent streams between Point Conception and Gaviota in Santa Barbara County, California. Flumes were constructed to maintain stream flow; anchored straw bales and silt fences...

  3. Design and methods of the Southeast Stream Quality Assessment (SESQA), 2014

    Science.gov (United States)

    Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Button, Daniel T.; Garrett, Jessica D.; Nakagaki, Naomi; Qi, Sharon L.; Bradley, Paul M.

    2015-07-15

    During 2014, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) assessed stream quality across the Piedmont and southern Appalachian Mountain regions of the southeastern United States. This Southeast Stream Quality Assessment (SESQA) simultaneously characterized watershed and stream-reach water-quality stressors along with instream biological conditions, in order to better understand regional stressor-effects relations. The goal of SESQA is to provide communities and policymakers with information about those human and environmental factors that have the greatest impact on stream quality across the region. The SESQA design focused on hydrologic alteration and urbanization because of their importance as ecological stressors of particular concern to Southeast region resource managers.

  4. Influence of Channel Geomorphology on Retention of Dissolved and Particulate Matter in a Cascade Mountain Stream

    Science.gov (United States)

    Gary A. Lamberti; Stan V. Gregory; Linda R. Ashkenas; Randall C. Wildman; Alan G. Steinman

    1989-01-01

    Retention of particulate and dissolved nutrients in streams is a major determinant of food avail-ability to stream biota. Retention of particulate matter (leaves) and dissolved nutrients (nitrogen) was studied experimentally during summer 1987 in four 300-500 m reaches of Lookout Creek, a fifth-order stream in the Cascade Mountains of Oregon. Constrained (narrow valley...

  5. Pattern Discovery and Change Detection of Online Music Query Streams

    Science.gov (United States)

    Li, Hua-Fu

    In this paper, an efficient stream mining algorithm, called FTP-stream (Frequent Temporal Pattern mining of streams), is proposed to find the frequent temporal patterns over melody sequence streams. In the framework of our proposed algorithm, an effective bit-sequence representation is used to reduce the time and memory needed to slide the windows. The FTP-stream algorithm can calculate the support threshold in only a single pass based on the concept of bit-sequence representation. It takes the advantage of "left" and "and" operations of the representation. Experiments show that the proposed algorithm only scans the music query stream once, and runs significant faster and consumes less memory than existing algorithms, such as SWFI-stream and Moment.

  6. Hydraulic Properties related to Stream Reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E. C.; Wallace, J. R. [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  7. Hydraulic properties related to stream reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E C; Wallace, J R [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  8. Predicted median July stream/river temperature regime in New England

    Data.gov (United States)

    U.S. Environmental Protection Agency — This shapefile includes the predicted thermal regime for all NHDPlus version 1 stream and river reaches in New England within the model domain based on the spatial...

  9. Quantification of metabolically active transient storage (MATS) in two reaches with contrasting transient storage and ecosystem respiration

    Science.gov (United States)

    Alba Argerich; Roy Haggerty; Eugènia Martí; Francesc Sabater; Jay. Zarnetske

    2011-01-01

    Water transient storage zones are hotspots for metabolic activity in streams although the contribution of different types of transient storage zones to the whole�]reach metabolic activity is difficult to quantify. In this study we present a method to measure the fraction of the transient storage that is metabolically active (MATS) in two consecutive reaches...

  10. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    Science.gov (United States)

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  11. Streaming Video Games: Copyright Infringement or Protected Speech?

    Directory of Open Access Journals (Sweden)

    Eirik Evert Elias Jungar

    2016-12-01

    Full Text Available Streaming video games, that is, live broadcasting playing video games on the internet, is incredibly popular. Millions tune into twitch.tv daily to watch eSport tournaments, their favourite streamer, and chat with other viewers. But all is not rosy in the world of streaming games. Recently, some game developers have aggressively exercised their copyright to, firstly, claim part of the streamers’ revenue, and secondly, control the context in which their game is shown. The article analyzes whether game developers have, and should have, such rights under EU copyright law. Reaching the conclusion that video game streams infringe the game developer’s right to communicate their works to the public, I argue that freedom of expression can and should be used to rein in their rights in certain cases. Subjecting the lawfulness of streams to game developers’ good will risks stifling the expressions of streamers. The streamers, their audience, and even the copyright holders, would be worse off for it.

  12. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action-perception theory.

    Science.gov (United States)

    Kuntz, Jessica R; Karl, Jenni M; Doan, Jon B; Whishaw, Ian Q

    2018-04-01

    Reach-to-grasp movements feature the integration of a reach directed by the extrinsic (location) features of a target and a grasp directed by the intrinsic (size, shape) features of a target. The action-perception theory suggests that integration and scaling of a reach-to-grasp movement, including its trajectory and the concurrent digit shaping, are features that depend upon online action pathways of the dorsal visuomotor stream. Scaling is much less accurate for a pantomime reach-to-grasp movement, a pretend reach with the target object absent. Thus, the action-perception theory proposes that pantomime movement is mediated by perceptual pathways of the ventral visuomotor stream. A distinguishing visual feature of a real reach-to-grasp movement is gaze anchoring, in which a participant visually fixates the target throughout the reach and disengages, often by blinking or looking away/averting the head, at about the time that the target is grasped. The present study examined whether gaze anchoring is associated with pantomime reaching. The eye and hand movements of participants were recorded as they reached for a ball of one of three sizes, located on a pedestal at arms' length, or pantomimed the same reach with the ball and pedestal absent. The kinematic measures for real reach-to-grasp movements were coupled to the location and size of the target, whereas the kinematic measures for pantomime reach-to-grasp, although grossly reflecting target features, were significantly altered. Gaze anchoring was also tightly coupled to the target for real reach-to-grasp movements, but there was no systematic focus for gaze, either in relation with the virtual target, the previous location of the target, or the participant's reaching hand, for pantomime reach-to-grasp. The presence of gaze anchoring during real vs. its absence in pantomime reach-to-grasp supports the action-perception theory that real, but not pantomime, reaches are online visuomotor actions and is discussed in

  13. Analyzing Hydro-Geomorphic Responses in Post-Fire Stream Channels with Terrestrial LiDAR

    Science.gov (United States)

    Nourbakhshbeidokhti, S.; Kinoshita, A. M.; Chin, A.

    2015-12-01

    Wildfires have potential to significantly alter soil properties and vegetation within watersheds. These alterations often contribute to accelerated erosion, runoff, and sediment transport in stream channels and hillslopes. This research applies repeated Terrestrial Laser Scanning (TLS) Light Detection and Ranging (LiDAR) to stream reaches within the Pike National Forest in Colorado following the 2012 Waldo Canyon Fire. These scans allow investigation of the relationship between sediment delivery and environmental characteristics such as precipitation, soil burn severity, and vegetation. Post-fire LiDAR images provide high resolution information of stream channel changes in eight reaches for three years (2012-2014). All images are processed with RiSCAN PRO to remove vegetation and triangulated and smoothed to create a Digital Elevation Model (DEM) with 0.1 m resolution. Study reaches with two or more successive DEM images are compared using a differencing method to estimate the volume of sediment erosion and deposition. Preliminary analysis of four channel reaches within Williams Canyon and Camp Creek yielded erosion estimates between 0.035 and 0.618 m3 per unit area. Deposition was estimated as 0.365 to 1.67 m3 per unit area. Reaches that experienced higher soil burn severity or larger rainfall events produced the greatest geomorphic changes. Results from LiDAR analyses can be incorporated into post-fire hydrologic models to improve estimates of runoff and sediment yield. These models will, in turn, provide guidance for water resources management and downstream hazards mitigation.

  14. Instream wood loads in montane forest streams of the Colorado Front Range, USA

    Science.gov (United States)

    Jackson, Karen J.; Wohl, Ellen

    2015-04-01

    Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle

  15. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand.

    Science.gov (United States)

    Sheibley, Richard W; Duff, John H; Tesoriero, Anthony J

    2014-11-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO), ammonium (NH), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (/, , , and ) correlated with NO retention but not NH or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO demand. However, because the fraction of median reach-scale travel time due to transient storage () was ≤1.2% across the sites, only a relatively small demand for NO could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Ecological Effects of Re-introduction of Salmonid Spawning Gravel in Lowland Danish Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Esben Astrup; Kronvang, Brian

    2009-01-01

    recently been conducted in many streams and rivers. However, systematic monitoring of these spawning gravel restoration projects is limited. The overall aim of this paper was to evaluate gravel reintroduction as a long-term salmonid rehabilitation method in 32 lowland streams. Displacement of gravel......, including both restored reaches and upstream control reaches. Downstream displacement of gravel was most common at sites where gravel was reintroduced without further improvement, although these sites exhibited the highest density of YOY brown trout (Salmo trutta), evidencing that the remaining gravel...... is still functional. The intensive study of three streams showed that spawning was enhanced by the introduction of spawning gravel at the restored sites compared to control sites and that habitat quality generally were improved. Our results also suggest complex interactions exist between spawning activity...

  17. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    Science.gov (United States)

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  18. Transcranial magnetic stimulation and preparation of visually-guided reaching movements

    Directory of Open Access Journals (Sweden)

    Pierpaolo eBusan

    2012-08-01

    Full Text Available To better define the neural networks related to preparation of reaching, we applied transcranial magnetic stimulation (TMS to the lateral parietal and frontal cortex. TMS did not evoke effects closely related to preparation of reaching, suggesting that neural networks already identified by our group are not larger than previously thought. We also replicated previous TMS/EEG data by applying TMS to the parietal cortex: new analyses were performed to better support reliability of already reported findings (Zanon et al., 2010; Brain Topography 22, 307-317. We showed the existence of neural circuits ranging from posterior to frontal regions of the brain after the stimulation of parietal cortex, supporting the idea of strong connections among these areas and suggesting their possible temporal dynamic. Connection with ventral stream was confirmed.The present work helps to define those areas which are involved in preparation of natural reaching in humans. They correspond to parieto-occipital, parietal and premotor medial regions of the left hemisphere, i.e. the contralateral one with respect to the moving hand, as suggested by previous studies. Behavioral data support the existence of a discrete stream involved in reaching. Besides the serial flow of activation from posterior to anterior direction, a parallel elaboration of information among parietal and premotor areas seems also to exist. Present cortico-cortical interactions (TMS/EEG experiment show propagation of activity to frontal, temporal, parietal and more posterior regions, exhibiting distributed communication among various areas in the brain.The neural system highlighted by TMS/EEG experiments is wider with respect to the one disclosed by the TMS behavioral approach. Further studies are needed to unravel this paucity of overlap. Moreover, the understanding of these mechanisms is crucial for the comprehension of response inhibition and changes in prepared actions, which are common behaviors in

  19. Near-Term Effects of Repeated-Thinning with Riparian Buffers on Headwater Stream Vertebrates and Habitats in Oregon, USA

    Directory of Open Access Journals (Sweden)

    Deanna H. Olson

    2014-11-01

    Full Text Available We examined the effects of a second-thinning harvest with alternative riparian buffer management approaches on headwater stream habitats and associated vertebrates in western Oregon, USA. Our analyses showed that stream reaches were generally distinguished primarily by average width and depth, along with the percentage of the dry reach length, and secondarily, by the volume of down wood. In the first year post-harvest, we observed no effects of buffer treatment on stream habitat attributes after moderate levels of thinning. One of two “thin-through” riparian treatments showed stronger trends for enlarged stream channels, likely due to harvest disturbances. The effects of buffer treatments on salamanders varied among species and with habitat structure. Densities of Plethodon dunni and Rhyacotriton species increased post-harvest in the moderate-density thinning with no-entry buffers in wider streams with more pools and narrower streams with more down wood, respectively. However, Rhyacotriton densities decreased along streams with the narrowest buffer, 6 m, and P. dunni and Dicamptodon tenebrosus densities decreased in thin-through buffers. Our study supports the use of a 15-m or wider buffer to retain sensitive headwater stream amphibians.

  20. Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams

    Science.gov (United States)

    Kocovsky, P.M.; Carline, R.F.

    2005-01-01

    Elevation and stream slope are abiotic gradients that limit upstream distributions of brook trout Salvelinus fontinalis and brown trout Salmo trutta in streams. We sought to determine whether another abiotic gradient, base-flow pH, may also affect distributions of these two species in eastern North America streams. We used historical data from the Pennsylvania Fish and Boat Commission's fisheries management database to explore the effects of reach elevation, slope, and base-flow pH on distributional limits to brook trout and brown trout in Pennsylvania streams in the Appalachian Plateaus and Ridge and Valley physiographic provinces. Discriminant function analysis (DFA) was used to calculate a canonical axis that separated allopatric brook trout populations from allopatric brown trout populations and allowed us to assess which of the three independent variables were important gradients along which communities graded from allopatric brook trout to allopatric brown trout. Canonical structure coefficients from DFA indicated that in both physiographic provinces, stream base-flow pH and slope were important factors in distributional limits; elevation was also an important factor in the Ridge and Valley Province but not the Appalachian Plateaus Province. Graphs of each variable against the proportion of brook trout in a community also identified apparent zones of allopatry for both species on the basis of pH and stream slope. We hypothesize that pH-mediated interspecific competition that favors brook trout in competition with brown trout at lower pH is the most plausible mechanism for segregation of these two species along pH gradients. Our discovery that trout distributions in Pennsylvania are related to stream base-flow pH has important implications for brook trout conservation in acidified regions. Carefully designed laboratory and field studies will be required to test our hypothesis and elucidate the mechanisms responsible for the partitioning of brook trout and

  1. Tritium uptake by fish in a small stream

    International Nuclear Information System (INIS)

    Eaton, D.; Murphy, C.E. Jr.

    1992-01-01

    The tritium concentration in the water from freeze drying and the water from combustion of the dry tissue was measured in fish (largemouth bass), stream macrophytes, and streamside vegetation at five sampling locations in Four Mile Branch on the Savannah River Site (SRS). Four Mile Branch has elevated tritium concentration, largely from migration of water through the soil from adjacent seepage basins that received industrial wastewater containing tritium. The stream water and the vegetation, through the food chain, are thought to be the two sources of tritium reaching the fish. Comparision of the tritium activity of the freeze-dried water from fish flesh and of the sources of tritium, indicates that the fish flesh approaches a steady-state concentration with the stream water. The freeze-dry water from the vegetation is also at a lower specific activity than the stream water. The water of combustion from the vegetation is also at a lower specific activity than stream water. The water of combustion from the fish flesh is somewhat higher in specific activity than the stream water or the water in the fish. The distribution of tritium among the components of this system can be explain in terms of the turnover of water and organic hydrogen in the components

  2. Surveying Small Streams with COTS UAVs

    Science.gov (United States)

    McKean, J. A.; Wright, C. W.; Tonina, D.

    2017-12-01

    We tested the ability to make high resolution surveys of stream bathymetry and exposed banks using a commercial off-the-shelf unmanned quadcopter equipped with a 12 megapixel, gimbal stabilized, RGB camera, and L1-code-only GPS.Our study site is a canyon-wall confined gravel bed river with pool-riffle morphology. The survey reach was 15 m wide and on average 0.3 m deep with a maximum water depth during survey of approximately 1.2 m. Streambed material ranged between pea gravel to boulders. For accuracy comparison we field-surveyed the reach with an RTK GPS. The survey mapped large boulders and cobbles, stream banks and bed morphology, as well as the center of each of 9 black/white photo targets with a surface area of 22" x 16" that were placed around the perimeter of the reach. The water was clear, and the bottom substrate reflectivity was highly variable and rich in texture Nearly 1,000 photos were captured, many with sub-centimeter pixels. The photos were processed using Agisoft Photoscan and the resulting point cloud linked to the GPS coordinate system via the surveyed photo targets. The submerged portion of the data was separated from the sub-aerial data, corrected for refraction using external software and then rejoined to produce a seamless point cloud. Comparison between the merged results and ground-survey point shows good agreement with less than 10cm rmse.

  3. Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain

    Science.gov (United States)

    Prestegaard, K. L.; Gilbert, L.; Phemister, K.

    2005-05-01

    In the 1950's and 60's, extensive networks of cement-lined channels were built in suburban watersheds near Washington, D.C. to convey storm water to downstream locations. These cement-lined stream channels limit interactions between surface and groundwater and they provide sources of alkalinity in Maryland Coastal Plain watersheds that normally have low alkalinity. This project was designed to 1) compare base flow water chemistry in headwater reaches of urban and non-urban streams, and 2) to evaluate downstream changes in water chemistry in channelized urban streams in comparison with non-urban reference streams. During a drought year, headwater streams in both urban and non-urban sites had significant concentrations of Fe(II) that were discharged from groundwater sources and rapidly oxidized by iron-oxidizing bacteria. During a wet year, the concentrations of Fe(II) were higher in headwater urban streams than in the non-urban streams. This suggests that impervious surfaces in headwater urban watersheds prevent the recharge of oxygen-rich waters during storm events, which maintains iron-rich groundwater discharge to the stream. Downstream changes in water chemistry are prominent in cement-lined urban channels because they are associated with distinctive microbial communities. The headwater zones of channelized streams are dominated by iron-ozidizing bacteria, that are replaced downstream by manganese-oxidizing zones, and replaced further downstream by biofilms dominated by photosynthesizing cyanobacteria. The reaches dominated by cyanobacteria exhibit diurnal changes in pH due to uptake of CO2 for photosynthesis. Diurnal changes range from 7.5 to 8.8 in the summer months to 7.0 to 7.5 in the cooler months, indicating both the impact of photosynthesis and the additional source of alkalinity provided by concrete. The dissolved oxygen, pH, and other characteristics of tributaries dominated by cyanobacteria are similar to the water chemistry characteristics observed in

  4. Vegetation patterns and abundances of amphibians and small mammals along small streams in a northwestern California watershed

    Science.gov (United States)

    Jeffrey R. Waters; Cynthia J. Zabel; Kevin S. McKelvey; Hartwell H. Welsh

    2001-01-01

    Our goal was to describe and evaluate patterns of association between stream size and abundances of amphibians and small mammals in a northwestern California watershed. We sampled populations at 42 stream sites and eight upland sites within a 100- watershed in 1995 and 1996. Stream reaches sampled ranged from poorly defined channels that rarely flowed to 10-m-wide...

  5. Topology and geometry of the dark matter web: A multi-stream view

    Science.gov (United States)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-05-01

    Topological connections in the single-streaming voids and multistreaming filaments and walls reveal a cosmic web structure different from traditional mass density fields. A single void structure not only percolates the multistream field in all the directions, but also occupies over 99 per cent of all the single-streaming regions. Sub-grid analyses on scales smaller than simulation resolution reveal tiny pockets of voids that are isolated by membranes of the structure. For the multistreaming excursion sets, the percolating structure is significantly thinner than the filaments in overdensity excursion approach. Hessian eigenvalues of the multistream field are used as local geometrical indicators of dark matter structures. Single-streaming regions have most of the zero eigenvalues. Parameter-free conditions on the eigenvalues in the multistream region may be used to delineate primitive geometries with concavities corresponding to filaments, walls and haloes.

  6. Technical Note: A comparison of two empirical approaches to estimate in-stream net nutrient uptake

    Science.gov (United States)

    von Schiller, D.; Bernal, S.; Martí, E.

    2011-04-01

    To establish the relevance of in-stream processes on nutrient export at catchment scale it is important to accurately estimate whole-reach net nutrient uptake rates that consider both uptake and release processes. Two empirical approaches have been used in the literature to estimate these rates: (a) the mass balance approach, which considers changes in ambient nutrient loads corrected by groundwater inputs between two stream locations separated by a certain distance, and (b) the spiralling approach, which is based on the patterns of longitudinal variation in ambient nutrient concentrations along a reach following the nutrient spiralling concept. In this study, we compared the estimates of in-stream net nutrient uptake rates of nitrate (NO3) and ammonium (NH4) and the associated uncertainty obtained with these two approaches at different ambient conditions using a data set of monthly samplings in two contrasting stream reaches during two hydrological years. Overall, the rates calculated with the mass balance approach tended to be higher than those calculated with the spiralling approach only at high ambient nitrogen (N) concentrations. Uncertainty associated with these estimates also differed between both approaches, especially for NH4 due to the general lack of significant longitudinal patterns in concentration. The advantages and disadvantages of each of the approaches are discussed.

  7. Flow effects on benthic stream invertebrates and ecological processes

    Science.gov (United States)

    Koprivsek, Maja; Brilly, Mitja

    2010-05-01

    Flow is the main abiotic factor in the streams. Flow affects the organisms in many direct and indirect ways. The organisms are directly affected by various hydrodynamic forces and mass transfer processes like drag forces, drift, shear stress, food and gases supply and washing metabolites away. Indirect effects on the organisms are determining and distribution of the particle size and structure of the substrate and determining the morphology of riverbeds. Flow does not affect only on individual organism, but also on many ecological effects. To expose just the most important: dispersal of the organisms, habitat use, resource acquisition, competition and predator-prey interactions. Stream invertebrates are adapted to the various flow conditions in many kinds of way. Some of them are avoiding the high flow with living in a hyporeic zone, while the others are adapted to flow with physical adaptations (the way of feeding, respiration, osmoregulation and resistance to draught), morphological adaptations (dorsoventrally flattened shape of organism, streamlined shape of organism, heterogeneous suckers, silk, claws, swimming hair, bristles and ballast gravel) or with behaviour. As the flow characteristics in a particular stream vary over a broad range of space and time scales, it is necessary to measure accurately the velocity in places where the organisms are present to determine the actual impact of flow on aquatic organisms. By measuring the mean flow at individual vertical in a single cross-section, we cannot get any information about the velocity situation close to the bottom of the riverbed where the stream invertebrates are living. Just measuring the velocity near the bottom is a major problem, as technologies for measuring the velocity and flow of natural watercourses is not adapted to measure so close to the bottom. New researches in the last two decades has shown that the thickness of laminar border layer of stones in the stream is only a few 100 micrometers, what

  8. Streamer Motives and User-Generated Content on Social Live-Streaming Services

    Directory of Open Access Journals (Sweden)

    Friedlander, Mathilde B.

    2017-03-01

    Full Text Available Three most popular information services, Periscope, Ustream, and YouNow, vicarious for all Social Live-Streaming Services (SLSSs, are investigated to analyze their streamers' motivations and the user-generated content. Additionally, we collected demographic data (gender and age. More than 7,500 streams by users from the U.S., Germany, and Japan were observed. Main streamer motivations on SLSSs are boredom, socializing, the need to reach a specific group, the need to communicate, and fun. Important content categories on all three SLSSs are chatting, sharing information, 24/7, and 'slice of life.' We were able to identify differences between users from the U.S., Germany, and Japan as well as between the users of Periscope, Ustream, and YouNow. The main motive to stream in the U.S. is to reach a specific group, while in Japan it is socializing, and in Germany boredom. The top content category for both, YouNow as well as Periscope, is to chat; on Ustream it is 24/7 (i.e., webcams.

  9. Vulnerable transportation and utility assets near actively migrating streams in Indiana

    Science.gov (United States)

    Sperl, Benjamin J.

    2017-11-02

    An investigation was completed by the U.S. Geological Survey in cooperation with the Indiana Office of Community and Rural Affairs that found 1,132 transportation and utility assets in Indiana are vulnerable to fluvial erosion hazards due to close proximity to actively migrating streams. Locations of transportation assets (bridges, roadways, and railroad lines) and selected utility assets (high-capacity overhead power-transmission lines, underground pipelines, water treatment facilities, and in-channel dams) were determined using aerial imagery hosted by the Google Earth platform. Identified assets were aggregated by stream reach, county, and class. Accompanying the report is a polyline shapefile of the stream reaches documented by Robinson. The shapefile, derived from line work in the National Hydrography Dataset and attributed with channel migration rates, is released with complete Federal Geographic Data Committee metadata. The data presented in this report are intended to help stakeholders and others identify high-risk areas where transportation and utility assets may be threatened by fluvial erosion hazards thus warranting consideration for mitigation strategies.

  10. Development of Ecogeomorphological (EGM Stream Design and Assessment Tools for the Piedmont of Alabama, USA

    Directory of Open Access Journals (Sweden)

    Brian Helms

    2016-04-01

    Full Text Available Regional data needed for effective stream restoration include hydraulic geometry relationships (i.e., regional curves and reference channel morphology parameters. Increasingly ecological conditions are being considered when designing, implementing, and assessing restoration efforts. We provide morphology relationships and associated ecological endpoint curves for reference streams in the Alabama piedmont. Twenty-one reference stream reaches were identified in the Tallapoosa drainage of Alabama, ranging from 0.2 to 242 km2 drainage area. Geomorphic surveys were conducted in each stream to measure riffle cross-sections and longitudinal profiles and related to drainage area to develop regional curves. Fish, crayfish, and benthic macroinvertebrates were collected from each surveyed reach and related to drainage area and geomorphic data to provide associated biological community endpoints. Bankfull channel cross-section area, width, mean depth, and estimated discharge were strongly correlated to watershed drainage area, similar to efforts in other areas of the Piedmont ecoregion. Multiple measures of fish assemblages and crayfish size were strongly predicted by drainage area and geomorphic dimensions. Macroinvertebrates showed no taxonomic and limited functional relationships with drainage area and geomorphic dimension. These tools, which integrate geomorphological and ecological conditions, can result in improved stream evaluations and designs increasing the effectiveness of stream restoration projects.

  11. Design and implementation of streaming media server cluster based on FFMpeg.

    Science.gov (United States)

    Zhao, Hong; Zhou, Chun-long; Jin, Bao-zhao

    2015-01-01

    Poor performance and network congestion are commonly observed in the streaming media single server system. This paper proposes a scheme to construct a streaming media server cluster system based on FFMpeg. In this scheme, different users are distributed to different servers according to their locations and the balance among servers is maintained by the dynamic load-balancing algorithm based on active feedback. Furthermore, a service redirection algorithm is proposed to improve the transmission efficiency of streaming media data. The experiment results show that the server cluster system has significantly alleviated the network congestion and improved the performance in comparison with the single server system.

  12. Design and Implementation of Streaming Media Server Cluster Based on FFMpeg

    Science.gov (United States)

    Zhao, Hong; Zhou, Chun-long; Jin, Bao-zhao

    2015-01-01

    Poor performance and network congestion are commonly observed in the streaming media single server system. This paper proposes a scheme to construct a streaming media server cluster system based on FFMpeg. In this scheme, different users are distributed to different servers according to their locations and the balance among servers is maintained by the dynamic load-balancing algorithm based on active feedback. Furthermore, a service redirection algorithm is proposed to improve the transmission efficiency of streaming media data. The experiment results show that the server cluster system has significantly alleviated the network congestion and improved the performance in comparison with the single server system. PMID:25734187

  13. Habitat hydraulic models - a tool for Danish stream quality assessment?

    DEFF Research Database (Denmark)

    Olsen, Martin

    and hydromorphological and chemical characteristics has to be enlightened (EUROPA, 2005). This study links catchment hydrology, stream discharge and physical habitat in a small Danish stream, the stream Ledreborg, and discusses the utility of habitat hydraulic models in relation to the present criteria and methods used......).  Hydromorphological conditions in the stream are measured through field study, using a habitat mapping approach and modelled using a habitat hydraulic model (RHYHABSIM). Using RHYHABSIM and both "site-specific" and general HSI's, Weighted Usable Area (WUA) for the trout population at different discharges is assessed...... and differences between simulated WUA using "site-specific" and general habitat preferences are discussed. In RHYHABSIM it is possible to use two different approaches to investigate the hydromorphological conditions in a river, the habitat mapping approach used in this project and the representative reach...

  14. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    Science.gov (United States)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value

  15. Applying High-Resolution Imagery to Evaluate Restoration-Induced Changes in Stream Condition, Missouri River Headwaters Basin, Montana

    Directory of Open Access Journals (Sweden)

    Melanie K. Vanderhoof

    2018-06-01

    Full Text Available Degradation of streams and associated riparian habitat across the Missouri River Headwaters Basin has motivated several stream restoration projects across the watershed. Many of these projects install a series of beaver dam analogues (BDAs to aggrade incised streams, elevate local water tables, and create natural surface water storage by reconnecting streams with their floodplains. Satellite imagery can provide a spatially continuous mechanism to monitor the effects of these in-stream structures on stream surface area. However, remote sensing-based approaches to map narrow (e.g., <5 m wide linear features such as streams have been under-developed relative to efforts to map other types of aquatic systems, such as wetlands or lakes. We mapped pre- and post-restoration (one to three years post-restoration stream surface area and riparian greenness at four stream restoration sites using Worldview-2 and 3 images as well as a QuickBird-2 image. We found that panchromatic brightness and eCognition-based outputs (0.5 m resolution provided high-accuracy maps of stream surface area (overall accuracy ranged from 91% to 99% for streams as narrow as 1.5 m wide. Using image pairs, we were able to document increases in stream surface area immediately upstream of BDAs as well as increases in stream surface area along the restoration reach at Robb Creek, Alkali Creek and Long Creek (South. Although Long Creek (North did not show a net increase in stream surface area along the restoration reach, we did observe an increase in riparian greenness, suggesting increased water retention adjacent to the stream. As high-resolution imagery becomes more widely collected and available, improvements in our ability to provide spatially continuous monitoring of stream systems can effectively complement more traditional field-based and gage-based datasets to inform watershed management.

  16. Substrate homogenization affects survival and fitness in the lowland stream caddisflies Micropterna sequax and Potamophylax rotundipennis

    NARCIS (Netherlands)

    Westveer, Judith J.; Verdonschot, Piet F.M.; Verdonschot, Ralf C.M.

    2017-01-01

    Loss of substrate heterogeneity or patchiness is common in lowland streams with disturbed hydrological regimes. At the reach scale, peak discharges tend to homogenize the stream bed and decrease the availability of specific microhabitat types. This spatial shift in habitats toward a more

  17. Feeding kinematics and performance of Hawaiian stream gobies, Awaous guamensis and Lentipes concolor: linkage of functional morphology and ecology.

    Science.gov (United States)

    Maie, Takashi; Wilson, Megan P; Schoenfuss, Heiko L; Blob, Richard W

    2009-03-01

    Distributions of Hawaiian stream fishes are typically interrupted by waterfalls that divide streams into multiple segments. Larvae hatch upstream, are flushed into the ocean, and must climb these waterfalls to reach adult habitats when returning back to freshwater as part of an amphidromous life cycle. Stream surveys and studies of climbing performance show that Lentipes concolor Gill can reach fast-flowing upper stream segments but that Awaous guamensis Valenciennes reaches only slower, lower stream segments. Gut content analyses for these two species indicate considerable overlap in diet, suggesting that feeding kinematics and performance of these two species might be comparable. Alternatively, feeding kinematics and performance of these species might be expected to differ in relation to the different flow regimes in their habitat (feeding in faster stream currents for L. concolor versus in slower currents for A. guamensis). To test these alternative hypotheses, we compared food capturing kinematics and performance during suction feeding behaviors of A. guamensis and L. concolor using morphological data and high-speed video. Lentipes concolor showed both a significantly larger gape angle and faster jaw opening than A. guamensis. Geometric models calculated that despite the inverse relationship of gape size and suction pressure generation, the fast jaw motions of L. concolor allow it to achieve higher pressure differentials than A. guamensis. Such elevated suction pressure would enhance the ability of L. concolor to successfully capture food in the fast stream reaches it typically inhabits. Differences in jaw morphology may contribute to these differences in performance, as the lever ratio for jaw opening is about 10% lower in L. concolor compared with A. guamensis, suiting the jaws of L. concolor better for fast opening. Copyright 2008 Wiley-Liss, Inc.

  18. Reaching Out to Single Parent Children through Filial Therapy

    Science.gov (United States)

    Alivandi Vafa, Marziyeh; Khaidzir Hj. Ismail

    2009-01-01

    Single parenthood as a common psychosocial phenomenon seems to be regarded as one of the most significant issues in the psychological domain and needs to be taken into serious consideration due to emotional, psychological, and social problems created by it. With regard to the rapidly growing population of single parents and their children…

  19. Enhanced winds and tidal streams in massive X-ray binaries

    International Nuclear Information System (INIS)

    Blondin, J.M.; Stevens, I.R.; Kallman, T.R.

    1991-01-01

    The tidal effects created by the presence of a compact companion are expected to induce a stream of enhanced wind from the early-type primary star in massive X-ray binary systems. In this paper, two-dimensional gasdynamical simulations of such streams are presented. It is found that the wind enhancement is a sensitive function of the binary separation, and develops into a tidal stream as the primary approaches its critical surface. For typical system parameters, the Coriolis force deflects the stream sufficiently that it does not impact directly on the compact companion but passes behind it. The density in the stream can reach values of 20-30 times the ambient wind density, leading to strong attenuation of the X-ray flux that passes through the tidal stream, providing a possible explanation of the enhanced absorption events seen at later phases in the X-ray observations of massive X-ray binary systems such as Vela X-1. In contrast to the time-variable accretion wake, the tidal stream is relatively stationary, producing absorption features that should remain fixed from orbit to orbit. For systems with a strong tidal stream, the large asymmetry in the accreting wind results in the accretion of angular momentum of constant sign, as opposed to systems without streams, where the sign of the accreted angular momentum can change. 39 refs

  20. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  1. Memory for Spatial Locations in a Patient with Near Space Neglect and Optic Ataxia: Involvement of the Occipitotemporal Stream

    Directory of Open Access Journals (Sweden)

    Sergio Chieffi

    2017-05-01

    Full Text Available Previous studies suggested that the occipitoparietal stream orients attention toward the near/lower space and is involved in immediate reaching, whereas the occipitotemporal stream orients attention toward the far/upper space and is involved in delayed reaching. In the present study, we investigated the role of the occipitotemporal stream in attention orienting and delayed reaching in a patient (GP with bilateral damage to the occipitoparietal areas and optic ataxia. GP and healthy controls took part in three experiments. In the experiment 1, the participants bisected lines oriented along radial, vertical, and horizontal axes. GP bisected radial lines farther, and vertical lines more above, than the controls, consistent with an attentional bias toward the far/upper space and near/lower space neglect. The experiment 2 consisted of two tasks: (1 an immediate reaching task, in which GP reached target locations under visual control and (2 a delayed visual reaching task, in which GP and controls were asked to reach remembered target locations visually presented. We measured constant and variable distance and direction errors. In immediate reaching task, GP accurately reached target locations. In delayed reaching task, GP overshot remembered target locations, whereas the controls undershot them. Furthermore, variable errors were greater in GP than in the controls. In the experiment 3, GP and controls performed a delayed proprioceptive reaching task. Constant reaching errors did not differ between GP and the controls. However, variable direction errors were greater in GP than in the controls. We suggest that the occipitoparietal damage, and the relatively intact occipitotemporal region, produced in GP an attentional orienting bias toward the far/upper space (experiment 1. In turns, the attentional bias selectively shifted toward the far space remembered visual (experiment 2, but not proprioceptive (experiment 3, target locations. As a whole, these

  2. Stream habitat structure influences macroinvertebrate response to pesticides

    International Nuclear Information System (INIS)

    Rasmussen, Jes Jessen; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette; Friberg, Nikolai; Kronvang, Brian

    2012-01-01

    Agricultural pesticides continue to impair surface water ecosystems, although there are few assessments of interactions with other modifications such as fine sediment and physical alteration for flood drainage. We, therefore, surveyed pesticide contamination and macroinvertebrates in 14 streams along a gradient of expected pesticide exposure using a paired-reach approach to differentiate effects between physically modified and less modified sites. Apparent pesticides effects on the relative abundance of SPEcies At Risk (SPEAR) were increased at sites with degraded habitats primarily due to the absence of species with specific preferences for hard substrates. Our findings highlight the importance of physical habitat degradation in the assessment and mitigation of pesticide risk in agricultural streams. - Highlights: ► %SPEAR abundance significantly decreased with increasing TU (D. magna). ► %SPEAR abundance was significantly lower when soft sediment was dominant. ► Species specific habitat preferences influenced the total effect of pesticides. ► This study has strong implications for future stream management and risk assessment. - Ecological impacts of pesticides on stream macroinvertebrates are influenced by the heterogeneity and physical structure of micro-habitats.

  3. Developing a novel approach to analyse the regimes of temporary streams and their controls on aquatic biota

    Science.gov (United States)

    Gallart, F.; Prat, N.; García-Roger, E. M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G. G.; Brito, D.; de Girolamo, A. M.; Lo Porto, A.; Neves, R.; Nikolaidis, N. P.; Perrin, J. L.; Querner, E. P.; Quiñonero, J. M.; Tournoud, M. G.; Tzoraki, O.; Froebrich, J.

    2011-10-01

    Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. The use of the aquatic fauna structural and functional characteristics to assess the ecological quality of a temporary stream reach can not therefore be made without taking into account the controls imposed by the hydrological regime. This paper develops some methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: flood, riffles, connected, pools, dry and arid. We used the water discharge records from gauging stations or simulations using rainfall-runoff models to infer the temporal patterns of occurrence of these states using the developed aquatic states frequency graph. The visual analysis of this graph is complemented by the development of two metrics based on the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of the aquatic regimes of temporary streams in terms of their influence over the development of aquatic life is put forward, defining Permanent, Temporary-pools, Temporary-dry and Episodic regime types. All these methods were tested with data from eight temporary streams around the Mediterranean from MIRAGE project and its application was a precondition to assess the ecological quality of these streams using the current methods prescribed in the European Water Framework Directive for macroinvertebrate communities.

  4. Streamer Motives and User-Generated Content on Social Live-Streaming Services

    OpenAIRE

    Friedlander, Mathilde B.

    2017-01-01

    Three most popular information services, Periscope, Ustream, and YouNow, vicarious for all Social Live-Streaming Services (SLSSs), are investigated to analyze their streamers' motivations and the user-generated content. Additionally, we collected demographic data (gender and age). More than 7,500 streams by users from the U.S., Germany, and Japan were observed. Main streamer motivations on SLSSs are boredom, socializing, the need to reach a specific group, the need to communicate, and fun. Im...

  5. Multivariate geomorphic analysis of forest streams: Implications for assessment of land use impacts on channel condition

    Science.gov (United States)

    Richard. D. Wood-Smith; John M. Buffington

    1996-01-01

    Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...

  6. Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions

    Directory of Open Access Journals (Sweden)

    R. Kandasamy

    2016-03-01

    Full Text Available The objective of the present work was to investigate theoretically the effect of single walled carbon nanotubes (SWCNTs in the presence of water and seawater with variable stream condition due to solar radiation energy. The conclusion is drawn that the flow motion and the temperature field for SWCNTs in the presence of base fluid are significantly influenced by magnetic field, convective radiation and thermal stratification. Thermal boundary layer of SWCNTs-water is compared to that of Cu-water, absorbs the incident solar radiation and transits it to the working fluid by convection.

  7. Methanotrophy in surface sediments of streams

    Science.gov (United States)

    Bagnoud, Alexandre; Pramateftaki, Paraskevi; Peter, Hannes; Battin, Tom

    2017-04-01

    Because streams are often found to be supersaturated in methane (CH4), they are considered as atmospheric sources of this greenhouse gas. However, little is known about the processes driving CH4 cycling in these environments, i.e. production, consumption and fluxes. CH4 is thought to be produced in deeper anoxic sediments, before it migrates up to reach the oxic stream water, where it can be oxidized by methanotrophs. In order to gain insights into this process, we investigated 14 different streams across Switzerland. We characterized the chemistry of surface and sediment waters by measuring dissolved chemical profiles. We also sampled surface sediments and determined methanotrophic rates with laboratory incubations and Michaelis-Menten modeling. Interestingly, rates were strongly correlated with the CH4 concentrations in stream waters, rather than in sediment waters. This indicates that methantrophic populations feed on CH4 from the surface streamwater, even though CH4 concentrations are higher in the sediment waters. Methanotrophy rates were also correlated with Crenothrix counts (based on 16S rRNA sequencing), a strict methanotroph, while this latter was correlated with pmoA counts (based on quantitative PCR), a gene involved in methanotrophy. These results show that Crenothrix genera are the most active methanotrophs in surface sediments of streams, and can represent more than 2% of microbial communities. Remarkably, the dominating Crenothrix species was detected in all 14 samples. This work allows the assessment of in situ methanotrophic rates, of the environmental parameters driving this process, and of the microbial populations carrying it out, and thus brings useful insights about carbon cycling in streams.

