WorldWideScience

Sample records for single spectroscopic ccd

  1. Single nanoparticle tracking spectroscopic microscope

    Science.gov (United States)

    Yang, Haw [Moraga, CA; Cang, Hu [Berkeley, CA; Xu, Cangshan [Berkeley, CA; Wong, Chung M [San Gabriel, CA

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  2. arXiv Single-electron and single-photon sensitivity with a silicon Skipper CCD

    CERN Document Server

    Tiffenberg, Javier; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien

    2017-09-26

    We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068  e- rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while ...

  3. Ultrahigh-speed, high-sensitivity color camera with 300,000-pixel single CCD

    Science.gov (United States)

    Kitamura, K.; Arai, T.; Yonai, J.; Hayashida, T.; Ohtake, H.; Kurita, T.; Tanioka, K.; Maruyama, H.; Namiki, J.; Yanagi, T.; Yoshida, T.; van Kuijk, H.; Bosiers, Jan T.; Etoh, T. G.

    2007-01-01

    We have developed an ultrahigh-speed, high-sensitivity portable color camera with a new 300,000-pixel single CCD. The 300,000-pixel CCD, which has four times the number of pixels of our initial model, was developed by seamlessly joining two 150,000-pixel CCDs. A green-red-green-blue (GRGB) Bayer filter is used to realize a color camera with the single-chip CCD. The camera is capable of ultrahigh-speed video recording at up to 1,000,000 frames/sec, and small enough to be handheld. We also developed a technology for dividing the CCD output signal to enable parallel, highspeed readout and recording in external memory; this makes possible long, continuous shots up to 1,000 frames/second. As a result of an experiment, video footage was imaged at an athletics meet. Because of high-speed shooting, even detailed movements of athletes' muscles were captured. This camera can capture clear slow-motion videos, so it enables previously impossible live footage to be imaged for various TV broadcasting programs.

  4. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    International Nuclear Information System (INIS)

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-01-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.

  5. 3D digital image correlation using a single 3CCD colour camera and dichroic filter

    Science.gov (United States)

    Zhong, F. Q.; Shao, X. X.; Quan, C.

    2018-04-01

    In recent years, three-dimensional digital image correlation methods using a single colour camera have been reported. In this study, we propose a simplified system by employing a dichroic filter (DF) to replace the beam splitter and colour filters. The DF can be used to combine two views from different perspectives reflected by two planar mirrors and eliminate their interference. A 3CCD colour camera is then used to capture two different views simultaneously via its blue and red channels. Moreover, the measurement accuracy of the proposed method is higher since the effect of refraction is reduced. Experiments are carried out to verify the effectiveness of the proposed method. It is shown that the interference between the blue and red views is insignificant. In addition, the measurement accuracy of the proposed method is validated on the rigid body displacement. The experimental results demonstrate that the measurement accuracy of the proposed method is higher compared with the reported methods using a single colour camera. Finally, the proposed method is employed to measure the in- and out-of-plane displacements of a loaded plastic board. The re-projection errors of the proposed method are smaller than those of the reported methods using a single colour camera.

  6. Rapid identification of single microbes by various Raman spectroscopic techniques

    Science.gov (United States)

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2006-02-01

    A fast and unambiguous identification of microorganisms is necessary not only for medical purposes but also in technical processes such as the production of pharmaceuticals. Conventional microbiological identification methods are based on the morphology and the ability of microbes to grow under different conditions on various cultivation media depending on their biochemical properties. These methods require pure cultures which need cultivation of at least 6 h but normally much longer. Recently also additional methods to identify bacteria are established e.g. mass spectroscopy, polymerase chain reaction (PCR), flow cytometry or fluorescence spectroscopy. Alternative approaches for the identification of microorganisms are vibrational spectroscopic techniques. With Raman spectroscopy a spectroscopic fingerprint of the microorganisms can be achieved. Using UV-resonance Raman spectroscopy (UVRR) macromolecules like DNA/RNA and proteins are resonantly enhanced. With an excitation wavelength of e.g. 244 nm it is possible to determine the ratio of guanine/cytosine to all DNA bases which allows a genotypic identification of microorganisms. The application of UVRR requires a large amount of microorganisms (> 10 6 cells) e.g. at least a micro colony. For the analysis of single cells micro-Raman spectroscopy with an excitation wavelength of 532 nm can be used. Here, the obtained information is from all type of molecules inside the cells which lead to a chemotaxonomic identification. In this contribution we show how wavelength dependent Raman spectroscopy yields significant molecular information applicable for the identification of microorganisms on a single cell level.

  7. Single-silicon CCD-CMOS platform for multi-spectral detection from terahertz to x-rays.

    Science.gov (United States)

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P

    2017-11-15

    Charge-coupled devices (CCDs) are a well-established imaging technology in the visible and x-ray frequency ranges. However, the small quantum photon energies of terahertz radiation have hindered the use of this mature semiconductor technological platform in this frequency range, leaving terahertz imaging totally dependent on low-resolution bolometer technologies. Recently, it has been shown that silicon CCDs can detect terahertz photons at a high field, but the detection sensitivity is limited. Here we show that silicon, complementary metal-oxide-semiconductor (CMOS) technology offers enhanced detection sensitivity of almost two orders of magnitude, compared to CCDs. Our findings allow us to extend the low-frequency terahertz cutoff to less than 2 THz, nearly closing the technological gap with electronic imagers operating up to 1 THz. Furthermore, with the silicon CCD/CMOS technology being sensitive to mid-infrared (mid-IR) and the x-ray ranges, we introduce silicon as a single detector platform from 1 EHz to 2 THz. This overcomes the present challenge in spatially overlapping a terahertz/mid-IR pump and x-ray probe radiation at facilities such as free electron lasers, synchrotron, and laser-based x-ray sources.

  8. CCD and CMOS sensors

    Science.gov (United States)

    Waltham, Nick

    The charge-coupled device (CCD) has been developed primarily as a compact image sensor for consumer and industrial markets, but is now also the preeminent visible and ultraviolet wavelength image sensor in many fields of scientific research including space-science and both Earth and planetary remote sensing. Today"s scientific or science-grade CCD will strive to maximise pixel count, focal plane coverage, photon detection efficiency over the broadest spectral range and signal dynamic range whilst maintaining the lowest possible readout noise. The relatively recent emergence of complementary metal oxide semiconductor (CMOS) image sensor technology is arguably the most important development in solid-state imaging since the invention of the CCD. CMOS technology enables the integration on a single silicon chip of a large array of photodiode pixels alongside all of the ancillary electronics needed to address the array and digitise the resulting analogue video signal. Compared to the CCD, CMOS promises a more compact, lower mass, lower power and potentially more radiation tolerant camera.

  9. CCD's at TPC

    International Nuclear Information System (INIS)

    Zeller, M.E.

    1977-01-01

    The CCD, Charge Coupled Device, is an analog shift register for which application to the readout of particle detectors has recently been realized. These devices can be used to detect optical information directly, providing an automated readout for streamer or other optical chambers, or as a single input shift register, acting in this instance as a delay line for analog information. A description is given of the latter mode of operation and its utility as a readout method for drift chambers. Most of the information contained herein has been obtained from tests performed in connection with PEP TPC project, PEP-4. That detector will employ approximately 10 4 CCD's making it a reasonable testing ground for ISABELLE size detectors

  10. Single-Molecule Spectroscopic Investigations of Amphipathic Helix Formation

    Science.gov (United States)

    Cunningham, Joy Ann; Okamoto, Kenji; English, Douglas

    2004-03-01

    We are using single molecule spectroscopy to examine surface-induced conformational states occurring through interaction of a polypeptide with an interface. Specifically, we investigate the folding of amphipathic helices by using single-molecule fluorescence resonance energy transfer to construct peptide conformational distributions in solution and at interfaces. Analysis of the conformational distributions and kinetics of peptides in different environments reveals properties of the free energy surface for helix formation at an interface relative to formation in solution.

  11. New Design Concept for Universal CCD Controller

    Directory of Open Access Journals (Sweden)

    Wonyong Han

    1994-06-01

    Full Text Available Currently, the CCDs are widely used in astronomical observations either in direct imaging use or spectroscopic mode. However according to the recent technical advances, new large format CCDs are rapidly developed which have better performances with higher quantum efficiency and sensitivity. In many cases, some microprocessors have been adopted to deal with necessary digital logic for a CCD imaging system. This could often lack the flexibility of a system for a user to upgrade with new devices, especially of it is a commercial product. A new design concept has been explored which could provide the opportunity to deal with any format of devices from ant manufactures effectively for astronomical purposes. Recently available PLD (Programmable Logic Devices technology makes it possible to develop such digital circuit design, which can be integrated into a single component, instead of using microprocessors. The design concept could dramatically increase the efficiency and flexibility of a CCD imaging system, particularly when new or large format devices are available and to upgrade the performance of a system. Some variable system control parameters can be selected by a user with a wider range of choice. The software can support such functional requirements very conveniently. This approach can be applied not only to astronomical purpose, but also to some related fields, such as remote sensing and industrial applications.

  12. Observation of Frenkel and charge transfer excitons in pentacene single crystals using spectroscopic generalized ellipsometry

    NARCIS (Netherlands)

    Qi, Dongchen; Su, Haibin; Bastjan, M.; Jurchescu, O. D.; Palstra, T. M.; Wee, Andrew T. S.; Ruebhausen, M.; Rusydi, A.; Rübhausen, M.

    2013-01-01

    We report on the emerging and admixture of Frenkel and charge transfer (CT) excitons near the absorption onset in pentacene single crystals. Using high energy-resolution spectroscopic generalized ellipsometry with in-plane polarization dependence, the excitonic nature of three lowest lying

  13. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  14. Broadband Spectroscopic Thermoacoustic Characterization of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daniel R. Bauer

    2015-01-01

    Full Text Available Carbon nanotubes have attracted interest as contrast agents for biomedical imaging because they strongly absorb electromagnetic radiation in the optical and microwave regions. This study applies thermoacoustic (TA imaging and spectroscopy to measure the frequency-dependent absorption profile of single-walled carbon nanotubes (SWNT in the ranges of 2.7–3.1 GHz and 7–9 GHz using two tunable microwave sources. Between 7 and 9 GHz, the peak TA signal for solutions containing semiconducting and metallic SWNTs increased monotonically with a slope of 1.75 AU/GHz (R2=0.95 and 2.8 AU/GHz (R2=0.93, respectively, relative to a water baseline. However, after compensating for the background signal from water, it was revealed that the TA signal from metallic SWNTs increased exponentially within this frequency band. Results suggest that TA imaging and spectroscopy could be a powerful tool for quantifying the absorption properties of SWNTs and optimizing their performance as contrast agents for imaging or heat sources for thermal therapy.

  15. RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

    International Nuclear Information System (INIS)

    Williams, S. J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W.

    2013-01-01

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD–16°4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  16. Single hole spectroscopic strength in 98Ru through the 99Ru(d,t) reaction

    International Nuclear Information System (INIS)

    Rodrigues, M.R.D.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Barbosa, M.D.L.; Silva, G.B. da; Ukita, G.M.

    2002-01-01

    The 99 Ru(d,t) 98 Ru reaction was measured for the first time at 16 MeV incident energy with the Sao Paulo Pelletron-Enge-spectrograph facility employing the nuclear emulsion technique. In all, up to 3.5 MeV, 23 levels were detected, eight of them new; angular distributions are presented for all of them. Least squares fits of distorted wave Born approximation one-neutron pickup predictions to the rather well structured experimental angular distributions enabled the determination of l transfers and of the corresponding spectroscopic factors for 19 of these states, some being tentative attributions. Only transfers of l=0, 2, and 4 were observed. Several states were populated through single l transfers. A pure l=2 transfer is associated with the 2 1 + level and with several other states which are considered collective, as well as with the (4 + ) state at 2.277 MeV, which presents the highest spectroscopic strength. Considering five valence neutrons above the N=50 core, only 41% of the spectroscopic strength expected for 99 Ru was detected

  17. pnCCD for photon detection from near-infrared to X-rays

    International Nuclear Information System (INIS)

    Meidinger, Norbert; Andritschke, Robert; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Strueder, Lothar

    2006-01-01

    A pnCCD is a special type of charge-coupled device developed for spectroscopy and imaging of X-rays with high time resolution and quantum efficiency. Its most famous application is the operation on the XMM-Newton satellite, an X-ray astronomy mission that was launched by the European space agency in 1999. The excellent performance of the focal plane camera has been maintained for more than 6 years in orbit. The energy resolution in particular has shown hardly any degradation since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. This 'frame-store pnCCD' shows an enhanced performance compared to the XMM-Newton type of pnCCD. Now, more options in device design and operation are available to tailor the detector to its respective application. Part of this concept is a programmable analog signal processor, which has been developed for the readout of the CCD signals. The electronic noise of the new detector has a value of only 2 electrons equivalent noise charge (ENC), which is less than half of the figure achieved for the XMM-Newton-type pnCCD. The energy resolution for the Mn-K α line at 5.9 keV is approximately 130 eV FWHM. We have close to 100% quantum efficiency for both low- and high-energy photon detection (e.g. the C-K line at 277 eV, and the Ge-K α line at 10 keV, respectively). Very high frame rates of 1000 images/s have been achieved due to the ultra-fast readout accomplished by the parallel architecture of the pnCCD and the analog signal processor. Excellent spectroscopic performance is shown even at the relatively high operating temperature of -25 deg. C that can be achieved by a Peltier cooler. The applications of the low-noise and fast pnCCD detector are not limited to the detection of X-rays. With an anti-reflective coating deposited on the photon entrance window, we achieve high quantum efficiency also for near-infrared and optical

  18. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  19. Origin and spectroscopic determination of trigonal anisotropy in a heteronuclear single-molecule magnet

    Science.gov (United States)

    Sorace, L.; Boulon, M.-E.; Totaro, P.; Cornia, A.; Fernandes-Soares, J.; Sessoli, R.

    2013-09-01

    W-band (ν ≅ 94 GHz) electron paramagnetic resonance (EPR) spectroscopy was used for a single-crystal study of a star-shaped Fe3Cr single-molecule magnet (SMM) with crystallographically imposed trigonal symmetry. The high resolution and sensitivity accessible with W-band EPR allowed us to determine accurately the axial zero-field splitting terms for the ground (S = 6) and first two excited states (S = 5 and S = 4). Furthermore, spectra recorded by applying the magnetic field perpendicular to the trigonal axis showed a π/6 angular modulation. This behavior is a signature of the presence of trigonal transverse magnetic anisotropy terms whose values had not been spectroscopically determined in any SMM prior to this work. Such in-plane anisotropy could only be justified by dropping the so-called “giant spin approach” and by considering a complete multispin approach. From a detailed analysis of experimental data with the two models, it emerged that the observed trigonal anisotropy directly reflects the structural features of the cluster, i.e., the relative orientation of single-ion anisotropy tensors and the angular modulation of single-ion anisotropy components in the hard plane of the cluster. Finally, since high-order transverse anisotropy is pivotal in determining the spin dynamics in the quantum tunneling regime, we have compared the angular dependence of the tunnel splitting predicted by the two models upon application of a transverse field (Berry-phase interference).

  20. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga)

    Science.gov (United States)

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  1. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.

    Science.gov (United States)

    Roger, Magali; Biaso, Frédéric; Castelle, Cindy J; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2014-01-01

    Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

  2. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.

    Directory of Open Access Journals (Sweden)

    Magali Roger

    Full Text Available Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

  3. Characterisation of different single and multilayer films using phase modulated spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Das, N.C.; Bhattacharyya, D.; Thakur, S.

    1998-06-01

    Different single layers and multilayer coatings deposited by e-beam evaporation and r.f. sputtering techniques have been characterised by the Phase Modulated Spectroscopic Ellipsometer, installed recently in the Spectroscopy Division, B.A.R.C. The Phase Modulated technique provides a faster and more accurate data acquisition process than the conventional ellipsometry. Measurements have been done on single layers of Cu, Si and ZrO 2 films and on multilayer thin films devices e.g., high reflectivity mirror, beam combiner, beam splitter, narrow band filter etc. consisting of several bilayers of TiO 2 /SiO 2 . The measured Ellipsometry spectra is then fitted with a theoretical spectra generated assuming an appropriate model regarding the sample. The layer thickness and composition have been used as fitting parameters. The optical constants of the substrates have been supplied and a trial dispersion relation have been used for the layers. In case of inhomogeneous layers, trial compositions have been given for the individual components for each layer. The roughness of the layers has been taken into account by assuming the film to be an inhomogeneous mixture of material and voids. The fittings have been done objectively by minimising the squared difference (χ 2 ) between the measured and calculated values of the ellipsometric parameters and thus accurate information have been derived regarding the thickness and optical constants (viz, the refractive index and extinction coefficient) of the different layers, the surface roughness and the inhomogeneities present in the layers. (author)

  4. Interaction of amidated single-walled carbon nanotubes with protein by multiple spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lili [China Pharmaceutical University, Nanjing 210009 (China); The Nursing College of Pingdingshan University, Pingdingshan 467000 (China); Lin, Rui [Yancheng Health Vocational and Technical College, Yancheng 224005 (China); He, Hua, E-mail: dochehua@163.com [China Pharmaceutical University, Nanjing 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009 (China); Sun, Meiling, E-mail: sml-nir@sohu.com [China Pharmaceutical University, Nanjing 210009 (China); Jiang, Li; Gao, Mengmeng [China Pharmaceutical University, Nanjing 210009 (China)

    2014-01-15

    The aim of this work was to investigate the detailed interaction between BSA and amidated single walled carbon nanotubes (e-SWNTs) in vitro. Ethylenediamine (EDA) was successfully linked on the surface of single-walled carbon nanotubes (SWNTs) via acylation to improve their dispersion and to introduce active groups. Bovine serum albumin (BSA) was selected as the template protein to inspect the interaction of e-SWNTs with protein. Decreases in fluorescence intensity of BSA induced by e-SWNTs demonstrated the occurrence of interaction between BSA and e-SWNTs. Quenching parameters and different absorption spectra for e-SWNTs–BSA show that the quenching effect of e-SWNTs was static quenching. Hydrophobic force had a leading contribution to the binding roles of BSA on e-SWNTs, which was confirmed by positive enthalpy change and entropy change. The interference of Na{sup +} with the quenching effect of e-SWNTs authenticated that electrostatic force existed in the interactive process simultaneously. The hydrophobicity of amino acid residues markedly increased with the addition of e-SWNTs viewed from UV spectra of BSA. The content of α-helix structure in BSA decreased by 6.8% due to the addition of e-SWNTs, indicating that e-SWNTs have an effect on the secondary conformation of BSA. -- Highlights: • The interaction between e-SWNTs and BSA was investigated by multiple spectroscopic methods. • Quenching mechanism was static quenching. • Changes in structure of BSA were inspected by synchronous fluorescence, UV–vis and CD spectrum.

  5. Polarized spectroscopic properties of Nd3+-doped KGd(WO4)2 single crystal

    International Nuclear Information System (INIS)

    Chen Yujin; Lin Yanfu; Gong Xinghong; Tan Qiguang; Zhuang Jian; Luo Zundu; Huang Yidong

    2007-01-01

    The polarized absorption spectra, infrared fluorescence spectra, upconversion visible fluorescence spectra, and fluorescence decay curve of orientated Nd 3+ :KGd(WO 4 ) 2 crystal were measured at room-temperature. Some important spectroscopic parameters were investigated in detail in the framework of the Judd-Ofelt theory and the Fuchtbauer-Ladenburg formula. The effect of the crystal structure on the spectroscopic properties of the Nd 3+ ions was analyzed. The relation among the spectroscopic parameters and the laser performances of the Nd 3+ :KGd(WO 4 ) 2 crystal was discussed

  6. BRORFELDE SCHMIDT CCD CATALOG

    International Nuclear Information System (INIS)

    Zacharias, N.; Finch, C.; Wycoff, G. L.; Einicke, O. H.; Augustesen, K.; Clausen, J. V.; Hoeg, E.

    2010-01-01

    The Brorfelde Schmidt CCD Catalog (BSCC) contains about 13.7 million stars, north of +49 0 decl. with precise positions and V, R photometry. The catalog has been constructed from the reductions of 18,667 CCD frames observed with the Brorfelde Schmidt Telescope between 2000 and 2007. The Tycho-2 catalog was used for astrometric and photometric reference stars. Errors of individual positions are about 20-200 mas for stars in the R = 10-18 mag range. External comparisons with the Two Micron All-Sky Survey (2MASS) and Sloan Digital Sky Survey reveal possible small systematic errors in the BSCC of up to about 30 mas. The catalog is supplemented with J, H, and K s magnitudes from the 2MASS catalog.

  7. In vivo single-shot (13)C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    DEFF Research Database (Denmark)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas

    2014-01-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are nece......Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations...

  8. Raman spectroscopic monitoring of the bioeffects of nitroglycerin on Hb-O II in single red blood cell

    Science.gov (United States)

    Chiang, Huihua Kenny; Ruan, Hung-Shiang; Cheng, Hung-You; Fang, Tung-Ting

    2007-02-01

    Raman spectroscopy has been shown to have the potential for providing oxygenated ability of erythrocytes. Raman line at 1638 cm-1 has also been reported as one significant oxygenic indicator for erythrocytes. In this research, we develop the Raman spectroscopic monitoring of the bioeffects of Nitroglycerin on hemoglobin oxygen saturation in a single red blood cell (RBC). Nitroglycerin has been frequently used in the management of angina pectoris. Nitroglycerin liberates nitric oxide (NO) to blood vessels. NO is an oxidizer that easily converts hemoglobin to methemoglobin. The conversion may cause the decrease of oxygenated ability of erythrocytes. In this study, we observed the oxidize state of erythrocytes caused by the over dosage of Nitroglycerin. When the dose of Nitroglycerin exceeds 2x10 -4 M, the oxygenic state of erythrocytes decreases significantly. The Raman spectroscopic results demonstrate the observation of the bioeffects of Nitroglycerin on hemoglobin.

  9. Spectroscopic ellipsometric investigation of clean and oxygen covered copper single crystal surfaces

    NARCIS (Netherlands)

    Hanekamp, L.J.; Lisowski, W.F.; Bootsma, G.A.

    1982-01-01

    Spectroscopic ellipsometric measurements (400–820 nm) have been performed on clean and oxygen covered Cu(110) and Cu(111) surfaces in an AES-LEED UHV system. The complex dielectric functions of the clean surfaces were calculated from measurements between room temperature and 600 K. In contrast with

  10. Growth, structure, Hirshfeld surface and spectroscopic properties of 2-amino-4-hydroxy-6-methylpyrimidinium-2,3-pyrazinedicorboxylate single crystal

    Science.gov (United States)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Rodrigues, Vítor Hugo Nunes; Ahmad, Shabbir

    2018-03-01

    The present work is focused on the crystal structure, vibrational spectroscopy and DFT calculations of hydrogen bonded 2,3-pyrazinedicorboxylic acid and 2-amino-4-hydroxy-6-methylpyrimidine (PDCA-.AHMP+) crystal. The crystal structure has been determined using single crystal X-ray diffraction analysis which shows that the crystal belongs to monoclinic space group P21/n. The PDCA-.AHMP+ crystal has been characterized by FTIR, FT-Raman and FT-NMR spectroscopic techniques. The FTIR and FT-Raman spectra of the complex have unique spectroscopic feature as compared with those of the starting material to confirm salt formation. The theoretical vibrational studies have been performed to understand the modes of the vibrations of asymmetric unit of the complex by DFT methods. Hirschfeld surface and 2D fingerprint plots analyses were carried out to investigate the intermolecular interactions and its contribution in the building of PDCA-.AHMP+ crystal. The experimental and simulated 13C and 1H NMR studies have assisted in structural analysis of PDCA-.AHMP+ crystal. The electronic spectroscopic properties of the complex were explored by the experimental as well as theoretical electronic spectra simulated using TD-DFT/IEF-PCM method at B3LYP/6-311++G (d,p) level of theory. In addition, frontier molecular orbitals, molecular electrostatic potential map (MEP) and nonlinear optical (NLO) properties using DFT method have been also presented.

  11. STIS-01 CCD Functional

    Science.gov (United States)

    Valenti, Jeff

    2001-07-01

    This activity measures the baseline performance and commandability of the CCD subsystem. Only primary amplifier D is used. Bias, Dark, and Flat Field exposures are taken in order to measure read noise, dark current, CTE, and gain. Numerous bias frames are taken to permit construction of "superbias" frames in which the effects of read noise have been rendered negligible. Dark exposures are made outside the SAA. Full frame and binned observations are made, with binning factors of 1x1 and 2x2. Finally, tungsten lamp exposures are taken through narrow slits to confirm the slit positions in the current database. All exposures are internals. This is a reincarnation of SM3A proposal 8502 with some unnecessary tests removed from the program.

  12. Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications

    International Nuclear Information System (INIS)

    Bensalah, A.; Ito, M.; Guyot, Y.; Goutaudier, C.; Jouini, A.; Brenier, A.; Sato, H.; Fukuda, T.; Boulon, G.

    2007-01-01

    Spectroscopic characterization is carried out to identify Stark's levels of Yb 3+ transitions in several fluoride crystals grown either by the Czochralski technique or by the laser-heated pedestal growth method. Yb 3+ concentration dependence of the decay time is analyzed in order to understand involved concentration quenching mechanisms. Laser tests under saphire:Ti pumping are presented for all our materials as well as under diode pumping for Yb:CaF 2

  13. Noise analysis for CCD-based ultraviolet and visible spectrophotometry.

    Science.gov (United States)

    Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P

    2015-09-20

    We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4)  AU for the AvaSpec-3648 and 5.6×10(-4)  AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance.

  14. Correlated spectroscopic imaging of calf muscle in three spatial dimensions using group sparse reconstruction of undersampled single and multichannel data.

    Science.gov (United States)

    Wilson, Neil E; Burns, Brian L; Iqbal, Zohaib; Thomas, M Albert

    2015-11-01

    To implement a 5D (three spatial + two spectral) correlated spectroscopic imaging sequence for application to human calf. Nonuniform sampling was applied across the two phase encoded dimensions and the indirect spectral dimension of an echo planar-correlated spectroscopic imaging sequence. Reconstruction was applied that minimized the group sparse mixed ℓ2,1-norm of the data. Multichannel data were compressed using a sensitivity map-based approach with a spatially dependent transform matrix and utilized the self-sparsity of the individual coil images to simplify the reconstruction. Single channel data with 8× and 16× undersampling are shown in the calf of a diabetic patient. A 15-channel scan with 12× undersampling of a healthy volunteer was reconstructed using 5 virtual channels and compared to a fully sampled single slice scan. Group sparse reconstruction faithfully reconstructs the lipid cross peaks much better than ℓ1 minimization. COSY spectra can be acquired over a 3D spatial volume with scan time under 15 min using echo planar readout with highly undersampled data and group sparse reconstruction. © 2015 Wiley Periodicals, Inc.

  15. CCD readout of GEM-based neutron detectors

    CERN Document Server

    Fraga, F A F; Fetal, S T G; Fraga, M; Guérard, B; Manzini, G; Margato, L M S; Oed, A; Policarpo, Armando; Vuure, T V

    2002-01-01

    We report on the optical readout of the gas electron multiplier (GEM) operated with a gaseous mixture suitable for the detection of thermal neutrons: sup 3 He-CF sub 4. A CCD system operating in the 400-1000 nm band was used to collect the light. Spectroscopic data on the visible and NIR scintillation of He-CF sub 4 are presented. Images of the tracks of the proton and triton recorded with a triple GEM detector are also shown.

  16. Design of a CCD Camera for Space Surveillance

    Science.gov (United States)

    2016-03-05

    Analog to Digital Converter (A/D) a reference above ground. When the actual pixel voltage is clocked through, the reset level is subtracted and the bias...low leakage to minimize input current errors. Figure 5 CDS Block Diagram 5. CCD DRIVE CIRCUIT The CCD requires image clocks to move the collected...the image clocks . The 4427 is a single ended driver which requires level translating. In this design analog switches convert the 3.3 V digital

  17. CCD developed for scientific application by Hamamatsu

    CERN Document Server

    Miyaguchi, K; Dezaki, J; Yamamoto, K

    1999-01-01

    We have developed CCDs for scientific applications that feature a low readout noise of less than 5 e-rms and low dark current of 10-25 pA/cm sup 2 at room temperature. CCDs with these characteristics will prove extremely useful in applications such as spectroscopic measurement and dental radiography. In addition, a large-area CCD of 2kx4k pixels and 15 mu m square pixel size has recently been completed for optical use in astronomical observations. Applications to X-ray astronomy require the most challenging device performance in terms of deep depletion, high CTE, and focal plane size, among others. An abuttable X-ray CCD, having 1024x1024 pixels and 24 mu m square pixel size, is to be installed in an international space station (ISS). We are now striving to achieve the lowest usable cooling temperature by means of a built-in TEC with limited power consumption. Details on the development status are described in this report. We would also like to present our future plans for a large active area and deep depleti...

  18. Spectroscopic peculiarities of praseodymium impurities in Lu{sub 3}Al{sub 5}O{sub 12} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Strzep, Adam, E-mail: A.Strzep@int.pan.wroc.pl [Institute of Low Temperatures and Structure Research PAS, Okolna 2 Str., 50-422 Wroclaw (Poland); Ryba-Romanowski, Witold; Lisiecki, Radoslaw; Solarz, Piotr [Institute of Low Temperatures and Structure Research PAS, Okolna 2 Str., 50-422 Wroclaw (Poland); Xu, Xiaodong [Key Laboratory of Transparent and Opto-Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Di, Juqing [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, Jun [Key Laboratory of Transparent and Opto-Functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer Spectroscopic properties of Lu{sub 3}Al{sub 5}O{sub 12}:Pr 1 at.% single crystal have been investigated. Black-Right-Pointing-Pointer Lifetime of {sup 1}D{sub 2} level is strongly dependent on temperature. Black-Right-Pointing-Pointer Energy transfer form 4f{sup 1}-5d{sup 1} states to 4f{sup 2} is dependent on temperature. Black-Right-Pointing-Pointer Possible optical pumping area for laser action generation is proposed. - Abstract: Spectroscopic properties of lutetium aluminum garnet Lu{sub 3}Al{sub 5}O{sub 12} (LuAG) single crystal doped with 1 at.% of Pr{sup 3+} were investigated. The crystal was grown by the Czochralski method. Optical absorption, emission, excitation spectra and luminescence decay curves were recorded for this system in 5-500 K temperature range. Excitation spectra in VUV-UV range (150-330 nm) were also measured exploiting synchrotron radiation. It has been found that among bands of luminescence related to the {sup 3}P{sub J}, {sup 1}D{sub 2} {yields} {sup 3}H{sub J}, {sup 3}F{sub J} transition of Pr{sup 3+} in the visible region the {sup 3}P{sub 0} {yields} {sup 3}H{sub 4} one, occurring ca. 488 nm, is the most prominent. Luminescence lifetimes for the {sup 3}P{sub 0,1} and {sup 1}D{sub 2} levels were estimated to be 13 and 200 {mu}s respectively (at room temperature). VUV-excited emission spectrum stretches over the whole visible region. It has been concluded that the material under study is a promising phosphor that can be efficiently pumped by broad absorption bands centered at 240 and 280 nm.

  19. High-speed CCD camera at NAOC

    Science.gov (United States)

    Zhao, Zhaowang; Wang, Wei; Liu, Yangbin

    2006-06-01

    A high speed CCD camera has been completed at the National Astronomical Observatories of China (NAOC). A Kodak CCD was used in the camera. Two output ports are used to read out CCD data and total speed achieved 60M pixels per second. The Kodak KAI-4021 image sensor is a high-performance 2Kx2K-pixel interline transfer device. The 7.4μ square pixels with micro lenses provide high sensitivity and the large full well capacity results in high dynamic range. The inter-line transfer structure provides high quality image and enables electronic shuttering for precise exposure control. The electronic shutter provides a method of precisely controlling the image exposure time without any mechanical components. The camera is controlled by a NIOS II family of embedded processors, which is Altera's second-generation soft-core embedded processor for FPGAs. The powerful embedded processors make the camera with splendid features to satisfy continuously appearing new observational requirements. This camera is very flexible and is easy to implement new special functions. Since FPGA and other peripheral logic signals are triggered by a single master clock, the whole system is perfectly synchronized. By using this technique the camera cuts off the noise dramatically.

  20. Polyvinylchloride-Single-Walled Carbon Nanotube Composites: Thermal and Spectroscopic Properties

    Directory of Open Access Journals (Sweden)

    Mircea Chipara

    2012-01-01

    Full Text Available Nanocomposites of single-walled carbon nanotubes dispersed within polyvinylchloride have been obtained by using the solution path. High-power sonication was utilized to achieve a good dispersion of carbon nanotubes. Thermogravimetric analysis revealed that during the synthesis, processing, or thermal analysis of these nanocomposites the released chlorine is functionalizing the single-walled carbon nanotubes. The loading of polyvinylchloride by single-walled carbon nanotubes increases the glass transition temperature of the polymeric matrix, demonstrating the interactions between macromolecular chains and filler. Wide Angle X-Ray Scattering data suggested a drop of the crystallite size and of the degree of crystallinity as the concentration of single-walled carbon nanotubes is increased. The in situ chlorination and amorphization of nanotube during the synthesis (sonication step is confirmed by Raman spectroscopy.

  1. CCD TV camera, TM1300

    International Nuclear Information System (INIS)

    Takano, Mitsuo; Endou, Yukio; Nakayama, Hideo

    1982-01-01

    Development has been made of a black-and-white TV camera TM 1300 using an interline-transfer CCD, which excels in performance frame-transfer CCDs marketed since 1980: it has a greater number of horizontal picture elements and far smaller input power (less than 2 W at 9 V), uses hybrid ICs for the CCD driver unit to reduce the size of the camera, has no picture distortion, no burn-in; in addition, it has peripheral equipment, such as the camera housing and the pan and till head miniaturized as well. It is also expected to be widened in application to industrial TV. (author)

  2. Photoacoustic and dielectric spectroscopic studies of 4-dimethylamino-n-methyl-4-stilbazolium tosylate single crystal: An efficient terahertz emitter

    Science.gov (United States)

    Manivannan, M.; Martin Britto Dhas, S. A.; Jose, M.

    2016-12-01

    Bulk terahertz emitting single crystal of 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) was synthesized by condensation method and grown by slow solvent evaporation technique from methanol. The structure and cell parameters of the grown crystals were derived from single crystal and powder X-ray diffraction analyses and the optical properties of the crystal were analyzed by UV-Vis Spectrophotometer. The presence of functional groups was identified by FTIR and FT-Raman spectroscopic studies. We demonstrated that in DAST crystal, the thermal transport properties such as thermal conductivity, thermal diffusivity and thermal effusivity are better than several well recognized standard materials using photoacoustic spectrophotometer. The dielectric measurement was made as a function of frequency (1 Hz-35 MHz) at different temperatures (30-200 °C). The dielectric constant and dielectric loss were found to be strongly dependent on temperature and frequency of the applied electric field. The semicircle in the cole-cole plot showed the presence of dielectric relaxation in the crystal with its diameter representing the resistance of the crystal. The resistivity and ac conductivity were calculated from the measured dielectric data.

  3. Defects in Individual Semiconducting Single Wall Carbon Nanotubes: Raman Spectroscopic and in Situ Raman Spectroelectrochemical Study

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Hsieh, Y. P.; Farhat, H.; Kavan, Ladislav; Hofmann, M.; Kong, J.; Dresselhaus, M. S.

    2010-01-01

    Roč. 10, č. 11 (2010), s. 4619-4626 ISSN 1530-6984 R&D Projects: GA ČR GC203/07/J067; GA AV ČR IAA400400804; GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : single wall carbon nanotubes * Raman spectroscopy * defects Subject RIV: CG - Electrochemistry Impact factor: 12.186, year: 2010

  4. CCD characterization and measurements automation

    Czech Academy of Sciences Publication Activity Database

    Kotov, I.V.; Frank, J.; Kotov, A.I.; Kubánek, Petr; O´Connor, P.; Prouza, Michael; Radeka, V.; Takacs, P.

    2012-01-01

    Roč. 695, Dec (2012), 188-192 ISSN 0168-9002 R&D Projects: GA MŠk ME09052 Institutional research plan: CEZ:AV0Z10100502 Keywords : CCD * characterization * test automation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.142, year: 2012

  5. Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles.

    Science.gov (United States)

    Knight, Mark W; Coenen, Toon; Yang, Yang; Brenny, Benjamin J M; Losurdo, Maria; Brown, April S; Everitt, Henry O; Polman, Albert

    2015-02-24

    Gallium has recently been demonstrated as a phase-change plasmonic material offering UV tunability, facile synthesis, and a remarkable stability due to its thin, self-terminating native oxide. However, the dense irregular nanoparticle (NP) ensembles fabricated by molecular-beam epitaxy make optical measurements of individual particles challenging. Here we employ hyperspectral cathodoluminescence (CL) microscopy to characterize the response of single Ga NPs of various sizes within an irregular ensemble by spatially and spectrally resolving both in-plane and out-of-plane plasmonic modes. These modes, which include hybridized dipolar and higher-order terms due to phase retardation and substrate interactions, are correlated with finite difference time domain (FDTD) electrodynamics calculations that consider the Ga NP contact angle, substrate, and native Ga/Si surface oxidation. This study experimentally confirms previous theoretical predictions of plasmonic size-tunability in single Ga NPs and demonstrates that the plasmonic modes of interacting Ga nanoparticles can hybridize to produce strong hot spots in the ultraviolet. The controlled, robust UV plasmonic resonances of gallium nanoparticles are applicable to energy- and phase-specific applications such as optical memory, environmental remediation, and simultaneous fluorescence and surface-enhanced Raman spectroscopies.

  6. Photoluminescence and positron annihilation spectroscopic investigation on a H(+) irradiated ZnO single crystal.

    Science.gov (United States)

    Sarkar, A; Chakrabarti, Mahuya; Sanyal, D; Bhowmick, D; Dechoudhury, S; Chakrabarti, A; Rakshit, Tamita; Ray, S K

    2012-08-15

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H(+) ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a 'hydrogen at oxygen vacancy' type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ∼4 × 10(17) cm(-3) (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ∼175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  7. Spectroscopic characterizations of individual single-crystalline GaN nanowires in visible/ultra-violet regime.

    Science.gov (United States)

    Wu, Chien-Ting; Chu, Ming-Wen; Chen, Li-Chyong; Chen, Kuei-Hsien; Chen, Chun-Wei; Chen, Cheng Hsuan

    2010-10-01

    Spectroscopic investigations of individual single-crystalline GaN nanowires with a lateral dimensions of approximately 30-90nm were performed using the spatially resolved technique of electron energy-loss spectroscopy in conjunction with scanning transmission electron microscope showing a 2-A electron probe. Positioning the electron probe upon transmission impact and at aloof setup with respect to the nanomaterials, we explored two types of surface modes intrinsic to GaN, surface exciton polaritons at approximately 8.3eV (approximately 150nm) and surface guided modes at 3.88eV (approximately 320nm), which are in visible/ultra-violet spectral regime above GaN bandgap of approximately 3.3eV (approximately 375nm) and difficult to access by conventional optical spectroscopies. The explorations of these electromagnetic resonances might expand the current technical interests in GaN nanomaterials from the visible/UV range below approximately 3.5eV to the spectral regime further beyond.

  8. Spectroscopic properties of the CaNb{sub 2}O{sub 6}:Pr{sup 3+} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Macalik, L.; Maczka, M. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw (Poland); Hanuza, J. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw (Poland); Department of Bioorganic Chemistry, Faculty of Engineering and Economics, Wroclaw University of Economics, 118/120 Komandorska str., 53-345 Wroclaw (Poland)], E-mail: j.hanuza@int.pan.wroc.pl; Godlewska, P. [Department of Bioorganic Chemistry, Faculty of Engineering and Economics, Wroclaw University of Economics, 118/120 Komandorska str., 53-345 Wroclaw (Poland); Solarz, P.; Ryba-Romanowski, W. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw (Poland); Kaminskii, A.A. [Joint Open Laboratory for Laser Crystals and Precise Laser Systems, Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation)

    2008-02-28

    The spectroscopic measurements of the calcium niobate CaNb{sub 2}O{sub 6} (columbite) single crystal doped with trivalent praseodymium ions have been performed. The polarised optical absorption and emission spectra as well as luminescence decay curves of this material have been recorded. The absorption spectra consist of well-resolved transitions from the {sup 3}H{sub 4} ground state to the {sup 3}P{sub J}, {sup 1}D{sub J}, {sup 1}G{sub J}, {sup 3}F{sub J} and {sup 3}H{sub J} levels. The strongest bands correspond to the {sup 3}H{sub 4} {yields} {sup 3}P{sub 0} and {sup 3}H{sub 4} {yields} {sup 3}F{sub 2} transitions. The former band is composed of three components of different intensity. This suggests the existence of three different centers in the CaNb{sub 2}O{sub 6} crystal for the Pr{sup 3+} ions that substitute for Ca{sup 2+}. The emission spectra of the crystal studied show clear temperature and polarisation dependence. The strongest band of the luminescence corresponds to the {sup 1}D{sub 2} {yields} {sup 3}H{sub 4} transition at 610 nm with small bandwidth and high intensity. The lifetime of the {sup 1}D{sub 2} level increases from 59 {mu}s to 78 {mu}s when temperature decreases from 300 K to 50 K.

  9. Spectroscopic investigation of Dy3+:Lu2Si2O7 single crystal: A potential 589 nm laser medium

    Science.gov (United States)

    Huang, Jianhui; Chen, Yujin; Huang, Jianhua; Gong, Xinghong; Lin, Yanfu; Luo, Zundu; Huang, Yidong

    2017-10-01

    A trivalent dysprosium-doped Lu2Si2O7 single crystal was grown by the Czochralski method. Segregation coefficient of Dy3+ ion in the crystal is about 0.56. Spectroscopic properties of the crystal were investigated at room temperature. In particular, the polarized absorption spectra were analyzed using the Judd-Ofelt theory and the intensity parameters were determined. Then the spontaneous transition probabilities, branching ratios, and radiative lifetime related to the 4F9/2 multiplet were calculated. Emission cross-section for the 4F9/2 → 6H13/2 transition at 589 nm is up to 1.27 × 10-21 cm2 for E//Y polarization. Thermal conductivity of the crystal was measured to be 9.46 Wm-1K-1 at room temperature. The experimental results show that the Dy3+:Lu2Si2O7 crystal is a promising gain medium for solid state 589 nm laser.

  10. Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study.

    Science.gov (United States)

    Kalbac, Martin; Hsieh, Ya-Ping; Farhat, Hootan; Kavan, Ladislav; Hofmann, Mario; Kong, Jing; Dresselhaus, Mildred S

    2010-11-10

    Raman spectroscopy and in situ Raman spectroelectrochemistry have been used to study the influence of defects on the Raman spectra of semiconducting individual single-walled carbon nanotubes (SWCNTs). The defects were created intentionally on part of an originally defect-free individual semiconducting nanotube, which allowed us to analyze how defects influence this particular nanotube. The formation of defects was followed by Raman spectroscopy that showed D band intensity coming from the defective part and no D band intensity coming from the original part of the same nanotube. It is shown that the presence of defects also reduces the intensity of the symmetry-allowed Raman features. Furthermore, the changes to the Raman resonance window upon the introduction of defects are analyzed. It is demonstrated that defects lead to both a broadening of the Raman resonance profile and a decrease in the maximum intensity of the resonance profile. The in situ Raman spectroelectrochemical data show a doping dependence of the Raman features taken from the defective part of the tested SWCNT.

  11. Analysis of single-molecule fluorescence spectroscopic data with a Markov-modulated Poisson process.

    Science.gov (United States)

    Jäger, Mark; Kiel, Alexander; Herten, Dirk-Peter; Hamprecht, Fred A

    2009-10-05

    We present a photon-by-photon analysis framework for the evaluation of data from single-molecule fluorescence spectroscopy (SMFS) experiments using a Markov-modulated Poisson process (MMPP). A MMPP combines a discrete (and hidden) Markov process with an additional Poisson process reflecting the observation of individual photons. The algorithmic framework is used to automatically analyze the dynamics of the complex formation and dissociation of Cu2+ ions with the bidentate ligand 2,2'-bipyridine-4,4'dicarboxylic acid in aqueous media. The process of association and dissociation of Cu2+ ions is monitored with SMFS. The dcbpy-DNA conjugate can exist in two or more distinct states which influence the photon emission rates. The advantage of a photon-by-photon analysis is that no information is lost in preprocessing steps. Different model complexities are investigated in order to best describe the recorded data and to determine transition rates on a photon-by-photon basis. The main strength of the method is that it allows to detect intermittent phenomena which are masked by binning and that are difficult to find using correlation techniques when they are short-lived.

  12. Jig Aligns Shadow Mask On CCD

    Science.gov (United States)

    Matus, Carlos V.

    1989-01-01

    Alignment viewed through microscope. Alignment jig positions shadow mask on charge-coupled device (CCD) so metal film deposited on it precisely. Allows CCD package to be inserted and removed without disturbing alignment of mask. Holds CCD packages securely and isolates it electrostatically while providing electrical contact to each of its pins. When alignment jig assembled with CCD, used to move mask under micrometer control.

  13. Image differencing using masked CCD

    International Nuclear Information System (INIS)

    Rushbrooke, J.G.; Ansorge, R.E.; Webber, C.J. St. J.

    1987-01-01

    A charge coupled device has some of its ''pixels'' masked by a material which is opaque to the radiation to which the device is to be exposed, each masked region being employed as a storage zone into which the charge pattern from the unmasked pixels can be transferred to enable a subsequent charge pattern to be established on further exposure of the unmasked pixels. The components of the resulting video signal corresponding to the respective charge patterns read-out from the CCD are subtracted to produce a video signal corresponding to the difference between the two images which formed the respective charge patterns. Alternate rows of pixels may be masked, or chequer-board pattern masking may be employed. In an X-ray imaging system the CCD is coupled to image intensifying and converting means. (author)

  14. Infrared-spectroscopic single-shot laser mapping ellipsometry: Proof of concept for fast investigations of structured surfaces and interactions in organic thin films

    Science.gov (United States)

    Furchner, Andreas; Kratz, Christoph; Gkogkou, Dimitra; Ketelsen, Helge; Hinrichs, Karsten

    2017-11-01

    We present a novel infrared-spectroscopic laser mapping ellipsometer based on a single-shot measurement concept. The ellipsometric set-up employs multiple analyzers and detectors to simultaneously measure the sample's optical response under different analyzer azimuths. An essential component is a broadly tunable quantum cascade laser (QCL) covering the important marker region of 1800-1540 cm-1. The ellipsometer allows for fast single-wavelength as well as spectroscopic studies with thin-film sensitivity at temporal resolutions of 60 ms per wavelength. We applied the single-shot mapping ellipsometer for the characterization of metal-island enhancement surfaces as well as of molecular interactions in organic thin films. In less than 3 min, a linescan with 1600 steps revealed profile and infrared-enhancement properties of a gradient gold-island film for sensing applications. Spectroscopic measurements were performed to probe the amide I band of thin films of poly(N-isopropylacrylamide) [PNIPAAm], a stimuli-responsive polymer for bioapplications. The QCL spectra agree well with conventional FT-IR ellipsometric results, showing different band components associated with hydrogen-bond interactions between polymer and adsorbed water. Multi-wavelength ellipsometric maps were used to analyze homogeneity and surface contaminations of the polymer films.

  15. CCD research. [design, fabrication, and applications

    Science.gov (United States)

    Gassaway, J. D.

    1976-01-01

    The fundamental problems encountered in designing, fabricating, and applying CCD's are reviewed. Investigations are described and results and conclusions are given for the following: (1) the development of design analyses employing computer aided techniques and their application to the design of a grapped structure; (2) the role of CCD's in applications to electronic functions, in particular, signal processing; (3) extending the CCD to silicon films on sapphire (SOS); and (4) all aluminum transfer structure with low noise input-output circuits. Related work on CCD imaging devices is summarized.

  16. Status Of Sofradir IR-CCD Detectors

    Science.gov (United States)

    Tribolet, Philippe; Radisson, Patrick

    1988-05-01

    The topics of this paper deal with the IR-CCD detectors manufactured by SOFRADIR the new French joint venture. Description of the IRCCD technology and the advantages of this approach are given. In conclusion, some IR-CCD typical results are given.

  17. Programmable CCD imaging system for synchrotron radiation studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.

    1992-01-01

    A real-time imaging system for x-ray detection has been developed. The CAMAC-based system has a Charge Coupled Device (CCD) as its active detection element. The electronics consist of a CAMAC-crate-based dedicated microprocessor coupled to arbitrary waveform generators, programmable timing, and ADC modules. The hardware flexibility achievable through this system enables one to use virtually any commercially available CCD. A dedicated CAMAC-based display driver allows for real-time imaging on a high-resolution color monitor. An optional front end consisting of a fiber-optic taper and a focusing optical lens system coupled to a phosphor screen allows for large area imaging. Further, programming flexibility, in which the detector can be used in different read-out modes, enables it to be exploited for time-resolved experiments. In one mode, sections of the CCD can be read-out with millisecond time-resolution and, in another, the use of the CCD as a storage device is exploited resulting in microsecond time-resolution. Three different CCDs with radically different read-out timings and waveforms have been tested: the TI 4849, a 39Ox584 pixel array; TC 215, a 1024x1O24 pixel array; and the TH 7883, a 576x384 pixel array. The TC 215 and TI 4849 are single-phase CCDs manufactured by Texas Instruments, and the TH 7883 is a four-phase device manufactured by Thomson-CSF. The CCD characterized for uniformity, charge transfer efficiency (CTE), linearity, and sensitivity is the TC215

  18. Cryostat and CCD for MEGARA at GTC

    Science.gov (United States)

    Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.

    2012-09-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.

  19. CCD-based vertex detectors

    CERN Document Server

    Damerell, C J S

    2005-01-01

    Over the past 20 years, CCD-based vertex detectors have been used to construct some of the most precise 'tracking microscopes' in particle physics. They were initially used by the ACCMOR collaboration for fixed target experiments in CERN, where they enabled the lifetimes of some of the shortest-lived charm particles to be measured precisely. The migration to collider experiments was accomplished in the SLD experiment, where the original 120 Mpixel detector was later upgraded to one with 307 Mpixels. This detector was used in a range of physics studies which exceeded the capability of the LEP detectors, including the most precise limit to date on the Bs mixing parameter. This success, and the high background hit densities that will inevitably be encountered at the future TeV-scale linear collider, have established the need for a silicon pixel-based vertex detector at this machine. The technical options have now been broadened to include a wide range of possible silicon imaging technologies as well as CCDs (mon...

  20. Development of CCD controller for scientific application

    International Nuclear Information System (INIS)

    Khan, M S; Pathan, F M; Anandarao, B G; Shah, U V; Makwana, D H

    2010-01-01

    Photoelectric equipment has wide applications such as spectroscopy, temperature measurement in infrared region and in astronomical research etc. A photoelectric transducer converts radiant energy into electrical energy. There are two types of photoelectric transducers namely photo-multiplier tube (PMT) and charged couple device (CCD) are used to convert radiant energy into electrical signal. Now the entire modern instruments use CCD technology. We have designed and developed a CCD camera controller using camera chip CD47-10 of Marconi which has 1K x 1K pixel for space application only.

  1. CCD OBSERVATIONS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Charged Coupled Device (CCD) cameras from ESO were used by groups to observe the outburst of comet Halley using a variety of telescopes and chip sets.

  2. Spectroscopic and neutron detection properties of rare earth and titanium doped LiAlO 2 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, Peter T.; Marcial, José; McCloy, John; McDonald, Benjamin S.; Lynn, Kelvin G.

    2017-10-01

    In this study, LiAlO2 crystals doped with rare-earth elements and Ti were produced by the CZ method and spectroscopic and neutron detection properties were investigated. Photoluminescence revealed no clear luminescent activation of LiAlO2 by the rare-earth dopants though some interesting luminescence was observed from secondary phases within the crystal. Gamma-ray pulse height spectra collected using a 137Cs source exhibited only a Compton edge for the crystals. Neutron modeling using Monte Carlo N-Particle Transport Code revealed most neutrons used in the detection setup are thermalized, and while using natural lithium in the crystal growth, which contains 7.6 % 6Li, a 10 mm Ø by 10 mm sample of LiAlO2 has a 70.7 % intrinsic thermal neutron capture efficiency. Furthermore, the pulse height spectra collected using a 241Am-Be neutron source demonstrated a distinct neutron peak.

  3. Investigations of Spectroscopic Factors and Sum Rules from the Single Neutron Transfer Reaction 111Cd(d→$\\overrightarrow {\\rm{d}} $,p112Cd

    Directory of Open Access Journals (Sweden)

    Jamieson D.S.

    2014-03-01

    Full Text Available Cadmium isotopes have been presented for decades as excellent examples of vibrational nuclei, with low-lying levels interpreted as multi-phonon quadrupole, octupole, and mixed-symmetry states. A large amount of spectroscopic data has been obtained through various experimental studies of cadmiumisotopes. In the present work, the 111Cd(d→$\\overrightarrow {\\rm{d}} $,p112Cd reaction was used to investigate the single-particle structure of the 112Cd nucleus. A 22 MeV beam of polarized deuterons was obtained at the Maier-Leibnitz laboratory in Garching, Germany. The reaction ejectiles were momentum analyzed using a Q3D spectrograph, and 130 levels have been identified up to 4.2 MeV of excitation energy. Using DWBA analysis with optical model calculations, spin-parity assignments have been made for observed levels, and spectroscopic factors have been extracted from the experimental angular distributions of differential cross section and analyzing power. In this high energy resolution investigation, many additional levels have been observed compared with the previous (d,p study using 8 MeV deuterons [1]. There were a total of 44 new levels observed, and the parity assignments of 34 levels were improved.

  4. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10-6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C6H11) and π-allyl C6H9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C6H9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C6H9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E2u mode of free benzene, which leads to catalysis. Linear C6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt

  5. Spectroscopic properties of Bi2ZnOB2O6 single crystals doped with Pr3+ ions: Absorption and luminescence investigations

    Science.gov (United States)

    Kasprowicz, D.; Brik, M. G.; Jaroszewski, K.; Pedzinski, T.; Bursa, B.; Głuchowski, P.; Majchrowski, A.; Michalski, E.

    2015-09-01

    Nonlinear optical Bi2ZnOB2O6 single crystals doped with Pr3+ ions were grown using the Kyropoulos method. The absorption and luminescence properties of these new systems were investigated for the first time. The crystals are characterized by the large values of nonlinear optical coefficients. Effective luminescence of the Pr3+ ions makes this system an excellent candidate for the near-infrared (NIR) and/or ultraviolet (UV) to visible (VIS) laser converters. Based on the obtained experimental spectroscopic data, detailed analysis of the absorption and luminescence spectra was performed using the conventional Judd-Ofelt theory. Those transitions, which can be potentially used for laser applications of the Pr3+ ion, have been identified. In addition to the intensity parameters Ω2, Ω4, Ω6 the branching ratios and radiative lifetimes were estimated for all possible transitions in the studied spectral region.

  6. Raman spectroscopic studies of Nd{sub 0.75}Sm{sub 0.25}GaO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nithya, R., E-mail: nithya@igcar.gov.in; Ravindran, T. R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, TN (India); Daniel, D. J. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam-603110, TN (India)

    2015-06-24

    Single crystals of Nd{sub 1-x}Sm{sub x}GaO{sub 3} (x= 0 and 0.25) were grown by a four mirror IR image furnace using floating zone technique. The crystals are characterized by X-ray diffraction and Raman spectroscopic measurements. NGO adopts orthorhombic structure with Pbnm symmetry and samarium substituted compound also exhibited the same structure as that of the pristine compound without secondary phases. Polarized Raman spectra are measured at ambient temperature in a back scattering geometry. Spectra exhibit low intensity first-order Raman bands. In addition, several high intensity second-order Raman bands have been observed in the frequency range 2000 to 4000 cm{sup −1}.

  7. Crystal Growth and Spectroscopic characterization of chloride and bromide single crystals doped with rare earth ions for the mid infrared amplification

    International Nuclear Information System (INIS)

    Ferrier, A.

