WorldWideScience

Sample records for single spatial light

  1. Spatially selecting a single cell for lysis using light-induced electric fields.

    Science.gov (United States)

    Witte, Christian; Kremer, Clemens; Chanasakulniyom, Mayuree; Reboud, Julien; Wilson, Rab; Cooper, Jonathan M; Neale, Steven L

    2014-08-13

    An optoelectronic tweezing (OET) device, within an integrated microfluidic channel, is used to precisely select single cells for lysis among dense populations. Cells to be lysed are exposed to higher electrical fields than their neighbours by illuminating a photoconductive film underneath them. Using beam spot sizes as low as 2.5 μm, 100% lysis efficiency is reached in <1 min allowing the targeted lysis of cells. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Autostereoscopic three-dimensional display by combining a single spatial light modulator and a zero-order nulled grating

    Science.gov (United States)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Lu, Yifan; Guo, Peiliang; Shi, Lingyan; Wu, Jianhong

    2018-04-01

    In this paper, an autostereoscopic three-dimensional (3D) display system based on synthetic hologram reconstruction is proposed and implemented. The system uses a single phase-only spatial light modulator to load the synthetic hologram of the left and right stereo images, and the parallax angle between two reconstructed stereo images is enlarged by a grating to meet the split angle requirement of normal stereoscopic vision. To realize the crosstalk-free autostereoscopic 3D display with high light utilization efficiency, the groove parameters of the grating are specifically designed by the rigorous coupled-wave theory for suppressing the zero-order diffraction, and then the zero-order nulled grating is fabricated by the holographic lithography and the ion beam etching. Furthermore, the diffraction efficiency of the fabricated grating is measured under the illumination of a laser beam with a wavelength of 532 nm. Finally, the experimental verification system for the proposed autostereoscopic 3D display is presented. The experimental results prove that the proposed system is able to generate stereoscopic 3D images with good performances.

  3. Liquid crystal television spatial light modulators

    Science.gov (United States)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  4. Consequences of Spatial Antisymmetry on Light

    Energy Technology Data Exchange (ETDEWEB)

    Mascarenhas, Angelo; Fluegel, Brian

    2016-12-21

    Light propagation in two and three dimensional lattices for which the index of refraction exhibits spatial antisymmetry is investigated in the ray and photonic crystal regimes. In these regimes, all the two dimensional antisymmetry groups for which light fails to propagate are identified. In the ray-regime, it is observed that in tilings described by 7 of the 46 two dimensional antisymmetric groups, light is localized within a fundamental domain and does not propagate through the tiling, in contrast to the behavior in the other 39 groups. To understand the above phenomenon, a rule based on the number of anti-mirror planes passing through a single Bravais lattice point is derived. In the wave regime for photonic crystals, it is observed that there are no propagating eigensolutions for the same 7 tilings as above, whereas propagating solutions and energy pass band dispersion curves can be obtained for the other 39 groups. The reasons underlying this peculiar behavior are analyzed using the topological approach for modeling flow in dynamical billiards to shed light on the applicability of Bloch's theorem for these periodic antisymmetric lattices.

  5. Pulse shaping using a spatial light modulator

    CSIR Research Space (South Africa)

    Botha, N

    2009-07-01

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  6. Exploiting the spatial profiles of light

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2017-01-01

    Full Text Available We implement digital holograms for the creation and detection of the spatial modes of light. We make use of modal decomposition theory to determine the numerous properties of light, from the modal content of laser beams to decoding the information...

  7. Multiplexing 200 spatial modes with a single hologram

    Science.gov (United States)

    Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew

    2017-11-01

    The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.

  8. Spatial light modulation for mode conditioning

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    We demonstrate patented techniques for generating tuneable complex field distributions for controllable coupling to high-order guided modes of micro-structured fibres. The optical Fourier transform of binary phase-only patterns which are encoded on a computer-controlled spatial light modulator......, generates complex field distributions for selective launching of a desired mode. Both the amplitude and the phase of the programmable fields are modulated by straightforward and fast adjustments of simple pre-defined binary phase-only diffractive patterns. Experiments demonstrate tuneable coupling...