  8. Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms

    International Nuclear Information System (INIS)

    Pestana, J.L.T.; Alexander, A.C.; Culp, J.M.; Baird, D.J.; Cessna, A.J.; Soares, A.M.V.M.

    2009-01-01

    Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insecticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced invertebrate abundance and community diversity in imidacloprid-dosed streams compared to control streams. These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be used as early warning indicators and biomonitoring tools for pesticide contamination. The data generated illustrates the value of mesocosm experiments in environmental assessment and how the consideration of functional and structural endpoints of natural communities together with in situ single species bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems. - Combining organism-level responses with community-level processes for the evaluation and prediction of pesticide effects on stream ecosystems.

  9. Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, J.L.T., E-mail: jpestana@ua.p [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Alexander, A.C., E-mail: alexa.alexander@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Culp, J.M., E-mail: jculp@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Baird, D.J., E-mail: djbaird@unb.c [Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB (Canada); Cessna, A.J., E-mail: asoares@ua.p [Environment Canada, National Hydrology Research Centre, 11 Innovation Boulevard, Saskatoon, SK (Canada); Soares, A.M.V.M., E-mail: asoares@ua.p [CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal)

    2009-08-15

    Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insecticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced invertebrate abundance and community diversity in imidacloprid-dosed streams compared to control streams. These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be used as early warning indicators and biomonitoring tools for pesticide contamination. The data generated illustrates the value of mesocosm experiments in environmental assessment and how the consideration of functional and structural endpoints of natural communities together with in situ single species bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems. - Combining organism-level responses with community-level processes for the evaluation and prediction of pesticide effects on stream ecosystems.

  10. Larval aquatic insect responses to cadmium and zinc in experimental streams.

    Science.gov (United States)

    Mebane, Christopher A; Schmidt, Travis S; Balistrieri, Laurie S

    2017-03-01

    To evaluate the risks of metal mixture effects to natural stream communities under ecologically relevant conditions, the authors conducted 30-d tests with benthic macroinvertebrates exposed to cadmium (Cd) and zinc (Zn) in experimental streams. The simultaneous exposures were with Cd and Zn singly and with Cd+Zn mixtures at environmentally relevant ratios. The tests produced concentration-response patterns that for individual taxa were interpreted in the same manner as classic single-species toxicity tests and for community metrics such as taxa richness and mayfly (Ephemeroptera) abundance were interpreted in the same manner as with stream survey data. Effect concentrations from the experimental stream exposures were usually 2 to 3 orders of magnitude lower than those from classic single-species tests. Relative to a response addition model, which assumes that the joint toxicity of the mixtures can be predicted from the product of their responses to individual toxicants, the Cd+Zn mixtures generally showed slightly less than additive toxicity. The authors applied a modeling approach called Tox to explore the mixture toxicity results and to relate the experimental stream results to field data. The approach predicts the accumulation of toxicants (hydrogen, Cd, and Zn) on organisms using a 2-pK a bidentate model that defines interactions between dissolved cations and biological receptors (biotic ligands) and relates that accumulation through a logistic equation to biological response. The Tox modeling was able to predict Cd+Zn mixture responses from the single-metal exposures as well as responses from field data. The similarity of response patterns between the 30-d experimental stream tests and field data supports the environmental relevance of testing aquatic insects in experimental streams. Environ Toxicol Chem 2017;36:749-762. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the

  11. Characterization of water quality for streams in the southern Yampa River basin, northwestern Colorado. Water Resources Investigation

    International Nuclear Information System (INIS)

    Parker, R.S.

    1991-01-01

    Historically, the Yampa River basin in northwestern Colorado has been an area of coal-mining development. Coal mining generally has been developed in the southern part of the basin and at lower elevations. The purpose of the report is to characterize the stream water quality by summarizing selected major dissolved constituents for the streams that drain the southern part of the Yampa River basin. Characterization is done initially by providing a statistical summary of the constituents for individual water-quality sites in the study area. These statistical summaries can be used to help assess water-quality within specified stream reaches. Water-quality data are available for sites on most perennial streams in the study area, and these data provide the best information about the immediate stream reach. Water-quality data from all sites are combined into regions, and linear-regression equations between dissolved constituents and specific conductance are calculated. Such equations provide an estimate of the water-quality relations within these regions. The equations also indicate an increase in error as individual sites are combined

  12. Stream characteristics and their implications for the protection of riparian fens and meadows

    DEFF Research Database (Denmark)

    Baattrup-Pedersen, A.; Larsen, S.E.; Andersen, Peter Mejlhede

    2011-01-01

    the influence of stream size, morphology and chemical water characteristics for the distribution of water-dependent terrestrial habitat types, i.e. alkaline fens, periodically inundated meadows and meadows in riparian areas in Denmark using an extensive data set covering a total of 254 stream reaches. A species......1. Running waters, including associated riparian areas, are embraced by international legal frameworks outlining targets for the preservation, protection and improvement of the quality of the environment. Interactions between stream and river processes and riparian habitats have not received much...... attention in the management of stream ecosystems, and integrated measures that consider both the ecological status of streams and rivers (sensu EU Water Framework Directive, WFD) and the conservation status of riparian habitats and species (sensu EU Habitats Directive, HD) are rare. 2. Here, we analysed...

  13. Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Dahl, Milo D.

    2012-01-01

    In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed.

  14. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  15. Method and apparatus of prefetching streams of varying prefetch depth

    Science.gov (United States)

    Gara, Alan [Mount Kisco, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Hoenicke, Dirk [Seebruck-Seeon, DE

    2012-01-24

    Method and apparatus of prefetching streams of varying prefetch depth dynamically changes the depth of prefetching so that the number of multiple streams as well as the hit rate of a single stream are optimized. The method and apparatus in one aspect monitor a plurality of load requests from a processing unit for data in a prefetch buffer, determine an access pattern associated with the plurality of load requests and adjust a prefetch depth according to the access pattern.

  16. Baseline Channel Geometry and Aquatic Habitat Data for Selected Streams in the Matanuska-Susitna Valley, Alaska

    Science.gov (United States)

    Curran, Janet H.; Rice, William J.

    2009-01-01

    Small streams in the rapidly developing Matanuska-Susitna Valley in south-central Alaska are known to support anadromous and resident fish but little is known about their hydrologic and riparian conditions, or their sensitivity to the rapid development of the area or climate variability. To help address this need, channel geometry and aquatic habitat data were collected in 2005 as a baseline of stream conditions for selected streams. Three streams were selected as representative of various stream types, and one drainage network, the Big Lake drainage basin, was selected for a systematic assessment. Streams in the Big Lake basin were drawn in a Geographic Information System (GIS), and 55 reaches along 16 miles of Meadow Creek and its primary tributary Little Meadow Creek were identified from orthoimagery and field observations on the basis of distinctive physical and habitat parameters, most commonly gradient, substrate, and vegetation. Data-collection methods for sites at the three representative reaches and the 55 systematically studied reaches consisted of a field survey of channel and flood-plain geometry and collection of 14 habitat attributes using published protocols or slight modifications. Width/depth and entrenchment ratios along the Meadow-Little Meadow Creek corridor were large and highly variable upstream of Parks Highway and lower and more consistent downstream of Parks Highway. Channel width was strongly correlated with distance, increasing downstream in a log-linear relation. Runs formed the most common habitat type, and instream vegetation dominated the habitat cover types, which collectively covered 53 percent of the channel. Gravel suitable for spawning covered isolated areas along Meadow Creek and about 29 percent of Little Meadow Creek. Broad wetlands were common along both streams. For a comprehensive assessment of small streams in the Mat-Su Valley, critical additional data needs include hydrologic, geologic and geomorphic, and biologic data

  17. Impacts of habitat degradation and stream spatial location on biodiversity in a disturbed riverine landscape

    DEFF Research Database (Denmark)

    Göthe, Emma; Wiberg-Larsen, Peter; Kristensen, Esben Astrup

    2015-01-01

    gradients. We used macrophyte, fish and macroinvertebrate data from Danish lowland streams to investigate whether (1) high connectivity in reaches situated in lower parts of the stream network (downstream sites) generates high α-diversity, while dispersal limitation and high habitat heterogeneity across......The ongoing degradation of freshwater habitat quality and subsequent losses of biodiversity is alarming. One key to successful freshwater management is to understand how different scale-dependent diversity components (i.e. γ-, α- and β-diversity) change along present-day anthropogenic impact...... the more isolated upper reaches (headwater sites) generate high β-diversity, (2) γ-, α- and β- diversity decrease with increasing hydromorphological impact and (3) high connectivity in downstream reaches buffers against impacts on biodiversity. Results showed that α-diversity was higher in downstream sites...

  18. Large wood and in-stream habitat for juvenile coho salmon and larval lampreys in a Pacific Northwest stream

    Science.gov (United States)

    Gonzalez, Rosalinda; Dunham, Jason B.; Lightcap, Scott W.; McEnroe, Jeffery R.

    2017-01-01

    The influences of large wood on Pacific salmon are well-studied, but studies of nonsalmonid species such as lampreys are uncommon. To address this need, we evaluated the potential effects of large wood on larval lampreys (Pacific Lamprey, Entosphenus tridentatus; and potentially Western Brook Lamprey Lampetra richardsoni), as well as juvenile Coho Salmon Oncorhynchus kisutch, in a small coastal Oregon stream. Our objectives were to 1) identify in-stream habitat characteristics associated with the presence of larval lampreys and abundance of juvenile Coho Salmon; and 2) evaluate how these characteristics were associated with in-stream wood. To address habitat use, we quantified presence of larval lampreys in 92 pools and abundance of juvenile Coho Salmon in 44 pools during summer low flows. We focused on a study reach where large wood was introduced into the stream between 2008 and 2009. Results indicated that presence of larval lampreys was significantly associated with availability of fine sediment and deeper substrate. The abundance of juvenile Coho Salmon (fish/pool) was strongly associated with pool surface area and to a weaker extent with the proportion of cobble and boulder substrates in pools. Pools with wood, regardless of whether they were formed by wood, had significantly greater coverage of fine sediment, deeper substrate, and greater pool surface area. Taken together, these results suggest that in-stream wood can provide habitat associated with presence of larval lampreys and greater abundance of juvenile Coho Salmon.

  19. Stream Processing Using Grammars and Regular Expressions

    DEFF Research Database (Denmark)

    Rasmussen, Ulrik Terp

    disambiguation. The first algorithm operates in two passes in a semi-streaming fashion, using a constant amount of working memory and an auxiliary tape storage which is written in the first pass and consumed by the second. The second algorithm is a single-pass and optimally streaming algorithm which outputs...... as much of the parse tree as is semantically possible based on the input prefix read so far, and resorts to buffering as many symbols as is required to resolve the next choice. Optimality is obtained by performing a PSPACE-complete pre-analysis on the regular expression. In the second part we present...... Kleenex, a language for expressing high-performance streaming string processing programs as regular grammars with embedded semantic actions, and its compilation to streaming string transducers with worst-case linear-time performance. Its underlying theory is based on transducer decomposition into oracle...

  20. A simple prioritization tool to diagnose impairment of stream temperature for coldwater fishes in the Great Basin

    Science.gov (United States)

    Falke, Jeffrey A.; Dunham, Jason B.; Hockman-Wert, David; Pahl, Randy

    2016-01-01

    We provide a simple framework for diagnosing the impairment of stream water temperature for coldwater fishes across broad spatial extents based on a weight-of-evidence approach that integrates biological criteria, species distribution models, and geostatistical models of stream temperature. As a test case, we applied our approach to identify stream reaches most likely to be thermally impaired for Lahontan Cutthroat Trout Oncorhynchus clarkii henshawi in the upper Reese River, located in the northern Great Basin, Nevada. We first evaluated the capability of stream thermal regime descriptors to explain variation across 170 sites, and we found that the 7-d moving average of daily maximum stream temperatures (7DADM) provided minimal among-descriptor redundancy and, based on an upper threshold of 20°C, was also a good indicator of acute and chronic thermal stress. Next, we quantified the range of Lahontan Cutthroat Trout within our study area using a geographic distribution model. Finally, we used a geostatistical model to assess spatial variation in 7DADM and predict potential thermal impairment at the stream reach scale. We found that whereas 38% of reaches in our study area exceeded a 7DADM of 20°C and 35% were significantly warmer than predicted, only 17% both exceeded the biological criterion and were significantly warmer than predicted. This filtering allowed us to identify locations where physical and biological impairment were most likely within the network and that would represent the highest management priorities. Although our approach lacks the precision of more comprehensive approaches, it provides a broader context for diagnosing impairment and is a useful means of identifying priorities for more detailed evaluations across broad and heterogeneous stream networks.

  1. Aquatic insect emergence from headwater streams flowing through regeneration and mature forests in western Oregon

    Science.gov (United States)

    Robert Progar; Andrew R. Moldenke

    2009-01-01

    We examined the effect of canopy cover on adult aquatic insect emergence by collecting bi-weekly samples from twelve headwater stream reaches flowing either under a mature conifer canopy or streams flowing through ten-year-old regeneration in western Oregon from February to November 1997. Density and biomass generally followed a bimodal curve with peaks during early...

  2. Combining Empirical Relationships with Data Based Mechanistic Modeling to Inform Solute Tracer Investigations across Stream Orders

    Science.gov (United States)

    Herrington, C.; Gonzalez-Pinzon, R.; Covino, T. P.; Mortensen, J.

    2015-12-01

    Solute transport studies in streams and rivers often begin with the introduction of conservative and reactive tracers into the water column. Information on the transport of these substances is then captured within tracer breakthrough curves (BTCs) and used to estimate, for instance, travel times and dissolved nutrient and carbon dynamics. Traditionally, these investigations have been limited to systems with small discharges (turbidity (e.g., nitrate signals with SUNA instruments or fluorescence measures) and/or high total dissolved solids (e.g., making prohibitively expensive the use of salt tracers such as NaCl) in larger systems. Additionally, a successful time-of-travel study is valuable for only a single discharge and river stage. We have developed a method to predict tracer BTCs to inform sampling frequencies at small and large stream orders using empirical relationships developed from multiple tracer injections spanning several orders of magnitude in discharge and reach length. This method was successfully tested in 1st to 8th order systems along the Middle Rio Grande River Basin in New Mexico, USA.

  3. In-stream Nitrogen Processing and Dilution in an Agricultural Stream Network

    Science.gov (United States)

    Prior, K.; Ward, A. S.; Davis, C. A.; Burgin, A. J.; Loecke, T.; Riveros-Iregui, D. A.; Thomas, S. A.; St Clair, M. A.

    2014-12-01

    The interaction of agricultural fertilizer use and extremes in drought and flood conditions in 2012-2013 set up conditions for a natural experiment on watershed-scale nutrient dynamics. The region-wide drought in 2012 left surface soils disconnected from stream networks and restricted nutrient use by crops, resulting in an unusually large nitrogen pool in soil columns through the winter. When wet conditions returned to the Midwest in 2013, the unused fertilizer was mobilized, resulting in a six-week period of extremely high in-stream nutrient concentrations. This study analyses three synoptic samples from the Iowa-Cedar River Basin in 2013 to quantify patterns in nitrogen dynamics. We use multiple conservative ions as tracers to estimate dilution by lateral inflows. We also estimate nutrient spiraling metrics by treating the fertilizer pulse as a constant rate nutrient addition across the watershed—a scale on which these processes are increasingly modeled numerically, but on which standard nutrient addition experiments are simply not feasible. Results of this study compare patterns in dilution and uptake across spatial and temporal scales, and bound feasible explanations for each reach of the network.

  4. Streaming potential of superhydrophobic microchannels.

    Science.gov (United States)

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2017-03-01

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Honey locust (Gleditsia triacanthos l. (Fabaceae)) invasion effect on temperature, light and metabolism of a Pampean Stream

    International Nuclear Information System (INIS)

    Giorgi, Adonis David; Vilches, Carolina; Rodriguez Castro, Maria Carolina; Zunino, Eduardo; Debandi, Juan; Kravetz, Sebastian; Torremorell, Ana

    2014-01-01

    The establishment of invader species in a region generally modifies the ecosystems where they are introduced. In this study we analyze the effect produced by a gleditsia triacanthos (Honey locust) invasion on a Pampean Stream. This organism modifies the temperature and the light reaching the stream. Thermal range shows significant differences between reaches but mean tem between 85 and 95 % down the trees. These modifications reduce the primary gross production of 2.7 to 1.7 g 02. M"2 at spring and of 25 to 20 g 02. M"2 at summer. Respiration in spring and summer is halved at invaded reaches, but net ecosystem metabolism is similar in both reach and seasons. Moreover, the reach invaded by honey locust show scarce macrophytes. We argue that the honey locust reduces the diversity by reduction of macrophytes and their associated organisms but also reduce the primary production causing changes in the food web

  6. Distinctive channel geometry and riparian vegetation: A geomorphic classification for arid ephemeral streams

    Science.gov (United States)

    Sutfin, N.; Shaw, J. R.; Wohl, E. E.; Cooper, D.

    2012-12-01

    Interactions between hydrology, channel form, and riparian vegetation along arid ephemeral streams are not thoroughly understood and current stream classifications do not adequately represent variability in channel geometry and associated riparian communities. Relatively infrequent hydrologic disturbances in dryland environments are responsible for creation and maintenance of channel form that supports riparian communities. To investigate the influence of channel characteristics on riparian vegetation in the arid southwestern United States, we develop a geomorphic classification for arid ephemeral streams based on the degree of confinement and the composition of confining material that provide constraints on available moisture. Our conceptual model includes five stream types: 1) bedrock channels entirely confined by exposed bedrock and devoid of persistent alluvium; 2) bedrock with alluvium channels at least partially confined by bedrock but containing enough alluvium to create bedforms that persist through time; 3) incised alluvium channels bound only by unconsolidated alluvial material into which they are incised; 4) braided washes that exhibit multi-thread, braided characteristics regardless of the composition of confining material; and 5) piedmont headwater 0-2nd order streams (Strahler) confined only by unconsolidated alluvium and which initiate as secondary channels on piedmont surfaces. Eighty-six study reaches representing the five stream types were surveyed on the U.S. Army Yuma Proving Ground in the Sonoran Desert of southwestern Arizona. Non-parametric multivariate analysis of variance (PERMANOVA) indicates significant differences between the five stream types with regards to channel geometry (i.e., stream gradient, width-to-depth ratio, the ratio between valley width and channel width (Wv/Wc), shear stress, and unit stream power) and riparian vegetation (i.e., presence and canopy coverage by species, canopy stratum, and life form). Discriminant analysis

  7. Climate and land cover effects on the temperature of Puget Sound streams: Assessment of Climate and Land Use Impacts on Stream Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qian [Department of Geography, University of California, Los Angeles, Los Angeles CA USA; Sun, Ning [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Nijssen, Bart [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Lettenmaier, Dennis P. [Department of Geography, University of California, Los Angeles, Los Angeles CA USA

    2016-03-06

    We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt-dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub-basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization

  8. Single-channel in-ear-EEG detects the focus of auditory attention to concurrent tone streams and mixed speech

    Science.gov (United States)

    Fiedler, Lorenz; Wöstmann, Malte; Graversen, Carina; Brandmeyer, Alex; Lunner, Thomas; Obleser, Jonas

    2017-06-01

    Objective. Conventional, multi-channel scalp electroencephalography (EEG) allows the identification of the attended speaker in concurrent-listening (‘cocktail party’) scenarios. This implies that EEG might provide valuable information to complement hearing aids with some form of EEG and to install a level of neuro-feedback. Approach. To investigate whether a listener’s attentional focus can be detected from single-channel hearing-aid-compatible EEG configurations, we recorded EEG from three electrodes inside the ear canal (‘in-Ear-EEG’) and additionally from 64 electrodes on the scalp. In two different, concurrent listening tasks, participants (n  =  7) were fitted with individualized in-Ear-EEG pieces and were either asked to attend to one of two dichotically-presented, concurrent tone streams or to one of two diotically-presented, concurrent audiobooks. A forward encoding model was trained to predict the EEG response at single EEG channels. Main results. Each individual participants’ attentional focus could be detected from single-channel EEG response recorded from short-distance configurations consisting only of a single in-Ear-EEG electrode and an adjacent scalp-EEG electrode. The differences in neural responses to attended and ignored stimuli were consistent in morphology (i.e. polarity and latency of components) across subjects. Significance. In sum, our findings show that the EEG response from a single-channel, hearing-aid-compatible configuration provides valuable information to identify a listener’s focus of attention.

  9. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction

    Science.gov (United States)

    Tate, Cathy M.; Broshears, Robert E.; McKnight, Diane M.

    1995-01-01

    Acid mine drainage streams in the Rocky Mountains typically have few algal species and abundant iron oxide deposits which can sorb phosphate. An instream injection of radiolabeled phosphate (32P0,) into St. Kevin Gulch, an acid mine drainage stream, was used to test the ability of a dominant algal species, Ulothrix sp., to rapidly assimilate phosphate. Approximately 90% of the injected phosphate was removed from the water column in the 175-m stream reach. When shaded stream reaches were exposed to full sunlight after the injection ended, photoreductive dissolution of iron oxide released sorbed 32P, which was then also removed downstream. The removal from the stream was modeled as a first-order process by using a reactive solute transport transient storage model. Concentrations of 32P mass-’ of algae were typically lo-fold greater than concentrations in hydrous iron oxides. During the injection, concentrations of 32P increased in the cellular P pool containing soluble, low-molecular-weight compounds and confirmed direct algal uptake of 32P0, from water. Mass balance calculations indicated that algal uptake and sorption on iron oxides were significant in removing phosphate. We conclude that in stream ecosystems, PO, sorbed by iron oxides can act as a dynamic nutrient reservoir regulated by photoreduction.

  10. Numeric Analysis for Relationship-Aware Scalable Streaming Scheme

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2014-01-01

    Full Text Available Frequent packet loss of media data is a critical problem that degrades the quality of streaming services over mobile networks. Packet loss invalidates frames containing lost packets and other related frames at the same time. Indirect loss caused by losing packets decreases the quality of streaming. A scalable streaming service can decrease the amount of dropped multimedia resulting from a single packet loss. Content providers typically divide one large media stream into several layers through a scalable streaming service and then provide each scalable layer to the user depending on the mobile network. Also, a scalable streaming service makes it possible to decode partial multimedia data depending on the relationship between frames and layers. Therefore, a scalable streaming service provides a way to decrease the wasted multimedia data when one packet is lost. However, the hierarchical structure between frames and layers of scalable streams determines the service quality of the scalable streaming service. Even if whole packets of layers are transmitted successfully, they cannot be decoded as a result of the absence of reference frames and layers. Therefore, the complicated relationship between frames and layers in a scalable stream increases the volume of abandoned layers. For providing a high-quality scalable streaming service, we choose a proper relationship between scalable layers as well as the amount of transmitted multimedia data depending on the network situation. We prove that a simple scalable scheme outperforms a complicated scheme in an error-prone network. We suggest an adaptive set-top box (AdaptiveSTB to lower the dependency between scalable layers in a scalable stream. Also, we provide a numerical model to obtain the indirect loss of multimedia data and apply it to various multimedia streams. Our AdaptiveSTB enhances the quality of a scalable streaming service by removing indirect loss.

  11. Spatial simulation of smallmouth bass in streams

    International Nuclear Information System (INIS)

    Jager, H.I.; Schmoyer, D.D.; Sale, M.J.; Van Winkle, W.; DeAngelis, D.L.; Sabo, M.J.

    1993-01-01

    The hydropower industry and its regulators are hampered by the inability to predict the relationship between alternative flow regimes and fish population response. We have developed a spatially explicit, individual-based model of populations of small-mouth bass in streams as part of the Compensatory Mechanisms in Fish Populations Program (see Sale and Otto 1991). In the model, the profitability of alternative stream locations varies in response to habitat depth and velocity through changes in the frequency of prey encounters and the metabolic costs experienced by fish. We conducted an evaluation of our hydraulic simulation at the scale of individual stream cells. The potential error in predictions for individual cell velocities suggests that larger-scale model predictions for the representative reach are most appropriate. At this scale, the model appears to produce realistic patterns in the growth and dispersal of young-of-year small-mouth bass. This verification step allows us to proceed with greater confidence in evaluating the original question of how small-mouth bass populations respond to alternative flow regimes

  12. A stream temperature model for the Peace-Athabasca River basin

    Science.gov (United States)

    Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.

    2017-12-01

    Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.

  13. Nutrient Retention in Restored Streams and Floodplains: A ...

    Science.gov (United States)

    Abstract: Excess nitrogen (N) and phosphorus (P) from human activities have contributed to degradation of coastal waters globally. A growing body of work suggests that hydrologically restoring streams and floodplains in agricultural and urban watersheds has potential to increase nitrogen and phosphorus retention, but rates and mechanisms have not yet been synthesized and compared across studies. We conducted a review of nutrient retention within hydrologically reconnected streams and floodplains including 79 studies. Overall, 62% of results were positive, 26% were neutral, and 12% were negative. The studies we reviewed used a variety of methods to analyze nutrients cycling. We did a further intensive meta-analysis on nutrient spiraling studies because this method was the most consistent and comparable between studies. A meta-analysis of 240 experimental additions of ammonium (NH4+), nitrate (NO3-), and soluble reactive phosphorus (SRP) was synthesized from 15 nutrient spiraling studies. Overall, we found that rates of uptake were variable along stream reaches over space and time. Our results indicate that the size of the stream restoration (total surface area) and hydrologic residence time can be key drivers in influencing N and P uptake at broader watershed scales or along the urban watershed continuum. Excess nitrogen and phosphorus from human activities contributes to the degradation of water quality in streams and coastal areas nationally and globally.

  14. The database for reaching experiments and models.

    Directory of Open Access Journals (Sweden)

    Ben Walker

    Full Text Available Reaching is one of the central experimental paradigms in the field of motor control, and many computational models of reaching have been published. While most of these models try to explain subject data (such as movement kinematics, reaching performance, forces, etc. from only a single experiment, distinct experiments often share experimental conditions and record similar kinematics. This suggests that reaching models could be applied to (and falsified by multiple experiments. However, using multiple datasets is difficult because experimental data formats vary widely. Standardizing data formats promises to enable scientists to test model predictions against many experiments and to compare experimental results across labs. Here we report on the development of a new resource available to scientists: a database of reaching called the Database for Reaching Experiments And Models (DREAM. DREAM collects both experimental datasets and models and facilitates their comparison by standardizing formats. The DREAM project promises to be useful for experimentalists who want to understand how their data relates to models, for modelers who want to test their theories, and for educators who want to help students better understand reaching experiments, models, and data analysis.

  15. The effect of beaver ponds on water quality in rural coastal plain streams

    Science.gov (United States)

    Bason, Christopher W.; Kroes, Daniel; Brinson, Mark M.

    2017-01-01

    We compared water-quality effects of 13 beaver ponds on adjacent free-flowing control reaches in the Coastal Plain of rural North Carolina. We measured concentrations of nitrate, ammonium, soluble reactive phosphorus (SRP), and suspended sediment (SS) upstream and downstream of paired ponds and control reaches. Nitrate and SS concentrations decreased, ammonium concentrations increased, and SRP concentrations were unaffected downstream of the ponds and relative to the control reaches. The pond effect on nitrate concentration was a reduction of 112 ± 55 μg-N/L (19%) compared to a control-reach—influenced reduction of 28 ± 17 μg-N/L. The pond effect on ammonium concentration was an increase of 9.47 ± 10.9 μg-N/L (59%) compared to the control-reach—influenced reduction of 1.49 ± 1.37 μg-N/L. The pond effect on SS concentration was a decrease of 3.41 ± 1.68 mg/L (40%) compared to a control-reach—influenced increase of 0.56 ± 0.27 mg/L. Ponds on lower-order streams reduced nitrate concentrations by greater amounts compared to those in higher-order streams. Older ponds reduced SS concentrations by greater amounts compared to younger ponds. The findings of this study indicate that beaver ponds provide water-quality benefits to rural Coastal Plain streams by reducing concentrations of nitrate and suspended sediment.

  16. Data Stream Classification Based on the Gamma Classifier

    Directory of Open Access Journals (Sweden)

    Abril Valeria Uriarte-Arcia

    2015-01-01

    Full Text Available The ever increasing data generation confronts us with the problem of handling online massive amounts of information. One of the biggest challenges is how to extract valuable information from these massive continuous data streams during single scanning. In a data stream context, data arrive continuously at high speed; therefore the algorithms developed to address this context must be efficient regarding memory and time management and capable of detecting changes over time in the underlying distribution that generated the data. This work describes a novel method for the task of pattern classification over a continuous data stream based on an associative model. The proposed method is based on the Gamma classifier, which is inspired by the Alpha-Beta associative memories, which are both supervised pattern recognition models. The proposed method is capable of handling the space and time constrain inherent to data stream scenarios. The Data Streaming Gamma classifier (DS-Gamma classifier implements a sliding window approach to provide concept drift detection and a forgetting mechanism. In order to test the classifier, several experiments were performed using different data stream scenarios with real and synthetic data streams. The experimental results show that the method exhibits competitive performance when compared to other state-of-the-art algorithms.

  17. Patterns at Multi-Spatial Scales on Tropical Island Stream Insect Assemblages: Gorgona Island Natural National Park, Colombia, Tropical Eastern Pacific

    Directory of Open Access Journals (Sweden)

    Magnolia Longo

    2014-02-01

    Full Text Available Tropical Eastern Pacific island streams (TEPis differ from other neotropical streams in their rainy climate, mixed sedimentary-volcanic geology and faunal composition. Yet, their relationships between environmental characteristics and stream biota remain unexplored. We analyzed the environmental subject at three spatial scales using a fully nested sampling design (6 streams, 2 reaches within each stream, 2 habitats within each reach, and 4 replicates per habitat on Gorgona Island (Colombia. Sampling was carried out in two months with contrasting rainfall during early 2009. We studied the spatial variation of assemblage composition and density along with 27 independent variables within two contrasting rainfall conditions. Five stream-scale variables, two reach-scale variables, and five habitat-scale variables were selected using a Canonical Correspondence Analysis (CCA. A partial CCA showed that the total variance explained was 13.98%, while stream- and habitat-scale variables explained the highest proportion of the variance (5.74 and 5.01%, respectively. Dissolved oxygen (as affected by rainfall, high-density use zone (a management category, and sedimentary geology were the best descriptors of insect assemblages. The two latter descriptors affected fine-scale variables such as total benthic organic matter and gravel substratum, respectively. A Nested ANOVA showed significant differences in total density and richness among streams and habitats, and significant differences between the two sampling months regardless of the spatial scale. The evenness showed a significant stream- and habitat-dependent temporal variability. These results suggested that rainfall regime in Gorgona Island might be a driver of insect assemblage dynamics mediated by water chemistry and substratum properties. Spatial assemblage variability here is greater within habitats (among samples, and a minor fraction occurs at habitat- and stream-scales, while no longitudinal

  18. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  19. Principles for urban stormwater management to protect stream ecosystems

    Science.gov (United States)

    Walsh, Christopher J.; Booth, Derek B.; Burns, Matthew J.; Fletcher, Tim D.; Hale, Rebecca L.; Hoang, Lan N.; Livingston, Grant; Rippy, Megan A.; Roy, Allison; Scoggins, Mateo; Wallace, Angela

    2016-01-01

    Urban stormwater runoff is a critical source of degradation to stream ecosystems globally. Despite broad appreciation by stream ecologists of negative effects of stormwater runoff, stormwater management objectives still typically center on flood and pollution mitigation without an explicit focus on altered hydrology. Resulting management approaches are unlikely to protect the ecological structure and function of streams adequately. We present critical elements of stormwater management necessary for protecting stream ecosystems through 5 principles intended to be broadly applicable to all urban landscapes that drain to a receiving stream: 1) the ecosystems to be protected and a target ecological state should be explicitly identified; 2) the postdevelopment balance of evapotranspiration, stream flow, and infiltration should mimic the predevelopment balance, which typically requires keeping significant runoff volume from reaching the stream; 3) stormwater control measures (SCMs) should deliver flow regimes that mimic the predevelopment regime in quality and quantity; 4) SCMs should have capacity to store rain events for all storms that would not have produced widespread surface runoff in a predevelopment state, thereby avoiding increased frequency of disturbance to biota; and 5) SCMs should be applied to all impervious surfaces in the catchment of the target stream. These principles present a range of technical and social challenges. Existing infrastructural, institutional, or governance contexts often prevent application of the principles to the degree necessary to achieve effective protection or restoration, but significant potential exists for multiple co-benefits from SCM technologies (e.g., water supply and climate-change adaptation) that may remove barriers to implementation. Our set of ideal principles for stream protection is intended as a guide for innovators who seek to develop new approaches to stormwater management rather than accept seemingly

  20. Relationship of stream ecological conditions to simulated hydraulic metrics across a gradient of basin urbanization

    Science.gov (United States)

    Steuer, J.J.; Bales, J.D.; Giddings, E.M.P.

    2009-01-01

    The relationships among urbanization, stream hydraulics, and aquatic biology were investigated across a gradient of urbanization in 30 small basins in eastern Wisconsin, USA. Simulation of hydraulic metrics with 1-dimensional unsteady flow models was an effective means for mechanistically coupling the effects of urbanization with stream ecological conditions (i.e., algae, invertebrates, and fish). Urbanization, characterized by household, road, and urban land density, was positively correlated with the lowest shear stress for 2 adjacent transects in a reach for the low-flow summer (p stress observed in our study is consistent with a higher concentration of water-column particulates available for filtration. The strength of correlations between hydraulic and biological metrics is related to the time period (annual, seasonal, or monthly) considered. The hydraulic modeling approach, whether based on hourly or daily flow data, allowed documentation of the effects of a spatially variable response within a reach, and the results suggest that stream response to urbanization varies with hydraulic habitat type. ?? North American Benthological Society.

  1. Arsenic transport in groundwater, surface water, and the hyporheic zone of a mine-influenced stream-aquifer system

    OpenAIRE

    Brown, Brendan

    2005-01-01

    We investigated the transport of dissolved arsenic in groundwater, surface water and the hyporheic zone in a stream-aquifer system influenced by an abandoned arsenopyrite mine. Mine tailing piles consisting of a host of arsenic-bearing minerals including arsenopyrite and scorodite remain adjacent to the stream and represent a continuous source of arsenic. Arsenic loads from the stream, springs, and groundwater were quantified at the study reach on nine dates from January to August 2005 and ...

  2. Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis

    Directory of Open Access Journals (Sweden)

    Chiang Wei

    2012-08-01

    Full Text Available Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.

  3. SSTO RLVs: More Global Reach? A Study of the Use of Single Stage to Orbit Reusable Launch Vehicles as Airlift Platforms.

    Science.gov (United States)

    1996-11-01

    Orbit ( SSTO ) Reusable Launch Vehicles (RLVs) are currently under cooperative development by NASA, the Air Force, and the aerospace industry in the pursuit...exploit these rapid transit technologies to advance ’Global Reach for America.’ The SSTO RLV is a single stage rocket that will be completely reusable...investigated to assess the projected capabilities and costs of the SSTO system. This paper reviews the proposed capabilities of the SSTO system, discusses

  4. Characterization of Sea Lamprey stream entry using dual‐frequency identification sonar

    Science.gov (United States)

    McCain, Erin L.; Johnson, Nicholas; Hrodey, Peter J.; Pangle, Kevin L.

    2018-01-01

    Effective methods to control invasive Sea Lampreys Petromyzon marinus in the Laurentian Great Lakes often rely on knowledge of the timing of the Sea Lamprey spawning migration, which has previously been characterized using data gathered from traps. Most assessment traps are located many kilometers upstream from the river mouth, so less is known about when Sea Lampreys enter spawning streams and which environmental cues trigger their transition from lakes to rivers. To decide how to develop barriers and traps that target Sea Lampreys when they enter a stream, the stream entry of Sea Lampreys into a Lake Huron tributary during 2 years was assessed using dual‐frequency identification sonar (DIDSON). Sea Lampreys entered the stream in low densities when temperatures first reached 4°C, which was up to 6 weeks and a mean of 4 weeks earlier than when they were first captured in traps located upstream. The probability of stream entry was significantly affected by stream temperature and discharge, and stream entry timing peaked when stream temperatures rose to 12°C and discharge was high. Examination of the entry at a finer temporal resolution (i.e., minutes) indicated that Sea Lampreys did not exhibit social behavior (e.g., shoaling) during stream entry. Our findings indicate that Sea Lampreys may be vulnerable to alternative trap types near river mouths and hydraulic challenges associated with traditional traps. Also, seasonal migration barriers near stream mouths may need to be installed soon after ice‐out to effectively block the entire adult Sea Lamprey cohort from upstream spawning habitat.

  5. Stream Response to an Extreme Defoliation Event

    Science.gov (United States)

    Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.

    2017-12-01

    Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net

  6. Evaluating the impact of irrigation on surface water - groundwater interaction and stream temperature in an agricultural watershed.

    Science.gov (United States)

    Essaid, Hedeff I; Caldwell, Rodney R

    2017-12-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures

  7. Analysis of stream temperature and heat budget in an urban river under strong anthropogenic influences

    Science.gov (United States)

    Xin, Zhuohang; Kinouchi, Tsuyoshi

    2013-05-01

    Stream temperature variations of the Tama River, which runs through highly urbanized areas of Tokyo, were studied in relation to anthropogenic impacts, including wastewater effluents, dam release and water withdrawal. Both long-term and longitudinal changes in stream temperature were identified and the influences of stream flow rate, temperature and volume of wastewater effluents and air temperature were investigated. Water and heat budget analyses were also conducted for several segments of the mainstream to clarify the relative impacts from natural and anthropogenic factors. Stream temperatures in the winter season significantly increased over the past 20 years at sites affected by intensive and warm effluents from wastewater treatment plants (WWTPs) located along the mainstream. In the summer season, a larger stream temperature increase was identified in the upstream reaches, which was attributable to the decreased flow rate due to water withdrawal. The relationship between air and stream temperatures indicated that stream temperatures at the upstream site were likely to be affected by a dam release, while temperatures in the downstream reaches have deviated more from air temperatures in recent years, probably due to the increased impacts of effluents from WWTPs. Results of the water and heat budget analyses indicated that the largest contributions to water and heat gains were attributable to wastewater effluents, while other factors such as groundwater recharge and water withdrawal were found to behave as energy sinks, especially in summer. The inflow from tributaries worked to reduce the impacts of dam release and the heat exchanges at the air-water interface contributed less to heat budgets in both winter and summer seasons for all river segments.