    2007-12-01

    This work is devoted to the study of low phonon energy crystals doped with rare earth ions for the realisation of diode-pumped solid state laser sources emitting in the middle infrared. For that purpose, pure and (Er 3+ or Pr 3+ ) doped single crystals of KPb 2 Cl 5 and Tl 3 PbX 5 (X=Cl, Br) have been elaborated by using the Bridgman-Stockbarger method. These non-hygroscopic and congruent melting materials have been found to exhibit phase transitions during the cooling process but which do not limit the elaboration of centimeter-size single crystals. The spectroscopic study of the Er 3+ doped compounds has been performed both at high and low temperatures. It thus appears that these systems present long fluorescence lifetimes and relatively large gain cross sections favorable for a laser emission around 4.5μm. It has been demonstrated further that the up-conversion processes resulting from excited-state absorptions of the Er 3+ ions around the pumping wavelength as well as the energy transfer processes between the Er 3+ ions do not lead to significant optical losses for the laser system. The derived parameters then have been used to build a model and simulate the laser operation of the system following diode pumping around 800 nm. In the end, the spectroscopic study of the Pr 3+ ion in various materials has allowed us to evidence large emission cross sections associated with long fluorescence lifetimes, now favorable to a laser emission around 5μm. (author)

  8. Synthesis, spectroscopic, structural and optical studies of Ru2S3 nanoparticles prepared from single-source molecular precursors

    Science.gov (United States)

    Mbese, Johannes Z.; Ajibade, Peter A.

    2017-09-01

    Homonuclear tris-dithiocarbamato ruthenium(III) complexes, [Ru(S2CNR2)3] were prepared and characterized by spectroscopic techniques and thermogravimetric analyses. The thermogravimetric analyses (TGA) of the ruthenium complexes showed that the complexes decompose to ruthenium(III) sulfide nanoparticles. The ruthenium(III) complexes were dispersed in oleic acid and thermolysed in hexadecylamine to prepared oleic acid/hexadecylamine capped Ru2S3 nanoparticles. FTIR revealed that Ru2S3 nanoparticles are capped through the interaction of the -NH2 group of hexadecylamine HDA adsorbed on the surfaces of nanoparticles and it also showed that oleic acid (OA) is acting as both coordinating stabilizing surfactant and capping agent. EDS spectra revealed that the prepared nanoparticles are mainly composed of Ru and S, confirming the formation of Ru2S3 nanoparticles. Powder XRD confirms that the nanoparticles are in cubic phase. The inner morphology of nanoparticles obtained from transmission electron microscopy (TEM) showed nanoparticles with narrow particle size distributions characterized by an average diameter of 8.45 nm with a standard deviation of 1.6 nm. The optical band gap (Eg) determined from Tauc plot are in the range 3.44-4.18 eV.

  9. Active Pixel Sensors: Are CCD's Dinosaurs?

    Science.gov (United States)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  10. THE ACCURACY OF Hβ CCD PHOTOMETRY

    Directory of Open Access Journals (Sweden)

    C. Kim

    1994-12-01

    Full Text Available We have undertaken CCD observations of field standard stars with Hβ photometric system to investigate the reliability of Hβ CCD photometry. Flat fielding with dome flat and sky flat for Hβw and Hβn filter was compared with that of B filter in UBV system and, from these, we have not found any difference. It was confirmed that there is a good linear relationship between our Hβ values observed with 2.3m reflector and standard values. However, Hβ values observed with 60cm reflector at Sobaeksan Astronomy Observatory showed very poor relationship. To investigate the accuracy of Hβ CCD photometry for fainter objects, open cluster NGC2437 was observed and reduced with DoPHOT, and the results were compared with those for photoelectric photometry of Stetson (1981.

  11. CCD BVI c observations of Cepheids

    Science.gov (United States)

    Berdnikov, L. N.; Kniazev, A. Yu.; Sefako, R.; Kravtsov, V. V.; Zhujko, S. V.

    2014-02-01

    In 2008-2013, we obtained 11333 CCD BVI c frames for 57 Cepheids from the General Catalogue of Variable Stars. We performed our observations with the 76-cm telescope of the South African Astronomical Observatory (SAAO, South Africa) and the 40-cm telescope of the Cerro Armazones Astronomical Observatory of the Universidad Católica del Norte (OCA, Chile) using the SBIG ST-10XME CCD camera. The tables of observations, the plots of light curves, and the current light elements are presented. Comparison of our light curves with those constructed from photoelectric observations shows that the differences between their mean magnitudes exceed 0ṃ05 in 20% of the cases. This suggests the necessity of performing CCD observations for all Cepheids.

  12. Testing of a Commercial CCD Camera

    Science.gov (United States)

    Tulsee, Taran

    2000-01-01

    The results are presented of the examination and testing of a commercial CCD camera designed for use by amateur astronomers and university astronomy laboratory courses. The characteristics of the CCD chip are presented in graphical and tabular form. Individual and averaged bias frames are discussed. Dark frames were taken and counts are presented as a function of time. Flat field and other images were used to identify and locate bad pixel columns as well as pixels which vary significantly from the mean pixel sensitivity.

  13. High-resolution Spectroscopic Observations of Single Red Giants in Three Open Clusters: NGC 2360, NGC 3680, and NGC 5822

    Science.gov (United States)

    Peña Suárez, V. J.; Sales Silva, J. V.; Katime Santrich, O. J.; Drake, N. A.; Pereira, C. B.

    2018-02-01

    Single stars in open clusters with known distances are important targets in constraining the nucleosynthesis process since their ages and luminosities are also known. In this work, we analyze a sample of 29 single red giants of the open clusters NGC 2360, NGC 3680, and NGC 5822 using high-resolution spectroscopy. We obtained atmospheric parameters, abundances of the elements C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd, as well as radial and rotational velocities. We employed the local thermodynamic equilibrium atmospheric models of Kurucz and the spectral analysis code MOOG. Rotational velocities and light-element abundances were derived using spectral synthesis. Based on our analysis of the single red giants in these three open clusters, we could compare, for the first time, their abundance pattern with that of the binary stars of the same clusters previously studied. Our results show that the abundances of both single and binary stars of the open clusters NGC 2360, NGC 3680, and NGC 5822 do not have significant differences. For the elements created by the s-process, we observed that the open clusters NGC 2360, NGC 3680, and NGC 5822 also follow the trend already raised in the literature that young clusters have higher s-process element abundances than older clusters. Finally, we observed that the three clusters of our sample exhibit a trend in the [Y/Mg]-age relation, which may indicate the ability of the [Y/Mg] ratio to be used as a clock for the giants. Based on the observations made with the 2.2 m telescope at the European Southern Observatory (La Silla, Chile) under an agreement with Observatório Nacional and under an agreement between Observatório Nacional and Max-Planck Institute für Astronomie.

  14. Hybrid Fiber-Optic/CCD Chip

    Science.gov (United States)

    Goss, W. C.; Janesick, J. R.

    1985-01-01

    Low noise and linearity of charge-coupled devices (CCD's) combined with optical waveguide components in hybrid, integrated chip package. Concept used to measure laser flux in fiber-gyro application using sensing fibers that range from several to several tens of kilometers in length. Potential applications include optical delay measurement and linear detector of light flux emanating from fiber-optic waveguides.

  15. Protein diffraction experiments with Atlas CCD detector

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan; Kovaľ, Tomáš; Dušek, Michal

    2008-01-01

    Roč. 64, Suppl. - abstracts (2008), C192 ISSN 0108-7673. [Congress of the International Union of Crystallography (IUCr) /21./. 23.08.2008-31.08.2008, Osaka] Institutional research plan: CEZ:AV0Z10100521 Keywords : x-ray data collection * CCD detectors * protein crystallography applications Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. A single-molecule force-spectroscopic study on stabilization of G-quadruplex DNA by a telomerase inhibitor.

    Science.gov (United States)

    Funayama, Ryoto; Nakahara, Yoshio; Kado, Shinpei; Tanaka, Mutsuo; Kimura, Keiichi

    2014-08-21

    Single-molecule force spectroscopy was carried out using AFM force measurements for the purpose of direct observation of the stabilization of G-quadruplex DNA by a telomerase inhibitor, which is 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin tetrakis(p-toluenesulfonate) (TMPyP). In AFM force measurements, we used an AFM tip and an Au substrate modified chemically with terminal-biotinylated telomere DNA and streptavidin, respectively. The telomere DNA was fully stretched by the AFM tip based on the bridge formation between the AFM tip and the Au substrate through the streptavidin-biotin interaction. The force-extension curves, which reflected the stretching of a single DNA molecule, were distinguished from all of the curves, judging from the rupture force and the contour length. The selected curves were analyzed using a worm-like chain model, and one of the fitting parameters, persistence length (lp), was used as an index for the stabilization of the G-quadruplex structure. Consequently, the lp value was significantly increased by the addition of TMPyP under the experimental conditions where the G-quadruplex structure could be formed. On the other hand, the value was hardly changed by the addition of TMPyP under the conditions except the above. Furthermore, the methodology developed and demonstrated in this work was applied to evaluate the stabilization of G-quadruplex DNA by other telomerase inhibitors such as ethidium bromide and p-xylene-bis(N-pyridinium bromide).

  17. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    DEFF Research Database (Denmark)

    Konstantatos, Andreas

    This dissertation presents the results of our work on the synthesis and structural characterization of several families of coordination complexes as well as their study with regard to their magnetic properties. Chapter 1 provides a brief introduction in the field and theory of single-molecule mag......This dissertation presents the results of our work on the synthesis and structural characterization of several families of coordination complexes as well as their study with regard to their magnetic properties. Chapter 1 provides a brief introduction in the field and theory of single......-molecule magnets (SMMs). Starting from the archetype SMM Mn12 we present the details of the mechanisms governing the relaxation of the magnetization of these systems. In Chapter 2 we present our work on the coordination chemistry of lanthanides with a new Schiff-base ligand, H3L [(E)-3-((2-hydroxyphenyl......)imino)- methyl)benzene-1,2-diol]. Using this ligand, we were able to synthesize four different families of lanthanide complexes framed by alkali metals. Throughout the chapter we demonstrate how we can exploit the presence of the coordinated alkali metal ions in order to induce changes to the structure...

  18. Fast event recorder utilizing a CCD analog shift register

    International Nuclear Information System (INIS)

    Ducar, R.J.; McIntyre, P.M.

    1978-01-01

    A system of electronics has been developed to allow the capture and recording of relatively fast, low-amplitude analog events. The heart of the system is a dual 455-cell analog shift register charge-coupled device, Fairchild CCD321ADC-3. The CCD is operated in a dual clock mode. The input is sampled at a selectable clock rate of .25-20 MHz. The stored analog data is then clocked out at a slower rate, typically about .25 MHz. The time base expansion of the analog data allows for analog-to-digital conversion and memory storage using conventional medium-speed devices. The digital data is sequentially loaded into a static RAM and may then be block transferred to a computer. The analog electronics are housed in a single-width NIM module, and the RAM memory in a single-width CAMAC module. Each pair of modules provides six parallel channels. Cost is about $200.00 per channel. Applications are described for ionization imaging (TPC, IRC) and long-drift calorimetry in liquid argon

  19. Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline

    Science.gov (United States)

    Singha, Somdutta; Ghosh, Swapankumar

    2017-09-01

    Carbon nanotubes in all forms are very much insoluble in both organic and inorganic solvents due to its high agglomeration and entangled morphology. General methods for dissolution of single-walled carbon nanotubes (SWNTs) are mostly associated with complexation or polymerization or addition of macromolecules which change the physical or chemical properties of SWNTs and the pristine nature of SWNTs is lost. Dissolution of SWNTs in a solvent like aniline is practiced here which is a very simple reaction method. Here aniline is capable to form a SWNT-aniline charge transfer complex without attachment of macromolecules or polymer which is also soluble in other organic solvents. Solvation of SWNTs by this method is also capable of maintaining the similarity between the structure of SWNTs before and after the dissolution, which means that the pristine nature of SWNTs is preserved. Formation of charge transfer complex in this reaction has been proven by UV-Vis/NIR absorption and photoluminescence spectroscopy. Raman spectroscopy and electron microscopy (FESEM and TEM) are the evidences for protection of the pristine nature of SWNTs even after high-temperature complexation reaction with aniline and also after solubilization in organic solvents.

  20. Infrared spectroscopic study on polytypic transformation of growing single crystal of n-hexatriacontane ( n-C 36H 74)

    Science.gov (United States)

    Kubota, Hideki; Kaneko, Fumitoshi; Kawaguchi, Tatsuya; Kawasaki, Masatsugu

    2005-02-01

    There are two polytypic structures, single-layered structure Mon and double-layered structure Orth II for the M 011 modification of n-hexatriacontane ( n-C 36H 74). The solution crystal growth of the two polytypes under controlled supersaturation was investigated by the oblique IR transmission method. As to the supersaturation dependence of growth behavior, there was a significant difference between the two polytypes. While the overgrowth of Orth II took place on the (0 0 1) face of the Mon crystal at moderate supersaturations, the overgrowth of Mon on the Orth II crystals was not confirmed at any supersaturations below 0.30. The growth rate of Mon showed about a second-order dependence on supersaturation, whereas that of Orth II showed a first-order dependence. The growth mechanism of the M 011 modification and the cause for the one-way overgrowth were deduced on the basis of the thermodynamical stabilities and the supersaturation dependence of the growth rates.

  1. Fully depleted back-illuminated p-channel CCD development

    Energy Technology Data Exchange (ETDEWEB)

    Bebek, Chris J.; Bercovitz, John H.; Groom, Donald E.; Holland, Stephen E.; Kadel, Richard W.; Karcher, Armin; Kolbe, William F.; Oluseyi, Hakeem M.; Palaio, Nicholas P.; Prasad, Val; Turko, Bojan T.; Wang, Guobin

    2003-07-08

    An overview of CCD development efforts at Lawrence Berkeley National Laboratory is presented. Operation of fully-depleted, back-illuminated CCD's fabricated on high resistivity silicon is described, along with results on the use of such CCD's at ground-based observatories. Radiation damage and point-spread function measurements are described, as well as discussion of CCD fabrication technologies.

  2. Silvaco ATLAS model of ESA's Gaia satellite e2v CCD91-72 pixels

    Science.gov (United States)

    Seabroke, George; Holland, Andrew; Burt, David; Robbins, Mark

    2010-07-01

    The Gaia satellite is a high-precision astrometry, photometry and spectroscopic ESA cornerstone mission, currently scheduled for launch in 2012. Its primary science drivers are the composition, formation and evolution of the Galaxy. Gaia will achieve its unprecedented accuracy requirements with detailed calibration and correction for CCD radiation damage and CCD geometric distortion. In this paper, the third of the series, we present our 3D Silvaco ATLAS model of the Gaia e2v CCD91-72 pixel. We publish e2v's design model predictions for the capacities of one of Gaia's pixel features, the supplementary buried channel (SBC), for the first time. Kohley et al. (2009) measured the SBC capacities of a Gaia CCD to be an order of magnitude smaller than e2v's design. We have found the SBC doping widths that yield these measured SBC capacities. The widths are systematically 2 μm offset to the nominal widths. These offsets appear to be uncalibrated systematic offsets in e2v photolithography, which could either be due to systematic stitch alignment offsets or lateral ABD shield doping diffusion. The range of SBC capacities were used to derive the worst-case random stitch error between two pixel features within a stitch block to be +/-0.25 μm, which cannot explain the systematic offsets. It is beyond the scope of our pixel model to provide the manufacturing reason for the range of SBC capacities, so it does not allow us to predict how representative the tested CCD is. This open question has implications for Gaia's radiation damage and geometric calibration models.

  3. Electronic excitations in homopolyatomic bismuth cations: spectroscopic measurements in molten salts and an ab initio CI-singles study

    Science.gov (United States)

    Day; Glaser; Shimomura; Takamuku; Ichikawa

    2000-03-17

    The electronic excitations of the low-valence bismuth cluster cations Bi5(3+), Bi8(2+), and Bi9(5+) have been studied with experimental and theoretical techniques. The UV-visible spectra of the bismuth ions were measured in acidic chloroaluminate melts (mixture of 1-methyl-3-benzyl imidazolium chloride and AlCl3). The spectra of the Bi5(3+) and Bi8(2+) ions agree fairly well with previous reports, but also revealed additional low-energy absorptions. Ab initio methods were employed to assign the experimentally observed electronic transitions of these homopolyatomic bismuth cations. Structures were optimized at the RHF, MP2, and B3LYP levels of theory by using split-valence LANL2DZ basis sets that were augmented with one and two sets of pure d functions. The computed structures agree well with the results of neutron diffraction analyses of melts. Electronically excited states of the three clusters were treated by using the CI-Singles theory. The results of these calculations were used to explain the observed UV-visible spectra. The observed electronic excitations in the UV-visible range are all found to result from transitions involving the molecular orbitals formed by 6p-atomic-orbital overlap. This leads to the necessity of using basis sets that include d-type functions, which allow for an adequate description of the bonding that results from such p-orbital overlap. Spin-orbit coupling becomes increasingly important with increasing atomic number and its consideration is necessary when describing the electronic transitions in clusters of heavy atoms. The calculations show that singlet-triplet transitions, which are made accessible by strong spin-orbit coupling, are responsible for some of the observed absorptions.

  4. A far ultraviolet spectroscopic study of the reflectance, luminescence and electronic properties of SrMgF4 single crystals

    International Nuclear Information System (INIS)

    Ogorodnikov, I.N.; Pustovarov, V.A.; Omelkov, S.I.; Isaenko, L.I.; Yelisseyev, A.P.; Goloshumova, A.A.; Lobanov, S.I.

    2014-01-01

    The electronic properties of single crystals of SrMgF 4 have been determined using low-temperature (10–293 K) time-resolved vacuum ultraviolet synchrotron radiation spectroscopy, far ultraviolet (3.7–36 eV) reflectance spectra and calculations for the spectra of optical functions. The bandgap of investigated compound was found at E g =12.55eV, the energy threshold for creation of the unrelaxed excitons at E n=1 =11.37eV, and the low-energy fundamental absorption edge at 10.3 eV. Two groups of photoluminescence (PL) bands have been identified: the exciton-type emissions at 2.6–3.3 and 3.3–4.2 eV and defect-related emissions at 1.8–2.6 and 4.2–5.5 eV. It was shown that PL excitation (PLE) for the exciton-type emission bands occurs mainly at the low-energy tail of the fundamental absorption of the crystal with a maximum at 10.7 eV. At excitation energies above E g the energy transfer from the host lattice to the PL emission centers is inefficient. The paper discusses the origin of the excitonic-type PLE spectra taking into account the results of modeling the PLE spectra shape in the framework of a simple diffusion theory and surface energy losses. -- Highlights: • Far-ultraviolet reflection spectra of SrMgF 4 were studied. • Photoluminescence (PL) emission and PL excitation spectra were studied. • Optical function spectra were calculated on the basis of experimental data. • Electronic structure properties of undoped SrMgF 4 crystals were determined

  5. A self triggered intensified Ccd (Stic)

    International Nuclear Information System (INIS)

    Charon, Y.; Laniece, P.; Bendali, M.

    1990-01-01

    We are developing a new device based on the results reported previously of the successfull coincidence detection of β- particles with a high spatial resolution [1]. The novelty of the device consists in triggering an intensified CCD, i.e. a CCD coupled to an image intensifier (II), by an electrical signal collected from the II itself. This is a suitable procedure for detecting with high efficiency and high resolution low light rare events. The trigger pulse is obtained from the secondary electrons produced by multiplication in a double microchannel plate (MCP) and collected on the aluminized layer protecting the phosphor screen in the II. Triggering efficiencies up to 80% has been already achieved

  6. Design of a multifunction astronomical CCD camera

    Science.gov (United States)

    Yao, Dalei; Wen, Desheng; Xue, Jianru; Chen, Zhi; Wen, Yan; Jiang, Baotan; Xi, Jiangbo

    2015-07-01

    To satisfy the requirement of the astronomical observation, a novel timing sequence of frame transfer CCD is proposed. The multiple functions such as the adjustments of work pattern, exposure time and frame frequency are achieved. There are four work patterns: normal, standby, zero exposure and test. The adjustment of exposure time can set multiple exposure time according to the astronomical observation. The fame frequency can be adjusted when dark target is imaged and the maximum exposure time cannot satisfy the requirement. On the design of the video processing, offset correction and adjustment of multiple gains are proposed. Offset correction is used for eliminating the fixed pattern noise of CCD. Three gains pattern can improve the signal to noise ratio of astronomical observation. Finally, the images in different situations are collected and the system readout noise is calculated. The calculation results show that the designs in this paper are practicable.

  7. A self triggered intensified CCD (STIC)

    Science.gov (United States)

    Charon, Y.; Laniece, P.; Bendali, M.; Gaillard, J. M.; Leblanc, M.; Mastrippolito, R.; Tricoire, H.; Valentin, L.

    1991-12-01

    We are developing a new device based on the results reported previously of the successful coincidence detection of β - particles with a high spatial resolution. The novelty of the device consists in triggering and intensified CCD, i.e. a CCD coupled to an image intensifier (II), by an electrical signal collected from the II itself. This is a suitable procedure for detecting low light and rare events with high efficiency and high resolution. The trigger pulse is obtained from the secondary electrons produced by multiplication in a double microchannel plate (MCP) and collected on the aluminized layer protecting the phosphor screen in the II. Triggering efficiencies up to 80% have already been achieved.

  8. CCD technology applied to laser cladding

    Science.gov (United States)

    Meriaudeau, Fabrice; Renier, Eric; Truchetet, Frederic

    1996-03-01

    Power lasers are more and more used in aerospace industry or automobile industry; their widespread use through different processes such as: welding, drilling or coating, in order to perform some surface treatments of material, requires a better understanding. In order to control the quality of the process, many technics have been developed, but most of them are based on a post-mortem analysis of the samples, and/or require an important financial investment. Welding, coating or other material treatments involving material transformations are often controlled with a metallurgical analysis. We here propose a new method, a new approach of the phenomena, we control the industrial process during the application. For this, we use information provided by two CCD cameras. One supplies information related to the intensity, and geometry of the melted surface, the second about the shape of the powder distribution within the laser beam. We use data provided by post-mortem metallurgical analysis and correlate those informations with parameters measured by both CCD, we create a datas bank which represents the relation between the measured parameters and the quality of the coating. Both informations, provided by the 2 CCD cameras allows us to optimize the industrial process. We are actually working on the real time aspect of the application and expect an implementation of the system.

  9. Modelling charge storage in Euclid CCD structures

    International Nuclear Information System (INIS)

    Clarke, A S; Holland, A; Hall, D J; Burt, D

    2012-01-01

    The primary aim of ESA's proposed Euclid mission is to observe the distribution of galaxies and galaxy clusters, enabling the mapping of the dark architecture of the universe [1]. This requires a high performance detector, designed to endure a harsh radiation environment. The e2v CCD204 image sensor was redesigned for use on the Euclid mission [2]. The resulting e2v CCD273 has a narrower serial register electrode and transfer channel compared to its predecessor, causing a reduction in the size of charge packets stored, thus reducing the number of traps encountered by the signal electrons during charge transfer and improving the serial Charge Transfer Efficiency (CTE) under irradiation [3]. The proposed Euclid CCD has been modelled using the Silvaco TCAD software [4], to test preliminary calculations for the Full Well Capacity (FWC) and the channel potential of the device and provide indications of the volume occupied by varying signals. These results are essential for the realisation of the mission objectives and for radiation damage studies, with the aim of producing empirically derived formulae to approximate signal-volume characteristics in the devices. These formulae will be used in the radiation damage (charge trapping) models. The Silvaco simulations have been tested against real devices to compare the experimental measurements to those predicted in the models. Using these results, the implications of this study on the Euclid mission can be investigated in more detail.

  10. Using NIST Crystal Data Within Siemens Software for Four-Circle and SMART CCD Diffractometers

    Science.gov (United States)

    Byram, Susan K.; Campana, Charles F.; Fait, James; Sparks, Robert A.

    1996-01-01

    NIST Crystal Data developed at The National Institute for Standards and Technology has been incorporated with Siemens single crystal software for data collection on four-circle and two-dimensional CCD diffractometers. Why this database is useful in the process of single crystal structure determination, and how the database is searched, are described. Ideas for future access to this and other databases are presented. PMID:27805166

  11. Spectroscopic data

    CERN Document Server

    Melzer, J

    1976-01-01

    During the preparation of this compilation, many people contributed; the compilers wish to thank all of them. In particular they appreciate the efforts of V. Gilbertson, the manuscript typist, and those of K. C. Bregand, J. A. Kiley, and W. H. McPherson, who gave editorial assistance. They would like to thank Dr. J. R. Schwartz for his cooperation and encouragement. In addition, they extend their grati­ tude to Dr. L. Wilson of the Air Force Weapons Laboratory, who gave the initial impetus to this project. v Contents I. I ntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . 11. Organization ofthe Spectroscopic Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Methods of Production and Experimental Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Band Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2...

  12. Gene silencing of CCD7 and CCD8 in Phelipanche aegyptiaca by tobacco rattle virus system retarded the parasite development on the host.

    Science.gov (United States)

    Aly, Radi; Dubey, Neeraj Kumar; Yahyaa, Mosaab; Abu-Nassar, Jackline; Ibdah, Mwafaq

    2014-01-01

    Strigolactones are phytohormones that stimulate seed germination of parasitic plants including Phelipanche aegyptiaca. Strigolactones are derived from carotenoids via a pathway involving the carotenoid cleavage dioxygenases CCD7 and CCD8. We report here identification of PaCCD7 and PaCCD8 orthologous genes from P. aegyptiaca. Expression analysis of PaCCD7 and PaCCD8 genes showed significant variation in their transcript levels in seeds and tubercles of P. aegyptiaca at different developmental stages. These two parasitic PaCCD7 and PaCCD8 genes were silenced in P. aegyptiaca using a trans-silencing approach in Nicotiana benthamiana. The transient knock-down of PaCCD7 and PaCCD8 inhibited tubercle development and the infestation process in host plants. Our results suggest an important role of the strigolactone associated genes (PaCCD7 and PaCCD8) in the parasite life cycle.

  13. Large Mn25 single-molecule magnet with spin S = 51/2: magnetic and high-frequency electron paramagnetic resonance spectroscopic characterization of a giant spin state.

    Science.gov (United States)

    Murugesu, Muralee; Takahashi, Susumu; Wilson, Anthony; Abboud, Khalil A; Wernsdorfer, Wolfgang; Hill, Stephen; Christou, George

    2008-10-20

    The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)'') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.

  14. Southern Clusters for Standardizing CCD Photometry

    Science.gov (United States)

    Moon, T. T.

    2017-06-01

    Standardizing photometric measurements typically involves undertaking all-sky photometry. This can be laborious and time-consuming and, for CCD photometry, particularly challenging. Transforming photometry to a standard system is, however, a crucial step when routinely measuring variable stars, as it allows photoelectric measurements from different observers to be combined. For observers in the northern hemisphere, standardized UBVRI values of stars in open clusters such as M67 and NGC 7790 have been established, greatly facilitating quick and accurate transformation of CCD measurements. Recently the AAVSO added the cluster NGC 3532 for southern hemisphere observers to similarly standardize their photometry. The availability of NGC 3532 standards was announced on the AAVSO Variable Star Observing, Photometry forum on 27 October 2016. Published photometry, along with some new measurements by the author, provide a means of checking these NGC 3532 standards which were determined through the AAVSO's Bright Star Monitor (BSM) program (see: https://www.aavso.org/aavsonet-epoch-photometry-database). New measurements of selected stars in the open clusters M25 and NGC 6067 are also included.

  15. CCD emulator design for LSST camera

    Science.gov (United States)

    Lu, W.; O'Connor, P.; Fried, J.; Kuczewski, J.

    2016-07-01

    As part of the LSST project, a comprehensive CCD emulator that operates three CCDs simultaneously has been developed for testing multichannel readout electronics. Based on an Altera Cyclone V FPGA for timing and control, the emulator generates 48 channels of simulated video waveform in response to appropriate sequencing of parallel and serial clocks. Two 256Mb serial memory chips are adopted for storage of arbitrary grayscale images. The arbitrary image or fixed pattern image can be generated from the emulator in triple as three real CCDs perform, for qualifying and testing the LSST 3-stripe Science Raft Electronics Board (REB) simultaneously. Using the method of comparator threshold scanning, all 24 parallel clocks and 24 serial clocks from the REB are qualified for sequence, duration and level before the video signal is generated. In addition, 66 channels of input bias and voltages are sampled through the multi-channel ADC to verify that correct values are applied to the CCD. In addition, either a Gigabit Ethernet connector or USB bus can be used to control and read back from the emulator board. A user-friendly PC software package has been developed for controlling and communicating with the emulator.

  16. CCD Camera Detection of HIV Infection.

    Science.gov (United States)

    Day, John R

    2017-01-01

    Rapid and precise quantification of the infectivity of HIV is important for molecular virologic studies, as well as for measuring the activities of antiviral drugs and neutralizing antibodies. An indicator cell line, a CCD camera, and image-analysis software are used to quantify HIV infectivity. The cells of the P4R5 line, which express the receptors for HIV infection as well as β-galactosidase under the control of the HIV-1 long terminal repeat, are infected with HIV and then incubated 2 days later with X-gal to stain the infected cells blue. Digital images of monolayers of the infected cells are captured using a high resolution CCD video camera and a macro video zoom lens. A software program is developed to process the images and to count the blue-stained foci of infection. The described method allows for the rapid quantification of the infected cells over a wide range of viral inocula with reproducibility, accuracy and at relatively low cost.

  17. Development of a CCD-based pyrometer for surface temperature measurement of casting billets

    Science.gov (United States)

    Zhang, Yuzhong; Lang, Xianli; Hu, Zhenwei; Shu, Shuangbao

    2017-06-01

    In order to achieve high accuracy and good stability of temperature measurement results, an online vision-based temperature field measurement system for continuous casting billets is developed instead of the conventional single-point radiation pyrometer in this paper. This system is a hybrid temperature measurement system which consists of a monochrome array CCD camera with high resolution and a single spot colorimetric thermometer simultaneously. In this system, a narrow-band spectrum radiation temperature measurement model is established for the optical CCD-based pyrometer system, and the non-uniformity of the temperature field measurement due to the inter-element sensitivity deviations of the CCD-array detector and photometric distortion caused by the vignetting in the optical system is analyzed in detail and compensated. Furthermore, in order to eliminate the temperature fluctuation caused by the stripped iron oxide scale on billets, a temperature field reconstruction approach, which took full advantage of the high resolution characteristic of CCD and the distribution character of the surface temperature field of billets, is introduced in this system. Meanwhile, based on the narrow band spectral thermometry theory, the spot temperature measured by the colorimetric thermometer is used to correct the temperature field measured by the CCD camera on-line so as to reduce the temperature measurement error caused by the inconclusive absolute emissivity of different grades of steel and the interference of industrial dust. Currently, the system has been successfully applied and verified in some continuous casting production lines. Industrial trials indicate that the system could effectively eliminate false temperature variation caused by striped iron oxide scale and provide information about changes of processing parameters in the continuous casting production line in real time.

  18. Spectroscopic study

    International Nuclear Information System (INIS)

    Flores, M.; Rodriguez, R.; Arroyo, R.

    1999-01-01

    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu 3+ ). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of 1 H, 13 C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at λ = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  19. Transient full-field vibration measurement using spectroscopical stereo photogrammetry.

    Science.gov (United States)

    Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan

    2010-12-20

    Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.

  20. Programmable Clock Waveform Generation for CCD Readout

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.; Marin, J.

    2006-07-01

    Charge transfer efficiency in CCDs is closely related to the clock waveform. In this paper, an experimental framework to explore different FPGA based clock waveform generator designs is described. Two alternative design approaches for controlling the rise/fall edge times and pulse width of the CCD clock signal have been implemented: level-control and time-control. Both approaches provide similar characteristics regarding the edge linearity and noise. Nevertheless, dissimilarities have been found with respect to the area and frequency range of application. Thus, while the time-control approach consumes less area, the level control approach provides a wider range of clock frequencies since it does not suffer capacitor discharge effect. (Author) 8 refs.

  1. BVRI CCD photometry of Omega Centauri

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1987-01-01

    Color-magnitude diagrams (CMDs) of V vs B-V, V vs V-I, and V vs B-I have been constructed based on 179 BVRI CCD frames of two adjoining 4x2.5-arcmin fields in Omega Cen (NGC 5139) obtained with the 1.54-m Danish La Silla telescope. The spread in the main sequences noted in the three CMDs indicates that the wide range in chemical composition among the evolved stars in this cluster persists as well in the unevolved stars. This result suggests that the abundance variations are primordial. A difference in magnitude between the turnoff and the horizontal branch of 3.8 + or - 0.15 is found which is greater than a previous value. 38 references

  2. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    Science.gov (United States)

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  3. Near-infrared Raman spectroscopy using a diode laser and CCD detector for tissue diagnostics

    International Nuclear Information System (INIS)

    Gustafsson, U.

    1993-09-01

    This paper surveys the possibility to observe high-quality NIR Raman spectra of both fluorescent and non-fluorescent samples with the use of a diode laser, a fibre optic sample, a single spectrometer and a charge-coupled device (CCD) detector. A shifted excitation difference technique was implemented for removing the broad-band fluorescence emission from Raman spectra of the highly fluorescent samples. Raman spectra of 1.4-dioxane, toluene, rhodamine 6G, and HITCI in the 640 to 1840 cm -1 spectral region and 1.4-dioxane and toluene in the 400 to 3400 cm -1 spectral region have been recorded. The results open the field of sensitive tissue characterisation and the possibility of optical biopsy in vivo by using NIR Raman spectroscopy with fibre optic sampling, a single spectrometer, and a CCD detector

  4. CCD characterization for a range of color cameras

    NARCIS (Netherlands)

    Withagen, P.J.; Groen, F.C.A.; Schutte, K.

    2005-01-01

    CCD cameras are widely used for remote sensing and image processing applications. However, most cameras are produced to create nice images, not to do accurate measurements. Post processing operations such as gamma adjustment and automatic gain control are incorporated in the camera. When a (CCD)

  5. Programmable charge-coupled device /CCD/ correlator for pattern classification

    Science.gov (United States)

    Mayer, D. J.; Eversole, W. L.; Hewes, C. R.; Benz, H. F.

    1979-01-01

    The potential use of charge coupled device (CCD) programmable digital/analog correlators for multispectral data classification is discussed. CCD digital/analog correlator technology and the experimental evaluation of a 32-stage 4-bit test device are presented. The design of an IC for use in a multispectral classification system for 16 sensors and 8 bit accuracy is reviewed.

  6. A luminescence imaging system based on a CCD camera

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Markey, B.G.

    1997-01-01

    of the spectrum, the CCD system is less sensitive than the standard bi-alkali photocathode photomultipliers that are commonly used. However, the CCD has a peak performance between 500 and 900 nm. and is more sensitive than the photomultiplier tube over this range. (C) 1997 Elsevier Science Ltd....

  7. BVI CCD photometry of 47 Tucanae

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1987-01-01

    CCD BVI main-sequence photometry of 47 Tuc is presented, matched to the recent BVI isochrones of VandenBerg and Bell (1985). The main-sequence turnoffs are found to be at V = 17.60 + or - 0.1, B-V = 0.56 + or - 0.02; V-I = 0.68 + or - 0.02, and B-I = 1.24 + or - 0.02. The magnitude difference between the main-sequence turnoff and the horizontal branch is 3.55 + or - 0.15 for all three color indices. A consistent age for 47 Tuc of 17 Gyr and a consistent distance modulus of (m-M)v = 13.2 are obtained for all three indices, and an absolute magnitude of Mv = 0.85 is determined for the horizontal branch stars. The results also favor the adoption of (Fe/H) near -0.5 as the best abundance value for 47 Tuc. 38 references

  8. Linearity measurement for image-intensified CCD

    Science.gov (United States)

    Zhao, Yuhuan; Zhang, Liwei; Yan, Feng; Gu, Yongqiang; Wan, Liying

    2010-10-01

    To the characteristic of the ultraviolet CCD (UV ICCD), technique of the linearity measurement of the UV ICCD camera is studied based on the theory of radiometry. Approach of linearity measurement is discussed, and a kind of measurement system of the UV ICCD has been developed based on the method of neutral density filter. It is very important that the transmittance of the filter is independent of the wavelength in the method of neutral density filter. Black metal screen mesh with different transmittance is used in our system, and calibration of the filters' transmittance in different working positions has been done. Meanwhile, to assure the uniform of the received radiation on the target of the detector at any test points, an integrating sphere is placed behind the neutral filter to balance light. The whole measurement system mainly consists of a deuterium lamp with high stabilization, the attenuation film with transmission, integrating sphere, optical guide and electro-shift platform. Auto control is realized via special software during the test. With this instrument, the linearity of the UV ICCD was measured. Experimental results show that the nonlinearity of the UV ICCD under fixed-gain is less than 2% and the uncertainty of measurement system is less than 4%.

  9. A new approach to modelling radiation noise in CCD's

    International Nuclear Information System (INIS)

    Chugg, A.; Hopkinson, G.

    1998-01-01

    The energy depositions reported by Monte Carlo electron-photon irradiation transport codes are subject to a random error due to the finite number of particle histories used to generate the results. These statistical variations, normally a nuisance, may also be identified with the real radiation noise effects experienced by CCD pixels in persistent radiation environments. This paper explores the practicability of such radiation noise modelling by applying the ACCEPT code from the ITS suite to the case of a shielded CCD exposed to an electron flux. The results are compared with those obtained in a subsequent electron irradiation of the CCD by a Van de Graaff accelerator

  10. Enzymatic study on AtCCD4 and AtCCD7 and their potential to form acyclic regulatory metabolites

    KAUST Repository

    Bruno, Mark

    2016-09-29

    The Arabidopsis carotenoid cleavage dioxygenase 4 (AtCCD4) is a negative regulator of the carotenoid content of seeds and has recently been suggested as a candidate for the generation of retrograde signals that are thought to derive from the cleavage of poly-cis-configured carotene desaturation intermediates. In this work, we investigated the activity of AtCCD4 in vitro and used dynamic modeling to determine its substrate preference. Our results document strict regional specificity for cleavage at the C9–C10 double bond in carotenoids and apocarotenoids, with preference for carotenoid substrates and an obstructing effect on hydroxyl functions, and demonstrate the specificity for all-trans-configured carotenes and xanthophylls. AtCCD4 cleaved substrates with at least one ionone ring and did not convert acyclic carotene desaturation intermediates, independent of their isomeric states. These results do not support a direct involvement of AtCCD4 in generating the supposed regulatory metabolites. In contrast, the strigolactone biosynthetic enzyme AtCCD7 converted 9-cis-configured acyclic carotenes, such as 9-cis-ζ-carotene, 9\\'-cis-neurosporene, and 9-cis-lycopene, yielding 9-cis-configured products and indicating that AtCCD7, rather than AtCCD4, is the candidate for forming acyclic retrograde signals.

  11. Contrast reduction in digital images due to x-ray induced damage to a TV camera's CCD image receptor

    International Nuclear Information System (INIS)

    Okkalides, D.

    1999-01-01

    The CCD image receptor in a monochrome TV camera was irradiated in the dark with a single-phase 80 kVp narrow beam carrying an additional 0.5 mm Al filter. It was found that the CCD responded to the x-rays with a transient signal which would reach a maximum value at about 70 mR per image frame. The signal's contrast would reach a maximum of about 7%, but was detectable at much lower exposure rates. Continuous irradiation of the CCD image receptor created a 'lesion' at the point of incidence that remained after the x-ray beam was switched off. This signal seemed to be due to permanent damage to the CCD and could be detected after a cumulative exposure of less than 20 R. It was shown that such damage could be created much more effectively if the TV camera was switched off rather than on and the maximum contrast was achieved with about 75 R and 220 R respectively. The maximum contrast achieved was about 8%. Further increase in the cumulative exposure of a particular location on the CCD image receptor was not investigated but it seemed reasonable that much higher contrast values could be reached if irradiation was continued. The latter damage described here was found to persist for at least several weeks and hence it will probably prevent any normal use of the TV camera in the future. (author)

  12. Improvement in the light sensitivity of the ultrahigh-speed high-sensitivity CCD with a microlens array

    Science.gov (United States)

    Hayashida, T.,; Yonai, J.; Kitamura, K.; Arai, T.; Kurita, T.; Tanioka, K.; Maruyama, H.; Etoh, T. Goji; Kitagawa, S.; Hatade, K.; Yamaguchi, T.; Takeuchi, H.; Iida, K.

    2008-02-01

    We are advancing the development of ultrahigh-speed, high-sensitivity CCDs for broadcast use that are capable of capturing smooth slow-motion videos in vivid colors even where lighting is limited, such as at professional baseball games played at night. We have already developed a 300,000 pixel, ultrahigh-speed CCD, and a single CCD color camera that has been used for sports broadcasts and science programs using this CCD. However, there are cases where even higher sensitivity is required, such as when using a telephoto lens during a baseball broadcast or a high-magnification microscope during science programs. This paper provides a summary of our experimental development aimed at further increasing the sensitivity of CCDs using the light-collecting effects of a microlens array.

  13. Micrometer and CCD measurements of double stars (Series 51

    Directory of Open Access Journals (Sweden)

    Popović G.M.

    1998-01-01

    Full Text Available 36 micrometric measurements of 20 double or multiple systems carried out with the Zeiss 65/1055 cm Refractor of Belgrade Observatory are communicated. Also 35 CCD measurements of 15 double or multiple systems are included.

  14. Correlation and image compression for limited-bandwidth CCD.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Douglas G.

    2005-07-01

    As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

  15. Analysis of tap weight errors in CCD transversal filters

    NARCIS (Netherlands)

    Ricco, Bruno; Wallinga, Hans

    1978-01-01

    A method is presented to determine and evaluate the actual tap weight errors in CCD split-electrode transversal filters. It is concluded that the correlated part in the tap weight errors dominates the random errors.

  16. Target Image Matching Algorithm Based on Binocular CCD Ranging

    Directory of Open Access Journals (Sweden)

    Dongming Li

    2014-01-01

    Full Text Available This paper proposed target image in a subpixel level matching algorithm for binocular CCD ranging, which is based on the principle of binocular CCD ranging. In the paper, firstly, we introduced the ranging principle of the binocular ranging system and deduced a binocular parallax formula. Secondly, we deduced the algorithm which was named improved cross-correlation matching algorithm and cubic surface fitting algorithm for target images matched, and it could achieve a subpixel level matching for binocular CCD ranging images. Lastly, through experiment we have analyzed and verified the actual CCD ranging images, then analyzed the errors of the experimental results and corrected the formula of calculating system errors. Experimental results showed that the actual measurement accuracy of a target within 3 km was higher than 0.52%, which meet the accuracy requirements of the high precision binocular ranging.

  17. CCD vertex detector for the future linear collider

    CERN Document Server

    Stefanov, K D

    2003-01-01

    The R and D program at the LCFI collaboration is dedicated to the building of CCD-based vertex detector, satisfying the challenging requirements of the proposed future linear colliders. The mechanical part of the program targets the development of precision thin detector ladders, using large back-thinned unsupported CCDs under tension. Another part of the program aims to achieve very fast readout of the sensors using column-parallel CCDs, bump bonded to a dedicated CMOS readout chip. Each column of the CCD is read and processed independently, which gives the ultimate speed performance. Some results on modelling of the proposed column parallel CCD with device simulator CAD tools are presented. Tests on fast commercial CCD are being carried out to provide information on noise performance and handling of MIP-like charges at high clock frequencies.

  18. Collection and processing data for high quality CCD images.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2007-03-01

    Coherent Change Detection (CCD) with Synthetic Aperture Radar (SAR) images is a technique whereby very subtle temporal changes can be discerned in a target scene. However, optimal performance requires carefully matching data collection geometries and adjusting the processing to compensate for imprecision in the collection geometries. Tolerances in the precision of the data collection are discussed, and anecdotal advice is presented for optimum CCD performance. Processing considerations are also discussed.

  19. A machine vision system with CCD cameras for patient positioning in radiotherapy: a preliminary report.

    Science.gov (United States)

    Yoshitake, Tadamasa; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Sasaki, Tomonari; Ohga, Saiji; Yamaguchi, Toshihiro; Toba, Takashi; Anai, Shigeo; Terashima, Hiromi; Honda, Hiroshi

    2005-12-01

    To determine positioning accuracy of a machine vision system in radiotherapy. The machine vision system was composed of 640 x 480 pixel CCD cameras and computerized control systems. For image acquisition, the phantom was set up for the reference position and a single CCD camera was positioned 1.5 m from the isocenter. The image data of the fiducial marker with 1.5 mm lead pellet on the lateral surface of the phantom was captured onto the CCD, and then the position of the marker was accurately calculated. The phantom was moved 0.25, 0.50, 0.75, 1.00, 2.00, and 3.00 mm from the reference position, using a micrometer head. The position of the fiducial marker was analyzed using a kilo-voltage fluoroscopic imaging system and a machine vision system. Using fluoroscopic images, the discrepancy between the actual movement of the phantom by micrometer heads and the measurement was found to be 0.12 +/- 0.05 mm (mean +/- standard deviation). In contrast, the detection of the movement by the machine vision system coincided with the discrepancy of 0.0067 +/- 0.0048 mm. This study suggests that the machine vision system can be used to measure small changes in patient position with a resolution of less than 0.1 mm.

  20. Trap pumping schemes for the Euclid CCD273 detector: characterisation of electrodes and defects

    Science.gov (United States)

    Skottfelt, J.; Hall, D. J.; Dryer, B.; Bush, N.; Campa, J.; Gow, J. P. D.; Holland, A. D.; Jordan, D.; Burt, D.

    2017-12-01

    The VISible imager instrument (VIS) on board the Euclid mission will deliver high resolution shape measurements of galaxies down to very faint limits (R ~ 25 at 10σ) in a large part of the sky, in order to infer the distribution of dark matter in the Universe. To help mitigate radiation damage effects that will accumulate in the detectors over the mission lifetime, the properties of the radiation induced traps needs to be known with as high precision as possible. For this purpose the trap pumping method will be employed as part of the in-orbit calibration routines. Using trap pumping it is possible to identify and characterise single traps in a Charge-Coupled Device (CCD), thus providing information such as the density, emission time constants and sub-pixel positions of the traps in the detectors. This paper presents the trap pumping algorithms used for the radiation testing campaign of the CCD273 detectors, performed by the Centre for Electronic Imaging (CEI) at the Open University, that will be used for the VIS instrument. The CCD273 is a four-phase device with uneven phase widths, which complicates the trap pumping analysis. However, we find that by optimising the trap pumping algorithms and analysis routines, it is possible to obtain sub-pixel and even sub-phase positional information about the traps. Further, by comparing trap pumping data with simulations, it is possible to gain more information about the effective electrode widths of the device.

  1. Large area high-resolution CCD-based X-ray detector for macromolecular crystallography

    CERN Document Server

    Pokric, M; Jorden, A R; Cox, M P; Marshall, A; Long, P G; Moon, K; Jerram, P A; Pool, P; Nave, C; Derbyshire, G E; Helliwell, J R

    2002-01-01

    An X-ray detector system for macromolecular crystallography based on a large area charge-coupled device (CCD) sensor has been developed as part of a large research and development programme for advanced X-ray sensor technology, funded by industry and the Particle Physics and Astronomy Research Council (PPARC) in the UK. The prototype detector consists of two large area three-sides buttable charge-coupled devices (CCD 46-62 EEV), where the single CCD area is 55.3 mmx41.5 mm. Overall detector imaging area is easily extendable to 85 mmx110 mm. The detector consists of an optically coupled X-ray sensitive phosphor, skewed fibre-optic studs and CCDs. The crystallographic measurement requirements at synchrotron sources are met through a high spatial resolution (2048x1536 pixel array), high dynamic range (approx 10 sup 5), a fast readout (approx 1 s), low noise (<10e sup -) and much reduced parallax error. Additionally, the prototype detector system has been optimised by increasing its efficiency at low X-ray ene...

  2. CCD [charge-coupled device] sensors in synchrotron x-ray detectors

    International Nuclear Information System (INIS)

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.; Zaluzec, N.J.

    1987-01-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron x-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ∼1 CCD electron/x-ray photon, a peak saturation capacity of >10 6 x rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 x 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode x-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at the rate of ∼1 frame/s or a complete 3-dimensional data set from a single crystal in ∼2 min. 16 refs., 16 figs., 2 tabs

  3. CCD Astrophotography High-Quality Imaging from the Suburbs

    CERN Document Server

    Stuart, Adam

    2006-01-01

    This is a reference book for amateur astronomers who have become interested in CCD imaging. Those glorious astronomical images found in astronomy magazines might seem out of reach to newcomers to CCD imaging, but this is not the case. Great pictures are attainable with modest equipment. Adam Stuart’s many beautiful images, reproduced in this book, attest to the quality of – initially – a beginner’s efforts. Chilled-chip astronomical CCD-cameras and software are also wonderful tools for cutting through seemingly impenetrable light-pollution. CCD Astrophotography from the Suburbs describes one man’s successful approach to the problem of getting high-quality astronomical images under some of the most light-polluted conditions. Here is a complete and thoroughly tested program that will help every CCD-beginner to work towards digital imaging of the highest quality. It is equally useful to astronomers who have perfect observing conditions, as to those who have to observe from light-polluted city skies.

  4. Purification and crystallization of Vibrio fischeri CcdB and its complexes with fragments of gyrase and CcdA

    Energy Technology Data Exchange (ETDEWEB)

    De Jonge, Natalie, E-mail: ndejonge@vub.ac.be; Buts, Lieven; Vangelooven, Joris [Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels (Belgium); Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Mine, Natacha; Van Melderen, Laurence [Laboratoire de Génétique des Procaryotes, Institut de Biologie et de Médecine, Université Libre de Bruxelles, Gosselies (Belgium); Wyns, Lode; Loris, Remy [Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels (Belgium); Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium)

    2007-04-01

    A CcdB homologue from V. fischeri was overexpressed in E. coli and purified. The free protein was crystallized, as were its complexes with fragments of E. coli and V. fischeri gyrase and with the F-plasmid CcdA C-terminal domain. The ccd toxin–antitoxin module from the Escherichia coli F plasmid has a homologue on the Vibrio fischeri integron. The homologue of the toxin (CcdB{sub Vfi}) was crystallized in two different crystal forms. The first form belongs to space group I23 or I2{sub 1}3, with unit-cell parameter a = 84.5 Å, and diffracts to 1.5 Å resolution. The second crystal form belongs to space group C2, with unit-cell parameters a = 58.5, b = 43.6, c = 37.5 Å, β = 110.0°, and diffracts to 1.7 Å resolution. The complex of CcdB{sub Vfi} with the GyrA14{sub Vfi} fragment of V. fischeri gyrase crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.5, b = 94.6, c = 58.1 Å, and diffracts to 2.2 Å resolution. The corresponding mixed complex with E. coli GyrA14{sub Ec} crystallizes in space group C2, with unit-cell parameters a = 130.1, b = 90.8, c = 58.1 Å, β = 102.6°, and diffracts to 1.95 Å. Finally, a complex between CcdB{sub Vfi} and part of the F-plasmid antitoxin CcdA{sub F} crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.9, b = 62.6, c = 82.0 Å, and diffracts to 1.9 Å resolution.

  5. Time- and Space-Resolved Spectroscopic Investigation on Pi-Conjugated Nanostructures - 2

    Science.gov (United States)

    2016-01-12

    conformations and the location of fluorescent trapping sites in multichromophoric macrocycles using single- molecule spectroscopic methods provides...multichromophoric macrocycles using single-molecule spectroscopic methods provides not only a new level of understanding, but will also stimulate other...AFRL-AFOSR-JP-TR-2016-0029 Time- and Space-Resolved Spectroscopic Investigation on Pi-Conjugated Nanostructures - 2 Dongho Kim YONSEI UNIVERSITY

  6. Digital autoradiography using room temperature CCD and CMOS imaging technology

    International Nuclear Information System (INIS)

    Cabello, Jorge; Bailey, Alexis; Kitchen, Ian; Prydderch, Mark; Clark, Andy; Turchetta, Renato; Wells, Kevin

    2007-01-01

    CCD (charged coupled device) and CMOS imaging technologies can be applied to thin tissue autoradiography as potential imaging alternatives to using conventional film. In this work, we compare two particular devices: a CCD operating in slow scan mode and a CMOS-based active pixel sensor, operating at near video rates. Both imaging sensors have been operated at room temperature using direct irradiation with images produced from calibrated microscales and radiolabelled tissue samples. We also compare these digital image sensor technologies with the use of conventional film. We show comparative results obtained with 14 C calibrated microscales and 35 S radiolabelled tissue sections. We also present the first results of 3 H images produced under direct irradiation of a CCD sensor operating at room temperature. Compared to film, silicon-based imaging technologies exhibit enhanced sensitivity, dynamic range and linearity

  7. Technology of Sand Level Detection Based on CCD Images

    Science.gov (United States)

    Jiang, Bing; Li, Xianglin; Chen, Xiaohui; Zhang, Tengfei; Feng, Chi; Zhang, Fei

    Heavy oil takes advantage of proportion in world petroleum resources. Thermal recovery technology, the chief means of heavy-oil exploitation, has been widely applied in development of world heavy-oil reservoir. To study the effect of sand-control technology in the process of heavy-oil thermal recovery, A HTRSTS (Heavy-oil Thermal Recovery Simulation Testing System) has been build. The detection of sand level in sand container is very important. The sand level detection technology adopted in this system is image processing technique based on CCD. Sand container image is taken by CCD, and then HTRSTS locks the interface between sand and liquid through CCD scanning. The preliminary experimental result shows that the standard deviation is about 0.02 liter, which could satisfy practical requirement quite well.

  8. Phonons in orientationally disordered neopentane C(CD3)4

    International Nuclear Information System (INIS)

    Debeau, M.; Depondt, P.; Hennion, B.; Reichardt, W.

    1993-01-01

    The phonons of deuteriated neopentane (C(CD 3 ) 4 single crystals in the orientationally disordered phase were measured at T=173 K by coherent inelastic neutron scattering, yielding very broad bands that spread, at a given energy, over a large portion of the Brillouin zone while sitting on an intense background. No librational mode was detected. Selection rule violations, presumably linked to disorder, were observed. The elastic constants are discussed in terms or rotational-translational coupling, and inelastic scattering results are compared with the molecular center of mass translational disorder as obtained from diffraction experiments providing a confirmation of a previous interpretation of these experiments. (orig.)

  9. Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping

    KAUST Repository

    Mantega, M.

    2012-07-19

    We investigate the charging state of an isolated single dangling bond formed on an unpassivated Si(100) surface with c(4×2) reconstruction, by comparing scanning tunneling microscopy and spectroscopy analysis with density functional theory calculations. The dangling bond is created by placing a single hydrogen atom on the bare surface with the tip of a scanning tunneling microscope. The H atom passivates one of the dimer dangling bonds responsible for the surface one-dimensional electronic structure. This leaves a second dangling at the reacted surface dimer which breaks the surface periodicity. We consider two possible H adsorption configurations for both the neutral and the doped situation (n- and p-type). In the case of n-doping we find that the single dangling bond state is doubly occupied and the most stable configuration is that with H bonded to the bottom Si atom of the surface dimer. In the case of p-doping the dangling bond is instead empty and the configuration with the H attached to the top atom of the dimer is the most stable. Importantly the two configurations have different scattering properties and phase shift fingerprints. This might open up interesting perspectives for fabricating a switching device by tuning the doping level or by locally charging the single dangling bond state. © 2012 American Physical Society.

  10. Multi-pass spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Stehle, Jean-Louis; Samartzis, Peter C.; Stamataki, Katerina; Piel, Jean-Philippe; Katsoprinakis, George E.; Papadakis, Vassilis; Schimowski, Xavier; Rakitzis, T. Peter; Loppinet, Benoit

    2014-01-01

    Spectroscopic ellipsometry is an established technique, particularly useful for thickness measurements of thin films. It measures polarization rotation after a single reflection of a beam of light on the measured substrate at a given incidence angle. In this paper, we report the development of multi-pass spectroscopic ellipsometry where the light beam reflects multiple times on the sample. We have investigated both theoretically and experimentally the effect of sample reflectivity, number of reflections (passes), angles of incidence and detector dynamic range on ellipsometric observables tanΨ and cosΔ. The multiple pass approach provides increased sensitivity to small changes in Ψ and Δ, opening the way for single measurement determination of optical thickness T, refractive index n and absorption coefficient k of thin films, a significant improvement over the existing techniques. Based on our results, we discuss the strengths, the weaknesses and possible applications of this technique. - Highlights: • We present multi-pass spectroscopic ellipsometry (MPSE), a multi-pass approach to ellipsometry. • Different detectors, samples, angles of incidence and number of passes were tested. • N passes improve polarization ratio sensitivity to the power of N. • N reflections improve phase shift sensitivity by a factor of N. • MPSE can significantly improve thickness measurements in thin films

  11. CCD image sensor induced error in PIV applications

    International Nuclear Information System (INIS)

    Legrand, M; Nogueira, J; Vargas, A A; Ventas, R; Rodríguez-Hidalgo, M C

    2014-01-01

    The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (∼0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described. (paper)

  12. Digital Printing Quality Detection and Analysis Technology Based on CCD

    Science.gov (United States)

    He, Ming; Zheng, Liping

    2017-12-01

    With the help of CCD digital printing quality detection and analysis technology, it can carry out rapid evaluation and objective detection of printing quality, and can play a certain control effect on printing quality. It can be said CDD digital printing quality testing and analysis of the rational application of technology, its digital printing and printing materials for a variety of printing equipments to improve the quality of a very positive role. In this paper, we do an in-depth study and discussion based on the CCD digital print quality testing and analysis technology.