  9. Spatial light modulators for projection displays

    Science.gov (United States)

    Takizawa, Kuniharu; Fujii, Takanori; Kawakita, Masahiro; Kikuchi, Hiroshi; Fujikake, Hideo; Yokozawa, Minori; Murata, Akiko; Kishi, Kiyoshi

    1997-08-01

    Spatial light modulators (SLM s) consisting of a polymer-dispersed liquid crystal (PDLC) film and a Bi 12 SiO 20 photoconductor are discussed and demonstrated. This device, which uses light scattering in the PDLC film, has several advantages including no polarizer, a low optical loss, and video-rate operation. The device was designed by use of an electrical-image method. High-definition SLM s with a limiting resolution (36 50 line pairs mm) were fabricated by stacking of an optimized mirror and the PDLC film. The device, which was incorporated into a Schlieren system with a 1-kW xenon lamp, provided high-contrast video images and a total luminous flux of 1000 lm.

  10. Topography and refractometry of nanostructures using spatial light interference microscopy.

    Science.gov (United States)

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-15

    Spatial light interference microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with a 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures.

  11. Light Emitting Transistors of Organic Single Crystals

    Science.gov (United States)

    Iwasa, Yoshihiro

    2009-03-01

    Organic light emitting transistors (OLETs) are attracting considerable interest as a novel function of organic field effect transistors (OFETs). Besides a smallest integration of light source and current switching devices, OLETs offer a new opportunity in the fundamental research on organic light emitting devices. The OLET device structure allows us to use organic single crystals, in contrast to the organic light emitting diodes (OLEDs), the research of which have been conducted predominantly on polycrystalline or amorphous thin films. In the case of OFETs, use of single crystals have produced a significant amount of benefits in the studies of pursuit for the highest performance limit of FETs, intrinsic transport mechanism in organic semiconductors, and application of the single crystal transistors. The study on OLETs have been made predominantly on polycrystalline films or multicomponent heterojunctions, and single crystal study is still limited to tetracene [1] and rubrene [2], which are materials with relatively high mobility, but with low photoluminescence efficiency. In this paper, we report fabrication of single crystal OLETs of several kinds of highly luminescent molecules, emitting colorful light, ranging from blue to red. Our strategy is single crystallization of monomeric or oligomeric molecules, which are known to have a very high photoluminescence efficiency. Here we report the result on single crystal LETs of rubrene (red), 4,4'-bis(diphenylvinylenyl)-anthracene (green), 1,4-bis(5-phenylthiophene-2-yl)benzene (AC5) (green), and 1,3,6,8-tetraphenylpyrene (TPPy) (blue), all of which displayed ambipolar transport as well as peculiar movement of voltage controlled movement of recombination zone, not only from the surface of the crystal but also from the edges of the crystals, indicting light confinement inside the crystal. Realization of ambipolar OLET with variety of single crystals indicates that the fabrication method is quite versatile to various light

  12. Pixel size and pitch measurements of liquid crystal spatial light ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 2. Pixel size and pitch ... Liquid crystal displays; spatial light modulator; optical diffraction. Abstract. We present a simple technique for the determination of pixel size and pitch of liquid crystal (LC) based spatial light modulator (SLM). The proposed method is ...

  13. Shaping and detecting mid-IR light with a spatial light modulator

    CSIR Research Space (South Africa)

    Maweza, Elijah L

    2016-10-01

    Full Text Available We demonstrate the operation and calibration of a spatial light modulator in the mid-IR region by creating and measuring the modal content and wavefront of structured light fields at 2um for the first time....

  14. The Influence of Environmental Spatial Layout on Perceived Lightness

    Science.gov (United States)

    Kanari, Kei; Inagami, Makoto; Kaneko, Hirohiko

    2011-01-01

    It is obvious that perceived lightness of a surface depends on the surrounding luminance distribution in 2D and 3D. These effects are usually explained by the mechanisms at relatively low level of visual system. However, there seems to be a relation between the illuminance and spatial layout of the scene regardless of the surrounding luminance distribution. If this is valid, perceived lightness of a surface in the scene could be influenced by the spatial layout in the scene. In this research, we investigated the relation between the perceived lightness of surface and the spatial layout of the scene. The subject matched the lightness of test patch presented on a natural picture with various spatial layout to that of comparison stimulus presented on a uniform gray background. The mean luminance of the surround stimuli were the same and the local contrast between the text patch and the surround was kept constant. Results showed that the perceived lightness of a stimulus depended on the spatial structure presented in the background. This result indicates that the spatial layout of the scene is related to the illuminance of that and influenced on perceived lightness.