  8. Alteration of stream temperature by natural and artificial beaver dams.

    Science.gov (United States)

    Weber, Nicholas; Bouwes, Nicolaas; Pollock, Michael M; Volk, Carol; Wheaton, Joseph M; Wathen, Gus; Wirtz, Jacob; Jordan, Chris E

    2017-01-01

    Beaver are an integral component of hydrologic, geomorphic, and biotic processes within North American stream systems, and their propensity to build dams alters stream and riparian structure and function to the benefit of many aquatic and terrestrial species. Recognizing this, beaver relocation efforts and/or application of structures designed to mimic the function of beaver dams are increasingly being utilized as effective and cost-efficient stream and riparian restoration approaches. Despite these verities, the notion that beaver dams negatively impact stream habitat remains common, specifically the assumption that beaver dams increase stream temperatures during summer to the detriment of sensitive biota such as salmonids. In this study, we tracked beaver dam distributions and monitored water temperature throughout 34 km of stream for an eight-year period between 2007 and 2014. During this time the number of natural beaver dams within the study area increased by an order of magnitude, and an additional 4 km of stream were subject to a restoration manipulation that included installing a high-density of Beaver Dam Analog (BDA) structures designed to mimic the function of natural beaver dams. Our observations reveal several mechanisms by which beaver dam development may influence stream temperature regimes; including longitudinal buffering of diel summer temperature extrema at the reach scale due to increased surface water storage, and creation of cool-water channel scale temperature refugia through enhanced groundwater-surface water connectivity. Our results suggest that creation of natural and/or artificial beaver dams could be used to mitigate the impact of human induced thermal degradation that may threaten sensitive species.

  9. Multi-Dimensional Auction Mechanisms for Crowdsourced Mobile Video Streaming

    OpenAIRE

    Tang, Ming; Pang, Haitian; Wang, Shou; Gao, Lin; Huang, Jianwei; Sun, Lifeng

    2017-01-01

    Crowdsourced mobile video streaming enables nearby mobile video users to aggregate network resources to improve their video streaming performances. However, users are often selfish and may not be willing to cooperate without proper incentives. Designing an incentive mechanism for such a scenario is challenging due to the users' asynchronous downloading behaviors and their private valuations for multi-bitrate coded videos. In this work, we propose both single-object and multi-object multi-dime...

  10. Linking Embeddedness and Macroinvertebrate Health in Two Southwest Ohio Streams

    Science.gov (United States)

    2008-03-01

    some deeper thoughts on the inner workings of a stream ecosystem. Thanks are also due for the rest of the “Burton Lab” for donating some of your...reaches a critical value of stability for a given systems, the relatively stable layer of embedded substrate ( armour layer) will begin to break up

  11. Assessing the Effects of Water Right Purchases on Stream Temperatures and Fish Habitat

    Science.gov (United States)

    Elmore, L.; Null, S. E.

    2012-12-01

    Warm stream temperature and low flow conditions are limiting factors for native trout species in Nevada's Walker River. Water rights purchases are being considered to increase instream flow and improve habitat conditions. However, the effect of water rights purchases on stream temperatures and fish habitat have yet to be assessed. Manipulating flow conditions affect stream temperatures by altering water depth, velocity, and thermal mass. This study uses the River Modeling System (RMSv4), an hourly, physically-based hydrodynamic and water quality model, to estimate flows and stream temperatures in the Walker River. The model is developed for two wet years (2010-2011). Study results highlight reaches with cold-water habitat that is suitable for native trout species. Previous research on the Walker River has evaluated instream flow changes with water rights purchases. This study incorporates stream temperatures as a proxy for trout habitat, and thus explicitly incorporates water quality and fish habitat into decision-making regarding water rights purchases. Walker River

  12. Spiraling in Urban Streams: A Novel Approach to Link Geomorphic Structure with Ecosystem Function

    Science.gov (United States)

    Bean, R. A.; Lafrenz, M. D.

    2011-12-01

    The goal of this study is to quantify the relationship between channel complexity and nutrient spiraling along several reaches of an urbanized watershed in Portland, Oregon. Much research points to the effect urbanization has on watershed hydrology and nutrient loading at the watershed scale for various sized catchments. However the flux of nutrients over short reaches within a stream channel has been less studied because of the effort and costs associated with fieldwork and subsequent laboratory analysis of both surface and hyporheic water samples. In this study we explore a novel approach at capturing connectivity though nutrient spiraling along several short reaches (less than 100-meter) within the highly urbanized Fanno Creek watershed (4400 hectares). We measure channel complexity-sinuosity, bed material texture, organic matter-and use these measurements to determine spatial autocorrelation of 50 reaches in Fanno Creek, a small, urban watershed in Portland, Oregon. Using ion-selective electrodes, the fluxes of nitrate and ammonia are measured within each reach, which when combined with channel geometry and velocity measurements allow us to transform the values of nitrate and ammonia fluxes into spiraling metrics. Along each sampled reach, we collected three surface water samples to characterize nutrient amounts at the upstream, midstream, and downstream position of the reach. Two additional water samples were taken from the left and right bank hyporheic zones at a depth just below the armor layer of the channel bed using mini-piezometers and a hand-pumped vacuum device, which we constructed for this purpose. Adjacent to the hyporheic samples soil cores were collected and analyzed for organic matter composition, bulk density, and texture. We hypothesize that spiral metrics will respond significantly to the measured channel complexity values and will be a more robust predictor of nutrient flux than land cover characteristics in the area draining to each reach

  13. Variable responses of fish assemblages, habitat, and stability to natural-channel-design restoration in Catskill Mountain streams

    Science.gov (United States)

    Baldigo, Barry P.; Ernst, Anne G.; Warren, Dana R.; Miller, Sarah J.

    2010-01-01

    Natural-channel-design (NCD) restorations were recently implemented within large segments of five first- and second-order streams in the Catskill Mountains of New York in an attempt to increase channel stability, reduce bed and bank erosion, and sustain water quality. In conjunction with these efforts, 54 fish and habitat surveys were done from 1999 to 2007 at six restored reaches and five stable control reaches to evaluate the effects of NCD restoration on fish assemblages, habitat, and bank stability. A before–after–control–impact study design and two-factor analysis of variance were used to quantify the net changes in habitat and fish population and community indices at treatment reaches relative to those at unaltered control reaches. The density and biomass of fish communities were often dominated by one or two small prey species and no or few predator species before restoration and by one or more trout (Salmonidae) species after restoration. Significant increases in community richness (30%), diversity (40%), species or biomass equitability (32%), and total biomass (up to 52%) in at least four of the six restored reaches demonstrate that NCD restorations can improve the health and sustainability of fish communities in geomorphically unstable Catskill Mountain streams over the short to marginally long term. Bank stability, stream habitat, and trout habitat suitability indices (HSIs) generally improved significantly at the restored reaches, but key habitat features and trout HSIs did not change or decreased at two of them. Fish communities and trout populations at these two reaches were not positively affected by NCD restorations. Though NCD restorations often had a positive effect on habitat and fish communities, our results show that the initial habitat conditions limit the relative improvements than can be achieved, habitat quality and stability do not necessarily respond in unison, and biotic and abiotic responses cannot always be generalized.

  14. A non-permutation flowshop scheduling problem with lot streaming: A Mathematical model

    Directory of Open Access Journals (Sweden)

    Daniel Rossit

    2016-06-01

    Full Text Available In this paper we investigate the use of lot streaming in non-permutation flowshop scheduling problems. The objective is to minimize the makespan subject to the standard flowshop constraints, but where it is now permitted to reorder jobs between machines. In addition, the jobs can be divided into manageable sublots, a strategy known as lot streaming. Computational experiments show that lot streaming reduces the makespan up to 43% for a wide range of instances when compared to the case in which no job splitting is applied. The benefits grow as the number of stages in the production process increases but reach a limit. Beyond a certain point, the division of jobs into additional sublots does not improve the solution.

  15. Strong enhancement of streaming current power by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.

    2011-01-01

    We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system

  16. The Chameleon Architecture for Streaming DSP Applications

    NARCIS (Netherlands)

    Bergmann, N.; Smit, Gerardus Johannes Maria; Kokkeler, Andre B.J.; Platzner, M.; Wolkotte, P.T.; Teich, J.; Holzenspies, P.K.F.; van de Burgwal, M.D.; Heysters, P.M.

    2007-01-01

    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a

  17. Relating Hydrogeomorphic Attributes to Nutrient Uptake in Alluvial Streams of a Mountain Lake District

    Science.gov (United States)

    Arp, C. D.; Baker, M. A.

    2005-05-01

    Stream form and hydrologic processes may indirectly drive nutrient uptake, however developing predictive relationships has been elusive. Problems in establishing such relationships may lie in the sets of streams analyzed, which often span diverse channel-sizes, geology, and regions, or are too geomorphically similar. We collected field data on stream geomorphology and hydrologic and nutrient transport processes using solute injections at 22 alluvial stream reaches in the Sawtooth Mountains, Idaho, USA. Many of these streams occur near lakes, which create contrasting fluvial form and functions that we hoped would produce a broad geomorphic dataset to compare to hyporheic and dead-zone transient storage and NO3 and PO4 spiraling metrics. Preliminary results suggest that storage zone residence time (Tsto) was best predicted by sediment D50, wood abundance (CWD), and discharge (r2=0.84, pnutrient cycling processes should be further considered and investigated.

  18. Tectonic and lithological controls on fluvial landscape development in central-eastern Portugal: Insights from long profile tributary stream analyses

    Science.gov (United States)

    Martins, António A.; Cabral, João; Cunha, Pedro P.; Stokes, Martin; Borges, José; Caldeira, Bento; Martins, A. Cardoso

    2017-01-01

    This study examines the long profiles of tributaries of the Tagus and Zêzere rivers in Portugal (West Iberia) in order to provide new insights into patterns, timing, and controls on drainage development during the Quaternary incision stage. The studied streams are incised into a relict culminant fluvial surface, abandoned at the beginning of the incision stage. The streams flow through a landscape with bedrock variations in lithology (mainly granites and metasediments) and faulted blocks with distinct uplift rates. The long profiles of the analyzed streams record an older transitory knickpoint/knickzone separating (1) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage, and (2) a downstream rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final reach, which is often convex. The rejuvenated reaches testify to the upstream propagation of several incision waves, interpreted as the response of each stream to increasing crustal uplift and prolonged periods of base-level lowering by the trunk drainages, coeval with low sea level conditions. The morphological configurations of the long profiles enabled spatial and relative temporal patterns of incisions to be quantified. The incision values of streams flowing on the Portuguese Central Range (PCR; ca. 380-150 m) are variable but generally higher than the incision values of streams flowing on the adjacent South Portugal Planation Surface (SPPS; ca. 220-110 m), corroborating differential uplift of the PCR relative to the SPPS. Owing to the fact that the relict graded profiles can be correlated with the Tagus River T1 terrace (1.1-0.9 My) present in the study area, incision rates can be estimated (1) for the streams located in the PCR, 0.38-0.15 m/ky and (2) for the streams flowing on the SPPS, 0.22-0.12 m/ky. The differential uplift inferred in the

  19. Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams

    International Nuclear Information System (INIS)

    Rosa, Rodrigo dos Santos; Aguiar, Anna Carolina Fornero; Boëchat, Iola Gonçalves; Gücker, Björn

    2013-01-01

    We investigated the impacts of effluent discharge from small flow-through fish farms on stream water characteristics, the benthic invertebrate community, whole-system nitrate uptake, and ecosystem metabolism of three tropical headwater streams in southeastern Brazil. Effluents were moderately, i.e. up to 20-fold enriched in particulate organic matter (POM) and inorganic nutrients in comparison to stream water at reference sites. Due to high dilution with stream water, effluent discharge resulted in up to 2.0-fold increases in stream water POM and up to 1.8-fold increases in inorganic nutrients only. Moderate impacts on the benthic invertebrate community were detected at one stream only. There was no consistent pattern of effluent impact on whole-stream nitrate uptake. Ecosystem metabolism, however, was clearly affected by effluent discharge. Stream reaches impacted by effluents exhibited significantly increased community respiration and primary productivity, stressing the importance of ecologically sound best management practices for small fish farms in the tropics. -- Highlights: ► Fish farm effluent discharge had moderate effects on stream water quality. ► Impacts on the benthic invertebrate community occurred at one stream. ► Whole-stream nitrate uptake showed no consistent impact pattern. ► Effluents caused considerable increases in stream ecosystem metabolism. ► Compliance with best management practices is important for small fish farms. -- Moderate water pollution by small fish farms caused considerable eutrophication responses in tropical headwater streams

  20. Rehabilitation of an Incised Stream Using Plant Materials: the Dominance of Geomorphic Processes

    Directory of Open Access Journals (Sweden)

    F. Douglas. Shields, Jr.

    2008-12-01

    Full Text Available The restoration of potentially species-rich stream ecosystems in physically unstable environments is challenging, and few attempts have been evaluated scientifically. Restoration approaches that involve living and dead native vegetation are attractive economically and from an ecological standpoint. A 2-km reach of an incised, sand-bed stream in northern Mississippi was treated with large wood structures and willow plantings to trigger responses that would result in increasing similarity with a lightly degraded reference stream. Experimental approaches for stream bank and gully stabilization were also examined. Although the project was initially successful in producing improved aquatic habitat, after 4 yr it had failed to effectively address issues related to flashy watershed hydrology and physical instability manifest by erosion and sedimentation. The success of ecosystem rehabilitation was thus governed by landscape-scale hydrological and geomorphological processes.

  1. Multi-stream portrait of the Cosmic web

    Science.gov (United States)

    Ramachandra, Nesar; Shandarin, Sergei

    2016-03-01

    We report the results of the first study of the multi-stream environment of dark matter haloes in cosmological N-body simulations in the ΛCDM cosmology. The full dynamical state of dark matter can be described as a three-dimensional sub-manifold in six-dimensional phase space - the dark matter sheet. In our study we use a Lagrangian sub-manifold x = x (q , t) (where x and q are co-moving Eulerian and Lagrangian coordinates respectively), which is dynamically equivalent to the dark matter sheet but is more convenient for numerical analysis. Our major results can be summarized as follows. At the resolution of the simulation, the cosmic web represents a hierarchical structure: each halo is embedded in the filamentary framework of the web predominantly at the filament crossings, and each filament is embedded in the wall like fabric of the web at the wall crossings. Locally, each halo or sub-halo is a peak in the number of streams field. The number of streams in the neighbouring filaments is higher than in the neighbouring walls. The walls are regions where number of streams is equal to three or a few. Voids are uniquely defined by the local condition requiring to be a single-stream flow region.

  2. Analysis of reaching movements of upper arm in robot assisted exercises. Kinematic assessment of robot assisted upper arm reaching single-joint movements.

    Science.gov (United States)

    Iuppariello, Luigi; D'Addio, Giovanni; Romano, Maria; Bifulco, Paolo; Lanzillo, Bernardo; Pappone, Nicola; Cesarelli, Mario

    2016-01-01

    Robot-mediated therapy (RMT) has been a very dynamic area of research in recent years. Robotics devices are in fact capable to quantify the performances of a rehabilitation task in treatments of several disorders of the arm and the shoulder of various central and peripheral etiology. Different systems for robot-aided neuro-rehabilitation are available for upper limb rehabilitation but the biomechanical parameters proposed until today, to evaluate the quality of the movement, are related to the specific robot used and to the type of exercise performed. Besides, none study indicated a standardized quantitative evaluation of robot assisted upper arm reaching movements, so the RMT is still far to be considered a standardised tool. In this paper a quantitative kinematic assessment of robot assisted upper arm reaching movements, considering also the effect of gravity on the quality of the movements, is proposed. We studied a group of 10 healthy subjects and results indicate that our advised protocol can be useful for characterising normal pattern in reaching movements.

  3. Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Couceiro, Sheyla Regina Marques; Hamada, Neusa [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Forsberg, Bruce Rider [Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Entomologia, Manaus, AM (Brazil); Inst. Nacional de Pesquisas da Amazonia, Coordenacao de Pesquisas em Ecologia, Manaus, AM (Brazil); Padovesi-Fonseca, Claudia [Univ. de Brasilia, Dept. de Ecologia, Brasilia, DF (Brazil)

    2010-01-15

    Purpose: While environmental risks associated with petroleum extraction such as oil spills or leaks are relatively well known, little attention has been given to the impacts of silt. The increase in petroleum exploitation in Amazonia has resulted in sediment input to aquatic systems, with impacts on their biodiversity. Here we use a combination of field measurements and statistical analyses to evaluate the impacts of anthropogenic silt derived from the construction of roads, borrow pits, and wells during the terrestrial development of gas and oil, on macroinvertebrate communities in streams of the Urucu Petroleum Province in the Central Brazilian Amazon. Material and methods: Ten impacted and nine non-impacted streams were sampled in January, April, and November of 2007. Macroinvertebrates were sampled along a 100-m continuous reach in each stream at 10-m intervals using a dip net. Abiotic variables including, a siltation index (SI), suspended inorganic sediment (SIS), sediment color index (SCI), suspend organic sediment (SOS), pH, electrical conductivity, dissolved oxygen, temperature, water velocity, channel width, and depth, were measured at three equidistant points in each stream ({proportional_to}30-m intervals). Results and discussion: SI did not differ between impacted and undisturbed streams. SIS was higher and SCI lower (more reddish) in impacted than in non-impacted streams. SCI had a positive and SIS a negative effect on both macroinvertebrate richness and density. SIS and SCI also influenced macrophyte taxonomic composition. In impacted streams, taxonomic richness and density were 1.5 times lower than in non-impacted streams. No taxon was significantly associated with impacted streams. SIS was positively correlated with SOS and electrical conductivity while SCI was negatively correlated with SOS, electrical conductivity, and pH. The lack of difference in SI between impacted and nonimpacted streams suggests that anthropogenic sediment does not accumulate

  4. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.

    Science.gov (United States)

    Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R

    2017-02-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream

  5. Data Stream Processing Study in a Multichannel Telemetry Data Registering System

    Directory of Open Access Journals (Sweden)

    I. M. Sidyakin

    2015-01-01

    Full Text Available The paper presents the results of research that is aimed to improve the reliability of transmission of telemetry information (TMI through a communication channel with noise from the object of telemeasurements to the telemetry system for collecting and processing data. It considers the case where the quality of received information changes over time, due to movement of the object relative to the receiving station, or other factors that cause changes in the characteristics of noise in the channel, up to the total loss due to some temporary sites. To improve the reliability of transmission and ensure continuous communication with the object, it is proposed to use a multi-channel system to record the TMI. This system consists of several telemetry stations, which simultaneously register data stream transmitted from the telemetry object. The multichannel system generates a single stream of TMI for the user at the output. The stream comprises the most reliable pieces of information, being received at all inputs of the system.The paper investigates the task of constructing a multi-channel registration scheme for telemetry information (TMI to provide a simultaneous reception of the telemeasurement data by multiple telemetry stations and to form a single TMI stream containing the most reliable pieces of received data on the basis of quality analysis of information being received.In a multichannel registering system of TMI there are three main factors affecting the quality of the output of a single stream of information: 1 quality of the method used for protecting against errors during transmission over the communication channel with noise; 2 efficiency of the synchronization process of telemetry frames in the received flow of information; 3 efficiency of the applied criteria to form a single output stream from multiple input streams coming from different stations in the discussed multichannel registering system of TMI.In the paper, in practical

  6. Influence of riparian canopy on macroinvertebrate composition and food habits of juvenile salmonids in several Oregon streams.

    Science.gov (United States)

    William R. Meehan

    1996-01-01

    The community composition of macroinvertebrates and the feeding habits of juvenile salmonids were studied in eight Oregon streams. Benthic, drift, sticky trap, and water trap samples were taken over a 3-year period, along with stomach samples of the fish. Samples were taken in stream reaches with and without riparian canopy. Both main effects—fish diet versus...

  7. Modelling the fate of six common pharmaceuticals in a small stream: quantification of attenuation and retention in different stream-specific environments

    Science.gov (United States)

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-04-01

    Detection of pharmaceutical residues in streaming waters is common in urbanized areas. Although the occurrence and source of these micropollutants is known, their behavior in these aquatic ecosystems is still only partly understood. Specifically, quantitative information of biogeochemical processes in stream-specific environments where predominant reactions occur is often missing. In an attempt to address this knowledge gap, we performed simultaneous tracer tests in Säva Brook, Sweden, with bezafibrate, clofibric acid, diclofenac, ibuprofen, metoprolol and naproxen, as well as with the more inert solutes uranine and Rhodamine WT. The breakthrough curves at five successive sampling stations along a 16 km long stream reach were evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream. The multi-tracer experiment opens for decoupling of hydrological and biogeochemical contribution to the fate, and by linking impact and sensitivity analyses to relative significance of model parameters the most important processes for each contaminant were elucidated. Specifically for Säva Brook, the proposed methodology revealed that the pharmaceutical-contaminated stream water remained in the storage zones for times corresponding to 5-25% of the flow time of the stream. Furthermore, the results indicate a great variability in terms of predominant biogeochemical processes between the different contaminants. Rapid reactions occurring in the transient storage zone attenuated both ibuprofen and clofibric acid, and we conclude that a major degradation pathway for these contaminants was biodegradation in the hyporheic zone. In contrast, bezafibrate, metoprolol, and naproxen were mainly affected by sorption both in the storage zone and the main channel, while diclofenac displayed negligible effects of biogeochemical reactions.

  8. Investigating Research Streams of Conjoint Analysis: A Bibliometric Study

    Directory of Open Access Journals (Sweden)

    Thorsten Teichert

    2010-05-01

    Full Text Available Conjoint analysis (CA is one of the most important methods for preference elicitation. In this paper we investigate the intellectual structure within the conjoint analytical research community. Analyses based on single papers provide a method-based overview of streams of conjoint research. By using novel bibliometric techniques in this field we complement findings of existing reviews. We use co-citation and factor analysis of the most cited articles in SSCI to identify the most important articles and research streams. Seven research streams are revealed which are visualized by means of multidimensional scaling. Tables and graphics reveal the disciplinary affiliations of contributors to CA, the special structure within the classes as well as links between them.

  9. In-stream biogeochemical processes of a temporary river.

    Science.gov (United States)

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Amaxidis, Yorgos; Skoulikidis, Nikolaos Th

    2007-02-15

    A reach at the estuary of Krathis River in Greece was used to assess how in-stream processes alter its hydrologic and biogeochemical regime. Krathis River exhibited high annual flow variability and its transmission losses become significant, especially during the dry months. These transmission losses are enhanced in chemistry due to release of nutrients from river sediments. These fluxes are significant because they correspond to 11% of the dissolved inorganic nitrogen flux of the river. Release of nitrogen species was influenced by temperature, while release of phosphate was not because phosphate levels were below the equilibrium concentration. There is a significant amount of sediments with fine composition that create "hot spot" areas in the river reach. These sediments are mobilized during the first flush events in the fall carrying with them a significant load of nutrient and suspended matter to the coastal zone. The nutrient organic content of sediments was also significant and it was studied in terms of its mineralization capacity. The capacity for mineralization was influenced by soil moisture, exhibiting significant capacity even at moisture levels of 40%. Temporary rivers are sensitive ecosystems, vulnerable to climate changes. In-stream processes play a significant role in altering the hydrology and biogeochemistry of the water and its impacts to the coastal zone.

  10. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    Science.gov (United States)

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  11. Re-meandering of lowland streams: will disobeying the laws of geomorphology have ecological consequences?

    Science.gov (United States)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of

  12. FACT. Streamed data analysis and online application of machine learning models

    Energy Technology Data Exchange (ETDEWEB)

    Bruegge, Kai Arno; Buss, Jens [Technische Universitaet Dortmund (Germany). Astroteilchenphysik; Collaboration: FACT-Collaboration

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) like FACT produce a continuous flow of data during measurements. Analyzing the data in near real time is essential for monitoring sources. One major task of a monitoring system is to detect changes in the gamma-ray flux of a source, and to alert other experiments if some predefined limit is reached. In order to calculate the flux of an observed source, it is necessary to run an entire data analysis process including calibration, image cleaning, parameterization, signal-background separation and flux estimation. Software built on top of a data streaming framework has been implemented for FACT and generalized to work with the data acquisition framework of the Cherenkov Telescope Array (CTA). We present how the streams-framework is used to apply supervised machine learning models to an online data stream from the telescope.

  13. Estimated Perennial Streams of Idaho and Related Geospatial Datasets

    Science.gov (United States)

    Rea, Alan; Skinner, Kenneth D.

    2009-01-01

    The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of

  14. Development of a 3D Stream Network and Topography for Improved Large-Scale Hydraulic Modeling

    Science.gov (United States)

    Saksena, S.; Dey, S.; Merwade, V.

    2016-12-01

    Most digital elevation models (DEMs) used for hydraulic modeling do not include channel bed elevations. As a result, the DEMs are complimented with additional bathymetric data for accurate hydraulic simulations. Existing methods to acquire bathymetric information through field surveys or through conceptual models are limited to reach-scale applications. With an increasing focus on large scale hydraulic modeling of rivers, a framework to estimate and incorporate bathymetry for an entire stream network is needed. This study proposes an interpolation-based algorithm to estimate bathymetry for a stream network by modifying the reach-based empirical River Channel Morphology Model (RCMM). The effect of a 3D stream network that includes river bathymetry is then investigated by creating a 1D hydraulic model (HEC-RAS) and 2D hydrodynamic model (Integrated Channel and Pond Routing) for the Upper Wabash River Basin in Indiana, USA. Results show improved simulation of flood depths and storage in the floodplain. Similarly, the impact of river bathymetry incorporation is more significant in the 2D model as compared to the 1D model.

  15. Method and means for filtering polychlorinated biphenyls from a gas stream

    International Nuclear Information System (INIS)

    Sowinski, R.F.

    1992-01-01

    This patent describes a method of filtering, adjacent to an end user-customer's residence or business in which at least a single gas appliance is located, a natural gas stream in which polychlorinated biphenyls (PCB's) and degraded PCB products have been concentrated at sufficient levels to be a health threat in a natural gas gathering and distributing network. It comprises: introducing the natural gas stream to a filter selected from a group that includes impingement, absorbing and adsorbing media whereby PCB's and degraded PCB products concentrated in the gas stream at sufficient levels to be a health threat by a periodic loading of the natural gas within the gathering and distributing network, are filtered from the gas stream and captured irrespective of mode of transport, passing the filtered natural gas stream to the customer's gas appliance wherein safe use of the energy associated with the stream occurs; periodically and safely removing the filter, inserting a new filter in place of the removed filter

  16. Streaming Pool: reuse, combine and create reactive streams with pleasure

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    When connecting together heterogeneous and complex systems, it is not easy to exchange data between components. Streams of data are successfully used in industry in order to overcome this problem, especially in the case of "live" data. Streams are a specialization of the Observer design pattern and they provide asynchronous and non-blocking data flow. The ongoing effort of the ReactiveX initiative is one example that demonstrates how demanding this technology is even for big companies. Bridging the discrepancies of different technologies with common interfaces is already done by the Reactive Streams initiative and, in the JVM world, via reactive-streams-jvm interfaces. Streaming Pool is a framework for providing and discovering reactive streams. Through the mechanism of dependency injection provided by the Spring Framework, Streaming Pool provides a so called Discovery Service. This object can discover and chain streams of data that are technologically agnostic, through the use of Stream IDs. The stream to ...

  17. Assessment of the Water and Sediment Quality of Tropical Forest Streams in Upper Reaches of the Baleh River, Sarawak, Malaysia, Subjected to Logging Activities

    Directory of Open Access Journals (Sweden)

    Teck-Yee Ling

    2016-01-01

    Full Text Available The study of the impact of logging activities on water and sediment quality of Sarawak forest streams is still scarce despite Sarawak being the largest exporter of timber in Malaysia. This study was aimed at determining the water and sediment quality of forest streams in Sarawak and the potential impact of logging activities. In situ parameters were measured, and water and sediment samples were collected at six stations before rain. Additionally, water quality was investigated at three stations after rain. The results showed that canopy removal resulted in large temperature variation and sedimentation in the forest streams. Lower suspended solids were found at stations with inactive logging (<2 mg/L compared to active logging (10–16 mg/L activities. The highest concentration of total nitrogen and total phosphorus in water and sediment was 4.4 mg/L, 77.6 μg/L, 0.17%, and 0.01%, respectively. Besides, significantly negative correlation of sediment nitrogen and water total ammonia nitrogen indicated the loss of nitrogen from sediment to water. Water quality of the streams deteriorated after rain, in particular, suspended solids which increased from 8.3 mg/L to 104.1 mg/L. This study reveals that logging activities have an impact on the water quality of Sarawak forest streams particularly in rainfall events.

  18. PGG: An Online Pattern Based Approach for Stream Variation Management

    Institute of Scientific and Technical Information of China (English)

    Lu-An Tang; Bin Cui; Hong-Yan Li; Gao-Shan Miao; Dong-Qing Yang; Xin-Biao Zhou

    2008-01-01

    Many database applications require efficient processing of data streams with value variations and fiuctuant sampling frequency. The variations typically imply fundamental features of the stream and important domain knowledge of underlying objects. In some data streams, successive events seem to recur in a certain time interval, but the data indeed evolves with tiny differences as time elapses. This feature, so called pseudo periodicity, poses a new challenge to stream variation management. This study focuses on the online management for variations over such streams. The idea can be applied to many scenarios such as patient vital signal monitoring in medical applications. This paper proposes a new method named Pattern Growth Graph (PGG) to detect and manage variations over evolving streams with following features: 1) adopts the wave-pattern to capture the major information of data evolution and represent them compactly;2) detects the variations in a single pass over the stream with the help of wave-pattern matching algorithm; 3) only stores different segments of the pattern for incoming stream, and hence substantially compresses the data without losing important information; 4) distinguishes meaningful data changes from noise and reconstructs the stream with acceptable accuracy.Extensive experiments on real datasets containing millions of data items, as well as a prototype system, are carried out to demonstrate the feasibility and effectiveness of the proposed scheme.

  19. Quantification of Groundwater Discharge in a Subalpine Stream Using Radon-222

    Directory of Open Access Journals (Sweden)

    Elizabeth Avery

    2018-01-01

    Full Text Available During the dry months of the water year in Mediterranean climates, groundwater influx is essential to perennial streams for sustaining ecosystem health and regulating water temperature. Predicted earlier peak flow due to climate change may result in decreased baseflow and the transformation of perennial streams to intermittent streams. In this study, naturally occurring radon-222 (222Rn was used as a tracer of groundwater influx to Martis Creek, a subalpine stream near Lake Tahoe, CA. Groundwater 222Rn is estimated based on measurements of 222Rn activity in nearby deep wells and springs. To determine the degassing constant (needed for quantification of water and gas flux, an extrinsic tracer, xenon (Xe, was introduced to the stream and monitored at eight downstream locations. The degassing constant for 222Rn is based on the degassing constant for Xe, and was determined to be 1.9–9.0 m/day. Applying a simple model in which stream 222Rn activity is a balance between the main 222Rn source (groundwater and sink (volatilization, the influx in reaches of the upstream portion of Martis Creek was calculated to be <1 to 15 m3/day/m, which cumulatively constitutes a significant portion of the stream discharge. Experiments constraining 222Rn emanation from hyporheic zone sediments suggest that this should be considered a maximum rate of influx. Groundwater influx is typically difficult to identify and quantify, and the method employed here is useful for identifying locations for focused stream flow measurements, for formulating a water budget, and for quantifying streamwater–groundwater interaction.

  20. Analytical Models of Exoplanetary Atmospheres. IV. Improved Two-stream Radiative Transfer for the Treatment of Aerosols

    International Nuclear Information System (INIS)

    Heng, Kevin; Kitzmann, Daniel

    2017-01-01

    We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetry factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.

  1. Analytical Models of Exoplanetary Atmospheres. IV. Improved Two-stream Radiative Transfer for the Treatment of Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin; Kitzmann, Daniel, E-mail: kevin.heng@csh.unibe.ch, E-mail: daniel.kitzmann@csh.unibe.ch [University of Bern, Center for Space and Habitability, Gesellschaftsstrasse 6, CH-3012, Bern (Switzerland)

    2017-10-01

    We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetry factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.

  2. Techniques for estimating flood-depth frequency relations for streams in West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1987-01-01

    Multiple regression analyses are applied to data from 119 U.S. Geological Survey streamflow stations to develop equations that estimate baseline depth (depth of 50% flow duration) and 100-yr flood depth on unregulated streams in West Virginia. Drainage basin characteristics determined from the 100-yr flood depth analysis were used to develop 2-, 10-, 25-, 50-, and 500-yr regional flood depth equations. Two regions with distinct baseline depth equations and three regions with distinct flood depth equations are delineated. Drainage area is the most significant independent variable found in the central and northern areas of the state where mean basin elevation also is significant. The equations are applicable to any unregulated site in West Virginia where values of independent variables are within the range evaluated for the region. Examples of inapplicable sites include those in reaches below dams, within and directly upstream from bridge or culvert constrictions, within encroached reaches, in karst areas, and where streams flow through lakes or swamps. (Author 's abstract)

  3. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    Science.gov (United States)

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  4. Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Eiriksson, David; Brooks, Paul D; Baker, Michelle A; Bowen, Gabriel J; Bowling, David R

    2016-02-02

    Snowmelt dominates the hydrograph of many temperate montane streams, yet little work has characterized how streamwater sources and nitrogen (N) dynamics vary across wildland to urban land use gradients in these watersheds. Across a third-order catchment in Salt Lake City, Utah, we asked where and when groundwater vs shallow surface water inputs controlled stream discharge and N dynamics. Stream water isotopes (δ(2)H and δ(18)O) reflected a consistent snowmelt water source during baseflow. Near-chemostatic relationships between conservative ions and discharge implied that groundwater dominated discharge year-round across the montane and urban sites, challenging the conceptual emphasis on direct stormwater inputs to urban streams. Stream and groundwater NO3(-) concentrations remained consistently low during snowmelt and baseflow in most montane and urban stream reaches, indicating effective subsurface N retention or denitrification and minimal impact of fertilizer or deposition N sources. Rather, NO3(-) concentrations increased 50-fold following urban groundwater inputs, showing that subsurface flow paths potentially impact nutrient loading more than surficial land use. Isotopic composition of H2O and NO3(-) suggested that snowmelt-derived urban groundwater intercepted NO3(-) from leaking sewers. Sewer maintenance could potentially mitigate hotspots of stream N inputs at mountain/valley transitions, which have been largely overlooked in semiarid urban ecosystems.

  5. Plasma stream transport method (2) Use of charge exchange plasma source

    International Nuclear Information System (INIS)

    Tsuchimoto, T.

    1978-01-01

    The plasma stream transport method using a single plasma source has limitations for practical film deposition. Using a charge exchange phenomenon, a new plasma source is devised and tested by the plasma stream transport machine. Metals, silicon dioxide, and nitride films are deposited by this system. The mechanism of deposition under relatively high vacuum surrounding a silicon wafer is discussed as is the effect of radical atoms

  6. Environmental quality of the Fosso della Casaccia. stream (Rome, Italy). Evaluation of the ecological impact of wastewaters from the ENEA Research Centre Casaccia

    International Nuclear Information System (INIS)

    Formichetti, P.; Mancini, L.; Morgana, J.G.; Izzo, G.

    2008-01-01

    The study concerned the evaluation of ENEA Research Centre wastewaters effect on the nearby stream Fosso della Casaccia. These pollutants consist of black waters and low radioactivity substances. The effects on stream's ecosystem were evaluated using macro invertebrate community structure, diatom community structure, chemical and microbiological analysis of sediments and water, stream.s ecological functionality level, toxicological indicators. The results showed a general strong pollution degree of the ecosystem that could also reach a higher level due to the low flow of the stream (and consequent low self-depuration effect of the stream itself). Maintenance interventions, if not adequately planned, can also negatively influence the stream ecosystem [it

  7. Using a Spectral Method to Evaluate Hyporheic Exchange and its Effect on Reach Scale Nitrate Removal.

    Science.gov (United States)

    Moren, I.; Worman, A. L. E.; Riml, J.

    2017-12-01

    Previous studies have shown that hyporheic exchange processes can be of great importance for the transport, retention and mass removal of nutrients in streams. Specifically, the flow of surface water through the hyporheic zone enhances redox-sensitive reactions such as coupled nitrification-denitrification. This self-cleaning capacity of streams can be utilized in stream restoration projects aiming to improve water quality by reconstructing the geomorphology of the streams. To optimize the effect of restoration actions we need quantitative understanding of the linkage between stream geomorphology, hyporheic exchange processes and the desired water quality targets. Here we propose an analytical, spectral methodology to evaluate how different stream geomorphologies induce hyporheic exchange on a wide range of spatial and temporal scales. Measurements of streambed topographies and surface water profiles from agricultural streams were used to calculate the average hyporheic exchange velocity and residence times and the result was compared with in-stream tracer test. Furthermore, the hyporheic exchange induced by steps in the surface water profile was derived as a comparison of the theoretical capacity of the system. Based on differences in hyporheic exchange, the mass removal of nitrate could be derived for the different geomorphologies. The maximum nitrate mass removal was found to be related to a specific Damkhöler number, which reflects that the mass removal can be either reaction or transport controlled. Therefore, although hyporheic exchange induced by steps in the surface water profile was generally larger than the hyporheic exchange in the observed natural reaches, this would not necessarily lead a larger nitrate mass removal provided that the hyporheic residence times are not long enough to facilitate denitrification processes. The study illustrates the importance to investigate a stream thoroughly before any remediation actions are implemented, specifically

  8. Scaling of Sediment Dynamics in a Reach-Scale Laboratory Model of a Sand-Bed Stream with Riparian Vegetation

    Science.gov (United States)

    Gorrick, S.; Rodriguez, J. F.

    2011-12-01

    A movable bed physical model was designed in a laboratory flume to simulate both bed and suspended load transport in a mildly sinuous sand-bed stream. Model simulations investigated the impact of different vegetation arrangements along the outer bank to evaluate rehabilitation options. Preserving similitude in the 1:16 laboratory model was very important. In this presentation the scaling approach, as well as the successes and challenges of the strategy are outlined. Firstly a near-bankfull flow event was chosen for laboratory simulation. In nature, bankfull events at the field site deposit new in-channel features but cause only small amounts of bank erosion. Thus the fixed banks in the model were not a drastic simplification. Next, and as in other studies, the flow velocity and turbulence measurements were collected in separate fixed bed experiments. The scaling of flow in these experiments was simply maintained by matching the Froude number and roughness levels. The subsequent movable bed experiments were then conducted under similar hydrodynamic conditions. In nature, the sand-bed stream is fairly typical; in high flows most sediment transport occurs in suspension and migrating dunes cover the bed. To achieve similar dynamics in the model equivalent values of the dimensionless bed shear stress and the particle Reynolds number were important. Close values of the two dimensionless numbers were achieved with lightweight sediments (R=0.3) including coal and apricot pips with a particle size distribution similar to that of the field site. Overall the moveable bed experiments were able to replicate the dominant sediment dynamics present in the stream during a bankfull flow and yielded relevant information for the analysis of the effects of riparian vegetation. There was a potential conflict in the strategy, in that grain roughness was exaggerated with respect to nature. The advantage of this strategy is that although grain roughness is exaggerated, the similarity of

  9. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  10. Baseline Glass Development for Combined Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-01-01

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.(1) Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.(2-5) Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  11. Longitudinal structure in temperate stream fish communities: evaluating conceptual models with temporal data

    Science.gov (United States)

    Roberts, James H.; Hitt, Nathaniel P.