  13. Mid-IR image acquisition using a standard CCD camera

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Sørensen, Knud Palmelund; Pedersen, Christian

    2010-01-01

    Direct image acquisition in the 3-5 µm range is realized using a standard CCD camera and a wavelength up-converter unit. The converter unit transfers the image information to the NIR range were state-of-the-art cameras exist.......Direct image acquisition in the 3-5 µm range is realized using a standard CCD camera and a wavelength up-converter unit. The converter unit transfers the image information to the NIR range were state-of-the-art cameras exist....

  14. Chromatic Modulator for a High-Resolution CCD or APS

    Science.gov (United States)

    Hartley, Frank; Hull, Anthony

    2008-01-01

    A chromatic modulator has been proposed to enable the separate detection of the red, green, and blue (RGB) color components of the same scene by a single charge-coupled device (CCD), active-pixel sensor (APS), or similar electronic image detector. Traditionally, the RGB color-separation problem in an electronic camera has been solved by use of either (1) fixed color filters over three separate image detectors; (2) a filter wheel that repeatedly imposes a red, then a green, then a blue filter over a single image detector; or (3) different fixed color filters over adjacent pixels. The use of separate image detectors necessitates precise registration of the detectors and the use of complicated optics; filter wheels are expensive and add considerably to the bulk of the camera; and fixed pixelated color filters reduce spatial resolution and introduce color-aliasing effects. The proposed chromatic modulator would not exhibit any of these shortcomings. The proposed chromatic modulator would be an electromechanical device fabricated by micromachining. It would include a filter having a spatially periodic pattern of RGB strips at a pitch equal to that of the pixels of the image detector. The filter would be placed in front of the image detector, supported at its periphery by a spring suspension and electrostatic comb drive. The spring suspension would bias the filter toward a middle position in which each filter strip would be registered with a row of pixels of the image detector. Hard stops would limit the excursion of the spring suspension to precisely one pixel row above and one pixel row below the middle position. In operation, the electrostatic comb drive would be actuated to repeatedly snap the filter to the upper extreme, middle, and lower extreme positions. This action would repeatedly place a succession of the differently colored filter strips in front of each pixel of the image detector. To simplify the processing, it would be desirable to encode information on

  15. Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T=La, Gd, Y, and Lu) disordered single crystals

    Science.gov (United States)

    Cano-Torres, J. M.; Rico, M.; Han, X.; Serrano, M. D.; Cascales, C.; Zaldo, C.; Petrov, V.; Griebner, U.; Mateos, X.; Koopmann, P.; Kränkel, C.

    2011-11-01

    Tetragonal double tungstate single crystals with formula NaT(WO4)2 have been grown by the Czochralski (T = Gd, La, Y) or by the top-seeded solution growth (T = Lu) methods with Tm concentration between 8 × 1018 and 7.85 × 1020 cm-3. The spectroscopic properties of Tm3+ in these crystals are related with the peculiarities of their I4¯ crystalline structure. Sixty-five percent of La ions in NaLa(WO4)2 are in the 2d site, while in the other crystal hosts, the lanthanide occupies preferentially the 2b site (59% in T = Gd, 74% in T = Y, and 58% in T = Lu). As a consequence, the linewidths of spectral bands associated with the electronic transitions are significantly narrower in NaLa(WO4)2 than in the rest of the isostructural crystals considered. Polarized spectroscopic measurements at 5 K and at higher temperatures, along with energy level simulation of the 4f12 configuration using a single-electron Hamiltonian, including free-ion and crystal field interactions, allowed us to determine the irreducible representation and energy of Stark levels up to the 3P0 multiplet and thus to obtain realistic partition functions (Z) used for emission cross-section calculations. In particular, for the 3F4(u) → 3H6(l) laser transition at λ ≈ 2 μm, this provides: Zl/Zu = 1.436 (T = Gd), 1.464 (T = La), 1.448 (T = Y), and 1.471 (T = Lu). Radiative lifetimes calculated by the Judd-Ofelt and Füchtbauer-Ladenburg methods are in agreement and decrease in the following order T = Gd, La, Y, and Lu, however, nonradiative losses are stronger for T = Gd and La crystals; therefore, experimental lifetimes of 1D2, 1G4, 3H4, and 3F4 Tm3+ multiplets do not change too much with crystal host. For 4.68 at.% Tm:NaY(WO4)2 crystal continuous-wave laser operation is obtained with ≈42% of slope efficiency and a record (for this crystal class) tuning capability of λ = 1847-2069 nm. The broad bandwidths, ΔλFWHM > 20 nm, of the free-running laser emission are promising for ultrafast (fs) mode

  16. Calibration of the CCD photonic measuring system for railway inspection

    Science.gov (United States)

    Popov, D. V.; Ryabichenko, R. B.; Krivosheina, E. A.

    2005-08-01

    Increasing of traffic speed is the most important task in Moscow Metro. Requirements for traffic safety grow up simultaneously with the speed increasing. Currently for track inspection in Moscow Metro is used track measurement car has built in 1954. The main drawbacks of this system are absence of automated data processing and low accuracy. Non-contact photonic measurement system (KSIR) is developed for solving this problem. New track inspection car will be built in several months. This car will use two different track inspection systems and car locating subsystem based on track circuit counting. The KSIR consists of four subsystems: rail wear, height and track gauge measurement (BFSM); rail slump measurement (FIP); contact rail measurement (FKR); speed, level and car locating (USI). Currently new subsystem for wheel flange wear (IRK) is developed. The KSIR carry out measurements in real-time mode. The BFSM subsystem contains 4 matrix CCD cameras and 4 infrared stripe illuminators. The FIP subsystem contains 4 line CCD cameras and 4 spot illuminators. The FKR subsystem contains 2 matrix CCD cameras and 2 stripe illuminators. The IRK subsystem contains 2 CCD cameras and 2 stripe illuminators. Each system calibration was carried out for their adjustment. On the first step KSIR obtains data from photonic sensors which is valued in internal measurement units. Due to the calibration on the second step non-contact system converts the data to metric measurement system.

  17. Development of CCD Imaging System Using Thermoelectric Cooling Method

    Directory of Open Access Journals (Sweden)

    Youngsik Park

    2000-06-01

    Full Text Available We developed low light CCD imaging system using thermoelectric cooling method collaboration with a company to design a commercial model. It consists of Kodak KAF-0401E (768x512 pixels CCD chip,thermoelectric module manufactured by Thermotek. This TEC system can reach an operative temperature of -25deg. We employed an Uniblitz VS25S shutter and it has capability a minimum exposure time 80ms. The system components are an interface card using a Korea Astronomy Observatory (hereafter KAO ISA bus controller, image acquisition with AD9816 chip, that is 12bit video processor. The performance test with this imaging system showed good operation within the initial specification of our design. It shows a dark current less than 0.4e-/pixel/sec at a temperature of -10deg, a linearity 99.9+/-0.1%, gain 4.24e-adu, and system noise is 25.3e- (rms. For low temperature CCD operation, we designed a TEC, which uses a one-stage peltier module and forced air heat exchanger. This TEC imaging system enables accurate photometry (+/-0.01mag even though the CCD is not at 'conventional' cryogenic temperatures (140K. The system can be a useful instrument for any other imaging applications. Finally, with this system, we obtained several images of astronomical objects for system performance tests.

  18. Programmable CCD imaging system for synchrotron radiation studies

    International Nuclear Information System (INIS)

    Rodricks, B.; Brizard, C.

    1991-07-01

    A real-time imaging system for x-ray detection has been developed. The CAMAC-based system has a Charge Coupled Device (CCD) as its active detection element. The electronics consists of a CAMAC-crate-based dedicated microprocessor coupled to arbitrary waveform generators, programmable timing, and ADC modules. The hardware flexibility achievable through this system enables one to use virtually any commercially available CCD. A dedicated CAMAC-based display driver allows for real-time imaging on a high-resolution color monitor. An optional front end consisting of a fiber-optic taper and a focusing optical lens system coupled to a phosphor screen allows for large area imaging. Further, programming flexibility, in which the detector can be used in different read-out modes, enables it to be exploited for time-resolved experiments. In one mode, sections of the CCD can be read-out with millisecond time-resolution and, in another, the use of the CCD as a storage device is exploited resulting microsecond time-resolution. Three different CCDs with radically different read-out timings and waveforms have been tested. 11 refs., 5 figs., 1 tab

  19. Flatfielding Errors in Strömvil CCD Photometry

    Directory of Open Access Journals (Sweden)

    Boyle R. P.

    2003-12-01

    Full Text Available The importance of determining the error of the flat field in CCD photometry is detailed and our methods of doing this are described. We now have reached a precision of 1-1.5 % in our photometry. Color-magnitude diagrams of the open cluster M67 (ours and Laugalys et al. 2003 are compared.

  20. Multicolour CCD Photometric Study of Galactic Star Clusters SAI 63 ...

    Indian Academy of Sciences (India)

    colour–magnitude (CMD) and colour–colour diagrams of star clusters, it is possible to determine the underlying properties ... The reality of these newly discovered open clusters was confirmed by means of their J, (J −H) and Ks, (J − Ks) CMDs. ... The data were obtained using the 2 K×2 K. CCD system at the f/13 Cassegrain ...

  1. Developments in X-ray and astronomical CCD imagers

    International Nuclear Information System (INIS)

    Gregory, J.A.; Burke, B.E.; Kosicki, B.B.; Reich, R.K.

    1999-01-01

    There have been many recent developments in the attributes and capabilities of silicon-based CCD detectors for use in space and ground-based astronomy. The imagers used as X-ray detectors require very low noise and excellent quantum efficiency over the energy range of 200-10000 eV. This is achieved using a combination of front and back-illuminated imagers fabricated on a 5000 Ω-cm resistivity material. A requirement for ground-based imagers is very good sensitivity between 350 and 1000 nm, as well as low noise and a high degree of spatial uniformity. We will describe the fabrication and performance of these imagers. Special features integrated into the CCD pixel architecture have increased the capability of the imagers. A fast electronic shutter has been developed for a wavefront sensor in an adaptive optics system. An orthogonal transfer CCD has been designed to compensate for the image motion relative to the CCD focal plane. Also, an antiblooming drain process has been developed so bright sources do not extend spatially into adjacent pixels in back- and front-illuminated imagers. Aspects of the design, fabrication, and performance of imagers with these features will be described

  2. Technical challenges and recent progress in CCD imagers

    Energy Technology Data Exchange (ETDEWEB)

    Bosiers, Jan T. [DALSA Professional Imaging, High Tech Campus 12a, M/S 01 (WAD01), 5656 AE Eindhoven (Netherlands)]. E-mail: jan.bosiers@dalsa.com; Peters, Inge M. [DALSA Professional Imaging, High Tech Campus 12a, M/S 01 (WAD01), 5656 AE Eindhoven (Netherlands); Draijer, Cees [DALSA Professional Imaging, High Tech Campus 12a, M/S 01 (WAD01), 5656 AE Eindhoven (Netherlands); Theuwissen, Albert [DALSA Semiconductor, High Tech Campus 12a, M/S 01 (WAD01), 5656 AE Eindhoven (Netherlands)

    2006-09-01

    This paper gives a review of the performance of charge-coupled device (CCD) imagers for use in consumer, professional and scientific applications. An overview of recent developments and the current state-of-the-art are presented. An extensive list of references is included.

  3. A GRAPH READER USING A CCD IMAGE SENSOR

    African Journals Online (AJOL)

    2008-01-18

    Jan 18, 2008 ... 3. Data Processing. The microcontroller, the CCD sensor, the stepper motor and the rest of the system are interfaced to the PC where data processing and overall control are done. A software program in. QUICKBASIC is used to process the pixels. First the 1024 pixels of an image line are received from the.

  4. BVRI CCD photometry of the globular cluster NGC 2808

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E.

    1990-01-01

    As a part of a continuing program, CCD color-magnitude diagrams are presented for the bright globular cluster NGC 2808 in the four colors comprising BVRI. From a comparison of four different CMDs with theoretical isochrones, an age of 16 + or - 2 Gyr is obtained, assuming a value for Fe/H near -1.3. 28 refs

  5. Application Of CCD Camera And Computer In Interferometry

    Science.gov (United States)

    Wang, Wensheng

    1989-01-01

    In this article we have theoretically and experimentally dicussed how scanning interference fringes are automatically recorded with a ccd camera and a computer. This new measure technique can be used to any length measurement by interferomtry. As a practical example, we have automatically in real-time measured the shrinking of 2- components adhesive in a hardening process.

  6. CCD photometry of apparent dwarf galaxies in Fornax

    International Nuclear Information System (INIS)

    Phillipps, S.; Grimley, P.L.; Disney, M.J.; Cawson, M.G.M.; Kibblewhite, E.J.

    1986-01-01

    Blue and red CCD surface photometry of two apparent dwarf galaxies in the Fornax cluster region is presented. Luminosity profiles are derived and their form discussed. The fainter galaxy resembles an archetypal diffuse dwarf elliptical but the brighter of the pair is either an unusual red dwarf or a background galaxy in chance juxtaposition. (author)

  7. Multicolour CCD Photometric Study of Galactic Star Clusters SAI 63 ...

    Indian Academy of Sciences (India)

    J. Astrophys. Astr. (2014) 35, 143–156 c Indian Academy of Sciences. Multicolour CCD Photometric Study of Galactic Star Clusters. SAI 63 and SAI 75. R. K. S. Yadav1,∗, S. I. Leonova2, R. Sagar1 & E. V. Glushkova2. 1Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak,. Nainital 263 129, India.

  8. Spectroscopic classification of transients

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  9. Spectroscopic analysis and control

    Energy Technology Data Exchange (ETDEWEB)

    Tate; , James D.; Reed, Christopher J.; Domke, Christopher H.; Le, Linh; Seasholtz, Mary Beth; Weber, Andy; Lipp, Charles

    2017-04-18

    Apparatus for spectroscopic analysis which includes a tunable diode laser spectrometer having a digital output signal and a digital computer for receiving the digital output signal from the spectrometer, the digital computer programmed to process the digital output signal using a multivariate regression algorithm. In addition, a spectroscopic method of analysis using such apparatus. Finally, a method for controlling an ethylene cracker hydrogenator.

  10. Study of x-ray CCD image sensor and application

    Science.gov (United States)

    Wang, Shuyun; Li, Tianze

    2008-12-01

    In this paper, we expounded the composing, specialty, parameter, its working process, key techniques and methods for charge coupled devices (CCD) twice value treatment. Disposal process for CCD video signal quantification was expatiated; X-ray image intensifier's constitutes, function of constitutes, coupling technique of X-ray image intensifier and CCD were analyzed. We analyzed two effective methods to reduce the harm to human beings when X-ray was used in the medical image. One was to reduce X-ray's radiation and adopt to intensify the image penetrated by X-ray to gain the same effect. The other was to use the image sensor to transfer the images to the safe area for observation. On this base, a new method was presented that CCD image sensor and X-ray image intensifier were combined organically. A practical medical X-ray photo electricity system was designed which can be used in the records and time of the human's penetrating images. The system was mainly made up with the medical X-ray, X-ray image intensifier, CCD vidicon with high resolution, image processor, display and so on. Its characteristics are: change the invisible X-ray into the visible light image; output the vivid images; short image recording time etc. At the same time we analyzed the main aspects which affect the system's resolution. Medical photo electricity system using X-ray image sensor can reduce the X-ray harm to human sharply when it is used in the medical diagnoses. At last we analyzed and looked forward the system's application in medical engineering and the related fields.

  11. The intermediate frequency modes of single- and double-walled carbon nanotubes: a Raman spectroscopic and in situ Raman spectroelectrochemical study.

    Science.gov (United States)

    Kalbac, Martin; Kavan, Ladislav; Zukalová, Markéta; Dunsch, Lothar

    2006-05-24

    The intermediate frequency modes (IFM) of single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) were analyzed by Raman spectroscopy and in situ Raman spectroelectrochemistry. The inner and outer tubes of DWCNTs manifested themselves as distinct bands in the IFM region. This confirmed the diameter dependence of IFM frequencies. Furthermore, the analysis of inner tubes of DWCNTs allowed a more-precise assignment of the bands in the IFM region to features intrinsic for carbon nanotubes. Although the inner tubes in DWCNTs are assumed to be structurally perfect, the role of defects on IFM was discussed. The dependence of IFM on electrochemical charging was also studied. In situ spectroelectrochemical data provide a means to distinguish the bands of the outer and inner tubes.

  12. New organic single crystal of (benzylthio)acetic acid: Synthesis, crystal structure, spectroscopic (ATR-FTIR, 1H and 13C NMR) and thermal characterization

    Science.gov (United States)

    Sienkiewicz-Gromiuk, Justyna; Tarasiuk, Bogdan; Mazur, Liliana

    2016-04-01

    (Benzylthio)acetic acid (Hbta) was synthesized with 78% yield from benzyl chloride and thiourea as substrates. Well-shaped crystals of Hbta were grown by slow solvent evaporation technique from pure methanol. The compound was investigated by single-crystal X-ray and powder diffraction techniques and was also characterized by other analytical methods, like ATR-FTIR, 1H and 13C NMR and TG/DSC. The acid molecule adopts bent conformation in the solid state. The crystal structure of Hbta is stabilized by numerous intermolecular interactions, including O-H···O, C-H···O, C-H···S and C-H···π contacts. Thermal decomposition of the obtained material takes place above 150 °C.

  13. Real-time monitoring of longitudinal electron bunch parameters by intensity-integrated and spectroscopic measurements of single coherent THz pulses

    International Nuclear Information System (INIS)

    Wesch, Stephan

    2012-12-01

    High-gain free-electron lasers (FELs) generate intense and monochromatic photon pulses with few tens of femtosecond duration. For this purpose, electron beams are accelerated to relativistic energies and shrunk longitudinally down to micrometer size.The diagnosis of theses compressed electron bunches is a challenge especially for MHz bunch repetition rates as provided by the FEL FLASH in Hamburg. In this thesis, coherently emitted THz radiation of single electron bunches were investigated, on which the longitudinal structure is imprinted. Two instruments were used: First, the FLASH bunch compression monitors, relying on the integrated intensity measurement of diffraction radiation, were modified to determine the overall length of every bunch behind the two bunch compressors (BC). A model was developed showing that their response is independent of the exact bunch shape for lengths below 200 μm (rms). This could experimentally be verified in the range between 50 and 190 μm within 7% accuracy for themonitor behind the last BC by comparison with measurements with the transverse deflecting structure (TDS). Second, a single-shot spectrometer with five staged reflective blazed gratings has been designed, build and commissioned. With its two grating sets, the wavelength ranges from 5.5 to 44 μm and 45 to 440 μm can be simultaneously detected by 118 fast pyroelectric elements. Measurements based on transition radiation spectra were compared with profiles recorded by the TDS.The shape of the spectra as well as the reconstructed temporal profiles (using the Kramers-Kronig relation for phase retrieval) are in excellent agreement. For bunches with a charge of 50 pC, bunch lengths down to 5 μm (fhwm) could be detected.

  14. Grating Spectroscopes and How to Use Them

    CERN Document Server

    Harrison, Ken M

    2012-01-01

    Transmission grating spectroscopes look like simple filters and are designed to screw into place on the eyepiece tube of a telescope for visual use, or into a camera adapter for digicam or CCD imaging. They are relatively inexpensive and by far the easiest type of astronomical spectroscope to use, and so are the starting point for most beginners. Using the most popular commercially made filter gratings - from Rainbow Optics in the United States to Star Analyser in the United Kingdon - as examples, the book provides all the information needed to set up and use the grating to obtain stellar spectra. It also presents methods of analyzing the results. No heavy mathematics or formulas are involved, although a reasonable level of proficiency in using an astronomic telescope and, if relevant, imaging camera, is assumed. This book contains many practical hints and tips - something that is almost essential to success when starting out. It encourages new users to get quick results, and by following the worked examples,...

  15. Hydrate formation during wet granulation studied by spectroscopic methods and multivariate analysis

    DEFF Research Database (Denmark)

    Jørgensen, Anna; Rantanen, Jukka; Karjalainen, Milja

    2002-01-01

    PURPOSE: The aim was to follow hydrate formation of two structurally related drugs, theophylline and caffeine, during wet granulation using fast and nondestructive spectroscopic methods. METHODS: Anhydrous theophylline and caffeine were granulated with purified water. Charge-coupled device (CCD......) Raman spectroscopy was compared with near-infrared spectroscopy (NIR) in following hydrate formation of drugs during wet granulation (off-line). To perform an at-line process analysis, the effect of water addition was monitored by NIR spectroscopy and principal components analysis (PCA). The changes...... in the crystal arrangements were verified by using X-ray powder diffraction (XRPD). RESULTS: Hydrate formation of theophylline and caffeine could be followed by CCD Raman spectroscopy. The NIR and Raman spectroscopic results were consistent with each other. NIR revealed the state of water, and Raman spectroscopy...

  16. MISR Level 1A CCD Science data, all cameras V002

    Data.gov (United States)

    National Aeronautics and Space Administration — MISR Level 1A camera charge-coupled device (CCD) Science Instrument Data are the primary archive of the MISR instrument. The MISR CCD Science Instrument Data...

  17. Collective Ion-Pair Single-Drop Microextraction Attenuated Total Reflectance Fourier Transform Infrared Spectroscopic Determination of Perchlorate in Bioenvironmental Samples.

    Science.gov (United States)

    Chandrawanshi, Swati; Verma, Santosh K; Deb, Manas K

    2017-09-28

    Perchlorate (ClO₄ - ) is an environmental pollutant that affects human health. Perchlorate acts as a competitive inhibitor of iodine uptake in the thyroid gland (sodium-iodide symporter inhibitor); thus, its determination is important for public health concerns. Water and milk constitute a significant portion of the human diet. Because regular intake leads to an increase in perchlorate concentration in the human body, the estimation of perchlorate is of great concern. In this work, ion-pair single-drop microextraction (SDME) combined with attenuated total reflectance (ATR)-FTIR spectroscopy has been developed for the determination of perchlorate in bioenvironmental (soil, water, dairy milk, breast milk, and urine) samples. Perchlorate was extracted in a single drop of methyl isobutyl ketone as an - with the cationic surfactant cetyltrimethylammonuim bromide under optimized conditions. The strongest IR peak (at 1076 cm -1 ) was selected for the quantification of perchlorate among three observed vibrational peaks. Eight calibration curves for different concentration ranges of perchlorate were prepared, and excellent linearity was observed for absorbance and peak area in the range of 0.03-100 ng/mL perchlorate, with r values of 0.977 and 0.976, respectively. The RSDs ( n = 8) for the perchlorate concentration ranges of 0.03-100, 0.03-0.5, 0.5-10, and 10-100 ng/mL were in the range of 1.9-2.7% for the above calibration curves. The LOD and LOQ in the present work were 0.003 and 0.02 ng/mL, respectively. The extracted microdrop was analyzed directly by ATR-FTIR spectroscopy. The parameters affecting SDME, i.e, effect of pH, stirring rate, reagent concentration, microdrop volume, and extraction time, were optimized, and the role of foreign species was also investigated. F - and t -tests were performed to check the analytical QA of the method. A noteworthy feature of the reported method is the noninterference of any of the associated ions. The results were compared with

  18. Synthesis, spectroscopic and single crystal X-ray studies on three new mononuclear Ni(II) pincer type complexes: DFT calculations and their antimicrobial activities

    Science.gov (United States)

    Layek, Samaresh; Agrahari, Bhumika; Tarafdar, Abhrajyoti; Kumari, Chanda; Anuradha; Ganguly, Rakesh; Pathak, Devendra D.

    2017-08-01

    Three new mononuclear square planar Ni(II) complexes, containing pincer type tridentate Schiff base ligands, having general formula [(NiL1(4-MePy)] (1), [(NiL1(2-AzNp)] (2), and [(NiL2(4-MePy)] (3) [where L1 = anion of N-(2-hydroxy-3-methoxybenzylidene) benzoylhydrazide (HL1), L2 = anion of N-(2-hydroxy-3-methoxybenzylidene) thiosemicarbazide (HL2), 4-MePy = 4-Methylpyridine and 2-AzNp = 2-Azanapthalene] have been synthesized and fully characterized by FT-IR, UV-visible, NMR, single crystal X-ray diffraction studies and elemental analysis. All the three complexes show square planar geometry around the nickel atom. The pincer type ligand occupies three coordination sites, while the fourth site is occupied by the monodentate nitrogen containing ligand. The Quantum chemical DFT calculations have also been carried out using DFT/B3LYP method and 6-311++G(d,p) basis set. The synthesized nickel complexes were screened for antimicrobial activities by agar well diffusion method against E. coli bacteria. Out of three complexes, [(NiL2(4-MePy)] (3) only showed the antimicrobial activity against E. coli bacteria.

  19. High quality neutron radiography imaging using cooled CCD camera

    International Nuclear Information System (INIS)

    Kobayashi, Hisao

    1993-01-01

    An electronic imaging technique using cooled charge-coupled-device camera (C-CCD) was applied to neutron radiography. The camera was examined for linearities of signal outputs and its dynamic ranges about the number of photons generated in a converter by an incident neutron beam. It is expected that the camera can be applied to high quality NR imaging especially to tomographic imaging for static objects. When the C-CCD camera is applied to get tomogram on the basis of its excellent characteristics, the results will be discussed about the quality of the image through a dynamic range of CT value which is defined in this paper, and a guide of dimensional limitation which can reasonably reconstruct tomograms. (author)

  20. CCD Photometry of bright stars using objective wire mesh

    Energy Technology Data Exchange (ETDEWEB)

    Kamiński, Krzysztof; Zgórz, Marika [Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznań (Poland); Schwarzenberg-Czerny, Aleksander, E-mail: chrisk@amu.edu.pl [Copernicus Astronomical Centre, ul. Bartycka 18, PL 00-716 Warsaw (Poland)

    2014-06-01

    Obtaining accurate photometry of bright stars from the ground remains problematic due to the danger of overexposing the target and/or the lack of suitable nearby comparison stars. The century-old method of using objective wire mesh to produce multiple stellar images seems promising for the precise CCD photometry of such stars. Furthermore, our tests on β Cep and its comparison star, differing by 5 mag, are very encouraging. Using a CCD camera and a 20 cm telescope with the objective covered by a plastic wire mesh, in poor weather conditions, we obtained differential photometry with a precision of 4.5 mmag per two minute exposure. Our technique is flexible and may be tuned to cover a range as big as 6-8 mag. We discuss the possibility of installing a wire mesh directly in the filter wheel.

  1. Two-dimensional spectrophotometry of planetary nebulae by CCD imaging

    International Nuclear Information System (INIS)

    Jacoby, G.H.; Africano, J.L.; Quigley, R.J.; Western Washington Univ., Bellingham, WA)

    1987-01-01

    The spatial distribution of the electron temperature and density and the ionic abundances of O(+), O(2+), N(+), and S(+) have been derived from CCD images of the planetary nebulae NGC 40 and NGC 6826 taken in the important emission lines of forbidden O II, forbidden O III, H-beta, forbidden N II, and forbidden S II. The steps required in the derivation of the absolute fluxes, line, ratios, and ionic abundances are outlined and then discussed in greater detail. The results show that the CCD imaging technique for two-dimensional spectrophotometry can effectively compete with classical spectrophotometry, providing the added benefits of complete spatial coverage at seeing-disk spatial resolution. The multiplexing in the spatial dimension, however, results in a loss of spectral information, since only one emission line is observed at any one time. 37 references

  2. Optimization of polarimetry sensitivity for X-ray CCD

    CERN Document Server

    Hayashida, K; Tsunemi, H; Hashimoto, Y; Ohtani, M

    1999-01-01

    X-ray polarimetry with CCD has been performed using a polarized X-ray beam from an electron impact X-ray source. The standard data reduction method employing double-pixel events yields the modulation factor M of 0.14 at 27 keV and 0.24 at 43 keV for the 12 mu m pixel size CCD chip. We develop a new data reduction method, in which multi-pixel events are employed, and which approximates the charge spread as an oval shape. We optimize the reduction parameters, so that we improve the P sub m sub i sub n (minimum detectable polarization degree) by factor of three from the value obtained through the usual double-pixel event method.

  3. CCD-based thermoreflectance microscopy: principles and applications

    International Nuclear Information System (INIS)

    Farzaneh, M; Maize, K; Shakouri, A; Lueerssen, D; Summers, J A; Hudgings, Janice A; Mayer, P M; Ram, R J; Raad, P E; Pipe, K P

    2009-01-01

    CCD-based thermoreflectance microscopy has emerged as a high resolution, non-contact imaging technique for thermal profiling and performance and reliability analysis of numerous electronic and optoelectronic devices at the micro-scale. This thermography technique, which is based on measuring the relative change in reflectivity of the device surface as a function of change in temperature, provides high-resolution thermal images that are useful for hot spot detection and failure analysis, mapping of temperature distribution, measurement of thermal transient, optical characterization of photonic devices and measurement of thermal conductivity in thin films. In this paper we review the basic physical principle behind thermoreflectance as a thermography tool, discuss the experimental setup, resolutions achieved, signal processing procedures and calibration techniques, and review the current applications of CCD-based thermoreflectance microscopy in various devices. (topical review)

  4. Stroboscope Based Synchronization of Full Frame CCD Sensors

    Directory of Open Access Journals (Sweden)

    Liang Shen

    2017-04-01

    Full Text Available The key obstacle to the use of consumer cameras in computer vision and computer graphics applications is the lack of synchronization hardware. We present a stroboscope based synchronization approach for the charge-coupled device (CCD consumer cameras. The synchronization is realized by first aligning the frames from different video sequences based on the smear dots of the stroboscope, and then matching the sequences using a hidden Markov model. Compared with current synchronized capture equipment, the proposed approach greatly reduces the cost by using inexpensive CCD cameras and one stroboscope. The results show that our method could reach a high accuracy much better than the frame-level synchronization of traditional software methods.

  5. Spectroscopic Dosimeter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Analysis of Phase I test data demonstrates that the Photogenics Spectroscopic Dosimeter will detect neutron energies from 0.8 up to 600 MeV. The detector...

  6. Using a Web Cam CCD to do V Band Photometry

    Science.gov (United States)

    Temple, Paul

    2009-05-01

    With the plethora of cheap web cam based CCD cameras in the market today, it seemed expedient to find out if they can be used to do photometry. An experiment was planned to determine if it was possible to do this kind of exacting measurement. Arne Henden (AAVSO) believed it would be possible to do V band photometry to 0.05 mag accuracy with a web cam CCD. Using a 6" refractor, the heart of M42 was repeatedly imaged. Theta 2 and SAO 132322 were the comparison stars and V361 Orion was the target variable. Since the 1/4 HAD CCD chip only allows for a field of 10x7 arc minutes using the 6" refractor, the number targets was limited. The RGB on the chip itself provides the filters needed for photometry. The G band pass on the chip ranges from 425-650 nm with a peak band pass at 540, V band pass is 475-645 with a peak at 525. The results indicate that a web cam CCD can be used for V band photometry. With a 10 second calibrated exposure without the Peltier cooling being engaged, the results for the 2 target stars were ± 0.18 mag. The star Theta 2 was 0.18 brighter in V than the actual measurement from the Tycho catalog. SAO 132322 was -0.012 mag dimmer than the listed Tycho measurement. Then using SAO 132322 and Theta 2 as comparison stars, V361 Orion was estimated at 7.786 magnitudes. This is inline with visual estimates received before and after this date. With more estimates of known magnitude comparison stars, a correction factor should be estimated and applied to the variable work that will make it more accurate. This correction factor should bring it close to Arne Henden's estimate of 0.05 mag accuracy.

  7. Stellar CCD Photometry: New Approach, Principles and Application

    Science.gov (United States)

    El-Bassuny Alawy, A.

    A new approach is proposed and developed to handle pre-processed CCD frames in order to identify stellar images and derive their relevant parameters. It relies on: 1) Identifying stellar images and assigning approximate positions of their centres using an artificial intelligence technique, (Knowledge Based System), 2) Accurate determination of the centre co-ordinates applying an elementary statistical concept and 3) Estimating the image peak intensity as a stellar magnitude measure employing simple numerical analysis approach. The method has been coded for personal computer users. A CCD frame of the star cluster M67 was adopted as a test case. The results obtained are discussed in comparison with the DAOPHOTII ones and the corresponding published data. Exact coincidence has been found between both results except in very few cases. These exceptions have been discussed in the light of the basis of both methods and the cluster plates. It has been realised that the method suggested represents a very simple, extremely fast, high precision method of stellar CCD photometry. Moreover, it is more capable than DAOPHOTII of handling blended and distorted stellar images. These characteristics show the usefulness of the present method in some astronomical applications, such as auto-focusing and auto-guiding, beside the main purpose, viz. stellar photometry.

  8. Analysis of Dark Current in BRITE Nanostellite CCD Sensors †

    Science.gov (United States)

    Popowicz, Adam

    2018-01-01

    The BRightest Target Explorer (BRITE) is the pioneering nanosatellite mission dedicated for photometric observations of the brightest stars in the sky. The BRITE charge coupled device (CCD) sensors are poorly shielded against extensive flux of energetic particles which constantly induce defects in the silicon lattice. In this paper we investigate the temporal evolution of the generation of the dark current in the BRITE CCDs over almost four years after launch. Utilizing several steps of image processing and employing normalization of the results, it was possible to obtain useful information about the progress of thermal activity in the sensors. The outcomes show a clear and consistent linear increase of induced damage despite the fact that only about 0.14% of CCD pixels were probed. By performing the analysis of temperature dependencies of the dark current, we identified the observed defects as phosphorus-vacancy (PV) pairs, which are common in proton irradiated CCD matrices. Moreover, the Meyer-Neldel empirical rule was confirmed in our dark current data, yielding EMN=24.8 meV for proton-induced PV defects. PMID:29415471

  9. A Bridge Deflection Monitoring System Based on CCD

    Directory of Open Access Journals (Sweden)

    Baohua Shan

    2016-01-01

    Full Text Available For long-term monitoring of the midspan deflection of Songjiazhuang cloverleaf junction on 309 national roads in Zibo city, this paper proposes Zhang’s calibration-based DIC deflection monitoring method. CCD cameras are used to track the change of targets’ position, Zhang’s calibration algorithm is introduced to acquire the intrinsic and extrinsic parameters of CCD cameras, and the DIC method is combined with Zhang’s calibration algorithm to measure bridge deflection. The comparative test between Zhang’s calibration and scale calibration is conducted in lab, and experimental results indicate that the proposed method has higher precision. According to the deflection monitoring scheme, the deflection monitoring software for Songjiazhuang cloverleaf junction is developed by MATLAB, and a 4-channel CCD deflection monitoring system for Songjiazhuang cloverleaf junction is integrated in this paper. This deflection monitoring system includes functions such as image preview, simultaneous collection, camera calibration, deflection display, and data storage. In situ deflection curves show a consistent trend; this suggests that the proposed method is reliable and is suitable for the long-term monitoring of bridge deflection.

  10. Methods of dark signal determination for CCD array spectroradiometers used in solar UVR measurements

    International Nuclear Information System (INIS)

    Baczynska, K.A.; Khazova, M.

    2015-01-01

    The methods of the dark signal determination by direct contemporaneous measurements using a light spectrum and modelling of the dark signal based on the dark signal characterisation data were discussed. These techniques were tested with two charge-couple detectors (CCD) array spectroradiometers used in solar UVR measurements. The sensitivity of both instruments was significantly reduced when shutters were used; the measured signal varied by up to 12% depending on the orientation of the shutter. The shutters should be permanently attached to the SSR, so that the orientation cannot be changed to prevent an increase in uncertainty. The method of using blind pixels from the optically inactive part of the CCD array in a light spectrum could be used to derive the dark signal with some limitations for integration times <10 s for the QE65000. An alternative method of deriving the dark signal from light measurements using out-of-range pixels has been proved impossible due to out-of-range stray light in both instruments. The dark signal was characterised for the range of integration times and ambient temperatures of 15-35 deg. C. Based on these data, the model of the dark signal was developed so that a single value of the dark signal can be subtracted over the whole spectral range if the instrument temperature is known. (authors)

  11. A USB 2.0 computer interface for the UCO/Lick CCD cameras

    Science.gov (United States)

    Wei, Mingzhi; Stover, Richard J.

    2004-09-01

    The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.

  12. Miniature focal plane mass spectrometer with 1000-pixel modified-CCD detector array for direct ion measurement

    Science.gov (United States)

    Sinha, Mahadeva P.; Wadsworth, Mark

    2005-02-01

    A high performance, focal plane miniature mass spectrometer (MMS) of Mattauch-Herzog geometry with a CCD-based array detector for the direct and simultaneous measurements of different mass ions is described. Miniaturization (10cm×5cm×5cm,395g) was accomplished by using high-energy-product magnet material (Nd-B-Fe alloy) and a high permeability yoke material (V-Co-Fe Alloy) for the fabrication of the magnetic sector. The electrostatic sector was machined from a single piece of machinable ceramic (MACOR). All the components of the analyzer are mounted on a single plate, which facilitate their alignment and make the instrument rugged. The modified-CCD based ion detector array has 1000 elements (20μm×2mm) and was invented in our laboratory. The photosensitive part of the CCD was replaced with a metal-oxide-semiconductor (MOS) capacitor for ion detection. The ion sensing capacitor plates are connected to the CCD gates that are operated in the fill-and spill mode providing a gain in the charge domain for the signal ions and minimizing various noises during measurements. The results reported in this article are the first application of this detector array for direct ion measurement and successfully prove the new technology. The MMS with the array detector can measure masses up to 250u with a unit mass resolution and expected to possess a sensitivity of detecting ˜5ions. The above attributes make MMS suitable for space applications for isotopic and chemical analysis and also for field applications on earth.

  13. C.C.D. Readout Of A Picosecond Streak Camera With An Intensified C.C.D.

    Science.gov (United States)

    Lemonier, M.; Richard, J. C.; Cavailler, C.; Mens, A.; Raze, G.

    1985-02-01

    This paper deals with a digital streak camera readout device. The device consists in a low light level television camera made of a solid state C.C.D. array coupled to an image intensifier associated to a video-digitizer coupled to a micro-computer system. The streak camera images are picked-up as a video signal, digitized and stored. This system allows the fast recording and the automatic processing of the data provided by the streak tube. Starting from the output screen of the streak camera, the constitutive elements are : - A fiber optic taper (A.O. Scientific Instruments) set in contact with the fiber optic output window of the streak tube achieves the image demagnification ; - A double proximity focused image intensifier (RTC - XX1410 SP) achieves the bright-ness amplification without any distortion ; - A second fiber optic taper achieves the dimensional matching between intensifier output and C.C.D. sensitive area ;

  14. A High Resolution TDI CCD Camera forMicrosatellite (HRCM)

    Science.gov (United States)

    Hao, Yuncai; Zheng, You; Dong, Ying; Li, Tao; Yu, Shijie

    In resent years it is a important development direction in the commercial remote sensing field to obtain (1-5)m high ground resolution from space using microsatellite. Thanks to progress of new technologies, new materials and new detectors it is possible to develop 1m ground resolution space imaging system with weight less than 20kg. Based on many years works on optical system design a project of very high resolution TDI CCD camera using in space was proposed by the authors of this paper. The performance parameters and optical lay-out of the HRCM was presented. A compact optical design and results analysis for the system was given in the paper also. and small fold mirror to take a line field of view usable for TDI CCD and short outer size. The length along the largest size direction is about 1/4 of the focal length. And two 4096X96(grades) line TDI CCD will be used as the focal plane detector. The special optical parts are fixed near before the final image for getting the ground pixel resolution higher than the Nyquist resolution of the detector using the sub-pixel technique which will be explained in the paper. In the system optical SiC will be used as the mirror material, the C-C composite material will be used as the material of the mechanical structure framework. The circle frame of the primary and secondary mirrors will use one time turning on a machine tool in order to assuring concentric request for alignment of the system. In general the HRCM have the performance parameters with 2.5m focal length, 20 FOV, 1/11relative aperture, (0.4-0.8) micrometer spectral range, 10 micron pixel size of TDI CCD, weight less than 20kg, 1m ground pixel resolution at flying orbit 500km high. Design and analysis of the HRCM put up in the paper indicate that HRCM have many advantages to use it in space. Keywords High resolution TDI CCD Sub-pixel imaging Light-weighted optical system SiC mirror

  15. Spectroscopic methods to analyze drug metabolites.

    Science.gov (United States)

    Yi, Jong-Jae; Park, Kyeongsoon; Kim, Won-Je; Rhee, Jin-Kyu; Son, Woo Sung

    2018-03-09

    Drug metabolites have been monitored with various types of newly developed techniques and/or combination of common analytical methods, which could provide a great deal of information on metabolite profiling. Because it is not easy to analyze whole drug metabolites qualitatively and quantitatively, a single solution of analytical techniques is combined in a multilateral manner to cover the widest range of drug metabolites. Mass-based spectroscopic analysis of drug metabolites has been expanded with the help of other parameter-based methods. The current development of metabolism studies through contemporary pharmaceutical research are reviewed with an overview on conventionally used spectroscopic methods. Several technical approaches for conducting drug metabolic profiling through spectroscopic methods are discussed in depth.

  16. The design and development of low- and high-voltage ASICs for space-borne CCD cameras

    Science.gov (United States)

    Waltham, N.; Morrissey, Q.; Clapp, M.; Bell, S.; Jones, L.; Torbet, M.

    2017-12-01

    The CCD remains the pre-eminent visible and UV wavelength image sensor in space science, Earth and planetary remote sensing. However, the design of space-qualified CCD readout electronics is a significant challenge with requirements for low-volume, low-mass, low-power, high-reliability and tolerance to space radiation. Space-qualified components are frequently unavailable and up-screened commercial components seldom meet project or international space agency requirements. In this paper, we describe an alternative approach of designing and space-qualifying a series of low- and high-voltage mixed-signal application-specific integrated circuits (ASICs), the ongoing development of two low-voltage ASICs with successful flight heritage, and two new high-voltage designs. A challenging sub-system of any CCD camera is the video processing and digitisation electronics. We describe recent developments to improve performance and tolerance to radiation-induced single event latchup of a CCD video processing ASIC originally developed for NASA's Solar Terrestrial Relations Observatory and Solar Dynamics Observatory. We also describe a programme to develop two high-voltage ASICs to address the challenges presented with generating a CCD's bias voltages and drive clocks. A 0.35 μm, 50 V tolerant, CMOS process has been used to combine standard low-voltage 3.3 V transistors with high-voltage 50 V diffused MOSFET transistors that enable output buffers to drive CCD bias drains, gates and clock electrodes directly. We describe a CCD bias voltage generator ASIC that provides 24 independent and programmable 0-32 V outputs. Each channel incorporates a 10-bit digital-to-analogue converter, provides current drive of up to 20 mA into loads of 10 μF, and includes current-limiting and short-circuit protection. An on-chip telemetry system with a 12-bit analogue-to-digital converter enables the outputs and multiple off-chip camera voltages to be monitored. The ASIC can drive one or more CCDs and

  17. Crystallization of the C-terminal domain of the addiction antidote CcdA in complex with its toxin CcdB

    International Nuclear Information System (INIS)

    Buts, Lieven; De Jonge, Natalie; Loris, Remy; Wyns, Lode; Dao-Thi, Minh-Hoa

    2005-01-01

    The CcdA C-terminal domain was crystallized in complex with CcdB in two crystal forms that diffract to beyond 2.0 Å resolution. CcdA and CcdB are the antidote and toxin of the ccd addiction module of Escherichia coli plasmid F. The CcdA C-terminal domain (CcdA C36 ; 36 amino acids) was crystallized in complex with CcdB (dimer of 2 × 101 amino acids) in three different crystal forms, two of which diffract to high resolution. Form II belongs to space group P2 1 2 1 2 1 , with unit-cell parameters a = 37.6, b = 60.5, c = 83.8 Å and diffracts to 1.8 Å resolution. Form III belongs to space group P2 1 , with unit-cell parameters a = 41.0, b = 37.9, c = 69.6 Å, β = 96.9°, and diffracts to 1.9 Å resolution

  18. The development of high-speed 100 fps CCD camera

    International Nuclear Information System (INIS)

    Hoffberg, M.; Laird, R.; Lenkzsus, F.; Liu, C.; Rodricks, B.

    1997-01-01

    This paper describes the development of a high-speed CCD digital camera system. The system has been designed to use CCDs from various manufacturers with minimal modifications. The first camera built on this design utilizes a Thomson 512 x 512 pixel CCD as its sensor, which is read out from two parallel outputs at a speed of 15 MHz/pixel/output. The data undergo correlated double sampling after which it is digitized into 12 bits. The throughput of the system translates into 60 MB/second, which is either stored directly in a PC or transferred to a custom-designed VXI module. The PC data acquisition version of the camera can collect sustained data in real time that is limited to the memory installed in the PC. The VXI version of the camera, also controlled by a PC, stores 512 MB of real-time data before it must be read out to the PC disk storage. The uncooled CCD can be used either with lenses for visible light imaging or with a phosphor screen for X-ray imaging. This camera has been tested with a phosphor screen coupled to a fiber-optic face plate for high-resolution, high-speed X-ray imaging. The camera is controlled through a custom event-driven user-friendly Windows package. The pixel clock speed can be changed from 1 to 15 MHz. The noise was measured to be 1.05 bits at a 13.3 MHz pixel clock. This paper will describe the electronics, software, and characterizations that have been performed using both visible and X-ray photons. (orig.)

  19. Is Flat fielding Safe for Precision CCD Astronomy?

    Science.gov (United States)

    Baumer, Michael; Davis, Christopher P.; Roodman, Aaron

    2017-08-01

    The ambitious goals of precision cosmology with wide-field optical surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST) demand precision CCD astronomy as their foundation. This in turn requires an understanding of previously uncharacterized sources of systematic error in CCD sensors, many of which manifest themselves as static effective variations in pixel area. Such variation renders a critical assumption behind the traditional procedure of flat fielding—that a sensor’s pixels comprise a uniform grid—invalid. In this work, we present a method to infer a curl-free model of a sensor’s underlying pixel grid from flat-field images, incorporating the superposition of all electrostatic sensor effects—both known and unknown—present in flat-field data. We use these pixel grid models to estimate the overall impact of sensor systematics on photometry, astrometry, and PSF shape measurements in a representative sensor from the Dark Energy Camera (DECam) and a prototype LSST sensor. Applying the method to DECam data recovers known significant sensor effects for which corrections are currently being developed within DES. For an LSST prototype CCD with pixel-response non-uniformity (PRNU) of 0.4%, we find the impact of “improper” flat fielding on these observables is negligible in nominal .7″ seeing conditions. These errors scale linearly with the PRNU, so for future LSST production sensors, which may have larger PRNU, our method provides a way to assess whether pixel-level calibration beyond flat fielding will be required.

  20. Neutral-beam performance analysis using a CCD camera

    International Nuclear Information System (INIS)

    Hill, D.N.; Allen, S.L.; Pincosy, P.A.

    1986-01-01

    We have developed an optical diagnostic system suitable for characterizing the performance of energetic neutral beams. An absolutely calibrated CCD video camera is used to view the neutral beam as it passes through a relatively high pressure (10 -5 Torr) region outside the neutralizer: collisional excitation of the fast deuterium atoms produces H/sub proportional to/ emission (lambda = 6561A) that is proportional to the local atomic current density, independent of the species mix of accelerated ions over the energy range 5 to 20 keV. Digital processing of the video signal provides profile and aiming information for beam optimization. 6 refs., 3 figs

  1. CCD Development Progress at Lawrence Berkeley National Laboratory

    OpenAIRE

    Kolbe, W.F.; Holland, S.E.; Bebek, C.J.

    2006-01-01

    P-channel CCD imagers, 200-300um thick, fully depleted, and back-illuminat ed are being developed for scientific applications including ground- and space-based astronomy and x-ray detection. These thick devices have extended IR response, good point-spread function (PSF) and excellent radiation tolerance. Initially, these CCDs were made in-house at LBNL using 100 mm diameter wafers. Fabrication on high-resistivity 150 mm wafers is now proceeding according to a model in which the wafers are fir...

  2. CCD data processor for maximum likelihood feature classification

    Science.gov (United States)

    Benz, H. F.; Kelly, W. L.; Husson, C.; Culotta, P. W.; Snyder, W. E.

    1980-01-01

    The paper describes an advanced technology development which utilizes a high speed analog/binary CCD correlator to perform the matrix multiplications necessary to implement onboard feature classification. The matrix manipulation module uses the maximum likelihood classification algorithm assuming a Gaussian probability density function. The module will process 16 element multispectral vectors at rates in excess of 500 thousand multispectral vector elements per second. System design considerations for the optimum use of this module are discussed, test results from initial device fabrication runs are presented, and the performance in typical processing applications is described

  3. CCD time-resolved photometry of faint cataclysmic variables. III

    Science.gov (United States)

    Howell, Steve B.; Szkody, Paula; Kreidl, Tobias J.; Mason, Keith O.; Puchnarewicz, E. M.

    1990-01-01

    CCD time-resolved photometry in V, B, and near-IR for 17 faint cataclysmic variables (CVs) is presented and analyzed. The data are obtained at Kitt Peak National Observatory, the Perkins reflector, Lowell Observatory, and the Observatorio del Roque de los Muchachos from April-June 1989. The degree of variability and periodicities for the CVs are examined. It is observed that the variability of most of the stars is consistent with CV class behavior. Orbital periods for five CVs are determined, and three potential eclipsing systems are detected.

  4. Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Hardware

    Directory of Open Access Journals (Sweden)

    Y.-W. Kang

    2007-12-01

    Full Text Available We designed and developed a multi-purpose CCD camera system for three kinds of CCDs; KAF-0401E(768×512, KAF-1602E(1536×1024, KAF-3200E(2184×1472 made by KODAK Co.. The system supports fast USB port as well as parallel port for data I/O and control signal. The packing is based on two stage circuit boards for size reduction and contains built-in filter wheel. Basic hardware components include clock pattern circuit, A/D conversion circuit, CCD data flow control circuit, and CCD temperature control unit. The CCD temperature can be controlled with accuracy of approximately 0.4° C in the max. range of temperature, Δ 33° C. This CCD camera system has with readout noise 6 e^{-}, and system gain 5 e^{-}/ADU. A total of 10 CCD camera systems were produced and our tests show that all of them show passable performance.

  5. Investigation of spectroscopic properties and energy transfer between Ce and Dy in (Lu0.2Gd0.8−x−yCexDyy)2SiO5 single crystals

    International Nuclear Information System (INIS)

    Strzęp, A.; Martin, I.R.; Głowacki, M.; Ryba-Romanowski, W.; Berkowski, M.; Pérez-Rodríguez, C.

    2015-01-01

    In this paper we present results of spectroscopic investigations of single crystals with general formula (Lu 0.2 Gd 0.8−x−y ) 2 SiO 5 codoped with x% of Ce 3+ and y% of Dy 3+ ions. Investigated materials exhibit strong optical anisotropy what can be easily observed in polarized absorption and emission spectra. Based on room temperature polarized absorption spectra calculations in framework of phenomenological Judd–Ofelt model was carried out. Intensity parameters Ω t were evaluated to be Ω 2 =7.08 (±0.39), Ω 4 =2.76 (±0.44), and Ω 6 =3.36 (±0.21) [10 −20 cm 2 ] for sample doped with 1% of cerium and Ω 2 =10.72 (±0.33), Ω 4 =1.98 (±0.37), and Ω 6 =2.11 (±0.18) [10 −20 cm 2 ] for sample doped with 3% of cerium. Influence of cerium admixture on Judd Ofelt intensity parameters is discussed. Value of experimental lifetime of 4 F 9/2 multiplet of Dy 3+ ion in sample doped with 1 at% Ce is 0.5 ms (τ rad =0.45 ms), while for sample doped with 3 at% of Ce, experimental lifetime is 0.45 ms (τ rad =0.43 ms). Absorption bands located between 440 and 460 nm, can be utilized for optical pumping of material by GaN laser diodes. Intense and broad emission bands at 465–495 and 560–590 nm, with experimental branching ratio strongly depending on polarization, give high chance for obtaining white luminophore, due to appropiate mixing of blue and yellow luminescence. By means of a pump and probe experiment optical amplification was demonstrated in the codoped sample with 1 at% of Ce and 1 at% Dy at 575 nm corresponding to the emission of Dy 3+ with a high net gain coefficient of 34 cm −1 . Such high amplification was obtained under 359 nm excitation (at the maximum of intense absorption band of Ce 3+ ions). - Highlights: • Influence of anisotropy on properties of LGSO: Ce, Dy crystals was investigated. • ET between Ce 3+ and Dy 3+ ions enhanced luminous properties of material investigated. • High optical amplification net gain in yellow

  6. Accurate Radiometric Calibration using Mechanically-Shuttered CCD Systems

    Science.gov (United States)

    Hall, D.; Liang, D.

    Acquiring accurate radiometric measurements is an essential part of characterizing non-resolvable satellites. For instance, temporal photometric signatures provide information on characteristic size, reflectance, and stability, spin rate, etc., and with more detailed analysis, shape and attitude. Multi-color photometric measurements provide information on material composition and the effects of space weathering. Thermal infrared radiometry provides gray-body temperatures and emissivity properties. Many of these methods rely on accurate radiometric calibration. For CCD systems, the calibration process generally entails removing bias and dark signals from the raw frames, dividing by a flat-field frame to account for non-uniformities, and applying a sensitivity factor to convert the remaining signal into photon-flux or energy-flux units. However, when using mechanically-shuttered camera systems, another effect must be accounted for to obtain accurately calibrated data: the finite time required for the mechanical shutter to open and close. Measurements for both two-bladed and iris mechanical shutters indicate that neglecting this effect can lead to calibration errors of 10% or more in short-duration exposures. We present methods for measuring this effect, either in a laboratory setting or with the instrument mounted on a telescope, and the additional steps required to calibrate CCD data.

  7. Fundamental performance differences of CMOS and CCD imagers: part V

    Science.gov (United States)

    Janesick, James R.; Elliott, Tom; Andrews, James; Tower, John; Pinter, Jeff

    2013-02-01

    Previous papers delivered over the last decade have documented developmental progress made on large pixel scientific CMOS imagers that match or surpass CCD performance. New data and discussions presented in this paper include: 1) a new buried channel CCD fabricated on a CMOS process line, 2) new data products generated by high performance custom scientific CMOS 4T/5T/6T PPD pixel imagers, 3) ultimate CTE and speed limits for large pixel CMOS imagers, 4) fabrication and test results of a flight 4k x 4k CMOS imager for NRL's SoloHi Solar Orbiter Mission, 5) a progress report on ultra large stitched Mk x Nk CMOS imager, 6) data generated by on-chip sub-electron CDS signal chain circuitry used in our imagers, 7) CMOS and CMOSCCD proton and electron radiation damage data for dose levels up to 10 Mrd, 8) discussions and data for a new class of PMOS pixel CMOS imagers and 9) future CMOS development work planned.

  8. An advanced CCD emulator with 32MB image memory

    Science.gov (United States)

    O'Connor, P.; Fried, J.; Kotov, I.

    2012-07-01

    As part of the LSST sensor development program we have developed an advanced CCD emulator for testing new multichannel readout electronics. The emulator, based on an Altera Stratix II FPGA for timing and control, produces 4 channels of simulated video waveforms in response to an appropriate sequence of horizontal and vertical clocks. It features 40MHz, 16-bit DACs for reset and video generation, 32MB of image memory for storage of arbitrary grayscale bitmaps, and provision to simulate reset and clock feedthrough ("glitches") on the video channels. Clock inputs are qualified for proper sequences and levels before video output is generated. Binning, region of interest, and reverse clock sequences are correctly recognized and appropriate video output will be produced. Clock transitions are timestamped and can be played back to a control PC. A simplified user interface is provided via a daughter card having an ARM M3 Cortex microprocessor and miniature color LCD display and joystick. The user can select video modes from stored bitmap images, or flat, gradient, bar, chirp, or checkerboard test patterns; set clock thresholds and video output levels; and set row/column formats for image outputs. Multiple emulators can be operated in parallel to simulate complex CCDs or CCD arrays.

  9. Cleidocranial dysplasia (CCD) causing respiratory distress syndrome in a newborn infant. A case report.

    Science.gov (United States)

    Ringe, Kristina Imeen; Schirg, Eckart; Galanski, Michael

    2010-01-01

    Cleidocranial dysplasia (CCD), also known as Scheuthauer Marie-Sainton Syndrome, is a rare autosomal dominant inherited disorder, characterized by general retardation in bone ossification, hypoplastic clavicles and various craniofacial and dental abnormalities. Early diagnosis of CCD can be difficult, because the majority of craniofacial abnormalities become obvious only during adolescence. We present a rare case of CCD with neonatal manifestation and would like to promote the awareness of this rare disorder and the importance of early diagnosis.