  15. Optical particle trapping and dynamic manipulation using spatial light modulation

    DEFF Research Database (Denmark)

    Eriksen, René Lynge

    This thesis deals with the spatial phase-control of light and its application for optical trapping and manipulation of micron-scale objects. Utilizing the radiation pressure, light exerts on dielectric micron-scale particles, functionality of optical tweezers can be obtained. Multiple intensity...... spots acting as tweezers beams are generated using phase-only spatial light modulation of an incident laser beam together with a generalized phase contrast (GPC) filter. The GPC method acts as a common-path interferometer, which converts encoded phase information into an appropriate intensity pattern...... suitable for optical trapping. A phaseonly spatial light modulator (SLM) is used for the phase encoding of the laser beam. The SLM is controlled directly from a standard computer where phase information is represented as gray-scale image information. Experimentally, both linear and angular movements...

  16. Laser trapping and spatial light modulators

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2012-01-01

    INVITED: Robotics at the macro-scale typically uses light for carrying information in machine vision for monitoring and feedback in intelligent robotic guidance systems. With light’s miniscule momentum, shrinking robots down to the micro-scale regime creates opportunities for exploiting optical...... designed different three-dimensional micro-structures and fabricated them by two-photon polymerization. These micro-structures are then handled using our BioPhotonics Workstation to show proof-of-principle demonstrations illustrating the 6DOF optical actuation of these two-photon fabricated three...

  17. Enhanced Interferometry with Programmable Spatial Light Modulator

    Science.gov (United States)

    2010-06-07

    vibration Phase information of the object, ∆Ф(x,y) can be obtained from the 4 intensities on each unit cell. RCP LCP 900 180270 0 255...interferometer • Single shot, insensitive to vibration Phase information of the object, ∆Ф(x,y) can be obtained from the 4 intensities on each unit...cell. RCP LCP 900 180270 *Produced and Trademark by 4D Technologies, Inc, Tucson, AZ http://www.4dtechnology.com Jtrolinger@metrolaserinc.com6-7-2010

  18. Spatial light modulator using polymer-dispersed liquid crystal: Dependence of resolution on reading light intensity

    Science.gov (United States)

    Takizawa, Kuniharu; Kikuchi, Hiroshi; Fujikake, Hideo; Kodama, Kenichi; Kishi, Kiyoshi

    1994-03-01

    A spatial light modulator consisting of a polymer-dispersed liquid crystal (PDLC) film, a dielectric mirror, and a Bi12SiO20 photoconductor is useful for projection-type displays, optical image processing, and optical computing. However, a portion of the reading light scattered by the PDLC film passes through the dielectric mirror and illuminates the photoconductor, thus causing deterioration of display-image quality. This article reports on the results of a detailed study on the influence of reading light on the resolution and amplification factor, which is the ratio of reading light intensity to the maximum intensity of writing light. Angular distributions of light scattered by a PDLC cell were measured and the results were used to calculate the intensity of scattered light absorbed by the photoconductor. We then analyzed the optical input/output characteristics of the spatial light modulator with regard to the optical feedback effect caused by the reading light in order to discover the parameter for evaluating image quality. The relation between amplification and resolution is derived from this parameter. We have also considered a light absorption layer for preventing the deterioration of image quality and obtained the relation between the amplification factor and the transmittance of the light absorption layer for high definition images of high brightness. Finally, these theoretical results were confirmed by an experiment using a spatial light modulator with no dielectric mirror.

  19. Generation of multicolor spatial solitons with pulsed light

    OpenAIRE

    Carrasco Rodríguez, Sílvia; Pérez Torres, Juan; Artigas García, David; Torner Sabata, Lluís

    2001-01-01

    The impact of temporal effects to the generation of multiple wave quadratic spatial solitons with pulsed light is shown. We examine soliton formation under conditions of second-harmonic generation but our conclusions are relevant to soliton formation in all parametric processes. It is shown how group-velocity mismatch between the multiple interacting signals prevents spatial soliton formation with too short pulses. Illustrative examples of the minimum pulse width allowed for soliton generatio...