    2010-01-01

    Five conceptual models of longitudinal fish community organization in streams were examined: (1) niche diversity model (NDM), (2) stream continuum model (SCM), (3) immigrant accessibility model (IAM), (4) environmental stability model (ESM), and (5) adventitious stream model (ASM). We used differences among models in their predictions about temporal species turnover, along with five spatiotemporal fish community data sets, to evaluate model applicability. Models were similar in predicting a positive species richness–stream size relationship and longitudinal species nestedness, but differed in predicting either similar temporal species turnover throughout the stream continuum (NDM, SCM), higher turnover upstream (IAM, ESM), or higher turnover downstream (ASM). We calculated measures of spatial and temporal variation from spatiotemporal fish data in five wadeable streams in central and eastern North America spanning 34–68 years (French Creek [New York], Piasa Creek [Illinois], Spruce Run [Virginia], Little Stony Creek [Virginia], and Sinking Creek [Virginia]). All streams exhibited substantial species turnover (i.e., at least 27% turnover in stream-scale species pools), in contrast to the predictions of the SCM. Furthermore, community change was greater in downstream than upstream reaches in four of five streams. This result is most consistent with the ASM and suggests that downstream communities are strongly influenced by migrants to and from species pools outside the focal stream. In Sinking Creek, which is isolated from external species pools, temporal species turnover (via increased richness) was higher upstream than downstream, which is a pattern most consistent with the IAM or ESM. These results corroborate the hypothesis that temperate stream habitats and fish communities are temporally dynamic and that fish migration and environmental disturbances play fundamental roles in stream fish community organization.

  12. A GIS-based groundwater travel time model to evaluate stream nitrate concentration reductions from land use change

    Science.gov (United States)

    Schilling, K.E.; Wolter, C.F.

    2007-01-01

    Excessive nitrate-nitrogen (nitrate) loss from agricultural watersheds is an environmental concern. A common conservation practice to improve stream water quality is to retire vulnerable row croplands to grass. In this paper, a groundwater travel time model based on a geographic information system (GIS) analysis of readily available soil and topographic variables was used to evaluate the time needed to observe stream nitrate concentration reductions from conversion of row crop land to native prairie in Walnut Creek watershed, Iowa. Average linear groundwater velocity in 5-m cells was estimated by overlaying GIS layers of soil permeability, land slope (surrogates for hydraulic conductivity and gradient, respectively) and porosity. Cells were summed backwards from the stream network to watershed divide to develop a travel time distribution map. Results suggested that groundwater from half of the land planted in prairie has reached the stream network during the 10 years of ongoing water quality monitoring. The mean travel time for the watershed was estimated to be 10.1 years, consistent with results from a simple analytical model. The proportion of land in the watershed and subbasins with prairie groundwater reaching the stream (10-22%) was similar to the measured reduction of stream nitrate (11-36%). Results provide encouragement that additional nitrate reductions in Walnut Creek are probable in the future as reduced nitrate groundwater from distal locations discharges to the stream network in the coming years. The high spatial resolution of the model (5-m cells) and its simplicity may make it potentially applicable for land managers interested in communicating lag time issues to the public, particularly related to nitrate concentration reductions over time. ?? 2007 Springer-Verlag.

  13. Broadband Shock Noise in Internally-Mixed Dual-Stream Jets

    Science.gov (United States)

    Bridges, James E.

    2009-01-01

    Broadband shock noise (BBSN) has been studied in some detail in single-flow jets and recently in dual-stream jets with separate flow exhaust systems. Shock noise is of great concern in these latter cases because of the noise created for the aircraft cabin by the underexpanded nozzle flow at cruise. Another case where shock noise is of concern is in the case of future supersonic aircraft that are expected to have bypass ratios small enough to justify internally mixed exhaust systems, and whose mission will push cycles to the point of imperfectly expanded flows. Dual-stream jets with internally mixed plume have some simplifying aspects relative to the separate flow jets, having a single shock structure given by the common nozzle pressure. This is used to separate the contribution of the turbulent shear layer to the broadband shock noise. Shock structure is held constant while the geometry and strength of the inner and merged shear layers are varying by changing splitter area ratio and core stream temperature. Flow and noise measurements are presented which document the efforts at separating the contribution of the inner shear layer to the broadband shock noise.

  14. A physical perspective on cytoplasmic streaming.

    Science.gov (United States)

    Goldstein, Raymond E; van de Meent, Jan-Willem

    2015-08-06

    Organisms show a remarkable range of sizes, yet the dimensions of a single cell rarely exceed 100 µm. While the physical and biological origins of this constraint remain poorly understood, exceptions to this rule give valuable insights. A well-known counterexample is the aquatic plant Chara, whose cells can exceed 10 cm in length and 1 mm in diameter. Two spiralling bands of molecular motors at the cell periphery drive the cellular fluid up and down at speeds up to 100 µm s(-1), motion that has been hypothesized to mitigate the slowness of metabolite transport on these scales and to aid in homeostasis. This is the most organized instance of a broad class of continuous motions known as 'cytoplasmic streaming', found in a wide range of eukaryotic organisms-algae, plants, amoebae, nematodes and flies-often in unusually large cells. In this overview of the physics of this phenomenon, we examine the interplay between streaming, transport and cell size and discuss the possible role of self-organization phenomena in establishing the observed patterns of streaming.

  15. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    Science.gov (United States)

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  16. Analyzing indicators of stream health for Minnesota streams

    Science.gov (United States)

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  17. Dating base flow in streams using dissolved gases and diurnal temperature changes

    Science.gov (United States)

    Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.

    2015-01-01

    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  18. Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA.

    Science.gov (United States)

    Steven M. Wondzell

    2006-01-01

    Stream-tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach-integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS-P. Transient...

  19. Reaching state-of-the art requirements for MIM capacitors with a single-layer anodic Al2O3 dielectric and imprinted electrodes

    Science.gov (United States)

    Hourdakis, Emmanouel; Nassiopoulou, Androula G.

    2017-07-01

    Metal-Insulator-Metal (MIM) capacitors with a high capacitance density and low non-linearity coefficient using a single-layer dielectric of barrier-type anodic alumina (Al2O3) and an imprinted bottom Al electrode are presented. Imprinting of the bottom electrode aimed at increasing the capacitor effective surface area by creating a three-dimensional MIM capacitor architecture. The bottom Al electrode was only partly nanopatterned so as to ensure low series resistance of the MIM capacitor. With a 3 nm thick anodic Al2O3 dielectric, the capacitor with the imprinted electrode showed a 280% increase in capacitance density compared to the flat electrode capacitor, reaching a value of 20.5 fF/μm2. On the other hand, with a 30 nm thick anodic Al2O3 layer, the capacitance density was 7.9 fF/μm2 and the non-linearity coefficient was as low as 196 ppm/V2. These values are very close to reaching all requirements of the last International Technology Roadmap for Semiconductors for MIM capacitors [ITRS, http://www.itrs2.net/2013-itrs.html for ITRS Roadmap (2013)], and they are achieved by a single-layer dielectric instead of the complicated dielectric stacks of the literature. The obtained results constitute a real progress compared to previously reported results by our group for MIM capacitors using imprinted electrodes.

  20. Java parallel secure stream for grid computing

    International Nuclear Information System (INIS)

    Chen, J.; Akers, W.; Chen, Y.; Watson, W.

    2001-01-01

    The emergence of high speed wide area networks makes grid computing a reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve the bandwidth and to reduce latency on a high speed wide area network. The authors present a pure Java package called JPARSS (Java Parallel Secure Stream) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a gird environment without the necessity of tuning the TCP window size. Several experimental results are provided to show that using parallel stream is more effective than tuning TCP window size. In addition X.509 certificate based single sign-on mechanism and SSL based connection establishment are integrated into this package. Finally a few applications using this package will be discussed

  1. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    Science.gov (United States)

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  2. Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration

    Science.gov (United States)

    O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-01-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  3. Bright lights, big city: influences of ecological light pollution on reciprocal stream-riparian invertebrate fluxes.

    Science.gov (United States)

    Meyer, Lars A; Sullivan, S Mazeika P

    2013-09-01

    Cities produce considerable ecological light pollution (ELP), yet the effects of artificial night lighting on biological communities and ecosystem function have not been fully explored. From June 2010 to June 2011, we surveyed aquatic emergent insects, riparian arthropods entering the water, and riparian spiders of the family Tetragnathidae at nine stream reaches representing common ambient ELP levels of Columbus, Ohio, USA, streams (low, 0.1-0.5 lux; moderate, 0.6-2.0 lux; high, 2.1-4.0 lux). In August 2011, we experimentally increased light levels at the low- and moderate-treatment reaches to 10-12 lux to represent urban streams exposed to extremely high levels of ELP. Although season exerted the dominant influence on invertebrate fluxes over the course of the year, when analyzed by season, we found that light strongly influenced multiple invertebrate responses. The experimental light addition resulted in a 44% decrease in tetragnathid spider density (P = 0.035), decreases of 16% in family richness (P = 0.040) and 76% in mean body size (P = 0.022) of aquatic emergent insects, and a 309% increase in mean body size of terrestrial arthropods (P = 0.015). Our results provide evidence that artificial light sources can alter community structure and ecosystem function in streams via changes in reciprocal aquatic-terrestrial fluxes of invertebrates.

  4. Effects of Channelisation, Riparian Structure and Catchment Area on Physical Habitats in Small Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge

    2009-01-01

    Rivers and streams form a longitudinal network in which physical conditions and biological processes change through the river system. Geomorphology, topography, geology and hydraulic conditions change from site to site within the river system, thereby creating a complex network of reaches that ar.......e. a confined and steep valley (V-shaped) is less likely to be used for agricultural production compared to a broad valley. The results are useful to water managers, who seek to identify natural and impacted physical conditions in large river systems....... that are dominated by a hierarchy of physical processes. The complexity is further enhanced by local human alteration of the physical structure, natural processes and alteration of the riparian areas. The aim of the study was to analyse variations in land use and riparian characteristics along small Danish streams...... and to determine the effect of channelisation on physical habitats. Physical stream characteristics were measured in 149 stream small and medium sized Danish streams (catchment area: 0.1 to 67.2 km2). The measured physical parameters included discharge, stream slope, width, depth, current velocity, substrata...

  5. Evaluation of Deposited Sediment and Macroinvertebrate Metrics Used to Quantify Biological Response to Excessive Sedimentation in Agricultural Streams

    Science.gov (United States)

    Sutherland, Andrew B.; Culp, Joseph M.; Benoy, Glenn A.

    2012-07-01

    The objective of this study was to evaluate which macroinvertebrate and deposited sediment metrics are best for determining effects of excessive sedimentation on stream integrity. Fifteen instream sediment metrics, with the strongest relationship to land cover, were compared to riffle macroinvertebrate metrics in streams ranging across a gradient of land disturbance. Six deposited sediment metrics were strongly related to the relative abundance of Ephemeroptera, Plecoptera and Trichoptera and six were strongly related to the modified family biotic index (MFBI). Few functional feeding groups and habit groups were significantly related to deposited sediment, and this may be related to the focus on riffle, rather than reach-wide macroinvertebrates, as reach-wide sediment metrics were more closely related to human land use. Our results suggest that the coarse-level deposited sediment metric, visual estimate of fines, and the coarse-level biological index, MFBI, may be useful in biomonitoring efforts aimed at determining the impact of anthropogenic sedimentation on stream biotic integrity.

  6. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Geoffrey [Indiana Univ., Bloomington, IN (United States); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), were conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report

  7. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  8. Partitioning Hydrologic and Biological Drivers of Discharge Loss in Arctic Headwater Streams

    Science.gov (United States)

    Koch, J. C.; Carey, M.; O'Donnell, J. A.; Records, M. K.; Sjoberg, Y.; Zimmerman, C. E.

    2017-12-01

    The Arctic-Boreal transition (ABT) zone of Alaska is experiencing unprecedented warming, leading to permafrost thaw and vegetation change. Both of these processes are likely to affect streams and stream ecosystems, but there is little direct empirical evidence regarding the magnitude of these effects and their relative importance. To understand how permafrost thaw and vegetation are affecting streams at the ABT, we monitored 8 first-order streams that drain catchments varying in elevation, aspect, and vegetation cover. Data were obtained from meteorological stations, continuous stream discharge, seepage runs, and stream tracer experiments. Hydrograph analysis indicated that runoff ratios in south-facing catchments were lower than north-facing catchments and decreased over the season. Seepage runs indicated that south-facing catchments lost a large portion of water (up to 50% per km stream reach) in the late summer, while north-facing catchments were gaining water. All streams displayed diel variability in discharge, but with different daily and seasonal trends related to aspect and elevation. South-facing, forested catchment streams showed diel discharge timing consistent with cycles in evapotranspiration rates, while the signal in north-facing catchments and those dominated by tundra was more consistent with thermal controls on water viscosity and groundwater discharge to streams. Together, these signals indicate that the warmer, south-facing catchments are losing a large portion of water to a combination of infiltration and evapotranspiration. The seasonal trends are consistent with higher infiltration rates beneath south-facing streams as the ground thaws over the summer. The magnitude and seasonal dynamics of the diel signatures help separate biological (i.e. evapotranspiration) vs. physical controls (i.e. frozen ground hydrology) on stream-catchment interactions, which vary depending on aspect, elevation, and vegetation cover. Warming, and subsequent increases

  9. Towards a characterization of real-time streaming systems

    NARCIS (Netherlands)

    Weffers-Albu, M.A.; Lukkien, J.J.; Stok, van der P.D.V.; Puaut, I.

    2005-01-01

    In this article we provide a model for the dynamic behavior of a single video streaming chain, by formulating a theorem describing the stable behavior. This stable behavior is characterized in terms of the elementary actions of the components in the chain, from which standard performance measures

  10. Single-lane 180  Gbit/s PAM-4 signal transmission over 2  km SSMF for short-reach applications.

    Science.gov (United States)

    Zhang, Qiang; Stojanovic, Nebojsa; Prodaniuc, Cristian; Xie, Changsong; Koenigsmann, Michael; Laskowski, Piotr

    2016-10-01

    We experimentally demonstrate the generation and transmission of a single-lane 180  Gbit/s (90 GBaud) four-level pulse-amplitude modulation (PAM-4) signal in an intensity-modulation direct-detection system with a 7.5 GHz 3 dB bandwidth. The generated signal is transmitted over a 2 km standard single-mode fiber with, to the best of our knowledge, the highest reported net data rate in the C-band: 150  Gbit/s. A net data rate of 168  Gbit/s is also reachable with 1 km reach. The PAM-4 and duobinary (DB) PAM-4 modulation schemes are compared; the obtained results show that DB-PAM-4 significantly outperforms PAM-4 in the considered strong bandwidth-constrained system. Both a feed-forward equalizer and a maximum-likelihood sequence estimator are investigated for data recovery.

  11. Effects of long-term land use change on dissolved carbon characteristics in the permafrost streams of northeast China.

    Science.gov (United States)

    Guo, Yuedong; Song, Changchun; Wan, Zhongmei; Tan, Wenwen; Lu, Yongzheng; Qiao, Tianhua

    2014-11-01

    Permafrost soils act as large sinks of organic carbon but are highly sensitive to interference such as changes in land use, which can greatly influence dissolved carbon loads in streams. This study examines the effects of long-term land reclamation on seasonal concentrations of dissolved carbons in the upper reaches of the Nenjiang River, northeast China. A comparison of streams in natural and agricultural systems shows that the dissolved organic carbon (DOC) concentration is much lower in the agricultural stream (AG) than in the two natural streams (WAF, wetland dominated; FR, forest dominated), suggesting that land use change is associated with reduced DOC exporting capacity. Moreover, the fluorescence indexes and the ratio of dissolved carbon to nitrogen also differ greatly between the natural and agricultural streams, indicating that the chemical characteristics and the origin of the DOC released from the whole reaches are also altered to some extent. Importantly, the exporting concentration of dissolved inorganic carbon (DIC) and its proportion of total dissolved carbon (TDC) substantially increase following land reclamation, which would largely alter the carbon cycling processes in the downstream fluvial system. Although the strong association between the stream discharge and the DOC concentration was unchanged, the reduction in total soil organic carbon following land reclamation led to remarkable decline of the total flux and exporting coefficient of the dissolved carbons. The results suggest that dissolved carbons in permafrost streams have been greatly affected by changes in land use since the 1970s, and the changes in the concentration and chemical characteristics of dissolved carbons will last until the alteration in both the traditional agriculture pattern and the persistent reclamation activities.

  12. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    Science.gov (United States)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  13. SGA Phase 2 Assessed Reaches

    Data.gov (United States)

    Vermont Center for Geographic Information — The stream geomorphic assessment (SGA) is a physical assessment competed by geomorphologists to determine the condition and sensitivity of a stream. The Phase 2 SGA...

  14. SGA Phase 1 Assessed Reaches

    Data.gov (United States)

    Vermont Center for Geographic Information — The stream geomorphic assessment (SGA) is a physical assessment competed by geomorphologists to determine the condition and sensitivity of a stream. The Phase 1 SGA...

  15. Using Geomorphic Change Detection to Understand Restoration Project Success Relative to Stream Size

    Science.gov (United States)

    Yeager, A.; Segura, C.

    2017-12-01

    Large wood (LW) jams have long been utilized as a stream restoration strategy to create fish habitat, with a strong focus on Coho salmon in the Pacific Northwest. These projects continue to be implemented despite limited understanding of their success in streams of different size. In this study, we assessed the changes triggered by LW introductions in 10 alluvial plane bed reaches with varying drainage areas (3.9-22 km²) and bankfull widths (6.4-14.7 m) in one Oregon Coast Range basin. In this basin, LW was added in an effort to improve winter rearing habitat for Coho salmon. We used detailed topographic mapping (0.5 m² resolution) to describe the local stream and floodplain geometry. Pebble counts were used to monitor changes in average substrate size after the LW addition. Field surveys were conducted immediately after the LW were installed, in the summer of 2016, and one year after installation, in the summer of 2017. We used geomorphic change detection analysis to quantify the amount of scour and deposition at each site along with changes in average bankfull width. Then we determined the relative amount of change among all sites to identify which size stream changed the most. We also modeled fluctuations in water surface elevation at each site, correlating frequency and inundation of the LW with geomorphic changes detected from the topographic surveys. Preliminary results show an increase in channel width and floodplain connectivity at all sites, indicating an increase in off-channel habitat for juvenile Coho salmon. Bankfull widths increased up to 75% in small sites and up to 25% in large sites. Median grain size became coarser in large streams (increased up to 20%), while we saw a similar amount of fining at smaller sites. The overall increase in channel width is compensated by an overall decrease in bed elevation at both large and small sites, suggesting the maintenance of overall geomorphic equilibrium. Further work will include quantifying these

  16. Mercury and methylmercury stream concentrations in a Coastal Plain watershed: A multi-scale simulation analysis

    Science.gov (United States)

    Mercury is a ubiquitous global environmental toxicant responsible for most US fish advisories. Processes governing mercury concentrations in rivers and streams are not well understood, particularly at multiple spatial scales. We investigate how insights gained from reach-scale me...

  17. Coexistence of two freshwater turtle species along a Mediterranean stream: The role of spatial and temporal heterogeneity

    Science.gov (United States)

    Segurado, Pedro; Figueiredo, Diogo

    2007-09-01

    In the Iberian Peninsula the European pond turtle ( Emys orbicularis) and the Mediterranean pond turtle ( Mauremys leprosa) share many freshwater habitats, in particular Mediterranean streams. Whether and how these two species divide space within those habitats is poorly known in part due to the very low abundance of E. orbicularis at most syntopic sites. The spatial coexistence of these two species was studied along a 1.3 km reach of a typical Mediterranean stream based on data from trapping sessions and basking counts. The effect of the hydrological regime on differences in space use between species was also assessed. Spatial associations between species and between each species and microhabitat descriptors were estimated using a permutation procedure to account for spatial autocorrelation. Differences in the use of space were also estimated using a resample technique to account for the small sample sizes of E. orbicularis. Results indicate that E. orbicularis shows a preference for temporary, shallow, well vegetated and sandy reaches, while M. leprosa is less selective regarding microhabitat. Differences between E. orbicularis and juveniles of M. leprosa were less obvious. The high spatial heterogeneity of Mediterranean streams may be responsible for the persistence of viable populations of E. orbicularis as well as favouring the coexistence of the two turtle species. Therefore, stream habitat management and conservation plans for E. orbicularis should give priority to the maintenance of high levels of heterogeneity along Mediterranean streams.

  18. Acoustofluidics: Theory and simulation of streaming and radiation forces at ultrasound resonances in microfluidic devices

    DEFF Research Database (Denmark)

    Bruus, Henrik

    2009-01-01

    fields, which are directly related to the acoustic radiation force on single particles and to the acoustic streaming of the liquid. For the radiation pressure effects, there is good agreement between theory and simulation, while the numeric results for the acoustic streaming effects are more problematic...

  19. Coupling nutrient uptake and energy flow in headwater streams

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Fellows, Christine [Griffith University, Nathan, Queensland, Australia; Valett, H. Maurice [Virginia Polytechnic Institute and State University (Virginia Tech); Dahm, Cliff [University of New Mexico, Albuquerque; Thomas, Steve [University of Nebraska

    2006-08-01

    Nutrient cycling and energy flow in ecosystems are tightly linked through the metabolic processes of organisms. Greater uptake of inorganic nutrients is expected to be associated with higher rates of metabolism [gross primary production (GPP) and respiration (R)], due to assimilatory demand of both autotrophs and heterotrophs. However, relationships between uptake and metabolism should vary with the relative contribution of autochthonous and allochthonous sources of organic matter. To investigate the relationship between metabolism and nutrient uptake, we used whole-stream and benthic chamber methods to measure rates of nitrate-nitrogen (NO{sub 3}-N) uptake and metabolism in four headwater streams chosen to span a range of light availability and therefore differing rates of GPP and contributions of autochthonous carbon. We coupled whole-stream metabolism with measures of NO{sub 3}-N uptake conducted repeatedly over the same stream reach during both day and night, as well as incubating benthic sediments under both light and dark conditions. NO{sub 3}-N uptake was generally greater in daylight compared to dark conditions, and although day-night differences in whole-stream uptake were not significant, light-dark differences in benthic chambers were significant at three of the four sites. Estimates of N demand indicated that assimilation by photoautotrophs could account for the majority of NO{sub 3}-N uptake at the two sites with relatively open canopies. Contrary to expectations, photoautotrophs contributed substantially to NO{sub 3}-N uptake even at the two closed-canopy sites, which had low values of GPP/R and relied heavily on allochthonous carbon to fuel R.

  20. Assessment of selected inorganic constituents in streams in the Central Arizona Basins Study Area, Arizona and northern Mexico, through 1998

    Science.gov (United States)

    Anning, David W.

    2003-01-01

    Stream properties and water-chemistry constituent concentrations from data collected by the National Water-Quality Assessment and other U.S. Geological Survey water-quality programs were analyzed to (1) assess water quality, (2) determine natural and human factors affecting water quality, and (3) compute stream loads for the surface-water resources in the Central Arizona Basins study area. Stream temperature, pH, dissolved-oxygen concentration and percent saturation, and dissolved-solids, suspended-sediment, and nutrient concentration data collected at 41 stream-water quality monitoring stations through water year 1998 were used in this assessment. Water-quality standards applicable to the stream properties and water-chemistry constituent concentration data for the stations investigated in this study generally were met, although there were some exceedences. In a few samples from the White River, the Black River, and the Salt River below Stewart Mountain Dam, the pH in reaches designated as a domestic drinking water source was higher than the State of Arizona standard. More than half of the samples from the Salt River below Stewart Mountain Dam and almost all of the samples from the stations on the Central Arizona Project Canal?two of the three most important surface-water sources used for drinking water in the Central Arizona Basins study area?exceeded the U.S. Environmental Protection Agency drinking water Secondary Maximum Contaminant Level for dissolved solids. Two reach-specific standards for nutrients established by the State of Arizona were exceeded many times: (1) the annual mean concentration of total phosphorus was exceeded during several years at stations on the main stems of the Salt and Verde Rivers, and (2) the annual mean concentration of total nitrogen was exceeded during several years at the Salt River near Roosevelt and at the Salt River below Stewart Mountain Dam. Stream properties and water-chemistry constituent concentrations were related to

  1. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    International Nuclear Information System (INIS)

    Bambic, Dustin G.; Alpers, Charles N.; Green, Peter G.; Fanelli, Eileen; Silk, Wendy K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage. - Seasonal hydrology and benthic sediments control copper and zinc concentrations in a stream through a restored mine site

  2. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition

    Directory of Open Access Journals (Sweden)

    Jacob D. Hosen

    2017-08-01

    Full Text Available Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat—water column vs. sediment—with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter, which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella, which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition

  3. ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    I Made Oka Widyantara

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG-DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  4. Cosmic ray nucleonic intensity in low-amplitude days during the passage of high-speed solar wind streams

    International Nuclear Information System (INIS)

    Agarwal, R.; Mishra, R.K.; Tiwari, S.; or rm_jbp@yahoo.co.in

    2008-01-01

    One of the most striking features of solar wind is its organization into high- and low- speed streams. It is now well established that the passage over the Earth of high-speed solar wind streams leads to geomagnetic disturbances. The high-speed plasma streams are thus a key element in the complex chain of events that link geomagnetic activity to the solar activity and are therefore of great interest to the solar terrestrial physics. Two types of high-speed solar wind streams - coronal-hole-associated (or corotating) and flare-generated - were studied based on magnetic field and solar wind plasma parameters. In the work, the dependence was obtained for cosmic ray (CR) depressions due to high-speed solar wind streams during low-amplitude days. The CR nucleonic intensity data were subjected to the superposed epoch analysis with respect to the start time of high-speed solar wind streams. It was found that streams of both types produce significant deviations in the CR intensity during low-amplitude anisotropic wave train events. At the onset of such streams the CR intensity reaches its minimum during low-amplitude events and then increases statistically. (Authors)

  5. Different cesium-137 transfers to forest and stream ecosystems

    International Nuclear Information System (INIS)

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N.; Iwamoto, Aimu; Okada, Kengo

    2016-01-01

    Understanding the mechanisms of "1"3"7Cs movement across different ecosystems is crucial for projecting the environmental impact and management of nuclear contamination events. Here, we report differential movement of "1"3"7Cs in adjacent forest and stream ecosystems. The food webs of the forest and stream ecosystems in our study were similar, in that they were both dominated by detrital-based food webs and the basal energy source was terrestrial litter. However, the concentration of "1"3"7Cs in stream litter was significantly lower than in forest litter, the result of "1"3"7Cs leaching from litter in stream water. The difference in "1"3"7Cs concentrations between the two types of litter was reflected in the "1"3"7Cs concentrations in the animal community. While the importance of "1"3"7Cs fallout and the associated transfer to food webs has been well studied, research has been primarily limited to cases in a single ecosystem. Our results indicate that there are differences in the flow of "1"3"7Cs through terrestrial and aquatic ecosystems, and that "1"3"7Cs concentrations are reduced in both basal food resources and higher trophic animals in aquatic systems, where primary production is subsidized by a neighboring terrestrial ecosystem. - Highlights: • Detrital-based food web structure was observed in both forest and stream ecosystems. • The "1"3"7Cs concentration in litter was 4 times lower in stream than in forest. • The difference of "1"3"7Cs concentration in litter reflected in animal contamination. • "1"3"7Cs leaching from litter decreases contamination level of stream food web. - Leaching from litter in stream decreases "1"3"7Cs concentration in litter, and the contamination level of food web in stream ecosystem is lower than that in adjacent forest ecosystem.

  6. Reproductive effects assessment of fish in streams on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    McCracken, M.K.; Ivey, L.J.; Niemela, S.L.; Greeley, M.S. Jr.

    1995-01-01

    The Department of Energy has three large facilities located on the Oak Ridge Reservation Site, the Y-12 Plant, and the Oak Ridge National Laboratory. Several Biological Monitoring and Abatement Programs (BMAP) monitor and assess the effects of these facilities on the aquatic and terrestrial resources of the reservation. One BMAP task concerns the potential role of contaminant-related reproductive dysfunction in shaping the composition of fish communities in creeks draining the facilities. This task addresses specific questions concerning (1) the reproductive competence of adult fish in the streams, and (2) the capacity of fish embryos and fry to survive and develop sequent reproductive cohorts. Evidence for current or potential reproductive impacts in several of the streams include abnormal fecundity at some sites, increased incidences of oocyte atresia, and a marked toxicity of surface water samples from several stream reaches to fish embryos in periodic embryo-larval tests. Recovery of certain of the monitored streams in response to ongoing remedial actions is documented by positive changes over time in many these indicators of reproductive dysfunction. These results suggest that the monitoring of reproductive indicators can be a sensitive tool for assessing the effects of both industrial discharges and remedial activities on the fish resources of receiving streams

  7. Performance Evaluation of Concurrent Multipath Video Streaming in Multihomed Mobile Networks

    Directory of Open Access Journals (Sweden)

    James Nightingale

    2013-01-01

    Full Text Available High-quality real-time video streaming to users in mobile networks is challenging due to the dynamically changing nature of the network paths, particularly the limited bandwidth and varying end-to-end delay. In this paper, we empirically investigate the performance of multipath streaming in the context of multihomed mobile networks. Existing schemes that make use of the aggregated bandwidth of multiple paths can overcome bandwidth limitations on a single path but suffer an efficiency penalty caused by retransmission of lost packets in reliable transport schemes or path switching overheads in unreliable transport schemes. This work focuses on the evaluation of schemes to permit concurrent use of multiple paths to deliver video streams. A comprehensive streaming framework for concurrent multipath video streaming is proposed and experimentally evaluated, using current state-of-the-art H.264 Scalable Video Coding (H.264/SVC and the next generation High Efficiency Video Coding (HEVC standards. It provides a valuable insight into the benefit of using such schemes in conjunction with encoder specific packet prioritisation mechanisms for quality-aware packet scheduling and scalable streaming. The remaining obstacles to deployment of concurrent multipath schemes are identified, and the challenges in realising HEVC based concurrent multipath streaming are highlighted.

  8. Surface and ground water quality in a restored urban stream affected by road salts

    Science.gov (United States)

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  9. Akamai Streaming

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Akamai offers world-class streaming media services that enable Internet content providers and enterprises to succeed in today's Web-centric marketplace. They deliver live event Webcasts (complete with video production, encoding, and signal acquisition services), streaming media on demand, 24/7 Webcasts and a variety of streaming application services based upon their EdgeAdvantage.

  10. Filtering Redundant Data from RFID Data Streams

    Directory of Open Access Journals (Sweden)

    Hazalila Kamaludin

    2016-01-01

    Full Text Available Radio Frequency Identification (RFID enabled systems are evolving in many applications that need to know the physical location of objects such as supply chain management. Naturally, RFID systems create large volumes of duplicate data. As the duplicate data wastes communication, processing, and storage resources as well as delaying decision-making, filtering duplicate data from RFID data stream is an important and challenging problem. Existing Bloom Filter-based approaches for filtering duplicate RFID data streams are complex and slow as they use multiple hash functions. In this paper, we propose an approach for filtering duplicate data from RFID data streams. The proposed approach is based on modified Bloom Filter and uses only a single hash function. We performed extensive empirical study of the proposed approach and compared it against the Bloom Filter, d-Left Time Bloom Filter, and the Count Bloom Filter approaches. The results show that the proposed approach outperforms the baseline approaches in terms of false positive rate, execution time, and true positive rate.

  11. Two-stream instability in collisionless shocks and foreshock

    International Nuclear Information System (INIS)

    Dieckmann, M E; Eliasson, B; Shukla, P K; Sircombe, N J; Dendy, R O

    2006-01-01

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions

  12. Two-stream instability in collisionless shocks and foreshock

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Eliasson, B [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Shukla, P K [Institute of Theoretical Physics IV and Centre for Plasma Science and Astrophysics, Ruhr-University Bochum, D-44780 Bochum (Germany); Sircombe, N J [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom); Dendy, R O [Centre for Fusion, Space and Astrophysics, Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom)

    2006-12-15

    Shocks play a key role in plasma thermalization and particle acceleration in the near Earth space plasma, in astrophysical plasma and in laser plasma interactions. An accurate understanding of the physics of plasma shocks is thus of immense importance. We give an overview over some recent developments in particle-in-cell simulations of plasma shocks and foreshock dynamics. We focus on ion reflection by shocks and on the two-stream instabilities these beams can drive, and these are placed in the context of experimental observations, e.g. by the Cluster mission. We discuss how we may expand the insight gained from the observation of proton beam driven instabilities at near Earth plasma shocks to better understand their astrophysical counterparts, such as ion beam instabilities triggered by internal and external shocks in the relativistic jets of gamma ray bursts, shocks in the accretion discs of micro-quasars and supernova remnant shocks. It is discussed how and why the peak energy that can be reached by particles that are accelerated by two-stream instabilities increases from keV energies to GeV energies and beyond, as we increase the streaming speed to relativistic values, and why the particle energy spectrum sometimes resembles power law distributions.

  13. Restoring Wood-Rich Hotspots in Mountain Stream Networks

    Science.gov (United States)

    Wohl, E.; Scott, D.

    2016-12-01

    Mountain streams commonly include substantial longitudinal variability in valley and channel geometry, alternating repeatedly between steep, narrow and relatively wide, low gradient segments. Segments that are wider and lower gradient than neighboring steeper sections are hotspots with respect to: retention of large wood (LW) and finer sediment and organic matter; uptake of nutrients; and biomass and biodiversity of aquatic and riparian organisms. These segments are also more likely to be transport-limited with respect to floodplain and instream LW. Management designed to protect and restore riverine LW and the physical and ecological processes facilitated by the presence of LW is likely to be most effective if focused on relatively low-gradient stream segments. These segments can be identified using a simple, reach-scale gradient analysis based on high-resolution DEMs, with field visits to identify factors that potentially limit or facilitate LW recruitment and retention, such as forest disturbance history or land use. Drawing on field data from the western US, this presentation outlines a procedure for mapping relatively low-gradient segments in a stream network and for identifying those segments where LW reintroduction or retention is most likely to balance maximizing environmental benefits derived from the presence of LW while minimizing hazards associated with LW.

  14. Nutrient additions to mitigate for loss of Pacific salmon: consequences for stream biofilm and nutrient dynamics

    Science.gov (United States)

    Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2014-01-01

    Mitigation activities designed to supplement nutrient and organic matter inputs to streams experiencing decline or loss of Pacific salmon typically presuppose that an important pathway by which salmon nutrients are moved to fish (anadromous and/or resident) is via nutrient incorporation by biofilms and subsequent bottom-up stimulation of biofilm production, which is nutrient-limited in many ecosystems where salmon returns have declined. Our objective was to quantify the magnitude of nutrient incorporation and biofilm dynamics that underpin this indirect pathway in response to experimental additions of salmon carcasses and pelletized fish meal (a.k.a., salmon carcass analogs) to 500-m reaches of central Idaho streams over three years. Biofilm standing crops increased 2–8-fold and incorporated marine-derived nutrients (measured using 15N and 13C) in the month following treatment, but these responses did not persist year-to-year. Biofilms were nitrogen (N) limited before treatments, and remained N limited in analog, but not carcass-treated reaches. Despite these biofilm responses, in the month following treatment total N load was equal to 33–47% of the N added to the treated reaches, and N spiraling measurements suggested that as much as 20%, but more likely 2–3% of added N was taken up by microbes. Design of biologically and cost-effective strategies for nutrient addition will require understanding the rates at which stream microbes take up nutrients and the downstream distance traveled by exported nutrients.

  15. Predictive Modeling of Transient Storage and Nutrient Uptake: Implications for Stream Restoration

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-12-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO-3)(NO3-) uptake rates inferred using the nutrient spiraling model underestimated the total NO-3NO3- mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO-3NO3- mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  16. Biodiversity management approaches for stream-riparian areas: perspectives for Pacific Northwest headwater forests, microclimates, and amphibians.

    Science.gov (United States)

    D.H. Olson; P.D. Anderson; C.A. Frissell; H.H. Welsh; D.F. Bradford

    2007-01-01

    New science insights are redefining stream riparian zones, particularly relative to headwaters, microclimate conditions, and fauna such as amphibians. We synthesize data on these topics, and propose management approaches to target sensitive biota at reach to landscape scales.

  17. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    Science.gov (United States)

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled

  18. Synchronized Multimedia Streaming on the iPhone Platform with Network Coding

    DEFF Research Database (Denmark)

    Vingelmann, Peter; Fitzek, Frank; Pedersen, Morten Videbæk

    2011-01-01

    on the iPhone that use point-to-point architectures. After acknowledging their limitations, we propose a solution based on network coding to efficiently and reliably deliver the multimedia content to many devices in a synchronized manner. Then we introduce an application that implements this technique......This work presents the implementation of synchronized multimedia streaming for the Apple iPhone platform. The idea is to stream multimedia content from a single source to multiple receivers with direct or multihop connections to the source. First we look into existing solutions for video streaming...... on the iPhone. We also present our testbed, which consists of 16 iPod Touch devices to showcase the capabilities of our application....

  19. The Midwest Stream Quality Assessment—Influences of human activities on streams

    Science.gov (United States)

    Van Metre, Peter C.; Mahler, Barbara J.; Carlisle, Daren M.; Coles, James F.

    2018-04-16

    Healthy streams and the fish and other organisms that live in them contribute to our quality of life. Extensive modification of the landscape in the Midwestern United States, however, has profoundly affected the condition of streams. Row crops and pavement have replaced grasslands and woodlands, streams have been straightened, and wetlands and fields have been drained. Runoff from agricultural and urban land brings sediment and chemicals to streams. What is the chemical, physical, and biological condition of Midwestern streams? Which physical and chemical stressors are adversely affecting biological communities, what are their origins, and how might we lessen or avoid their adverse effects?In 2013, the U.S. Geological Survey (USGS) conducted the Midwest Stream Quality Assessment to evaluate how human activities affect the biological condition of Midwestern streams. In collaboration with the U.S. Environmental Protection Agency National Rivers and Streams Assessment, the USGS sampled 100 streams, chosen to be representative of the different types of watersheds in the region. Biological condition was evaluated based on the number and diversity of fish, algae, and invertebrates in the streams. Changes to the physical habitat and chemical characteristics of the streams—“stressors”—were assessed, and their relation to landscape factors and biological condition was explored by using mathematical models. The data and models help us to better understand how the human activities on the landscape are affecting streams in the region.

  20. Innovation in radioactive wastewater-stream management: Part one

    International Nuclear Information System (INIS)

    Karameldin, A.

    2005-01-01

    Treatment of radioactive wastewater streams is receiving considerable attention in most countries that have nuclear reactors. The first Egyptian research reactor ETRR-1 has been operating for 40 years, resulting in accumulation of large quantities of wastewater collected in special drainage tanks called SDTs. Previous attempts were aimed at the volumetric reduction of streams present in SDTs, by reverse osmosis systems, which previously succeeded in reducing the water volume present in SDTs from 450 m 3 to 50 m 3 (during the period 1998-2000). The main drawbacks of the RO system are the additional amount of secondary wastes (turbidity and emulsion filters media replacement, and the excessive amounts of chemicals for the membrane cleaning, flushing and storing), and a limited contaminant release in the SDTs area, resulting in the decommissioning of the RO system. Meanwhile, the SDTs waste contents recently reached 500 m 3 . Recently, the invention of a system for volume reduction of the wastewater streams present in SDTs has been achieved. This system substantially utilises the air conditioning and ventilation techniques in water transfer from the wastewater to air. This process is promoted by a mutual heating and humidification of a compressed dry air introduced through SDTs. From the probable release of radioactive nuclides point of view, the analysis of the evaporation of waste streams present in SDTs has indicated that the proposed optimal evaporating temperature is around 75 deg. C. The design curve of the daily volumetric reduction of the wastewater streams vs. the necessary volumetric airflow rates at different operating temperatures has been achieved. Recently, an experimental facility is being constructed to obtain the optimal operating parameters of the system, regarding the probable emissions of the radioactive nuclides within the permissible release limits. (author)

  1. Transport and concentration controls for chloride, strontium, potassium and lead in Uvas Creek, a small cobble-bed stream in Santa Clara County, California, U.S.A. 1. Conceptual model

    Science.gov (United States)

    Kennedy, V.C.; Jackman, A.P.; Zand, S.M.; Zellweger, G.W.; Avanzino, R.J.