  10. The terminal vibration of laser spot tail in dual channel type linear CCD

    Science.gov (United States)

    Zhang, Zhen; Cheng, Deyan; Shi, Yubin; Zhang, Jianmin

    2017-11-01

    A special phenomenon about laser spot tail in dual channel type linear CCD is studied. In the CCD, the charges packets in odd and even number pixels are respectively transferred by two channels, in which, the threshold difference of surface full well induces the length difference of spot tails. So, the terminal vibration of spot tail is caused. A simulation of this phenomenon is given and qualitatively validated by the experiment results of laser irradiating a dual channel type linear CCD. In the experiment, the phenomenon has been used to estimate relative size of surface full well thresholds in two channels of CCD.

  11. Analysis of lattice spots dazzling to CCD irradiated by CW laser

    Science.gov (United States)

    Zhu, Rongzhen; Wang, Yanbin; Li, Hua; Ren, Guangsen; Hao, Yongwang

    2017-05-01

    The dazzling phenomena such as point saturation, line crosstalk present successively when laser irradiates on the CCD camera. We use CW laser at 532 nm and 1064 nm to irradiate the interline transfer area array CCD, CCD emerges lattice spots under the lens focusing. Based on geometrical optics, we use theoretical analysis and numerical simulation to study the mechanization of lattice spots. Laser jamming effects to the same CCD are different between 532 nm and 1064 nm. This is because the 532 nm laser diffracts with the chip, while 1064 nm laser interferences with its reflected light in the transmission process. Meanwhile, the mechanization of the ring surrounding the main spot is analyzed.

  12. vbyCaHbeta CCD Photometry of Clusters. VI. The Metal-Deficient Open Cluster NGC 2420

    OpenAIRE

    Anthony-Twarog, Barbara J.; Tanner, Delora; Cracraft, Misty; Twarog, Bruce A.

    2005-01-01

    CCD photometry on the intermediate-band vbyCaHbeta system is presented for the metal-deficient open cluster, NGC 2420. Restricting the data to probable single members of the cluster using the CMD and the photometric indices alone generates a sample of 106 stars at the cluster turnoff. The average E(b-y) = 0.03 +/- 0.003 (s.e.m.) or E(B-V) = 0.050 +/- 0.004 (s.e.m.), where the errors refer to internal errors alone. With this reddening, [Fe/H] is derived from both m1 and hk, using b-y and Hbeta...

  13. Contribution of the Chromosomal ccdAB Operon to Bacterial Drug Tolerance.

    Science.gov (United States)

    Gupta, Kritika; Tripathi, Arti; Sahu, Alishan; Varadarajan, Raghavan

    2017-10-01

    One of the first identified and best-studied toxin-antitoxin (TA) systems in Escherichia coli is the F-plasmid-based CcdAB system. This system is involved in plasmid maintenance through postsegregational killing. More recently, ccdAB homologs have been found on the chromosome, including in pathogenic strains of E. coli and other bacteria. However, the functional role of chromosomal ccdAB genes, if any, has remained unclear. We show that both the native ccd operon of the E. coli O157 strain ( ccd O157 ) and the ccd operon from the F plasmid ( ccd F ), when inserted on the E. coli chromosome, lead to protection from cell death under multiple antibiotic stress conditions through formation of persisters, with the O157 operon showing higher protection. While the plasmid-encoded CcdB toxin is a potent gyrase inhibitor and leads to bacterial cell death even under fully repressed conditions, the chromosomally encoded toxin leads to growth inhibition, except at high expression levels, where some cell death is seen. This was further confirmed by transiently activating the chromosomal ccd operon through overexpression of an active-site inactive mutant of F-plasmid-encoded CcdB. Both the ccd F and ccd O157 operons may share common mechanisms for activation under stress conditions, eventually leading to multidrug-tolerant persister cells. This study clearly demonstrates an important role for chromosomal ccd systems in bacterial persistence. IMPORTANCE A large number of free-living and pathogenic bacteria are known to harbor multiple toxin-antitoxin systems, on plasmids as well as on chromosomes. The F-plasmid CcdAB system has been extensively studied and is known to be involved in plasmid maintenance. However, little is known about the function of its chromosomal counterpart, found in several pathogenic E. coli strains. We show that the native chromosomal ccd operon of the E. coli O157 strain is involved in drug tolerance and confers protection from cell death under multiple

  14. New on-orbit geometric interior parameters self-calibration approach based on three-view stereoscopic images from high-resolution multi-TDI-CCD optical satellites.

    Science.gov (United States)

    Cheng, Yufeng; Wang, Mi; Jin, Shuying; He, Luxiao; Tian, Yuan

    2018-03-19

    To increase the field of view (FOV), combining multiple time-delayed and integrated charge-coupled devices (TDI-CCD) into the camera and the pushbroom imaging modality are traditionally used with high-resolution optical satellites. It is becoming increasingly labor- and cost-intensive to build and maintain a calibration field with high resolution and broad coverage. This paper introduces a simple and feasible on-orbit geometric self-calibration approach for high-resolution multi-TDI-CCD optical satellites based on three-view stereoscopic images. With the aid of the a priori geometric constraint of tie points in the triple-overlap regions of stereoscopic images, as well as tie points between adjacent single TDI-CCD images (STIs), high accuracy calibration of all TDI-CCD detectors can be achieved using a small number of absolute ground control points (GCPs) covering the selected primary STI. This method greatly reduces the demand on the calibration field and thus is more time-, effort- and cost-effective. Experimental results indicated that the proposed self-calibration approach is effective for increasing the relative internal accuracy without the limitations associated with using a traditional reference calibration field, which could have great significance for future super-high-resolution optical satellites.

  15. CCD-based optical CT scanning of highly attenuating phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Al-Nowais, Shamsa [Department of Physics, University of Surrey, Guildford (United Kingdom); Doran, Simon J [CRUK Clinical MR Research Group, Institute of Cancer Research, Sutton (United Kingdom)], E-mail: Simon.Doran@icr.ac.uk

    2009-05-01

    The introduction of optical computed tomography (optical-CT) offers economic and easy to use 3-D optical readout for gel dosimeters. However, previous authors have noted some challenges regarding the accuracy of such imaging techniques at high values of optical density. In this paper, we take a closer look at the 'cupping' artefact evident in both light-scattering polymer systems and highly light absorbing phantoms using our CCD-based optical scanner. In addition, a technique is implemented whereby the maximum measurable optical absorbance is extended to correct for any errors that may have occurred in the estimated value of the dark current or ambient light reaching the detector. The results indicate that for absorbance values up to 2.0, the optical scanner results have good accuracy, whereas this is not the case at high absorbance values for reasons yet to be explained.

  16. Electromagnetic Compatibility Assessment of CCD Detector Acquisition Chains not Synchronized

    Science.gov (United States)

    Nicoletto, M.; Boschetti, D.; Ciancetta, E.; Maiorano, E.; Stagnaro, L.

    2016-05-01

    Euclid is a space observatory managed by the European Space Agency; it is the second medium class mission (see Figure 1) in the frame of Cosmic Vision 2015-2025 program.In the frame of this project, the electromagnetic interference between two different and not synchronized Charge Coupled Device (CCD) (see Figure 2) acquisition chains has been evaluated. The key parameter used for this assessment is the electromagnetic noise induced on each other. Taking into account the specificity of the issue, radiation coupling at relative low frequency and in near field conditions, classical approach based on simulations and testing on qualification model cannot be directly applied. Based on that, it has been decided to investigate the issue by test in an incremental way.

  17. BV photographic and CCD photometry of IC 4651

    Energy Technology Data Exchange (ETDEWEB)

    Anthony-Twarog, B.J.; Mukherjee, K.; Twarog, B.A.; Caldwell, N.

    1988-05-01

    A BV photometric survey in IC 4651 based on photographic and CCD material calibrated with photoelectric photometry from Eggen (1971) and Anthony-Twarog and Twarog (1987) has been completed. The color-magnitude diagram is consistent with an age of 2.4 + or - 0.3 x 10 to the 9th yr derived by comparison with the isochrones of VandenBerg (1985) if the apparent distance modulus and reddening derived from uvby photometry in Anthony-Twarog and Twarog (1987) are employed. While evidence is found of a hook in the upper main sequence, no evidence is found of a significantly bifurcated main sequence for this cluster, although it is similar in age to NGC 752 and NGC 3680, where this phenomenon has been noted. Finally, the survey has not resolved the apparent deficit of main-sequence stars fainter than V = 14.5 noted in Anthony-Twarog and Twarog (1987). 16 references.

  18. BV photographic and CCD photometry of IC 4651

    Science.gov (United States)

    Anthony-Twarog, Barbara J.; Mukherjee, Krishna; Twarog, Bruce A.; Caldwell, Nelson

    1988-05-01

    A BV photometric survey in IC 4651 based on photographic and CCD material calibrated with photoelectric photometry from Eggen (1971) and Anthony-Twarog and Twarog (1987) has been completed. The color-magnitude diagram is consistent with an age of 2.4 + or - 0.3 x 10 to the 9th yr derived by comparison with the isochrones of VandenBerg (1985) if the apparent distance modulus and reddening derived from uvby photometry in Anthony-Twarog and Twarog (1987) are employed. While evidence is found of a hook in the upper main sequence, no evidence is found of a significantly bifurcated main sequence for this cluster, although it is similar in age to NGC 752 and NGC 3680, where this phenomenon has been noted. Finally, the survey has not resolved the apparent deficit of main-sequence stars fainter than V = 14.5 noted in Anthony-Twarog and Twarog (1987).

  19. Chromatic Modulator for High Resolution CCD or APS Devices

    Science.gov (United States)

    Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)

    2003-01-01

    A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.

  20. Spectroscopically Unlocking Exoplanet Characteristics

    Science.gov (United States)

    Lewis, Nikole

    2016-05-01

    Spectroscopy plays a critical role in a number of areas of exoplanet research. The first exoplanets were detected by precisely measuring Doppler shifts in high resolution (R ~ 100,000) stellar spectra, a technique that has become known as the Radial Velocity (RV) method. The RV method provides critical constraints on exoplanet masses, but is currently limited to some degree by robust line shape predictions. Beyond the RV method, spectroscopy plays a critical role in the characterization of exoplanets beyond their mass and radius. The Hubble Space Telescope has spectroscopically observed the atmospheres of exoplanets that transit their host stars as seen from Earth giving us key insights into atmospheric abundances of key atomic and molecular species as well as cloud optical properties. Similar spectroscopic characterization of exoplanet atmospheres will be carried out at higher resolution (R ~ 100-3000) and with broader wavelength coverage with the James Webb Space Telescope. Future missions such as WFIRST that seek to the pave the way toward the detection and characterization of potentially habitable planets will have the capability of directly measuring the spectra of exoplanet atmospheres and potentially surfaces. Our ability to plan for and interpret spectra from exoplanets relies heavily on the fidelity of the spectroscopic databases available and would greatly benefit from further laboratory and theoretical work aimed at optical properties of atomic, molecular, and cloud/haze species in the pressure and temperature regimes relevant to exoplanet atmospheres.

  1. Converting structures to optimize the Synchrotron X radiation detection by CCD systems

    International Nuclear Information System (INIS)

    Zanella, G.; Zannoni, R.

    1987-01-01

    It is pointed out how the quantum efficiency of X ray detection for CCD detecting system can be improved enlarging their sensivity range by means of heavy element converting structures. So the problem of fabricating CCD with a deep emptying layer is avoided

  2. Cross calibration of INSAT 3A CCD channel radiances with IRS P6 ...

    Indian Academy of Sciences (India)

    Indian National Satellite (INSAT) 3A was launched in the year 2003 with communication and remote sensing payloads. The later payloads contain very high resolution radiometer (VHRR) and charge coupled devices (CCD) camera. In this paper, post-launch calibration of INSAT 3A CCD is discussed. A cross radiometric ...

  3. Precise CCD astrometric observations of minor planets and comets at the Belgrade observatory during 1997

    Directory of Open Access Journals (Sweden)

    Protitch-Benishek V.

    1998-01-01

    Full Text Available 73 precise astrometric positions of seven comets and two minor planets from MPC critical list - 1093 Freda and 4954 Eric - were obtained with the CCD equipped Askania astrograph (13.5/160 of Belgrade Astronomical Observatory. The SBIG ST-7 and ST-7 CCD cameras were used in the observations.

  4. High-Voltage Clock Driver for Photon-Counting CCD Characterization

    Science.gov (United States)

    Baker, Robert

    2013-01-01

    A document discusses the CCD97 from e2v technologies as it is being evaluated at Goddard Space Flight Center's Detector Characterization Laboratory (DCL) for possible use in ultra-low background noise space astronomy applications, such as Terrestrial Planet Finder Coronagraph (TPF-C). The CCD97 includes a photoncounting mode where the equivalent output noise is less than one electron. Use of this mode requires a clock signal at a voltage level greater than the level achievable by the existing CCD (charge-coupled-device) electronics. A high-voltage waveform generator has been developed in code 660/601 to support the CCD97 evaluation. The unit generates required clock waveforms at voltage levels from -20 to +50 V. It deals with standard and arbitrary waveforms and supports pixel rates from 50 to 500 kHz. The system is designed to interface with existing Leach CCD electronics.

  5. Automated CCD camera characterization. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetics. Student research reports

    International Nuclear Information System (INIS)

    Silbermann, J.

    1999-03-01

    The OMEGA system uses CCD cameras for a broad range of applications. Over 100 video rate CCD cameras are used for such purposes as targeting, aligning, and monitoring areas such as the target chamber, laser bay, and viewing gallery. There are approximately 14 scientific grade CCD cameras on the system which are used to obtain precise photometric results from the laser beam as well as target diagnostics. It is very important that these scientific grade CCDs are properly characterized so that the results received from them can be evaluated appropriately. Currently characterization is a tedious process done by hand. The operator must manually operate the camera and light source simultaneously. Because more exposures means more accurate information on the camera, the characterization tests can become very length affairs. Sometimes it takes an entire day to complete just a single plot. Characterization requires the testing of many aspects of the camera's operation. Such aspects include the following: variance vs. mean signal level--this should be proportional due to Poisson statistics of the incident photon flux; linearity--the ability of the CCD to produce signals proportional to the light it received; signal-to-noise ratio--the relative magnitude of the signal vs. the uncertainty in that signal; dark current--the amount of noise due to thermal generation of electrons (cooling lowers this noise contribution significantly). These tests, as well as many others, must be conducted in order to properly understand a CCD camera. The goal of this project was to construct an apparatus that could characterize a camera automatically

  6. Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction

    Science.gov (United States)

    Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.

    2017-12-01

    Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.

  7. Documentation to the 2015-16 Common Core of Data (CCD) Universe Files. NCES 2017-074

    Science.gov (United States)

    Glander, Mark

    2017-01-01

    The Common Core of Data (CCD) is a national statistical program that collects and compiles administrative data from SEAs covering the universe of all public elementary and secondary schools and school districts in the United States. The first CCD collection was for SY 1986-87. The predecessor to CCD was the Elementary and Secondary General…

  8. Hydrate formation during wet granulation studied by spectroscopic methods and multivariate analysis

    DEFF Research Database (Denmark)

    Jørgensen, Anna; Rantanen, Jukka; Karjalainen, Milja

    2002-01-01

    PURPOSE: The aim was to follow hydrate formation of two structurally related drugs, theophylline and caffeine, during wet granulation using fast and nondestructive spectroscopic methods. METHODS: Anhydrous theophylline and caffeine were granulated with purified water. Charge-coupled device (CCD......) Raman spectroscopy was compared with near-infrared spectroscopy (NIR) in following hydrate formation of drugs during wet granulation (off-line). To perform an at-line process analysis, the effect of water addition was monitored by NIR spectroscopy and principal components analysis (PCA). The changes...

  9. Mosaic CCD method: A new technique for observing dynamics of cometary magnetospheres

    Science.gov (United States)

    Saito, T.; Takeuchi, H.; Kozuba, Y.; Okamura, S.; Konno, I.; Hamabe, M.; Aoki, T.; Minami, S.; Isobe, S.

    1992-12-01

    On April 29, 1990, the plasma tail of Comet Austin was observed with a CCD camera on the 105-cm Schmidt telescope at the Kiso Observatory of the University of Tokyo. The area of the CCD used in this observation is only about 1 sq cm. When this CCD is used on the 105-cm Schmidt telescope at the Kiso Observatory, the area corresponds to a narrow square view of 12 ft x 12 ft. By comparison with the photograph of Comet Austin taken by Numazawa (personal communication) on the same night, we see that only a small part of the plasma tail can be photographed at one time with the CCD. However, by shifting the view on the CCD after each exposure, we succeeded in imaging the entire length of the cometary magnetosphere of 1.6 x 106 km. This new technique is called 'the mosaic CCD method'. In order to study the dynamics of cometary plasma tails, seven frames of the comet from the head to the tail region were twice imaged with the mosaic CCD method and two sets of images were obtained. Six microstructures, including arcade structures, were identified in both the images. Sketches of the plasma tail including microstructures are included.

  10. Evaluation of multivariate calibration models transferred between spectroscopic instruments

    DEFF Research Database (Denmark)

    Eskildsen, Carl Emil Aae; Hansen, Per W.; Skov, Thomas

    2016-01-01

    In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions for the ......In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions...

  11. CCD Parallaxes for 309 Late-type Dwarfs and Subdwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Dahn, Conard C.; Harris, Hugh C.; Subasavage, John P.; Ables, Harold D.; Guetter, Harry H.; Harris, Fred H.; Luginbuhl, Christian B.; Monet, Alice B.; Monet, David G.; Munn, Jeffrey A.; Pier, Jeffrey R.; Stone, Ronald C.; Vrba, Frederick J.; Walker, Richard L.; Tilleman, Trudy M. [US Naval Observatory, Flagstaff Station, 10391 W. Naval Observatory Road, Flagstaff, AZ 86005-8521 (United States); Canzian, Blaise J. [L-3 Communications/Brashear, 615 Epsilon Drive, Pittsburgh, PA 15238-2807 (United States); Henden, Arne H. [AAVSO, Cambridge, MA 02138 (United States); Leggett, S. K. [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Levine, Stephen E., E-mail: jsubasavage@nofs.navy.mil [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001-4499 (United States)

    2017-10-01

    New, updated, and/or revised CCD parallaxes determined with the Strand Astrometric Reflector at the Naval Observatory Flagstaff Station are presented. Included are results for 309 late-type dwarf and subdwarf stars observed over the 30+ years that the program operated. For 124 of the stars, parallax determinations from other investigators have already appeared in the literature and we compare the different results. Also included here are new or updated VI photometry on the Johnson–Kron-Cousins system for all but a few of the faintest targets. Together with 2MASS JHK{sub s} near-infrared photometry, a sample of absolute magnitude versus color and color versus color diagrams are constructed. Because large proper motion was a prime criterion for targeting the stars, the majority turn out to be either M-type subdwarfs or late M-type dwarfs. The sample also includes 50 dwarf or subdwarf L-type stars, and four T dwarfs. Possible halo subdwarfs are identified in the sample based on tangential velocity, subluminosity, and spectral type. Residuals from the solutions for parallax and proper motion for several stars show evidence of astrometric perturbations.

  12. CCD Parallaxes for 309 Late-type Dwarfs and Subdwarfs

    Science.gov (United States)

    Dahn, Conard C.; Harris, Hugh C.; Subasavage, John P.; Ables, Harold D.; Canzian, Blaise J.; Guetter, Harry H.; Harris, Fred H.; Henden, Arne H.; Leggett, S. K.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice B.; Monet, David G.; Munn, Jeffrey A.; Pier, Jeffrey R.; Stone, Ronald C.; Vrba, Frederick J.; Walker, Richard L.; Tilleman, Trudy M.

    2017-10-01

    New, updated, and/or revised CCD parallaxes determined with the Strand Astrometric Reflector at the Naval Observatory Flagstaff Station are presented. Included are results for 309 late-type dwarf and subdwarf stars observed over the 30+ years that the program operated. For 124 of the stars, parallax determinations from other investigators have already appeared in the literature and we compare the different results. Also included here are new or updated VI photometry on the Johnson-Kron-Cousins system for all but a few of the faintest targets. Together with 2MASS JHK s near-infrared photometry, a sample of absolute magnitude versus color and color versus color diagrams are constructed. Because large proper motion was a prime criterion for targeting the stars, the majority turn out to be either M-type subdwarfs or late M-type dwarfs. The sample also includes 50 dwarf or subdwarf L-type stars, and four T dwarfs. Possible halo subdwarfs are identified in the sample based on tangential velocity, subluminosity, and spectral type. Residuals from the solutions for parallax and proper motion for several stars show evidence of astrometric perturbations.

  13. Upgrade of ESO's FIERA CCD Controller and PULPO Subsystem

    Science.gov (United States)

    Reyes-Moreno, J.; Geimer, C.; Balestra, A.; Haddad, N.

    An overview of FIERA is presented with emphasis on its recent upgrade to PCI. The PCI board hosts two DSPs, one for real time control of the camera and another for on-the-fly processing of the incoming video data. In addition, the board is able to make DMA transfers, to synchronize to other boards alike, to be synchronized by a TIM bus and to control PULPO via RS232. The design is based on the IOP480 chip from PLX, for which we have developed a device driver for both Solaris and Linux. One computer is able to host more than one board and therefore can control an array of FIERA detector electronics. PULPO is a multifunctional subsystem widely used at ESO for the housekeeping of CCD cryostat heads and for shutter control. The upgrade of PULPO is based on an embedded PC running Linux. The upgraded PULPO is able to handle 29 temperature sensors, control 8 heaters and one shutter, read out one vacuum sensor and log any combination of parameters.

  14. CCD imaging technology and the war on crime

    Science.gov (United States)

    McNeill, Glenn E.

    1992-08-01

    Linear array based CCD technology has been successfully used in the development of an Automatic Currency Reader/Comparator (ACR/C) system. The ACR/C system is designed to provide a method for tracking US currency in the organized crime and drug trafficking environments where large amounts of cash are involved in illegal transactions and money laundering activities. United States currency notes can be uniquely identified by the combination of the denomination serial number and series year. The ACR/C system processes notes at five notes per second using a custom transport a stationary linear array and optical character recognition (OCR) techniques to make such identifications. In this way large sums of money can be " marked" (using the system to read and store their identifiers) and then circulated within various crime networks. The system can later be used to read and compare confiscated notes to the known sets of identifiers from the " marked" set to document a trail of criminal activities. With the ACR/C law enforcement agencies can efficiently identify currency without actually marking it. This provides an undetectable means for making each note individually traceable and facilitates record keeping for providing evidence in a court of law. In addition when multiple systems are used in conjunction with a central data base the system can be used to track currency geographically. 1.

  15. Soft tissue imaging with photon counting spectroscopic CT.

    Science.gov (United States)

    Shikhaliev, Polad M

    2015-03-21

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm(2) pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  16. Discriminação de variedades de citros em imagens CCD/CBERS-2 Discrimination of citrus varieties using CCD/CBERS-2 satellite imagery

    Directory of Open Access Journals (Sweden)

    Ieda Del'Arco Sanches

    2008-02-01

    Full Text Available O presente trabalho teve o objetivo de avaliar as imagens CCD/CBERS-2 quanto à possibilidade de discriminarem variedades de citros. A área de estudo localiza-se em Itirapina (SP e, para este estudo, foram utilizadas imagens CCD de três datas (30/05/2004, 16/08/2004 e 11/09/2004. Um modelo que integra os elementos componentes da cena citrícola sensoriada é proposto com o objetivo de explicar a variabilidade das respostas das parcelas de citros em imagens orbitais do tipo CCD/CBERS-2. Foram feitas classificações pelos algoritmos Isoseg e Maxver e, de acordo com o índice kappa, concluiu-se que é possível obterem-se exatidões qualificadas como muito boas, sendo que as melhores classificações foram conseguidas com imagens da estação seca.This paper was aimed at evaluating the possibility of discriminating citrus varieties in CCD imageries from CBERS-2 satellite ("China-Brazil Earth Resouces Satellite". The study area is located in Itirapina, São Paulo State. For this study, three CCD images from 2004 were acquired (May 30, August 16, and September 11. In order to acquire a better understanding and for explaining the variability of the spectral behavior of the citrus areas in orbital images (like as the CCD/CBERS-2 images a model that integrates the elements of the citrus scene is proposed and discussed. The images were classified by Isoseg and MaxVer classifiers. According to kappa index, it was possible to obtain classifications qualified as 'very good'. The best results were obtained with the images from the dry season.

  17. Evaluation of a 32 x 32 InSb CCD for use in astronomy

    Science.gov (United States)

    Forrest, W. J.; Pipher, J. L.

    1983-01-01

    We have been fortunate to receive several infrared CCD array detectors on loan from Santa Barbara Research Center. The devices are evaluation samples, not commercially available at this time. Dr. Alan Hoffman of SBRC has made the arrangements for this loan and provided considerable technical support to this project. One aim of this project has been to evaluate the performance potential of this array technology, using astronomical objects. A quick summary of our findings is given. In short, we have found the imaging properties to be excellent under both low and high background conditions and the sensitivity to be quite good (each pixel is competitive with current InSb single-detector systems in use for astronomy). We anticipate improved low-background performance when we run these detectors at a lower and more stable temperature. The device characteristics are described, laboratory testing is summarized, and the first astronomical imaging is presented. Various circuits developed (clocks, clock drivers, DC supplies, clamp-amplifier, and a real time display system) are given.

  18. OP09O-OP404-9 Wide Field Camera 3 CCD Quantum Efficiency Hysteresis

    Science.gov (United States)

    Collins, Nick

    2009-01-01

    The HST/Wide Field Camera (WFC) 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. At the nominal operating temperature of -83C, the QEH feature contrast was typically 0.1-0.2% or less. The behavior was replicated using flight spare detectors. A visible light flat-field (540nm) with a several times full-well signal level can pin the detectors at both optical (600nm) and near-UV (230nm) wavelengths, suppressing the QEH behavior. We are characterizing the timescale for the detectors to become unpinned and developing a protocol for flashing the WFC3 CCDs with the instrument's internal calibration system in flight. The HST/Wide Field Camera 3 UV/visible channel CCD detectors have exhibited an unanticipated quantum efficiency hysteresis (QEH) behavior. The first observed manifestation of QEH was the presence in a small percentage of flat-field images of a bowtie-shaped contrast that spanned the width of each chip. At the nominal operating temperature of -83C, the contrast observed for this feature was typically 0.1-0.2% or less, though at warmer temperatures contrasts up to 5% (at -50C) have been observed. The bowtie morphology was replicated using flight spare detectors in tests at the GSFC Detector Characterization Laboratory by power cycling the detector while cold. Continued investigation revealed that a clearly-related global QE suppression at the approximately 5% level can be produced by cooling the detector in the dark; subsequent flat-field exposures at a constant illumination show asymptotically increasing response. This QE "pinning" can be achieved with a single high signal flat-field or a series of lower signal flats; a visible light (500-580nm) flat-field with a signal level of several hundred thousand electrons per pixel is sufficient for QE pinning at both optical (600nm) and near-UV (230nm) wavelengths. We are characterizing the timescale for the detectors to become unpinned and developing a

  19. Indium antimonide infrared CCD linear imaging arrays with on-chip preprocessing

    Science.gov (United States)

    Thom, R. D.; Koch, T. L.; Parrish, W. J.

    1978-01-01

    A description is presented of the fabrication of a new InSb CCD chip based on an improved process which eliminates the limitations inherent with the earlier techniques. This process includes planar junction formation and an aluminum and SiO2 material system which is amenable to state-of-the-art chemical and plasma delineation techniques. Further, the new chip integrates for the first time in monolithic format InSb IR detectors with an InSb CCD. The reported experiments represent the first operation of an InSb infrared CCD array. In addition to fuller characterization of the 20-element charge-coupled infrared imaging device, several factors which influence device performance are currently being addressed. These include surface state density, the CCD output circuit, and storage time (dark current).

  20. The interaction of DNA gyrase with the bacterial toxin CcdB

    DEFF Research Database (Denmark)

    Kampranis, S C; Howells, A J; Maxwell, A

    1999-01-01

    CcdB is a bacterial toxin that targets DNA gyrase. Analysis of the interaction of CcdB with gyrase reveals two distinct complexes. An initial complex (alpha) is formed by direct interaction between GyrA and CcdB; this complex can be detected by affinity column and gel-shift analysis, and has...... of this initial complex with ATP in the presence of GyrB and DNA slowly converts it to a second complex (beta), which has a lower rate of ATP hydrolysis and is unable to catalyse supercoiling. The efficiency of formation of this inactive complex is dependent on the concentrations of ATP and CcdB. We suggest...

  1. Software design of control system of CCD side-scatter lidar

    Science.gov (United States)

    Kuang, Zhiqiang; Liu, Dong; Deng, Qian; Zhang, Zhanye; Wang, Zhenzhu; Yu, Siqi; Tao, Zongming; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Because of the existence of blind zone and transition zone, the application of backscattering lidar in near-ground is limited. The side-scatter lidar equipped with the Charge Coupled Devices (CCD) can separate the transmitting and receiving devices to avoid the impact of the geometric factors which is exited in the backscattering lidar and, detect the more precise near-ground aerosol signals continuously. Theories of CCD side-scatter lidar and the design of control system are introduced. The visible control of laser and CCD and automatic data processing method of the side-scatter lidar are developed by using the software of Visual C #. The results which are compared with the calibration of the atmospheric aerosol lidar data show that signals from the CCD side- scatter lidar are convincible.

  2. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    OpenAIRE

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to ac...

  3. Colony Collapse Disorder (CCD and bee age impact honey bee pathophysiology.

    Directory of Open Access Journals (Sweden)

    Dennis vanEngelsdorp

    Full Text Available Honey bee (Apis mellifera colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions, and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees, we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and

  4. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology.

    Science.gov (United States)

    vanEngelsdorp, Dennis; Traynor, Kirsten S; Andree, Michael; Lichtenberg, Elinor M; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  5. A Design and Development of Multi-Purpose CCD Camera System with Thermoelectric Cooling: Software

    Directory of Open Access Journals (Sweden)

    S. H. Oh

    2007-12-01

    Full Text Available We present a software which we developed for the multi-purpose CCD camera. This software can be used on the all 3 types of CCD - KAF-0401E (768×512, KAF-1602E (15367times;1024, KAF-3200E (2184×1472 made in KODAK Co.. For the efficient CCD camera control, the software is operated with two independent processes of the CCD control program and the temperature/shutter operation program. This software is designed to fully automatic operation as well as manually operation under LINUX system, and is controled by LINUX user signal procedure. We plan to use this software for all sky survey system and also night sky monitoring and sky observation. As our results, the read-out time of each CCD are about 15sec, 64sec, 134sec for KAF-0401E, KAF-1602E, KAF-3200E., because these time are limited by the data transmission speed of parallel port. For larger format CCD, the data transmission is required more high speed. we are considering this control software to one using USB port for high speed data transmission.

  6. Design of area array CCD image acquisition and display system based on FPGA

    Science.gov (United States)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  7. Single-Pulse Dual-Energy Mammography Using a Binary Screen Coupled to Dual CCD Cameras

    Science.gov (United States)

    1999-08-01

    scheme with four classes of mammographic density patterns.1�-18 More recently, the Breast Imaging Reporting and Data System ( BIRADS ) was introduced...to how radiologists assign breast density currently using the 4 classification scheme of the BIRADS , except that the scale was expanded. Computer... BIRADs breast density scale may want to consider increasing the number of categories from 4 to 7. It is conceivable that if radiologists were to

  8. Síntese, caracterização e estudos de interação de um análogo da antitoxina CcdA empregando fluorescência no estado estacionário Synthesis, characterization and interaction studies of an analog of CcdA antitoxin by steady state fluorescence

    Directory of Open Access Journals (Sweden)

    Camila Aparecida Cotrim

    2010-01-01

    Full Text Available Toxin-antitoxin (TA systems contribute to plasmid stability by a mechanism called post-segregational killing. The ccd was the first TA system to be discovered with CcdB being the toxin and CcdA the antitoxin. CcdA, an 8.3 kDa protein, interacts with CcdB (11.7 kDa, preventing the cytotoxic activity of CcdB on the DNA gyrase. As an approach to understanding this interaction, CcdA41, a polypeptide derived from CcdA, was synthesized by solid-phase methodology and its interaction with CcdB was analyzed by steady state fluorescence. CcdA41 formed a stable complex with CcdBET2, a peptide based on CcdB, the more recently described bacterial topoisomerase inhibitor.

  9. Dual-probe spectroscopic fingerprints of defects in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Petersen, Dirch Hjorth

    2014-01-01

    (e.g., an extended graphene sheet). Applying this method, we study the transport anisotropies in pristine graphene sheets, and analyze the spectroscopic fingerprints arising from quantum interference around single-site defects, such as vacancies and adatoms. Furthermore, we demonstrate that the dual...

  10. SYNTHESES, SPECTROSCOPIC AND MAGNETIC PROPERTIES ...

    African Journals Online (AJOL)

    Preferred Customer

    SYNTHESES, SPECTROSCOPIC AND MAGNETIC PROPERTIES OF. POLYSTYRENE-ANCHORED COORDINATION COMPOUNDS OF. THIAZOLIDINONE. Dinesh Kumar1, Amit Kumar2* and Durga Dass3. 1Department of Chemistry, National Institute of Technology, Kurukshetra 136119, Haryana,. India. 2Department of ...

  11. Cryogenic design of the high speed CCD60 camera for wavefront sensing

    Science.gov (United States)

    He, Kai; Ma, Wenli; Wang, Mingfu; Zhou, Xiangdong

    2014-11-01

    CCD60, developed by e2v technologies, is a 128x128 pixel frame-transfer back-illuminated sensor using the EMCCD technology. This kind of detector has some attractive characteristics, such as high frame rate, low noise and high quantum efficiency. So, it is suitable for Adaptive Optical Wave Front Sensor (AO WFS) applications. However, the performance of this detector is strongly depended on its temperature. In order to achieve high multiplication gain and low dark current noise, CCD60 should be cooled under -45°. For this reason, we had designed a cooling system to cool down the CCD60 detector base on thermoelectric cooler. Detail of the design, thermal analysis and the cooling experiment are presented in this paper. The performance of multiplication gain after cooling had been tested too. The result of cooling experiment shows that the thermoelectric cooler can cool the CCD to below -60 °C under air cooled operation and an air temperature of 20 °C. The multiplication gain test tell us the multiplication gain of CCD60 can exceed 500 times on -60°.

  12. Shielding of cosmic-ray-induced background in CCD detectors for X-ray astronomy

    Science.gov (United States)

    Pfeffermann, Elmar; Friedrich, Peter; Freyberg, Michael; Kettenring, Günther; Krämer, Ludwig; Meidinger, Norbert; Predehl, Peter; Strüder, Lothar

    2004-09-01

    An active anticoincidence detector system for background reduction cannot be integrated in CCD detectors for X-ray astronomy. The background rate within an integration-readout interval would result in an unacceptable dead time of about 50% or more. Events of minimum ionizing particles can be discriminated in CCD detectors due to their high energy deposit and their image pattern. Events of X-rays or charged particles within the accepted energy band originating from cosmic ray interaction with the material surrounding the CCD cannot be distinguished from valid cosmic X-ray events and therefore contribute to the background noise. Graded-Z shielding is an efficient method to shift the energy of the locally produced X-rays to low energies. At low energies low-Z shielding material can be used, which rather produces Auger electrons than fluorescent X-rays. Low energy electrons can be stopped in the passivation layer of the CCD. Due to the low operating temperature of the CCD (~170 K) the shielding material has to have a similar thermal expansion coefficient as silicon. With regard to future X-ray missions the properties of several shielding materials like aluminium oxide, aluminium nitride, silicon nitride and boron carbide were investigated in more detail. The results are presented.

  13. Application of conventional CCD cameras with Fabry-Perot spectrometers for airglow observations

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, M.M.; Roesler, F.L. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

    1994-12-31

    This paper describes Fabry-Perot/CCD annular summing applied to airglow observations. Criteria are developed for determining the optimal rectangular format CCD chip configuration which minimizes dark and read noise. The relative savings in integration time of the imaging Fabry-Perot/CCD system over the pressure-scanned Fabry-Perot/PMT system is estimated for the optimal configuration through calculations of the signal to noise ratios for three extreme (but typical) cases of source and background intensity. The largest savings in integration time in estimated for the daysky thermospheric [O{sup 1}D] (6,300 {angstrom}) case where the bright ({approximately} 5 {times} 10{sup 6}R/{angstrom}) Rayleigh-scattered background dominates the read noise. The long integration times required to obtain useful signal to noise ratios for the faint ({approximately} 10R) nightsky exospheric hydrogen Balmer-{alpha} (6,563 {angstrom}) reduce the importance of the read noise term and yield large savings in integration time. The significance of the read noise term is greatly increased with the very short estimated integration times required for bright ({approximately} 200 R) nightsky lines such as thermospheric [O{sup 1}D]. Alternate CCD formats and applications methods that reduce read noise and provide improved performance in the latter case are compared against the CCD annular summing technique.

  14. Development and evaluation of a CCD-based digital imaging system for mammography

    Science.gov (United States)

    Piccaro, Michele F.; Toker, Emre

    1993-05-01

    We have developed a CCD-based, high performance, filmless imaging system for stereotactic biopsy procedures in mammography. The CCD camera is based on a 1024 X 1024 pixel format, full-frame, scientific grade, front-illuminated, MPP mode CCD, directly coupled to an X-ray intensifying screen via a 2:1 fiber optic reducer. The CCD is cooled to -10 degree(s)C, and is digitized in slow-scan, correlated double sampling mode at 500 Kpixels/second with 12-bit contrast resolution. X-ray images acquired with the system are processed and displayed on a high resolution monitor within 20 seconds of exposure. System design and specifications will be described, and evaluation of physical performance characteristics will be discussed. The system has been used in over 100 stereotactic breast biopsy procedures to date, and has been shown to significantly improve the speed and accuracy of the biopsy procedure, due to the near real-time acquisition and display of x-ray images. Initial results also indicate that the fiber optic coupled CCD-based imaging system provides superior detectability of low contrast breast lesions and microcalcifications at lower patient dose, as compared to conventional film-screen detectors.

  15. A combined experimental and computational study of 3-bromo-5-(2,5-difluorophenyl) pyridine and 3,5-bis(naphthalen-1-yl)pyridine: Insight into the synthesis, spectroscopic, single crystal XRD, electronic, nonlinear optical and biological properties

    Science.gov (United States)

    Ghiasuddin; Akram, Muhammad; Adeel, Muhammad; Khalid, Muhammad; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Asghar, Muhammad Adnan; Ullah, Malik Aman; Iqbal, Muhammad

    2018-05-01

    Carbon-carbon coupling play a vital role in the synthetic field of organic chemistry. Two novel pyridine derivatives: 3-bromo-5-(2,5-difluorophenyl)pyridine (1) and 3,5-bis(naphthalen-1-yl)pyridine (2) were synthesized via carbon-carbon coupling, characterized by XRD, spectroscopic techniques and also investigated by using density functional theory (DFT). XRD data and optimized DFT studies are found to be in good correspondence with each other. The UV-Vis analysis of compounds under study i.e. (1) and (2) was obtained by using "TD-DFT/B3LYP/6-311 + G(d,p)" level of theory to explain the vertical transitions. Calculated FT-IR and UV-Vis results are found to be in good agreement with experimental FT-IR and UV-Vis findings. Natural bond orbital (NBO) study was performed using B3LYP/6-311 + G(d,p) level to find the most stable molecular structure of the compounds. Frontier molecular orbital (FMO) analysis were performed at B3LYP/6-311 + G(d,p) level of theory, which indicates that the molecules might be bioactive. Moreover, the bioactivity of compounds (1) and (2) have been confirmed by the experimental activity in terms of zones of inhibition against bacteria and fungus. Chemical reactivity of compounds (1) and (2) was indicated by mapping molecular electrostatic potential (MEP) over the entire stabilized geometries of the compounds under study. The nonlinear optical properties were computed with B3LYP/6-311 + G(d,p) level of theory which are found greater than the value of urea due to conjugation effect. Two state model has been further employed to explain the nonlinear optical properties of compounds under investigation.

  16. High performance CCD camera system for digitalisation of 2D DIGE gels.

    Science.gov (United States)

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, E., E-mail: eriuli@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Furukawa, T., E-mail: t_furu@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Inaniwa, T., E-mail: taku@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Sato, S., E-mail: shin_s@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Himukai, T., E-mail: himukai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Shirai, T., E-mail: t_shirai@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Noda, K., E-mail: noda_k@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan)

    2011-12-15

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  18. A fluorescent screen + CCD system for quality assurance of therapeutic scanned ion beams

    Science.gov (United States)

    Takeshita, E.; Furukawa, T.; Inaniwa, T.; Sato, S.; Himukai, T.; Shirai, T.; Noda, K.

    2011-12-01

    A fluorescent screen + a charge coupled device (CCD) system were developed to verify the performance of scanned ion beams at the HIMAC. The fluorescent light from the screen is observed by the CCD camera. Two-dimensional fields, produced by the scanning process, i.e., the position and the size of the beam for each scan, represent of the important issues in scanning irradiation. In the developed system, the two-dimensional relative fluence and the flatness of the irradiation field were measured in a straightforward technique from the luminance distribution on the screen. The position and the size of the beams were obtained from centroid computation results of the brightness. By the good sensitivity and spatial resolution of the fluorescent screen + CCD system, the scanned ion beams were verified as the measurements at the HIMAC prototype scanning system.

  19. Application of compound measuring method with laser and CCD to sphericity error detection of ICF target

    International Nuclear Information System (INIS)

    Fei Zhigen; Guo Junjie; Ma Xiaojun; Gao Dangzhong

    2011-01-01

    A novel compound measuring method for sphericity error detection of ICF target is proposed. Combining the advantages of laser probe and CCD camera, this method can effectively integrate the data captured by laser probe and CCD camera into the same coordinate system by means of calibrating the position relationship of the two optical axes with a standard ball. The quasi-Newton method is employed to process the measured data with the noise data eliminated. Meanwhile, the diameter of target derived by CCD camera is used as partial initial conditions, which prevents the occurrence of local optimization due to inappropriate initial parameter selection. The experiment has been carried out on the experiment platform of a compact five-coordinate measuring machine under two kinds of measuring mode, demonstrating the validity and robustness of this method. (authors)

  20. Signal Detection of Multi-Channel Capillary Electrophoresis Chip Based on CCD

    Science.gov (United States)

    Lv, Hongfeng; Yan, Weiping; Yang, Xiaobo; Li, Jiechao; Zhu, Jieying

    2012-12-01

    A kind of multi-channel capillary electrophoresis (CE) chip signal detection system based on CCD was developed. The output signal of the CCD sensor was processed by a series of pre-processing circuits and ADC, and then it was collected by the Field Programmable Gate Array (FPGA) chip which communicated with a host computer. The core in FPGA was designed to control the signal flow of the CCD and transfer the data to PC based on a Nios II embedded soft-processor. The application of PC was used to store the data and demonstrate the curve. The measurement of the fluorescent signals for different concentration Rhodamine B dyes is presented and the comparison with other detection systems is also discussed.

  1. High-aperture monochromator-reflectometer and its usefulness for CCD calibration

    Science.gov (United States)

    Vishnyakov, Eugene A.; Shcherbakov, Alexander V.; Pertsov, Andrei A.; Polkovnikov, Vladimir N.; Pestov, Alexey E.; Pariev, Dmitry E.; Chkhalo, Nikolai I.

    2017-05-01

    We present a laboratory high-aperture monochromator-reflectometer employing laser-plasma radiation source and three replaceable Schwarzschild objectives for a certain range of applications in the soft X-ray spectral waveband. Three sets of X-ray multilayer mirrors for the Schwarzschild objectives enable operation of the reflectometer at the wavelengths of 135, 171 and 304 Å, while a goniometer with three degrees of freedom allows different measurement modes. We have used the facility for a laboratory CCD calibration at the wavelengths specified. Combined with the results of the CCD sensitivity measurements conducted in the VUV spectral waveband, the total outcome provides a more comprehensive understanding of the CCD effectivity in a wide spectral range.

  2. Spectroscopic analysis of optoelectronic semiconductors

    CERN Document Server

    Jimenez, Juan

    2016-01-01

    This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

  3. An attempt of CCD camera application for concentration distribution imaging of low energy β-emitters

    International Nuclear Information System (INIS)

    Gorski, Z.

    1998-01-01

    Author presented the possibility of using CCD camera to the surface investigation of the 63 Ni concentration dispersion in different materials (porcelain, SiO 2 ; humic substances). The liquid scintillation, varnish and scintillation screen were applied to convert from β - radiation to the UV-VIS light. It was proved that the number of counts registered by the CCD camera for the varnish or screen samples was proportional to the 63 Ni surface concentration. The radioluminescence of porcelain, dentin and enamel tooth can use in analysis of 63 Ni, 14 C in these materials. The advantages and faults of this method were discussed. (author)

  4. Test technology on divergence angle of laser range finder based on CCD imaging fusion

    Science.gov (United States)

    Shi, Sheng-bing; Chen, Zhen-xing; Lv, Yao

    2016-09-01

    Laser range finder has been equipped with all kinds of weapons, such as tank, ship, plane and so on, is important component of fire control system. Divergence angle is important performance and incarnation of horizontal resolving power for laser range finder, is necessary appraised test item in appraisal test. In this paper, based on high accuracy test on divergence angle of laser range finder, divergence angle test system is designed based on CCD imaging, divergence angle of laser range finder is acquired through fusion technology for different attenuation imaging, problem that CCD characteristic influences divergence angle test is solved.

  5. Study of the dark current in a spectrograph with a CCD camera

    OpenAIRE

    Hanselaer, Peter; Acuna, Paula; Sandoval, Claudia; Colombo, Elisa; Sandoval, José

    2014-01-01

    The spectral analysis of radiant quantities is usually performed using spectrographs with a CCD camera attached. The pixels of the CCD camera employ the photoelectric effect to generate electrical signals which are proportional to the intensity of light received. However, as a number of electrons will be generated even in the darkness, a “dark current” will be recorded too which adds to the measurement of the signal of the light source being analyzed. In this work we present the study of t...

  6. Design and implementation of high sensitive CCD on gallium arsenide based miniaturized spectrometer

    Science.gov (United States)

    Zheng, Jiamin; Shen, Jianhua; Guo, Fangmin

    2013-08-01

    In this paper, a method on how to design and implement a miniaturized spectrometer with low-light-level (LLL) CCD on GaAs is introduced. The optical system uses a blazed grating as the dispersive element and a 1×64 CCD on GaAs as the sensor. We apply a highly integrated Cortex-M4 MCU (STM32F407), to build the data acquisition and analysis unit, providing Wi-Fi interface to communicate with the PC software. It can complete the tasks like data acquisition, digital filtering, spectral display, network communication, human-computer interaction etc.

  7. Construction of a photochemical reactor combining a CCD spectrophotometer and a LED radiation source.

    Science.gov (United States)

    Gombár, Melinda; Józsa, Éva; Braun, Mihály; Ősz, Katalin

    2012-10-01

    An inexpensive photoreactor using LED light sources and a fibre-optic CCD spectrophotometer as a detector was built by designing a special cell holder for standard 1.000 cm cuvettes. The use of this device was demonstrated by studying the aqueous photochemical reaction of 2,5-dichloro-1,4-benzoquinone. The developed method combines the highly quantitative data collection of CCD spectrophotometers with the possibility of illuminating the sample independently of the detecting light beam, which is a substantial improvement of the method using diode array spectrophotometers as photoreactors.

  8. A CCD-based area detector for X-ray crystallography using synchrotron and laboratory sources

    International Nuclear Information System (INIS)

    Phillips, W.C.; Li Youli; Stanton, M.; Xie Yuanhui; O'Mara, D.; Kalata, K.

    1993-01-01

    The design and characteristics of a CCD-based area detector suitable for X-ray crystallographic studies using both synchrotron and laboratory sources are described. The active area is 75 mm in diameter, the FWHM of the point response function is 0.20 mm, and for Bragg peaks the dynamic range is 900 and the DQE ∼0.3. The 1320x1035-pixel Kodak CCD is read out into an 8 Mbyte memory system in 0.14 s and digitized to 12 bits. X-ray crystallographic data collected at the NSLS synchrotron from cubic insulin crystals are presented. (orig.)

  9. Dynamic imaging with a triggered and intensified CCD camera system in a high-intensity neutron beam

    International Nuclear Information System (INIS)

    Vontobel, P.; Frei, G.; Brunner, J.; Gildemeister, A.E.; Engelhardt, M.

    2005-01-01

    When time-dependent processes within metallic structures should be inspected and visualized, neutrons are well suited due to their high penetration through Al, Ag, Ti or even steel. Then it becomes possible to inspect the propagation, distribution and evaporation of organic liquids as lubricants, fuel or water. The principle set-up of a suited real-time system was implemented and tested at the radiography facility NEUTRA of PSI. The highest beam intensity there is 2x10 7 cm -2 s -1 , which enables to observe sequences in a reasonable time and quality. The heart of the detection system is the MCP intensified CCD camera PI-Max with a Peltier cooled chip (1300x1340 pixels). The intensifier was used for both gating and image enhancement, where as the information was accumulated over many single frames on the chip before readout. Although, a 16-bit dynamic range is advertised by the camera manufacturers, it must be less due to the inherent noise level from the intensifier. The obtained result should be seen as the starting point to go ahead to fit the different requirements of car producers in respect to fuel injection, lubricant distribution, mechanical stability and operation control. Similar inspections will be possible for all devices with repetitive operation principle. Here, we report about two measurements dealing with the lubricant distribution in a running motorcycle motor turning at 1200rpm. We were monitoring the periodic stationary movements of piston, valves and camshaft with a micro-channel plate intensified CCD camera system (PI-Max 1300RB, Princeton Instruments) triggered at exactly chosen time points

  10. Performance and limitations of high granularity single photon processing X-ray imaging detectors

    CERN Document Server

    Tlustos, L

    2005-01-01

    Progress in CMOS technology and in fine pitch bump bonding has made possible the development of single photon counting detectors for X-ray imaging with pixel pitches on the order of 50 µm giving a spatial resolution which is comparable to conventional CCD and flat panel detectors. This thesis studies the interaction of X-ray photons in the energy range of 5 keV to 70 keV with various sensor materials as well as the response of the Medipix2 readout system to both monochromatic and wide spectrum X-ray sources. Single photon processing offers the potential for spectroscopic imaging. However, this thesis demonstrates using simulations and measurements that the charge deposition and collection within the semiconductor sensor impose fundamental limits on the achievable energy resolution. In particular the discussion of charge during collection in the sensor and the generation of fluorescence photons in heavier sensor materials contribute to the appearance of a low energy tail on the detected spectrum of an incomin...

  11. Synthesis, structure, and spectroscopic and magnetic characterization of [Mn12O12(O2CCH2But)16(MeOH)4]·MeOH, a Mn12 single-molecule magnet with true axial symmetry.

    Science.gov (United States)

    Lampropoulos, Christos; Murugesu, Muralee; Harter, Andrew G; Wernsdofer, Wolfgang; Hill, Stephen; Dalal, Naresh S; Reyes, Arneil P; Kuhns, Philip L; Abboud, Khalil A; Christou, George

    2013-01-07

    The synthesis and properties are reported of a rare example of a Mn(12) single-molecule magnet (SMM) in truly axial symmetry (tetragonal, I4). [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(MeOH)(4)]·MeOH (3·MeOH) was synthesized by carboxylate substitution on [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)]·2MeCO(2)H·4H(2)O (1). The complex was found to possess an S = 10 ground state, as is typical for the Mn(12) family, and displayed both frequency-dependent out-of-phase AC susceptibility signals and hysteresis loops in single-crystal magnetization vs DC field sweeps. The loops also exhibited quantum tunneling of magnetization steps at periodic field values. Single-crystal, high-frequency electron paramagnetic resonance spectra on 3·MeOH using frequencies up to 360 GHz revealed perceptibly sharper signals than for 1. Moreover, careful studies as a function of the magnetic field orientation did not reveal any satellite peaks, as observed for 1, suggesting that the crystals of 3 are homogeneous and do not contain multiple Mn(12) environments. In the single-crystal (55)Mn NMR spectrum in zero applied field, three well-resolved peaks were observed, which yielded hyperfine and quadrupole splitting at three distinct sites. However, observation of a slight asymmetry in the Mn(4+) peak was detectable, suggesting a possible decrease in the local symmetry of the Mn(4+) site. Spin-lattice (T(1)) relaxation studies were performed on single crystals of 3·MeOH down to 400 mK in an effort to approach the quantum tunneling regime, and fitting of the data using multiple functions was employed. The present work and other recent studies continue to emphasize that the new generation of truly high-symmetry Mn(12) complexes are better models for thorough investigation of the physical properties of SMMs than their predecessors such as 1.

  12. Spectroscopic Classification of Two Supernovae

    Science.gov (United States)

    Gomez, S.; Blanchard, P.; Nicholl, M.; Berger, E.

    2018-02-01

    We obtained optical spectroscopic observations of 2 transients reported to the Transient Name Server by the ATLAS survey (Tonry et al. 2011, PASP, 123, 58; Tonry et al., ATel #8680) and the Pan-STARRS Survey for Transients (PSST; Huber et al., ATel #7153; http://star.pst.qub.ac.uk/ps1threepi/).

  13. Universal relation between spectroscopic constants

    Indian Academy of Sciences (India)

    (3) The author has used eq. (6) of his paper to calculate De. This relation leads to a large deviation from the correct value depending upon the extent to which experimental values are known. Guided by this fact, in our work, we used experimentally observed De values to derive the relation between spectroscopic constants.

  14. Development of a portable 3CCD camera system for multispectral imaging of biological samples.

    Science.gov (United States)

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S

    2014-10-27

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples.

  15. Opinion rating of comparison photographs of television pictures from CCD cameras under irradiation

    International Nuclear Information System (INIS)

    Reading, V.M.; Dumbreck, A.A.

    1991-01-01

    As part of the development of a general method of testing the effects of gamma radiation on CCD television cameras, this is a report of an experimental study on the optimisation of still photographic representation of video pictures recorded before and during camera irradiation. (author)

  16. Research on Double CCD Dimensional Metrology Applying in Large Forge Piece

    International Nuclear Information System (INIS)

    Hu, C H; Xiong, Z

    2006-01-01

    As development of computer vision, stereoscopic vision sensors have been used more and more widely, and double CCD vision sensor with its simplicity of operator, highaccuracy and high-efficiency has been used in many spheres. It can be used in dimensional metrology of large forge piece, which greatly improves the efficiency and accuracy of large forge piece measurement

  17. MiCPhot: A prime-focus multicolor CCD photometer on the 85-cm Telescope

    International Nuclear Information System (INIS)

    Zhou Aiying; Jiang Xiaojun; Wei Jianyan; Zhang Yanping

    2009-01-01

    We describe a new BV RI multicolor CCD photometric system situated at the prime focus of the 85-cm telescope at the Xinglong Station of NAOC. Atmospheric extinction effects, photometric accuracy and color calibration dependence of the system are investigated. Additional attention was paid to giving observers guidance in estimating throughput, detection limit, signal-to-noise ratio and exposure time. (invited reviews)

  18. Absolute spectral calibration of an intensified CCD camera using twin beams

    Czech Academy of Sciences Publication Activity Database

    Haderka, O.; Peřina Jr., J.; Michálek, Václav; Hamar, Martin

    2014-01-01

    Roč. 31, č. 10 (2014), B1-B7 ISSN 0740-3224 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : spectral calibration * intensified CCD camera * twin beams * photon pairs Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.970, year: 2014

  19. The study of interferometer spectrometer based on DSP and linear CCD

    Science.gov (United States)

    Kang, Hua; Peng, Yuexiang; Xu, Xinchen; Xing, Xiaoqiao

    2010-11-01

    In this paper, general theory of Fourier-transform spectrometer and polarization interferometer is presented. A new design is proposed for Fourier-transform spectrometer based on polarization interferometer with Wollaston prisms and linear CCD. Firstly, measured light is changed into linear polarization light by polarization plate. And then the light can be split into ordinary and extraordinary lights by going through one Wollaston prism. At last, after going through another Wollaston prism and analyzer, interfering fringes can be formed on linear CCD behind the analyzer. The linear CCD is driven by CPLD to output amplitude of interfering fringes and synchronous signals of frames and pixels respectively. DSP is used to collect interference pattern signals from CCD and the digital data of interfering fringes are processed by using 2048-point-FFT. Finally, optical spectrum of measured light can be display on LCD connected to DSP with RS232. The spectrometer will possess the features of firmness, portability and the ability of real-time analyzing. The work will provide a convenient and significant foundation for application of more high accuracy of Fourier-transform spectrometer.