  20. Spatially resolved Hall effect measurement in a single semiconductor nanowire

    Science.gov (United States)

    Storm, Kristian; Halvardsson, Filip; Heurlin, Magnus; Lindgren, David; Gustafsson, Anders; Wu, Phillip M.; Monemar, Bo; Samuelson, Lars

    2012-12-01

    Efficient light-emitting diodes and photovoltaic energy-harvesting devices are expected to play an important role in the continued efforts towards sustainable global power consumption. Semiconductor nanowires are promising candidates as the active components of both light-emitting diodes and photovoltaic cells, primarily due to the added freedom in device design offered by the nanowire geometry. However, for nanowire-based components to move past the proof-of-concept stage and be implemented in production-grade devices, it is necessary to precisely quantify and control fundamental material properties such as doping and carrier mobility. Unfortunately, the nanoscale geometry that makes nanowires interesting for applications also makes them inherently difficult to characterize. Here, we report a method to carry out Hall measurements on single core-shell nanowires. Our technique allows spatially resolved and quantitative determination of the carrier concentration and mobility of the nanowire shell. As Hall measurements have previously been completely unavailable for nanowires, the experimental platform presented here should facilitate the implementation of nanowires in advanced practical devices.

  1. The effect of spatial light modulator (SLM) dependent dispersion on spatial beam shaping

    CSIR Research Space (South Africa)

    Spangenberg, D-M

    2013-08-01

    Full Text Available . This introduces a phase difference between the different wavelengths of the light thereby causing the different wavelengths to disperse as it propagates through the medium. Spatial dispersion occurs when light with different wavelengths is incident on some mask... SLM and adjusts the wave front of light passing through it by no more than a few wavelengths. The combination of many pixels allows us to generate a mask which causes spatial dispersion to occur. The refractive index of the LC cells of the SLM has a...

  2. Spatially incoherent single channel digital Fourier holography.

    Science.gov (United States)

    Kelner, Roy; Rosen, Joseph

    2012-09-01

    We present a new method for recording digital Fourier holograms under incoherent illumination. A single exposure recorded by a digital camera is sufficient to record a real-valued hologram that encodes the complete three-dimensional properties of an object.

  3. Dispersal and spatial heterogeneity: Single species

    Science.gov (United States)

    DeAngelis, Don; Ni, Wei-Ming; Zhang, Bo

    2016-01-01

    A recent result for a reaction-diffusion equation is that a population diffusing at any rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. This has so far been proven by Lou for the case in which the reaction term has only one parameter, m(x)">m(x)m(x), varying with spatial location x">xx, which serves as both the intrinsic growth rate coefficient and carrying capacity of the population. However, this striking result seems rather limited when applies to real populations. In order to make the model more relevant for ecologists, we consider a logistic reaction term, with two parameters, r(x)">r(x)r(x) for intrinsic growth rate, and K(x)">K(x)K(x) for carrying capacity. When r(x)">r(x)r(x) and K(x)">K(x)K(x) are proportional, the logistic equation takes a particularly simple form, and the earlier result still holds. In this paper we have established the result for the more general case of a positive correlation between r(x)">r(x)r(x) and K(x)">K(x)K(x) when dispersal rate is small. We review natural and laboratory systems to which these results are relevant and discuss the implications of the results to population theory and conservation ecology.

  4. Spatial Attention Enhances Perceptual Processing of Single-Element Displays

    Science.gov (United States)

    Bacon, William; Johnston, James C.; Remington, Roger W.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    Shiu and Pashler (1993) reported that precueing masked, single-element displays had negligible effects on identification accuracy. They argued that spatial attention does not actually enhance stimulus perceptibility, but only reduces decision noise. Alternatively, such negative results may arise if cues are sub-optimal, or if masks place an insufficient premium on timely deployment of attention. We report results showing that valid cueing enhances processing of even single-element displays. Spatial attention does indeed enhance perceptual processes.