    1984-01-01

    Stream sediments adsorb certain solutes from streams, thereby significantly changing the solute composition; but little is known about the details and rates of these adsorptive processes. To investigate such processes, a 24-hr. injection of a solution containing chloride, strontium, potassium, sodium and lead was made at the head of a 640-m reach of Uvas Creek in west-central Santa Clara County, California. Uvas Creek is a cobble-bed pool-and-riffle stream draining the eastern slopes of the Santa Cruz Mountains. By September 12, 1973, after a long dry season, Uvas Creek had a low (0.0215 m3s-1 average) flow which varied diurnally, from 0.018 to 0.025 m3s-1. Because stream discharge varied while the injection rate was constant, the concentration of tracers (injected solutes), after mixing in the stream, varied inversely with discharge. Chloride, a nonreactive solute, served as a tracer of water movement. Analysis of extensive chloride concentration data at five sites below the injection point during and after the injection demonstrated that there was considerable underflow of water through the stream gravels; however, the extent of underflow varied greatly within the study reach. Pre-injection water, displaced by tracer-laden water percolating through the gravels, diluted tracers in the stream channel, giving the mistaken impression of groundwater inflow at some points. Accurate measurement of total discharge in such streams requires prolonged tracer injection unless a reach can be found where underflow is negligible. Strontium and potassium were adsorbed by the bed sediments to a moderate extent and lead was strongly adsorbed. A high proportion of these metals could be removed by adsorption from percolating underflow because of extensive and intimate contact with bed sediments. After channel clearing following injection cutoff, 51% of the added strontium and 96% of the lead remained in the study reach, whereas only 19% of the chloride remained. Packets of sized

  2. Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes

    International Nuclear Information System (INIS)

    Artigas, Joan; García-Berthou, Emili; Gómez, Nora; Romaní, Anna M; Sabater, Sergi; Bauer, Delia E; Cochero, Joaquín; Cortelezzi, Agustina; Rodrigues-Capítulo, Alberto; Castro, Maria I; Donato, John C; Colautti, Darío C; Elosegi, Arturo; Feijoó, Claudia; Giorgi, Adonis; Leggieri, Leonardo; Muñoz, Isabel

    2013-01-01

    We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6–4-fold following a before–after control–impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2–77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9–48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure. (letter)

  3. The Effects of the Impedance of the Flow Source on the Design of Tidal Stream Generators

    Science.gov (United States)

    Salter, S.

    2011-12-01

    The maximum performance of a wind turbine is set by the well-known Betz limit. If the designer of a wind turbine uses too fast a rotation, too large a blade chord or too high an angle of blade pitch, the air flow can take an easier path over or around the rotor. Most estimates of the tidal stream resource use equations borrowed from wind and would be reasonably accurate for a single unit. But water cannot flow through the seabed or over rotors which reach to the surface. If contra-rotating, vertical-axis turbines with a rectangular flow-window are placed close to one another and reach from the surface close to the seabed, the leakage path is blocked and they become more like turbines in a closed duct. Instead of an equation with area times velocity-cubed we should use the first power of volume flow rate though the rotor times the pressure difference across it. A long channel with a rough bed will already be losing lots of energy and will behave more like a high impedance flow. Attempts to block it with closely-packed turbines will increase the head across the turbines with only a small effect on flow rate. The same thing will occur if a close-packed line of turbines is built out to sea from a headland. It is necessary to understand the impedance of the flow source all the way out to mid-ocean. In deep seas where the current velocities at the seabed are too slow to disturb the ooze the friction coefficients will be similar to those of gloss paint, perhaps 0.0025. But the higher velocities in shallow water will remove ooze and quite large sediments leaving rough, bare rock and leading to higher friction-coefficients. Energy dissipation will be set by the higher friction coefficients and the cube of the higher velocities. The presence of turbines will reduce seabed losses and about one third of the present loss can be converted to electricity. The velocity reduction would be about 10%. In many sites the energy output will be far higher than the wind turbine equations

  4. The metaphors we stream by: Making sense of music streaming

    OpenAIRE

    Hagen, Anja Nylund

    2016-01-01

    In Norway music-streaming services have become mainstream in everyday music listening. This paper examines how 12 heavy streaming users make sense of their experiences with Spotify and WiMP Music (now Tidal). The analysis relies on a mixed-method qualitative study, combining music-diary self-reports, online observation of streaming accounts, Facebook and last.fm scrobble-logs, and in-depth interviews. By drawing on existing metaphors of Internet experiences we demonstrate that music-streaming...

  5. Recovery of a mining-damaged stream ecosystem

    Science.gov (United States)

    Mebane, Christopher A.; Eakins, Robert J.; Fraser, Brian G.; Adams, William J.

    2015-01-01

    This paper presents a 30+ year record of changes in benthic macroinvertebrate communities and fish populations associated with improving water quality in mining-influenced streams. Panther Creek, a tributary to the Salmon River in central Idaho, USA suffered intensive damage from mining and milling operations at the Blackbird Mine that released copper (Cu), arsenic (As), and cobalt (Co) into tributaries. From the 1960s through the 1980s, no fish and few aquatic invertebrates could be found in 40 km of mine-affected reaches of Panther Creek downstream of the metals contaminated tributaries, Blackbird and Big Deer Creeks.

  6. Inference of Stream Network Fragmentation Patterns from Ground Water - Surface Water Interactions on the High Plains Aquifer

    Science.gov (United States)

    Chandler, D. G.; Yang, X.; Steward, D. R.; Gido, K.

    2007-12-01

    Stream networks in the Great Plains integrate fluxes from precipitation as surface runoff in discrete events and groundwater as base flow. Changes in land cover and agronomic practices and development of ground water resources to support irrigated agriculture have resulted in profound changes in the occurrence and magnitude of stream flows, especially near the Ogallala aquifer, where precipitation is low. These changes have demonstrably altered the aquatic habitat of western Kansas, with documented changes in fish populations, riparian communities and groundwater quality due to stream transmission losses. Forecasting future changes in aquatic and riparian ecology and groundwater quality requires a large scale spatially explicit model of groundwater- surface water interaction. In this study, we combine historical data on land use, stream flow, production well development and groundwater level observations with groundwater elevation modeling to support a geospatial framework for assessing changes in refugia for aquatic species in four rivers in western Kansas between 1965 and 2005. Decreased frequency and duration of streamflow occurred in all rivers, but the extent of change depended on the geomorphology of the river basin and the extent of groundwater development. In the absence of streamflow, refugia for aquatic species were defined as the stream reaches below the phreatic surface of the regional aquifer. Changes in extent, location and degree of fragmentation of gaining reaches was found to be a strong predictor of surface water occurrence during drought and a robust hydrological template for the analysis of changes in recharge to alluvial and regional aquifers and riparian and aquatic habitat.

  7. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows

    Science.gov (United States)

    Branco, Paulo; Santos, José M.; Katopodis, Christos; Pinheiro, António; Ferreira, Maria T.

    2013-01-01

    Fish are particularly sensitive to connectivity loss as their ability to reach spawning grounds is seriously affected. The most common way to circumvent a barrier to longitudinal connectivity, and to mitigate its impacts, is to implement a fish passage device. However, these structures are often non-effective for species with different morphological and ecological characteristics so there is a need to determine optimum dimensioning values and hydraulic parameters. The aim of this work is to study the behaviour and performance of two species with different ecological characteristics (Iberian barbel Luciobarbus bocagei–bottom oriented, and Iberian chub Squalius pyrenaicus–water column) in a full-scale experimental pool-type fishway that offers two different flow regimes–plunging and streaming. Results showed that both species passed through the surface notch more readily during streaming flow than during plunging flow. The surface oriented species used the surface notch more readily in streaming flow, and both species were more successful in moving upstream in streaming flow than in plunging flow. Streaming flow enhances upstream movement of both species, and seems the most suitable for fishways in river systems where a wide range of fish morpho-ecological traits are found. PMID:23741465

  8. Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales

    Science.gov (United States)

    Thomas E. Lisle; Jonathan M. Nelson; John Pitlick; Mary Ann Madej; Brent L. Barkett

    2000-01-01

    Abstract - Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility...

  9. Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment

    Science.gov (United States)

    Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia

    2018-03-01

    Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.

  10. Regional Curves of Bankfull Channel Geometry for Non-Urban Streams in the Piedmont Physiographic Province, Virginia

    Science.gov (United States)

    Lotspeich, R. Russell

    2009-01-01

    Natural-channel design involves constructing a stream channel with the dimensions, slope, and plan-view pattern that would be expected to transport water and sediment and yet maintain habitat and aesthetics consistent with unimpaired stream segments, or reaches. Regression relations for bankfull stream characteristics based on drainage area, referred to as 'regional curves,' are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. One-variable, ordinary least-squares regressions relating bankfull discharge, bankfull cross-sectional area, bankfull width, bankfull mean depth, and bankfull slope to drainage area were developed on the basis of data collected at 17 streamflow-gaging stations in rural areas with less than 20 percent urban land cover within the basin area (non-urban areas) of the Piedmont Physiographic Province in Virginia. These regional curves can be used to estimate the bankfull discharge and bankfull channel geometry when the drainage area of a watershed is known. Data collected included bankfull cross-sectional geometry, flood-plain geometry, and longitudinal profile data. In addition, particle-size distributions of streambed material were determined, and data on basin characteristics were compiled for each reach. Field data were analyzed to determine bankfull cross-sectional area, bankfull width, bankfull mean depth, bankfull discharge, bankfull channel slope, and D50 and D84 particle sizes at each site. The bankfull geometry from the 17 sites surveyed during this study represents the average of two riffle cross sections for each site. Regional curves developed for the 17 sites had coefficient of determination (R2) values of 0.950 for bankfull cross-sectional area, 0.913 for bankfull width, 0.915 for bankfull mean depth, 0.949 for bankfull discharge, and 0.497 for bankfull channel slope. The regional curves represent conditions for streams with defined channels and bankfull

  11. Reaching the hard-to-reach.

    Science.gov (United States)

    Valdes, C

    1992-01-01

    Guatemala's family planning (FP) programs are innovative but contraceptive use is only 23%. Total fertility is 5.3 children/woman, and the 9.5 million population will double in 23 years. The problem is poverty and illiteracy among rural residents removed from health services. 80% live in poverty and 80% are illiterate. Government effort is devoted to combating diseases such as diarrhea so there are few funds for implementing a comprehensive population policy. There is support within the national government but FP lacks priority status. APROFAM's goals are to use innovative marketing methods to inform the rural population who lack access to and knowledge about FP. Service delivery is constrained by the difficulty in reaching remote areas where 4 out of 10 indigenous Guatemalans live. Infant mortality can reach as high as 200/1000 live births. Population growth has slowed, and APROFAM plans to reach 16,000 more in the future. Promotions are conducted in several languages and aired on radio, television, and in the print media. It has been found that market research is the most effective strategy in reaching indigenous families. APROFAM has also been effective in upgrading service facilities through training, client surveys, and setting improved clinic standards. Breastfeeding, training, and voluntary sterilization programs contribute to the primary care effort. The example is given of Paulina Lebron from a very poor area who has learned how to space her children and thus improve the standard of living for her family. Eventually, she convinced herself and her family that sterilization was necessary, and now the couple enjoy the bliss of newlyweds without fear of pregnancy.

  12. The impact of episodic coal mine drainage pollution on benthic macroinvertebrates in streams in the Anthracite region of Pennsylvania

    International Nuclear Information System (INIS)

    MacCausland, A.; McTammany, M.E.

    2007-01-01

    Episodic coal mine drainage, caused by fluctuations in mine discharges relative to stream flow, has devastating effects on aquatic macroinvertebrate communities. Seven stream reaches in the Anthracite region of Pennsylvania were identified as chronically, episodically or not impaired by mine drainage, and sampled seasonally for 1 year to determine the effect of episodic mine drainage on macroinvertebrates. Specific conductance fluctuated seasonally in episodic sites; it was lower in winter when discharge increased and higher in summer when discharges decreased and mine drainage made up a larger proportion of stream flow. Although we hypothesized that episodic streams would have higher macroinvertebrate richness than chronic streams, comparisons showed no differences in richness between treatments. Episodic pollution may result from undersized or poorly maintained passive treatment systems; therefore, intensive macroinvertebrate monitoring may be needed to identify streams being affected by episodic mine drainage because macroinvertebrate richness may be sensitive to water quality fluctuations. - Episodic coal mine pollution decreases benthic macroinvertebrate richness and density

  13. Work Element B: 157. Sampling in Fish-Bearing Reaches [Variation in Productivity in Headwater Reaches of the Wenatchee Subbasin], Final Report for PNW Research Station.

    Energy Technology Data Exchange (ETDEWEB)

    Polivka, Karl; Bennett, Rita L. [USDA Forest Service, Pacific Northwest Research Station, Wenatchee, WA

    2009-03-31

    We studied variation in productivity in headwater reaches of the Wenatchee subbasin for multiple field seasons with the objective that we could develop methods for monitoring headwater stream conditions at the subcatchment and stream levels, assign a landscape-scale context via the effects of geoclimatic parameters on biological productivity (macroinvertebrates and fish) and use this information to identify how variability in productivity measured in fishless headwaters is transmitted to fish communities in downstream habitats. In 2008, we addressed this final objective. In collaboration with the University of Alaska Fairbanks we found some broad differences in the production of aquatic macroinvertebrates and in fish abundance across categories that combine the effects of climate and management intensity within the subbasin (ecoregions). From a monitoring standpoint, production of benthic macroinvertebrates was not a good predictor of drifting macroinvertebrates and therefore might be a poor predictor of food resources available to fish. Indeed, there is occasionally a correlation between drifting macroinvertebrate abundance and fish abundance which suggests that headwater-derived resources are important. However, fish in the headwaters appeared to be strongly food-limited and there was no evidence that fishless headwaters provided a consistent subsidy to fish in reaches downstream. Fish abundance and population dynamics in first order headwaters may be linked with similar metrics further down the watershed. The relative strength of local dynamics and inputs into productivity may be constrained or augmented by large-scale biogeoclimatic control. Headwater streams are nested within watersheds, which are in turn nested within ecological subregions; thus, we hypothesized that local effects would not necessarily be mutually exclusive from large-scale influence. To test this we examined the density of primarily salmonid fishes at several spatial and temporal scales

  14. Hydrogeomorphic connectivity on roads crossing in rural headwaters and its effect on stream dynamics.

    Science.gov (United States)

    Thomaz, Edivaldo L; Peretto, Gustavo T

    2016-04-15

    Unpaved roads are ubiquitous features that have been transforming the landscape through human history. Unpaved roads affect the water and sediment pathways through a catchment and impacts the aquatic ecosystem. In this study, we describe the effect of unpaved road on the hydrogeomorphic connectivity at the rural headwater scale. Measurement was based on the stream crossing approach, i.e., road superimposing the drainage system. We installed a Parshall flume coupled with single-stage suspended sediment sampler at each stream crossing. In addition, we displayed our monitoring scheme with an upscaling perspective from second-order to third-order stream. We concluded that the road-stream coupling dramatically changed the stream dynamic. The increase of discharge caused by roads at the headwater was 50% larger compared to unaffected streams. Additionally, suspended sediment concentration enhancement at stream crossings ranged from to 413% at second-order streams to 145% at third-order streams. The landform characteristics associated with the road network produced an important hydrogeomorphic disruption in the landscape. As a result, the sediment filter function of the riparian zone was reduced dramatically. Therefore, we recommend that projects for aquatic system restoration or conservation in rural landscape consider the role of the road network on stream dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Stream lines for a pure multipole current distribution

    International Nuclear Information System (INIS)

    Gongora-T, A.

    1990-01-01

    We give an equation describing the electric current stream-lines on the surface of a sphere that generates a magnetic field which contains a single multipole component. The equation shows how to wind a coil in order to produce a pure multipole field and helps to give an intuitive grasp of how well existing traps approximate multipoles. (Author)

  16. Structural Responses of a Stream Community to a Channel Relocation Using a Natural Channel Design Approach

    Science.gov (United States)

    Jack, J.; Word, D.; Daniel, W.; Pritchard, S.; Parola, A.; Vesely, B.

    2005-05-01

    Streams have been heavily impacted by historical and contemporary management practices. Restorations are seen as a way to enhance stream ecosystem integrity, but there are few restoration sites where pre- and post-restoration data are available to assess "success." In 2003, a channelized reach of Wilson Creek (Kentucky, USA) was relocated using a natural channel design approach. We compared the structural and functional responses of the stream pre- and post restoration/relocation at sites within Wilson and two reference streams. Despite the construction disturbance, water chemistry parameters such as nitrate and turbidity were nearly identical at sampling stations above and below the relocation for 2003-2004. Macroinvertebrate colonization of the relocation sites was rapid, with communities dominated by Cheumatopsyche, Perlesta and Baetis. Assessments of CPOM transport indicated that the new stream channel is more retentive of leaf and woody debris material than the pre-restoration Wilson sites or unrestored reference stream sites. The restoration of suitable habitat and the presence of "source populations" for colonization may compensate for even large-scale (but short-term) construction disturbance. More research is needed to assess the balance between the disturbance impacts of restoration installation and the long term benefits of stream ecological improvement.

  17. Study of tungsten surface interaction with plasma streams at DPF-1000U

    Directory of Open Access Journals (Sweden)

    Ladygina Marina S.

    2015-06-01

    Full Text Available In this note experimental studies of tungsten (W samples irradiated by intense plasma-ion streams are reported. Measurements were performed using the modified plasma focus device DPF-1000U equipped with an axial gas-puffing system. The main diagnostic tool was a Mechelle®900 optical spectrometer. The electron density of a freely propagating plasma stream (i.e., the plasma stream observed without any target inside the vacuum chamber was estimated on the basis of the half-width of the Dβ spectral line, taking into account the linear Stark effect. For a freely propagating plasma stream the maximum electron density amounted to about 1.3 × 1017 cm−3 and was reached during the maximum plasma compression. The plasma electron density depends on the initial conditions of the experiments. It was thus important to determine first the plasma flow characteristics before attempting any target irradiation. These data were needed for comparison with plasma characteristics after an irradiation of the investigated target. In fact, spectroscopic measurements performed during interactions of plasma streams with the investigated W samples showed many WI and WII spectral lines. The surface erosion was determined from mass losses of the irradiated samples. Changes on the surfaces of the irradiated samples were also investigated with an optical microscope and some sputtering and melting zones were observed.

  18. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow

    Science.gov (United States)

    Lipovsky, B.; Dunham, E. M.

    2016-12-01

    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  19. Dispersion relation and growth in a two-stream free electron laser with helical wiggler and ion channel guiding

    International Nuclear Information System (INIS)

    Mehdian, Hassan; Abbasi, Negar

    2008-01-01

    A linear theory of two-stream free electron laser (FEL) with helical wiggler and ion channel guiding is presented. The dispersion relation is obtained with the help of fluid theory and the growth rate is analyzed through the numerical solutions. The considerable enhancement of the growth rate is demonstrated due to the two-stream instability and continuous tuning of peak growth rate ratio, two-stream FEL compared to single-stream FEL, in terms of varying the ion channel frequency is illustrated

  20. Implementation of a subcanopy solar radiation model on a forested headwater basin in the Southern Appalachians to estimate riparian canopy density and stream insolation for stream temperature models

    Science.gov (United States)

    Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.

    2016-12-01

    Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and

  1. Macroinvertebrates associated with bryophyta in a first-order Atlantic Forest stream

    Directory of Open Access Journals (Sweden)

    Beatriz F. J. V. Rosa

    2011-06-01

    Full Text Available This study describes the composition and structure of the benthic community associated with bryophytes in a first-order stream, located in a biological reserve of the Atlantic Forest, during two seasons. During three months of the dry season of 2007 and three months of the rainy season of 2008, samples of bryophytes attached to stones were collected randomly, along a 100 m stream reach. The structure of the community was analyzed through the mean density of individuals, Shannon's diversity index, Pielou's evenness, family richness, dominance index, and the percentage of Ephemeroptera, Plecoptera and Trichoptera (% EPT. Chironomidae larvae were dominant in the two periods of study, followed by Ceratopogonidae in the rainy season, and Naididae in the dry season. The orders EPT contributed 14 families. The results showed that bryophytes constitute suitable habitat which is able to shelter an abundant and diversified benthic fauna in a small extension of the stream. This habitat provides refuge during spates, and thus minimizes downstream transport of the macroinvertebrate fauna.

  2. Relation of urbanization to stream habitat and geomorphic characteristics in nine metropolitan areas of the United States

    Science.gov (United States)

    Fitzpatrick, Faith A.; Peppler, Marie C.

    2010-01-01

    The relation of urbanization to stream habitat and geomorphic characteristics was examined collectively and individually for nine metropolitan areas of the United States?Portland, Oregon; Salt Lake City, Utah; Denver, Colorado; Dallas?Forth Worth, Texas; Milwaukee?Green Bay, Wisconsin; Birmingham, Alabama; Atlanta, Georgia; Raleigh, North Carolina; and Boston, Massachusetts. The study was part of a larger study conducted by the U.S. Geological Survey from 1999 to 2004 to examine the effects of urbanization on the physical, chemical, and biological components of stream ecosystems. The objectives of the current study were to determine how stream habitat and geomorphic characteristics relate to different aspects of urbanization across a variety of diverse environmental settings and spatial scales. A space-for-time rural-to-urban land-cover gradient approach was used. Reach-scale habitat data and geomorphic characteristic data were collected once during low flow and included indicators of potential habitat degradation such as measures of channel geometry and hydraulics, streambed substrate, low-flow reach volume (an estimate of base-flow conditions), habitat complexity, and riparian/bank conditions. Hydrologic metrics included in the analyses were those expected to be altered by increases in impervious surfaces, such as high-flow frequency and duration, flashiness, and low-flow duration. Other natural and human features, such as reach-scale channel engineering, geologic setting, and slope, were quantified to identify their possible confounding influences on habitat relations with watershed-scale urbanization indicators. Habitat and geomorphic characteristics were compared to several watershed-scale indicators of urbanization, natural landscape characteristics, and hydrologic metrics by use of correlation analyses and stepwise linear regression. Habitat and geomorphic characteristics were related to percentages of impervious surfaces only in some metropolitan areas and

  3. The influence of light, stream gradient, and iron on Didymosphenia geminata bloom development in the Black Hills, South Dakota

    Science.gov (United States)

    James, Daniel A.; Mosel, Kyle; Chipps, Steven R.

    2014-01-01

    The aquatic nuisance species Didymosphenia geminata was first documented in Rapid Creek of South Dakota’s Black Hills during 2002. Since then, blooms have occurred primarily in a 39-km section of Rapid Creek while blooms were rarely observed in other Black Hills streams. In this study, we evaluated factors related to the presence and development of visible colonies of D. geminata in four streams of the Black Hills. At the watershed scale, stream gradient was negatively associated with the occurrence of D. geminata whereas stream width was positively related to D. geminata presence. At the stream scale, D. geminata coverage was inversely related to canopy coverage and iron concentration. At the local scale, shading by bridges virtually eliminated growth of D. geminata colonies under bridges. At all three scales, proxy measures of light such as stream width, canopy coverage, and bridge shading revealed that light availability was an important factor influencing the presence and coverage of D. geminata colonies. In general, streams that had relatively wide stream reaches (mean = 9.9 m), shallow gradients (mean = 0.22%), and little canopy cover (mean = 13%) were associated with D. geminata blooms. In addition, iron concentrations in streams with D. geminata colonies were lower than in streams without blooms.

  4. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  5. Monitoring Urban Stream Restoration Efforts in Relation to Flood Behavior Along Minebank Run, Towson, MD

    Science.gov (United States)

    Lee, G.; Miller, A. J.

    2017-12-01

    Urban stream restoration efforts are commonly undertaken to combat channel degradation and restore natural stream hydrology. We examine changes in flood patterns along an approximately 1.5-mile reach of Minebank Run, located in Towson, MD, by comparing pre-restoration morphology from surveys conducted in 2001, post-restoration morphology in 2007, and current conditions in 2017 following damage to the restoration project from persistent flooding. Hydraulic modeling was conducted in HEC-RAS 2D using three alternative scenarios: 1) topographic contours from a 2001 survey of pre-restoration topography combined with 2005 LiDAR, 2) 2007 survey combined with 2005 LiDAR data representing the post-restoration channel morphology, and 3) a March 2017 DEM of current channel conditions. The 2017 DEM was created using Structure from Motion (SfM) from high resolution 4K video collected via Unmanned Aerial Vehicle (UAV) flights at a resolution of 0.05 meters. Flood hydrographs from a USGS stream gage located within the study reach as well as a simulated hydrograph of the 100-year storm event were routed through the pre-restoration, post-restoration, and current modeled terrain and analyzed for changes in water-surface elevation and depth, inundation extent, 2-d velocity fields, and translation vs. attenuation of the flood wave to assess the net impact on potential flood hazards. In addition, our study demonstrates that SfM is a quick and inexpensive method for collecting topographic data for hydrologic modeling, assessing stream characteristics including channel bed roughness, and for examining short term changes of channel morphology at a very fine scale.

  6. Influences of high-flow events on a stream channel altered by construction of a highway bridge: A case study

    Science.gov (United States)

    Hedrick, Lara B.; Welsh, Stuart A.; Anderson, James T.

    2009-01-01

    Impacts of highway construction on streams in the central Appalachians are a growing concern as new roads are created to promote tourism and economic development in the area. Alterations to the streambed of a first-order stream, Sauerkraut Run, Hardy County, WV, during construction of a highway overpass included placement and removal of a temporary culvert, straightening and regrading of a section of stream channel, and armourment of a bank with a reinforced gravel berm. We surveyed longitudinal profiles and cross sections in a reference reach and the altered reach of Sauerkraut Run from 2003 through 2007 to measure physical changes in the streambed. During the four-year period, three high-flow events changed the streambed downstream of construction including channel widening and aggradation and then degradation of the streambed. Upstream of construction, at a reinforced gravel berm, bank erosion was documented. The reference section remained relatively unchanged. Knowledge gained by documenting channel changes in response to natural and anthropogenic variables can be useful for managers and engineers involved in highway construction projects.

  7. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    International Nuclear Information System (INIS)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-01-01

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles

  8. Measuring surface-water loss in Honouliuli Stream near the ‘Ewa Shaft, O‘ahu, Hawai‘i

    Science.gov (United States)

    Rosa, Sarah N.

    2017-05-30

    The Honolulu Board of Water Supply is currently concerned with the possibility of bacteria in the pumped water of the ‘Ewa Shaft (State well 3-2202-21). Groundwater from the ‘Ewa Shaft could potentially be used to meet future potable water needs in the ‘Ewa area on the island of O‘ahu. The source of the bacteria in the pumped water is unknown, although previous studies indicate that surface water may be lost to the subsurface near the site. The ‘Ewa Shaft consists of a vertical shaft, started near the south bank of Honouliuli Stream at an altitude of about 161 feet, and two horizontal infiltration tunnels near sea level. The shaft extracts groundwater from near the top of the freshwater lens in the Waipahu-Waiawa aquifer system within the greater Pearl Harbor Aquifer Sector, a designated Water Management Area.The surface-water losses were evaluated with continuous groundwater-level data from the ‘Ewa Shaft and a nearby monitoring well, continuous stream-discharge data from U.S. Geological Survey streamflow-gaging station 16212490 (Honouliuli Stream at H-1 Freeway near Waipahu), and seepage-run measurements in Honouliuli Stream and its tributary. During storms, discharge at the Honouliuli Stream gaging station increases and groundwater levels at ‘Ewa Shaft and a nearby monitoring well also increase. The concurrent increase in water levels at ‘Ewa Shaft and the nearby monitoring well during storms indicates that regional groundwater-level changes related to increased recharge, reduced withdrawals (due to a decrease in demand during periods of rainfall), or both may be occurring; although these data do not preclude the possibility of local recharge from Honouliuli Stream. Discharge measurements from two seepage runs indicate that surface water in the immediate area adjacent to ‘Ewa Shaft infiltrates into the streambed and may later reach the groundwater system developed by the ‘Ewa Shaft. The estimated seepage loss rates in the vicinity of

  9. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  10. Estimation of Total Nitrogen and Phosphorus in New England Streams Using Spatially Referenced Regression Models

    Science.gov (United States)

    Moore, Richard Bridge; Johnston, Craig M.; Robinson, Keith W.; Deacon, Jeffrey R.

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEIWPCC), has developed a water-quality model, called SPARROW (Spatially Referenced Regressions on Watershed Attributes), to assist in regional total maximum daily load (TMDL) and nutrient-criteria activities in New England. SPARROW is a spatially detailed, statistical model that uses regression equations to relate total nitrogen and phosphorus (nutrient) stream loads to nutrient sources and watershed characteristics. The statistical relations in these equations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW models are built using a hydrologic network of 42,000 stream reaches and associated watersheds. Watershed boundaries are defined for each stream reach in the network through the use of a digital elevation model and existing digitized watershed divides. Nutrient source data is from permitted wastewater discharge data from USEPA's Permit Compliance System (PCS), various land-use sources, and atmospheric deposition. Physical watershed characteristics include drainage area, land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. The New England SPARROW models for total nitrogen and total phosphorus have R-squared values of 0.95 and 0.94, with mean square errors of 0.16 and 0.23, respectively. Variables that were statistically significant in the total nitrogen model include permitted municipal-wastewater discharges, atmospheric deposition, agricultural area, and developed land area. Total nitrogen stream-loss rates were significant only in streams with average annual flows less than or equal to 2.83 cubic meters per second. In streams larger than this, there is nondetectable in-stream loss of annual total nitrogen in New England. Variables that were statistically significant in the total

  11. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  12. Retrieval of Sentence Sequences for an Image Stream via Coherence Recurrent Convolutional Networks.

    Science.gov (United States)

    Park, Cesc Chunseong; Kim, Youngjin; Kim, Gunhee

    2018-04-01

    We propose an approach for retrieving a sequence of natural sentences for an image stream. Since general users often take a series of pictures on their experiences, much online visual information exists in the form of image streams, for which it would better take into consideration of the whole image stream to produce natural language descriptions. While almost all previous studies have dealt with the relation between a single image and a single natural sentence, our work extends both input and output dimension to a sequence of images and a sequence of sentences. For retrieving a coherent flow of multiple sentences for a photo stream, we propose a multimodal neural architecture called coherence recurrent convolutional network (CRCN), which consists of convolutional neural networks, bidirectional long short-term memory (LSTM) networks, and an entity-based local coherence model. Our approach directly learns from vast user-generated resource of blog posts as text-image parallel training data. We collect more than 22 K unique blog posts with 170 K associated images for the travel topics of NYC, Disneyland , Australia, and Hawaii. We demonstrate that our approach outperforms other state-of-the-art image captioning methods for text sequence generation, using both quantitative measures and user studies via Amazon Mechanical Turk.

  13. Characterization of streamflow, water quality, and instantaneous dissolved solids, selenium, and uranium loads in selected reaches of the Arkansas River, southeastern Colorado, 2009-2010

    Science.gov (United States)

    Ivahnenko, Tamara; Ortiz, Roderick F.; Stogner, Sr., Robert W.

    2013-01-01

    As a result of continued water-quality concerns in the Arkansas River, including metal contamination from historical mining practices, potential effects associated with storage and movement of water, point- and nonpoint-source contamination, population growth, storm-water flows, and future changes in land and water use, the Arkansas River Basin Regional Resource Planning Group (RRPG) developed a strategy to address these issues. As such, a cooperative strategic approach to address the multiple water-quality concerns within selected reaches of the Arkansas River was developed to (1) identify stream reaches where stream-aquifer interactions have a pronounced effect on water quality and (or) where reactive transport, and physical and (or) chemical alteration of flow during conveyance, is occurring, (2) quantify loading from point sources, and (3) determine source areas and mass loading for selected constituents. (To see the complete abstract, open Report PDF.)

  14. Distribution and stability of potential salmonid spawning gravels in steep boulder-bed streams of the eastern Sierra Nevada

    International Nuclear Information System (INIS)

    Kondolf, G.M.; Cada, G.F.; Sale, M.J.; Felando, T.

    1991-01-01

    Interest in small hydroelectric development (< 5 MW) has recently focused attention on steep streams and the resident trout populations they contain. High-gradient boulder-bed streams have been the sites of relatively few studies of salmonid spawning habitat, although they have geomorphic and hydraulic characteristics - and therefore gravel distributions - that are quite different from the more commonly described lower-gradient channels. The authors documented gravel distribution in seven high-gradient stream reaches in the eastern Sierra Nevada. Gravels occurred only in locations characterized by relatively low shear stress; they formed small pockets in sites of low divergence and larger deposits upstream of natural hydraulic controls. In 1986 (a wet year), all tracer gravels placed in gravel pockets at nine sites on four streams were completely swept away, and substantial scour, fill, and other channel changes occurred at many sites. In 1987 (a dry year), tracer gravels and the channel cross sections were generally stable. Periodic mobility of gravel may explain why brown trout Salmo trutta are more abundant than rainbow trout Oncorhychus mykiss in the study reaches, where high flows occur every May and June during snowmelt. Brown trout are fall spawners, and their fry emerge long before the high snowmelt flows, whereas rainbow trout are spring spawners whose eggs are in the gravel, and thus vulnerable to scour, during snowmelt flows

  15. Concentrating small particles in protoplanetary disks through the streaming instability

    Science.gov (United States)

    Yang, C.-C.; Johansen, A.; Carrera, D.

    2017-10-01

    Laboratory experiments indicate that direct growth of silicate grains via mutual collisions can only produce particles up to roughly millimeters in size. On the other hand, recent simulations of the streaming instability have shown that mm/cm-sized particles require an excessively high metallicity for dense filaments to emerge. Using a numerical algorithm for stiff mutual drag force, we perform simulations of small particles with significantly higher resolutions and longer simulation times than in previous investigations. We find that particles of dimensionless stopping time τs = 10-2 and 10-3 - representing cm- and mm-sized particles interior of the water ice line - concentrate themselves via the streaming instability at a solid abundance of a few percent. We thus revise a previously published critical solid abundance curve for the regime of τs ≪ 1. The solid density in the concentrated regions reaches values higher than the Roche density, indicating that direct collapse of particles down to mm sizes into planetesimals is possible. Our results hence bridge the gap in particle size between direct dust growth limited by bouncing and the streaming instability.

  16. An individual-based simulation model for mottled sculpin (Cottus bairdi) in a southern Appalachian stream

    Science.gov (United States)

    Brenda Rashleigh; Gary D. Grossman

    2005-01-01

    We describe and analyze a spatially explicit, individual-based model for the local population dynamics of mottled sculpin (Cottus bairdi). The model simulated daily growth, mortality, movement and spawning of individuals within a reach of stream. Juvenile and adult growth was based on consumption bioenergetics of benthic macroinvertebrate prey;...

  17. Inferring Groundwater Age in an Alluvial Aquifer from Tracer Concentrations in the Stream - Little Wind River, Wyoming

    Science.gov (United States)

    Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.

    2017-12-01

    We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.

  18. SGA Phase 2 Reach Segment Breaks

    Data.gov (United States)

    Vermont Center for Geographic Information — The stream geomorphic assessment (SGA) is a physical assessment competed by geomorphologists to determine the condition and sensitivity of a stream. The SGA Phase 2...

  19. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  20. StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.

    Science.gov (United States)

    Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei

    2017-10-18

    Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present Stream

  1. A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota

    Science.gov (United States)

    Gallart, F.; Prat, N.; García-Roger, E. M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G. G.; Brito, D.; De Girolamo, A. M.; Lo Porto, A.; Buffagni, A.; Erba, S.; Neves, R.; Nikolaidis, N. P.; Perrin, J. L.; Querner, E. P.; Quiñonero, J. M.; Tournoud, M. G.; Tzoraki, O.; Skoulikidis, N.; Gómez, R.; Sánchez-Montoya, M. M.; Froebrich, J.

    2012-09-01

    Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The structure and composition of biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. Therefore, the structural and functional characteristics of aquatic fauna to assess the ecological quality of a temporary stream reach cannot be used without taking into account the controls imposed by the hydrological regime. This paper develops methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the transient sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: Hyperrheic, Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic. When the hydrological conditions lead to a change in the aquatic state, the structure and composition of the aquatic community changes according to the new set of available habitats. We used the water discharge records from gauging stations or simulations with rainfall-runoff models to infer the temporal patterns of occurrence of these states in the Aquatic States Frequency Graph we developed. The visual analysis of this graph is complemented by the development of two metrics which describe the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of temporary streams in four aquatic regimes in terms of their influence over the development of aquatic life is updated from the existing classifications, with stream aquatic regimes defined as Permanent, Temporary-pools, Temporary-dry and Episodic. While aquatic regimes describe the long-term overall variability of the hydrological conditions of the river section and have been used for many years by hydrologists and ecologists, aquatic states describe the availability of mesohabitats in given periods that

  2. Recurrent and Dynamic Models for Predicting Streaming Video Quality of Experience.

    Science.gov (United States)

    Bampis, Christos G; Li, Zhi; Katsavounidis, Ioannis; Bovik, Alan C

    2018-07-01

    Streaming video services represent a very large fraction of global bandwidth consumption. Due to the exploding demands of mobile video streaming services, coupled with limited bandwidth availability, video streams are often transmitted through unreliable, low-bandwidth networks. This unavoidably leads to two types of major streaming-related impairments: compression artifacts and/or rebuffering events. In streaming video applications, the end-user is a human observer; hence being able to predict the subjective Quality of Experience (QoE) associated with streamed videos could lead to the creation of perceptually optimized resource allocation strategies driving higher quality video streaming services. We propose a variety of recurrent dynamic neural networks that conduct continuous-time subjective QoE prediction. By formulating the problem as one of time-series forecasting, we train a variety of recurrent neural networks and non-linear autoregressive models to predict QoE using several recently developed subjective QoE databases. These models combine multiple, diverse neural network inputs, such as predicted video quality scores, rebuffering measurements, and data related to memory and its effects on human behavioral responses, using them to predict QoE on video streams impaired by both compression artifacts and rebuffering events. Instead of finding a single time-series prediction model, we propose and evaluate ways of aggregating different models into a forecasting ensemble that delivers improved results with reduced forecasting variance. We also deploy appropriate new evaluation metrics for comparing time-series predictions in streaming applications. Our experimental results demonstrate improved prediction performance that approaches human performance. An implementation of this work can be found at https://github.com/christosbampis/NARX_QoE_release.

  3. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    Science.gov (United States)

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Bentham, Adam J.

    2012-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest

  4. Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream

    Science.gov (United States)

    Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Benthem, Adam J.

    2013-01-01

    Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest

  5. Pilot-Streaming: Design Considerations for a Stream Processing Framework for High-Performance Computing

    OpenAIRE

    Andre Luckow; Peter Kasson; Shantenu Jha

    2016-01-01

    This White Paper (submitted to STREAM 2016) identifies an approach to integrate streaming data with HPC resources. The paper outlines the design of Pilot-Streaming, which extends the concept of Pilot-abstraction to streaming real-time data.

  6. Modelling stream-fish functional traits in reference conditions: regional and local environmental correlates.

    Directory of Open Access Journals (Sweden)

    João M Oliveira

    Full Text Available Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1 pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2 at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in 'natural' streams, as well as to improve biomonitoring and restoration of fluvial ecosystems.