  20. CCD astrometric observations of comets at the Belgrade observatory during 1998 - 2000 (I

    Directory of Open Access Journals (Sweden)

    Protitch-Benishek V.

    2000-01-01

    Full Text Available 143 precise astrometric positions of seven comets were obtained with the CCD equipped Askania astrograph (13.5/160 of Belgrade Astronomical Observatory. The SBIG ST-8(1530 × 1020 pixel array camera was used in the observations.

  1. Fast neutron fields imaging with a CCD-based luminescent detector

    CERN Document Server

    Mikerov, V

    1999-01-01

    The paper considers some questions concerned with the development of an imaging system based on a CCD-detector for visualising fast neutron fields. From those the most important are: development of fast neutron screens, detector resistance to irradiation fields, and feasibility of fast neutron radiography and tomography at various neutron sources.

  2. A toolkit for the characterization of CCD cameras for transmission electron microscopy

    NARCIS (Netherlands)

    Vulovic, M.; Rieger, B.; Van Vliet, L.J.; Koster, A.J.; Ravelli, R.B.G.

    2009-01-01

    Charge-coupled devices (CCD) are nowadays commonly utilized in transmission electron microscopy (TEM) for applications in life sciences. Direct access to digitized images has revolutionized the use of electron microscopy, sparking developments such as automated collection of tomographic data, focal

  3. AzCam: A Windows-based CCD/CMOS Client/Server Data Acquisition System

    Science.gov (United States)

    Lesser, M.; Parthasarathy, M.

    AzCam is a software package developed to utilize a common architecture for the characterization of CCD and CMOS imagers in both laboratory and astronomical observatory environments. It follows a standard client/server model in which the server runs on a PC under the Microsoft Windows operating system to allow easy integration with the many CMOS imager cameras.

  4. Numerical simulations and analyses of temperature control loop heat pipe for space CCD camera

    Science.gov (United States)

    Meng, Qingliang; Yang, Tao; Li, Chunlin

    2016-10-01

    As one of the key units of space CCD camera, the temperature range and stability of CCD components affect the image's indexes. Reasonable thermal design and robust thermal control devices are needed. One kind of temperature control loop heat pipe (TCLHP) is designed, which highly meets the thermal control requirements of CCD components. In order to study the dynamic behaviors of heat and mass transfer of TCLHP, particularly in the orbital flight case, a transient numerical model is developed by using the well-established empirical correlations for flow models within three dimensional thermal modeling. The temperature control principle and details of mathematical model are presented. The model is used to study operating state, flow and heat characteristics based upon the analyses of variations of temperature, pressure and quality under different operating modes and external heat flux variations. The results indicate that TCLHP can satisfy the thermal control requirements of CCD components well, and always ensure good temperature stability and uniformity. By comparison between flight data and simulated results, it is found that the model is to be accurate to within 1°C. The model can be better used for predicting and understanding the transient performance of TCLHP.

  5. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    Directory of Open Access Journals (Sweden)

    Hoyoung Lee

    2014-10-01

    Full Text Available Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples.

  6. Spectroscopic and chemometric exploration of food quality

    DEFF Research Database (Denmark)

    Pedersen, Dorthe Kjær

    2002-01-01

    The desire to develop non-invasive rapid measurements of essential quality parameters in foods is the motivation of this thesis. Due to the speed and noninvasive properties of spectroscopic techniques, they have potential as on-line or atline methods and can be employed in the food industry...... in order to control the quality of the end product and to continuously monitor the production. In this thesis, the possibilities and limitations of the application of spectroscopy and chemometrics in rapid control of food quality are discussed and demonstrated by the examples in the eight included...... publications. Different aspects of food quality are covered, but the focus is mainly on the development of multivariate calibrations for predictions of rather complex attributes such as the water-holding capacity of meat, ethical quality of the slaughtering procedure, protein content of single wheat kernels...

  7. Experimental research on femto-second laser damaging array CCD cameras

    Science.gov (United States)

    Shao, Junfeng; Guo, Jin; Wang, Ting-feng; Wang, Ming

    2013-05-01

    Charged Coupled Devices (CCD) are widely used in military and security applications, such as airborne and ship based surveillance, satellite reconnaissance and so on. Homeland security requires effective means to negate these advanced overseeing systems. Researches show that CCD based EO systems can be significantly dazzled or even damaged by high-repetition rate pulsed lasers. Here, we report femto - second laser interaction with CCD camera, which is probable of great importance in future. Femto - second laser is quite fresh new lasers, which has unique characteristics, such as extremely short pulse width (1 fs = 10-15 s), extremely high peak power (1 TW = 1012W), and especially its unique features when interacting with matters. Researches in femto second laser interaction with materials (metals, dielectrics) clearly indicate non-thermal effect dominates the process, which is of vast difference from that of long pulses interaction with matters. Firstly, the damage threshold test are performed with femto second laser acting on the CCD camera. An 800nm, 500μJ, 100fs laser pulse is used to irradiate interline CCD solid-state image sensor in the experiment. In order to focus laser energy onto tiny CCD active cells, an optical system of F/5.6 is used. A Sony production CCDs are chose as typical targets. The damage threshold is evaluated with multiple test data. Point damage, line damage and full array damage were observed when the irradiated pulse energy continuously increase during the experiment. The point damage threshold is found 151.2 mJ/cm2.The line damage threshold is found 508.2 mJ/cm2.The full-array damage threshold is found to be 5.91 J/cm2. Although the phenomenon is almost the same as that of nano laser interaction with CCD, these damage thresholds are substantially lower than that of data obtained from nano second laser interaction with CCD. Then at the same time, the electric features after different degrees of damage are tested with electronic multi

  8. The limit of detection for explosives in spectroscopic differential reflectometry

    Science.gov (United States)

    Dubroca, Thierry; Vishwanathan, Karthik; Hummel, Rolf E.

    2011-05-01

    In the wake of recent terrorist attacks, such as the 2008 Mumbai hotel explosion or the December 25th 2009 "underwear bomber", our group has developed a technique (US patent #7368292) to apply differential reflection spectroscopy to detect traces of explosives. Briefly, light (200-500 nm) is shone on a surface such as a piece of luggage at an airport. Upon reflection, the light is collected with a spectrometer combined with a CCD camera. A computer processes the data and produces in turn a differential reflection spectrum involving two adjacent areas of the surface. This differential technique is highly sensitive and provides spectroscopic data of explosives. As an example, 2,4,6, trinitrotoluene (TNT) displays strong and distinct features in differential reflectograms near 420 nm. Similar, but distinctly different features are observed for other explosives. One of the most important criteria for explosive detection techniques is the limit of detection. This limit is defined as the amount of explosive material necessary to produce a signal to noise ratio of three. We present here, a method to evaluate the limit of detection of our technique. Finally, we present our sample preparation method and experimental set-up specifically developed to measure the limit of detection for our technology. This results in a limit ranging from 100 nano-grams to 50 micro-grams depending on the method and the set-up parameters used, such as the detector-sample distance.

  9. A configurable distributed high-performance computing framework for satellite's TDI-CCD imaging simulation

    Science.gov (United States)

    Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang

    2010-11-01

    This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.

  10. Real-time monitoring of longitudinal electron bunch parameters by intensity-integrated and spectroscopic measurements of single coherent THz pulses; Echtzeitbestimmung longitudinaler Elektronenstrahlparameter mittels absoluter Intensitaets- und Spektralmessung einzelner kohaerenter THz Strahlungspulse

    Energy Technology Data Exchange (ETDEWEB)

    Wesch, Stephan

    2012-12-15

    High-gain free-electron lasers (FELs) generate intense and monochromatic photon pulses with few tens of femtosecond duration. For this purpose, electron beams are accelerated to relativistic energies and shrunk longitudinally down to micrometer size.The diagnosis of theses compressed electron bunches is a challenge especially for MHz bunch repetition rates as provided by the FEL FLASH in Hamburg. In this thesis, coherently emitted THz radiation of single electron bunches were investigated, on which the longitudinal structure is imprinted. Two instruments were used: First, the FLASH bunch compression monitors, relying on the integrated intensity measurement of diffraction radiation, were modified to determine the overall length of every bunch behind the two bunch compressors (BC). A model was developed showing that their response is independent of the exact bunch shape for lengths below 200 {mu}m (rms). This could experimentally be verified in the range between 50 and 190 {mu}m within 7% accuracy for themonitor behind the last BC by comparison with measurements with the transverse deflecting structure (TDS). Second, a single-shot spectrometer with five staged reflective blazed gratings has been designed, build and commissioned. With its two grating sets, the wavelength ranges from 5.5 to 44 {mu}m and 45 to 440 {mu}m can be simultaneously detected by 118 fast pyroelectric elements. Measurements based on transition radiation spectra were compared with profiles recorded by the TDS.The shape of the spectra as well as the reconstructed temporal profiles (using the Kramers-Kronig relation for phase retrieval) are in excellent agreement. For bunches with a charge of 50 pC, bunch lengths down to 5 {mu}m (fhwm) could be detected.

  11. Single-molecule mechanics of protein-labelled DNA handles

    Directory of Open Access Journals (Sweden)

    Vivek S. Jadhav

    2016-01-01

    Full Text Available DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular

  12. Leaf Area Index Retrieval Combining HJ1/CCD and Landsat8/OLI Data in the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-05-01

    Full Text Available The primary restriction on high resolution remote sensing data is the limit observation frequency. Using a network of multiple sensors is an efficient approach to increase the observations in a specific period. This study explores a leaf area index (LAI inversion method based on a 30 m multi-sensor dataset generated from HJ1/CCD and Landsat8/OLI, from June to August 2013 in the middle reach of the Heihe River Basin, China. The characteristics of the multi-sensor dataset, including the percentage of valid observations, the distribution of observation angles and the variation between different sensor observations, were analyzed. To reduce the possible discrepancy between different satellite sensors on LAI inversion, a quality control system for the observations was designed. LAI is retrieved from the high quality of single-sensor observations based on a look-up table constructed by a unified model. The averaged LAI inversion over a 10-day period is set as the synthetic LAI value. The percentage of valid LAI inversions increases significantly from 6.4% to 49.7% for single-sensors to 75.9% for multi-sensors. LAI retrieved from the multi-sensor dataset show good agreement with the field measurements. The correlation coefficient (R2 is 0.90, and the average root mean square error (RMSE is 0.42. The network of multiple sensors with 30 m spatial resolution can generate LAI products with reasonable accuracy and meaningful temporal resolution.

  13. CCD digital camera maps the East Pacific Rise

    Science.gov (United States)

    Edwards, Margo H.; Smith, Milton O.; Fornari, Daniel J.

    Since the pioneering work of Ewing et al. [1946] and Edgerton [1963] on the development of modern deep-sea camera systems, photographs of the deep seabed have been fundamental to marine geological investigations, portraying deep-sea fauna and permitting study of seafloor morphology at scales ranging from centimeters to meters [e.g., Heezen and Hollister, 1971; Spiess and Tyce, 1973; Grassle et al., 1979; Ballard and Moore, 1977; Lonsdale and Spiess, 1980; Fox et al., 1988]. Deep-sea photography has advanced from single-frame bounce cameras to sophisticated remotely operated vehicles (ROV) containing a complement of optical and acoustical data sensors and altitude-recording devices. Recent advances in camera technology, notably the development of digital camera systems [e.g., Harris et al., 1987], are rapidly increasing the information content of deep-sea photographs. Digital photographs are superior to their analog counterparts because they can be computer enhanced to extract features that are difficult to resolve due to poor lighting, for example. They also lend themselves to quantitative analysis, facilitating numerical comparisons between acoustic backscatter data and optical imagery of various seafloor terrains.

  14. Synthesis, single crystal X-ray, spectroscopic (FT-IR, UV-vis, fluorescence, 1H &13C NMR), computational (DFT/B3LYP) studies of some imidazole based picrates

    Science.gov (United States)

    Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.

    2018-04-01

    2,4,5-triphenyl-1H-imidazol-3-ium picrate (1), 2-(4-fluorophenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (2), 2-(4-methylphenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (3) were synthesised. These compounds 1-3 were characterized by elemental, FT-IR, 1H NMR and 13C NMR analyses. The structure of compound 3 was further confirmed by single crystal X-ray diffraction. The studies reveal that the molecule is associated with weak Nsbnd H⋯O and Csbnd H⋯N and van der Waals interactions which are responsible for the formation and strengthening of supramolecular assembly. The nature of the interactions and their importance are explored using the Hirshfeld surface method. The physicochemical properties of the compounds 1-3 were evaluated by UV-vis spectroscopy, fluorescence spectroscopy, and thermogravimetric analysis. According to thermal data the salts possess excellent thermal stabilities with decomposition temperatures ranging from 220 to 280 °C. Second-harmonic generation (SHG) results exposed that the picrates 1-3 were about 1.13-1.50 times greater than potassium dihydrogen phosphate (KDP). Here we also used Density functional theory (DFT) calculations in order to investigate the opto-electronic properties. The obtained theoretical results validate with available experimental data.

  15. Performance of single mechanoluminescent particle as ubiquitous light source.

    Science.gov (United States)

    Terasaki, Nao; Xu, Chao-Nan

    2014-08-01

    In this study, we have investigated mechanoluminescent (ML) performance of single ML particle as ubiquitous light source. When using high-speed CCD camera with image intensifier and microscopic equipment, mechanoluminescence from single particle was observed. As to the quantitative ML evaluation of the single ML particle was carried out using photomultiplier, and successfully estimated the performance of the single ML particle as an intensity controllable light source in nW order. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Spectroscopic Classification of Seven Supernovae

    Science.gov (United States)

    Blanchard, P.; Gomez, S.; Nicholl, M.; Berger, E.

    2018-01-01

    We obtained optical spectroscopic observations of 7 transients reported to the Transient Name Server by the ATLAS survey (Tonry et al. 2011, PASP, 123, 58; Tonry et al., ATel #8680), the Pan-STARRS Survey for Transients (PSST; Huber et al., ATel #7153; http://star.pst.qub.ac.uk/ps1threepi/), DPAC and the ESA Gaia Photometric Science Alerts Team (http://gsaweb.ast.cam.ac.uk/alerts), and the Tsinghua University-National Astronomical Observatories of China Transient Survey (TNTS).

  17. Mid-infrared spectroscopic investigation

    International Nuclear Information System (INIS)

    Walter, L.; Vergo, N.; Salisbury, J.W.

    1987-01-01

    Mid-infrared spectroscopic research efforts are discussed. The development of a new instrumentation to permit advanced measurements in the mid-infrared region of the spectrum, the development of a special library of well-characterized mineral and rock specimens for interpretation of remote sensing data, and cooperative measurements of the spectral signatures of analogues of materials that may be present on the surfaces of asteroids, planets or their Moons are discussed

  18. THE YOUNG SOLAR ANALOGS PROJECT. I. SPECTROSCOPIC AND PHOTOMETRIC METHODS AND MULTI-YEAR TIMESCALE SPECTROSCOPIC RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R. O.; Briley, M. M.; Lambert, R. A.; Fuller, V. A.; Newsome, I. M.; Seeds, M. F. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 26808 (United States); Saken, J. M.; Kahvaz, Y. [Department of Physics and Physical Science, Marshall University, Huntington, WV 25755 (United States); Corbally, C. J. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721-0065 (United States)

    2015-12-15

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (S{sub MW}), and describe the method we use to transform our instrumental indices to S{sub MW} without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our “Superstar technique” for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the “photospheric” indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days–months) and short

  19. Development of low-noise CCD drive electronics for the world space observatory ultraviolet spectrograph subsystem

    Science.gov (United States)

    Salter, Mike; Clapp, Matthew; King, James; Morse, Tom; Mihalcea, Ionut; Waltham, Nick; Hayes-Thakore, Chris

    2016-07-01

    World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels. This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass

  20. Spectroscopic amplifier for pin diode

    International Nuclear Information System (INIS)

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R.

    2014-10-01

    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  1. H-D exchange in metal carbene complexes: Structure of cluster (μ-H)(μ-OCD3)Os3(CO)9{:C(CD3)NC2H8O}

    Science.gov (United States)

    Savkov, Boris; Maksakov, Vladimir; Kuratieva, Natalia

    2015-10-01

    X-ray and spectroscopic data for the new complex (μ-H)(μ-OCH3)Os3(CO)9{:C(CD3)NC2H8O} (2) obtained in the reaction of the (μ-H)(μ-Cl)Os3(CO)9{:C(CH3)NC2H8O} (1) with NaOCD3 in CD3OD solution are reported. It is shown that cluster 1 has the property of CH-acidity inherent of Fisher type carbenes. This had demonstrated using hydrogen deuterium exchange reaction in the presence of a strong base. Bridging chlorine to metoxide ligand substitution takes place during the reaction. The molecular structure of 2 is compared with known analogues.

  2. Spectroscopic neutron detection using composite scintillators

    Science.gov (United States)

    Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.

    2016-09-01

    Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.

  3. Spectroscopic Studies of Starburst Galaxies; the Dynamical Structure of Blue Compact Dwarf Galaxy Haro 6

    Directory of Open Access Journals (Sweden)

    Mun-Suk Chun

    1995-06-01

    Full Text Available We carried out photometric and spectroscopic observations of the blue compact dwarf galaxy Haro 6 in the Virgo Cluster of Galaxies. The long-slit spectroscopy was employed at three position angles, ϕ = 0°, ϕ = 30°, and ϕ = 120° CCD camera mounted on the Cassegrain Spectrograph. Based on the mean intrinsic axial ratio q0=0.3, we derived inclination i of the system as 44° our composite V-band CCD image. Careful analysis on the velocity field of the system chows an asymptotically flat rotation curve with the maximum rotational velocity V(rmax reaches about 12 km/sec. The calculation of the dynamical mass of Haro 6 with a simple mass model is briefly discussed with emphasis on the mass to luminosity ratio. From the IRAS Point Source Catalogue, we derived dust-to-gas ratio which indicates relatively low dust content, thus tempting us to conjecture the youth of the system.

  4. A Real-Time Lane Detection Algorithm Based on Intelligent CCD Parameters Regulation

    Directory of Open Access Journals (Sweden)

    Ping-shu Ge

    2012-01-01

    Full Text Available Lane departure warning system (LDWS has been regarded as an efficient method to lessen the damages of road traffic accident resulting from driver fatigue or inattention. Lane detection is one of the key techniques for LDWS. To overcome the contradiction between complexity of algorithm and the real-time requirement for vehicle onboard system, this paper introduces a new lane detection method based on intelligent CCD parameters regulation. In order to improve the real-time capability of the system, a CCD parameters regulating method is proposed which enhances the contrast between lane line and road surfaces and reduces image noise, so it lays a good foundation for the following lane detection. Hough transform algorithm is improved by selection and classification of seed points. Finally the lane line is extracted through some restrictions. Experimental results verify the effectiveness of the proposed method, which improves not only real-time capability but also the accuracy of the system.

  5. Determining the Spectral Resolution of a Charge-Coupled Device (CCD) Raman Instrument

    DEFF Research Database (Denmark)

    Liu, Chuan; Berg, Rolf W.

    2012-01-01

    A new method based on dispersion equations is described to express the spectral resolution of an applied charge-coupled device (CCD) Czerny-Turner Raman instrument entirely by means of one equation and principal factors determined by the actual setup. The factors involved are usual quantities...... resolution of the Raman instrument. An essential feature of the new method is a proposed way to compensate for non-ideality (diffractions, aberrations, etc.) by use of a hyperbola model function to describe the relationship between the width of the entrance slit and the image signal width on the CCD....... The model depends on the spectrometer magnification and a diffraction and aberration compensation factor denoted as A. A could be approximated as a constant that can be determined by the experimental method. The validity of the new expression has been examined by measuring the band width of the 1332.4 cm(-1...

  6. Matching CCD images to a stellar catalog using locality-sensitive hashing

    Science.gov (United States)

    Liu, Bo; Yu, Jia-Zong; Peng, Qing-Yu

    2018-02-01

    The usage of a subset of observed stars in a CCD image to find their corresponding matched stars in a stellar catalog is an important issue in astronomical research. Subgraph isomorphic-based algorithms are the most widely used methods in star catalog matching. When more subgraph features are provided, the CCD images are recognized better. However, when the navigation feature database is large, the method requires more time to match the observing model. To solve this problem, this study investigates further and improves subgraph isomorphic matching algorithms. We present an algorithm based on a locality-sensitive hashing technique, which allocates quadrilateral models in the navigation feature database into different hash buckets and reduces the search range to the bucket in which the observed quadrilateral model is located. Experimental results indicate the effectivity of our method.

  7. CCD camera-based analysis of thin film growth in industrial PACVD processes

    Science.gov (United States)

    Zauner, G.; Schulte, T.; Forsich, C.; Heim, Daniel

    2013-04-01

    In this paper we present a method for the characterization of (semi-transparent) thin film growth during PACVD processes (plasma assisted chemical vapour deposition), based on analysis of thermal radiation by means of nearinfrared imaging. Due to interference effects during thin film growth, characteristic emissivity signal variations can be observed which allow very detailed spatio-temporal analysis of growth characteristics (e.g. relative growth rates). We use a standard CCD camera with a near-infrared band-pass filter (center wavelength 1030 nm, FWHM 10nm) as a thermal imaging device. The spectral sensitivity of a Si-CCD sensor at 1μm is sufficient to allow the imaging of thermal radiation at temperatures above approx. 400°C, whereas light emissions from plasma discharges (which mainly occur in the visible range of the electromagnetic spectrum) barely affect the image formation.

  8. Brayton Isotope Power System. Phase I. (Ground demonstration system) Configuration Control Document (CCD)

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration control document (CCD) defines the BIPS-GDS configuration. The GDS configuration is similar to a conceptual flight system design, referred to as the BIPS-FS, which is discussed in App. I. The BIPS is being developed by ERDA as a 500 to 2000 W(e), 7-y life, space power system utilizing a closed Brayton cycle gas turbine engine to convert thermal energy (from an isotope heat source) to electrical energy at a net efficiency exceeding 25 percent. The CCD relates to Phase I of an ERDA Program to qualify a dynamic system for launch in the early 1980's. Phase I is a 35-month effort to provide an FS conceptual design and GDS design, fabrication, and test. The baseline is a 7-year life, 450-pound, 4800 W(t), 1300 W(e) system which will use two multihundred watt (MHW) isotope heat sources being developed

  9. Design method of general-purpose driving circuit for CCD based on CPLD

    International Nuclear Information System (INIS)

    Zhang Yong; Tang Benqi; Xiao Zhigang; Wang Zujun; Huang Shaoyan

    2005-01-01

    It is very important for studying the radiation damage effects and mechanism systematically about CCD to develop a general-purpose test platform. The paper discusses the design method of general-purpose driving circuit for CCD based on CPLD and the realization approach. A main controller has being designed to read the data file from the outer memory, setup the correlative parameter registers and produce the driving pulses according with parameter request strictly, which is based on MAX7000S by using MAX-PLUS II software. The basic driving circuit module has being finished based on this method. The output waveform of the module is the same figure as the simulation waveform. The result indicates that the design method is feasible. (authors)

  10. An X-ray CCD signal generator with true random arrival time

    International Nuclear Information System (INIS)

    Huo Jia; Xu Yuming; Chen Yong; Cui Weiwei; Li Wei; Zhang Ziliang; Han Dawei; Wang Yusan; Wang Juan

    2011-01-01

    An FPGA-based true random signal generator with adjustable amplitude and exponential distribution of time interval is presented. Since traditional true random number generators (TRNG) are resource costly and difficult to transplant, we employed a method of random number generation based on jitter and phase noise in ring oscillators formed by gates in an FPGA. In order to improve the random characteristics, a combination of two different pseudo-random processing circuits is used for post processing. The effects of the design parameters, such as sample frequency are discussed. Statistical tests indicate that the generator can well simulate the timing behavior of random signals with Poisson distribution. The X-ray CCD signal generator will be used in debugging the CCD readout system of the Low Energy X-ray Instrument onboard the Hard X-ray Modulation Telescope (HXMT). (authors)

  11. Characterization and Compensation of the Fixed Pattern Noise in the Output of a CCD Camera

    Directory of Open Access Journals (Sweden)

    Andreas W. WINKLER

    2016-12-01

    Full Text Available A monochrome CCD camera is used in a reflectometer in order to measure the luminance of light reflected by a specimen. This application requires a compensation of the non-uniformities introduced by the optical system, also known as fixed pattern noise. We provide an image formation model and characterize the bias and the dark signal of the CCD sensor and we use a self-built integrating sphere with an inner diameter of 500 mm as a uniform light source in order to characterize the photo sensitivity of the whole optical system. Finally, a new effective approach to compensate the fixed pattern noise pixel by pixel and in dependence of the exposure time is proposed.

  12. Thermal IR imaging system using a self-scanned HgCdTe/CCD detector array

    Science.gov (United States)

    Husain-Abidi, A. S.; Ostrow, H.; Rubin, B.

    1980-01-01

    It is likely that future high resolution earth observation imaging systems will utilize self-scanned IR detectors. In an initial step toward this goal, an IR imaging system operating in the 10 to 12 micron spectral region has been developed. This system uses a 9-element HgCdTe/CCD linear array operating in the photoconductive mode, nine pre-amplifiers and a silicon CCD multiplexer integrated into a focal plane assembly. Opto-mechanical techniques are used to scan the scene and images are produced in real time. The imaging performance of this system is described and measurements of noise, responsivity, specific detectivity, and detector sensitivity profiles are presented. The requirements for more advanced detector arrays for use in future NASA remote sensing missions are also discussed.

  13. 3D measurement for archeological artifact using CCD camera and line laser beam

    Science.gov (United States)

    Yokoyama, Hiroshi; Hatano, Katsuhiro; Chikatsu, Hirofumi

    1997-07-01

    In the compilation of archival records for archeological artifacts, true ortho-graphic drawings of these artifacts have to be drawn by the archaeologists themselves or part- timers, taking a great deal of time, labor and skill. For saving the labor, the authors have developed ortho projection system using CCD camera. 3D measurement system using ortho projection system are described in this paper. Finally, it demonstrates wireframe model for jomon-pottery by using this system.

  14. Collony Collapse Disorder (CCD). A review of the possible Factors and Agents involved

    OpenAIRE

    Espinosa del Alba, Laura

    2014-01-01

    Póster Colony collapse disorder is a complex phenomenon that affects managed honey bee (Apis mellifera) colonies, whose main trait is a rapid loss of adult worker bees. Adult worker bees are responsible of the majority of the hive tasks, so their absence means shortly after the collapse and dead of the colony. CCD has been reported mainly from USA, but also from Europe.

  15. Novel plasma torch diagnostic method based on multiple exposition CCD and correlation analysis

    Czech Academy of Sciences Publication Activity Database

    Šonský, Jiří; Něnička, Václav

    2006-01-01

    Roč. 56, - (2006), B1371-B1376 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /22./. Prague, 26.06.2006-29.06.2006] R&D Projects: GA ČR(CZ) GA202/04/1341 Institutional research plan: CEZ:AV0Z20570509 Keywords : plasma torch * CCD * correlation analysis Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  16. BVRI CCD photometry of the metal-poor globular cluster M68 (NGC 4590)

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E.

    1990-01-01

    BVRI photometry of the low metallicity globular cluster M68 (NGC 4590) was obtained with a CCD camera and the 2.2-m ESO telescope. The resulting BV color-magnitude diagrams are compared with the observations of McClure et al. (1987). The observations are also compared with theoretical isochrones, yielding a cluster age of 13 Gyr with a likely external uncertainty of 2 or 3 Gyr. 25 refs

  17. Versatile ultrafast pump-probe imaging with high sensitivity CCD camera

    OpenAIRE

    Pezeril , Thomas; Klieber , Christoph; Temnov , Vasily; Huntzinger , Jean-Roch; Anane , Abdelmadjid

    2012-01-01

    International audience; A powerful imaging technique based on femtosecond time-resolved measurements with a high dynamic range, commercial CCD camera is presented. Ultrafast phenomena induced by a femtosecond laser pump are visualized through the lock-in type acquisition of images recorded by a femtosecond laser probe. This technique allows time-resolved measurements of laser excited phenomena at multiple probe wavelengths (spectrometer mode) or conventional imaging of the sample surface (ima...

  18. Miniature CCD X-Ray Imaging Camera Technology Final Report CRADA No. TC-773-94

    Energy Technology Data Exchange (ETDEWEB)

    Conder, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mummolo, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The goal of the project was to develop a compact, large active area, high spatial resolution, high dynamic range, charge-coupled device (CCD) camera to replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating X-rays. The camera head and controller needed to be capable of operation within a vacuum environment and small enough to be fielded within the small vacuum target chambers at LLNL.

  19. Smear correction of highly variable, frame-transfer CCD images with application to polarimetry.

    Science.gov (United States)

    Iglesias, Francisco A; Feller, Alex; Nagaraju, Krishnappa

    2015-07-01

    Image smear, produced by the shutterless operation of frame-transfer CCD detectors, can be detrimental for many imaging applications. Existing algorithms used to numerically remove smear do not contemplate cases where intensity levels change considerably between consecutive frame exposures. In this report, we reformulate the smearing model to include specific variations of the sensor illumination. The corresponding desmearing expression and its noise properties are also presented and demonstrated in the context of fast imaging polarimetry.

  20. The use of a CCD imaging system for X-ray film intensity measurement

    International Nuclear Information System (INIS)

    Grigg, M.W.; Barnea, Z.

    1994-01-01

    The use of a simple CCD-based imaging system for digitizing and x-ray film image is demonstrated. A method of extending the region of linear response of the film based upon an analytic representation of the observed response to a series of increasing exposures is described. The validity of the procedure is illustrated through an example of the absolute intensity measurement of a reflection of cadmium sulphide. 3 refs., 7 figs

  1. A method for measuring modulation transfer function of CCD device in remote camera with grating pattern

    Science.gov (United States)

    Chen, Yuheng; Chen, Xinhua; Shen, Weimin

    2008-03-01

    The remote camera that is developed by us is the exclusive functional load of a micro-satellite. Modulation transfer function (MTF) is a direct and accurate parameter to evaluate the system performance of a remote camera, and the MTF of a camera is jointly decided by the MTF of camera lens and its CCD device. The MTF of the camera lens can be tested directly with commercial optical system testing instrument, but it is indispensable to measure the MTF of the CCD device accurately before setting up the whole camera to evaluate the performance of the whole camera in advance. Compared with other existed MTF measuring methods, this method using grating pattern requires less equipment and simpler arithmetic. Only one complete scan of the grating pattern and later data processing and interpolation are needed to get the continuous MTF curves of the whole camera and its CCD device. High-precision optical system testing instrument guarantees the precision of this indirect measuring method. This indirect method to measure MTF is of reference use for the method of testing MTF of electronic device and for gaining MTF indirectly from corresponding CTF.

  2. Online inspection of thermo-chemical heat treatment processes with CCD camera system

    Science.gov (United States)

    Zauner, Gerald; Darilion, Gerald; Pree, Ronald; Heim, Daniel; Hendorfer, G.

    2005-11-01

    Plasma nitriding belongs to the group of the thermo chemical surface heat treatments. During this process nitrogen is dissociated into the surface of the material increasing hardness, wear resistance, endurance strength and/or corrosion resistance. This paper presents a new inspection system based on a CCD camera system for monitoring such heat treatment processes (PACVD, plasma assisted chemical vapour deposition). Treatment temperatures commonly used are within the range of 350 °C to 600 °C. A near infrared enhanced CCD camera system equipped with specifically chosen spectral filters is used to measure spectral emittances during the surface modification. In particular the spectral operating range of 950nm to 1150nm of the silicon CCD camera is utilized. The measurement system is based on the principles of ratio pyrometry (dual-band method) known from non-contact temperature measurements, in which two images of the same scene, each taken at slightly different spectral bands, are used to determine the spectral light characteristics. This results in an improved relative sensitivity for spectral changes (i.e. deviations from the gray-body hypothesis) during the surface modification.

  3. Color balancing in CCD color cameras using analog signal processors made by Kodak

    Science.gov (United States)

    Kannegundla, Ram

    1995-03-01

    The green, red, and blue color filters used for CCD sensors generally have different responses. It is often necessary to balance these three colors for displaying a high-quality image on the monitor. The color filter arrays on sensors have different architectures. A CCD with standard G R G B pattern is considered for the present discussion. A simple method of separating the colors using CDS/H that is a part of KASPs (Analog Signal Processors made by Kodak) and using the gain control, which is also a part of KASPs for color balance, is presented. The colors are separated from the video output of sensor by using three KASPs, one each for green, red, and blue colors and by using alternate sample pulses for green and 1 in 4 pulses for red and blue. The separated colors gain is adjusted either automatically or manually and sent to the monitor for direct display in the analog mode or through an A/D converter digitally to the memory. This method of color balancing demands high-quality ASPs. Kodak has designed four different chips with varying levels of power consumption and speed for analog signal processing of video output of CCD sensors. The analog ASICs have been characterized for noise, clock feedthrough, acquisition time, linearity, variable gain, line rate clamp, black muxing, affect of temperature variations on chip performance, and droop. The ASP chips have met their design specifications.

  4. Cooling System for a Frame-Store PN-CCD Detector for Low Background Application

    CERN Document Server

    Pereira, H; Santos Silva, P; Kuster, M; Lang, P

    2012-01-01

    The astroparticle physics experiment CERN Axion Solar Telescope (CAST) aims to detect hypothetical axions or axion-like particles produced in the Sun by the Primakoff process. A Large Hadron Collider (LHC) prototype superconducting dipole magnet provides a 9 T transverse magnetic field for the conversion of axions into detectable X-ray photons. These photons are detected with an X-ray telescope and a novel type of frame-store CCD detector built from radio-pure materials, installed in the optics focal plane. A novel type of cooling system has been designed and built based on krypton-filled cryogenic heat pipes, made out of oxygen-free radiopure copper, and a Stirling cryocooler as cold source. The heat pipes provide an efficient thermal coupling between the cryocooler and the CCD which is kept at stable temperatures between 150 and 230 K within an accuracy of 0.1 K. A graded-Z radiation shield, also serving as a gas cold-trap operated at 120 K, is implemented to reduce the surface contamination of the CCD wind...

  5. Evaluation of diagnostic ability of CCD digital radiography in the detection of incipient dental caries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wan; Lee, Byung Do [Wonkwang University College of Medicine, Iksan (Korea, Republic of)

    2003-03-15

    The purpose of this experiment was to evaluate the diagnostic ability of a CCD-based digital system (CDX-2000HQ) in the detection of incipient dental caries. 93 extracted human teeth with sound proximal surfaces and interproximal artificial cavities were radiographed using 4 imaging methods. Automatically processed No.2 Insight film (Eastman Kodak Co., U.S.A.) was used for conventional radiography, scanned images of conventional radiograms for indirect digital radiography were used. For the direct digital radiography, the CDX-2000HQ CCD system (Biomedisys Co. Korea) was used. The subtraction images were made from two direct digital images by Sunny program in the CDX-2000HQ system. Two radiologists and three endodontists examined the presence of lesions using a five-point confidence scale and compared the diagnostic ability by ROC (Receiver Operating Characteristic) analysis and one way ANOVA test. The mean ROC areas of conventional radiography, indirect digital radiography, direct digital radiography, and digital subtraction radiography were 0.9093, 0.9102, 0.9184, and 0.9056, respectively. The diagnostic ability of direct digital radiography was better than the other imaging modalities, but there were no statistical differences among these imaging modalities (p>0.05). These results indicate that new CCD-based digital systems (CDX-2000HQ) have the potential to serve as an alternative to conventional radiography in the detection of incipient dental caries.

  6. Evaluation of diagnostic ability of CCD digital radiography in the detection of incipient dental caries

    International Nuclear Information System (INIS)

    Lee, Wan; Lee, Byung Do

    2003-01-01

    The purpose of this experiment was to evaluate the diagnostic ability of a CCD-based digital system (CDX-2000HQ) in the detection of incipient dental caries. 93 extracted human teeth with sound proximal surfaces and interproximal artificial cavities were radiographed using 4 imaging methods. Automatically processed No.2 Insight film (Eastman Kodak Co., U.S.A.) was used for conventional radiography, scanned images of conventional radiograms for indirect digital radiography were used. For the direct digital radiography, the CDX-2000HQ CCD system (Biomedisys Co. Korea) was used. The subtraction images were made from two direct digital images by Sunny program in the CDX-2000HQ system. Two radiologists and three endodontists examined the presence of lesions using a five-point confidence scale and compared the diagnostic ability by ROC (Receiver Operating Characteristic) analysis and one way ANOVA test. The mean ROC areas of conventional radiography, indirect digital radiography, direct digital radiography, and digital subtraction radiography were 0.9093, 0.9102, 0.9184, and 0.9056, respectively. The diagnostic ability of direct digital radiography was better than the other imaging modalities, but there were no statistical differences among these imaging modalities (p>0.05). These results indicate that new CCD-based digital systems (CDX-2000HQ) have the potential to serve as an alternative to conventional radiography in the detection of incipient dental caries.

  7. Development of X-ray CCD camera system with high readout rate using ASIC

    International Nuclear Information System (INIS)

    Nakajima, Hiroshi; Matsuura, Daisuke; Anabuki, Naohisa; Miyata, Emi; Tsunemi, Hiroshi; Doty, John P.; Ikeda, Hirokazu; Katayama, Haruyoshi

    2009-01-01

    We report on the development of an X-ray charge-coupled device (CCD) camera system with high readout rate using application-specific integrated circuit (ASIC) and Camera Link standard. The distinctive ΔΣ type analog-to-digital converter is introduced into the chip to achieve effective noise shaping and to obtain a high resolution with relatively simple circuits. The unit test proved moderately low equivalent input noise of 70μV with a high readout pixel rate of 625 kHz, while the entire chip consumes only 100 mW. The Camera Link standard was applied for the connectivity between the camera system and frame grabbers. In the initial test of the whole system, we adopted a P-channel CCD with a thick depletion layer developed for X-ray CCD camera onboard the next Japanese X-ray astronomical satellite. The characteristic X-rays from 109 Cd were successfully read out resulting in the energy resolution of 379(±7)eV (FWHM) at 22.1 keV, that is, ΔE/E=1.7% with a readout rate of 44 kHz.

  8. Can Single-Reference Coupled Cluster Theory Describe Static Correlation?

    Science.gov (United States)

    Bulik, Ireneusz W; Henderson, Thomas M; Scuseria, Gustavo E

    2015-07-14

    While restricted single-reference coupled cluster theory truncated to singles and doubles (CCSD) provides very accurate results for weakly correlated systems, it usually fails in the presence of static or strong correlation. This failure is generally attributed to the qualitative breakdown of the reference, and can accordingly be corrected by using a multideterminant reference, including higher-body cluster operators in the ansatz, or allowing symmetry breaking in the reference. None of these solutions are ideal; multireference coupled cluster is not black box, including higher-body cluster operators is computationally demanding, and allowing symmetry breaking leads to the loss of good quantum numbers. It has long been recognized that quasidegeneracies can instead be treated by modifying the coupled cluster ansatz. The recently introduced pair coupled cluster doubles (pCCD) approach is one such example which avoids catastrophic failures and accurately models strong correlations in a symmetry-adapted framework. Here, we generalize pCCD to a singlet-paired coupled cluster model (CCD0) intermediate between coupled cluster doubles and pCCD, yielding a method that possesses the invariances of the former and much of the stability of the latter. Moreover, CCD0 retains the full structure of coupled cluster theory, including a fermionic wave function, antisymmetric cluster amplitudes, and well-defined response equations and density matrices.

  9. A simple and accurate method for the quality control of the I.I.-DR apparatus using the CCD camera

    International Nuclear Information System (INIS)

    Igarashi, Hitoshi; Shiraishi, Akihisa; Kuraishi, Masahiko

    2000-01-01

    With the advancing development of CCD cameras, the I.I.-DR apparatus has been introduced into the x-ray fluoroscopy television system. Consequently, quality control of the system has become a complicated task. We developed a simple, accurate method for quality control of the I.I.-DR apparatus using the CCD camera. Experiments were separately performed for the imager system [laser imager, DDX (dynamic digital x-ray system)] and the imaging system (I.I., ND-filter, IRIS, CCD camera). Quality control of the imager system was done by simply examining both input and output characteristics with a sliding pattern. Quality control of the imaging system was also conducted by estimating AVE (the average volume element), which was obtained using a phantom under the constant conditions. The results indicated that this simplified method is useful as a weekly quality control check of the I.I.-DR apparatus using the CCD camera. (author)

  10. Rethinking CCD's Significance in Estimating Late Neogene Whole Ocean Carbonate Budget

    Science.gov (United States)

    Si, W.; Rosenthal, Y.

    2017-12-01

    The global averaged calcite compensation depth (CCD) record is conventionally used to reconstruct two correlatable parameters of the carbonate system - the alkalinity budget of the ocean and/or the saturation state of the ocean. Accordingly, the available CCD reconstructions have been interpreted to suggest either relative stable (Pearson and Palmer, 2000) or increased alkalinity of the ocean over the past 15 Ma (Tyrrell and Zeebe, 2004; Pälike et al., 2012). However, CCD alone is insufficient to constrain the carbonate system because the weathering flux of alkalinity into the ocean is not only balanced by CaCO3 dissolution on the seafloor but also by the biologic production in the euphotic zone and, the CCD records cannot be readily interpreted as changes in either process. Here, we present evidence of the co-evolution of surface CaCO3 production and deepsea dissolution through the late Neogene. By examining separately the mass accumulation rates (MAR) of coccoliths, planktonic foraminifera, and quantifying dissolution (using a proxy revised from Broecker et al., 1999) in seventeen deepsea cores from multiple depth-transects, we find that 1) MAR of dissolution-resistant coccoliths was substantially higher in the mid Miocene and declining on a global scale towards the present; 2) unlike coccoliths, MAR of planktonic foraminifera, shows no apparent secular trend through that time; 3) the revised dissolution index, shows significantly improved preservation of planktonic foraminiferal shells over that time, particularly at intermediate water depth and exhibits close association between changes in preservation with key climatic events. Our new records have two immediate implications. First, the substantially weakened pelagic biogenic carbonate production from mid Miocene to present alone could account for the improved preservation of deepsea carbonates without calling for a scenario of increased weathering input. Second, with the constrain of global averaged CCD

  11. Investigation of the Extracellular Matrix Effect for the QCM/CCD Cell Activity Monitoring System.

    Science.gov (United States)

    Kang, Hyen-Wook; Otani, Naoya; Hiroshi, Muramatsu; Chang, Sang-Mok; Kim, Jong Min

    2018-08-01

    A real-time quartz crystal microbalance (QCM) cell activity monitoring system coupled with micro CCD cameras was developed to investigate the cultured cell activity, which could measure the viscoelastic characteristics of the cell with the QCM and observe the cell morphology changes with CCD camera simultaneously. Both the viscoelastic characteristics and the shape of the cultured cell are important factors to estimate the cell activity and the cell adhesion. The extracellular matrix (ECM) on the surface of the QCM is essential to culture the cell stably in the QCM monitoring system. To find the ECM optimization condition, the adhesive strength of cultured cells on the ECM modified glass surface was measured by using rotating water stream and CCD camera. After culturing HepG2 cells for 24 hours on the ECM modified glass plates, the glass plates were dipped in the PBS solution and rotated with 1,000, 1,300, and 1,500 rpm for 30 seconds. The adhesiveness of ECMs was investigated by calculating the remained cells after rotating. Four types of ECM, such as amino group, carboxyl group, collagen monomer, and collagen polymer, were used and tested. The current paper improves the sensing system of previous report so that measurements of four ECMs can be simultaneously conducted under the same conditions in order to enhance reliability. A collagen polymer exposed ECM was the most stable on an adhesiveness point of view, but not suitable for the QCM cell activity monitoring due to the decrease of the QCM sensitivity. The sensitivity of the QCM cell activity monitoring system using collagen monomer as ECM is about 2.6 times better than that using collagen polymer. A collagen monomer exposed ECM was more stable than amino group and carboxyl group exposed ECMs based on an adhesiveness point of view. Therefore, a collagen monomer exposed ECM was the most stable and suitable for the QCM cell activity monitoring system among the four ECMs. The changes of the resonance frequency

  12. Mossbauer spectroscopic studies in ferroboron

    Science.gov (United States)

    Yadav, Ravi Kumar; Govindaraj, R.; Amarendra, G.

    2017-05-01

    Mossbauer spectroscopic studies have been carried out in a detailed manner on ferroboron in order to understand the local structure and magnetic properties of the system. Evolution of the local structure and magnetic properties of the amorphous and crystalline phases and their thermal stability have been addressed in a detailed manner in this study. Role of bonding between Fe 4s and/or 4p electrons with valence electrons of boron (2s,2p) in influencing the stability and magnetic properties of Fe-B system is elucidated.

  13. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    International Nuclear Information System (INIS)

    Suzuki, Masayo; Yamamoto, Masaki; Kumasaka, Takashi; Sato, Kazumichi; Toyokawa, Hidenori; Aries, Ian F.; Jerram, Paul A.; Ueki, Tatzuo

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance

  14. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    CERN Document Server

    Suzuki, M; Kumasaka, T; Sato, K; Toyokawa, H; Aries, I F; Jerram, P A; Ueki, T

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance.

  15. A comparison of film and 3 digital imaging systems for natural dental caries detection: CCD, CMOS, PSP and film

    Energy Technology Data Exchange (ETDEWEB)

    Han, Won Jeong [Dankook University College of Medicine, Seoul (Korea, Republic of)

    2004-03-15

    To evaluate the diagnostic accuracy of occlusal and proximal caries detection using CCD, CMOS, PSP and film system. 32 occlusal and 30 proximal tooth surfaces were radiographed under standardized conditions using 3 digital systems; CCD (CDX-2000HQ, Biomedysis Co., Seoul, Korea), CMOS (Schick, Schick Inc., Long Island, USA), PSP (Digora FMX, Orion Co./Soredex, Helsinki, Finland) and 1 film system (Kodak Insight, Eastman Kodak, Rochester, USA). 5 observers examined the radiographs for occlusal and proximal caries using a 5-point confidence scale. The presence of caries was validated histologically and radiographically. Diagnostic accuracy was evaluated using ROC curve areas (AZ). Analysis using ROC curves revealed the area under each curve which indicated a diagnostic accuracy. For occlusal caries, Kodak Insight film had an Az of 0.765, CCD one of 0.730, CMOS one of 0.742 and PSP one of 0.735. For proximal caries, Kodak Insight film had an Az of 0.833, CCD one of 0.832, CMOS one of 0.828 and PSP one of 0.868. No statistically significant difference was noted between any of the imaging modalities. CCD, CMOS, PSP and film performed equally well in the detection of occlusal and proximal dental caries. CCD, CMOS and PSP-based digital images provided a level of diagnostic performance comparable to Kodak Insight film.

  16. High time resolution CCD camera with X-ray image intensifier for SPring-8 BL40XU

    CERN Document Server

    Oka, T; Yagi, N

    2003-01-01

    SPring-8 BL40XU is designed to use high flux X-ray for small angle X-ray scattering and multi purpose. The flux at the experimental hutch is about 1 x 10 sup 1 sup 5 photons/sec at 12.4 KeV, which is larger 2 approx 3 figures than other beamlines at SPring-8. To utilize the high flux X-ray efficiently, new high-speed detector is needed. Therefore, a high frame rate CCD camera C7770 (Hamamatsu) and a new 6-inch X-ray image intensifier V5445P (Hamamatsu) were developed for BL40XU. The CCD camera has three CCD chips to increase the readout speed. Three identical images are created by a prism system in the CCD camera and projected onto the three chips. The pixel number of the CCD is 640 x 480 and the frame rate is 291 frames/sec. Reduction of the number of horizontal lines leads to a faster frame rate up to a few thousands. The combination of the CCD and with an X-ray shutter also leads to faster discrete data acquisition. (author)

  17. Laser spectroscopic investigation of singly and doubly charged thorium ions

    Energy Technology Data Exchange (ETDEWEB)

    Thielking, Johannes; Meier, David-Marcel; Glowacki, Przemyslaw; Okhapkin, Maksim V.; Peik, Ekkehard [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2017-07-01

    The {sup 229}Th isotope possesses a unique, low-energy nuclear isomeric state at about 7.8(5) eV. This fact has stimulated the development of novel ideas in the borderland between atomic and nuclear physics, for example the use as an optical nuclear clock. Since the required precise information on the isomer energy is not yet available, it is intensely searched for using different experimental approaches. For the excitation of the nuclear isomer via electronic bridge or NEET processes, we plan to use two-photon laser excitation of high-lying electronic levels in Th{sup +}. We recently expanded our search range to higher energies and measured 38 previously unknown energy levels in the range from 7.8 eV to 8.7 eV. We also prepare to study the nuclear structure of the isomeric state in cooperation with the Maier-Leibnitz-Laboratorium at LMU Munich, using trapped recoil ions, where the isomeric state is populated via α-decay from {sup 233}U. For this purpose we investigate the hyperfine structure of suitable transitions of Th{sup 2+}.

  18. Spectroscopic data bank of nuclear quadrupole resonance

    International Nuclear Information System (INIS)

    Grechishkin, V.S.; Grechishkina, R.V.

    1997-01-01

    Capabilities of a special spectroscopic database application program are described. The work conducted has demonstrated the efficiency of the Microsoft Office package for control of spectroscopic databases and analysis of technological mixtures in a field of radio spectroscopy like nuclear quadrupole resonance

  19. Synthesis and spectroscopic properties of homo- and ...

    Indian Academy of Sciences (India)

    Unknown

    Mehrotra. Synthesis and spectroscopic properties of homo- and heterobimetallic complexes of oxovanadium(V). † ... Spectroscopic (IR, UV–Vis and (1H, 27Al, 51V) NMR) properties of the new com- plexes have been investigated and their ... refluxed under a fractionating column (10 cm), fol- lowed by continuous azeotropic ...

  20. Statistical properties of spectroscopic binary stars

    NARCIS (Netherlands)

    Hogeveen, S.J.

    1992-01-01

    As part of a study of the mass-ratio distribution of spectroscopic binary stars, the statistical properties of the systems in the Eighth Catalogue of the Orbital Elements of Spectroscopic Binary Stars, compiled by Batten et al. (1989), are investigated. Histograms are presented of the

  1. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  2. Synthesis, molecular structure, spectroscopic investigations and ...

    Indian Academy of Sciences (India)

    The spectroscopic properties of the title compound have beeninvestigated by using IR, UV–Vis and ¹H NMR techniques. The molecular geometry and spectroscopic data of the title compound have been calculated by using the density functional method (B3LYP) invoking 6-311G(d,p) basis set. UV-Vis spectra of the two ...

  3. On-Line High Dose-Rate Gamma Ray Irradiation Test of the CCD/CMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In this paper, test results of gamma ray irradiation to CCD/CMOS cameras are described. From the CAMS (containment atmospheric monitoring system) data of Fukushima Dai-ichi nuclear power plant station, we found out that the gamma ray dose-rate when the hydrogen explosion occurred in nuclear reactors 1{approx}3 is about 160 Gy/h. If assumed that the emergency response robot for the management of severe accident of the nuclear power plant has been sent into the reactor area to grasp the inside situation of reactor building and to take precautionary measures against releasing radioactive materials, the CCD/CMOS cameras, which are loaded with the robot, serve as eye of the emergency response robot. In the case of the Japanese Quince robot system, which was sent to carry out investigating the unit 2 reactor building refueling floor situation, 7 CCD/CMOS cameras are used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. In the preceding assumptions, a major problem which arises when dealing with CCD/CMOS cameras in the severe accident situations of the nuclear power plant is the presence of high dose-rate gamma irradiation fields. In the case of the DBA (design basis accident) situations of the nuclear power plant, in order to use a CCD/CMOS camera as an ad-hoc monitoring unit in the vicinity of high radioactivity structures and components of the nuclear reactor area, a robust survivability of this camera in such intense gamma-radiation fields therefore should be verified. The CCD/CMOS cameras of various types were gamma irradiated at a

  4. Electronic Time-Gated and Spectroscopic Near-Infrared Imaging of Lesions in Human Tissues*

    Science.gov (United States)

    Gayen, S. K.; Alrubaiee, M.; Alfano, R. R.; Koutcher, J.; Savage, H.

    2000-03-01

    Near-infrared (NIR) transillumination imaging is used to investigate normal and cancerous tissues of human breast, thyroid, and parotid gland. The time-sliced imaging arrangement uses 130-fs, 1 kHz repetition-rate, 800 nm pulses from a Ti:sapphire laser and amplifier system for sample illumination and a CCD camera coupled to a gated image intensifier for recording two-dimensional (2D) images. Images recorded with earlier temporal slices of transmitted light highlight cancerous tissues while those recorded with later slices accentuate normal fibrous tissues. The spectroscopic imaging arrangement uses 1210-1300 nm tunable output of a Cr:forsterite laser for sample illumination, a Fourier space gate to discriminate against multiple-scattered light, and a NIR area camera to record 2D images. When light is tuned to a known absorption resonance of a particular tissue type, a marked enhancement in image contrast is observed which is indicative of the diagnostic potential of spectroscopic imaging.

  5. Phase-space measurement of stored electron beam at the Cornell Electron Storage Ring using a combination of slit array and CCD detector

    International Nuclear Information System (INIS)

    Cai, Z.; Lai, B.; Yun, W.; Gluskin, E.; Dejus, R.; Ilinski, P.

    1995-01-01

    A new technique for fast phase-space measurement has been developed and tested during a recent APS/CHESS undulator run. A measurement time of a few seconds was obtained by using a slit array and a high-resolution position sensitive detector system. The detector system consists of a CdWO 4 scintillation crystal, an optical imaging system, and a CCD detector. The short measurement time increases the measurement accuracy by reducing the effects from the instabilities of the electron beam in storage ring. The vertical emittance at the Cornell Electron Storage Ring in single-bunch and low-current mode was measured, and reasonable agreement with the expected values for both source size and source divergence were obtained (σ y =75 μm and σ y' =12 μrad). The effects of the finite size of the first slit on the measurement results are discussed, and a comprehensive data analysis procedure is described

  6. Galaxy Evolution Spectroscopic Explorer: Scientific Rationale

    Science.gov (United States)

    Heap, Sara; Ninkov, Zoran; Robberto, Massimo; Hull, Tony; Purves, Lloyd

    2016-01-01

    GESE is a mission concept consisting of a 1.5-m space telescope and UV multi-object slit spectrograph designed to help understand galaxy evolution in a critical era in the history of the universe, where the rate of star-formation stopped increasing and started to decline. To isolate and identify the various processes driving the evolution of these galaxies, GESE will obtain rest-frame far-UV spectra of 100,000 galaxies at redshifts, z approximately 1-2. To obtain such a large number of spectra, multiplexing over a wide field is an absolute necessity. A slit device such as a digital micro-mirror device (DMD) or a micro-shutter array (MSA) enables spectroscopy of a hundred or more sources in a single exposure while eliminating overlapping spectra of other sources and blocking unwanted background like zodiacal light. We find that a 1.5-m space telescope with a MSA slit device combined with a custom orbit enabling long, uninterrupted exposures (approximately 10 hr) are optimal for this spectroscopic survey. GESE will not be operating alone in this endeavor. Together with x-ray telescopes and optical/near-IR telescopes like Subaru/Prime Focus Spectrograph, GESE will detect "feedback" from young massive stars and massive black holes (AGN's), and other drivers of galaxy evolution.

  7. New design for the UCO/Lick Observatory CCD guide camera

    Science.gov (United States)

    Wei, Mingzhi; Stover, Richard J.

    1996-03-01

    A new CCD based field acquisition and telescope guiding camera is being designed and built at UCO/Lick Observatory. Our goal is a camera which is fully computer controllable, compact in size, versatile enough to provide a wide variety of image acquisition modes, and able to operate with a wide variety of CCD detectors. The camera will improve our remote-observing capabilities since it will be easy to control the camera and obtain images over the Observatory computer network. To achieve the desired level of operating flexibility, the design incorporates state-of-the-art technologies such as high density, high speed programmable logic devices and non-volatile static memory. Various types of CCDs can be used in this system without major modification of the hardware or software. Though fully computer controllable, the camera can be operated as a stand-alone unit with most operating parameters set locally. A stand-alone display subsystem is also available. A thermoelectric device is used to cool the CCD to about -45c. Integration times can be varied over a range of 0.1 to 1000 seconds. High speed pixel skipping in both horizontal and vertical directions allows us to quickly access a selected subarea of the detector. Three different read out speeds allow the astronomer to select between high-speed/high-noise and low-speed/low-noise operation. On- chip pixel binning and MPP operation are also selectable options. This system can provide automatic sky level measurement and subtraction to accommodate dynamically changing background levels.