  5. Performance of single mechanoluminescent particle as ubiquitous light source.

    Science.gov (United States)

    Terasaki, Nao; Xu, Chao-Nan

    2014-08-01

    In this study, we have investigated mechanoluminescent (ML) performance of single ML particle as ubiquitous light source. When using high-speed CCD camera with image intensifier and microscopic equipment, mechanoluminescence from single particle was observed. As to the quantitative ML evaluation of the single ML particle was carried out using photomultiplier, and successfully estimated the performance of the single ML particle as an intensity controllable light source in nW order. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Measuring spatial correlations of photon pairs by automated raster scanning with spatial light modulators.

    Science.gov (United States)

    Paul, E C; Hor-Meyll, M; Ribeiro, P H Souto; Walborn, S P

    2014-06-18

    We demonstrate the use of a phase-only spatial light modulator for the measurement of transverse spatial distributions of coincidence counts between twin photon beams, in a fully automated fashion. This is accomplished by means of the polarization dependence of the modulator, which allows the conversion of a phase pattern into an amplitude pattern. We also present a correction procedure, that accounts for unwanted coincidence counts due to polarization decoherence effects.

  7. Linear optical quantum computing in a single spatial mode.

    Science.gov (United States)

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  8. Diffuse optical imaging using spatially and temporally modulated light

    Science.gov (United States)

    O'Sullivan, Thomas D.; Cerussi, Albert E.; Cuccia, David J.; Tromberg, Bruce J.

    2012-07-01

    The authors describe the development of diffuse optical imaging (DOI) technologies, specifically the use of spatial and temporal modulation to control near infrared light propagation in thick tissues. We present theory and methods of DOI focusing on model-based techniques for quantitative, in vivo measurements of endogenous tissue absorption and scattering properties. We specifically emphasize the common conceptual framework of the scalar photon density wave for both temporal and spatial frequency-domain approaches. After presenting the history, theoretical foundation, and instrumentation related to these methods, we provide a brief review of clinical and preclinical applications from our research as well as our outlook on the future of DOI technology.

  9. Expressive Single Scattering for Light Shaft Stylization

    NARCIS (Netherlands)

    Kol, T.R.; Klehm, O.; Seidel, Hans-Peter; Eisemann, E.

    2017-01-01

    Light scattering in participating media is a natural phenomenon that is increasingly featured in movies and games, as it is visually pleasing and lends realism to a scene. In art, it may further be used to express a certain mood or emphasize objects. Here, artists often rely on stylization when

  10. Topography and refractometry of nanostructures using spatial light interference microscopy (SLIM)

    Science.gov (United States)

    Wang, Zhuo; Chun, Ik Su; Li, Xiuling; Ong, Zhun-Yong; Pop, Eric; Millet, Larry; Gillette, Martha; Popescu, Gabriel

    2010-01-01

    Spatial Light Interference Microscopy (SLIM) is a novel method developed in our laboratory that provides quantitative phase images of transparent structures with 0.3 nm spatial and 0.03 nm temporal accuracy owing to the white light illumination and its common path interferometric geometry. We exploit these features and demonstrate SLIM's ability to perform topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed for cylindrical structures, we extract the axially-averaged refractive index of semiconductor nanotubes and a neurite of a live hippocampal neuron in culture. We believe that this study will set the basis for novel high-throughput topography and refractometry of man-made and biological nanostructures. PMID:20081970

  11. Phase-only spatial light modulation by the reverse phase contrast method

    DEFF Research Database (Denmark)

    Glückstad, J.; Mogensen, P.C.; Eriksen, R.L.

    2002-01-01

    A new approach to phase-only spatial light modulation is proposed in which a given amplitude pattern can be converted into a spatially identical binary phase pattern. A spatial filtering approach is applied to transform spatial amplitude modulation into spatial phase modulation using the Reverse ...

  12. High spatial resolution spectroscopy of single semiconductor nanostructures

    Science.gov (United States)

    Harris, T. D.; Gershoni, D.; Pfeiffer, L.; Nirmal, M.; Trautman, J. K.; Macklin, J. J.