  7. BEST Engineered Hyporheic Zones: Enhanced Hyporheic Exchange and Resazurin and Nitrate Cycling in Constructed Stream Experiments

    Science.gov (United States)

    Herzog, S.; McCray, J. E.; Higgins, C. P.

    2016-12-01

    The hyporheic zone is a hotspot for biogeochemical processing that can attenuate a variety of nonpoint source contaminants in streamwater. However, hyporheic zones in urban and agricultural streams are often degraded and poorly connected with surface water. To increase hyporheic exchange and improve water quality, we introduced engineered streambeds as a stormwater and restoration best management practice. Modifications to streambed hydraulic conductivity and reactivity are termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low-permeability sediments to drive efficient hyporheic exchange, and reactive geomedia to increase reaction rates within the hyporheic zone. This research utilized two artificial stream flumes at the Colorado School of Mines in Golden, CO. Each lined stream flume was 15m long, 0.3m wide, had 0.3m sediment depth, and was continuously dosed with recycled water at 0.25 L/s. One flume served as an all-sand control condition, the other featured BEST modules at 1m spacing with a mixture of 70/30 sand/woodchips (v/v). NaCl breakthrough curves were monitored and analyzed using STAMMT-L, a mobile-immobile exchange model, which showed greater hyporheic exchange and residence times in the BEST stream relative to the control. This result is even more apparent when the calibrated models are used to simulate longer stream reaches. Water quality samples at the reach scale also revealed greater attenuation of nitrate and transformation of the indicator compound resazurin into resorufin. Together these compounds demonstrate that BEST can attenuate contaminants that degrade under anaerobic and aerobic conditions, respectively. These experimental results were also compared to previous numerical simulations to evaluate model accuracy, and show reasonable agreement. Altogether, these results show that BEST may be an effective novel best management practice for improving streamwater quality in urban and

  8. Nitrate retention in a sand plains stream and the importance of groundwater discharge

    Science.gov (United States)

    Robert S. Stelzer; Damion R. Drover; Susan L. Eggert; Maureen A. Muldoon

    2011-01-01

    We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and ground-water fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and...

  9. Variable exchange between a stream and an aquifer in the Rio Grande Project Area

    Science.gov (United States)

    Sheng, Z.; Abudu, S.; Michelsen, A.; King, P.

    2016-12-01

    Both surface water and groundwater in the Rio Grande Project area in southern New Mexico and Far West Texas have been stressed by natural conditions such as droughts and human activities, including urban development and agricultural irrigation. In some area pumping stress in the aquifer becomes so great that it depletes the river flow especially during the irrigation season, typically from March through October. Therefore understanding such relationship between surface water and groundwater becomes more important in regional water resources planning and management. In this area, stream flows are highly regulated by the upstream reservoirs during the irrigation season and greatly influenced by return flows during non-irrigation season. During a drought additional groundwater pumping to supplement surface water shortage further complicates the surface water and groundwater interaction. In this paper the authors will use observation data and results of numerical models (MODFLOW) to characterize and quantify hydrological exchange fluxes between groundwater in the aquifers and surface water as well as impacts of groundwater pumping. The interaction shows a very interesting seasonal variation (irrigation vs. non-irrigation) as well as impact of a drought. Groundwater has been pumped for both municipal supplies and agricultural irrigation, which has imposed stresses toward both stream flows and aquifer storage. The results clearly show that historic groundwater pumping has caused some reaches of the river change from gaining stream to losing stream. Beyond the exchange between surface water and groundwater in the shallow aquifer, groundwater pumping in a deep aquifer could also enhance the exchanges between different aquifers through leaky confining layers. In the earlier history of pumping, pumping from the shallow aquifer is compensated by simple depletion of surface water, while deep aquifer tends to use the aquifer storage. With continued pumping, the cumulative

  10. Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R

    Directory of Open Access Journals (Sweden)

    Michael Hahsler

    2017-02-01

    Full Text Available In recent years, data streams have become an increasingly important area of research for the computer science, database and statistics communities. Data streams are ordered and potentially unbounded sequences of data points created by a typically non-stationary data generating process. Common data mining tasks associated with data streams include clustering, classification and frequent pattern mining. New algorithms for these types of data are proposed regularly and it is important to evaluate them thoroughly under standardized conditions. In this paper we introduce stream, a research tool that includes modeling and simulating data streams as well as an extensible framework for implementing, interfacing and experimenting with algorithms for various data stream mining tasks. The main advantage of stream is that it seamlessly integrates with the large existing infrastructure provided by R. In addition to data handling, plotting and easy scripting capabilities, R also provides many existing algorithms and enables users to interface code written in many programming languages popular among data mining researchers (e.g., C/C++, Java and Python. In this paper we describe the architecture of stream and focus on its use for data stream clustering research. stream was implemented with extensibility in mind and will be extended in the future to cover additional data stream mining tasks like classification and frequent pattern mining.

  11. Stream channel cross sections for a reach of the Boise River in Ada County, Idaho

    Science.gov (United States)

    Hortness, Jon E.; Werner, Douglas C.

    1999-01-01

    The Federal Emergency Management Agency produces maps of areas that are likely to be inundated during major floods, usually the 100-year, or 1-percent probability, flood. The maps, called Flood Insurance Rate Maps, are used to determine flood insurance rates for homes, businesses, or other structures located in flood-prone areas. State and local governments also use these maps for help with, among other things, development planning and disaster mitigation. During the period October 1997 through December 1998, the initial phase of a hydraulic analysis project of the Boise River from Barber Dam to the Ada/Canyon County boundary, the U.S. Geological Survey collected stream channel cross-section data at 238 locations along the river and documented 108 elevation reference marks established for horizontal and vertical control. In the final phase of the project, the Survey will use these data to determine water-surface elevations for the 10-, 50-, 100-, and 500-year floods and to define floodway limits. The Federal Emergency Management Agency will use the results of this hydraulic analysis to update the 100- and 500-year flood boundaries and the floodway limits on their Flood Insurance Rate Maps.

  12. Benthic invertebrate fauna, small streams

    Science.gov (United States)

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  13. Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations.

    Science.gov (United States)

    Norris, Scott A; Hathaway, Emily N; Taylor, Jordan A; Thach, W Thomas

    2011-05-01

    Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20-30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation.

  14. A method to assess longitudinal riverine connectivity in tropical streams dominated by migratory biota

    Science.gov (United States)

    Crook, K.E.; Pringle, C.M.; Freeman, Mary C.

    2009-01-01

    1. One way in which dams affect ecosystem function is by altering the distribution and abundance of aquatic species. 2. Previous studies indicate that migratory shrimps have significant effects on ecosystem processes in Puerto Rican streams, but are vulnerable to impediments to upstream or downstream passage, such as dams and associated water intakes where stream water is withdrawn for human water supplies. Ecological effects of dams and water withdrawals from streams depend on spatial context and temporal variability of flow in relation to the amount of water withdrawn. 3. This paper presents a conceptual model for estimating the probability that an individual shrimp is able to migrate from a stream's headwaters to the estuary as a larva, and then return to the headwaters as a juvenile, given a set of dams and water withdrawals in the stream network. The model is applied to flow and withdrawal data for a set of dams and water withdrawals in the Caribbean National Forest (CNF) in Puerto Rico. 4. The index of longitudinal riverine connectivity (ILRC), is used to classify 17 water intakes in streams draining the CNF as having low, moderate, or high connectivity in terms of shrimp migration in both directions. An in-depth comparison of two streams showed that the stream characterized by higher water withdrawal had low connectivity, even during wet periods. Severity of effects is illustrated by a drought year, where the most downstream intake caused 100% larval shrimp mortality 78% of the year. 5. The ranking system provided by the index can be used as a tool for conservation ecologists and water resource managers to evaluate the relative vulnerability of migratory biota in streams, across different scales (reach-network), to seasonally low flows and extended drought. This information can be used to help evaluate the environmental tradeoffs of future water withdrawals. ?? 2008 John Wiley & Sons, Ltd.

  15. Inventory of miscellaneous streams

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-09-01

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column

  16. An economic analysis of online streaming: How the music industry can generate revenues from cloud computing

    OpenAIRE

    Thomes, Tim Paul

    2011-01-01

    This paper investigates the upcoming business model of online streaming services allowing music consumers either to subscribe to a service which provides free-of-charge access to streaming music and which is funded by advertising, or to pay a monthly flat fee in order to get ad-free access to the content of the service accompanied with additional benefits. Both businesses will be launched by a single provider of streaming music. By imposing a two-sided market model on the one hand combined wi...

  17. Destiny of earthward streaming plasma in the plasmasheet boundary layer

    Science.gov (United States)

    Green, J. L.; Horwitz, J. L.

    1986-01-01

    The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.

  18. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  19. Background Traffic-Based Retransmission Algorithm for Multimedia Streaming Transfer over Concurrent Multipaths

    Directory of Open Access Journals (Sweden)

    Yuanlong Cao

    2012-01-01

    Full Text Available The content-rich multimedia streaming will be the most attractive services in the next-generation networks. With function of distribute data across multipath end-to-end paths based on SCTP's multihoming feature, concurrent multipath transfer SCTP (CMT-SCTP has been regarded as the most promising technology for the efficient multimedia streaming transmission. However, the current researches on CMT-SCTP mainly focus on the algorithms related to the data delivery performance while they seldom consider the background traffic factors. Actually, background traffic of realistic network environments has an important impact on the performance of CMT-SCTP. In this paper, we firstly investigate the effect of background traffic on the performance of CMT-SCTP based on a close realistic simulation topology with reasonable background traffic in NS2, and then based on the localness nature of background flow, a further improved retransmission algorithm, named RTX_CSI, is proposed to reach more benefits in terms of average throughput and achieve high users' experience of quality for multimedia streaming services.

  20. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: an isotopic approach.

    Science.gov (United States)

    Jeelani, Gh; Shah, Rouf A; Jacob, Noble; Deshpande, Rajendrakumar D

    2017-03-01

    Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5-66 %) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (∼51 %) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5 %). However, the monthly contribution of glacier melt to stream flow reaches up to 19 % in September during years of less persistent snow pack.

  1. Single Policy Study

    DEFF Research Database (Denmark)

    Kronsell, Annica; Manners, Ian James

    2015-01-01

    Single policy studies are the most common form of European Union (EU) research. Single policy studies are widely used to understand the role of the EU in a wide variety of sectors, together with their development over time, and often offer public policy prescriptions. This chapter discusses...... the relevance of single policy studies in EU research and give examples of how such research can be designed and carried out. The chapter reviews three examples of single policy studies using different methods based on EU environmental policy, the EU biofuels directive, and the EU Common Security and Defence...... Policy (CSDP). The examples are illustrative of how single policy studies can be designed to use different approaches in the analysis: multiple streams approach to policy-making; a comparative hypothesis testing; and feminist institutional theory....

  2. Aeroacoustics of Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  3. Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers

    Science.gov (United States)

    Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.

    2015-01-01

    The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…

  4. Toward 3D-IPTV: design and implementation of a stereoscopic and multiple-perspective video streaming system

    Science.gov (United States)

    Petrovic, Goran; Farin, Dirk; de With, Peter H. N.

    2008-02-01

    3D-Video systems allow a user to perceive depth in the viewed scene and to display the scene from arbitrary viewpoints interactively and on-demand. This paper presents a prototype implementation of a 3D-video streaming system using an IP network. The architecture of our streaming system is layered, where each information layer conveys a single coded video signal or coded scene-description data. We demonstrate the benefits of a layered architecture with two examples: (a) stereoscopic video streaming, (b) monoscopic video streaming with remote multiple-perspective rendering. Our implementation experiments confirm that prototyping 3D-video streaming systems is possible with today's software and hardware. Furthermore, our current operational prototype demonstrates that highly heterogeneous clients can coexist in the system, ranging from auto-stereoscopic 3D displays to resource-constrained mobile devices.

  5. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  6. The Relationship Between Grazing, Er osion and Adult Aquatic Insects in Streams in Mongolia.

    Directory of Open Access Journals (Sweden)

    Barbara Hayford

    2010-06-01

    Full Text Available Overgrazing along stream channels in Mongolia may impact streams by increasing stream channel erosion and in-stream sediments, water temperature, pH, and conductivity. Grazing and erosion impacts may impair stream insects. The Mongolian Aquatic Insect Survey sampled 250 streams during summer seasons in 2003-2006 and 2008. On-site identifi cations of aquatic insect families mostly based on collections of adults were recorded for each site, leading us to ask whether the family-level data were useful in biological assessment related to impacts and impairment from grazing and erosion. A double dendrogram based on hierarchical cluster analysis was used to fi nd patterns in sites and aquatic insect communities. Sites did not group by sampling period, but some sites did group by stream size and elevation. However, elevation was not a signifi cant predictor of variation in aquatic insect metrics. Analysis of variance was used to determine whether insect metrics and water quality variables varied signifi cantly between categories of erosion in the stream channel. Plecoptera and Diptera richness decreased with increased erosion and Percent Diptera Richness was the only aquatic insect metric to vary signifi cantly between categories of erosion along the stream channel. Water temperature, conductivity, and pH also signifi cantly increased with increased erosion. Multiple regression analysis was used to determine whether aquatic insect metrics could be predicted by variation in landscape, water quality and stream reach variables. Trichoptera, Ephemeroptera, and Coleoptera richness increased with increased erosion, conductivity, and pH, but not signifi cantly. Percent Diptera Richness formed the only signifi cant model in the multiple regression analysis, with conductivity the only signifi cant predictor of variation in Percent Diptera Richness. Family-level data generated in the fi eld indicated that sampling for Trichoptera and Ephemeroptera diversity would

  7. Stream systems.

    Science.gov (United States)

    Jack E. Williams; Gordon H. Reeves

    2006-01-01

    Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...

  8. The role of the geophysical template and environmental regimes in controlling stream-living trout populations

    Science.gov (United States)

    Penaluna, Brooke E.; Railsback, Steve F.; Dunham, Jason B.; Johnson, S.; Bilby, Richard E.; Skaugset, Arne E.

    2015-01-01

    The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus environmental regimes on biomass of trout (Oncorhynchus clarkii clarkii). We parameterized the model with observed data from each of the four headwater streams (their local geophysical template and environmental regime) and then ran 12 simulations where we replaced environmental regimes (stream temperature, flow, turbidity) of a given stream with values from each neighboring stream while keeping the geophysical template fixed. We also performed single-parameter sensitivity analyses on the model results from each of the four streams. Although our modeled findings show that trout biomass is most responsive to changes in the geophysical template of streams, they also reveal that biomass is restricted by available habitat during seasonal low flow, which is a product of both the stream’s geophysical template and flow regime. Our modeled results suggest that differences in the geophysical template among streams render trout more or less sensitive to environmental change, emphasizing the importance of local fish–habitat relationships in streams.

  9. New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures

    International Nuclear Information System (INIS)

    Kalbus, E.; Schmidt, C.; Bayer-Raich, M.; Leschik, S.; Reinstorf, F.; Balcke, G.U.; Schirmer, M.

    2007-01-01

    The spatial pattern and magnitude of mass fluxes at the stream-aquifer interface have important implications for the fate and transport of contaminants in river basins. Integral pumping tests were performed to quantify average concentrations of chlorinated benzenes in an unconfined aquifer partially penetrated by a stream. Four pumping wells were operated simultaneously for a time period of 5 days and sampled for contaminant concentrations. Streambed temperatures were mapped at multiple depths along a 60 m long stream reach to identify the spatial patterns of groundwater discharge and to quantify water fluxes at the stream-aquifer interface. The combined interpretation of the results showed average potential contaminant mass fluxes from the aquifer to the stream of 272 μg m -2 d -1 MCB and 71 μg m -2 d -1 DCB, respectively. This methodology combines a large-scale assessment of aquifer contamination with a high-resolution survey of groundwater discharge zones to estimate contaminant mass fluxes between aquifer and stream. - We provide a new methodology to quantify the potential contaminant mass flux from an aquifer to a stream

  10. Ice processes affect habitat use and movements of adult cutthroat trout and brook trout in a Wyoming foothills stream

    Science.gov (United States)

    Lindstrom, J.W.; Hubert, W.A.

    2004-01-01

    Habitat use and movements of 25 adult cutthroat trout Oncorhynchus clarkii and 25 adult brook trout Salvelinus fontinalis from fall through winter 2002-2003 were assessed by means of radiotelemetry in a 7-km reach of a Rocky Mountains foothills stream. Temporal dynamics of winter habitat conditions were evaluated by regularly measuring the features of 30 pools and 5 beaver Castor canadensis ponds in the study reach. Groundwater inputs at three locations raised mean daily water temperatures in the stream channel during winter to 0.2-0.6??C and kept at least 250 m of the downstream channel free of ice, but the lack of surface ice further downstream led to the occurrence of frazil ice and anchor ice in pools and unstable habitat conditions for trout. Pools in segments that were not affected by groundwater inputs and beaver ponds tended to be stable and snow accumulated on the surface ice. Pools throughout the study reach tended to become more stable as snow accumulated. Both cutthroat trout and brook trout selected beaver ponds as winter progressed but tended to use lateral scour pools in proportion to their availability. Tagged fish not in beaver ponds selected lateral scour pools that were deeper than average and stable during winter. Movement frequencies by tagged fish decreased from fall through winter, but some individuals of both species moved during winter. Ice processes affected both the habitat use and movement patterns of cutthroat trout and brook trout in this foothills stream.

  11. IMPACT OF MUNICIPAL LANDFILL SITE ON WATER QUALITY IN THE WŁOSANKA STREAM

    Directory of Open Access Journals (Sweden)

    Włodzimierz Kanownik

    2016-09-01

    Full Text Available Hydrochemical research conducted in the years 2007–2010 comprised monitoring of the Włosanka stream waters and leachate waters from the municipal landfill in Kulerzów in the Malopolskie province. 16 leachate samples were collected from the container taking into consideration the vertical stratification of the quality and samples of water from the Włosanka stream in measurement points situated before and after the landfill. Concentrations of metals: calcium, magnesium, sodium, potassium, iron, manganese and heavy metals: chromium, zinc, copper, cadmium, nickel and lead were determined in the leachates and the stream water. Analysis of the studied metals in the leachates revealed that only potassium concentration exceeded the highest admissible value which is the condition of introducing sewage to water bodies or to soil. Water along the investigated reach of the Włosanka stream, both above and below the municipal landfill was of quality class 1. The landfill had no significant effect on the studied metal concentrations in the stream water – no statistically significant differences were registered between the concentrations of the studied metals (including heavy metals either in the point above or below the landfill. However, statistical tests comparing values of metal concentrations in the landfill leachates with the stream water revealed that the concentrations of 7 out of 12 tested metals were significantly higher in the leachates. Therefore, the landfill site monitoring should be continued, leachate waters should be collected in the container and supplied to the sewage treatment plant to prevent any threat to human life and health, or to the environment.

  12. New Splitting Criteria for Decision Trees in Stationary Data Streams.

    Science.gov (United States)

    Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Rutkowski, Leszek; Duda, Piotr; Jaworski, Maciej

    2018-06-01

    The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type- splitting criteria guarantee, with high probability, the highest expected value of split measure. Type- criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.

  13. Channel aggradation by beaver dams on a small agricultural stream in Eastern Nebraska

    Science.gov (United States)

    M.C. McCullough; J.L. Harper; D.E. Eisenhauer; M.G. Dosskey

    2004-01-01

    We assessed the effect of beaver dams on channel gradation of an incised stream in an agricultural area of eastern Nebraska. A topographic survey was conducted of a reach of Little Muddy Creek where beaver are known to have been building dams for twelve years. Results indicating that over this time period the thalweg elevation has aggraded an average of 0.65 m by...

  14. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    Science.gov (United States)

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  15. Spatial patterns of some trace elements in four Swedish stream networks

    Directory of Open Access Journals (Sweden)

    J. Temnerud

    2013-03-01

    Full Text Available Four river basins in southern Sweden, with catchment sizes from 0.3 to 127 km2 (median 1.9, were sampled in October~2007. The 243 samples were analysed for 26 trace elements (Ag, As, Au, Ba, Be, Bi, Cd, Co, Cr, Cu, Ga, Ge, In, La, Li, Mo, Ni, Pb, Sb, Se, Sn, Tl, Ti, U, V and Zn to identify spatial patterns within drainage networks. The range and median of each element were defined for different stream orders, and relationships to catchment characteristics, including deposition history, were explored. The sampling design made it possible to compare the differences along 40 stream reaches, above and below 53 stream junctions with 107 tributaries and between the 77 inlets and outlets of 36 lakes. The largest concentration differences (at reaches, junctions and lakes were observed for lakes, with outlets usually having lower concentration compared to the inlets for As, Ba, Be, Bi, Cd, Co, Cr, Ga, Ge, Ni, Pb, Sn, Ti, Tl, U, V and Zn. Significantly lower concentrations were observed for Cd and Co when comparing headwaters with downstream sites in each catchment. Common factor analysis (FA revealed that As, Bi, Cr, Ga, Ge, Tl and V co-vary positively with Al, Fe and total organic carbon (TOC and negatively with La, Li and pH. The strong removal of a large number of trace elements when passing through lakes is evident though in the FA, where lake surface coverage plots opposite to many of those elements. Forest volume does not respond in a similar systematic fashion and, surprisingly, the amount of wetland does not relate strongly to either Fe or TOC at any of the rivers. A better understanding of the quantitative removal of organic carbon and iron will aid in understanding trace element fluxes from landscapes rich in organic matter and iron.

  16. METALLICITY AND AGE OF THE STELLAR STREAM AROUND THE DISK GALAXY NGC 5907

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Seppo; Grillmair, Carl J.; Capak, Peter [Spitzer Science Center-Caltech, MS 314-6, Pasadena, CA 91125 (United States); Arendt, Richard G. [CRESST/UMBC/NASA GSFC, Code 665, Greenbelt, MD 20771 (United States); Romanowsky, Aaron J. [Department of Physics and Astronomy, San José State University, One Washington Square, San Jose, CA 95192 (United States); Martínez-Delgado, David [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Ashby, Matthew L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Davies, James E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Majewski, Stephen R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Brodie, Jean P.; Arnold, Jacob A. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); GaBany, R. Jay, E-mail: seppo@ipac.caltech.edu [Black Bird Observatory, 5660 Brionne Drive, San Jose, CA 95118 (United States)

    2016-09-01

    Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby ( d  = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 μ m Spitzer /Infrared Array Camera observations. Combining the near-infrared 3.6 μ m data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along an ∼60 kpc long segment of the stream. We have fitted the stellar spectral energy distribution with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of −0.3 inferred along the brightest parts of the stream.

  17. Application of HEC-RAS water quality model to estimate contaminant spreading in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Halaj, Peter; Bárek, Viliam; Halajová, Anna Báreková; Halajová, Denisa [Slovak University of Agriculture in Nitra, Nitra (Slovakia)

    2013-07-01

    The paper presents study of some aspects of HEC-RAS water quality model connected to simulation of contaminant transport in small stream. Authors mainly focused on one of the key tasks in process of pollutant transport modelling in streams - determination of the dispersion characteristics represented by longitudinal dispersion coefficient D. Different theoretical and empirical formulas have been proposed for D value determination and they have revealed that the coefficient is variable parameter that depends on hydraulic and morphometric characteristics of the stream reaches. Authors compare the results of several methods of coefficient D assessment, assuming experimental data obtained by tracer studies and compare them with results optimized by HEC-RAS water quality model. The analyses of tracer study and computation outputs allow us to outline the important aspects of longitudinal dispersion coefficient set up in process of the HEC-RAS model use. Key words: longitudinal dispersion coefficient, HEC-RAS, water quality modeling.

  18. PROXY-BASED PATCHING STREAM TRANSMISSION STRATEGY IN MOBILE STREAMING MEDIA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liao Jianxin; Lei Zhengxiong; Ma Xutao; Zhu Xiaomin

    2006-01-01

    A mobile transmission strategy, PMPatching (Proxy-based Mobile Patching) transmission strategy is proposed, it applies to the proxy-based mobile streaming media system in Wideband Code Division Multiple Access (WCDMA) network. Performance of the whole system can be improved by using patching stream to transmit anterior part of the suffix that had been played back, and by batching all the demands for the suffix arrived in prefix period and patching stream transmission threshold period. Experimental results show that this strategy can efficiently reduce average network transmission cost and number of channels consumed in central streaming media server.

  19. Multi-stream face recognition for crime-fighting

    Science.gov (United States)

    Jassim, Sabah A.; Sellahewa, Harin

    2007-04-01

    Automatic face recognition (AFR) is a challenging task that is increasingly becoming the preferred biometric trait for identification and has the potential of becoming an essential tool in the fight against crime and terrorism. Closed-circuit television (CCTV) cameras have increasingly been used over the last few years for surveillance in public places such as airports, train stations and shopping centers. They are used to detect and prevent crime, shoplifting, public disorder and terrorism. The work of law-enforcing and intelligence agencies is becoming more reliant on the use of databases of biometric data for large section of the population. Face is one of the most natural biometric traits that can be used for identification and surveillance. However, variations in lighting conditions, facial expressions, face size and pose are a great obstacle to AFR. This paper is concerned with using waveletbased face recognition schemes in the presence of variations of expressions and illumination. In particular, we will investigate the use of a combination of wavelet frequency channels for a multi-stream face recognition using various wavelet subbands as different face signal streams. The proposed schemes extend our recently developed face veri.cation scheme for implementation on mobile devices. We shall present experimental results on the performance of our proposed schemes for a number of face databases including a new AV database recorded on a PDA. By analyzing the various experimental data, we shall demonstrate that the multi-stream approach is robust against variations in illumination and facial expressions than the previous single-stream approach.

  20. Differential geometric structures of stream functions: incompressible two-dimensional flow and curvatures

    International Nuclear Information System (INIS)

    Yamasaki, K; Iwayama, T; Yajima, T

    2011-01-01

    The Okubo-Weiss field, frequently used for partitioning incompressible two-dimensional (2D) fluids into coherent and incoherent regions, corresponds to the Gaussian curvature of the stream function. Therefore, we consider the differential geometric structures of stream functions and calculate the Gaussian curvatures of some basic flows. We find the following. (I) The vorticity corresponds to the mean curvature of the stream function. Thus, the stream-function surface for an irrotational flow and that for a parallel shear flow correspond to the minimal surface and a developable surface, respectively. (II) The relationship between the coherency and the magnitude of the vorticity is interpreted by the curvatures. (III) Using the Gaussian curvature, stability of single and double point vortex streets is analyzed. The results of this analysis are compared with the well-known linear stability analysis. (IV) Conformal mapping in fluid mechanics is the physical expression of the geometric fact that the sign of the Gaussian curvature does not change in conformal mapping. These findings suggest that the curvatures of stream functions are useful for understanding the geometric structure of an incompressible 2D flow.

  1. Hysteretic behavior of stage-discharge relationships in urban streams

    Science.gov (United States)

    Miller, A. J.; Lindner, G. A.

    2009-12-01

    Reliable stage-discharge relationships or rating curves are of critical importance for accurate calculation of streamflow and maintenance of long-term flow records. Urban streams offer particular challenges for the maintenance of accurate rating curves. It is often difficult or impossible to collect direct discharge measurements at high flows, many of which are generated by short-duration high-intensity summer thunderstorms, both because of dangerous conditions in the channel and also because the stream rises and falls so rapidly that field crews cannot reach sites in time and sometimes cannot make measurements rapidly enough to keep pace with changing water levels even when they are on site during a storm. Work in urban streams in the Baltimore metropolitan area has shown that projection of rating curves beyond the range of measured flows can lead to overestimation of flood peaks by as much as 100%, and these can only be corrected when adequate field data are available to support modeling efforts. Even moderate flows that are above safe wading depth and velocity may best be estimated using hydraulic models. Current research for NSF CNH project 0709659 includes the application of 2-d depth-averaged hydraulic models to match existing rating curves over a range of low to moderate flows and to extend rating curves for higher flows, based on field collection of high-water marks. Although it is generally assumed that stage-discharge relationships are single-valued, we find that modeling results in small urban streams often generate hysteretic relationships, with higher discharges on the rising limb of the hydrograph than on the falling limb. The difference between discharges for the same stage on the rising and falling limb can be on the order of 20-30% even for in-channel flows that are less than 1 m deep. As safety considerations dictate that it is preferable to make direct discharge measurements on the falling limb of the hydrograph, the higher direct measurements

  2. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.

    Science.gov (United States)

    Heilweil, Victor M; Stolp, Bert J; Kimball, Briant A; Susong, David D; Marston, Thomas M; Gardner, Philip M

    2013-01-01

    Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water

  3. A catchment scale evaluation of multiple stressor effects in headwater streams.

    Science.gov (United States)

    Rasmussen, Jes J; McKnight, Ursula S; Loinaz, Maria C; Thomsen, Nanna I; Olsson, Mikael E; Bjerg, Poul L; Binning, Philip J; Kronvang, Brian

    2013-01-01

    Mitigation activities to improve water quality and quantity in streams as well as stream management and restoration efforts are conducted in the European Union aiming to improve the chemical, physical and ecological status of streams. Headwater streams are often characterised by impairment of hydromorphological, chemical, and ecological conditions due to multiple anthropogenic impacts. However, they are generally disregarded as water bodies for mitigation activities in the European Water Framework Directive despite their importance for supporting a higher ecological quality in higher order streams. We studied 11 headwater streams in the Hove catchment in the Copenhagen region. All sites had substantial physical habitat and water quality impairments due to anthropogenic influence (intensive agriculture, urban settlements, contaminated sites and low base-flow due to water abstraction activities in the catchment). We aimed to identify the dominating anthropogenic stressors at the catchment scale causing ecological impairment of benthic macroinvertebrate communities and provide a rank-order of importance that could help in prioritising mitigation activities. We identified numerous chemical and hydromorphological impacts of which several were probably causing major ecological impairments, but we were unable to provide a robust rank-ordering of importance suggesting that targeted mitigation efforts on single anthropogenic stressors in the catchment are unlikely to have substantial effects on the ecological quality in these streams. The SPEcies At Risk (SPEAR) index explained most of the variability in the macroinvertebrate community structure, and notably, SPEAR index scores were often very low (<10% SPEAR abundance). An extensive re-sampling of a subset of the streams provided evidence that especially insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in

  4. Grid refinement model in lattice Boltzmann method for stream function-vorticity formulations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob [Dept. of Mechanical Engineering, Dongyang Mirae University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

  5. Landscape Characteristics and Variations in Longitudinal Stream Flow Contribution in two Headwater Semi-Arid Mountain Watersheds

    Science.gov (United States)

    Shakespeare, B.; Gooseff, M. N.

    2005-12-01

    Understanding what role particular catchment attributes (slope, aspect, landcover, and contributing area) play in the contribution of stream flow is important for land management decisions, especially in the semi-arid western areas of the United States. Our study site is paired small catchments (approximately 9 and 11 km2) in the headwaters of the Weber drainage basin in Northern Utah. These catchments are surrounded by Wasatch formation with loamy textured soils. One catchment is predominantly underlain by quartzite while the other catchment is mostly underlain by limestone. We measured lateral flow gains every 200 to 400 meters using salt dilution gauging techniques throughout the ~5 km long streams. These measurements were taken synoptically 3 times during the seasonal discharge recession (summer 2005). The flows ranged spatially from 4 L s-1 to 55 L s-1 and varied temporally by as much as 50% when comparing the same reaches. Using GIS software, landscape analysis of slope, aspect, contributing area, topographic convergence, riparian and hillslope area, and landcover was performed for each of the delineated stream reach contributing areas. The results were tested for correlations between lateral flow gains measured in the field and different landscape characteristics. Each of the synoptic events was compared with each other to explore effects of seasonal recession on the relationships between flow gain and landscape characteristics.

  6. Hydraulic modeling of thermal discharges into shallow, tidal affected streams

    International Nuclear Information System (INIS)

    Copp, H.W.; Shashidhara, N.S.

    1981-01-01

    A two-unit nuclear fired power plant is being constructed in western Washington state. Blowdown water from cooling towers will be discharged into the Chehalis River nearby. The location of a diffuser is some 21 miles upriver from Grays Harbor on the Pacific Ocean. Because the Chehalis River is classified as an excellent stream from the standpoint of water quality, State regulatory agencies required demonstration that thermal discharges would maintain water quality standards within fairly strict limits. A hydraulic model investigation used a 1:12 scale, undistorted model of a 1300-foot river reach in the vicinity of the diffuser. The model scale was selected to insure fully turbulent flows both in the stream and from the diffuser (Reynolds similitude). Model operation followed the densimetric Froude similitude. Thermistors were employed to measure temperatures in the model; measurements were taken by computer command and such measurements at some 250 positions were effected in about 2.5 seconds

  7. Evaluation of the streaming-matrix method for discrete-ordinates duct-streaming calculations

    International Nuclear Information System (INIS)

    Clark, B.A.; Urban, W.T.; Dudziak, D.J.

    1983-01-01

    A new deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) is applied to two realistic duct-shielding problems. The results are compared to standard discrete-ordinates and Monte Carlo calculations. The SMHM shows promise as an alternative deterministic streaming method to standard discrete-ordinates

  8. Flow of a stream through a reservoir

    International Nuclear Information System (INIS)

    Sauerwein, K.

    1967-01-01

    If a reservoir is fed from a single source, which may not always be pure, the extent to which the inflowing stream mixes with the water in the reservoir is important for the quality of the water supplied by the reservoir. This question was investigated at the Lingese Reservoir, containing between one and two million cubic metres of water, in the Bergisches Land (North Rhine-Westphalia). The investigation was carried out at four different seasons so that the varying effects of the stream-water temperatures could be studied in relation to the temperature of the reservoir water. The stream was radioactively labelled at the point of inflow into the reservoir, and its flow through the reservoir was measured in length and depth from boats, by means of 1-m-long Geiger counters. In two cases the radioactivity of the outflowing water was also measured at fixed points. A considerable variety of intermixing phenomena were observed; these were mainly of limnological interest. The results of four experiments corresponding to the four different seasons are described in detail. They were as follows: (1) The mid-October experiment where the stream, with a temperature of 8.0 deg. C, was a good 5 deg. C colder than the water of the reservoir, whose temperature was almost uniform, ranging from 13.2 deg. C at the bed to 13.6 deg. C at the surface. (2) The spring experiment (second half of March), when the stream temperature was only 0.3 deg. C below that of the reservoir surface (7.8 deg. C), while the temperature of the bed was 5.8 deg. C. (3) The winter experiment (early December) where at first the temperature of the stream was approximately the same as that of the surface so that, once again, the stream at first flowed 1/2 - 1 m below the surface. During the almost wind-free night a sudden fall in temperature occurred, and the air temperature dropped from 0 deg. C to -12 deg. C. (4) The summer experiment (end of July to mid-August) when the stream was nearly 1 deg. C colder than

  9. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces

    Science.gov (United States)

    Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P.

    2014-08-01

    iterative modelling methodology, which ensures the consistency of stream-aquifer exchanges between the intermediate and regional scales. Finally, practical recommendations are provided for the study of the interface using the innovative methodology MIM (Measurements-Interpolation-Modelling), which is graphically developed, scaling in space the three pools of methods needed to fully understand stream-aquifer interfaces at various scales. In the MIM space, stream-aquifer interfaces that can be studied by a given approach are localised. The efficiency of the method is demonstrated with two examples. The first one proposes an upscaling framework, structured around river reaches of ~10-100 m, from the local to the watershed scale. The second example highlights the usefulness of space borne data to improve the assessment of stream-aquifer exchanges at the regional and continental scales. We conclude that further developments in modelling and field measurements have to be undertaken at the regional scale to enable a proper modelling of stream-aquifer exchanges from the local to the continental scale.

  10. Time course of auditory streaming: Do CI users differ from normal-hearing listeners?

    Directory of Open Access Journals (Sweden)

    Martin eBöckmann-Barthel

    2014-07-01

    Full Text Available In a complex acoustical environment with multiple sound sources the auditory system uses streaming as a tool to organize the incoming sounds in one or more streams depending on the stimulus parameters. Streaming is commonly studied by alternating sequences of signals. These are often tones with different frequencies. The present study investigates stream segregation in cochlear implant (CI users, where hearing is restored by electrical stimulation of the auditory nerve. CI users listened to 30-s long sequences of alternating A and B harmonic complexes at four different fundamental frequency separations, ranging from 2 to 14 semitones. They had to indicate as promptly as possible after sequence onset, if they perceived one stream or two streams and, in addition, any changes of the percept throughout the rest of the sequence. The conventional view is that the initial percept is always that of a single stream which may after some time change to a percept of two streams. This general build-up hypothesis has recently been challenged on the basis of a new analysis of data of normal-hearing listeners which showed a build-up response only for an intermediate frequency separation. Using the same experimental paradigm and analysis, the present study found that the results of CI users agree with those of the normal-hearing listeners: (i the probability of the first decision to be a one-stream percept decreased and that of a two-stream percept increased as Δf increased, and (ii a build-up was only found for 6 semitones. Only the time elapsed before the listeners made their first decision of the percept was prolonged as compared to normal-hearing listeners. The similarity in the data of the CI user and the normal-hearing listeners indicates that the quality of stream formation is similar in these groups of listeners.

  11. Consequences of variation in stream-landscape connections for stream nitrate retention and export

    Science.gov (United States)

    Handler, A. M.; Helton, A. M.; Grimm, N. B.

    2017-12-01

    Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work

  12. Impact of potash mining in streams: the Llobregat basin (northeast Spain as a case study

    Directory of Open Access Journals (Sweden)

    Ruben Ladrera

    2016-12-01

    Full Text Available Potash mining is significantly increasing the salt concentration of rivers and streams due to lixiviates coming from the mine tailings. In the present study, we have focused on the middle Llobregat basin (northeast Spain, where an important potash mining activity exists from the beginning of the XX century. Up to 50 million tonnes of saline waste have been disposed in the area, mainly composed of sodium chloride. We assessed the ecological status of streams adjacent to the mines by studying different physicochemical and hydromorphological variables, as well as aquatic macroinvertebrates. We found extraordinary high values of salinity in the studied streams, reaching conductivities up to 132.4 mS/cm. Salt-polluted streams were characterized by a deterioration of the riparian vegetation and the fluvial habitat. Both macroinvertebrate richness and abundance decreased with increasing salinity. In the most polluted stream only two families of macroinvertebrates were found: Ephydridae and Ceratopogonidae. According to the biotic indices IBMWP and IMMi-T, none of the sites met the requirements of the Water Framework Directive (WFD; i.e., good ecological status. Overall, we can conclude that potash-mining activities have the potential to cause severe ecological damage to their surrounding streams. This is mainly related to an inadequate management of the mine tailings, leading to highly saline runoff and percolates entering surface waters. Thus, we urge water managers and policy makers to take action to prevent, detect and remediate salt pollution of rivers and streams in potash mining areas.

  13. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    Science.gov (United States)

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  14. Deforestation and benthic indicators: how much vegetation cover is needed to sustain healthy Andean streams?

    Science.gov (United States)

    Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.

  15. Two tales of legacy effects on stream nutrient behaviour

    Science.gov (United States)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high

  16. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  17. Scaling measurements of metabolism in stream ecosystems: challenges and approaches to estimating reaeration

    Science.gov (United States)

    Bowden, W. B.; Parker, S.; Song, C.