  8. Does DFT-SAPT method provide spectroscopic accuracy?

    Energy Technology Data Exchange (ETDEWEB)

    Shirkov, Leonid; Makarewicz, Jan, E-mail: jama@amu.edu.pl [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland)

    2015-02-14

    Ground state potential energy curves for homonuclear and heteronuclear dimers consisting of noble gas atoms from He to Kr were calculated within the symmetry adapted perturbation theory based on the density functional theory (DFT-SAPT). These potentials together with spectroscopic data derived from them were compared to previous high-precision coupled cluster with singles and doubles including the connected triples theory calculations (or better if available) as well as to experimental data used as the benchmark. The impact of midbond functions on DFT-SAPT results was tested to study the convergence of the interaction energies. It was shown that, for most of the complexes, DFT-SAPT potential calculated at the complete basis set (CBS) limit is lower than the corresponding benchmark potential in the region near its minimum and hence, spectroscopic accuracy cannot be achieved. The influence of the residual term δ(HF) on the interaction energy was also studied. As a result, we have found that this term improves the agreement with the benchmark in the repulsive region for the dimers considered, but leads to even larger overestimation of potential depth D{sub e}. Although the standard hybrid exchange-correlation (xc) functionals with asymptotic correction within the second order DFT-SAPT do not provide the spectroscopic accuracy at the CBS limit, it is possible to adjust empirically basis sets yielding highly accurate results.

  9. A convolutional neural network to filter artifacts in spectroscopic MRI.

    Science.gov (United States)

    Gurbani, Saumya S; Schreibmann, Eduard; Maudsley, Andrew A; Cordova, James Scott; Soher, Brian J; Poptani, Harish; Verma, Gaurav; Barker, Peter B; Shim, Hyunsuk; Cooper, Lee A D

    2018-03-09

    Proton MRSI is a noninvasive modality capable of generating volumetric maps of in vivo tissue metabolism without the need for ionizing radiation or injected contrast agent. Magnetic resonance spectroscopic imaging has been shown to be a viable imaging modality for studying several neuropathologies. However, a key hurdle in the routine clinical adoption of MRSI is the presence of spectral artifacts that can arise from a number of sources, possibly leading to false information. A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled convolutional neural network that analyzed frequency-domain spectra to detect artifacts. When compared with a panel of MRS experts, our convolutional neural network achieved high sensitivity and specificity with an area under the curve of 0.95. A visualization scheme was implemented to better understand how the convolutional neural network made its judgement on single-voxel or multivoxel MRSI, and the convolutional neural network was embedded into a pipeline capable of producing whole-brain spectroscopic MRI volumes in real time. The fully automated method for assessment of spectral quality provides a valuable tool to support clinical MRSI or spectroscopic MRI studies for use in fields such as adaptive radiation therapy planning. © 2018 International Society for Magnetic Resonance in Medicine.

  10. C2D8: An eight channel CCD readout electronics dedicated to low energy neutron detection

    Science.gov (United States)

    Bourrion, O.; Clement, B.; Tourres, D.; Pignol, G.; Xi, Y.; Rebreyend, D.; Nesvizhevsky, V. V.

    2018-02-01

    Position-sensitive detectors for cold and ultra-cold neutrons (UCN) are in use in fundamental research. In particular, measuring the properties of the quantum states of bouncing neutrons requires micro-metric spatial resolution. To this end, a Charge Coupled Device (CCD) coated with a thin conversion layer that allows a real time detection of neutron hits is under development at LPSC. In this paper, we present the design and performance of a dedicated electronic board designed to read-out eight CCDs simultaneously and operating under vacuum.

  11. Alignment method for 50 m distance using laser and CCD camera

    International Nuclear Information System (INIS)

    Matsui, Sakuo; Zhang, Chao

    2003-01-01

    The interference pattern of laser light on the CCD device is suppressed by removing the cover glass in front of the device. The reference plane of the quadrupole magnets after division and restoration becomes unreliable for six years. The measurement tool for mechanical center of the multipole magnet is useful for checking the alignment. Few magnets of which reference planes were unreliable were aligned by using this tool. This also can measure the twist between the poles. It is quite important for the suppression of light fluctuation to choose pipe material. Temperature gradient refracts the light more in the pipe. Copper pipe is better than the paper one. (author)

  12. CCD photometry in the Vilnius photometric systems. II. Analysis of a region in Lyra

    International Nuclear Information System (INIS)

    Smriglio, F.; Dasgupta, A.K.; Boyle, R.P.; Straizys, V.; Janulis, R.

    1991-01-01

    Two-dimensional classification of 216 stars down to 17 mag based on their seven color photoelectric and CCD photometry in the Vilnius system is presented. Except for normal stars, several subdwarfs, metal-deficient giants, and stars of other peculiarities are suspected. Interstellar extinction is determined for normal stars in two areas north and south of globular cluster M56, as well as for a 1 square degree area around M56. The mean value of A v outside the galactic dust layer is ∼ 0.75 mag

  13. White-light fringe detection based on a novel light source and colour CCD camera

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Mikel, Břetislav; Lazar, Josef; Číp, Ondřej

    2011-01-01

    Roč. 22, č. 9 (2011), 094031:1-6 ISSN 0957-0233 R&D Projects: GA ČR GP102/09/P293; GA ČR GP102/09/P630; GA MPO 2A-1TP1/127; GA MŠk(CZ) LC06007; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : low-coherence interferometry * phase-crossing algorithm * CCD camera * gauge block Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.494, year: 2011

  14. Fotometría de imágenes CCD insuficientemente muestreadas

    Science.gov (United States)

    Ostrov, P. G.

    Se enfrenta el problema de la fotometría de imágenes CCD con una escala inadecuada (fwhm menor o igual que el tamaño de un pixel) y psf fuertemente variable con la posición. Se analiza, en particular, la aplicabilidad de una táctica propuesta por Massey, consistente en eliminar las vecinas débiles (utilizando una psf rudimentaria) para luego efectuar una fotometría de apertura sobre las estrellas brillantes. Se determina, mediante experimentos numéricos, la precisión alcanzada mediante esta técnica.

  15. UBVRI CCD photometric studies of open clusters Berkeley 15, Czernik 18 and NGC 2401.

    Science.gov (United States)

    Sujatha, S.; Babu, G. S. D.; Ananthamurthy, Sharath

    2004-12-01

    CCD photometric observations of three open clusters Berkeley 15 (=OCl 414), Czernik 18 (=OCl 426) and NGC 2401 (=OCl 588), obtained for the first time in UBVRI filters down to V=20 mag, are presented here. They are located at distances of 1259, 955 and 3467 parsecs with their respective ages estimated as ~5 x 109 years, ~0.8 to 1 x 109 years and ~1 x 109 years. While OCl 414 and OCl 426 are in the direction of the Auriga - Perseus constellations, OCl 588 is placed in the direction of Ophiuchus constellation in our Galaxy. The clusters studied here are of intermediate and old age category.

  16. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  17. 2-d spectroscopic imaging of brain tumours

    International Nuclear Information System (INIS)

    Ferris, N.J.; Brotchie, P.R.

    2002-01-01

    Full text: This poster illustrates the use of two-dimensional spectroscopic imaging (2-D SI) in the characterisation of brain tumours, and the monitoring of subsequent treatment. After conventional contrast-enhanced MR imaging of patients with known or suspected brain tumours, 2-D SI is performed at a single axial level. The level is chosen to include the maximum volume of abnormal enhancement, or, in non-enhancing lesions. The most extensive T2 signal abnormality. Two different MR systems have been used (Marconi Edge and GE Signa LX); at each site, a PRESS localisation sequence is employed with TE 128-144 ms. Automated software is used to generate spectral arrays, metabolite maps, and metabolite ratio maps from the spectroscopic data. Colour overlays of the maps onto anatomical images are produced using manufacturer software or the Medex imaging data analysis package. High grade gliomas showed choline levels higher than those in apparently normal brain, with decreases in NAA and creatine. Some lesions showed spectral abnormality extending into otherwise normal appearing brain. This was also seen in a case of CNS lymphoma. Lowgrade lesions showed choline levels similar to normal brain, but with decreased NAA. Only a small number of metastases have been studied, but to date no metastasis has shown spectral abnormality beyond the margins suggested by conventional imaging. Follow-up studies generally show spectral heterogeneity. Regions with choline levels higher than those in normal-appearing brain are considered to represent recurrent high-grade tumour. Some regions show choline to be the dominant metabolite, but its level is not greater than that seen in normal brain. These regions are considered suspicious for residual / recurrent tumour when the choline / creatine ratio exceeds 2 (lower ratios may represent treatment effect). 2-D SI improves the initial assessment of brain tumours, and has potential for influencing the radiotherapy treatment strategy. 2-D SI also

  18. Cancerous and normal human tissues investigated by near-infrared time-resolved and spectroscopic imaging techniques

    Science.gov (United States)

    Alrubaiee, Mohammad; Gayen, Swapan K.; Koutcher, Jason A.; Alfano, Robert R.

    2003-07-01

    Spectroscopic and time-sliced two-dimensional (2-D) transillumination imaging methods were used to investigate ex vivo tumor and normal tissues of human breast and parotid gland. The experimental arrangement for time-sliced optical imaging uses 120-fs, 1 kHz repetition-rate, 800-nm light pulses from a Ti:sapphire laser system for sample illumination and a charge coupled device (CCD) camera coupled to a gated image intensifier for recording 2-D images. The spectroscopic imaging arrangement uses 1210-1325 nm tunable output of a Cr: forsterite laser for sample illumination, a Fourier space gate to discriminate against multiple-scattered light, and a near-infrared (NIR) area camera to record 2-D images. Images recorded with earlier temporal slices of transmitted light highlighted tumors, while those recorded with later slices accentuated normal tissues. When light was tuned closer to the 1203 nm absorption resonance of adipose tissues, a marked enhancement in contrast between the images of adipose and fibrous tissues was observed. A similar wavelength-dependent difference between normal and cancerous tissues was observed. These results correlate well with pathology and nuclear magnetic resonance based analyses of the samples. This work demonstrates the advantages of time-resolved spectroscopic approach for imaging tumors in body organs.

  19. Pulsed-source MOCVD of high-k dielectric thin films with in situ monitoring by spectroscopic ellipsometry

    CERN Document Server

    Tsuchiya, Y; Tung, R T; Oda, S; Kurosawa, M; Hattori, T

    2003-01-01

    The formation of high-k thin films by pulsed-source metal-organic chemical vapor deposition (MOCVD) has been investigated with in situ spectroscopic ellipsometry. It is demonstrated that spectroscopic ellipsometry is an effective method for in situ monitoring of the fabrication of high-k dielectric thin films with thicknesses of several nm's. Thin yttrium oxide films with average roughnesses smaller than the thickness of a single molecular layer, and with a capacitance equivalent thickness approx 1.7 nm were obtained. Thicknesses and optical properties of each individual layer were also extracted from spectroscopic ellipsometry, by fitting to appropriate structural models. (author)

  20. Assessment of space proton radiation-induced charge transfer inefficiency in the CCD204 for the Euclid space observatory

    International Nuclear Information System (INIS)

    Gow, J P D; Murray, N J; Holland, A D; Hall, D J; Cropper, M; Burt, D; Hopkinson, G; Duvet, L

    2012-01-01

    Euclid is a medium class European Space Agency mission candidate for launch in 2019 with a primary goal to study the dark universe using the weak lensing and baryonic acoustic oscillations techniques. Weak lensing depends on accurate shape measurements of distant galaxies. Therefore it is beneficial that the effects of radiation-induced charge transfer inefficiency (CTI) in the Euclid CCDs over the course of the 5 year mission at L2 are understood. This will allow, through experimental analysis and modelling techniques, the effects of radiation induced CTI on shape to be decoupled from those of mass inhomogeneities along the line-of-sight. This paper discusses a selection of work from the study that has been undertaken using the e2v CCD204 as part of the initial proton radiation damage assessment for Euclid. The experimental arrangement and procedure are described followed by the results obtained, thereby allowing recommendations to be made on the CCD operating temperature, to provide an insight into CTI effects using an optical background, to assess the benefits of using charge injection on CTI recovery and the effect of the use of two different methods of serial clocking on serial CTI. This work will form the basis of a comparison with a p-channel CCD204 fabricated using the same mask set as the n-channel equivalent. A custom CCD has been designed, based on this work and discussions between e2v technologies plc. and the Euclid consortium, and designated the CCD273.

  1. The Cross-Cultural Dementia Screening (CCD): A new neuropsychological screening instrument for dementia in elderly immigrants.

    Science.gov (United States)

    Goudsmit, Miriam; Uysal-Bozkir, Özgül; Parlevliet, Juliette L; van Campen, Jos P C M; de Rooij, Sophia E; Schmand, Ben

    2017-03-01

    Currently, approximately 3.9% of the European population are non-EU citizens, and a large part of these people are from "non-Western" societies, such as Turkey and Morocco. For various reasons, the incidence of dementia in this group is expected to increase. However, cognitive testing is challenging due to language barriers and low education and/or illiteracy. The newly developed Cross-Cultural Dementia Screening (CCD) can be administered without an interpreter. It contains three subtests that assess memory, mental speed, and executive function. We hypothesized the CCD to be a culture-fair test that could discriminate between demented patients and cognitively healthy controls. To test this hypothesis, 54 patients who had probable dementia were recruited via memory clinics. Controls (N = 1625) were recruited via their general practitioners. All patients and controls were aged 55 years and older and of six different self-defined ethnicities (Dutch, Turkish, Moroccan-Arabic, Moroccan-Berber, Surinamese-Creole, and Surinamese-Hindustani). Exclusion criteria included current or previous conditions that affect cognitive functioning. There were performance differences between the ethnic groups, but these disappeared after correcting for age and education differences between the groups, which supports our central hypothesis that the CCD is a culture-fair test. Receiver-operating characteristic (ROC) and logistic regression analyses showed that the CCD has high predictive validity for dementia (sensitivity: 85%; specificity: 89%). The CCD is a sensitive and culture-fair neuropsychological instrument for dementia screening in low-educated immigrant populations.

  2. A directional fast neutron detector using scintillating fibers and an intensified CCD camera system

    International Nuclear Information System (INIS)

    Holslin, Daniel; Armstrong, A.W.; Hagan, William; Shreve, David; Smith, Scott

    1994-01-01

    We have been developing and testing a scintillating fiber detector (SFD) for use as a fast neutron sensor which can discriminate against neutrons entering at angles non-parallel to the fiber axis (''directionality''). The detector/convertor component is a fiber bundle constructed of plastic scintillating fibers each measuring 10 cm long and either 0.3 mm or 0.5 mm in diameter. Extensive Monte Carlo simulations were made to optimize the bundle response to a range of fast neutron energies and to intense fluxes of high energy gamma-rays. The bundle is coupled to a set of gamma-ray insenitive electro-optic intensifiers whose output is viewed by a CCD camera directly coupled to the intensifiers. Two types of CCD cameras were utilized: 1) a standard, interline RS-170 camera with electronic shuttering and 2) a high-speed (up to 850 frame/s) field-transfer camera. Measurements of the neutron detection efficiency and directionality were made using 14 MeV neutrons, and the response to gamma-rays was performed using intense fluxes from radioisotopic sources (up to 20 R/h). Recently, the detector was constructed and tested using a large 10 cm by 10 cm square fiber bundle coupled to a 10 cm diameter GEN I intensifier tube. We present a description of the various detector systems and report the results of experimental tests. ((orig.))

  3. Development of a CCD based system called DIGITRACK for automatic track counting and evaluation

    International Nuclear Information System (INIS)

    Molnar, J.; Somogyi, G.; Szilagyi, S.; Sepsy, K.

    1984-01-01

    We have developed, to the best of our knowledge, the first automatic track analysis system (DIGITRACK) in which the video signals are processed by a new type of video-receiver called charge-coupled device (CCD). The photosensitive semi-conductor device is a 2.5 cm long line imager of type Fairchild CCD 121HC which converts one row of the picture seen through a low magnification microscope into 1728 binary signals by a thresholding logic. The picture elements are analysed by a microcomputer equipped with two INTEL 8080 microprocessors and interfaced to a PDP-11/40 computer. The microcomputer also controls the motion of the stage of microscope. For pattern recognition and analysis a software procedure is developed which is able to differentiate between overlapping tracks and to determine the number, surface opening and x-y coordinates of the tracks occurring in a given detector area. The distribution of track densities and spot areas on the detector surface can be visualized on a graphic display. The DIGITRACK system has been tested for analysis of alpha-tracks registered in CR-39 and LR-115 detectors. (author)

  4. STRIPING NOISE REMOVAL OF IMAGES ACQUIRED BY CBERS 2 CCD CAMERA SENSOR

    Directory of Open Access Journals (Sweden)

    E. Amraei

    2014-10-01

    Full Text Available CCD Camera is a multi-spectral sensor that is carried by CBERS 2 satellite. Imaging technique in this sensor is push broom. In images acquired by the CCD Camera, some vertical striping noise can be seen. This is due to the detectors mismatch, inter detector variability, improper calibration of detectors and low signal-to-noise ratio. These noises are more profound in images acquired from the homogeneous surfaces, which are processed at level 2. However, the existence of these noises render the interpretation of the data and extracting information from these images difficult. In this work, spatial moment matching method is proposed to modify these images. In this method, the statistical moments such as mean and standard deviation of columns in each band are used to balance the statistical specifications of the detector array to those of reference values. After the removal of the noise, some periodic diagonal stripes remain in the image where their removal by using the aforementioned method seems impossible. Therefore, to omit them, frequency domain Butterworth notch filter was applied. Finally to evaluate the results, the image statistical moments such as the mean and standard deviation were deployed. The study proves the effectiveness of the method in noise removal.

  5. EVALUATION OF RATIONAL FUNCTION MODEL FOR GEOMETRIC MODELING OF CHANG'E-1 CCD IMAGES

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2012-08-01

    Full Text Available Rational Function Model (RFM is a generic geometric model that has been widely used in geometric processing of high-resolution earth-observation satellite images, due to its generality and excellent capability of fitting complex rigorous sensor models. In this paper, the feasibility and precision of RFM for geometric modeling of China's Chang'E-1 (CE-1 lunar orbiter images is presented. The RFM parameters of forward-, nadir- and backward-looking CE-1 images are generated though least squares solution using virtual control points derived from the rigorous sensor model. The precision of the RFM is evaluated by comparing with the rigorous sensor model in both image space and object space. Experimental results using nine images from three orbits show that RFM can precisely fit the rigorous sensor model of CE-1 CCD images with a RMS residual error of 1/100 pixel level in image space and less than 5 meters in object space. This indicates that it is feasible to use RFM to describe the imaging geometry of CE-1 CCD images and spacecraft position and orientation. RFM will enable planetary data centers to have an option to supply RFM parameters of orbital images while keeping the original orbit trajectory data confidential.

  6. Technical aspects and preliminary results of the CCD camera diagnostics on Extrap T2

    International Nuclear Information System (INIS)

    Cecconello, M.; Brzozowski, J.

    1999-01-01

    During the last months of Extrap T2 operations an imaging acquisition system, based on charge-coupled devices (CCD) cameras, has been operated. CCD cameras are a standard diagnostic used in many fusion experiments: i) to obtain a direct insight of the plasma behaviour during the pulse, of the evolution of plasma-wall interactions and, eventually, of locked modes, ii) to measure local quantities such as the wall temperature and the impurity influxes, iii) to study the hydrogen recycling behaviour and iv) to estimate the poloidal and toroidal mode numbers. One of the aims of our imaging campaign was to check the utility of such diagnostic for T2. The purpose of this report is to describe the technical aspects involved in the use of such diagnostic and to briefly describe the results obtained. In this view, this report aims to be a guide to the development of a dedicated image acquisition system for Extrap T2, after the planned rebuild, by stressing the problems and limitations encountered during this campaign

  7. The X-ray mirror telescope and the pn-CCD detector of CAST

    CERN Document Server

    Kuster, M; Englhauser, J; Franz, J; Friedrich, P; Hartmann, R; Kang, D; Kotthaus, R; Lutz, Gerhard; Moralez, J; Serber, W; Strüder, L

    2004-01-01

    The Cern Axion Solar Telescope - CAST - uses a prototype 9 Tesla LHC superconducting dipole magnet to search for a hypothetical pseudoscalar particle, the axion, which was proposed by theory in the 1980s to solve the strong CP problem and which could be a dark matter candidate. In CAST a strong magnetic field is used to convert the solar axions to detectable photons via inverse Primakoff effect. The resulting X-rays are thermally distributed in the energy range of 1-7 keV and can be observed with conventional X-ray detectors. The most sensitive detector system of CAST is a pn-CCD detector originally developed for XMM-Newton combined with a Wolter I type X-ray mirror system. The combination of a focusing X-ray optics and a state of the art pn-CCD detector which combines high quantum efficiency, good spacial and energy resolution, and low background improves the sensitivity of the CAST experiment such that for the first time the axion photon coupling constant can be probed beyond the best astrophysical constrai...

  8. First observations from a CCD all-sky spectrograph at Barentsburg (Spitsbergen

    Directory of Open Access Journals (Sweden)

    S. A. Chernouss

    2008-05-01

    Full Text Available A digital CCD all-sky spectrograph was made by the Polar Geophysical Institute (PGI to support IPY activity in auroral research. The device was tested at the Barentsburg observatory of PGI during the winter season of 2005–2006. The spectrograph is based on a cooled CCD and a transmission grating. The main features of this spectrograph are: a wide field of view (~180°, a wide spectral range (380–740 nm, a spectral resolution of 0.6 nm, a background level of about 100 R at 1-min exposure time. Several thousand spectra of nightglow and aurora were recorded during the observation season. It was possible to register both the strong auroral emissions, as well as weak ones. Spectra of aurora, including nitrogen and oxygen molecular and atomic emissions, as well as OH emissions of the nightglow are shown. A comparison has been conducted of auroral spectra obtained by the film all-sky spectral camera C-180-S at Spitsbergen during IGY, with spectra obtained at Barentsburg during the last winter season. The relationship between the red (630.0 nm and green (557.7 nm auroral emissions shows that the green emission is dominant near the minimum of the solar cycle activity (2005–2006. The opposite situation is observed during 1958–1959, with a maximum solar cycle activity.

  9. Improving quantum efficiency and spectral resolution of a CCD through direct manipulation of the depletion region

    Science.gov (United States)

    Brown, Craig; Ambrosi, Richard M.; Abbey, Tony; Godet, Olivier; O'Brien, R.; Turner, M. J. L.; Holland, Andrew; Pool, Peter J.; Burt, David; Vernon, David

    2008-07-01

    Future generations of X-ray astronomy instruments will require position sensitive detectors in the form of charge-coupled devices (CCDs) for X-ray spectroscopy and imaging with the ability to probe the X-ray universe with greater efficiency. This will require the development of CCDs with structures that will improve their quantum efficiency over the current state of the art. The quantum efficiency improvements would have to span a broad energy range (0.2 keV to >15 keV). These devices will also have to be designed to withstand the harsh radiation environments associated with orbits that extend beyond the Earth's magnetosphere. This study outlines the most recent work carried out at the University of Leicester focused on improving the quantum efficiency of an X-ray sensitive CCD through direct manipulation of the device depletion region. It is also shown that increased spectral resolution is achieved using this method due to a decrease in the number of multi-pixel events. A Monte Carlo and analytical models of the CCD have been developed and used to determine the depletion depths achieved through variation of the device substrate voltage, Vss. The models are also used to investigate multi-pixel event distributions and quantum efficiency as a function of depletion depth.

  10. Flat-Field Calibration of CCD Detector for Long TraceProfilers

    Energy Technology Data Exchange (ETDEWEB)

    Kirschman, Jonathan L.; Domning, Edward E.; Franck, Keith D.; Irick, Steve C.; MacDowell, Alastair A.; McKinney, Wayne R.; Morrison,Gregory Y.; Smith, Brian V.; Warwick, Tony; Yashchuk, Valeriy V.

    2007-07-31

    The next generation of synchrotrons and free electron lasersrequires x-ray optical systems with extremely high-performance,generally, of diffraction limited quality. Fabrication and use of suchoptics requires highly accurate metrology. In the present paper, wediscuss a way to improve the performance of the Long Trace Profiler(LTP), a slope measuring instrument widely used at synchrotron facilitiesto characterize x-ray optics at high-spatial-wavelengths fromapproximately 2 mm to 1 m. One of the major sources of LTP systematicerror is the detector. For optimal functionality, the detector has topossess the smallest possible pixel size/spacing, a fast method ofshuttering, and minimal non-uniformity of pixel-to-pixel photoresponse.While the first two requirements are determined by choice of detector,the non-uniformity of photoresponse of typical detectors such as CCDcameras is around 2-3 percent. We describe a flat-field calibration setupspecially developed for calibration of CCD camera photo-response and darkcurrent with an accuracy of better than 0.5 percent. Such accuracy isadequate for use of a camera as a detector for an LTP with performance of~;0.1 microradian (rms). We also present the design details of thecalibration system and results of calibration of a DALSA CCD camera usedfor upgrading our LTP-II instrument at the ALS Optical MetrologyLaboratory.

  11. Results from proton damage tests on the Michelson Doppler Imager CCD for SOHO

    Science.gov (United States)

    Zayer, Igor; Chapman, Ira; Duncan, Dexter W.; Kelly, G. A.; Mitchell, Keith E.

    1993-07-01

    Protons from solar flares represent the major threat to the scientific performance of a CCD in the SOHO orbit at L1, decreasing CTE and thus non-uniformly degrading the MTF of the detector. Lattice damage assessment and prediction rely on accurate radiation damage experiments to 'calibrate' numerical simulations and modeling. The energy ranges where TRIM and NIEL represent valid models overlap around a few MeV. Thus, the proton beam from Lockheed PARL's 0.1 to 3 MeV Van de Graaff generator provides a convenient test facility. We present results from an accurate experiment using 2 MeV protons on the MDI detector (LORAL 1024 X 1024 21 micrometers 3P MPP CCD). A premiere feature in the experiment is the achievement of a stable, uniform low fluence and extremely accurate dosimetry at this relatively low energy. Pre- and post-radiation CTE measurements for our specific mode of operation (relatively fast readout rate of 500 kpix/s) is obtained using Fe55 method over a wide temperature range. They reveal somewhat unexpected results. The damage is more severe to parallel CTE than to serial CTE and the former worsens when cooled down to -50 degree(s)C, then improves when cooled further.

  12. MR-compatible laparoscope with a distally mounted CCD for MR image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Yasunaga, Takefumi; Konishi, Kozo; Yamaguchi, Shohei; Okazaki, Ken; Hong, Jae-sung; Nakashima, Hideaki [Kyushu University, Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Fukuoka (Japan); Ieiri, Satoshi; Tanoue, Kazuo [Kyushu University Hospital, Department of Advanced Medicine and Innovative Technology, Fukuoka (Japan); Fukuyo, Tsuneo [Shinko Optical Co. Ltd, Bunkyo-ku, Tokyo (Japan); Hashizume, Makoto [Kyushu University, Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Fukuoka (Japan); Kyushu University Hospital, Department of Advanced Medicine and Innovative Technology, Fukuoka (Japan)

    2007-06-15

    Objects We have developed a new MR-compatible laparoscope that incorporates a distally mounted charge-coupled device (CCD). The MR-compatibility and feasibility of laparoscopy using the new laparoscope were evaluated during MR image-guided laparoscopic radiofrequency ablation therapy (RFA). Materials and methods MR compatibility of the laparoscope was investigated in terms of MR image artifact caused by electromagnetic interference (EMI) and susceptibility. MR images were obtained using spin echo and gradient echo pulse sequences with a 0.3 T open MRI unit. We performed an in vivo experiment with MR image-guided laparoscopic RFA on three pigs; near real-time MR images and 3-D navigation were possible using intraoperative MR images. Agarose gel was injected into the pigs' livers as puncture targets; the diameter of each target was approximately 20 mm. Results Artifacts resulting from EMI were not found in phantom experiments. MR image-guided laparoscopic RFA was successfully performed in all procedures. Both the laparoscopic vision and near real-time MR images were clear. No artifact was detected on the MR images and the surgeon was able to confirm the true position of the probe and target during treatment using the near real-time MR images. Conclusion Laparoscopic surgery is feasible under intraoperative MR image-guidance using a newly developed MR-compatible laparoscope with a distally mounted CCD. (orig.)

  13. A fast CCD detector for charge exchange recombination spectroscopy on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Thomas, D.M.; Burrell, K.H.; Groebner, R.J.; Gohil, P.

    1996-05-01

    Charge Exchange Recombination (CER) spectroscopy has become a standard diagnostic for tokamaks. CER measurements have been used to determine spatially and temporally resolved ion temperature, toroidal and poloidal ion rotation speed, impurity density and radial electric field. Knowledge of the spatial profile and temporal evolution of the electric field shear in the plasma edge is crucial to understanding the physics of the L to H transition. High speed CER measurements are also valuable for Edge Localized Mode (ELM) studies. Since the 0.52 ms minimum time resolution of our present system is barely adequate to study the time evolution of these phenomena, we have developed a new CCD detector system with about a factor of two better time resolution. In addition, our existing system detects sufficient photons to utilize the shortest time resolution only under exceptional conditions. The new CCD detector has a quantum efficiency of about 0.65, which is a factor of 7 better than our previous image intensifier-silicon photodiode detector systems. We have also equipped the new system with spectrometers of lower f/number. This combination should allow more routine operation at the minimum integration time, as well as improving data quality for measurements in the divertor-relevant region outside of the separatrix. Construction details, benchmark data and initial tokamak measurements for the new system will be presented

  14. A CCD-based system for the detection of DNA in electrophoresis gels by UV absorption

    International Nuclear Information System (INIS)

    Mahon, A.R.; MacDonald, J.H.; Mainwood, A.; Ott, R.J.

    1999-01-01

    A method and apparatus for the detection and quantification of large fragments of unlabelled nucleic acids in agarose gels is presented. The technique is based on ultraviolet (UV) absorption by nucleotides. A deuterium source illuminates individual sample lanes of an electrophoresis gel via an array of optical fibres. As DNA bands pass through the illuminated region of the gel the amount of UV light transmitted is reduced because of absorption by the DNA. During electrophoresis the regions of DNA are detected on-line using a UV-sensitive charge coupled device (CCD). As the absorption coefficient is proportional to the mass of DNA the technique is inherently quantitative. The mass of DNA in a region of the gel is approximately proportional to the integrated signal in the corresponding section of the CCD image. This system currently has a detection limit of less than 1.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. In addition the DNA sample remains in its native state. The removal of the carcinogenic dye from the detection procedure greatly reduces associated biological hazards. (author)

  15. Development of a programmable CCD detector for imaging, real time studies and other synchrotron radiation applications

    International Nuclear Information System (INIS)

    Brizard, C.

    1991-01-01

    A new CCD detector has been developed. The working of CCD and programmable detector is detailed in this thesis. The flexibility of the system allows the use of CCDs from different manufactures. The vacuum chamber of the detector is made of a beryllium window for experiments using X-radiation or of a quartz window coupled to a focusing optic system. Its temporal resolution is 2 microseconds with a X-radiation imaging. Images with a high spatial resolution have been obtained with the focusing system having a set of optical lenses and filters. The first X-ray diffraction experiments in the range of milliseconds and microseconds for the study of semiconductor heterostructures have been performed at X16 beam line at NSLS (National Synchrotron Light Source) with the detector illuminated by X-rays. For the first time, a X-ray beam, horizontally focused has been used to record a X-ray diffraction spectra on a 2-D detector. Finally, a X-ray diffraction method has been used to study the first steps of the crystallisation of Fe 8 0B 2 0 amorphous metallic alloy at X6 beam line at NSLS

  16. Applications in radiation therapy of a scintillating screen viewed by a CCD camera

    International Nuclear Information System (INIS)

    Schippers, J.M.; Boon, S.N.; Luijk, P. van

    2002-01-01

    A two-dimensional (2D) dosimetry system has been designed for position-sensitive dose-measurement applications in modern radiation therapy. The system consists of a scintillating screen (Gd 2 O 2 S : Tb), observed by a low-noise CCD camera with a long integration time. The system allows reliable and accurate simultaneous 2D imaging of therapeutic dose distributions in the scintillator with sub millimeter spatial resolution. This system has been applied successfully at different applications in radiation therapy. Results of dose measurements in a treatment modality using a scanning proton beam are reported. It is shown that a quick and reliable measurement can be done. The screen+CCD system has proven to perform accurate dosimetry in applications where beams with a small (1-5 mm) diameter are used and where absolute dosimetry by means of standard ionization chambers is not possible due to their relatively large size. For the routine measurements of the alignment of therapeutic beams with respect to the tumor position, the system detects beam misalignments with an accuracy of 0.05 mm, which is more than sufficient to detect the maximum allowed misalignments in radiation therapy

  17. Multi-spectral CCD camera system for ocean water color and seacoast observation

    Science.gov (United States)

    Zhu, Min; Chen, Shiping; Wu, Yanlin; Huang, Qiaolin; Jin, Weiqi

    2001-10-01

    One of the earth observing instruments on HY-1 Satellite which will be launched in 2001, the multi-spectral CCD camera system, is developed by Beijing Institute of Space Mechanics & Electricity (BISME), Chinese Academy of Space Technology (CAST). In 798 km orbit, the system can provide images with 250 m ground resolution and a swath of 500 km. It is mainly used for coast zone dynamic mapping and oceanic watercolor monitoring, which include the pollution of offshore and coast zone, plant cover, watercolor, ice, terrain underwater, suspended sediment, mudflat, soil and vapor gross. The multi- spectral camera system is composed of four monocolor CCD cameras, which are line array-based, 'push-broom' scanning cameras, and responding for four spectral bands. The camera system adapts view field registration; that is, each camera scans the same region at the same moment. Each of them contains optics, focal plane assembly, electrical circuit, installation structure, calibration system, thermal control and so on. The primary features on the camera system are: (1) Offset of the central wavelength is better than 5 nm; (2) Degree of polarization is less than 0.5%; (3) Signal-to-noise ratio is about 1000; (4) Dynamic range is better than 2000:1; (5) Registration precision is better than 0.3 pixel; (6) Quantization value is 12 bit.

  18. Holographic particle image velocimetry: signal recovery from under-sampled CCD data

    Science.gov (United States)

    Coupland, J. M.

    2004-04-01

    Holographic particle image velocimetry (HPIV) has now been demonstrated by several research groups as a method to make three-component velocity measurements from a three-dimensional fluid flow field. More recently digital HPIV has become a hot topic with the promise of near-real-time measurements without the often cumbersome optics and wet processing associated with traditional holographic methods. It is clear, however, that CCD cameras have a limited number of pixels and are not capable of resolving more than a small fraction of the interference pattern that is recorded by a typical particulate hologram. In this paper, we consider under-sampling of the interference pattern to reduce the information content and to allow recordings to be made on a CCD sensor. We describe the basic concept of model fitting to under-sampled data and demonstrate signal recovery through computer simulation. A three-dimensional analysis shows that in general, periodic sampling strategies can result in multiple particle images in the reconstruction. It is shown, however, that the significance of these peaks is reduced in the case of high numerical aperture (NA) reconstruction and can be virtually eliminated by dithering the position of sampling apertures.

  19. Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring

    Directory of Open Access Journals (Sweden)

    Mingquan Wu

    2015-12-01

    Full Text Available With the recent launch of new satellites and the developments of spatiotemporal data fusion methods, we are entering an era of high spatiotemporal resolution remote-sensing analysis. This study proposed a method to reconstruct daily 30 m remote-sensing data for monitoring crop types and phenology in two study areas located in Xinjiang Province, China. First, the Spatial and Temporal Data Fusion Approach (STDFA was used to reconstruct the time series high spatiotemporal resolution data from the Huanjing satellite charge coupled device (HJ CCD, Gaofen satellite no. 1 wide field-of-view camera (GF-1 WFV, Landsat, and Moderate Resolution Imaging Spectroradiometer (MODIS data. Then, the reconstructed time series were applied to extract crop phenology using a Hybrid Piecewise Logistic Model (HPLM. In addition, the onset date of greenness increase (OGI and greenness decrease (OGD were also calculated using the simulated phenology. Finally, crop types were mapped using the phenology information. The results show that the reconstructed high spatiotemporal data had a high quality with a proportion of good observations (PGQ higher than 0.95 and the HPLM approach can simulate time series Normalized Different Vegetation Index (NDVI very well with R2 ranging from 0.635 to 0.952 in Luntai and 0.719 to 0.991 in Bole, respectively. The reconstructed high spatiotemporal data were able to extract crop phenology in single crop fields, which provided a very detailed pattern relative to that from time series MODIS data. Moreover, the crop types can be classified using the reconstructed time series high spatiotemporal data with overall accuracy equal to 0.91 in Luntai and 0.95 in Bole, which is 0.028 and 0.046 higher than those obtained by using multi-temporal Landsat NDVI data.

  20. Identification of patients with hereditary haemochromatosis by magnetic resonance imaging and spectroscopic relaxation time measurements

    DEFF Research Database (Denmark)

    Thomsen, C; Wiggers, P; Ring-Larsen, H

    1992-01-01

    was found. Although both spectroscopic T2 relaxation time measurements and signal intensity ratios could be used to quantify liver iron concentration, the gradient echo imaging seemed to be the best choice. Gradient echo imaging could be performed during a single breath hold, so motion artifacts could...

  1. 9 Sagittarii: uncovering an O-type spectroscopic binary with an 8.6 year period

    NARCIS (Netherlands)

    Rauw, G.; Sana, H.; Spano, M.; Gosset, E.; Mahy, L.; De Becker, M.; Eenens, P.

    2012-01-01

    Context. The O-type object 9 Sgr is a well-known synchrotron radio emitter. This feature is usually attributed to colliding-wind binary systems, but 9 Sgr was long considered a single star. Aims. We have conducted a long-term spectroscopic monitoring of this star to investigate its multiplicity and

  2. Spectroscopic instrumentation fundamentals and guidelines for astronomers

    CERN Document Server

    Eversberg, Thomas

    2015-01-01

    In order to analyze the light of cosmic objects, particularly at extremely great distances, spectroscopy is the workhorse of astronomy. In the era of very large telescopes, long-term investigations are mainly performed with small professional instruments. Today they can be done using self-designed spectrographs and highly efficient CCD cameras, without the need for large financial investments.   This book explains the basic principles of spectroscopy, including the fundamental optical constraints and all mathematical aspects needed to understand the working principles in detail. It covers the complete theoretical and practical design of standard and Echelle spectrographs. Readers are guided through all necessary calculations, enabling them to engage in spectrograph design. The book also examines data acquisition with CCD cameras and fiber optics, as well as the constraints of specific data reduction and possible sources of error. In closing it briefly highlights some main aspects of the research on massive s...

  3. Expression of MdCCD7 in the scion determines the extent of sylleptic branching and the primary shoot growth rate of apple trees.

    Science.gov (United States)

    Foster, Toshi M; Ledger, Susan E; Janssen, Bart J; Luo, Zhiwei; Drummond, Revel S M; Tomes, Sumathi; Karunairetnam, Sakuntala; Waite, Chethi N; Funnell, Keith A; van Hooijdonk, Ben M; Saei, Ali; Seleznyova, Alla N; Snowden, Kimberley C

    2017-11-28

    Branching has a major influence on the overall shape and productivity of a plant. Strigolactones (SLs) have been identified as plant hormones that have a key role in suppressing the outgrowth of axillary meristems. CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes are integral to the biosynthesis of SLs and are well characterized in annual plants, but their role in woody perennials is relatively unknown. We identified CCD7 and CCD8 orthologues from apple and demonstrated that MdCCD7 and MdCCD8 are able to complement the Arabidopsis branching mutants max3 and max4 respectively, indicating conserved function. RNAi lines of MdCCD7 show reduced gene expression and increased branching in apple. We performed reciprocal grafting experiments with combinations of MdCCD7 RNAi and wild-type 'Royal Gala' as rootstocks and scion. Unexpectedly, wild-type roots were unable to suppress branching in MdCCD7 RNAi scions. Another key finding was that MdCCD7 RNAi scions initiated phytomers at an increased rate relative to the wild type, resulting in a greater node number and primary shoot length. We suggest that localized SL biosynthesis in the shoot, rather than roots, controls axillary bud outgrowth and shoot growth rate in apple. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Synthesis, Spectroscopic and Pharmacological Studies of Bivalent ...

    African Journals Online (AJOL)

    Synthesis, Spectroscopic and Pharmacological Studies of Bivalent Copper, Zinc and Mercury Complexes of Thiourea. ... All the metal complexes were characterized by elemental chemical analysis, molar conductance, magnetic susceptibility measurements and IR spectroscopy. Cu(II) complexes were additionally ...

  5. Vibrational Spectroscopic Techniques for Probing Bioelectrochemical Systems.

    Science.gov (United States)

    Ash, Philip A; Vincent, Kylie A

    A more complete understanding of bioelectrochemical interfaces is of increasing importance in both fundamental studies and biotechnological applications of proteins. Bioelectrochemical methods provide detailed information about the activity or rate of a process, but in situ spectroscopic methods are needed to gain direct structural insight into functionally relevant states. A number of methods have been reported that allow electrochemical and spectroscopic data to be collected from the same electrode, providing direct spectroscopic 'snapshots' of protein function, and here we focus on the application of infrared and Raman spectroscopies to the study of electrode-immobilised species. The ability to probe coordination at metal centres, protonation changes in amino acid side chains, reaction-induced changes in organic cofactors or substrates, protein orientation and subtle changes in protein secondary structure simultaneously, rapidly and at room temperature means that vibrational spectroscopic approaches are almost uniquely applicable to answering a wide range of questions in bioelectrochemistry.

  6. A method of immediate detection of objects with a near-zero apparent motion in series of CCD-frames

    Science.gov (United States)

    Savanevych, V. E.; Khlamov, S. V.; Vavilova, I. B.; Briukhovetskyi, A. B.; Pohorelov, A. V.; Mkrtichian, D. E.; Kudak, V. I.; Pakuliak, L. K.; Dikov, E. N.; Melnik, R. G.; Vlasenko, V. P.; Reichart, D. E.

    2018-01-01

    The paper deals with a computational method for detection of the solar system minor bodies (SSOs), whose inter-frame shifts in series of CCD-frames during the observation are commensurate with the errors in measuring their positions. These objects have velocities of apparent motion between CCD-frames not exceeding three rms errors (3σ) of measurements of their positions. About 15% of objects have a near-zero apparent motion in CCD-frames, including the objects beyond the Jupiter's orbit as well as the asteroids heading straight to the Earth. The proposed method for detection of the object's near-zero apparent motion in series of CCD-frames is based on the Fisher f-criterion instead of using the traditional decision rules that are based on the maximum likelihood criterion. We analyzed the quality indicators of detection of the object's near-zero apparent motion applying statistical and in situ modeling techniques in terms of the conditional probability of the true detection of objects with a near-zero apparent motion. The efficiency of method being implemented as a plugin for the Collection Light Technology (CoLiTec) software for automated asteroids and comets detection has been demonstrated. Among the objects discovered with this plugin, there was the sungrazing comet C/2012 S1 (ISON). Within 26 min of the observation, the comet's image has been moved by three pixels in a series of four CCD-frames (the velocity of its apparent motion at the moment of discovery was equal to 0.8 pixels per CCD-frame; the image size on the frame was about five pixels). Next verification in observations of asteroids with a near-zero apparent motion conducted with small telescopes has confirmed an efficiency of the method even in bad conditions (strong backlight from the full Moon). So, we recommend applying the proposed method for series of observations with four or more frames.

  7. Spectroscopic diagnostics of industrial plasmas

    International Nuclear Information System (INIS)

    Joshi, N.K.

    2004-01-01

    Plasmas play key role in modern industry and are being used for processing micro electronic circuits to the destruction of toxic waste. Characterization of industrial plasmas which includes both 'thermal plasmas' and non-equilibrium plasmas or 'cold plasmas' in industrial environment offers quite a challenge. Numerous diagnostic techniques have been developed for the measurement of these partially ionized plasma and/or particulate parameters. The 'simple' non-invasive spectroscopic methods for characterization of industrial plasmas will be discussed in detail in this paper. The excitation temperature in thermal (DC/RF) plasma jets has been determined using atomic Boltzmann technique. The central axis temperature of thermal plasma jets in a spray torch can be determined using modified atomic Boltzmann technique with out using Abel inversion. The Stark broadening of H β and Ar-I (430 nm) lines have been used to determine the electron number density in thermal plasma jets. In low-pressure non-equilibrium argon plasma, electron temperature has been measured using the Corona model from the ratio of line intensities of atomic and ionic transitions. (author)

  8. ImmunoCAP cellulose displays cross-reactive carbohydrate determinant (CCD) epitopes and can cause false-positive test results in patients with high anti-CCD IgE antibody levels.

    Science.gov (United States)

    Hemmer, Wolfgang; Altmann, Friedrich; Holzweber, Friedrich; Gruber, Clemens; Wantke, Felix; Wöhrl, Stefan

    2018-01-01

    Cross-reactive carbohydrate determinants (CCDs) in plants and insect venoms are a common cause of irrelevant positive test results during in vitro allergy diagnosis. We observed that some CCD-positive sera show nonspecific IgE binding even with CCD-free recombinant allergens when using the Phadia ImmunoCAP platform. We investigated whether cellulose used as an allergen carrier in ImmunoCAP harbors residual N-glycans, causing nonspecific background binding in CCD-positive sera. IgE binding to 6 samples of blank ImmunoCAPs coupled to either streptavidin (SA-CAP-1 or 2) or nonallergenic maltose-binding protein (MBP; MBP-CAP-1 to 4) and binding to a panel of 4 recombinant allergens were compared in CCD-positive sera before and after inhibition with a CCD inhibitor (MUXF 3 -human serum albumin). Of 52 CCD-positive sera (bromelain, 1.01-59.6 kilounits of antigen per liter [kU A /L]) tested on SA-CAP-1, 35 (67%) showed IgE binding of greater than 0.35 kU A /L (0.41-4.22 kU A /L). Among those with anti-CCD IgE levels of greater than 7.0 kU A /L, 90% (26/29) were positive. IgE binding to SA-CAP-1 correlated with IgE binding to bromelain (r = 0.68) and was completely abolished by serum preincubation with the CCD inhibitor (n = 15). Binding scores with SA-CAP-2 and MBP-CAP-1 to MBP-CAP-4 were generally lower but strongly correlated with those of SA-CAP-1 and bromelain. IgE reactivity of 10 CCD-positive sera (14.0-52.5 kU A /L) with the recombinant allergens rPhl p 12, rFel d 1, rAra h 2, and rPru p 3 was positive to at least 1 allergen in 8 of 10 (0.36-1.63 kU A /L) and borderline in 2 of 10 (0.21-0.25 kU A /L). Binding correlated with antibody binding to bromelain (r = 0.61) and to all blank ImmunoCAPs (r > 0.90) and could be completely blocked by the CCD inhibitor. Overall, mean background binding to cellulose CCDs corresponded to 2% to 3% of the reactivity seen with bromelain. Cellulose used as a solid-phase allergen carrier can contain varying amounts of CCDs

  9. Detailed calibration of the PI-LCX:1300 high performance single photon counting hard x-ray CCD camera

    Science.gov (United States)

    Hong, Wei; Wen, Xian-Lun; Wei, Lai; Zhu, Bin; Wu, Yu-Chi; Dong, Ke-Gong; Jiao, Chun-Ye; Wu, Bo; He, Ying-Ling; Zhang, Fa-Qiang; Zhou, Wei-Min; Gu, Yu-Qiu

    2017-02-01

    Not Available Project supported by the Science Foundation of China Academy of Engineering Physics (Grant Nos. 2013A0103003 and 2012B0102008) and the National High-Tech Inertial Confinement Fusion Committee of China.

  10. Experience feedback on ccd detectors in orbit: focus on in-flight degradation of several cases of performance

    Science.gov (United States)

    Penquer, A.; Lebègue, L.; Herve, D.; Fougnie, B.

    2017-11-01

    The performance stability of CCD detectors and video electronics during life time is an important issue for most of space missions. Several items are concerned, such as CCD dark signal increase, induced by space radiation environment (dose effects, proton hits, etc... ). Ground tests are performed to predict on-board behaviour and end-of-life performance. But generaly this approach cannot achieve a rigorous representation of mission conditions. Experience feedback from in-flight measurements is therefore very useful in order to infer what really occurs and to allow comparison between actual findings and ground tests.

  11. Spectroscopic Methods of Steroid Analysis

    Science.gov (United States)

    Kasal, Alexander; Budesinsky, Milos; Griffiths, William J.

    Modern chemical laboratories contain equipment capable of measuring many of the physical properties of single chemical compounds and mixtures of compounds, particularly their spectral properties, which can, if interpreted correctly, provide valuable information about both structure (of single compounds) and composition (of mixtures). Over the past 50 years, the author have witnessed enormous progress in the technical capabilities of this equipment. Automation and speed of analysis have greatly improved the ease of use and the versatility of the technology.

  12. Continuous real-time digital data acquisition with high-resolution visible and infrared CCD cameras

    Science.gov (United States)

    Stufflebeam, Joseph L.; Waldie, Arthur H.; Qualtrough, John A.; Soules, David B.; Ambrose, Joseph G.; Reed, Michelle F.

    1993-08-01

    A high speed digital interface has been developed to accept real time digital pixel data from high resolution CCD cameras. The interface is currently in use with both a 640 X 486 12-bit digital infrared camera operating in non-interlaced mode at 30 frames per second, and a 756 X 484 8-bit digital visible camera operating in interlaced mode at 60 fields per second. Using programmable logic, the interface is reconfigurable to accept digital data from a variety of sensors at data rates of up to 18 megabytes per second. The buffered digital data is recorded on a hard disk array consisting of up to nine individual drives, with a present capacity exceeding 5.9 gigabytes. Continuous recording is achieved by implementing a loop function on the disk array.

  13. CCD photometry of stars in the old open cluster NGC 188

    International Nuclear Information System (INIS)

    Caputo, F.; Chieffi, A.; Castellani, V.; Collados, M.; Martinez Roger, C.

    1990-01-01

    CCD photometry for stars in three fields centered on the old open cluster NGC 188 is presented, with the aim of investigating the HR diagram distribution of cluster main-sequence stars. A sequence of subgiant, turnoff, and main-sequence stars has been detected, extending the observed lower main sequence down to about m(v) = 20 mag. It is found that the observed color-magnitude diagram appears well fitted by a theoretical isochrone for an age of about 6-billion yr, provided that Yale transformations from the theoretical into the observational plane are assumed. From the distribution of the stellar luminosities, it is found that the turnoff stars should have masses of about 1.3 solar mass. The cluster evolutionary scenario is discussed in connection with the reported luminosity of the clump of He-burning giants. 21 refs

  14. Reverse engineering of the homogeneous-entity product profiles based on CCD

    Science.gov (United States)

    Gan, Yong; Zhong, Jingru; Sun, Ning; Sun, Aoran

    2011-08-01

    This measurement system uses delaminated measurement principle, measures the three perpendicular direction values of the entities. When the measured entity is immerged in the liquid layer by layer, every layer's image are collected by CCD and digitally processed. It introduces the basic measuring principle and the working process of the measure method. According to Archimedes law, the related buoyancy and volume that soaked in different layer's depth are measured by electron balance and the mathematics models are established. Through calculating every layer's weight and centre of gravity by computer based on the method of Artificial Intelligence, we can reckon 3D coordinate values of every minute entity cell in different layers and its 3D contour picture is constructed. The experimental results show that for all the homogeneous entity insoluble in water, it can measure them. The measurement velocity is fast and non-destructive test, it can measure the entity with internal hole.

  15. A compact CCD-monitored atomic force microscope with optical vision and improved performances.

    Science.gov (United States)

    Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang

    2013-09-01

    A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.

  16. Application of CCD uvby photometry to the globular cluster NGC 6397

    Energy Technology Data Exchange (ETDEWEB)

    Anthony-twarog, B.J.

    1987-06-01

    The CTIO 4-m prime-focus CCD has been used with Stromgren uvby filters to study the turnoff of the globular cluster NGC 6397. A well-defined CM diagram to V about 18 has been achieved. A previously noted correlation between delta m1 and delta c1 for turnoff stars appears to be confirmed by the observations. This correlation is not predicted by model atmosphere synthesis of Stromgren colors, and has not been confirmed by recent observations of metal-poor dwarfs bluer than b-y = 0.40 by Schuster and Nissen (1987). An age of 16.6 + or - 0.7 x 10 to the 9th yr is indicated for a color excess of E(b-y) = 0.13 and (Fe/H) = -2.2. 43 references.

  17. CCD ubvy photometry of the bimodal main-sequence cluster NGC 3680

    Energy Technology Data Exchange (ETDEWEB)

    Anthony-Twarog, B.J.; Twarog, B.A.; Shodhan, S. (Kansas Univ., Lawrence (USA))

    1989-11-01

    CCD uvby photometry for the intermediate age, southern open cluster, NGC 3680, is analyzed. For a reddening of E(b-y) = 0.034, a true cluster modulus of 9.74 + or - 0.20 and a cluster metallicity of Fe/H abundance = 0.10 + or - 0.09, based on 18 probable nonbinary members of the cluster brighter than V = 14. The color-magnitude diagram for the cluster suggests that, although the main sequence may be subject to the same bimodal distibution as NGC 752, the likely source in both clusters is a combination of binaries and a sharply curved turnoff. The color-magnitude diagram is compared to the theoretical isochrones of Bertelli et al. (1988), showing an age of (1.9 + or - 0.3) X 10 to the 9th yr. 27 refs.

  18. CCD photometry in the Vilnius photometric system. I. region in Lyra

    International Nuclear Information System (INIS)

    Boyle, R.P.; Smriglio, F.; Straizys, V.

    1990-01-01

    Three-dimensional photometric classification can be made for stars measured in the Vilnius seven-color intermediate-band system, even if they are reddened by dust. Such classification is important for questions relating to the structure and evolution of our Galaxy. Presented here for general use is CCD photometry of 231 field stars in Lyra observed with the 0.9 meter telescope of Kitt Peak National Observatory. The measurements are of higher accuracy than those of a photographic study in the same direction in Lyra for which they can also be used for a deeper calibration of the photographic photometry. The data sets cover two small fields each about 31 arcmin 2 and are complete to 90% for all stars up to the faint limit of V = 17.5

  19. A rehabilitation training system with double-CCD camera and automatic spatial positioning technique

    Science.gov (United States)

    Lin, Chern-Sheng; Wei, Tzu-Chi; Lu, An-Tsung; Hung, San-Shan; Chen, Wei-Lung; Chang, Chia-Chang

    2011-03-01

    This study aimed to develop a computer game for machine vision integrated rehabilitation training system. The main function of the system is to allow users to conduct hand grasp-and-place movement through machine vision integration. Images are captured by a double-CCD camera, and then positioned on a large screen. After defining the right, left, upper, and lower boundaries of the captured images, an automatic spatial positioning technique is employed to obtain their correlation functions, and lookup tables are defined for cameras. This system can provide rehabilitation courses and games that allow users to exercise grasp-and-place movements, in order to improve their upper limb movement control, trigger trunk control, and balance training.

  20. Design of a fast multi-hit position sensitive detector based on a CCD camera

    CERN Document Server

    Renaud, L; Da Costa, G; Deconihout, B

    2002-01-01

    A new position sensitive detector has been designed for time-of-flight mass spectrometry. It combines a double micro-channel plate stage with a phosphor screen, the conductive coating of which is divided into an array of strip-like-shaped anodes. Time-of-flight signals are measured on the strip array with a 0.5 ns resolution, while a CCD camera records light-spots generated by ion impacts on the phosphor screen. With this particular imaging device, it is possible to accurately assign time-of-flight to positions recorded by the camera. This paper describes the main features of this new position sensitive detector and results obtained with a three-dimensional atom probe are presented.

  1. Software development for studies of diffuse scattering using CCD-detectors and synchrotron radiation sources

    CERN Document Server

    Paulmann, C; Bismayer, U

    2001-01-01

    A graphical-user-interface based software system was developed to cover advanced data processing requirements which arise from studies of diffuse scattering in disordered minerals using synchrotron radiation sources and CCD-detectors. The software includes interfaces to standard applications, procedures for numerical processing of large data sets, corrections for sample external scattering and detector-specific distortions, different scaling options to correct the data set against the varying primary beam intensity as well as procedures to reconstruct arbitrary slices in reciprocal space on a regular grid. The software system was successfully applied in studies of diffuse scattering in disordered REE-doped germanates, phase-transition studies of synthetic titanite and studies of the thermal recrystallization behaviour of radiation-damaged (metamict) minerals.

  2. CCD Video Observation of Microgravity Crystallization of Lysozyme and Correlation with Accelerometer Data

    Science.gov (United States)

    Snell, E. H.; Boggon, T. J.; Helliwell, J. R.; Moskowitz, M. E.; Nadarajah, A.