    1996-11-01

    Low-temperature near-field scanning optical microscopy is used for the first time in spectroscopic studies of single, nanometre dimension, cleaved edge overgrown quantum wires. A direct experimental comparison between a two-dimensional system and a single genuinely one-dimensional quantum wire system, inaccessible to conventional far-field optical spectroscopy, is enabled by the enhanced spatial resolution. We show that the photoluminescence of a single quantum wire is easily distinguished from that of the surrounding quantum well. Emission from localized centres is shown to dominate the photoluminescence from both wires and wells at low temperatures. A factor of three oscillator strength enhancement for these wires compared with the wells is concluded from the photoluminescence excitation data. We also report room-temperature spectroscopy and dynamics of single CdSe nanocrystals. Photochemistry, trap dynamics and spectroscopy are easily determined.

  13. Optics. Spatially structured photons that travel in free space slower than the speed of light.

    Science.gov (United States)

    Giovannini, Daniel; Romero, Jacquiline; Potoček, Václav; Ferenczi, Gergely; Speirits, Fiona; Barnett, Stephen M; Faccio, Daniele; Padgett, Miles J

    2015-02-20

    That the speed of light in free space is constant is a cornerstone of modern physics. However, light beams have finite transverse size, which leads to a modification of their wave vectors resulting in a change to their phase and group velocities. We study the group velocity of single photons by measuring a change in their arrival time that results from changing the beam's transverse spatial structure. Using time-correlated photon pairs, we show a reduction in the group velocity of photons in both a Bessel beam and photons in a focused Gaussian beam. In both cases, the delay is several micrometers over a propagation distance of ~1 meter. Our work highlights that, even in free space, the invariance of the speed of light only applies to plane waves. Copyright © 2015, American Association for the Advancement of Science.

  14. Holographic 3D display using MEMS spatial light modulator

    Science.gov (United States)

    Takaki, Yasuhiro

    2012-06-01

    This paper presents a new holographic three-dimensional display technique that increases both viewing zone angle and screen size. In this study, a spatial light modulator (SLM) employing microelectromechanical systems (MEMS) technology is used for high-speed image generation. The images generated by the MEMS SLM are demagnified horizontally and magnified vertically using an anamorphic imaging system. The vertically enlarged images, which are elementary holograms, are aligned horizontally by a galvano scanner. Reconstructed images with a screen size of 4.3 in and a horizontal viewing zone angle of 15° are generated at a frame rate of 60 fps. The reconstructed images are improved by two methods: one reduces blur caused by scan and focus errors, and the other improves grayscale representation. In addition, accommodation responses of eyes to the reconstructed images are explained.

  15. High-definition imaging system based on spatial light modulators with light-scattering mode

    Science.gov (United States)

    Kikuchi, Hiroshi; Fujii, Takanori; Kawakita, Masahiro; Hirano, Yoshiyuki; Fujikake, Hideo; Sato, Fumio; Takizawa, Kuniharu

    2004-01-01

    We have developed a prototype high-definition imaging system using polymer-dispersed liquid-crystal (PDLC) light valves, which can modulate unpolarized light with high spatial resolution and exhibit a high optical efficiency, based on the light-scattering effect. We fabricated high-definition light valves with a fine polymer-matrix structure in a PDLC film by controlling the curing conditions used during the photopolymerization-induced phase separation and formation process. This device has excellent characteristics, such as a high resolution, with 50 lp/mm for a limiting resolution and greater than 20 lp/mm at the 50% modulation transfer function point, and a reflectivity of greater than 60%. An optically addressable full-color projection display was designed, consisting of three PDLC light valves, a schlieren optical system based on shift-decentralization optics with a xenon lamp illumination and input-image sources with 1.5 million pixels, including electrical image compensation of the gamma characteristics. We succeeded in displaying pictures on a 110-inch screen with a resolution of 810 TV lines and a luminous flux of 1900-2100 American National Standards Institute lumens.

  16. Light axigluon and single top production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Chong-Xing; Cao, Shi-Yue; Zeng, Qing-Guo [Department of Physics, Liaoning Normal University,Dalian 116029 (China)

    2014-04-28

    The light axigluon model can explain the Tevatron tt-macron forward-backward asymmetry and at the same time satisfy the constraints from the electroweak precision measurement and the ATLAS and CMS data, which induces the flavor changing (FC) couplings of axigluon with the SM and new quarks. We investigate the effects of these FC couplings on the s- and t-channel single top productions at the LHC and the FC decays Z→b-macrons+bs-macron, t→cγ and cg. Our numerical results show that the light axigluon can give significantly contributions to single top production and the rare top decays t→cγ and cg.