    2016-12-01

    Stream ecologists have used various formulations of an oxygen budget approach as a surrogate to measure "whole-stream metabolism" (WSM) of carbon in rivers and streams. Improvements in sensor technologies that provide reliable, high-frequency measurements of dissolved oxygen concentrations in adverse field conditions has made it much easier to acquire the basic data needed to estimate WSM in remote locations over long periods (weeks to months). However, accurate estimates of WSM require reliable measurements or estimates of the reaeration coefficient (k). Small errors in estimates of k can lead to large errors in estimates of gross ecosystem production and ecosystem respiration and so the magnitude of the biological flux of CO2 to or from streams. This is an especially challenging problem in unproductive, oligotrophic streams. Unfortunately, current methods to measure reaeration directly (gas evasion) are expensive, labor-intensive, and time-consuming. As a consequence, there is a substantial mismatch between the time steps at which we can measure reaeration versus most of the other variables required to calculate WSM. As a part of the NSF Arctic Long-Term Ecological Research Project we have refined methods to measure WSM in Arctic streams and found a good relationship between measured k values and those calculated by the Energy Dissipation Model (EDM). Other researchers have also noted that this equation works well for both low- and high-order streams. The EDM is dependent on stream slope (relatively constant) and velocity (which is related to discharge or stage). These variables are easy to measure and can be used to estimate k a high frequency (minutes) over large areas (river networks). As a key part of the NSF MacroSystems Biology SCALER project we calculated WSM for multiple reaches in nested stream networks in six biomes across the United States and Australia. We calculated k by EDM and fitted k via a Bayesian model for WSM. The relationships between

  18. Manganese-Enhanced Magnetic Resonance Imaging and Studies of Rat Behavior: Transient Motor Deficit in Skilled Reaching, Rears, and Activity in Rats After a Single Dose of MnCl

    Directory of Open Access Journals (Sweden)

    Mariam Alaverdashvili

    2017-05-01

    Full Text Available Manganese-enhanced magnetic resonance imaging (MEMRI has been suggested to be a useful tool to visualize and map behavior-relevant neural populations at large scale in freely behaving rodents. A primary concern in MEMRI applications is Mn 2+ toxicity. Although a few studies have specifically examined toxicity on gross motor behavior, Mn 2+ toxicity on skilled motor behavior was not explored. Thus, the objective of this study was to combine manganese as a functional contrast agent with comprehensive behavior evaluation. We evaluated Mn 2+ effect on skilled reach-to-eat action, locomotion, and balance using a single pellet reaching task, activity cage, and cylinder test, respectively. The tests used are sensitive to the pathophysiology of many neurological and neurodegenerative disorders of the motor system. The behavioral testing was done in combination with a moderate dose of manganese. Behavior was studied before and after a single, intravenous infusion of MnCl 2 (48 mg/kg. The rats were imaged at 1, 3, 5, 7, and 14 days following infusion. The results show that MnCl 2 infusion resulted in detectable abnormalities in skilled reaching, locomotion, and balance that recovered within 3 days compared with the infusion of saline. Because some tests and behavioral measures could not detect motor abnormalities of skilled movements, comprehensive evaluation of motor behavior is critical in assessing the effects of MnCl 2 . The relaxation mapping results suggest that the transport of Mn 2+ into the brain is through the choroid plexus-cerebrospinal fluid system with the primary entry point and highest relaxation rates found in the pituitary gland. Relaxation rates in the pituitary gland correlated with measures of motor skill, suggesting that altered motor ability is related to the level of Mn circulating in the brain. Thus, combined MEMRI and behavioral studies that both achieve adequate image enhancement and are also free of motor skills deficits are

  19. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    International Nuclear Information System (INIS)

    De Bruin, D.

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab

  20. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    Energy Technology Data Exchange (ETDEWEB)

    De Bruin, D

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab.

  1. Efficient Streaming Mass Spatio-Temporal Vehicle Data Access in Urban Sensor Networks Based on Apache Storm.

    Science.gov (United States)

    Zhou, Lianjie; Chen, Nengcheng; Chen, Zeqiang

    2017-04-10

    The efficient data access of streaming vehicle data is the foundation of analyzing, using and mining vehicle data in smart cities, which is an approach to understand traffic environments. However, the number of vehicles in urban cities has grown rapidly, reaching hundreds of thousands in number. Accessing the mass streaming data of vehicles is hard and takes a long time due to limited computation capability and backward modes. We propose an efficient streaming spatio-temporal data access based on Apache Storm (ESDAS) to achieve real-time streaming data access and data cleaning. As a popular streaming data processing tool, Apache Storm can be applied to streaming mass data access and real time data cleaning. By designing the Spout/bolt workflow of topology in ESDAS and by developing the speeding bolt and other bolts, Apache Storm can achieve the prospective aim. In our experiments, Taiyuan BeiDou bus location data is selected as the mass spatio-temporal data source. In the experiments, the data access results with different bolts are shown in map form, and the filtered buses' aggregation forms are different. In terms of performance evaluation, the consumption time in ESDAS for ten thousand records per second for a speeding bolt is approximately 300 milliseconds, and that for MongoDB is approximately 1300 milliseconds. The efficiency of ESDAS is approximately three times higher than that of MongoDB.

  2. Efficient Streaming Mass Spatio-Temporal Vehicle Data Access in Urban Sensor Networks Based on Apache Storm

    Directory of Open Access Journals (Sweden)

    Lianjie Zhou

    2017-04-01

    Full Text Available The efficient data access of streaming vehicle data is the foundation of analyzing, using and mining vehicle data in smart cities, which is an approach to understand traffic environments. However, the number of vehicles in urban cities has grown rapidly, reaching hundreds of thousands in number. Accessing the mass streaming data of vehicles is hard and takes a long time due to limited computation capability and backward modes. We propose an efficient streaming spatio-temporal data access based on Apache Storm (ESDAS to achieve real-time streaming data access and data cleaning. As a popular streaming data processing tool, Apache Storm can be applied to streaming mass data access and real time data cleaning. By designing the Spout/bolt workflow of topology in ESDAS and by developing the speeding bolt and other bolts, Apache Storm can achieve the prospective aim. In our experiments, Taiyuan BeiDou bus location data is selected as the mass spatio-temporal data source. In the experiments, the data access results with different bolts are shown in map form, and the filtered buses’ aggregation forms are different. In terms of performance evaluation, the consumption time in ESDAS for ten thousand records per second for a speeding bolt is approximately 300 milliseconds, and that for MongoDB is approximately 1300 milliseconds. The efficiency of ESDAS is approximately three times higher than that of MongoDB.

  3. Final Technical Report: Electrohydrodynamic Tip Streaming

    Energy Technology Data Exchange (ETDEWEB)

    Basaran, Osman [Purdue Univ., West Lafayette, IN (United States)

    2016-01-06

    When subjected to strong electric fields, liquid drops and films form conical tips and emit thin jets from their tips. Such electrodydrodynamic (EDH) tip streaming or cone-jetting phenomena, which are sometimes referred to as electrospraying, occur widely in nature, e.g., in ejection of streams of small charged drops from pointed tips of raindrops in thunderclouds, and technology, e.g., in electrospray mass spectrometry or electric field-driven solvent extraction. More recently, EHD cone-jetting has emerged as a powerful technique for direct printing of solar cells, micro- and nano- particle production, and microencapsulation for controlled release. In many of the aforementioned situations, of equal importance to the processes by which one drop disintegrates to form several drops are those by which (a) two drops come together and coalesce and (b) two drops are coupled to form a double droplet system (DDS) or a capillary switch (CS). the main objective of this research program is to advance through simulation, theory, and experiment the breakup, coalescence, and oscillatory dynamics of single and pairs of charged as well as uncharged drops.

  4. Hydrological Modeling in temporary streams: A case study in Pardiela basin, Southern Portugal

    OpenAIRE

    PEDRO, A.; MORAIS, M.; ROSADO, J.; SILVA, H.; SERAFIM, A.; NEVES, R.; BRITO, D.; POTES, M.; SALGADO, R.; LILLEBØ, I.; CHAMBEL, A.

    2011-01-01

    The project “Conservation and rehabilitation strategies for temporary Mediterranean river corridors: a case study on Pardiela basin, southern Portugal (Guadiana basin)", is being carried out,with the collaboration of researchers from diverse scientific areas, in order to increase the knowledge on temporary streams. The project includes different approaches at reach and basin scales, regarding the study of temporal interactions among different ecological components such as climate, morph...

  5. New Jersey StreamStats: A web application for streamflow statistics and basin characteristics

    Science.gov (United States)

    Watson, Kara M.; Janowicz, Jon A.

    2017-08-02

    StreamStats is an interactive, map-based web application from the U.S. Geological Survey (USGS) that allows users to easily obtain streamflow statistics and watershed characteristics for both gaged and ungaged sites on streams throughout New Jersey. Users can determine flood magnitude and frequency, monthly flow-duration, monthly low-flow frequency statistics, and watershed characteristics for ungaged sites by selecting a point along a stream, or they can obtain this information for streamgages by selecting a streamgage location on the map. StreamStats provides several additional tools useful for water-resources planning and management, as well as for engineering purposes. StreamStats is available for most states and some river basins through a single web portal.Streamflow statistics for water resources professionals include the 1-percent annual chance flood flow (100-year peak flow) used to define flood plain areas and the monthly 7-day, 10-year low flow (M7D10Y) used in water supply management and studies of recreation, wildlife conservation, and wastewater dilution. Additionally, watershed or basin characteristics, including drainage area, percent area forested, and average percent of impervious areas, are commonly used in land-use planning and environmental assessments. These characteristics are easily derived through StreamStats.

  6. InSTREAM: the individual-based stream trout research and environmental assessment model

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  7. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinver...

  8. Stream fish colonization but not persistence varies regionally across a large North American river basin

    Science.gov (United States)

    Wheeler, Kit; Wengerd, Seth J.; Walsh, Stephen J.; Martin, Zachary P.; Jelks, Howard L.; Freeman, Mary C.

    2018-01-01

    Many species have distributions that span distinctly different physiographic regions, and effective conservation of such taxa will require a full accounting of all factors that potentially influence populations. Ecologists recognize effects of physiographic differences in topography, geology and climate on local habitat configurations, and thus the relevance of landscape heterogeneity to species distributions and abundances. However, research is lacking that examines how physiography affects the processes underlying metapopulation dynamics. We used data describing occupancy dynamics of stream fishes to evaluate evidence that physiography influences rates at which individual taxa persist in or colonize stream reaches under different flow conditions. Using periodic survey data from a stream fish assemblage in a large river basin that encompasses multiple physiographic regions, we fit multi-species dynamic occupancy models. Our modeling results suggested that stream fish colonization but not persistence was strongly governed by physiography, with estimated colonization rates considerably higher in Coastal Plain streams than in Piedmont and Blue Ridge systems. Like colonization, persistence was positively related to an index of stream flow magnitude, but the relationship between flow and persistence did not depend on physiography. Understanding the relative importance of colonization and persistence, and how one or both processes may change across the landscape, is critical information for the conservation of broadly distributed taxa, and conservation strategies explicitly accounting for spatial variation in these processes are likely to be more successful for such taxa.

  9. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    Science.gov (United States)

    Scott, Durelle T.; Runkel, Robert L.; McKnight, Diane M.; Voelker, Bettina M.; Kimball, Briant A.; Carraway, Elizabeth R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  10. Opposing dorsal/ventral stream dynamics during figure-ground segregation.

    Science.gov (United States)

    Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F

    2014-02-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.

  11. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Science.gov (United States)

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  12. StreamStats: A water resources web application

    Science.gov (United States)

    Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.

    2008-01-01

    . Streamflow measurements are collected systematically over a period of years at partial-record stations to estimate peak-flow or low-flow statistics. Streamflow measurements usually are collected at miscellaneous-measurement stations for specific hydrologic studies with various objectives.StreamStats is a Web-based Geographic Information System (GIS) application that was created by the USGS, in cooperation with Environmental Systems Research Institute, Inc. (ESRI)1, to provide users with access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats functionality is based on ESRI’s ArcHydro Data Model and Tools, described on the Web at http://resources.arcgis.com/en/communities/hydro/01vn0000000s000000.htm. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection stations and user-selected ungaged sites. It also allows users to identify stream reaches that are upstream and downstream from user-selected sites, and to identify and obtain information for locations along the streams where activities that may affect streamflow conditions are occurring. This functionality can be accessed through a map-based user interface that appears in the user’s Web browser, or individual functions can be requested remotely as Web services by other Web or desktop computer applications. StreamStats can perform these analyses much faster than historically used manual techniques.StreamStats was designed so that each state would be implemented as a separate application, with a reliance on local partnerships to fund the individual applications, and a goal of eventual full national implementation. Idaho became the first state to implement StreamStats in 2003. By mid-2008, 14 states had applications available to the public, and 18 other states were in various stages of implementation.

  13. Water Stream in Bidet Toilet Commode as a Cause of Anterior Anal Fissure: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Pankaj Garg

    2017-03-01

    Full Text Available Background Water used as a single sharp stream in toilet commode for post defecation cleansing is a common practice in several countries across the globe including India. Repeated hitting of the anus by water stream could potentially cause injury to the anal canal epithelium and lead to development of fissure-in-ano. As the water stream is emanating from the backside of the toilet commode, the possible injury, if any, would be on the anterior anal canal. Objectives The present study aimed at determining whether water stream usage in toilet commodes increased the incidence of anterior fissure-in-ano; this was determined by the incidence of anterior fissure-in-ano the study and control groups. Methods All consecutive fissure-in-ano patients referring to a colorectal clinic from February 2012 to 2015 were included in the study. The patients were classified as a study group (who were using water stream for cleansing purposes in toilet commodes and a control group (patients who were not using water stream. The characteristics and location (position of the fissure-in-ano was noted. Results In this study, 165 patients were prospectively enrolled. Male/female ratio was 96/69, and the mean age was 36.3 ± 11.2 years. The anterior fissure-in-ano in the study group was 55.9% (47/84, while it was 17.3 % (14/81 in the control group (P < 0.0001, odds ratio: 6.08, 95% CI: 2.96 - 12.47]. Conclusions Water used as a single sharp stream to cleanse after defecation in toilet commodes is hazardous and should be avoided.

  14. NORD STREAM 2 and its Soft Power – an Unfolding Playground for the European Union

    Directory of Open Access Journals (Sweden)

    Roxana Ioana Banciu

    2016-06-01

    Full Text Available This paper focuses on the Nord Stream 2 pipeline in a double reflection (Russia - the candle, Germany - the mirror handling one particular aspect that influences Russia-EU relations since the Ukrainian factor emerged as a playground for both East and West tectonic plates - namely the energy sector. It is vital for any global power to understand this approach in order to reach people’s minds, in order to emerge as leaders on the world map and to build a strong perception over a political scene. A recently debated subject is Nord Stream 2. The reason why I have chosen to explore this subject is because I am very interested in how Kremlin seeks to have an exclusive control over Eastern Europe, given the full debate in the last three years. In this thesis I will also discuss some important elements of the Russian Soft Power over Europe introducing the plot of South Stream project.

  15. Identifying Watershed, Landscape, and Engineering Design Factors that Influence the Biotic Condition of Restored Streams

    Directory of Open Access Journals (Sweden)

    Barbara Doll

    2016-04-01

    Full Text Available Restored stream reaches at 79 sites across North Carolina were sampled for aquatic macroinvertebrates using a rapid bioassessment protocol. Morphological design parameters and geographic factors, including watershed and landscape parameters (e.g., valley slope, substrate, were also compiled for these streams. Principal component regression analyses revealed correlations between design and landscape variables with macroinvertebrate metrics. The correlations were strengthened by adding watershed variables. Ridge regression was used to find the best-fit model for predicting dominant taxa from the “pollution sensitive” orders of Ephemeroptera (mayflies, Plecoptera (stoneflies, and Trichoptera (caddisflies, or EPT taxa, resulting in coefficient weights that were most interpretable relative to site selection and design parameters. Results indicate that larger (wider streams located in the mountains and foothills where there are steeper valleys, larger substrate, and undeveloped watersheds are expected to have higher numbers of dominant EPT taxa. In addition, EPT taxa numbers are positively correlated with accessible floodplain width and negatively correlated with width-to-depth ratio and sinuosity. This study indicates that both site selection and design should be carefully considered in order to maximize the resulting biotic condition and associated potential ecological uplift of the stream.

  16. Fluvial wood function downstream of beaver versus man-made dams in headwater streams in Massachusetts, USA

    Science.gov (United States)

    David, G. C.; DeVito, L. F.; Munz, K. T.; Lisius, G.

    2014-12-01

    Fluvial wood is an essential component of stream ecosystems by providing habitat, increasing accumulation of organic matter, and increasing the processing of nutrients and other materials. However, years of channel alterations in Massachusetts have resulted in low wood loads despite the afforestation that has occurred since the early 1900s. Streams have also been impacted by a large density of dams, built during industrialization, and reduction of the beaver population. Beavers were reintroduced to Massachusetts in the 1940s and they have since migrated throughout the state. Beaver dams impound water, which traps sediment and results in the development of complex channel patterns and more ecologically productive and diverse habitats than those found adjacent to man-made dams. To develop better management practices for dam removal it is essential that we understand the geomorphic and ecologic function of wood in these channels and the interconnections with floodplain dynamics and stream water chemistry. We investigate the connections among fluvial wood, channel morphology, floodplain soil moisture dynamics, and stream water chemistry in six watersheds in Massachusetts that have been impacted by either beaver or man-made dams. We hypothesize that wood load will be significantly higher below beaver dams, subsequently altering channel morphology, water chemistry, and floodplain soil moisture. Reaches are surveyed up- and downstream of each type of dam to better understand the impact dams have on the fluvial system. Surveys include a longitudinal profile, paired with dissolved oxygen and ammonium measurements, cross-section and fluvial wood surveys, hydraulic measurements, and floodplain soil moisture mapping. We found that dissolved oxygen mirrored the channel morphology, but did not vary significantly between reaches. Wood loads were significantly larger downstream of beaver dams, which resulted in significant changes to the ammonium levels. Floodplain soil moisture

  17. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    Science.gov (United States)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  18. Results of Macroinvertebrate Sampling Conducted at 33 SRS Stream Locations, July--August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1994-12-01

    In order to assess the health of the macroinvertebrate communities of SRS streams, the macroinvertebrate communities at 30 stream locations on SRS were sampled during the summer of 1993, using Hester-Dendy multiplate samplers. In addition, three off-site locations in the Upper Three Runs drainage were sampled in order to assess the potential for impact from off-site activities. In interpreting the data, it is important to recognize that these data were from a single set of collections. Macroinvertebrate communities often undergo considerable temporal variation, and are also greatly influenced by such factors as water depth, water velocity, and available habitat. These stations were selected with the intent of developing an on-going sampling program at a smaller number of stations, with the selection of the stations to be based largely upon the results of this preliminary sampling program. When stations within a given stream showed similar results, fewer stations would be sampled in the future. Similarly, if a stream appeared to be perturbed, additional stations or chemical analyses might be added so that the source of the perturbation could be identified. In general, unperturbed streams will contain more taxa than perturbed streams, and the distribution of taxa among orders or families will differ. Some groups of macroinvertebrates, such as Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies), which are collectively called EPT taxa, are considered to be relatively sensitive to most kinds of stream perturbation; therefore a reduced number of EPT taxa generally indicates that the stream has been subject to chemical or physical stressors. In coastal plain streams, EPT taxa are generally less dominant than in streams with rocky substrates, while Chironomidae (midges) are more abundant. (Abstract Truncated)

  19. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data.

    Science.gov (United States)

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev

    2017-06-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.

  20. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics

    Science.gov (United States)

    Marcé, R.; Armengol, J.

    2009-07-01

    discharge range. This implies that both small and larger streams may be impacted by human activities in terms of nutrient retention capacity, suggesting that larger rivers located in human populated areas can exert considerable influence on phosphorus exports from watersheds. The role of biological activity in this efficiency loss showed by nutrient enriched streams remained uncertain, because the phosphorus mass transfer coefficient did not show consistent relationships with streamflow and phosphorus concentration in water. The heterogeneity of the compiled data and the possible role of additional inorganic processes on phosphorus in-stream dynamics may explain this. We suggest that more research on phosphorus dynamics at the reach scale is needed, specially in large, human impacted watercourses.

  1. Productivity of Stream Definitions

    NARCIS (Netherlands)

    Endrullis, Jörg; Grabmayer, Clemens; Hendriks, Dimitri; Isihara, Ariya; Klop, Jan

    2007-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continuously in such a way that a uniquely determined stream is obtained as the limit. Whereas productivity is undecidable

  2. Productivity of stream definitions

    NARCIS (Netherlands)

    Endrullis, J.; Grabmayer, C.A.; Hendriks, D.; Isihara, A.; Klop, J.W.

    2008-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continually in such a way that a uniquely determined stream in constructor normal form is obtained as the limit. Whereas

  3. Urbanization effects on stream habitat characteristics in Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah

    Science.gov (United States)

    Short, T.M.; Giddings, E.M.P.; Zappia, H.; Coles, J.F.

    2005-01-01

    Relations between stream habitat and urban land-use intensity were examined in 90 stream reaches located in or near the metropolitan areas of Salt Lake City, Utah (SLC); Birmingham, Alabama (BIR); and Boston, Massachusetts (BOS). Urban intensity was based on a multi-metric index (urban intensity index or UII) that included measures of land cover, socioeconomic organization, and urban infrastructure. Twenty-eight physical variables describing channel morphology, hydraulic properties, and streambed conditions were examined. None of the habitat variables was significantly correlated with urbanization intensity in all three study areas. Urbanization effects on stream habitat were less apparent for streams in SLC and BIR, owing to the strong influence of basin slope (SLC) and drought conditions (BIR) on local flow regimes. Streamflow in the BOS study area was not unduly influenced by similar conditions of climate and physiography, and habitat conditions in these streams were more responsive to urbanization. Urbanization in BOS contributed to higher discharge, channel deepening, and increased loading of fine-grained particles to stream channels. The modifying influence of basin slope and climate on hydrology of streams in SLC and BIR limited our ability to effectively compare habitat responses among different urban settings and identify common responses that might be of interest to restoration or water management programs. Successful application of land-use models such as the UII to compare urbanization effects on stream habitat in different environmental settings must account for inherent differences in natural and anthropogenic factors affecting stream hydrology and geomorphology. The challenge to future management of urban development is to further quantify these differences by building upon existing models, and ultimately develop a broader understanding of urbanization effects on aquatic ecosystems. ?? 2005 by the American Fisheries Society.

  4. Carbon pools along headwater streams with differing valley geometry in Rocky Mountain National Park, Colorado (Abstract)

    Science.gov (United States)

    Kathleen A. Dwire; Ellen E. Wohl; Nicholas A. Sutfin; Roberto A. Bazan; Lina Polvi-Pilgrim

    2012-01-01

    Headwaters are known to be important in the global carbon cycle, yet few studies have investigated carbon (C) pools along stream-riparian corridors. To better understand the spatial distribution of C storage in headwater fluvial networks, we estimated above- and below-ground C pools in 100-m-long reaches in six different valley types in Rocky Mountain National Park,...

  5. Cesium-137 dynamics within a reactor effluent stream in South Carolina

    International Nuclear Information System (INIS)

    Shure, D.J.; Gottschalk, M.R.

    1975-01-01

    Cesium-137 dynamics were studied in a blackwater creek which had received production reactor effluents from the Savannah River Plant in South Carolina. Most 137 Cs in the water column is dissolved or in colloidal form and is believed to originate primarily through outflow from an upstream contaminated reservoir. All ecosystem components in the stream have high 137 Cs concentration factors. Radiocesium concentrations are highest in filamentous algae (332 pCi/g-dry) and suspended particulate matter (100 to 200 pCi/g). Other food chain bases had much lower 137 Cs levels. Most consumer populations averaged 10 to 50 pCi/g. Radiocesium concentrations decreased in transfers between food chain bases and primary consumers or filter feeders. Omnivores and small predators have similar 137 Cs concentrations with bioaccumulation occurring by top-carnivores. Radiocesium levels are around 100 pCi/g in largemouth bass and water snakes. Foodweb components in the stream have reached a dynamic equilibrium in 137 Cs concentrations despite a 10-year absence of reactor operations. Radiocesium levels are apparently being maintained through long-term 137 Cs cycling in the upstream reservoir and surrounding flood plain forest systems. Rainfall and other physical processes influence the seasonal 137 Cs fluctuations in stream components. (auth)

  6. Factors influencing detection of eDNA from a stream-dwelling amphibian

    Science.gov (United States)

    Pilliod, David S.; Goldberg, Caren S.; Arkle, Robert S.; Waits, Lisette P.

    2013-01-01

    Environmental DNA (eDNA) methods for detecting and estimating abundance of aquatic species are emerging rapidly, but little is known about how processes such as secretion rate, environmental degradation, and time since colonization or extirpation from a given site affect eDNA measurements. Using stream-dwelling salamanders and quantitative PCR (qPCR) analysis, we conducted three experiments to assess eDNA: (i) production rate; (ii) persistence time under different temperature and light conditions; and (iii) detectability and concentration through time following experimental introduction and removal of salamanders into previously unoccupied streams. We found that 44–50 g individuals held in aquaria produced 77 ng eDNA/h for 2 h, after which production either slowed considerably or began to equilibrate with degradation. eDNA in both full-sun and shaded treatments degraded exponentially to 2) and when samples were collected within 5 m of the animals. Concentrations of eDNA detected were very low and increased steadily from 6–24 h after introduction, reaching 0.0022 ng/L. Within 1 h of removing salamanders from the stream, eDNA was no longer detectable. These results suggest that eDNA detectability and concentration depend on production rates of individuals, environmental conditions, density of animals, and their residence time.

  7. Streams and their future inhabitants

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Friberg, Nikolai

    2006-01-01

    In this fi nal chapter we look ahead and address four questions: How do we improve stream management? What are the likely developments in the biological quality of streams? In which areas is knowledge on stream ecology insuffi cient? What can streams offer children of today and adults of tomorrow?...

  8. COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS

    Science.gov (United States)

    Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...

  9. Puerto Rico ESI and RSI: ESI (Environmental Sensitivity Index Shoreline Types) / RSI (Reach Sensitivity Index River and Stream Types)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) and Reach Sensitivity Index (RSI) data for Puerto Rico. ESI data characterize estuarine...

  10. Distributed fiber Raman amplification in long reach PON bidirectional access links

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Kjær, Rasmus; Öhman, Filip

    2008-01-01

    Distributed Raman fiber amplification is proposed and experimentally demonstrated to support long reach passive optical network (PON) links. An 80 km, bidirectional, single fiber link is demonstrated using both standard intensity optical modulators at 10 Gb/s and up to 7.5 Gb/s using novel...

  11. Salamander occupancy in headwater stream networks

    Science.gov (United States)

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  12. A shower look-up table to trace the dynamics of meteoroid streams and their sources

    Science.gov (United States)

    Jenniskens, Petrus

    2018-04-01

    Meteor showers are caused by meteoroid streams from comets (and some primitive asteroids). They trace the comet population and its dynamical evolution, warn of dangerous long-period comets that can pass close to Earth's orbit, outline volumes of space with a higher satellite impact probability, and define how meteoroids evolve in the interplanetary medium. Ongoing meteoroid orbit surveys have mapped these showers in recent years, but the surveys are now running up against a more and more complicated scene. The IAU Working List of Meteor Showers has reached 956 entries to be investigated (per March 1, 2018). The picture is even more complicated with the discovery that radar-detected streams are often different, or differently distributed, than video-detected streams. Complicating matters even more, some meteor showers are active over many months, during which their radiant position gradually changes, which makes the use of mean orbits as a proxy for a meteoroid stream's identity meaningless. The dispersion of the stream in space and time is important to that identity and contains much information about its origin and dynamical evolution. To make sense of the meteor shower zoo, a Shower Look-Up Table was created that captures this dispersion. The Shower Look-Up Table has enabled the automated identification of showers in the ongoing CAMS video-based meteoroid orbit survey, results of which are presented now online in near-real time at http://cams.seti.org/FDL/. Visualization tools have been built that depict the streams in a planetarium setting. Examples will be presented that sample the range of meteoroid streams that this look-up table describes. Possibilities for further dynamical studies will be discussed.

  13. Attenuating reaches and the regional flood response of an urbanizing drainage basin

    Science.gov (United States)

    Turner-Gillespie, Daniel F.; Smith, James A.; Bates, Paul D.

    The Charlotte, North Carolina metropolitan area has experienced extensive urban and suburban growth and sharply increasing trends in the magnitude and frequency of flooding. The hydraulics and hydrology of flood response in the region are examined through a combination of numerical modeling studies and diagnostic analyses of paired discharge observations from upstream-downstream gaging stations. The regional flood response is shown to strongly reflect urbanization effects, which increase flood peaks and decrease response times, and geologically controlled attenuating reaches, which decrease flood peaks and increase lag times. Attenuating reaches are characterized by systematic changes in valley bottom geometry and longitudinal profile. The morphology of the fluvial system is controlled by the bedrock geology, with pronounced changes occurring at or near contacts between intrusive igneous and metamorphic rocks. Analyses of wave celerity and flood peak attenuation over a range of discharge values for an 8.3 km valley bottom section of Little Sugar Creek are consistent with Knight and Shiono's characterization of the variation of flood wave velocity from in-channel conditions to valley bottom full conditions. The cumulative effect of variation in longitudinal profile, expansions and contractions of the valley bottom, floodplain roughness and sub-basin flood response is investigated using a two-dimensional, depth-averaged, finite element hydrodynamic model coupled with a distributed hydrologic model. For a 10.1 km stream reach of Briar Creek, with drainage area ranging from 13 km 2 at the upstream end of the reach to 49 km 2 at the downstream end, it is shown that flood response reflects a complex interplay of hydrologic and hydraulic processes on hillslopes and valley bottoms.

  14. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes

    Science.gov (United States)

    Arp, Christopher D.; Whitman, Matthew S.; Jones, Benjamin M.; Grosse, Guido; Gaglioti, Benjamin V.; Heim, Kurt C.

    2015-01-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high- ground ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones effectively insulates channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2°C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m/s, yet channel runs still move water rapidly

  15. Stream hydraulics and temperature determine the metabolism of geothermal Icelandic streams

    Directory of Open Access Journals (Sweden)

    Demars B. O.L.

    2011-07-01

    Full Text Available Stream ecosystem metabolism plays a critical role in planetary biogeochemical cycling. Stream benthic habitat complexity and the available surface area for microbes relative to the free-flowing water volume are thought to be important determinants of ecosystem metabolism. Unfortunately, the engineered deepening and straightening of streams for drainage purposes could compromise stream natural services. Stream channel complexity may be quantitatively expressed with hydraulic parameters such as water transient storage, storage residence time, and water spiralling length. The temperature dependence of whole stream ecosystem respiration (ER, gross primary productivity (GPP and net ecosystem production (NEP = GPP − ER has recently been evaluated with a “natural experiment” in Icelandic geothermal streams along a 5–25 °C temperature gradient. There remained, however, a substantial amount of unexplained variability in the statistical models, which may be explained by hydraulic parameters found to be unrelated to temperature. We also specifically tested the additional and predicted synergistic effects of water transient storage and temperature on ER, using novel, more accurate, methods. Both ER and GPP were highly related to water transient storage (or water spiralling length but not to the storage residence time. While there was an additional effect of water transient storage and temperature on ER (r2 = 0.57; P = 0.015, GPP was more related to water transient storage than temperature. The predicted synergistic effect could not be confirmed, most likely due to data limitation. Our interpretation, based on causal statistical modelling, is that the metabolic balance of streams (NEP was primarily determined by the temperature dependence of respiration. Further field and experimental work is required to test the predicted synergistic effect on ER. Meanwhile, since higher metabolic activities allow for higher pollutant degradation or uptake

  16. The prediction of noise and installation effects of high-subsonic dual-stream jets in flight

    Science.gov (United States)

    Saxena, Swati

    Both military and civil aircraft in service generate high levels of noise. One of the major contributors to this noise generated from the aircraft is the jet engine exhaust. This makes the study of jet noise and methods to reduce jet noise an active research area with the aim of designing quieter military and commercial aircraft. The current stringent aircraft noise regulations imposed by the Federal Aviation Administration (FAA) and other international agencies, have further raised the need to perform accurate jet noise calculations for more reliable estimation of the jet noise sources. The main aim of the present research is to perform jet noise simulations of single and dual-stream jets with engineering accuracy and assess forward flight effects on the jet noise. Installation effects such as caused by the pylon are also studied using a simplified pylon nozzle configuration. Due to advances in computational power, it has become possible to perform turbulent flow simulations of high speed jets, which leads to more accurate noise predictions. In the present research, a hybrid unsteady RANS-LES parallel multi-block structured grid solver called EAGLEJet is written to perform the nozzle flow calculations. The far-field noise calculation is performed using solutions to the Ffowcs Williams and Hawkings equation. The present calculations use meshes with 5 to 11 million grid points and require about three weeks of computing time with about 100 processors. A baseline single stream convergent nozzle and a dual-stream coaxial convergent nozzle are used for the flow and noise analysis. Calculations for the convergent nozzle are performed at a high subsonic jet Mach number of Mj = 0.9, which is similar to the operating conditions for commercial aircraft engines. A parallel flow gives the flight effect, which is simulated with a co-flow Mach number, Mcf varying from 0.0 to 0.28. The grid resolution effects, statistical properties of the turbulence and the heated jet effects

  17. Information-Theoretic Data Discarding for Dynamic Trees on Data Streams

    Directory of Open Access Journals (Sweden)

    Christoforos Anagnostopoulos

    2013-12-01

    Full Text Available Ubiquitous automated data collection at an unprecedented scale is making available streaming, real-time information flows in a wide variety of settings, transforming both science and industry. Learning algorithms deployed in such contexts often rely on single-pass inference, where the data history is never revisited. Learning may also need to be temporally adaptive to remain up-to-date against unforeseen changes in the data generating mechanism. Online Bayesian inference remains challenged by such transient, evolving data streams. Nonparametric modeling techniques can prove particularly ill-suited, as the complexity of the model is allowed to increase with the sample size. In this work, we take steps to overcome these challenges by porting information theoretic heuristics, such as exponential forgetting and active learning, into a fully Bayesian framework. We showcase our methods by augmenting a modern non-parametric modeling framework, dynamic trees, and illustrate its performance on a number of practical examples. The end product is a powerful streaming regression and classification tool, whose performance compares favorably to the state-of-the-art.

  18. Quantifying stream nutrient uptake from ambient to saturation with instantaneous tracer additions

    Science.gov (United States)

    Covino, T. P.; McGlynn, B. L.; McNamara, R.

    2009-12-01

    Stream nutrient tracer additions and spiraling metrics are frequently used to quantify stream ecosystem behavior. However, standard approaches limit our understanding of aquatic biogeochemistry. Specifically, the relationship between in-stream nutrient concentration and stream nutrient spiraling has not been characterized. The standard constant rate (steady-state) approach to stream spiraling parameter estimation, either through elevating nutrient concentration or adding isotopically labeled tracers (e.g. 15N), provides little information regarding the stream kinetic curve that represents the uptake-concentration relationship analogous to the Michaelis-Menten curve. These standard approaches provide single or a few data points and often focus on estimating ambient uptake under the conditions at the time of the experiment. Here we outline and demonstrate a new method using instantaneous nutrient additions and dynamic analyses of breakthrough curve (BTC) data to characterize the full relationship between spiraling metrics and nutrient concentration. We compare the results from these dynamic analyses to BTC-integrated, and standard steady-state approaches. Our results indicate good agreement between these three approaches but we highlight the advantages of our dynamic method. Specifically, our new dynamic method provides a cost-effective and efficient approach to: 1) characterize full concentration-spiraling metric curves; 2) estimate ambient spiraling metrics; 3) estimate Michaelis-Menten parameters maximum uptake (Umax) and the half-saturation constant (Km) from developed uptake-concentration kinetic curves, and; 4) measure dynamic nutrient spiraling in larger rivers where steady-state approaches are impractical.

  19. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach

    Science.gov (United States)

    Norman, Laura M.; Sankey, Joel B.; Dean, David; Caster, Joshua J.; DeLong, Stephen B.; Henderson-DeLong, Whitney; Pelletier, Jon D.

    2017-01-01

    Rock-detention structures are used as restoration treatments to engineer ephemeral stream channels of southeast Arizona, USA, to reduce streamflow velocity, limit erosion, retain sediment, and promote surface-water infiltration. Structures are intended to aggrade incised stream channels, yet little quantified evidence of efficacy is available. The goal of this 3-year study was to characterize the geomorphic impacts of rock-detention structures used as a restoration strategy and develop a methodology to predict the associated changes. We studied reaches of two ephemeral streams with different watershed management histories: one where thousands of loose-rock check dams were installed 30 years prior to our study, and one with structures constructed at the beginning of our study. The methods used included runoff, sediment transport, and geomorphic modelling and repeat terrestrial laser scanner (TLS) surveys to map landscape change. Where discharge data were not available, event-based runoff was estimated using KINEROS2, a one-dimensional kinematic-wave runoff and erosion model. Discharge measurements and estimates were used as input to a two-dimensional unsteady flow-and-sedimentation model (Nays2DH) that combined a gridded flow, transport, and bed and bank simulation with geomorphic change. Through comparison of consecutive DEMs, the potential to substitute uncalibrated models to analyze stream restoration is introduced. We demonstrate a new approach to assess hydraulics and associated patterns of aggradation and degradation resulting from the construction of check-dams and other transverse structures. Notably, we find that stream restoration using rock-detention structures is effective across vastly different timescales.

  20. A brain slice culture model for studies of endogenous and exogenous precursor cell migration in the rostral migratory stream

    DEFF Research Database (Denmark)

    Tanvig, Mette; Blaabjerg, Morten; Andersen, Rikke K

    2009-01-01

    The rostral migratory stream (RMS) is the main pathway by which newly born subventricular zone (SVZ) cells reach the olfactory bulb (OB) in rodents. This migration has been well studied in vivo, but an organotypic in vitro model would facilitate more experimental investigations. Here we introduce...

  1. Sensation-to-cognition cortical streams in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Carmona, Susana; Hoekzema, Elseline; Castellanos, Francisco X; García-García, David; Lage-Castellanos, Agustín; Van Dijk, Koene R A; Navas-Sánchez, Francisco J; Martínez, Kenia; Desco, Manuel; Sepulcre, Jorge

    2015-07-01

    We sought to determine whether functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits are atypical in attention-deficit/hyperactivity disorder (ADHD). We applied a graph-theory method to the resting-state functional magnetic resonance imaging data of 120 children with ADHD and 120 age-matched typically developing children (TDC). Starting in unimodal primary cortex-visual, auditory, and somatosensory-we used stepwise functional connectivity to calculate functional connectivity paths at discrete numbers of relay stations (or link-step distances). First, we characterized the functional connectivity streams that link sensory, attentional, and higher-order cognitive circuits in TDC and found that systems do not reach the level of integration achieved by adults. Second, we searched for stepwise functional connectivity differences between children with ADHD and TDC. We found that, at the initial steps of sensory functional connectivity streams, patients display significant enhancements of connectivity degree within neighboring areas of primary cortex, while connectivity to attention-regulatory areas is reduced. Third, at subsequent link-step distances from primary sensory cortex, children with ADHD show decreased connectivity to executive processing areas and increased degree of connections to default mode regions. Fourth, in examining medication histories in children with ADHD, we found that children medicated with psychostimulants present functional connectivity streams with higher degree of connectivity to regions subserving attentional and executive processes compared to medication-naïve children. We conclude that predominance of local sensory processing and lesser influx of information to attentional and executive regions may reduce the ability to organize and control the balance between external and internal sources of information in ADHD. © 2015 Wiley Periodicals, Inc.