    1997-01-01

    Lysozyme has been crystallized using the ESA Advanced Protein Crystallization Facility onboard the NASA Space Shuttle Orbiter during the IML-2 mission. CCD video monitoring was used to follow the crystallization process and evaluate the growth rate. During the mission some tetragonal crystals were observed moving over distances of up to 200 micrometers. This was correlated with microgravity disturbances caused by firings of vernier jets on the Orbiter. Growth-rate measurement of a stationary crystal (which had nucleated on the growth reactor wall) showed spurts and lulls correlated with an onboard activity; astronaut exercise. The stepped growth rates may be responsible for the residual mosaic block structure seen in crystal mosaicity and topography measurements.

  3. Development and characterization of a CCD camera system for use on six-inch manipulator systems

    International Nuclear Information System (INIS)

    Logory, L.M.; Bell, P.M.; Conder, A.D.; Lee, F.D.

    1996-01-01

    The Lawrence Livermore National Laboratory has designed, constructed, and fielded a compact CCD camera system for use on the Six Inch Manipulator (SIM) at the Nova laser facility. The camera system has been designed to directly replace the 35 mm film packages on all active SIM-based diagnostics. The unit's electronic package is constructed for small size and high thermal conductivity using proprietary printed circuit board technology, thus reducing the size of the overall camera and improving its performance when operated within the vacuum environment of the Nova laser target chamber. The camera has been calibrated and found to yield a linear response, with superior dynamic range and signal-to-noise levels as compared to T-Max 3200 optic film, while providing real-time access to the data. Limiting factors related to fielding such devices on Nova will be discussed, in addition to planned improvements of the current design

  4. CCD Astrometric Measurements of Double Stars BAL 746, BPM 342, KU 92, and STF 897

    Science.gov (United States)

    Smith, Schuyler

    2017-07-01

    Double stars WDS 06589-0106 (BAL 746), WDS 06579+1430 (BPM 342), WDS 07006+0921 (KU 92), and WDS 06224+2640 (STF 897) were measured as part of a science fair project for the 2016 Greater San Diego Science and Engineering Fair. The goal was to measure the separation and position angles of stars by using a telescope with a charge-coupled device (CCD) on the iTelescope network. Five images were taken of each of the stars. These images were plate solved with Visual PinPoint and measured using Aladin Sky Atlas. Measurements for all five doubles compare well to the more recent values in the Washington Double Star Catalog.

  5. Spectroscopic noninvasive measurement of hemoglobin compared with capillary and venous values in neonates.

    Science.gov (United States)

    Rabe, H; Alvarez, R Fernandez; Whitfield, T; Lawson, F; Jungmann, H

    2010-06-01

    Venepuncture-related blood loss is a common cause of neonatal anemia. Currently, this is the only way to obtain hemoglobin levels. This causes distress for the infant but can also lead to the need for blood transfusions. Recently, a new technique for measuring hemoglobin levels non-invasively has been developed to reduce iatrogenic blood loss and pain. To compare hemoglobin levels obtained using a transcutaneous spectroscopic device (Mediscan 2000, MBR Optical Systems, Wuppertal, Germany) with venous or capillary blood samples in neonates. Single-center prospective cohort study of term and preterm infants. The white light spectroscopic device was placed on the forearm for 60 s to measure hemoglobin content within 4 h of venous or capillary blood sampling. Pain reactions of the infants were assessed by using a neonatal pain assessment tool. Results were analyzed by Bland-Altman comparison and Wilcoxon signed-rank test. 80 infants (mean gestational age 29.8 +/- 3.8 weeks, mean birth weight 1,300 +/- 690 g) were enrolled into the study. A total of 313 spectroscopic recordings within 2 h of a clinically indicated blood sample (181 capillary, 142 venous) were taken. The correlation coefficient R(2) was 0.96 for capillary/spectroscopic and 0.99 for venous/spectroscopic pairs. Pain scores were significantly less for the spectroscopic measurements (p < 0.01). The results show good correlation between the hemoglobin blood levels and spectroscopic measurements. The slightly lower correlation coefficient for the capillary samples demonstrates a naturally higher variance in these values due to the laboratory method.

  6. Radiotherapy film densitometry using a slow-scan, cooled, digital CCD imaging system

    International Nuclear Information System (INIS)

    Burch, S.E.

    1993-01-01

    A method of performing high-resolution two-dimensional film densitometry for full size radiographic film (35 x 43 cm) using a cooled CCD camera was proposed. Studies were performed to evaluate the physical characteristics of the camera system and recommendations were made to assure maximum accuracy of density measurement. Test films of various sizes and densities, as well as clinical dosimetry films, were measured with the CCD densitometer and the reference transmission densitometer. The measured densities agreed within the stated accuracy of the transmission densitometer for all films with maximum density less than or equal to 1.5 optical density units. The 0.2 mm spatial resolution with 4096 shades of gray made it possible to study dose distributions even for films containing areas of high dose gradients. Patient verification radiographs were used to study exit beam dose distributions to detect errors in beam placement, patient position, and proper placement of beam modifying devices such as wedges and compensators. For studying photon beam dose distributions within phantoms, a method was developed using lead foils placed lateral to the film plane to filter very low energy scattered photons. The error in measurement of central axis percentage depth dose from film for 4 MV x-rays, 25 x 25 cm field was decreased from 65% to 4%. The method requires only two calibration films for density to dose conversion and represents an important advance in the field of film densitometry for radiotherapy. The technique was applied to the study of dynamic wedge dose distribution from a 6 MV linear accelerator. The phantom modification decreased the error in percentage depth dose from 21% to 1% for the 15 x 15 cm beam with 60 degree wedge angle. Profile off-axis errors for the same beam were decreased from 8% to 3%. The film dosimetry system provides fast, high resolution film density data for use in radiotherapy imaging and quality assurance

  7. On-ground and in-orbit characterisation plan for the PLATO CCD normal cameras

    Science.gov (United States)

    Gow, J. P. D.; Walton, D.; Smith, A.; Hailey, M.; Curry, P.; Kennedy, T.

    2017-11-01

    PLAnetary Transits and Ocillations (PLATO) is the third European Space Agency (ESA) medium class mission in ESA's cosmic vision programme due for launch in 2026. PLATO will carry out high precision un-interrupted photometric monitoring in the visible band of large samples of bright solar-type stars. The primary mission goal is to detect and characterise terrestrial exoplanets and their systems with emphasis on planets orbiting in the habitable zone, this will be achieved using light curves to detect planetary transits. PLATO uses a novel multi- instrument concept consisting of 26 small wide field cameras The 26 cameras are made up of a telescope optical unit, four Teledyne e2v CCD270s mounted on a focal plane array and connected to a set of Front End Electronics (FEE) which provide CCD control and readout. There are 2 fast cameras with high read-out cadence (2.5 s) for magnitude ~ 4–8 stars, being developed by the German Aerospace Centre and 24 normal (N) cameras with a cadence of 25 s to monitor stars with a magnitude greater than 8. The N-FEEs are being developed at University College London's Mullard Space Science Laboratory (MSSL) and will be characterised along with the associated CCDs. The CCDs and N-FEEs will undergo rigorous on-ground characterisation and the performance of the CCDs will continue to be monitored in-orbit. This paper discusses the initial development of the experimental arrangement, test procedures and current status of the N-FEE. The parameters explored will include gain, quantum efficiency, pixel response non-uniformity, dark current and Charge Transfer Inefficiency (CTI). The current in-orbit characterisation plan is also discussed which will enable the performance of the CCDs and their associated N-FEE to be monitored during the mission, this will include measurements of CTI giving an indication of the impact of radiation damage in the CCDs.

  8. CCD-based detector for protein crystallography with synchrotron X-rays

    International Nuclear Information System (INIS)

    Strauss, M.G.; Westbrook, E.M.; Naday, I.; Coleman, T.A.; Westbrook, M.L.; Travis, D.J.; Sweet, R.M.; Pflugrath, J.W.; Stanton, M.

    1990-01-01

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for X-ray diffraction studies in protein crystallography. The detector was tested at the National Synchrotron Light Source with a beam intensity, through a 0.3 mm collimator, of greater than 10 9 X-ray photons/s. A fiberoptic taper, an image intensifier, and a lens demagnify, intensity, and focus the image onto a CCD having 512x512 pixels. The statistical uncertainty in the detector output was evaluated as a function of conversion gain. From this, a detective quantum efficiency (DQE) of 0.36 was derived. The dynamic range of 4x4 pixel resolution element, comparable in size to a diffraction peak, was 10 4 . The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel is 160 μm on the detector face. A data set collected from a chicken egg-white lysozyme crystal, consisting of 495 0.1deg frames, was processed by the MADNES data reduction program. The symmetry R-factors for the data were 3.2-3.5%. In a separate experiment a complete lysozyme data set consisting of 45 1deg frames was obtained in just 36 s of X-ray exposure. Diffraction images from crystals of the myosin S1 head (a=275 A) were also recorded; the Bragg spots, only 5 pixels apart, were separated but not fully resolved. Changes in the detector design that will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for X-ray scattering investigations with synchrotron sources. (orig.)

  9. CCD-based detector for protein crystallography with synchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, M.G.; Westbrook, E.M.; Naday, I.; Coleman, T.A.; Westbrook, M.L.; Travis, D.J. (Argonne National Lab., IL (USA)); Sweet, R.M. (Brookhaven National Lab., Upton, NY (USA)); Pflugrath, J.W. (Cold Spring Harbor Lab., NY (USA)); Stanton, M. (Brandeis Univ., Waltham, MA (USA))

    1990-11-15

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for X-ray diffraction studies in protein crystallography. The detector was tested at the National Synchrotron Light Source with a beam intensity, through a 0.3 mm collimator, of greater than 10{sup 9} X-ray photons/s. A fiberoptic taper, an image intensifier, and a lens demagnify, intensity, and focus the image onto a CCD having 512x512 pixels. The statistical uncertainty in the detector output was evaluated as a function of conversion gain. From this, a detective quantum efficiency (DQE) of 0.36 was derived. The dynamic range of 4x4 pixel resolution element, comparable in size to a diffraction peak, was 10{sup 4}. The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel is 160 {mu}m on the detector face. A data set collected from a chicken egg-white lysozyme crystal, consisting of 495 0.1deg frames, was processed by the MADNES data reduction program. The symmetry R-factors for the data were 3.2-3.5%. In a separate experiment a complete lysozyme data set consisting of 45 1deg frames was obtained in just 36 s of X-ray exposure. Diffraction images from crystals of the myosin S1 head (a=275 A) were also recorded; the Bragg spots, only 5 pixels apart, were separated but not fully resolved. Changes in the detector design that will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for X-ray scattering investigations with synchrotron sources. (orig.).

  10. Large aperture CCD x-ray detector for protein crystallography using a fiberoptic taper

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, M.G.; Westbrook, E.M.; Naday, I.; Coleman, T.A.; Westbrook, M.L.; Travis, D.J. (Argonne National Lab., IL (USA)); Sweet, R.M. (Brookhaven National Lab., Upton, NY (USA)); Pflugrath, J.W. (Cold Spring Harbor Lab., NY (USA)); Stanton, M. (Brandeis Univ., Waltham, MA (USA))

    1991-01-01

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for x-ray diffraction studies in protein crystallography. The detector was tested on a beamline of the National Synchrotron Light Source at Brookhaven National Laboratory with a beam intensity greater than 10{sup 9} x-ray photons/s. A fiberoptic taper, an image intensifier and a lens demagnify, intensify, and focus the image onto a CCD having 512 {times} 512 pixels. A detective quantum efficiency (DOE) of 0.36 was obtained by evaluating the statistical uncertainty in the detector output. The dynamic range of a 4 {times} 4 pixel resolution element, comparable in size to a diffraction peak, was 10{sup 4}. The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel on the detector face is 160 {mu}m. A complete data set, consisting of forty-five 1{degree} rotation frames, was obtained in just 36 s of x-ray exposure to a crystal of chicken egg-white lysozyme. In a separate experiment, a lysozyme data set consisting of 495 0.1{degree} frames, was processed by the MADNES data reduction program, yielding symmetry R-factors for the data of 3.2--3.5%. Diffraction images from crystals of the myosin S1 head (a = 275 {Angstrom}) were also recorded. The Bragg spots, only 5 pixels apart, were resolved but were not sufficiently separated to process these data. Changes in the detector design which will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for x-ray scattering investigations with synchrotron sources. 23 refs., 11 figs.

  11. Large aperture CCD x ray detector for protein crystallography using a fiberoptic taper

    Science.gov (United States)

    Strauss, M. G.; Westbrook, E. M.; Naday, I.; Coleman, T. A.; Westbrook, M. L.; Travis, D. J.; Sweet, R. M.; Pflugrath, J. W.

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for x-ray diffraction studies in protein crystallography. The detector was tested on a beamline of the National Synchrotron Light Source at Brookhaven National Laboratory with a beam intensity greater than 10(exp 9) x-ray photons/s. A fiberoptic taper, an image intensifier and a lens demagnify, intensify, and focus the image onto a CCD having 512 x 512 pixels. A detective quantum efficiency (DOE) of 0.36 was obtained by evaluating the statistical uncertainty in the detector output. The dynamic range of a 4 x 4 pixel resolution element, comparable in size to a diffraction peak, was 10(exp 4). The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel on the detector face is 160 microns. A complete data set, consisting of forty-five 1 deg rotation frames, was obtained in just 36 s of x-ray exposure to a crystal of chicken egg-white lysozyme. In a separate experiment, a lysozyme data set consisting of 495 0.1 deg frames, was processed by the MADNES data reduction program, yielding symmetry R-factors for the data of 3.2 to 3.5 percent. Diffraction images from crystals of the myosin S1 head (a = 275 A) were also recorded. The Bragg spots, only 5 pixels apart, were resolved but were not sufficiently separated to process these data. Changes in the detector design which will improve the DOE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for x-ray scattering investigations with synchrotron sources.

  12. CCD-based detector for protein crystallography with synchrotron X-rays

    Science.gov (United States)

    Strauss, M. G.; Westbrook, E. M.; Naday, I.; Coleman, T. A.; Westbrook, M. L.; Travis, D. J.; Sweet, R. M.; Pflugrath, J. W.; Stanton, M.

    1990-11-01

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for X-ray diffraction studies in protein crystallography. The detector was tested at the National Synchrotron Light Source with a beam intensity, through a 0.3 mm collimator, of greater than 109 X-ray photons/s. A fiberoptic taper, an image intensifier, and a lens demagnify, intensify, and focus the image onto a CCD having 512×512 pixels. The statistical uncertainty in the detector output was evaluated as a function of conversion gain. From this, a detective quantum efficiency (DQE) of 0.36 was derived. The dynamic range of a 4×4 pixel resolution element, comparable in size to a diffraction peak, was 104. The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel is 160 μm on the detector face. A data set collected from a chicken egg-white lysozyme crystal, consisting of 495 0.1° frames, was processed by the MADNES data reduction program. The symmetry R-factors for the data were 3.2-3.5%. In a separate experiment a complete lysozyme data set consisting of 45 1° frames was obtained in just 36 s of X-ray exposure. Diffraction images from crystals of the myosin S1 head (a = 275 Å) were also recorded; the Bragg spots, only 5 pixels apart, were separated but not fully resolved. Changes in the detector design that will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for X-ray scattering investigations with synchrotron sources.

  13. Spectroscopic investigation of protein corona

    Science.gov (United States)

    Choudhary, Poonam

    Nanotechnology has revolutionalized the landscape of modern science and technology, including materials, electronics, therapeutics, bioimaging, sensing, and the environment. Research in the past decade has examined the fate of nanomaterials in vitro and in vivo, as well as the interactions between nanoparticles and biological and ecosystems using primarily toxicological and ecotoxicological approaches. However, due to the versatility in the physical and physicochemical properties of nanoparticles, and due to the vast complexity of their hosting systems, the solubility, transformation, and biocompatibility of nanomaterials are still poorly understood. Nanotechnology has been undergoing tremendous development in recent decades, driven by realized perceived applications of nanomaterials in electronics, therapeutics, imaging, sensing, environmental remediation, and consumer products. Nanoparticles on entering the blood stream undergo an identity change, they become coated with proteins. There are different kind of proteins present in blood. Proteins compete for getting coated over the surface of nanoparticle and this whole entity of proteins coated over nanoparticle surface is called Protein Corona. Proteins tightly bound to the surface of nanoparticle form hard corona and the ones loosely bound on the outer surface form soft corona. This dissertation is aimed at spectroscopic investigation of Protein Corona. Chapter I of this dissertation offers a comprehensive review of the literature based on nanomaterials with the focus on carbon based nanomaterilas and introduction to Protein Corona. Chapter II is based different methods used for Graphene Synthesis,different types of defects and doping. In Chapter III influence of defects on Graphene Protein Corona was investigated. Chapter IV is based on the study of Apoptosis induced cell death by Gold and silver nanoparticles. In vitro study of effect of Protein Corona on toxicity of cells was done.

  14. How spectroscopic x-ray imaging benefits from inter-pixel communication

    CERN Document Server

    Koenig, Thomas; Hamann, Elias; Cecilia, Angelica; Ballabriga, Rafael; Campbell, Michael; Ruat, Marie; Tlustos, Lukas; Fauler, Alex; Fiederle, Michael; Baumbach, Tilo

    2014-01-01

    Spectroscopic x-ray imaging based on pixellated semiconductor detectors can be sensitive to charge sharing and K-fluorescence, depending on the sensor material used, its thickness and the pixel pitch employed. As a consequence, spectroscopic resolution is partially lost. In this paper, we study a new detector ASIC, the Medipix3RX, that offers a novel feature called charge summing, which is established by making adjacent pixels communicate with each other. Consequently, single photon interactions resulting in multiple hits are almost completely avoided. We investigate this charge summing mode with respect to those of its imaging properties that are of interest in medical physics and benchmark them against the case without charge summing. In particular, we review its influence on spectroscopic resolution and find that the low energy bias normally present when recording energy spectra is dramatically reduced. Furthermore, we show that charge summing provides a modulation transfer function which is almost indepen...

  15. Neutron spectroscopic factors of 34Ar and 46Ar from (p,d) transfer reactions

    International Nuclear Information System (INIS)

    Lee, Jenny; Tsang, M.B.; Bazin, D.; Coupland, D.; Henzl, V.; Henzlova, D.; Kilburn, M.; Lynch, W. G.; Rogers, A. M.; Sanetullaev, A.; Youngs, M.; Sun, Z. Y.; Charity, R. J.; Sobotka, L. G.; Famiano, M.; Hudan, S.; Shapira, D.; O'Malley, P.; Peters, W. A.; Chae, K. Y.

    2011-01-01

    Single-neutron-transfer measurements using (p,d) reactions have been performed at 33 MeV per nucleon with proton-rich 34 Ar and neutron-rich 46 Ar beams in inverse kinematics. The extracted spectroscopic factors are compared to the large-basis shell-model calculations. Relatively weak quenching of the spectroscopic factors is observed between 34 Ar and 46 Ar. The experimental results suggest that neutron correlations have a weak dependence on the asymmetry of the nucleus over this isotopic region. The present results are consistent with the systematics established from extensive studies of spectroscopic factors and dispersive optical-model analyses of 40-49 Ca isotopes. They are, however, inconsistent with the trends obtained in knockout-reaction measurements.

  16. Image Quality of Digital Direct Flat-Panel Mammography Versus an Indirect Small-Field CCD Technique Using a High-Contrast Phantom

    Directory of Open Access Journals (Sweden)

    Kathrin Barbara Krug

    2011-01-01

    Full Text Available Objective. To compare the detection of microcalcifications on mammograms of an anthropomorphic breast phantom acquired by a direct digital flat-panel detector mammography system (FPM versus a stereotactic breast biopsy system utilizing CCD (charge-coupled device technology with either a 1024 or 512 acquisition matrix (1024 CCD and 512 CCD. Materials and Methods. Randomly distributed silica beads (diameter 100–1400 m and anthropomorphic scatter bodies were applied to 48 transparent films. The test specimens were radiographed on a direct digital FPM and by the indirect 1024 CCD and 512 CCD techniques. Four radiologists rated the monitor-displayed images independently of each other in random order. Results. The rate of correct positive readings for the “number of detectable microcalcifications” for silica beads of 100–199 m in diameter was 54.2%, 50.0% and 45.8% by FPM, 1024 CCD and 512 CCD, respectively. The inter-rater variability was most pronounced for silica beads of 100–199 m in diameter. The greatest agreement with the gold standard was observed for beads >400 m in diameter across all methods. Conclusion. Stereotactic spot images taken by 1024 matrix CCD technique are diagnostically equivalent to direct digital flat-panel mammograms for visualizing simulated microcalcifications >400 m in diameter.

  17. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice.

    Science.gov (United States)

    Jing, Pei; Zou, Juanzi; Kong, Lin; Hu, Shiqi; Wang, Biying; Yang, Jun; Xie, Guosheng

    2016-06-01

    Calcium-binding proteins play key roles in the signal transduction in the growth and stress response in eukaryotes. However, a subfamily of proteins with one EF-hand motif has not been fully studied in higher plants. Here, a novel small calcium-binding protein with a C-terminal centrin-like domain (CCD1) in rice, OsCCD1, was characterized to show high similarity with a TaCCD1 in wheat. As a result, OsCCD1 can bind Ca(2+) in the in vitro EMSA and the fluorescence staining calcium-binding assays. Transient expression of green fluorescent protein (GFP)-tagged OsCCD1 in rice protoplasts showed that OsCCD1 was localized in the nucleus and cytosol of rice cells. OsCCD1 transcript levels were transiently induced by osmotic stress and salt stress through the calcium-mediated ABA signal. The rice seedlings of T-DNA mutant lines showed significantly less tolerance to osmotic and salt stresses than wild type plants (psalt stresses than wild type plants (psalt stresses. In sum, OsCCD1 gene probably affects the DREB2B and its downstream genes to positively regulate osmotic and salt tolerance in rice seedlings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data

    International Nuclear Information System (INIS)

    Kochanov, R.V.; Gordon, I.E.; Rothman, L.S.; Wcisło, P.; Hill, C.; Wilzewski, J.S.

    2016-01-01

    The HITRAN Application Programming Interface (HAPI) is presented. HAPI is a free Python library, which extends the capabilities of the HITRANonline interface ( (www.hitran.org)) and can be used to filter and process the structured spectroscopic data. HAPI incorporates a set of tools for spectra simulation accounting for the temperature, pressure, optical path length, and instrument properties. HAPI is aimed to facilitate the spectroscopic data analysis and the spectra simulation based on the line-by-line data, such as from the HITRAN database [JQSRT (2013) 130, 4–50], allowing the usage of the non-Voigt line profile parameters, custom temperature and pressure dependences, and partition sums. The HAPI functions allow the user to control the spectra simulation and data filtering process via a set of the function parameters. HAPI can be obtained at its homepage (www.hitran.org/hapi). - Highlights: • HAPI extends the HITRANonline portal and provides an access to the HITRAN data. • Free, flexible, and portable Python library for working with the spectroscopic data. • Incorporates functions for querying, filtering and processing the spectroscopic data. • Provides functionality for single-layer spectra simulation. • Can be used in the radiative transfer codes, spectroscopic data validation, etc.

  19. Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health and Colony Collapse Disorder (CCD)

    Science.gov (United States)

    Israeli acute paralysis virus (IAPV) is a widespread RNA virus that was linked with honey bee Colony Collapse Disorder (CCD), the sudden and massive die-off of honey bee colonies in the U.S. in 2006-2007. Here we describe the transmission, prevalence and genetic diversity of IAPV, host transcripti...

  20. 32x32 HgCdTe/CCD infrared camera for the 2-5 micron range

    International Nuclear Information System (INIS)

    Monin, J.L.; Vauglin, I.; Sibille, F.

    1988-01-01

    The paper presents a complete infrared camera system, based on a high electron capacity detector (HgCdTe/CCD), that has been used under high background conditions to generate astronomical images. The performance of the system and some results are presented, and the use of such a detector in astronomy is discussed. 8 references

  1. Měření absolutní kvantové účinnosti iCCD kamer

    Czech Academy of Sciences Publication Activity Database

    Michálek, Václav; Hamar, Martin; Haderka, O.; Peřina, J.; Machulka, R.

    2012-01-01

    Roč. 56, č. 1 (2012), s. 24-27 ISSN 0447-6441 R&D Projects: GA AV ČR IAA100100713; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum efficiency * intensified CCD camera * standardless measurement Subject RIV: BH - Optics, Masers, Lasers

  2. Development and validation of a CCD-laser aerosol detective system for measuring the ambient aerosol phase function

    Science.gov (United States)

    Bian, Yuxuan; Zhao, Chunsheng; Xu, Wanyun; Zhao, Gang; Tao, Jiangchuan; Kuang, Ye

    2017-06-01

    Aerosol phase function represents the angular scattering property of aerosols, which is crucial for understanding the climate effects of aerosols that have been identified as one of the largest uncertainties in the evaluation of radiative forcing. So far, there is a lack of instruments with which to measure the aerosol phase function directly and accurately in laboratory studies and in situ measurements. A portable instrument with high angular range and resolution has been developed for the measurement of the phase function of ambient aerosols in this study. The charge-coupled device-laser aerosol detective system (CCD-LADS) measures the aerosol phase function both across a relatively wide angular range of 10-170° and at a high resolution of 0.1°. The system includes a continuous laser, two charge-coupled device cameras and the corresponding fisheye lenses. The CCD-LADS was validated by both a laboratory study and a field measurement. The comparison between the aerosol phase function retrieved from CCD-LADS and Mie-scattering model shows good agreement. Compared with the TSI polar nephelometer, CCD-LADS has the advantages of wider detection range and better stability.

  3. Hubble Space Telescope STIS observations of GRB 000301C: CCD imaging and near-ultraviolet MAMA spectroscopy

    DEFF Research Database (Denmark)

    Smette, A.; Fruchter, A.S.; Gull, T.R.

    2001-01-01

    We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the c-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R similar or equal to 21.50 +/- 0.15 source with no apparent host galaxy. ...

  4. Hubble Space Telescope STIS Observations of GRB 000301C: CCD Imaging and Near-Ultraviolet MAMA Spectroscopy

    NARCIS (Netherlands)

    Smette, A.; Fruchter, A.S.; Gull, Th.R.; Sahu, K.C.; Petro, L.; Ferguson, H.; Rhoads, J.; Lindler, D.J.; Wijers, R.A.M.J.

    2001-01-01

    We present Space Telescope Imaging Spectrograph observations of the optical transient (OT) counterpart of the gamma-ray burster GRB 000301C obtained 5 days after the burst, on 2000 March 6. CCD clear-aperture imaging reveals a R~=21.50+/-0.15 source with no apparent host galaxy. An 8000 s, 1150

  5. Fallow land mapping for better crop monitoring in Huang-Huai-Hai Plain using HJ-1 CCD data

    International Nuclear Information System (INIS)

    Zhang, Miao; Wu, Bingfang; Meng, Jihua; Dong, Taifeng; You, Xingzhi

    2014-01-01

    The prediction of grain production is essential for socio-economic development planning, guidance and control of macro cropping structure adjustment. Fallow areas should be identified each growing season which is critical for grain production prediction. This paper focuses on fallow arable land monitoring during summer grain season in the Huang-Huai-Hai Plain using China Environment Satellite HJ-1 CCD data. With the two satellites HJ-1A and HJ-1B, high temporal Normalized Difference Vegetation Index (NDVI) can be obtained. HJ-1 CCD data were acquired from early March to early June in 2010 over the Huang-Huai-Hai Plain. Multi-temporal HJ-1 CCD data were pre-processed and time series of NDVI were derived. An algorithm for separating cropped and fallow areas was developed based on three key periods of NDVI in early-March, mid-April and mid-May, 2010. The influence of fallow arable lands to yield estimation and crop condition monitoring over the Huang-Huai-Hai Plain were also investigated and analyzed. Preliminary results in this paper showed that HJ-1 CCD data are capable for fallow land monitoring. Information of fallow arable lands is an essential part of crop monitoring and it should be incorporated into crop monitoring systems. In the future, the fallow lands over autumn grain season should also be identified and information of fallow arable lands should be generated yearly in order to get more reliable production prediction

  6. 145CCD astrometric positions of comets and minor planets: Observed during March-September 1998 at the Belgrade observatory

    Directory of Open Access Journals (Sweden)

    Benishek Vl.

    1998-01-01

    Full Text Available In this paper we present precise astrometric positions of four comets and four minor planets from the MPC critical list. All the observations were carried out with CCD equipped Askania astrograph (13.5/160. The SBIG ST-8 camera was used. Comet 1998 M5 (Stonehouse occulted an anonymous star on July 9 and that phenomenon was observed successfully.

  7. CCD camera as feasible large-area-size x-ray detector for x-ray fluorescence spectroscopy and imaging.

    Science.gov (United States)

    Zhao, Wenyang; Sakurai, Kenji

    2017-06-01

    As X-ray fluorescence radiation isotropically spreads from the sample, one of the most important requirements for spectrometers for many years has been a large solid angle. Charge-coupled device (CCD) cameras are quite promising options because they have a fairly large area size, usually larger than 150 mm 2 . The present work has examined the feasibility of a commercially available camera with an ordinary CCD chip (1024 × 1024 pixels, the size of one pixel is 13 μm × 13 μm, designed for visible light) as an X-ray fluorescence detector. As X-ray photons create charges in the CCD chip, reading very quickly the amount is the key for this method. It is very simple if the charges always go into one pixel. As the charges quite often spread to several pixels, and sometimes can be lost, it is important to recover the information by filtering out the unsuccessful events. For this, a simple, versatile, and reliable scheme has been proposed. It has been demonstrated that the energy resolution of the present camera is 150 eV at Mn Kα, and also that its overall achievement in seeing minor elements is almost compatible with conventional X-ray fluorescence detectors. When the CCD camera is combined with a micro-pinhole collimator, full field X-ray fluorescence imaging with a spatial resolution of 20 μm becomes possible. Further feasibility in practical X-ray fluorescence analysis is discussed.

  8. Development of three-wavelength CCD image pyrometer used for the temperature field measurements of continuous casting billets.

    Science.gov (United States)

    Xie, Zhi; Bai, Haicheng

    2014-02-01

    This paper develops an imaging based three-color pyrometer for the monitoring of temperature distribution in a continuous casting billet. A novel optical device, together with an embedded electronic system, is designed to sequentially collect a dark image and three thermal images with specified wavelengths on a same monochromatic charge-coupled-device (CCD). The three thermal images provide the basis for the determination of target temperature, while the dark image is used to online eliminate the dark noise of CCD with a differential method. This image pyrometer is not only independent of target emissivity but also overcomes the dissimilarity of measuring accuracy between the micro-sensors of CCD resulted from the non-uniformity of pixels' intensity response and the vignetting of optical system. Furthermore, a precise two-color temperature field measuring model on the CCD pyrometer is established, based on which a self-adaptive light-integration mechanism is presented. Compared with the traditional fixed light-integration method, the measuring range of the pyrometer is greatly extended and its sensitivity in low temperature segment is improved. The test results in a steel factory demonstrate that the pyrometer is capable of meeting the requirement of surface temperature measurements about casting billets. Reliability and accuracy of measurement results are also discussed herein.

  9. Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method

    Science.gov (United States)

    Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao

    2016-09-01

    To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.

  10. An optical test bench for the precision characterization of absolute quantum efficiency for the TESS CCD detectors

    International Nuclear Information System (INIS)

    Krishnamurthy, A.; Villasenor, J.; Kissel, S.; Ricker, G.; Vanderspek, R.

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright stars with Ic ∼< 13. TESS has been selected by NASA for launch in 2018 as an Astrophysics Explorer mission, and is expected to discover a thousand or more planets that are smaller in size than Neptune. TESS will employ four wide-field optical charge-coupled device (CCD) cameras with a band-pass of 650 nm–1050 nm to detect temporary drops in brightness of stars due to planetary transits. The 1050 nm limit is set by the quantum efficiency (QE) of the CCDs. The detector assembly consists of four back-illuminated MIT Lincoln Laboratory CCID-80 devices. Each CCID-80 device consists of 2048×2048 imaging array and 2048×2048 frame store regions. Very precise on-ground calibration and characterization of CCD detectors will significantly assist in the analysis of the science data obtained in space. The characterization of the absolute QE of the CCD detectors is a crucial part of the characterization process because QE affects the performance of the CCD significantly over the redder wavelengths at which TESS will be operating. An optical test bench with significantly high photometric stability has been developed to perform precise QE measurements. The design of the test setup along with key hardware, methodology, and results from the test campaign are presented.

  11. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  12. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    International Nuclear Information System (INIS)

    Casey, Andrew R.

    2016-01-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  13. sick: The Spectroscopic Inference Crank

    Science.gov (United States)

    Casey, Andrew R.

    2016-03-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  14. [Reproduction of the anatomy (offset, CCD, leg length) with a modern short stem hip design--a radiological study].

    Science.gov (United States)

    Jerosch, J; Grasselli, C; Kothny, P C; Litzkow, D; Hennecke, T

    2012-02-01

    The purpose of the study was to analyse different parameters before and after implantation of a modern short-stem hip design. In this prospective radiological study 250 consecutive hips with degenerative hip osteoarthritis were included (246 patients). The patients were operated by five different surgeons at 4 different hospitals and a metadiaphysial fixed short-stem prothesis (Mini Hip, Corin) was used. Standardised X-rays were performed with the same technique pre- and postoperatively in all patients. Different anatomic parameters of the hip were documented by using the pre- and postoperative Xrays (ofset, CCD angle, length of leg). All measurements were performed by an independent examiner. The 246 patients included 129 females and 117 males. The average age of the patients was 59.7 years (range: 27-82 years). The offset only changed by + 0.28 cm (SD: 0.45 cm) after surgery. We could document only a small decrease of -0.51° (SD: 4.10°) of the CCD angle. The length of the leg increased on average by + 0.09 cm (SD: 0.34 cm). We found no difference between the measurements of female and male patients. Conspicuous was also the increasing use of small protheses (size 2) for hips with a small CCD angle and the increasing implantation of large protheses (size 9) in hips with a high CCD angle. Our results showed that we could reconstruct the individual geometry of the hip quite well by using the metadiaphysial short-stem prothesis. The tendency of an increasing CCD angle and a decrease of the offset seems not to be existent with the design of this kind of short-stem prothesis. © Georg Thieme Verlag KG Stuttgart · New York.

  15. A preliminary study of serum IgE against cross-reactive carbohydrate determinants (CCD) in client-owned atopic dogs.

    Science.gov (United States)

    Levy, Britt J; DeBoer, Douglas J

    2018-03-01

    Cross-reactive carbohydrate determinants (CCD) are defined carbohydrate portions of glycoprotein cell surface molecules common to many plant and insect species. Mammalian species recognize CCD as foreign antigens and can mount humoral immune responses against them. Approximately 20-37% of grass and venom allergic people possess circulating IgE against CCD; these antibodies are generally considered clinically irrelevant. Anti-CCD IgE is, however, recognized as a cause of false positive, clinically incongruent serum allergen test results in people; this phenomenon has not been investigated in animals. To determine if anti-CCD IgE could be detected in sera of client-owned atopic dogs and how frequently it is found. Sera from 38 dogs with a clinical diagnosis of atopic dermatitis and prior serological evidence of IgE antibodies, defined as a positive result to at least one mite and pollen (of any type). Sera were analysed for IgE against CCD and environmental allergens with a commercially available multiplex enzyme-labelled allergen-specific IgE assay. Anti-CCD IgE was detected in nine of 38 (24%) of atopic dog sera. As with their human counterparts, all dogs with anti-CCD IgE had strong serological reactivity to grass pollens. Anti-CCD IgE can confound serological allergen testing in people; the same might be true in dogs. Further studies are warranted to investigate the clinical implications of anti-CCD IgE in dogs, including the potential for these antibodies to affect serum allergen-specific IgE assays used for clinical diagnosis, and whether they are relevant to clinical disease. © 2018 ESVD and ACVD.

  16. Single-atom contacts with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Kroeger, J; Neel, N; Sperl, A; Wang, Y F; Berndt, R

    2009-01-01

    The tip of a cryogenic scanning tunnelling microscope is used to controllably contact single atoms adsorbed on metal surfaces. The transition between tunnelling and contact is gradual for silver, while contact to adsorbed gold atoms is abrupt. The single-atom junctions are stable and enable spectroscopic measurements of, e.g., the Abrikosov-Suhl resonance of single Kondo impurities.

  17. Comparison between a position sensitive germanium detector and a taper optics CCD ``FRELON'' camera for diffraction enhanced imaging

    Science.gov (United States)

    Bravin, A.; Fiedler, S.; Coan, P.; Labiche, J.-C.; Ponchut, C.; Peterzol, A.; Thomlinson, W.

    2003-09-01

    Diffraction Enhanced Imaging (DEI) can significantly improve the expressiveness of radiology. The contrast mechanism of DEI, in addition to absorption contrast, exploits the differences in X-ray refraction properties, which are sensed by a perfect crystal placed between the sample and the detector. DEI needs a monochromatic collimated X-ray source, which is available for instance from synchrotrons. The X-ray beam is laminar and the sample is vertically scanned for projection imaging or is rotated for CT. Detectors should match the beam characteristics and should also accomplish the other two main requirements for DEI mammography: high spatial resolution and high Detective Quantum Efficiency (DQE) in a large energy range (20-60 keV). The first permit to exploit the edge contrast enhancement obtained with the DEI technique, for example the improved visualization of microcalcifications in mammographic imaging. The second allows minimizing the dose needed for a radiograph without sacrificing spatial resolution. Apart from this, a dynamic range as good as possible is required (typically from 14 to 16 bits) as well as a high readout speed, which is particularly important for CT. These specifications are difficult to be all condensed in a single detector. At the medical beamline of the ESRF two devices have been utilized for DEI radiography: a linear germanium detector (432 pixels, 350 microns pitch), which had been developed for angiography and cerebral CT and a 2048×2048 CCD camera with taper optics which has been built at the ESRF. The first detector shows an excellent DQE at zero frequency in a large energy range (˜90% from 20 keV up to 50 keV) but limited spatial resolution. In the latter a better compromise for DEI in the 20-30 keV range has been realized: a pixel size of 47 μm and a DQE(0) from 0.5 to 0.6 has been achieved. The performances of the two detectors will be presented here in detail and discussed.

  18. Spectroscopic identification of individual fluorophores using photoluminescence excitation spectra.

    Science.gov (United States)

    Czerski, J; Colomb, W; Cannataro, F; Sarkar, S K

    2018-01-25

    The identity of a fluorophore can be ambiguous if other fluorophores or nonspecific fluorescent impurities have overlapping emission spectra. The presence of overlapping spectra makes it difficult to differentiate fluorescent species using discrete detection channels and unmixing of spectra. The unique absorption and emission signatures of fluorophores provide an opportunity for spectroscopic identification. However, absorption spectroscopy may be affected by scattering, whereas fluorescence emission spectroscopy suffers from signal loss by gratings or other dispersive optics. Photoluminescence excitation spectra, where excitation is varied and emission is detected at a fixed wavelength, allows hyperspectral imaging with a single emission filter for high signal-to-background ratio without any moving optics on the emission side. We report a high throughput method for measuring the photoluminescence excitation spectra of individual fluorophores using a tunable supercontinuum laser and prism-type total internal reflection fluorescence microscope. We used the system to measure and sort the photoluminescence excitation spectra of individual Alexa dyes, fluorescent nanodiamonds (FNDs), and fluorescent polystyrene beads. We used a Gaussian mixture model with maximum likelihood estimation to objectively separate the spectra. Finally, we spectroscopically identified different species of fluorescent nanodiamonds with overlapping spectra and characterized the heterogeneity of fluorescent nanodiamonds of varying size. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  19. Spectroscopic characterizations of organic/inorganic nanocomposites

    Science.gov (United States)

    Govani, Jayesh R.

    2009-12-01

    In the present study, pure and 0.3 wt%, 0.4 wt%, as well as 0.5 wt% L-arginine doped potassium dihydrogen phosphate (KDP) crystals were grown using solution growth techniques and further subjected to infrared (IR) absorption and Raman studies for confirmation of chemical group functionalization for investigating the incorporation mechanism of the L-arginine organic material into the KDP crystal structure. Infrared spectroscopic analysis suggests that structural changes are occurring for the L-arginine molecule as a result of its interaction with the KPD crystal. Infrared spectroscopic technique confirms the disturbance of the N-H, C-H and C-N bonds of the amino acid, suggesting successful incorporation of L-arginine into the KDP crystals. Raman analysis also reveals modification of the N-H, C-H and C-N bonds of the amino acid, implying successful inclusion of L-arginine into the KDP crystals. With the help of Gaussian software, a prediction of possible incorporation mechanisms of the organic material was obtained from comparison of the simulated infrared and Raman vibrational spectra with the experimental results. Furthermore, we also studied the effect of L-arginine doping on the thermal stability of the grown KDP crystal by employing Thermo gravimetric analysis (TGA). TGA suggests that increasing the level of L-arginine doping speeds the decomposition process and it weakens the KDP crystal, which indicates successful doping of the KDP crystals with L-arginine amino acid. Urinary stones are one of the oldest and most widely spread diseases in humans, animals and birds. Many remedies have been employed through the ages for the treatment of urinary stones. Recent medicinal measures reflect the modern advances, which are based on surgical removal, percutaneous techniques and extracorporeal shock wave lithotripsy (ESWL). Although these procedures are valuable, they are quite expensive for most people. Furthermore, recurrence of these diseases is awfully frequent with

  20. The simulated spectrum of the OGRE X-ray EM-CCD camera system

    Science.gov (United States)

    Lewis, M.; Soman, M.; Holland, A.; Lumb, D.; Tutt, J.; McEntaffer, R.; Schultz, T.; Holland, K.

    2017-12-01

    The X-ray astronomical telescopes in use today, such as Chandra and XMM-Newton, use X-ray grating spectrometers to probe the high energy physics of the Universe. These instruments typically use reflective optics for focussing onto gratings that disperse incident X-rays across a detector, often a Charge-Coupled Device (CCD). The X-ray energy is determined from the position that it was detected on the CCD. Improved technology for the next generation of X-ray grating spectrometers has been developed and will be tested on a sounding rocket experiment known as the Off-plane Grating Rocket Experiment (OGRE). OGRE aims to capture the highest resolution soft X-ray spectrum of Capella, a well-known astronomical X-ray source, during an observation period lasting between 3 and 6 minutes whilst proving the performance and suitability of three key components. These three components consist of a telescope made from silicon mirrors, gold coated silicon X-ray diffraction gratings and a camera that comprises of four Electron-Multiplying (EM)-CCDs that will be arranged to observe the soft X-rays dispersed by the gratings. EM-CCDs have an architecture similar to standard CCDs, with the addition of an EM gain register where the electron signal is amplified so that the effective signal-to-noise ratio of the imager is improved. The devices also have incredibly favourable Quantum Efficiency values for detecting soft X-ray photons. On OGRE, this improved detector performance allows for easier identification of low energy X-rays and fast readouts due to the amplified signal charge making readout noise almost negligible. A simulation that applies the OGRE instrument performance to the Capella soft X-ray spectrum has been developed that allows the distribution of X-rays onto the EM-CCDs to be predicted. A proposed optical model is also discussed which would enable the missions minimum success criteria's photon count requirement to have a high chance of being met with the shortest possible

  1. The SMILE Soft X-ray Imager (SXI) CCD design and development

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Holland, A. D.; Burgon, R.; Buggey, T.; Skottfelt, J.; Sembay, S.; Drumm, P.; Thornhill, J.; Read, A.; Sykes, J.; Walton, D.; Branduardi-Raymont, G.; Kennedy, T.; Raab, W.; Verhoeve, P.; Agnolon, D.; Woffinden, C.

    2018-01-01

    SMILE, the Solar wind Magnetosphere Ionosphere Link Explorer, is a joint science mission between the European Space Agency and the Chinese Academy of Sciences. The spacecraft will be uniquely equipped to study the interaction between the Earth's magnetosphere-ionosphere system and the solar wind on a global scale. SMILE's instruments will explore this science through imaging of the solar wind charge exchange soft X-ray emission from the dayside magnetosheath, simultaneous imaging of the UV northern aurora and in-situ monitoring of the solar wind and magnetosheath plasma and magnetic field conditions. The Soft X-ray Imager (SXI) is the instrument being designed to observe X-ray photons emitted by the solar wind charge exchange process at photon energies between 200 eV and 2000 eV . X-rays will be collected using a focal plane array of two custom-designed CCDs, each consisting of 18 μm square pixels in a 4510 by 4510 array. SMILE will be placed in a highly elliptical polar orbit, passing in and out of the Earth's radiation belts every 48 hours. Radiation damage accumulated in the CCDs during the mission's nominal 3-year lifetime will degrade their performance (such as through decreases in charge transfer efficiency), negatively impacting the instrument's ability to detect low energy X-rays incident on the regions of the CCD image area furthest from the detector outputs. The design of the SMILE-SXI CCDs is presented here, including features and operating methods for mitigating the effects of radiation damage and expected end of life CCD performance. Measurements with a PLATO device that has not been designed for soft X-ray signal levels indicate a temperature-dependent transfer efficiency performance varying between 5×10-5 and 9×10-4 at expected End of Life for 5.9 keV photons, giving an initial set of measurements from which to extrapolate the performance of the SXI CCDs.

  2. Measuring the Flatness of Focal Plane for Very Large Mosaic CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; Estrada, Juan; Cease, Herman; Diehl, H.Thomas; Flaugher, Brenna L.; Kubik, Donna; Kuk, Keivin; Kuropatkine, Nickolai; Lin, Huan; Montes, Jorge; Scarpine, Vic; /Fermilab

    2010-06-08

    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k x 2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 years starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.

  3. Upconversion luminescence behavior of single nanoparticles

    Science.gov (United States)

    Zhou, Jiajia; Xu, Shiqing; Zhang, Junjie; Qiu, Jianrong

    2015-09-01

    Upconversion nanoparticles (UCNPs) have made a significant and valuable contribution to materials science, photophysics, and biomedicine due to their specific spectroscopic characteristics. However, the ensemble spectroscopy of UCNPs is limited because of the electronic behavior in average effect, which ignores the fact that these nanoparticles are heterogeneous. With regards to the research focus on heterogeneous intrinsic structures, unique photophysical phenomena, and advanced applications, the optical characterization of single UCNPs have been promoted to the frontier development of the UCNPs community. In this review, we give an overview of the importance of single UCNPs characterization, typical principles of UC, and single particle detection methods. Considerable emphasis is placed on the specific spectroscopic study of single UCNPs, which shows fantastic photophysical phenomena beyond ensemble measurement. Parallel efforts are devoted to the current applications of single UCNPs.

  4. SPECTROSCOPIC SIGNATURES RELATED TO A SUNQUAKE

    International Nuclear Information System (INIS)

    Matthews, S. A.; Harra, L. K.; Green, L. M.; Zharkov, S.

    2015-01-01

    The presence of flare-related acoustic emission (sunquakes (SQs)) in some flares, and only in specific locations within the flaring environment, represents a severe challenge to our current understanding of flare energy transport processes. In an attempt to contribute to understanding the origins of SQs we present a comparison of new spectral observations from Hinode’s EUV imaging Spectrometer (EIS) and the Interface Region Imaging Spectrograph (IRIS) of the chromosphere, transition region, and corona above an SQ, and compare them to the spectra observed in a part of the flaring region with no acoustic signature. Evidence for the SQ is determined using both time–distance and acoustic holography methods, and we find that unlike many previous SQ detections, the signal is rather dispersed, but that the time–distance and 6 and 7 mHz sources converge at the same spatial location. We also see some evidence for different evolution at different frequencies, with an earlier peak at 7 mHz than at 6 mHz. Using EIS and IRIS spectroscopic measurements we find that in this location, at the time of the 7 mHz peak the spectral emission is significantly more intense, shows larger velocity shifts and substantially broader profiles than in the location with no SQ, and there is a good correlation between blueshifted, hot coronal, hard X-ray (HXR), and redshifted chromospheric emission, consistent with the idea of a strong downward motion driven by rapid heating by nonthermal electrons and the formation of chromospheric shocks. Exploiting the diagnostic potential of the Mg ii triplet lines, we also find evidence for a single large temperature increase deep in the atmosphere, which is consistent with this scenario. The time of the 6 mHz and time–distance peak signal coincides with a secondary peak in the energy release process, but in this case we find no evidence of HXR emission in the quake location, instead finding very broad spectral lines, strongly shifted to the red

  5. Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source

    International Nuclear Information System (INIS)

    Michael Haugh

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. It determines how accurately NIF can point the laser beams and is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 2mA, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 12. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1.5% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. The efficiency pattern follows the properties of Si. The maximum quantum efficiency is 0.71. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation was >8% at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was less than the measurement uncertainty below 4 keV. We were also able to observe debris on the CCD chip. The debris showed maximum contrast at the lowest energy used, 930 eV, and disappeared by 4 keV. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  6. BECN2 interacts with ATG14 through a metastable coiled-coil to mediate autophagy: BECN2 CCD Structure and Interaction with ATG14

    Energy Technology Data Exchange (ETDEWEB)

    Su, Minfei; Li, Yue; Wyborny, Shane; Neau, David; Chakravarthy, Srinivas; Levine, Beth; Colbert, Christopher L.; Sinha, Sangita C. (NDSU); (IIT); (Cornell); (UTSMC)

    2017-03-12

    ATG14 binding to BECN/Beclin homologs is essential for autophagy, a critical catabolic homeostasis pathway. Here, we show that the α-helical, coiled-coil domain (CCD) of BECN2, a recently identified mammalian BECN1 paralog, forms an antiparallel, curved homodimer with seven pairs of nonideal packing interactions, while the BECN2 CCD and ATG14 CCD form a parallel, curved heterodimer stabilized by multiple, conserved polar interactions. Compared to BECN1, the BECN2 CCD forms a weaker homodimer, but binds more tightly to the ATG14 CCD. Mutation of nonideal BECN2 interface residues to more ideal pairs improves homodimer self-association and thermal stability. Unlike BECN1, all BECN2 CCD mutants bind ATG14, although more weakly than wild type. Thus, polar BECN2 CCD interface residues result in a metastable homodimer, facilitating dissociation, but enable better interactions with polar ATG14 residues stabilizing the BECN2:ATG14 heterodimer. These structure-based mechanistic differences in BECN1 and BECN2 homodimerization and heterodimerization likely dictate competitive ATG14 recruitment.

  7. Suche nach solaren Axionen mit dem CCD-Detektor in CAST (CERN Axion Solar Telescope)

    CERN Document Server

    Kang, Donghwa

    2007-01-01

    The CERN Axion Solar Telescope (CAST) experiment at CERN searches for solar axions with energies in the keV range. Axions could be produced in the Sun's core by the interaction of thermal photons with virtual photons of the strong electromagnetic field. In this experiment, the solar axions can be converted to photons in the field of a 9 Tesla superconducting magnet. At both ends of the 10 m long dipole magnet, three different X-ray detectors were installed, which are sensitive in the interesting photon energy range. This thesis is devoted to the determination of an upper limit on the axion-photon coupling constant g$_{a\\gamma}$. The analysis is based on the data taken by the CCD detector in the CAST experiment during the years 2003 and 2004. First results of the 2003 data taking were published showing no significant signal above background. However, these results constrain the upper limit of the axion-photon coupling constant by a factor 5 compared to previous axion search experiments. Moreover, the result of...

  8. High-speed imaging using 3CCD camera and multi-color LED flashes

    Science.gov (United States)

    Hijazi, Ala; Friedl, Alexander; Cierpka, Christian; Kähler, Christian; Madhavan, Vis

    2017-11-01

    This paper demonstrates the possibility of capturing full-resolution, high-speed image sequences using a regular 3CCD color camera in conjunction with high-power light emitting diodes of three different colors. This is achieved using a novel approach, referred to as spectral-shuttering, where a high-speed image sequence is captured using short duration light pulses of different colors that are sent consecutively in very close succession. The work presented in this paper demonstrates the feasibility of configuring a high-speed camera system using low cost and readily available off-the-shelf components. This camera can be used for recording six-frame sequences at frame rates up to 20 kHz or three-frame sequences at even higher frame rates. Both color crosstalk and spatial matching between the different channels of the camera are found to be within acceptable limits. A small amount of magnification difference between the different channels is found and a simple calibration procedure for correcting the images is introduced. The images captured using the approach described here are of good quality to be used for obtaining full-field quantitative information using techniques such as digital image correlation and particle image velocimetry. A sequence of six high-speed images of a bubble splash recorded at 400 Hz is presented as a demonstration.

  9. Design and test of a high resolution plastic scintillating fiber detector with intensified CCD readout

    International Nuclear Information System (INIS)

    Rebourgeard, P.

    1991-01-01

    We present the design of a particle detector involving a coherent array of 100 000 plastic scintillating microfibers, with an individual core diameter around 50 micrometers, and an intensified bidimensional CCD array. We investigate both theoretically and experimentally the use of polystyrene based scintillators in optical multimodal fibers. The isotropic excitation of modes and the characteristics of energy transfers between the polystyrene matrix and the added fluorescent dyes are of particular interest. An experimental approach is proposed and applied to the development of a new binary scintillator. In order to study the transmission of the signal from the interaction area to the output face, we specify the loss factors, the resolution and the signal to noise ratio within the fiber array. The low light level at the output face of the detector leads us to use image intensifiers in photon counting mode. This requires a detailed analysis of resolutions, gain, noise and detectivity concepts. We propose to describe these strongly correlated notions by the moment generation formalism. Thus, a previous modelisation of the photoelectronic devices allows us to evaluate the performance of the readout chain. A complete detector has been assembled and tested on a high energy hadron beam; the measurements are in good agreement with the modelisation [fr

  10. CCD BVRI and 2MASS photometry of the poorly studied open cluster NGC 6631

    Directory of Open Access Journals (Sweden)

    A.L. Tadross

    2014-12-01

    Full Text Available Here we have obtained the BVRI CCD photometry down to a limiting magnitude of V∼20 for the southern poorly studied open cluster NGC 6631. It is observed from the 1.88 m Telescope of Kottamia Observatory in Egypt. About 3300 stars have been observed in an area of ∼10′×10′ around the cluster center. The main photometric parameters have been estimated and compared with the results that determined for the cluster using JHKs 2MASS photometric database. The cluster’s diameter is estimated to be 10 arcmin; the reddening E(B-V=0.68 ± 0.10 mag, E(J-H=0.21 ± 0.10 mag, the true modulus (m-Mo=12.16 ± 0.10 mag, which corresponds to a distance of 2700 ± 125 pc and age of 500 ± 50 Myr.

  11. Performance Characterization of the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) CCD Cameras

    Science.gov (United States)

    Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick

    2014-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument currently being developed by NASA's Marshall Space Flight Center (MSFC), the National Astronomical Observatory of Japan (NAOJ), and other partners. The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's chromosphere. The polarized spectrum imaged by the CCD cameras will capture information about the local magnetic field, allowing for measurements of magnetic strength and structure. In order to make accurate measurements of this effect, the performance characteristics of the three on- board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, read noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of 2.0+/- 0.5 e--/DN, a read noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non- linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.

  12. Study on dynamic imaging on TDI CCD optical remote sensor of push-broom technology

    Science.gov (United States)

    Gao, Ming-hui; Zhao, Gui-jun; Liu, Lei; Ren, Jian-yue

    2010-10-01

    A set special detecting system is proposed based on TDICCD push-broom technology applying in dynamic imaging detecting experiment of space optics remote sensor. In the system, push-broom movement of the satellite is simulated through using double supporting U structure precision rotary platform with remote sensor by angular speed 0.555°/s,within the range of +/-5° and control precision on steady speed achieves 0.3%; In the course of detecting , regard Nyquist frequency target as detecting aim ,in order to solve matching uncertainty between the CCD pixel and the vertical target strip image when the remote sensor does push-broom, make matching simplify, enhance the measurement result the accuracy. So the tolerance a/n arithmetic progression gap target strip is joined in each group of rectangular vertical group target strip. The remote sensor obtains in vertical, the level and 45° the direction 0 fields of view, +/-0.86 the field of view Nyquist frequency target strip image after detected, a group target strip which can precision matching to TDICCD pixel at least can be obtained through analysis and dealing with 0.86 field of view's target strip image. The experiment not only verifies the detecting system's feasibility but simultaneously verifies whether to have the high quality dynamic imaging quality when TDICCD push-broom technology is adopted on the remote sensor developed.

  13. Background study for the pn-CCD detector of CERN Axion Solar Telescope

    CERN Document Server

    Cebrián, S; Kuster, M.; Beltran, B.; Gomez, H.; Hartmann, R.; Irastorza, I. G.; Kotthaus, R.; Luzon, G.; Morales, J.; Ruz, J.; Struder, L.; Villar, J. A.