  17. Single-cell atomic quantum memory for light

    International Nuclear Information System (INIS)

    Opatrny, Tomas

    2006-01-01

    Recent experiments demonstrating atomic quantum memory for light [B. Julsgaard et al., Nature 432, 482 (2004)] involve two macroscopic samples of atoms, each with opposite spin polarization. It is shown here that a single atomic cell is enough for the memory function if the atoms are optically pumped with suitable linearly polarized light, and quadratic Zeeman shift and/or ac Stark shift are used to manipulate rotations of the quadratures. This should enhance the performance of our quantum memory devices since less resources are needed and losses of light in crossing different media boundaries are avoided

  18. Spatially Resolved Sensitivity of Single-Particle Plasmon Sensors.

    Science.gov (United States)

    Beuwer, Michael A; van Hoof, Bas; Zijlstra, Peter

    2018-03-01

    The high sensitivity of localized surface plasmon resonance sensors to the local refractive index allows for the detection of single-molecule binding events. Though binding events of single objects can be detected by their induced plasmon shift, the broad distribution of observed shifts remains poorly understood. Here, we perform a single-particle study wherein single nanospheres bind to a gold nanorod, and relate the observed plasmon shift to the binding location using correlative microscopy. To achieve this we combine atomic force microscopy to determine the binding location, and single-particle spectroscopy to determine the corresponding plasmon shift. As expected, we find a larger plasmon shift for nanospheres binding at the tip of a rod compared to its sides, in good agreement with numerical calculations. However, we also find a broad distribution of shifts even for spheres that were bound at a similar location to the nanorod. Our correlative approach allows us to disentangle effects of nanoparticle dimensions and binding location, and by comparison to numerical calculations we find that the biggest contributor to this observed spread is the dispersion in nanosphere diameter. These experiments provide insight into the spatial sensitivity and signal-heterogeneity of single-particle plasmon sensors and provides a framework for signal interpretation in sensing applications.

  19. Fourier-transform spatial modulation spectroscopy of single gold nanorods

    Directory of Open Access Journals (Sweden)

    Kollmann Heiko

    2018-03-01

    Full Text Available Sensing the scattered fields of single metallic nanostructures is a crucial step towards the applications of isolated plasmonic antennas, such as for the sensing of single molecules or nanoparticles. In the past, both near- and far-field spectroscopy methods have been applied to monitor single plasmonic resonances. So far, however, these spectral-domain techniques do not yet provide the femtosecond time resolution that is needed to probe the dynamics of plasmonic fields in the time domain. Here, we introduce a time-domain technique that combines broadband Fourier-transform spectroscopy and spatial modulation spectroscopy (FT-SMS to quantitatively measure the extinction spectra of the isolated gold nanorods with a nominal footprint of 41×10 nm2. Using a phase-stable pulse pair for excitation, the technique is capable of rejecting off-resonant stray fields and providing absolute measurements of the extinction cross section. Our results indicate that the method is well suited for measuring the optical response of strongly coupled hybrid systems with high signal-to-noise ratio. It may form the basis for new approaches towards time-domain spectroscopy of single nanoantennas with few-cycle time resolution.

  20. Design of an omnidirectional single-point photodetector for large-scale spatial coordinate measurement

    Science.gov (United States)

    Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei

    2017-10-01

    In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.

  1. Single particle analysis with a 3600 light scattering photometer

    International Nuclear Information System (INIS)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 μm and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360 0 light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5 0 to 177.5 0 at phi = 0 0 and 180 0 is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3 0 in scattering angle on 6 0 centers around 360 0 . 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells

  2. Direct Seeded Single Frequency mid-IR OPA all Passive Light Source

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    We present a two stage pulsed mid-infrared light source based on nonlinear downconversion of light. The light source is single frequency, tunable, all passive, single moded and build with standard optical components....