  2. First generation long-reach manipulator for retrieval of waste from Hanford single-shell tanks

    International Nuclear Information System (INIS)

    Gibbons, P.W.; McDaniel, L.B.

    1994-10-01

    The US Department of Energy, Richland Operations Office, has established the Tank Waste Remediation System to resolve environmental and safety issues related to underground waste-storage tanks at the Hanford Site. The Tank Waste Remediation System has identified the use of an advanced-technology, long-reach manipulator system as a low-water-addition retrieval alternative to past-practice sluicing

  3. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  4. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    Science.gov (United States)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  5. Flume experiments on scour downstream of wood stream restoration structures

    Science.gov (United States)

    Pagliara, Stefano; Kurdistani, Sahameddin Mahmoudi

    2017-02-01

    River restoration aims to improve physical natural form and processes of a river. Techniques to control the riverbed, stabilize channel alignment, protect stream banks, and rebuild the natural habitat are an important part of river restoration projects. Rivers can be stabilized and habitat restored through techniques such as rebuilding meanders and pool-riffle sequences and managing large wood. Structures that limit channel width to accelerate the normal flows through the constricted section are referred to as stream deflectors. Single-wing, double-wing and triangular deflectors are the most commonly used types of this measure. Log-frame deflectors consist of a triangular log frame filled with rock. Deflector constructions singly or in series in low gradient meandering streams, divert base flows toward the center of the channel and, under certain conditions, increase the depth and velocity of flow thereby creating scour pools and enhancing fish habitat. Scour characteristics and morphologies downstream of log-frame deflectors have been analyzed at the hydraulic laboratory of the University of Pisa. All experiments have been carried out in clear water conditions. The results showed that the tailwater depth plays an important role on scour characteristics. In addition, it was experimentally proven that using log-frame deflectors instead of log-deflectors result in a better river bank protection. In this case, for all the tested hydraulic conditions, the scour hole never occurred close to the channel bank. Useful empirical relationships have been proposed in order to evaluate the main features of the scour geometry.

  6. Restoring stream habitat connectivity: a proposed method for prioritizing the removal of resident fish passage barriers.

    Science.gov (United States)

    O'Hanley, Jesse R; Wright, Jed; Diebel, Matthew; Fedora, Mark A; Soucy, Charles L

    2013-08-15

    Systematic methods for prioritizing the repair and removal of fish passage barriers, while growing of late, have hitherto focused almost exclusively on meeting the needs of migratory fish species (e.g., anadromous salmonids). An important but as of yet unaddressed issue is the development of new modeling approaches which are applicable to resident fish species habitat restoration programs. In this paper, we develop a budget constrained optimization model for deciding which barriers to repair or remove in order to maximize habitat availability for stream resident fish. Habitat availability at the local stream reach is determined based on the recently proposed C metric, which accounts for the amount, quality, distance and level of connectivity to different stream habitat types. We assess the computational performance of our model using geospatial barrier and stream data collected from the Pine-Popple Watershed, located in northeast Wisconsin (USA). The optimization model is found to be an efficient and practical decision support tool. Optimal solutions, which are useful in informing basin-wide restoration planning efforts, can be generated on average in only a few minutes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Responses of stream microbes to multiple anthropogenic stressors in a mesocosm study.

    Science.gov (United States)

    Nuy, Julia K; Lange, Anja; Beermann, Arne J; Jensen, Manfred; Elbrecht, Vasco; Röhl, Oliver; Peršoh, Derek; Begerow, Dominik; Leese, Florian; Boenigk, Jens

    2018-08-15

    Stream ecosystems are affected by multiple anthropogenic stressors worldwide. Even though effects of many single stressors are comparatively well studied, the effects of multiple stressors are difficult to predict. In particular bacteria and protists, which are responsible for the majority of ecosystem respiration and element flows, are infrequently studied with respect to multiple stressors responses. We conducted a stream mesocosm experiment to characterize the responses of single and multiple stressors on microbiota. Two functionally important stream habitats, leaf litter and benthic phototrophic rock biofilms, were exposed to three stressors in a full factorial design: fine sediment deposition, increased chloride concentration (salinization) and reduced flow velocity. We analyzed the microbial composition in the two habitat types of the mesocosms using an amplicon sequencing approach. Community analysis on different taxonomic levels as well as principle component analyses (PCoAs) based on realtive abundances of operational taxonomic units (OTUs) showed treatment specific shifts in the eukaryotic biofilm community. Analysis of variance (ANOVA) revealed that Bacillariophyta responded positively salinity and sediment increase, while the relative read abundance of chlorophyte taxa decreased. The combined effects of multiple stressors were mainly antagonistic. Therefore, the community composition in multiply stressed environments resembled the composition of the unstressed control community in terms of OTU occurrence and relative abundances. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Percent Forest Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  9. Percent Agriculture Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  10. Using a Numerical Model to Assess the Geomorphic Impacts of Forest Management Scenarios on Streams

    Science.gov (United States)

    Davidson, S. L.; Eaton, B. C.

    2014-12-01

    In-stream large wood governs the morphology of many small to intermediate streams, while riparian vegetation influences bank strength and channel pattern. Forest management practices such as harvesting and fire suppression therefore dramatically influence channel processes and associated aquatic habitat. The primary objective of this research is to compare the impacts of three common forest scenarios - natural fire disturbance, forest harvesting with a riparian buffer, and fire suppression - on the volume of in-channel wood and the complexity of aquatic habitat in channels at a range of scales. Each scenario is explored through Monte Carlo simulations run over a period of 1000 years using a numerical reach scale channel simulator (RSCS), with variations in tree toppling rate and forest density used to represent each forest management trajectory. The habitat complexity associated with each scenario is assessed based on the area of the bed occupied by pools and spawning sized sediment, the availability of wood cover, and the probability of avulsion. Within the fire scenario, we also use the model to separately investigate the effects of root decay and recovery on equilibrium channel geometry by varying the rooting depth and associated bank strength through time. The results show that wood loading and habitat complexity are influenced by the timing and magnitude of wood recruitment, as well as channel scale. The forest harvesting scenario produces the lowest wood loads and habitat complexity so long as the buffer width is less than the average mature tree height. The natural fire cycle produces the greatest wood loading and habitat complexity, but also the greatest variability because these streams experience significant periods without wood recruitment as forests regenerate. In reaches that experience recurrent fires, width increases in the post-fire period as roots decay, at times producing a change in channel pattern when a threshold width to depth ratio is

  11. Changes in stream chemistry and biology in response to reduced levels of acid deposition during 1987-2003 in the Neversink River Basin, Catskill Mountains

    Science.gov (United States)

    Burns, Douglas A.; Riva-Murray, K.; Bode, R.W.; Passy, S.

    2008-01-01

    Atmospheric acid deposition has decreased in the northeastern United States since the 1970s, resulting in modest increases in pH, acid-neutralizing capacity (ANC), and decreases in inorganic monomeric aluminum (AlIM) concentrations since stream chemistry monitoring began in the 1980s in the acid-sensitive upper Neversink River basin in the Catskill Mountains of New York. Stream pH has increased by 0.01 units/year during 1987-2003 at three sites in the Neversink basin as determined by Seasonal Kendall trend analysis. In light of this observed decrease in stream acidity, we sampled 12 stream sites within the Neversink River watershed for water chemistry, macroinvertebrates, fish, and periphytic diatoms in 2003 to compare with a similar data set collected in 1987. Metrics and indices that reflect sensitivity to stream acidity were developed with these biological data to determine whether changes in stream biota over the intervening 16 years parallel those of stream chemistry. Statistical comparisons of data on stream chemistry and an acid biological assessment profile (Acid BAP) derived from invertebrate data showed no significant differences between the two years. For pH and ANC, however, values in 2003 were generally lower than those in 1987; this difference likely resulted from higher streamflow in summer 2003. Despite these likely flow-induced changes in summer 2003, an ordination and cluster analysis of macroinvertebrate taxa based on the Acid BAP indicated that the most acidic sites in the upstream half of the East Branch Neversink River form a statistically significant separate cluster consistent with less acidic stream conditions. This analysis is consistent with limited recovery of invertebrate species in the most acidic reaches of the river, but will require additional improvement in stream chemistry before a stronger conclusion can be drawn. Data on the fish and periphytic diatom communities in 2003 indicate that slimy sculpin had not extended their habitat

  12. Changing Groundwater-Surface Water Interactions Impact Stream Chemistry and Ecology at the Arctic-Boreal Transition in Western Alaska

    Science.gov (United States)

    Koch, J. C.; Carey, M.; O'Donnell, J.; Sjoberg, Y.; Zimmerman, C. E.

    2016-12-01

    The arctic-boreal transition zone of Alaska is experiencing rapid change related to unprecedented warming and subsequent loss of permafrost. These changes in turn may affect groundwater-surface water (GW-SW) interactions, biogeochemical cycling, and ecosystem processes. While recent field and modeling studies have improved our understanding of hydrology in watersheds underlain by thawing permafrost, little is known about how these hydrologic shifts will impact bottom-up controls on stream food webs. To address this uncertainty, we are using an integrative experimental design to link GW-SW interactions to stream biogeochemistry and biota in 10 first-order streams in northwest Alaska. These study streams drain watersheds that span several gradients, including elevation, aspect, and vegetation (tundra vs. forest). We have developed a robust, multi-disciplinary data set to characterize GW-SW interactions and to mechanistically link GW-SW dynamics to water quality and the stream ecosystem. Data includes soil hydrology and chemistry; stream discharge, temperature, and inflow rates; water chemistry (including water isotopes, major ions, carbon concentration and isotopes, nutrients and chlorophyll-a), and invertebrate and fish communities. Stream recession curves indicate a decreasing rate later in the summer in some streams, consistent with seasonal thaw in lower elevation and south-facing catchments. Base cation and water isotope chemistry display similar impacts of seasonal thaw and also suggest the dominance of groundwater in many streams. Coupled with estimates of GW-SW exchange at point, reach, and catchment scales, these results will be used to predict how hydrology and water quality are likely to impact fish habitat and growth given continued warming at the arctic-boreal transition.

  13. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  14. Application of Integral Pumping Tests to estimate the influence of losing streams on groundwater quality

    Science.gov (United States)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-05-01

    Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase

  15. Collisional effects in the ion Weibel instability for two counter-propagating plasma streams

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Fiuza, F.; Huntington, C. M.; Ross, J. S.; Park, H.-S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-03-15

    Experiments directed towards the study of the collisionless interaction between two counter-streaming plasma flows generated by high-power lasers are designed in such a way as to make collisions between the ions of the two flows negligibly rare. This is reached by making flow velocities v as high as possible and thereby exploiting the 1/v{sup 4} dependence of the Rutherford cross-section. At the same time, the plasma temperature of each flow may be relatively low so that collisional mean-free paths for the intra-stream particle collisions may be much smaller than the characteristic spatial scale of the unstable modes required for the shock formation. The corresponding effects are studied in this paper for the case of the ion Weibel (filamentation) instability. Dispersion relations for the case of strong intra-stream collisions are derived. It is shown that the growth-rates become significantly smaller than those stemming from a collisionless model. The underlying physics is mostly related to the increase of the electron stabilizing term. Additional effects are an increased “stiffness” of the collisional ion gas and the ion viscous dissipation. A parameter domain where collisions are important is identified.

  16. Impacts of beaver ponds on dissolved organic matter cycling in small temperate streams.

    Science.gov (United States)

    Larsen, J.; Lambert, T.; Larsen, A.; Lane, S.

    2017-12-01

    Beavers are engineers that modify the structure of river reaches and their hydrological functioning. By building dams, they modify the travel time of running waters and can lead to the flooding of surrounding soils and terrestrial vegetation, with potentially significant impact on biogeochemical cycles. Contradictory effects of beaver ponds on dissolved organic matter (DOM) concentration and composition have however been reported, and the underlying reasons are still unclear. In this study, we aimed to investigate the role of the landscape morphology as an important driver determining how a beaver population can affect stream DOM cycling. Four streams localized in Switzerland and Germany were visited during different seasons (spring, summer, winter) and monitored at upstream and downstream locations of beaver ponds across a hydrological cycle. The sites differed in terms of river channel morphology, presence or absence of floodplain, and vegetation cover. DOM composition was investigated through absorbance and fluorescence measurements coupled with parallel factor analysis (PARAFAC) along with stream water quality (nutrients, pH, dissolved oxygen and water temperature). The results show that the effects of beaver dams were variable, and emphasizes the importance of the geomorphological context.

  17. Forensics of subhalo-stream encounters: the three phases of gap growth

    Science.gov (United States)

    Erkal, Denis; Belokurov, Vasily

    2015-06-01

    There is hope to discover dark matter subhaloes free of stars (predicted by the current theory of structure formation) by observing gaps they produce in tidal streams. In fact, this is the most promising technique for dark substructure detection and characterization as such gaps grow with time, magnifying small perturbations into clear signatures observable by ongoing and planned Galaxy surveys. To facilitate such future inference, we develop a comprehensive framework for studies of the growth of the stream density perturbations. Starting with simple assumptions and restricting to streams on circular orbits, we derive analytic formulae that describe the evolution of all gap properties (size, density contrast, etc.) at all times. We uncover complex, previously unnoticed behaviour, with the stream initially forming a density enhancement near the subhalo impact point. Shortly after, a gap forms due to the relative change in period induced by the subhalo's passage. There is an intermediate regime where the gap grows linearly in time. At late times, the particles in the stream overtake each other, forming caustics, and the gap grows like √{t}. In addition to the secular growth, we find that the gap oscillates as it grows due to epicyclic motion. We compare this analytic model to N-body simulations and find an impressive level of agreement. Importantly, when analysing the observation of a single gap we find a large degeneracy between the subhalo mass, the impact geometry and kinematics, the host potential, and the time since flyby.

  18. Stream Deniable-Encryption Algorithms

    Directory of Open Access Journals (Sweden)

    N.A. Moldovyan

    2016-04-01

    Full Text Available A method for stream deniable encryption of secret message is proposed, which is computationally indistinguishable from the probabilistic encryption of some fake message. The method uses generation of two key streams with some secure block cipher. One of the key streams is generated depending on the secret key and the other one is generated depending on the fake key. The key streams are mixed with the secret and fake data streams so that the output ciphertext looks like the ciphertext produced by some probabilistic encryption algorithm applied to the fake message, while using the fake key. When the receiver or/and sender of the ciphertext are coerced to open the encryption key and the source message, they open the fake key and the fake message. To disclose their lie the coercer should demonstrate possibility of the alternative decryption of the ciphertext, however this is a computationally hard problem.

  19. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    KAUST Repository

    Yan, Hengjing

    2012-05-01

    Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm. Diethylamine-functionalized polymer (DEA) was used as the Pt catalyst binder on the cathode to improve the differential nitrifying biofilm establishment. With pre-enriched nitrifying biofilm, MFCs with the DEA binder had an ammonia removal efficiency of up to 96.8% and a maximum power density of 900 ± 25 mW/m 2, compared to 90.7% and 945 ± 42 mW/m 2 with a Nafion binder. A control with Nafion that lacked nitrifier pre-enrichment removed less ammonia and had lower power production (54.5% initially, 750 mW/m 2). The nitrifying biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode, and enhanced system stability. These results demonstrated that with proper cathode pre-enrichment it is possible to simultaneously remove organics and ammonia in a single-chamber MFC without supplemental aeration. © 2012 Elsevier Ltd.

  20. Effect of β-PVDF Piezoelectric Transducers’ Positioning on the Acoustic Streaming Flows

    Directory of Open Access Journals (Sweden)

    Susana O. Catarino

    2014-09-01

    Full Text Available This paper reports the numerical and experimental analysis of the acoustic streaming effect in a fluidic domain. The actuation of a piezoelectric transducer generates acoustic waves that propagate to the fluids, generating pressure gradients that induce the flow. The number and positioning of the transducers affect the pressure gradients and, consequently, the resultant flow profile. Two actuation conditions were considered: (1 acoustic streaming generated by a 28 μm thick β-poly(vinylidene fluoride (β-PVDF piezoelectric transducer placed asymmetrically relative to the fluidic domain and (2 acoustic streaming generated by two 28 μm thick β-PVDF piezoelectric transducers placed perpendicularly to each other. The transducers were fixed to the lower left corner of a poly(methyl methacrylate (PMMAcuvette and were actuated with a 24 Vpp and 34.2 MHz sinusoidal voltage. The results show that the number of transducers and their positioning affects the shape and number of recirculation areas in the acoustic streaming flows. The obtained global flows show great potential for mixing and pumping, being an alternative to the previous geometries studied by the authors, namely, a single transducer placed symmetrically under a fluidic domain.

  1. CAMS: OLAPing Multidimensional Data Streams Efficiently

    Science.gov (United States)

    Cuzzocrea, Alfredo

    In the context of data stream research, taming the multidimensionality of real-life data streams in order to efficiently support OLAP analysis/mining tasks is a critical challenge. Inspired by this fundamental motivation, in this paper we introduce CAMS (C ube-based A cquisition model for M ultidimensional S treams), a model for efficiently OLAPing multidimensional data streams. CAMS combines a set of data stream processing methodologies, namely (i) the OLAP dimension flattening process, which allows us to obtain dimensionality reduction of multidimensional data streams, and (ii) the OLAP stream aggregation scheme, which aggregates data stream readings according to an OLAP-hierarchy-based membership approach. We complete our analytical contribution by means of experimental assessment and analysis of both the efficiency and the scalability of OLAPing capabilities of CAMS on synthetic multidimensional data streams. Both analytical and experimental results clearly connote CAMS as an enabling component for next-generation Data Stream Management Systems.

  2. Forest-stream linkages: effects of terrestrial invertebrate input and light on diet and growth of brown trout (Salmo trutta in a boreal forest stream.

    Directory of Open Access Journals (Sweden)

    Tibor Erős

    Full Text Available Subsidies of energy and material from the riparian zone have large impacts on recipient stream habitats. Human-induced changes, such as deforestation, may profoundly affect these pathways. However, the strength of individual factors on stream ecosystems is poorly understood since the factors involved often interact in complex ways. We isolated two of these factors, manipulating the flux of terrestrial input and the intensity of light in a 2×2 factorial design, where we followed the growth and diet of two size-classes of brown trout (Salmo trutta and the development of periphyton, grazer macroinvertebrates, terrestrial invertebrate inputs, and drift in twelve 20 m long enclosed stream reaches in a five-month-long experiment in a boreal coniferous forest stream. We found that light intensity, which was artificially increased 2.5 times above ambient levels, had an effect on grazer density, but no detectable effect on chlorophyll a biomass. We also found a seasonal effect on the amount of drift and that the reduction of terrestrial prey input, accomplished by covering enclosures with transparent plastic, had a negative impact on the amount of terrestrial invertebrates in the drift. Further, trout growth was strongly seasonal and followed the same pattern as drift biomass, and the reduction of terrestrial prey input had a negative effect on trout growth. Diet analysis was consistent with growth differences, showing that trout in open enclosures consumed relatively more terrestrial prey in summer than trout living in covered enclosures. We also predicted ontogenetic differences in the diet and growth of old and young trout, where we expected old fish to be more affected by the terrestrial prey reduction, but we found little evidence of ontogenetic differences. Overall, our results showed that reduced terrestrial prey inputs, as would be expected from forest harvesting, shaped differences in the growth and diet of the top predator, brown trout.

  3. Generation of gamma-ray streaming kernels through cylindrical ducts via Monte Carlo method

    International Nuclear Information System (INIS)

    Kim, Dong Su

    1992-02-01

    Since radiation streaming through penetrations is often the critical consideration in protection against exposure of personnel in a nuclear facility, it has been of great concern in radiation shielding design and analysis. Several methods have been developed and applied to the analysis of the radiation streaming in the past such as ray analysis method, single scattering method, albedo method, and Monte Carlo method. But they may be used for order-of-magnitude calculations and where sufficient margin is available, except for the Monte Carlo method which is accurate but requires a lot of computing time. This study developed a Monte Carlo method and constructed a data library of solutions using the Monte Carlo method for radiation streaming through a straight cylindrical duct in concrete walls of a broad, mono-directional, monoenergetic gamma-ray beam of unit intensity. The solution named as plane streaming kernel is the average dose rate at duct outlet and was evaluated for 20 source energies from 0 to 10 MeV, 36 source incident angles from 0 to 70 degrees, 5 duct radii from 10 to 30 cm, and 16 wall thicknesses from 0 to 100 cm. It was demonstrated that average dose rate due to an isotropic point source at arbitrary positions can be well approximated using the plane streaming kernel with acceptable error. Thus, the library of the plane streaming kernels can be used for the accurate and efficient analysis of radiation streaming through a straight cylindrical duct in concrete walls due to arbitrary distributions of gamma-ray sources

  4. Pipeline template for streaming applications on heterogeneous chips

    OpenAIRE

    Rodríguez, Andrés; Navarro, Ángeles; Asenjo-Plaza, Rafael; Corbera, Francisco; Vilches, Antonio; Garzarán, María

    2015-01-01

    We address the problem of providing support for executing single streaming applications implemented as a pipeline of stages that run on heterogeneous chips comprised of several cores and one on-chip GPU. In this paper, we mainly focus on the API that allows the user to specify the type of parallelism exploited by each pipeline stage running on the multicore CPU, the mapping of the pipeline stages to the devices (GPU or CPU), and the number of active threads. We use a rea...

  5. Community-level response of fishes and aquatic macroinvertebrates to stream restoration in a third-order tributary of the Potomac River, USA

    Science.gov (United States)

    Selego, Stephen M.; Rose, Charnee L.; Merovich, George T.; Welsh, Stuart A.; Anderson, James T.

    2012-01-01

    Natural stream channel design principles and riparian restoration practices were applied during spring 2010 to an agriculturally impaired reach of the Cacapon River, a tributary of the Potomac River which flows into the Chesapeake Bay. Aquatic macroinvertebrates and fishes were sampled from the restoration reach, two degraded control, and two natural reference reaches prior to, concurrently with, and following restoration (2009 through 2010). Collector filterers and scrapers replaced collector gatherers as the dominant macroinvertebrate functional feeding groups in the restoration reach. Before restoration, based on indices of biotic integrity (IBI), the restoration reach fish and macroinvertebrate communities closely resembled those sampled from the control reaches, and after restoration more closely resembled those from the reference reaches. Although the macroinvertebrate community responded more favorably than the fish community, both communities recovered quickly from the temporary impairment caused by the disturbance of restoration procedures and suggest rapid improvement in local ecological conditions.

  6. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration.

    Science.gov (United States)

    Campesi, María A; Luzi, Carlos D; Barreto, Guillermo F; Martínez, Osvaldo M

    2015-05-01

    Catalytic combustion is a well-developed process for the removal of volatile organic compounds (VOCs). In order to reduce both the amount of catalyst needed for incineration and the surface area of recuperative heat exchangers, an evaluation of the use of thermal swing adsorption as a previous step for VOC concentration is made. An air stream containing ethyl acetate and ethanol (employed as solvents in printing processes) has been taken as a case study. Based on the characteristics of the adsorption/desorption system and the properties of the stream to be treated, a monolithic rotor concentrator with activated carbon as adsorbent material is adopted. Once the temperature of the inlet desorption stream TD is chosen, the minimum possible desorption flow rate, WD,min, and the amount of adsorbent material can be properly defined according to the extent of the Mass Transfer Zone (MTZ) at the end of the adsorption stage. An approximate procedure to speed up the calculations needed for sizing the bed and predicting the operating variables is also presented. In the case studied here, the concentration of the VOC stream can reach 6 times that of the primary effluent when TD = 200 °C is chosen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Packetized Media Streaming with Comprehensive Exploitation of Feedback Information

    OpenAIRE

    De Vleeschouwer, C.; Frossard, P.

    2005-01-01

    This paper addresses the problem of streaming packetized media over a lossy packet network, with sender-driven (re)transmission using acknowledgement feedback. The different transmission scenarios associated to a group of interdependent media data units are abstracted in terms of a finite alphabet of policies, for each single data unit. A rate-distortion optimized markovian framework is proposed, which supports the use of comprehensive feedback information. Contrarily to previous works in rat...

  8. Relating stream function and land cover in the Middle Pee Dee River Basin, SC

    Directory of Open Access Journals (Sweden)

    A.D. Jayakaran

    2016-03-01

    Full Text Available Study region: The study region comprised sixteen stream sites and associated contributing watersheds located in the Middle Pee Dee River Basin (MPDRB of South Carolina, USA. Study focus: The study was conducted between 2008 and 2010 to quantify how indices of streamflow varied with land cover characteristics analyzed at multiple spatial scales and fluvial geomorphic characteristics of sampled streams in the MPDRB. Study objectives were to relate three indices of streamflow that reflect recent temporal flow variability in a stream, with synoptic stream geomorphological measurements, and land cover type at specific spatial domains. New hydrological insights for the region: Modifications to the landscape, hydrologic regime, and alteration to channel morphology, are major threats to the functioning of riparian ecosystem functions but can rarely be linked to a single common stressor. Results from the study showed that in the MPDRB, wetland cover in the riparian corridor was an important factor, correlating significantly with stream flashiness, channel enlargement, and bed substrate character. It was also shown that a combination of stream geomorphological characteristics when combined with landscape variables at specific spatial scales were reasonable predictors of all three indices of streamflow. The study also highlights an innovative statistical methodology to relate land cover data to commonly measured metrics of streamflow and fluvial geomorphology. Keywords: Flashiness, Stream habitat, Flow indices, Land cover analysis, Wetlands, Coastal plain, Bed material, Partial least squares regression, Pee Dee River, South Carolina

  9. Cytoplasmic Streaming in the Drosophila Oocyte.

    Science.gov (United States)

    Quinlan, Margot E

    2016-10-06

    Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.

  10. Pesticide load dynamics during stormwater flow events in Mediterranean coastal streams: Alexander stream case study.

    Science.gov (United States)

    Topaz, Tom; Egozi, Roey; Eshel, Gil; Chefetz, Benny

    2018-06-01

    Cultivated land is a major source of pesticides, which are transported with the runoff water and eroded soil during rainfall events and pollute riverine and estuarine environments. Common ecotoxicological assessments of riverine systems are mainly based on water sampling and analysis of only the dissolved phase, and address a single pesticide's toxicological impact under laboratory conditions. A clear overview of mixtures of pesticides in the adsorbed and dissolved phases is missing, and therefore the full ecotoxicological impact is not fully addressed. The aim of this study was to characterize and quantify pesticide concentrations in both suspended sediment and dissolved phases, to provide a better understanding of pesticide-load dynamics during storm events in coastal streams in a Mediterranean climate. High-resolution sampling campaigns of seven flood events were conducted during two rainy seasons in Alexander stream, Israel. Samples of suspended sediments were separated from the solution and both media were analyzed separately for 250 pesticides. A total of 63 pesticides were detected; 18 and 16 pesticides were found solely in the suspended sediments and solution, respectively. Significant differences were observed among the pesticide groups: only 7% of herbicide, 20% of fungicide and 42% of insecticide load was transported with the suspended sediments. However, in both dissolved and adsorbed phases, a mix of pesticides was found which were graded from "mobile" to "non-mobile" with varied distribution coefficients. Diuron, and tebuconazole were frequently found in large quantities in both phases. Whereas insecticide and fungicide transport is likely governed by application time and method, the governing factor for herbicide load was the magnitude of the stream discharge. The results show a complex dynamic of pesticide load affected by excessive use of pesticides, which should be taken into consideration when designing projects to monitor riverine and estuarine

  11. In-stream Physical Heterogeneity, Rainfall Aided Flushing, and Discharge on Stream Water Quality.

    Science.gov (United States)

    Gomes, Pattiyage I A; Wai, Onyx W H

    2015-08-01

    Implications of instream physical heterogeneity, rainfall-aided flushing, and stream discharge on water quality control have been investigated in a headwater stream of a climatic region that has contrasting dry and wet seasons. Dry (low flow) season's physical heterogeneity showed a positive correlation with good water quality. However, in the wet season, physical heterogeneity showed minor or no significance on water quality variations. Furthermore, physical heterogeneity appeared to be more complementary with good water quality subsequent to rainfall events. In many cases stream discharge was a reason for poor water quality. For the dry season, graywater inputs to the stream could be held responsible. In the wet season, it was probably the result of catchment level disturbances (e.g., regulation of ephemeral freshwater paths). Overall, this study revealed the importance of catchment-based approaches on water quality improvement in tandem with in-stream approaches framed on a temporal scale.

  12. Stream II-V5: Revision Of Stream II-V4 To Account For The Effects Of Rainfall Events

    International Nuclear Information System (INIS)

    Chen, K.

    2010-01-01

    STREAM II-V4 is the aqueous transport module currently used by the Savannah River Site emergency response Weather Information Display (WIND) system. The transport model of the Water Quality Analysis Simulation Program (WASP) was used by STREAM II to perform contaminant transport calculations. WASP5 is a US Environmental Protection Agency (EPA) water quality analysis program that simulates contaminant transport and fate through surface water. STREAM II-V4 predicts peak concentration and peak concentration arrival time at downstream locations for releases from the SRS facilities to the Savannah River. The input flows for STREAM II-V4 are derived from the historical flow records measured by the United States Geological Survey (USGS). The stream flow for STREAM II-V4 is fixed and the flow only varies with the month in which the releases are taking place. Therefore, the effects of flow surge due to a severe storm are not accounted for by STREAM II-V4. STREAM II-V4 has been revised to account for the effects of a storm event. The steps used in this method are: (1) generate rainfall hyetographs as a function of total rainfall in inches (or millimeters) and rainfall duration in hours; (2) generate watershed runoff flow based on the rainfall hyetographs from step 1; (3) calculate the variation of stream segment volume (cross section) as a function of flow from step 2; (4) implement the results from steps 2 and 3 into the STREAM II model. The revised model (STREAM II-V5) will find the proper stream inlet flow based on the total rainfall and rainfall duration as input by the user. STREAM II-V5 adjusts the stream segment volumes (cross sections) based on the stream inlet flow. The rainfall based stream flow and the adjusted stream segment volumes are then used for contaminant transport calculations.

  13. The southern high-speed stream: results from the SWICS instrument on Ulysses.

    Science.gov (United States)

    Geiss, J; Gloeckler, G; von Steiger, R; Balsiger, H; Fisk, L A; Galvin, A B; Ipavich, F M; Livi, S; McKenzie, J F; Ogilvie, K W

    1995-05-19

    The high-speed solar wind streaming from the southern coronal hole was remarkably uniform and steady and was confined by a sharp boundary that extended to the corona and chromosphere. Charge state measurements indicate that the electron temperature in this coronal hole reached a maximum of about 1.5 million kelvin within 3 solar radii of the sun. This result, combined with the observed lack of depletion of heavy elements, suggests that an additional source of momentum is required to accelerate the polar wind.

  14. LHCb trigger streams optimization

    Science.gov (United States)

    Derkach, D.; Kazeev, N.; Neychev, R.; Panin, A.; Trofimov, I.; Ustyuzhanin, A.; Vesterinen, M.

    2017-10-01

    The LHCb experiment stores around 1011 collision events per year. A typical physics analysis deals with a final sample of up to 107 events. Event preselection algorithms (lines) are used for data reduction. Since the data are stored in a format that requires sequential access, the lines are grouped into several output file streams, in order to increase the efficiency of user analysis jobs that read these data. The scheme efficiency heavily depends on the stream composition. By putting similar lines together and balancing the stream sizes it is possible to reduce the overhead. We present a method for finding an optimal stream composition. The method is applied to a part of the LHCb data (Turbo stream) on the stage where it is prepared for user physics analysis. This results in an expected improvement of 15% in the speed of user analysis jobs, and will be applied on data to be recorded in 2017.

  15. Detecting the impact of bank and channel modification on invertebrate communities in Mediterranean temporary streams (Sardinia, SW Italy).

    Science.gov (United States)

    Buffagni, Andrea; Tenchini, Roberta; Cazzola, Marcello; Erba, Stefania; Balestrini, Raffaella; Belfiore, Carlo; Pagnotta, Romano

    2016-09-15

    We hypothesized that reach-scale, bank and channel modification would impact benthic communities in temporary rivers of Sardinia, when pollution and water abstraction are not relevant. A range of variables were considered, which include both artificial structures/alterations and natural features observed in a stream reach. Multivariate regression trees (MRT) were used to assess the effects of the explanatory variables on invertebrate assemblages and five groups, characterized by different habitat modification and/or features, were recognized. Four node variables determined the splits in the MRT analysis: channel reinforcement, tree-related bank and channel habitats, channel modification and bank modification. Continuity of trees in the river corridor diverged among MRT groups and significant differences among groups include presence of alders, extent of channel shading and substrate diversity. Also, the percentage of in-stream organic substrates, in particular CPOM/Xylal, showed highly significant differences among groups. For practical applications, thresholds for the extent of channel reinforcement (40%) and modification (10%) and for bank alteration (≈30%) were provided, that can be used to guide the implementation of restoration measures. In moderately altered river reaches, a significant extent of tree-related habitats (≈5%) can noticeably mitigate the effects of morphological alteration on aquatic invertebrates. The outcomes highlight the importance of riparian zone management as an opportune, achievable prospect in the restoration of Mediterranean temporary streams. The impact of bank and channel modification on ecological status (sensu WFD) was investigated and the tested benthic metrics, especially those based on abundance data, showed legible differences among MRT groups. Finally, bank and channel modification appears to be a potential threat for the conservation of a few Sardo-Corsican endemic species. The introduction of management criteria that

  16. Mining top-k frequent closed itemsets in data streams using sliding window

    International Nuclear Information System (INIS)

    Rehman, Z.; Shahbaz, M.

    2013-01-01

    Frequent itemset mining has become a popular research area in data mining community since the last few years. T here are two main technical hitches while finding frequent itemsets. First, to provide an appropriate minimum support value to start and user need to tune this minimum support value by running the algorithm again and again. Secondly, generated frequent itemsets are mostly numerous and as a result a number of association rules generated are also very large in numbers. Applications dealing with streaming environment need to process the data received at high rate, therefore, finding frequent itemsets in data streams becomes complex. In this paper, we present an algorithm to mine top-k frequent closed itemsets using sliding window approach from streaming data. We developed a single-pass algorithm to find frequent closed itemsets of length between user's defined minimum and maximum- length. To improve the performance of algorithm and to avoid rescanning of data, we have transformed data into bitmap based tree data structure. (author)

  17. Enrichment of Arsenic in Surface Water, Stream Sediments and Soils in Tibet.

    Science.gov (United States)

    Li, Shehong; Wang, Mingguo; Yang, Qiang; Wang, Hui; Zhu, Jianming; Zheng, Baoshan; Zheng, Yan

    2013-12-01

    Groundwater in sedimentary deposits in China, Southern, and Southeast Asia down gradient from the Tibetan plateau contain elevated As concentrations on a regional scale. To ascertain the possibility of source region As enrichment, samples of water (n=86), stream sediment (n=77) and soil (n=73) were collected from the Singe Tsangpo (upstream of the Indus River), Yarlung Tsangpo (upstream of the Brahmaputra River) and other drainage basins in Tibet in June of 2008. The average arsenic concentration in stream waters, sediments and soils was 58±70 μg/L (n=39, range 2-252 μg/L), 42±40 mg/kg (n=37, range 12-227 mg/kg), and 44±27mg/kg (n=28, range 12-84 mg/kg) respectively for the Singe Tsangpo and was 11±17 μg/L (n=30, range 2-83 μg/L), 28±11 mg/kg (n=28, range 2-61 mg/kg), and 30±34 mg/kg (n=21, range 6-173 mg/kg) respectively for the Yarlung Tsangpo. A dug well contained 195 μg/L of As. In addition to elevated As levels in surface and shallow groundwater of Tibet, hot spring and alkaline salt lake waters displayed very high As levels, reaching a maximum value of 5,985 μg/L and 10,626 μg/L As, respectively. The positive correlation between [As] and [Na]+[K] in stream waters indicates that these surface water arsenic enrichments are linked to the hot springs and/or salt lakes. Further, 24% of As in stream sediment is reductively leachable, with bulk As displaying a positive correlation with stream water As, suggesting sorption from stream water. In contrast, the fraction of reductively leachable As is negligible for soils and several rock samples, suggesting that As in them are associated with unweathered minerals. Whether the pronounced As anomaly found in Tibet affects the sedimentary As content in deltas downstream or not requires further study.

  18. The ventral stream offers more affordance and the dorsal stream more memory than believed

    NARCIS (Netherlands)

    Postma, Albert; van der Lubbe, Robert Henricus Johannes; Zuidhoek, Sander

    2002-01-01

    Opposed to Norman's proposal, processing of affordance is likely to occur not solely in the dorsal stream but also in the ventral stream. Moreover, the dorsal stream might do more than just serve an important role in motor actions. It supports egocentric location coding as well. As such, it would

  19. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery.

    Science.gov (United States)

    Kruse, Natalie A; DeRose, Lisa; Korenowsky, Rebekah; Bowman, Jennifer R; Lopez, Dina; Johnson, Kelly; Rankin, Edward

    2013-10-15

    Acid mine drainage (AMD) negatively impacts not only stream chemistry, but also aquatic biology. The ultimate goal of AMD treatment is restoration of the biological community, but that goal is rarely explicit in treatment system design. Hewett Fork in Raccoon Creek Watershed, Ohio, has been impacted by historic coal mining and has been treated with a calcium oxide doser in the headwaters of the watershed since 2004. All of the acidic inputs are isolated to a 1.5 km stretch of stream in the headwaters of the Hewett Fork watershed. The macroinvertebrate and fish communities have begun to recover and it is possible to distinguish three zones downstream of the doser: an impaired zone, a transition zone and a recovered zone. Alkalinity from both the doser and natural sources and physical stream parameters play a role in stream restoration. In Hewett Fork, natural alkaline additions downstream are higher than those from the doser. Both, alkaline additions and stream velocity drive sediment and metal deposition. Metal deposition occurs in several patterns; aluminum tends to deposit in regions of low stream velocity, while iron tends to deposit once sufficient alkalinity is added to the system downstream of mining inputs. The majority of metal deposition occurs upstream of the recovered zone. Both the physical stream parameters and natural alkalinity sources influence biological recovery in treated AMD streams and should be considered in remediation plans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Continuous ammonium enrichment of a woodland stream: uptake kinetics, leaf decomposition, and nitrification

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; Schulze, M S; Stark, R W; Barmeier, J C

    1983-01-01

    In order to test for nitrogen limitation and examine ammonium uptake by stream sediments, ammonium hydroxide was added continuously at concentrations averaging 100 /sup +/gl/sup -1/ for 70 days to a second-order reach of Walker Branch, an undisturbed woodland stream in Tennessee. Ammonium uptake during the first 4 h of addition corresponded to adsorption kinetics rather than to first-order uptake or to Michaelis-Menten kinetics. However, the calculated adsorption partition coefficient was two to four orders of magnitude greater than values reported for physical adsorption of ammonium, suggesting that the uptake was largely biotic. Mass balance indicated that the uptake of ammonium from the water could be accounted for by increased nitrogen content in benthic organic detritus. Nitrification, inferred from longitudinal gradients in NO/sub 3/, began soon after enrichment and increased dramatically near the end of the experiment. Both ammonium and nitrate concentrations dropped quickly to near background levels when input ceased, indicating little desorption or nitrification of excess nitrogen stored in the reach. There was no evidence of nitrogen limitation as measured by weight loss, oxygen consumption, phosphorus content, and macroinvertebrate density of red oak leaf packs, or by chlorophyll content and aufwuchs biomass on plexiglass slides. A continuous phosphorus enrichment 1 year earlier had demonstrated phosphorus limitation in Walker Branch. 38 references, 6 figures, 3 tables.