    2007-01-01

    The CERN Axion Solar Telescope (CAST) experiment searches for axions from the Sun converted into photons with energies up to around 10 keV via the inverse Primakoff effect in the high magnetic field of a superconducting Large Hadron Collider (LHC) prototype magnet. A backside illuminated pn-CCD detector in conjunction with an X-ray mirror optics is one of the three detectors used in CAST to register the expected photon signal. Since this signal is very rare and different background components (environmental gamma radiation, cosmic rays, intrinsic radioactive impurities in the set-up, ...) entangle it, a detailed study of the detector background has been undertaken with the aim to understand and further reduce the background level of the detector. The analysis is based on measured data taken during the Phase I of CAST and on Monte Carlo simulations of different background components. This study will show that the observed background level (at a rate of (8.00+-0.07)10^-5 counts/cm^2/s/keV between 1 and 7 keV) s...

  14. A CCD photometric analysis of the old open cluster NGC 2420

    Energy Technology Data Exchange (ETDEWEB)

    Anthony-Twarog, B.J.; Twarog, B.A.; Kaluzny, J.; Shara, M.M. (Kansas Univ., Lawrence (USA) Obserwatorium Astronomiczne, Warsaw (Poland) Space Telescope Science Institute, Baltimore, MD (USA))

    1990-05-01

    Precision CCD photometry on the BV system of the core of the old open cluster NGC 2420 is analyzed to explore the value of such an approach for open clusters, particularly in the areas of Galactic and stellar evolution. The unevolved main sequence is shown to be narrow and well defined to the completeness limit of V = 18.5, and the distribution of stars away from the main sequence is shown to be bimodal, with a secondary peak located approximately 0.7 mag above the fiducial main sequence. It is estimated that 50 percent of the cluster systems are binary. Near the turnoff the cluster exhibits some detailed structure. Fiducial relations are given for the cluster extending from the lower main sequence to the red giant branch 1.5 mag above the clump. Comparisons are made between the NGC 2420 cluster and NGC 2506, the isochrones of VandenBerg (1985), and 47 Tuc, in order to estimate cluster parameters, including reddening and metallicity. 68 refs.

  15. VizieR Online Data Catalog: Mel 66 CCD photometry (Anthony-Twarog+, 1994)

    Science.gov (United States)

    Anthony-Twarog, B. J.; Twarog, B. A.; Sheeran, M.

    1994-11-01

    A CCD study of the peculiar open cluster, Melotte 66, on the vbyHbeta system is presented. The V,(b-y) color-magnitude diagram of this metal-deficient, old disk cluster confirms the anomalous features found in photographic BV studies and extends the main sequence to V=20. The main sequence exhibits a (b-y) color range significantly larger than expected from photometric errors alone; the (b-y) colors are correlated with Hbeta implying that the dispersion is real and is not the result of variable reddening across the cluster. The m1 indices for the turnoff stars imply a spread in [Fe/H] too small to explain the color range. Though the subgiant region is poorly defined, the region above the turnoff in the Hertzsprung gap is richly populated by a group of "yellow stragglers" whose membership is confirmed by radial star counts and radial velocities. The giant branch is richly populated but shows a smaller spread in color at a given V than one would expect from the turnoff region. More important, the giants exhibit a large scatter in m1, in contradiction with the turnoff observations. Various explanations for these observations are discussed, including CN variations among the giants triggered by either binary evolution or rapid rotation among the main-sequence stars. (1 data file).

  16. Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis

    Directory of Open Access Journals (Sweden)

    Rolanas Dauksevicius

    2013-04-01

    Full Text Available Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner’s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.

  17. A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector.

    Directory of Open Access Journals (Sweden)

    Jacob Lamb

    Full Text Available The fluorescence emission spectrum of photosynthetic microorganisms at liquid nitrogen temperature (77 K provides important insights into the organization of the photosynthetic machinery of bacteria and eukaryotes, which cannot be observed at room temperature. Conventionally, to obtain such spectra, a large and costly table-top fluorometer is required. Recently portable, reliable, and largely maintenance-free instruments have become available that can be utilized to accomplish a wide variety of spectroscopy-based measurements in photosynthesis research. In this report, we show how to build such an instrument in order to record 77K fluorescence spectra. This instrument consists of a low power monochromatic light-emitting diode (LED, and a portable CCD array based spectrometer. The optical components are coupled together using a fiber optic cable, and a custom made housing that also supports a dewar flask. We demonstrate that this instrument facilitates the reliable determination of chlorophyll fluorescence emission spectra for the cyanobacterium Synechocystis sp. PCC 6803, and the green alga Chlamydomonas reinhardtii.

  18. APPLYING CCD CAMERAS IN STEREO PANORAMA SYSTEMS FOR 3D ENVIRONMENT RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    A. Sh. Amini

    2012-07-01

    Full Text Available Proper recontruction of 3D environments is nowadays needed by many organizations and applications. In addition to conventional methods the use of stereo panoramas is an appropriate technique to use due to simplicity, low cost and the ability to view an environment the way it is in reality. This paper investigates the ability of applying stereo CCD cameras for 3D reconstruction and presentation of the environment and geometric measuring among that. For this purpose, a rotating stereo panorama was established using two CCDs with a base-length of 350 mm and a DVR (digital video recorder box. The stereo system was first calibrated using a 3D test-field and used to perform accurate measurements. The results of investigating the system in a real environment showed that although this kind of cameras produce noisy images and they do not have appropriate geometric stability, but they can be easily synchronized, well controlled and reasonable accuracy (about 40 mm in objects at 12 meters distance from the camera can be achieved.

  19. The bone mass (BM) and chronic cardiac decompensation (CCD) in an elderly population.

    Science.gov (United States)

    Santangelo, Antonino; Testaì, Manuela; Mamazza, Grazia; Zuccaro, Carmela; Albani, Salvatore; Pavano, Salvatore; Cappello, Antonella; Sambataro, Domenico; Atteritano, Marco; Maugeri, Domenico

    2011-01-01

    This study intended to evaluate the existing correlation between the cardiac compensation and the bone mass, investigating the bone mineral density (BMD) in a population suffering from CCD or chronic heart disease (CHD). We enrolled 171 patients, all over the age of 70, being in the functional N.Y.H.A. Class II (Population A: 85 patients) and in Class III (Population B: 86 patients). All patients underwent an analysis of their cardiac functions using a Doppler echo-cardiographic method measuring the ventricular ejection fraction (VEF), as well as the BMD by means of a computerized bone mineralometric DEXA method, performed in vertebral and femoral measurement sites. Both populations proved to be osteopenic, displaying reduced values of BMD. Higher bone mineral losses were measured in the patients who had more severe cardiac insufficiency. The present data revealed a significant reduction of BMD in the N.Y.H.A. Class III patients, in correlation with the VEF (p<0.001), both in the lumbar vertebral area (p<0.01) and even more in the femoral sites (p<0.001), where a direct correlation exists between BMD and the VEF. On the basis of these findings one can suggest that the actual VEF level has an influence on the bone turnover, reducing the mineral content through various mechanisms of action. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Modeling of the over-exposed pixel area of CCD cameras caused by laser dazzling

    Science.gov (United States)

    Benoist, Koen W.; Schleijpen, Ric H. M. A.

    2014-10-01

    A simple model has been developed and implemented in Matlab code, predicting the over-exposed pixel area of cameras caused by laser dazzling. Inputs of this model are the laser irradiance on the front optics of the camera, the Point Spread Function (PSF) of the used optics, the integration time of the camera, and camera sensor specifications like pixel size, quantum efficiency and full well capacity. Effects of the read-out circuit of the camera are not incorporated. The model was evaluated with laser dazzle experiments on CCD cameras using a 532 nm CW laser dazzler and shows good agreement. For relatively low laser irradiance the model predicts the over-exposed laser spot area quite accurately and shows the cube root dependency of spot diameter on laser irradiance, caused by the PSF as demonstrated before for IR cameras. For higher laser power levels the laser induced spot diameter increases more rapidly than predicted, which probably can be attributed to scatter effects in the camera. Some first attempts to model scatter contributions, using a simple scatter power function f(θ), show good resemblance with experiments. Using this model, a tool is available which can assess the performance of observation sensor systems while being subjected to laser countermeasures.

  1. Asiago spectroscopic classification of 3 transients

    Science.gov (United States)

    Tomasella, L.; Benetti, S.; Cappellaro, E.; Turatto, M.

    2018-01-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of AT 2018eq discovered by R. Belligoli (ISSP) in the direction of M31; PS18bq (AT2018bi) discovered by J. Grzegorzek and Pan-STARRS1 in UGC1791; and AT2018C (= Gaia18aak), a blue hostless transient discovered by Gaia.

  2. Ultraviolet spectroscopic evaluation of bioactive saponin fraction ...

    African Journals Online (AJOL)

    Ultraviolet spectroscopic evaluation of bioactive saponin fraction from the aqueous extract of Vernonia amygdalina [Esteraeceae] leaf. Paul Chukwuemeka ADIUKWU 1*, Martina BONSU 1, Inemesit OKON-BEN 1,. Paul PEPRAH 1, Paapa MENSAH-KANE 1, Jonathan JATO 1 and Grace NAMBATYA 2. 1School of Pharmacy ...

  3. Infrared Spectroscopic Imaging for Prostate Pathology Practice

    Science.gov (United States)

    2009-03-01

    imaging data for biochemical markers of tumor and develop numerical algorithms for grading cancer Goal: Develop algorithm for malignancy recognition...genetic algorithm based method to distinguish benign from malignant epithelium using infrared spectroscopic imaging data was shown to be effective...of existing practice. Larger validation studies are needed. 15. SUBJECT TERMS Spectroscopy, prostate, histopathology, cancer , optimization

  4. Ultraviolet spectroscopic evaluation of bioactive saponin fraction ...

    African Journals Online (AJOL)

    The separation and chromatogram development of resulting pure saponin components was carried out using a HPLC with UV-vis detection at 365 nm. Data for the antipyretic study agrees with previous bioactivity report for the saponin. Chromatographic and spectroscopic evaluation indicated the presence of three pure ...

  5. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.

    Science.gov (United States)

    Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank

    2017-05-26

    Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C 60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

  6. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 3. Synthesis, spectroscopic characterization and catalytic oxidation properties of ONO/ONS donor Schiff base ruthenium(III) complexes containing PPh3/AsPh3. Priyarega M Muthu Tamizh R Karvembu R Prabhakaran K Natarajan. Volume 123 Issue 3 May ...

  7. Time resolved spectroscopic studies on some nanophosphors

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Time resolved spectroscopy is an important tool for studying photophysical processes in phosphors. Present work investigates the steady state and time resolved photoluminescence (PL) spectroscopic characteristics of ZnS, ZnO and (Zn, Mg)O nanophosphors both in powder as well as thin film form.

  8. Highlights of the Brazilian Solar Spectroscope

    Czech Academy of Sciences Publication Activity Database

    Sawant, H. S.; Cecatto, J.R.; Mészárosová, Hana; Faria, C.; Fernandes, F. C. R.; Karlický, Marian; de Andrade, M. C.

    2009-01-01

    Roč. 44, č. 1 (2009), s. 54-57 ISSN 0273-1177 R&D Projects: GA AV ČR IAA300030701 Institutional research plan: CEZ:AV0Z10030501 Keywords : Sun istrumentation * spectroscope * corona * radio radiation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.079, year: 2009

  9. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  10. The Gaia-ESO Public Spectroscopic Survey

    DEFF Research Database (Denmark)

    Gilmore, G.; Randich, S.; Asplund, M.

    2012-01-01

    The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous...

  11. 8th Czechoslovak spectroscopic conference. Abstracts

    International Nuclear Information System (INIS)

    1988-01-01

    Volume 3 of the conference proceedings contains abstracts of 17 invited papers, 101 poster presentations and 7 papers of instrument manufacturers, devoted to special spectroscopic techniques including X-ray microanalysis, X-ray spectral analysis, Moessbauer spectrometry, mass spectrometry, instrumental activation analysis and other instrumental radioanalytical methods, electron spectrometry, and techniques of environmental analysis. Sixty abstracts were inputted in INIS. (A.K.)

  12. Planar chromatography coupled with spectroscopic techniques.

    NARCIS (Netherlands)

    Somsen, G.W.; Wilson, I.D.; Morden, W.

    1995-01-01

    Recent progress in the combination of planar, or thin-layer chromatography (TLC) with a variety of modern spectroscopic techniques is reviewed. The utility of TLC for separation followed by mass spectrometry, with a variety of ionisation techniques, is illustrated with reference to a wide range of

  13. Synthesis, Spectroscopic and Pharmacological Studies of Bivalent ...

    African Journals Online (AJOL)

    NICO

    Synthesis, Spectroscopic and Pharmacological Studies of. Bivalent Copper, Zinc and Mercury Complexes of Thiourea. Shikha Parmar*, Yatendra Kumar and Ashu Mittal. I.T.S Paramedical College (Pharmacy), Delhi Meerut Road, Muradnagar, Ghaziabad 201206, India. Received 4 June 2010, revised 14 June 2010, ...

  14. Structural, thermal and spectroscopic properties of supramolecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 6. Structural, thermal and spectroscopic properties of supramolecular coordination solids ... trans-[M(NC5H4--CO2)2(OH2)4], participate in exhaustive hydrogen-bond formation among themselves to lead to a robust 3D supramolecular network in the solid ...

  15. Performance optimization of spectroscopic process analyzers

    NARCIS (Netherlands)

    Boelens, Hans F. M.; Kok, Wim Th; de Noord, Onno E.; Smilde, Age K.

    2004-01-01

    To increase the power and the robustness of spectroscopic process analyzers, methods are needed that suppress the spectral variation that is not related to the property of interest in the process stream. An approach for the selection of a suitable method is presented. The approach uses the net

  16. Crystallization and spectroscopic studies of manganese malonate

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The preparation of manganese malonate crystals by gel method and its spectroscopic studies are reported. X-ray diffraction (XRD) pattern reveals the crystalline nature. The FTIR and FT Raman spectra of the crystals are recorded and the vibrational assignments are given with possible explanations. Diffuse reflec-.

  17. Spectroscopic diagnosis of foam z-pinch plasmas on SATURN

    International Nuclear Information System (INIS)

    Nash, T.J.; Derzon, M.S.; Allshouse, G.; Deeney, C.; Jobe, D.; McGurn, J.; MacFarlane, J.J.; Wang, P.

    1996-01-01

    Solid and annular silicon aerogel and agar foams were shot on the accelerator SATURN to study plasma initiation, acceleration, and stagnation. SATURN delivers 7 MA with a 50 nsec rise time to these foam loads. We fielded several spectroscopic diagnostics to measure plasma parameters throughout the z-pinch discharge. A spatially resolved single frame time-gated EUV spectrometer measured the extent of plasma ablation off the surface foam. A time integrated crystal spectrometer showed that characteristic K shell radiation of silicon in the aerogel and of S and Na impurities in the agar were all attenuated when the foam loads were coated with a conductive layer of gold. The time resolved pinhole camera showed that in general the quality of the pinch implosions was poor but improved with increasing efforts to improve current continuity such as prepulse and conductive coatings

  18. Spectroscopic X-ray imaging with photon counting pixel detectors

    CERN Document Server

    Tlustos, L

    2010-01-01

    Single particle counting hybrid pixel detectors simultaneously provide low noise, high granularity and high readout speed and make it possible to build detector systems offering high spatial resolution paired with good energy resolution. A limiting factor for the spectroscopic performance of such detector systems is charge sharing between neighbouring pixels in the sensor part of the detector. The signal spectrum at the collection electrodes of the readout electronics deviates significantly from the photonic spectrum when planar segmented sensor geometries are used. The Medipix3 implements a novel, distributed signal processing architecture linking neighbouring pixels and aims at eliminating the spectral distortion produced in the sensor by charge sharing and at reducing the impact of fluorescence photons generated in the sensor itself. Preliminary results from the very first Medipix3 readouts bump bonded to 300 pm Si sensor are presented. Material reconstruction is a possible future application of spectrosco...

  19. On spectroscopic factors of magic and semimagic nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Gnezdilov, N. V.; Tolokonnikov, S. V.

    2014-01-01

    Single-particle spectroscopic factors (SF) of magic and semimagic nuclei are analyzed within the self-consistent theory of finite Fermi systems. The the in-volume energy dependence of the mass operator Σ is taken into account in addition to the energy dependence induced by the surface-phonon coupling effects which is commonly considered. It appears due to the effect of high-lying collective and non-collective particle-hole excitations and persists in nuclear matter. The self-consistent basis of the energy density functional method by Fayans et al. is used. Both the surface and in-volume contributions to the SFs turned out to be of comparable magnitude. Results for magic 208 Pb nucleus and semimagic lead isotopes are presented

  20. Venus' spectroscopic phase variation - Implications of the Mariner 10 photographs

    Science.gov (United States)

    Chamberlain, J. W.

    1975-01-01

    The recent ultraviolet photographs of Venus by Mariner 10 have shown an irregular cloud structure. There is an apparent tendency for clearing along a wide equatorial band more or less centered on the subsolar point. This synoptic picture is in marked contrast to the uniform cloud cover conventionally used in model calculations of the variation with phase of CO2 absorption bands. To illustrate the consequences of subsolar weakening of CO2 absorption, a mathematically simple (but realistically naive) model is used. Two conclusions are reached: (1) efforts to distinguish between single- and double-layer models for the clouds from spectroscopic data alone are not merely ambiguous (as argued earlier by Chamberlain and Smith); with present data they are hopeless; (2) the decrease in the CO2 absorption close to full phase, as reported by Young et al., could result entirely from an equatorial darkening that is relatively inconsequential at the crescent phase and increasingly predominant for fuller phases.

  1. Principles of Vibrational Spectroscopic Methods and their Application to Bioanalysis

    DEFF Research Database (Denmark)

    Moore, David S.; Jepsen, Peter Uhd; Volka, Karel

    2014-01-01

    blood, bone, brain tissue, and many other matrices. Although the application of FTIR directly to clinical studies and diagnosis has been very much debated, some promising results have been obtained for the in vivo monitoring of glucose, hemoglobin, urea, albumin, phosphocreatine, and nitric oxide...... excitation laser irradiance to avoid sample damage are also discussed. This chapter then reviews applications of Raman spectroscopy to bioanalysis. Areas discussed include pathology, cytopathology, single-cell analysis, in vivo and in vitro tissue characterization, chemical composition of cell components...... or nanostructures. Finally, terahertz spectroscopy has given many new possibilities for studies of low-frequency interactions between electromagnetic radiation and biomaterials. In contrast to spectroscopic techniques at shorter wavelengths, THz spectroscopy directly probes long-range dynamics in biomolecules (such...

  2. Measurements of 161 Double Stars With a High-Speed CCD: The Winter/Spring 2017 Observing Program at Brilliant Sky Observatory, Part 2

    Science.gov (United States)

    Harshaw, Richard

    2018-04-01

    In the winter and spring of 2017, an aggressive observing program of measuring close double stars with speckle interferometry and CCD imaging was undertaken at Brilliant Sky Observatory, my observing site in Cave Creek, Arizona. A total of 596 stars were observed, 8 of which were rejected for various reasons, leaving 588 pairs. Of these, 427 were observed and measured with speckle interferometry, while the remaining 161 were measured with a CCD. This paper reports the results of the observations of the 161 CCD cases. A separate paper in this issue will report the speckle measurements of the 427 other pairs.

  3. Spectroscopic Signature of Bursty Reconnection

    Science.gov (United States)

    Schmit, D. J.; Innes, D.; Barta, M.

    2013-12-01

    Bursty reconnection is thought to play a central role in explosive events in the solar atmosphere. Time dependent reconnection occurs when a current sheet undergoes tearing and coalescence instabilities. We simulate these dynamics using a 2.5D adiabatic dimensionless single-fluid MHD model. We scale the model output into the regime appropriate for the upper chromosphere and forward model time dependent spectral profiles which incorporate the projection effects of viewing angle and temperature sensitivity. We find that the profiles are often bimodal and red wing dominant. Both red and blue shifted peaks are visible at velocities 40% of the Alfven speed outside the current sheet. This spectral modeling provides a platform for direct comparison with the novel dataset to be provided by IRIS, particularly in the context of jets and flares.

  4. Single-Crystal Germanium Core Optoelectronic Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xiaoyu [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Page, Ryan L. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Chaudhuri, Subhasis [Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA; Liu, Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Yu, Shih-Ying [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Mohney, Suzanne E. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Badding, John V. [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA; Department of Chemistry, Pennsylvania State University, University Park PA 16802 USA; Department of Physics, Pennsylvania State University, University Park PA 16802 USA; Gopalan, Venkatraman [Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park PA 16802 USA

    2016-09-19

    Synthesis and fabrication of high-quality, small-core single-crystal germanium fibers that are photosensitive at the near-infrared and have low optical losses ≈1 dB cm-1 at 2 μm are reported. These fibers have potential applications in fiber-based spectroscopic imaging, nonlinear optical devices, and photodetection at the telecommunication wavelengths.

  5. [NDVI difference rate recognition model of deciduous broad-leaved forest based on HJ-CCD remote sensing data].

    Science.gov (United States)

    Wang, Yan; Tian, Qing-Jiu; Huang, Yan; Wei, Hong-Wei

    2013-04-01

    The present paper takes Chuzhou in Anhui Province as the research area, and deciduous broad-leaved forest as the research object. Then it constructs the recognition model about deciduous broad-leaved forest was constructed using NDVI difference rate between leaf expansion and flowering and fruit-bearing, and the model was applied to HJ-CCD remote sensing image on April 1, 2012 and May 4, 2012. At last, the spatial distribution map of deciduous broad-leaved forest was extracted effectively, and the results of extraction were verified and evaluated. The result shows the validity of NDVI difference rate extraction method proposed in this paper and also verifies the applicability of using HJ-CCD data for vegetation classification and recognition.

  6. Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions

    KAUST Repository

    Bruno, Mark

    2017-02-10

    Strigolactones (SLs) are a new class of phytohormones synthesized from carotenoids via carlactone. The complex structure of carlactone is not easily deducible from its precursor, a cis-configured β-carotene cleavage product, and is thus formed via a poorly understood series of reactions and molecular rearrangements, all catalyzed by only one enzyme, the carotenoid cleavage dioxygenase 8 (CCD8). Moreover, the reactions leading to carlactone are expected to form a second, yet unidentified product. In this study, we used (13) C and (18) O-labelling to shed light on the reactions catalyzed by CCD8. The characterization of the resulting carlactone by LC-MS and NMR, and the identification of the assumed, less accessible second product allowed us to formulate a minimal reaction mechanism for carlactone generation. This article is protected by copyright. All rights reserved.

  7. A comparison of CsI:Tl and GOS in a scintillator-CCD detector for nuclear medicine imaging

    Science.gov (United States)

    Bugby, S. L.; Jambi, L. K.; Lees, J. E.

    2016-09-01

    A number of portable gamma cameras for medical imaging use scintillator-CCD based detectors. This paper compares the performance of a scintillator-CCD based portable gamma camera with either a columnar CsI:Tl or a pixelated GOS scintillator installed. The CsI:Tl scintillator has a sensitivity of 40% at 140.5 keV compared to 54% with the GOS scintillator. The intrinsic spatial resolution of the pixelated GOS detector was 1.09 mm, over 4 times poorer than for CsI:Tl. Count rate capability was also found to be significantly lower when the GOS scintillator was used. The uniformity was comparable for both scintillators.

  8. A time-gated near-infrared spectroscopic imaging device for clinical applications.

    Science.gov (United States)

    Poulet, Patrick; Uhring, Wilfried; Hanselmann, Walter; Glazenborg, René; Nouizi, Farouk; Zint, Virginie; Hirschi, Werner

    2013-03-01

    A time-resolved, spectroscopic, diffuse optical tomography device was assembled for clinical applications like brain functional imaging. The entire instrument lies in a unique setup that includes a light source, an ultrafast time-gated intensified camera and all the electronic control units. The light source is composed of four near infrared laser diodes driven by a nanosecond electrical pulse generator working in a sequential mode at a repetition rate of 100 MHz. The light pulses are less than 80 ps FWHM. They are injected in a four-furcated optical fiber ended with a frontal light distributor to obtain a uniform illumination spot directed towards the head of the patient. Photons back-scattered by the subject are detected by the intensified CCD camera. There are resolved according to their time of flight inside the head. The photocathode is powered by an ultrafast generator producing 50 V pulses, at 100 MHz and a width corresponding to a 200 ps FWHM gate. The intensifier has been specially designed for this application. The whole instrument is controlled by an FPGA based module. All the acquisition parameters are configurable via software through an USB plug and the image data are transferred to a PC via an Ethernet link. The compactness of the device makes it a perfect device for bedside clinical applications. The instrument will be described and characterized. Preliminary data recorded on test samples will be presented.

  9. Design of a real-time spectroscopic rotating compensator ellipsometer without systematic errors

    Energy Technology Data Exchange (ETDEWEB)

    Broch, Laurent, E-mail: laurent.broch@univ-lorraine.fr [Laboratoire de Chimie Physique-Approche Multi-echelle des Milieux Complexes (LCP-A2MC, EA 4632), Universite de Lorraine, 1 boulevard Arago CP 87811, F-57078 Metz Cedex 3 (France); Stein, Nicolas [Institut Jean Lamour, Universite de Lorraine, UMR 7198 CNRS, 1 boulevard Arago CP 87811, F-57078 Metz Cedex 3 (France); Zimmer, Alexandre [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary BP 47870, F-21078 Dijon Cedex (France); Battie, Yann; Naciri, Aotmane En [Laboratoire de Chimie Physique-Approche Multi-echelle des Milieux Complexes (LCP-A2MC, EA 4632), Universite de Lorraine, 1 boulevard Arago CP 87811, F-57078 Metz Cedex 3 (France)

    2014-11-28

    We describe a spectroscopic ellipsometer in the visible domain (400–800 nm) based on a rotating compensator technology using two detectors. The classical analyzer is replaced by a fixed Rochon birefringent beamsplitter which splits the incidence light wave into two perpendicularly polarized waves, one oriented at + 45° and the other one at − 45° according to the plane of incidence. Both emergent optical signals are analyzed by two identical CCD detectors which are synchronized by an optical encoder fixed on the shaft of the step-by-step motor of the compensator. The final spectrum is the result of the two averaged Ψ and Δ spectra acquired by both detectors. We show that Ψ and Δ spectra are acquired without systematic errors on a spectral range fixed from 400 to 800 nm. The acquisition time can be adjusted down to 25 ms. The setup was validated by monitoring the first steps of bismuth telluride film electrocrystallization. The results exhibit that induced experimental growth parameters, such as film thickness and volumic fraction of deposited material can be extracted with a better trueness. - Highlights: • High-speed rotating compensator ellipsometer equipped with 2 detectors. • Ellipsometric angles without systematic errors • In-situ monitoring of electrocrystallization of bismuth telluride thin layer • High-accuracy of fitted physical parameters.

  10. Development of a Neutron Spectroscopic System Utilizing Compressed Sensing Measurements

    Directory of Open Access Journals (Sweden)

    Vargas Danilo

    2016-01-01

    Full Text Available A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n × 1 and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement.

  11. Modeling Pluto-Charon Mutual Events. 2; CCD Observations with the 60 in. Telescope at Palomar Mountain

    Science.gov (United States)

    Buratti, B. J.; Dunbar, R. S.; Tedesco, E. F.; Gibson, J.; Marcialis, R. L.; Wong, F.; Bennett, S.; Dobrovolskis, A.

    1995-01-01

    We present observations of 15 Pluto-Charon mutual events which were obtained with the 60 in. telescope at Palomar Mountain Observatory. A CCD camera and Johnson V filter were used for the observations, except for one event that was observed with a Johnson B filter, and another event that was observed with a Gunn R filter. We observed two events in their entirety, and three pairs of complementary mutual occultation-transit events.

  12. Tests of a new CCD-camera based neutron radiography detector system at the reactor stations in Munich and Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Pleinert, H. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Schillinger, B. [Technische Univ. Muenchen (Germany); Koerner, S. [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1997-09-01

    The performance of the new neutron radiography detector designed at PSI with a cooled high sensitive CCD-camera was investigated under real neutronic conditions at three beam ports of two reactor stations. Different converter screens were applied for which the sensitivity and the modulation transfer function (MTF) could be obtained. The results are very encouraging concerning the utilization of this detector system as standard tool at the radiography stations at the spallation source SINQ. (author) 3 figs., 5 refs.

  13. Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging

    Science.gov (United States)

    Graeve, Thorsten; Dereniak, Eustace L.

    1993-01-01

    The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.

  14. Case study of atmospheric correction on CCD data of HJ-1 satellite based on 6S model

    International Nuclear Information System (INIS)

    Xue, Xiaoiuan; Meng, Oingyan; Xie, Yong; Sun, Zhangli; Wang, Chang; Zhao, Hang

    2014-01-01

    In this study, atmospheric radiative transfer model 6S was used to simulate the radioactive transfer process in the surface-atmosphere-sensor. An algorithm based on the look-up table (LUT) founded by 6S model was used to correct (HJ-1) CCD image pixel by pixel. Then, the effect of atmospheric correction on CCD data of HJ-1 satellite was analyzed in terms of the spectral curves and evaluated against the measured reflectance acquired during HJ-1B satellite overpass, finally, the normalized difference vegetation index (NDVI) before and after atmospheric correction were compared. The results showed: (1) Atmospheric correction on CCD data of HJ-1 satellite can reduce the ''increase'' effect of the atmosphere. (2) Apparent reflectance are higher than those of surface reflectance corrected by 6S model in band1∼band3, but they are lower in the near-infrared band; the surface reflectance values corrected agree with the measured reflectance values well. (3)The NDVI increases significantly after atmospheric correction, which indicates the atmospheric correction can highlight the vegetation information

  15. A high-throughput, restriction-free cloning and screening strategy based on ccdB-gene replacement.

    Science.gov (United States)

    Lund, Bjarte Aarmo; Leiros, Hanna-Kirsti Schrøder; Bjerga, Gro Elin Kjæreng

    2014-03-10

    In high-throughput demanding fields, such as biotechnology and structural biology, molecular cloning is an essential tool in obtaining high yields of recombinant protein. Here, we address recently developed restriction-free methods in cloning, and present a more cost-efficient protocol that has been optimized to improve both cloning and clone screening. In our case study, three homologous β-lactamase genes were successfully cloned using these restriction-free protocols. To clone the genes, we chose a gene replacement strategy, where the recombinant genes contained overhangs that targeted a region of the expression vector including a cytotoxin-encoding ccdB-gene. We provide further evidence that gene replacement can be applied with high-throughput cloning protocols. Targeting a replacement of the ccdB-gene was found to be very successful for counterselection using these protocols. This eliminated the need for treatment with the restriction enzyme DpnI that has so far been the preferred clone selection approach. We thus present an optimized cloning protocol using a restriction-free ccdB-gene replacement strategy, which allows for parallel cloning at a high-throughput level.

  16. Application of a newly developed CCD for spectral-width measurements of a 53 eV germanium laser

    Energy Technology Data Exchange (ETDEWEB)

    Tsunemi, H. (Osaka Univ., Toyonaka (Japan). Earth and Space Science); Nomoto, S. (Osaka Univ., Toyonaka (Japan). Earth and Space Science); Hayashida, K. (Osaka Univ., Toyonaka (Japan). Earth and Space Science); Miyata, E. (Osaka Univ., Toyonaka (Japan). Earth and Space Science); Murakami, H. (Osaka Univ., Toyonaka (Japan). Earth and Space Science); Kato, Y. (Osaka Univ., Suita (Japan). Inst. of Laser Engineering); Yuan, G. (Osaka Univ., Suita (Japan). Inst. of Laser Engineering); Murai, K. (Osaka Univ., Suita (Japan). Inst. of Laser Engineering); Kodama, R. (Osaka Univ., Suita (Japan). Inst. of Laser Engineering); Daido, H. (Osaka Univ., Suita (Japan). Inst. of Laser Engineering)

    1993-11-01

    We report the application of a soft X-ray CCD for X-ray laser experiments. A newly developed CCD which has a thinned protection layer (SiO[sub 2]) of about 0.2 [mu]m was attached to a grazing incidence spectrometer with a resolving power of 16000 in order to measure high-resolution spectra of a germanium soft X-ray laser. Clear spectra have been recorded with a high sensitivity in the energy range between 51 eV (240 A) and 55 eV (225 A). In addition to the two strong lasing lines at 236 A and 232 A, more than 20 weak spontaneous emission lines have been recorded in this energy range. The spectral width of the 236 A lasing line is approximately 20.5 mA at the full width at half maximum. It is shown that this direct X-ray detection system has a spatial resolution of about 1/10 of the CCD pixel size in this spectral measurement. (orig.)

  17. Ultraviolet-visible spectroscopic characterization of lanthanum beryllate crystals doped with Er, Nd, or Pr ions

    OpenAIRE

    Pustovarov, Vladimir; Ogorodnikov, Igor

    2016-01-01

    Spectroscopic characterization of lanthanum beryllate La$_{2}$Be$_{2}$O$_{5}$ (BLO) single crystals doped with trivalent ions of Eu, Nd or Pr, was carried out in the ultraviolet-visible spectral range using synchrotron radiation spectroscopy in combination with conventional optical absorption and luminescence spectroscopy techniques. On the basis of the obtained data, the energy level diagram for these trivalent impurity ions in BLO host lattice was developed; the optical and electronic prope...

  18. SU-F-BRA-16: Development of a Radiation Monitoring Device Using a Low-Cost CCD Camera Following Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Taneja, S; Fru, L Che; Desai, V; Lentz, J; Lin, C; Scarpelli, M; Simiele, E; Trestrail, A; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2015-06-15

    Purpose: It is now commonplace to handle treatments of hyperthyroidism using iodine-131 as an outpatient procedure due to lower costs and less stringent federal regulations. The Nuclear Regulatory Commission has currently updated release guidelines for these procedures, but there is still a large uncertainty in the dose to the public. Current guidelines to minimize dose to the public require patients to remain isolated after treatment. The purpose of this study was to use a low-cost common device, such as a cell phone, to estimate exposure emitted from a patient to the general public. Methods: Measurements were performed using an Apple iPhone 3GS and a Cs-137 irradiator. The charge-coupled device (CCD) camera on the phone was irradiated to exposure rates ranging from 0.1 mR/hr to 100 mR/hr and 30-sec videos were taken during irradiation with the camera lens covered by electrical tape. Interactions were detected as white pixels on a black background in each video. Both single threshold (ST) and colony counting (CC) methods were performed using MATLAB®. Calibration curves were determined by comparing the total pixel intensity output from each method to the known exposure rate. Results: The calibration curve showed a linear relationship above 5 mR/hr for both analysis techniques. The number of events counted per unit exposure rate within the linear region was 19.5 ± 0.7 events/mR and 8.9 ± 0.4 events/mR for the ST and CC methods respectively. Conclusion: Two algorithms were developed and show a linear relationship between photons detected by a CCD camera and low exposure rates, in the range of 5 mR/hr to 100-mR/hr. Future work aims to refine this model by investigating the dose-rate and energy dependencies of the camera response. This algorithm allows for quantitative monitoring of exposure from patients treated with iodine-131 using a simple device outside of the hospital.

  19. SU-F-BRA-16: Development of a Radiation Monitoring Device Using a Low-Cost CCD Camera Following Radionuclide Therapy

    International Nuclear Information System (INIS)

    Taneja, S; Fru, L Che; Desai, V; Lentz, J; Lin, C; Scarpelli, M; Simiele, E; Trestrail, A; Bednarz, B

    2015-01-01

    Purpose: It is now commonplace to handle treatments of hyperthyroidism using iodine-131 as an outpatient procedure due to lower costs and less stringent federal regulations. The Nuclear Regulatory Commission has currently updated release guidelines for these procedures, but there is still a large uncertainty in the dose to the public. Current guidelines to minimize dose to the public require patients to remain isolated after treatment. The purpose of this study was to use a low-cost common device, such as a cell phone, to estimate exposure emitted from a patient to the general public. Methods: Measurements were performed using an Apple iPhone 3GS and a Cs-137 irradiator. The charge-coupled device (CCD) camera on the phone was irradiated to exposure rates ranging from 0.1 mR/hr to 100 mR/hr and 30-sec videos were taken during irradiation with the camera lens covered by electrical tape. Interactions were detected as white pixels on a black background in each video. Both single threshold (ST) and colony counting (CC) methods were performed using MATLAB®. Calibration curves were determined by comparing the total pixel intensity output from each method to the known exposure rate. Results: The calibration curve showed a linear relationship above 5 mR/hr for both analysis techniques. The number of events counted per unit exposure rate within the linear region was 19.5 ± 0.7 events/mR and 8.9 ± 0.4 events/mR for the ST and CC methods respectively. Conclusion: Two algorithms were developed and show a linear relationship between photons detected by a CCD camera and low exposure rates, in the range of 5 mR/hr to 100-mR/hr. Future work aims to refine this model by investigating the dose-rate and energy dependencies of the camera response. This algorithm allows for quantitative monitoring of exposure from patients treated with iodine-131 using a simple device outside of the hospital

  20. Preliminary Spectroscopic Measurements for a Gallium Electromagnetic (GEM) Thruster

    Science.gov (United States)

    Thomas, Robert E.; Burton, Rodney L.; Glumac, Nick G.; Polzin, Kurt A.

    2007-01-01

    As a propellant option for electromagnetic thrusters, liquid ,gallium appears to have several advantages relative to other propellants. The merits of using gallium in an electromagnetic thruster (EMT) are discussed and estimates of discharge current levels and mass flow rates yielding efficient operation are given. The gallium atomic weight of 70 predicts high efficiency in the 1500-2000 s specific impulse range, making it ideal for higher-thrust, near-Earth missions. A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma and estimate electron temperature. The spectra show that neutral, singly, and doubly ionized gallium species are present in a 20 J, 1.8 kA (peak) are discharge. With graphite present on the insulator to facilitate breakdown, singly and doubly ionized carbon atoms are also present, and emission is observed from molecular carbon (CZ) radicals. A determination of the electron temperature was attempted using relative emission line data, and while the spatially and temporally averaged, spectra don't fit well to single temperatures, the data and presence of doubly ionized gallium are consistent with distributions in the 1-3 eV range.

  1. Lost in space: Onboard star identification using CCD star tracker data without an a priori attitude

    Science.gov (United States)

    Ketchum, Eleanor A.; Tolson, Robert H.

    1993-01-01

    There are many algorithms in use today which determine spacecraft attitude by identifying stars in the field of view of a star tracker. Some methods, which date from the early 1960's, compare the angular separation between observed stars with a small catalog. In the last 10 years, several methods have been developed which speed up the process and reduce the amount of memory needed, a key element to onboard attitude determination. However, each of these methods require some a priori knowledge of the spacecraft attitude. Although the Sun and magnetic field generally provide the necessary coarse attitude information, there are occasions when a spacecraft could get lost when it is not prudent to wait for sunlight. Also, the possibility of efficient attitude determination using only the highly accurate CCD star tracker could lead to fully autonomous spacecraft attitude determination. The need for redundant coarse sensors could thus be eliminated at substantial cost reduction. Some groups have extended their algorithms to implement a computation intense full sky scan. Some require large data bases. Both storage and speed are concerns for autonomous onboard systems. Neural network technology is even being explored by some as a possible solution, but because of the limited number of patterns that can be stored and large overhead, nothing concrete has resulted from these efforts. This paper presents an algorithm which, by descretizing the sky and filtering by visual magnitude of the brightness observed star, speeds up the lost in space star identification process while reducing the amount of necessary onboard computer storage compared to existing techniques.

  2. CCD photometry of the open clusters NGC 2627, NGC 5617, Pismis 7, and Ruprecht 75

    Science.gov (United States)

    Ahumada, J. A.

    2005-01-01

    We present broad-band, optical CCD photometry of the galactic open clusters NGC 2627, NGC 5617, Pismis 7, and Ruprecht 75. By means of the comparison between the observed cluster sequences and the theoretical isochrones of Girardi et al. (2000, A&AS 141, 371), we derive the following parameters. For NGC 2627, E(B-V)=0.04-0.02+0.10, log (age)=9.25+0.10-0.05, and (m-M)_0 = 11.33±0.31; for NGC 5617, E(B-V)=0.54-0.08+0.09 , log (age)= 8.15-0.15+0.25, and (m-M)_0 = 11.53-0.43+0.36; for Pismis 7, E(B-V)= 0.69-0.16+0.18, log (age)= 8.70±0.10, and (m-M)_0 =13.46±0.56; and for Ruprecht 75, E(B-V)= 0.24-0.13+0.18, log (age)= 9.15± 0.05, and (m-M)_0 =13.16-0.57+0.60. The isochrones have been renormalized to the solar values (B-V)_⊙=0.65 and M_V=4.84, along the lines established in Ahumada (2003, RMxAA 39, 41), and following, for instance, Twarog, Ashman & Anthony-Twarog (1997, AJ 114, 2556). Besides, a comparison is made between the isochrones by Girardi et al. (2000) and those, also renormalized, by Castellani, Degl'Innocenti & Marconi (1999, MNRAS 303, 265) in the range of ages and metallicities of interest. It is noted that discrepancies arise mainly for the amount of core overshooting incorporated into the models, which implies different ages for a given cluster.

  3. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem

    2011-05-20

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  4. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    International Nuclear Information System (INIS)

    Yousef, Hazem

    2011-01-01

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  5. A Real-Time Position-Locating Algorithm for CCD-Based Sunspot Tracking

    Science.gov (United States)

    Taylor, Jaime R.

    1996-01-01

    NASA Marshall Space Flight Center's (MSFC) EXperimental Vector Magnetograph (EXVM) polarimeter measures the sun's vector magnetic field. These measurements are taken to improve understanding of the sun's magnetic field in the hopes to better predict solar flares. Part of the procedure for the EXVM requires image motion stabilization over a period of a few minutes. A high speed tracker can be used to reduce image motion produced by wind loading on the EXVM, fluctuations in the atmosphere and other vibrations. The tracker consists of two elements, an image motion detector and a control system. The image motion detector determines the image movement from one frame to the next and sends an error signal to the control system. For the ground based application to reduce image motion due to atmospheric fluctuations requires an error determination at the rate of at least 100 hz. It would be desirable to have an error determination rate of 1 kHz to assure that higher rate image motion is reduced and to increase the control system stability. Two algorithms are presented that are typically used for tracking. These algorithms are examined for their applicability for tracking sunspots, specifically their accuracy if only one column and one row of CCD pixels are used. To examine the accuracy of this method two techniques are used. One involves moving a sunspot image a known distance with computer software, then applying the particular algorithm to see how accurately it determines this movement. The second technique involves using a rate table to control the object motion, then applying the algorithms to see how accurately each determines the actual motion. Results from these two techniques are presented.

  6. The HITRAN2016 molecular spectroscopic database

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, I. E.; Rothman, L. S.; Hill, C.; Kochanov, R. V.; Tan, Y.; Bernath, P. F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K. V.; Drouin, B. J.; Flaud, J. -M.; Gamache, R. R.; Hodges, J. T.; Jacquemart, D.; Perevalov, V. I.; Perrin, A.; Shine, K. P.; Smith, M. -A. H.; Tennyson, J.; Toon, G. C.; Tran, H.; Tyuterev, V. G.; Barbe, A.; Császár, A. G.; Devi, V. M.; Furtenbacher, T.; Harrison, J. J.; Hartmann, J. -M.; Jolly, A.; Johnson, T. J.; Karman, T.; Kleiner, I.; Kyuberis, A. A.; Loos, J.; Lyulin, O. M.; Massie, S. T.; Mikhailenko, S. N.; Moazzen-Ahmadi, N.; Müller, H. S. P.; Naumenko, O. V.; Nikitin, A. V.; Polyansky, O. L.; Rey, M.; Rotger, M.; Sharpe, S. W.; Sung, K.; Starikova, E.; Tashkun, S. A.; Auwera, J. Vander; Wagner, G.; Wilzewski, J.; Wcisło, P.; Yu, S.; Zak, E. J.

    2017-12-01

    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 200 additional significant molecules have been added to the database.

  7. Integrated photonics for infrared spectroscopic sensing

    Science.gov (United States)

    Lin, Hongtao; Kita, Derek; Han, Zhaohong; Su, Peter; Agarwal, Anu; Yadav, Anupama; Richardson, Kathleen; Gu, Tian; Hu, Juejun

    2017-05-01

    Infrared (IR) spectroscopy is widely recognized as a gold standard technique for chemical analysis. Traditional IR spectroscopy relies on fragile bench-top instruments located in dedicated laboratory settings, and is thus not suitable for emerging field-deployed applications such as in-line industrial process control, environmental monitoring, and point-ofcare diagnosis. Recent strides in photonic integration technologies provide a promising route towards enabling miniaturized, rugged platforms for IR spectroscopic analysis. Chalcogenide glasses, the amorphous compounds containing S, Se or Te, have stand out as a promising material for infrared photonic integration given their broadband infrared transparency and compatibility with silicon photonic integration. In this paper, we discuss our recent work exploring integrated chalcogenide glass based photonic devices for IR spectroscopic chemical analysis, including on-chip cavityenhanced chemical sensing and monolithic integration of mid-IR waveguides with photodetectors.

  8. Spectroscopic follow up of Kepler planet candidates

    DEFF Research Database (Denmark)

    Latham..[], D. W.; Cochran, W. D.; Marcy, G.W.

    2010-01-01

    and not planets, our strategy is to start with reconnaissance spectroscopy using smaller telescopes, to sort out and reject as many of the false positives as possible before going to Keck. During the first Kepler observing season in 2009, more than 100 nights of telescope time were allocated for this work, using......Spectroscopic follow-up observations play a crucial role in the confirmation and characterization of transiting planet candidates identified by Kepler. The most challenging part of this work is the determination of radial velocities with a precision approaching 1 m/s in order to derive masses from...... spectroscopic orbits. The most precious resource for this work is HIRES on Keck I, to be joined by HARPS-North on the William Herschel Telescope when that new spectrometer comes on line in two years. Because a large fraction of the planet candidates are in fact stellar systems involving eclipsing stars...

  9. Spectroscopic follow up of Kepler planet candidates

    DEFF Research Database (Denmark)

    Latham..[], D. W.; Cochran, W. D.; Marcy, G.W.

    2010-01-01

    Spectroscopic follow-up observations play a crucial role in the confirmation and characterization of transiting planet candidates identified by Kepler. The most challenging part of this work is the determination of radial velocities with a precision approaching 1 m/s in order to derive masses from...... spectroscopic orbits. The most precious resource for this work is HIRES on Keck I, to be joined by HARPS-North on the William Herschel Telescope when that new spectrometer comes on line in two years. Because a large fraction of the planet candidates are in fact stellar systems involving eclipsing stars...... and not planets, our strategy is to start with reconnaissance spectroscopy using smaller telescopes, to sort out and reject as many of the false positives as possible before going to Keck. During the first Kepler observing season in 2009, more than 100 nights of telescope time were allocated for this work, using...

  10. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2017-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  11. The Gaia-ESO Public Spectroscopic Survey

    OpenAIRE

    Gilmore, G.; Randich, S.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.; Micela, G.; Negueruela, I.; Prusti, T.; Rix, H.-W.; Vallenari, A.; Alfaro, E.

    2012-01-01

    The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. The motivation, organisation and implementation of the Gaia-ESO Survey are described, emphasising the compleme...

  12. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    Science.gov (United States)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  13. Near infrared thermography by CCD cameras and application to first wall components of Tore Supra tokamak

    International Nuclear Information System (INIS)

    Moreau, F.

    1996-01-01

    In the Tokamak TORE-SUPRA, the plasma facing components absorbs and evacuate (active cooling) high power fluxes (up to 10 MW/m 2 ). Their thermal behavior study is essential for the success of controlled thermonuclear fusion line. The first part is devoted to the study of power deposition on the TORE-SUPRA actively cooled limiters. A model of power deposition on one of the limiters is developed. It Takes into account the magnetic topology and a description of the plasma edge. The model is validated with experimental calorimetric data obtained during a series of shots. This will allow to compare the surface temperature measurements with the predicted ones. The main purpose of this thesis was to evaluate and develop a new surface temperature measurement system. It works in the near infrared range (890 nm) and is designed to complete the existing thermographic diagnostic of TORE-SUPRA. By using the radiation laws (for a blackbody and the plasma) ant the laboratory calibration one can estimate the surface temperature of the observed object. We evaluate the performances and limits of such a device in the harsh conditions encountered in a Tokamak environment. On the one hand, in a quasi ideal situation, this analysis shows that the range of measurement is 600 deg. C to 2500 deg. C. On the other hand, when one takes into account of the plasma radiation (with an averaged central plasma density of 6.10 19 m -3 ), we find that the minimum surface temperature rise to 900 deg. C. In the near future, according to the development of IR-CCD cameras working in the near infrared range up to 2 micrometers, we will be able to keep the good spatial resolution with an improved lower limit for the temperature down to 150 deg. C. The last section deals with a number of computer tools to process the images obtained from experiments on TORE-SUPRA. A pattern recognition application was especially developed to detect a complex plasma iso-intensity structure. (author)

  14. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Smee, Stephen A.; Gunn, James E.; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M.; Carr, Michael A.; Leger, French; Dawson, Kyle S.; Olmstead, Matthew D.; Brinkmann, Jon; Owen, Russell; Barkhouser, Robert H.; Honscheid, Klaus; Harding, Paul; Long, Dan; Lupton, Robert H.; Loomis, Craig; Anderson, Lauren; Annis, James; Bernardi, Mariangela; Bhardwaj, Vaishali; Bizyaev, Dmitry; Bolton, Adam S.; Brewington, Howard; Briggs, John W.; Burles, Scott; Burns, James G.; Castander, Francisco Javier; Connolly, Andrew; Davenport, James R. A.; Ebelke, Garrett; Epps, Harland; Feldman, Paul D.; Friedman, Scott D.; Frieman, Joshua; Heckman, Timothy; Hull, Charles L.; Knapp, Gillian R.; Lawrence, David M.; Loveday, Jon; Mannery, Edward J.; Malanushenko, Elena; Malanushenko, Viktor; Merrelli, Aronne James; Muna, Demitri; Newman, Peter R.; Nichol, Robert C.; Oravetz, Daniel; Pan, Kaike; Pope, Adrian C.; Ricketts, Paul G.; Shelden, Alaina; Sandford, Dale; Siegmund, Walter; Simmons, Audrey; Smith, D. Shane; Snedden, Stephanie; Schneider, Donald P.; SubbaRao, Mark; Tremonti, Christy; Waddell, Patrick; York, Donald G.

    2013-07-12

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \\lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \\lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.

  15. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    International Nuclear Information System (INIS)

    Smee, Stephen A.; Barkhouser, Robert H.; Gunn, James E.; Carr, Michael A.; Lupton, Robert H.; Loomis, Craig; Uomoto, Alan; Roe, Natalie; Schlegel, David; Rockosi, Constance M.; Leger, French; Owen, Russell; Anderson, Lauren; Dawson, Kyle S.; Olmstead, Matthew D.; Brinkmann, Jon; Long, Dan; Honscheid, Klaus; Harding, Paul; Annis, James

    2013-01-01

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5 m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyα absorption of 160,000 high redshift quasars over 10,000 deg 2 of sky, making percent level measurements of the absolute cosmic distance scale of the universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near-ultraviolet to the near-infrared, with a resolving power R = λ/FWHM ∼ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 nm < λ < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances

  16. Microsecond Scale Vibrational Spectroscopic Imaging by Multiplex Stimulated Raman Scattering Microscopy.

    Science.gov (United States)

    Liao, Chien-Sheng; Slipchenko, Mikhail N; Wang, Ping; Li, Junjie; Lee, Seung-Young; Oglesbee, Robert A; Cheng, Ji-Xin

    Real-time vibrational spectroscopic imaging is desired for monitoring cellular states and cellular processes in a label-free manner. Raman spectroscopic imaging of highly dynamic systems is inhibited by relatively slow spectral acquisition on millisecond to second scale. Here, we report microsecond scale vibrational spectroscopic imaging by lock-in free parallel detection of spectrally dispersed stimulated Raman scattering signal. Using a homebuilt tuned amplifier array, our method enables Raman spectral acquisition, within the window defined by the broadband pulse, at the speed of 32 microseconds and with close to shot-noise limited detection sensitivity. Incorporated with multivariate curve resolution analysis, our platform allows compositional mapping of lipid droplets in single live cells, observation of intracellular retinoid metabolism, discrimination of fat droplets from protein-rich organelles in Caenorhabditis elegans, spectral detection of fast flowing tumor cells, and monitoring drug diffusion through skin tissue in vivo . The reported technique opens new opportunities for compositional analysis of cellular compartment in a microscope setting and high-throughput spectral profiling of single cells in a flow cytometer setting.

  17. LiCHy: The CAF’s LiDAR, CCD and Hyperspectral Integrated Airborne Observation System

    Directory of Open Access Journals (Sweden)

    Yong Pang

    2016-05-01

    Full Text Available We describe the design, implementation and performance of a novel airborne system, which integrates commercial waveform LiDAR, CCD (Charge-Coupled Device camera and hyperspectral sensors into a common platform system. CAF’s (The Chinese Academy of Forestry LiCHy (LiDAR, CCD and Hyperspectral Airborne Observation System is a unique system that permits simultaneous measurements of vegetation vertical structure, horizontal pattern, and foliar spectra from different view angles at very high spatial resolution (~1 m on a wide range of airborne platforms. The horizontal geo-location accuracy of LiDAR and CCD is about 0.5 m, with LiDAR vertical resolution and accuracy 0.15 m and 0.3 m, respectively. The geo-location accuracy of hyperspectral image is within 2 pixels for nadir view observations and 5–7 pixels for large off-nadir observations of 55° with multi-angle modular when comparing to LiDAR product. The complementary nature of LiCHy’s sensors makes it an effective and comprehensive system for forest inventory, change detection, biodiversity monitoring, carbon accounting and ecosystem service evaluation. The LiCHy system has acquired more than 8000 km2 of data over typical forests across China. These data are being used to investigate potential LiDAR and optical remote sensing applications in forest management, forest carbon accounting, biodiversity evaluation, and to aid in the development of similar satellite configurations. This paper describes the integration of the LiCHy system, the instrument performance and data processing workflow. We also demonstrate LiCHy’s data characteristics, current coverage, and potential vegetation applications.

  18. MMW/THz imaging using upconversion to visible, based on glow discharge detector array and CCD camera

    Science.gov (United States)

    Aharon, Avihai; Rozban, Daniel; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, Natan S.

    2017-10-01

    An inexpensive upconverting MMW/THz imaging method is suggested here. The method is based on glow discharge detector (GDD) and silicon photodiode or simple CCD/CMOS camera. The GDD was previously found to be an excellent room-temperature MMW radiation detector by measuring its electrical current. The GDD is very inexpensive and it is advantageous due to its wide dynamic range, broad spectral range, room temperature operation, immunity to high power radiation, and more. An upconversion method is demonstrated here, which is based on measuring the visual light emitting from the GDD rather than its electrical current. The experimental setup simulates a setup that composed of a GDD array, MMW source, and a basic CCD/CMOS camera. The visual light emitting from the GDD array is directed to the CCD/CMOS camera and the change in the GDD light is measured using image processing algorithms. The combination of CMOS camera and GDD focal plane arrays can yield a faster, more sensitive, and very inexpensive MMW/THz camera, eliminating the complexity of the electronic circuits and the internal electronic noise of the GDD. Furthermore, three dimensional imaging systems based on scanning prohibited real time operation of such imaging systems. This is easily solved and is economically feasible using a GDD array. This array will enable us to acquire information on distance and magnitude from all the GDD pixels in the array simultaneously. The 3D image can be obtained using methods like frequency modulation continuous wave (FMCW) direct chirp modulation, and measuring the time of flight (TOF).

  19. Measurements of STI 941 from the Palomar Observatory Sky Surveys, Gaia DR1, and New CCD Images

    Science.gov (United States)

    Smith, Kent; Priest, Allen

    2018-01-01

    We report and compare seven new measurements of position angle and separation of the double star WDS 20023+6515 (STI 941) from images obtained from the Palomar Observatory Sky Surveys POSS I (1953) and POSS II (1991, 1994), calculated from position data provided by Gaia DR1, and from analysis of new CCD images. Trends in separation and position angle change are difficult to determine due to the possible inaccuracy of the earliest measurements. There is no indication of an elliptical orbit. Analysis of the proper motions sug-gests that STI 941 can be classed a Similar Proper Motion pair. Analysis of parallax is inconclusive due to high parallax error.

  20. A new and efficient transient noise analysis technique for simulation of CCD image sensors or particle detectors

    International Nuclear Information System (INIS)

    Bolcato, P.; Jarron, P.; Poujois, R.

    1993-01-01

    CCD image sensors or switched capacitor circuits used for particle detectors have a certain noise level affecting the resolution of the detector. A new noise simulation technique for these devices is presented that has been implemented in the circuit simulator ELDO. The approach is particularly useful for noise simulation in analog sampling circuits. Comparison between simulations and experimental results has been made and is shown for a 1.5 μ CMOS current mode amplifier designed for high-rate particle detectors. (R.P.) 5 refs., 7 figs