  3. Scaling properties in single collision model of light ion reflection

    International Nuclear Information System (INIS)

    Vukanic, J.; Simovic, R.

    2004-01-01

    Light ion reflection from solids in the keV energy region has been studied within the single collision model. Particle and energy reflection coefficients as functions of the scaled transport cross section have been calculated numerically by utilizing the exact scattering function for the Kr-C potential and analytically with an effective power approximation for the same potential. The obtained analytical formulae approximate very accurately to the numerical results. Comparison of the calculated reflection coefficients with the experimental data and computer simulations for different light ion-heavy target combinations shows that the scaled transport cross section remains a convenient scaling parameter in the single collision domain, as adopted previously in multiple collision theory

  4. Simulating atmospheric turbulence using a phase-only spatial light modulator

    CSIR Research Space (South Africa)

    Burger, L

    2008-04-01

    Full Text Available transmission windows. The authors demonstrate the simulation of atmospheric turbulence in the laboratory using a phase-only spatial light modulator, and illustrate the advantages of this approach, as well as some of the limitations, when using spatial light...

  5. Light Induced Aggregation of Specific Single Walled Carbon Nanotubes

    OpenAIRE

    Gopannagari, Madhusudana; Chaturvedi, Harsh

    2015-01-01

    We report optically induced aggregation and consequent separation of specific diameter of pristine single walled carbon nanotubes (SWNT) from stable solution. Well dispersed solution of pristine SWNTs, without any surfactant or functionalization, show rapid aggregation by uniform exposure to UV, visible and NIR illumination. Optically induced aggregation linearly increases with consequent increase in the intensity of light. Aggregated SWNTs were separated from the dispersed supernatant and ch...

  6. Light-Induced Switching of Tunable Single-Molecule Junctions

    KAUST Repository

    Sendler, Torsten

    2015-04-16

    A major goal of molecular electronics is the development and implementation of devices such as single-molecular switches. Here, measurements are presented that show the controlled in situ switching of diarylethene molecules from their nonconductive to conductive state in contact to gold nanoelectrodes via controlled light irradiation. Both the conductance and the quantum yield for switching of these molecules are within a range making the molecules suitable for actual devices. The conductance of the molecular junctions in the opened and closed states is characterized and the molecular level E 0, which dominates the current transport in the closed state, and its level broadening Γ are identified. The obtained results show a clear light-induced ring forming isomerization of the single-molecule junctions. Electron withdrawing side-groups lead to a reduction of conductance, but do not influence the efficiency of the switching mechanism. Quantum chemical calculations of the light-induced switching processes correlate these observations with the fundamentally different low-lying electronic states of the opened and closed forms and their comparably small modification by electron-withdrawing substituents. This full characterization of a molecular switch operated in a molecular junction is an important step toward the development of real molecular electronics devices.

  7. A detailed comparison of single-camera light-field PIV and tomographic PIV

    Science.gov (United States)

    Shi, Shengxian; Ding, Junfei; Atkinson, Callum; Soria, Julio; New, T. H.

    2018-03-01

    This paper conducts a comprehensive study between the single-camera light-field particle image velocimetry (LF-PIV) and the multi-camera tomographic particle image velocimetry (Tomo-PIV). Simulation studies were first performed using synthetic light-field and tomographic particle images, which extensively examine the difference between these two techniques by varying key parameters such as pixel to microlens ratio (PMR), light-field camera Tomo-camera pixel ratio (LTPR), particle seeding density and tomographic camera number. Simulation results indicate that the single LF-PIV can achieve accuracy consistent with that of multi-camera Tomo-PIV, but requires the use of overall greater number of pixels. Experimental studies were then conducted by simultaneously measuring low-speed jet flow with single-camera LF-PIV and four-camera Tomo-PIV systems. Experiments confirm that given a sufficiently high pixel resolution, a single-camera LF-PIV system can indeed deliver volumetric velocity field measurements for an equivalent field of view with a spatial resolution commensurate with those of multi-camera Tomo-PIV system, enabling accurate 3D measurements in applications where optical access is limited.

  8. Ultrafast energy relaxation in single light-harvesting complexes.

    Science.gov (United States)

    Malý, Pavel; Gruber, J Michael; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk

    2016-03-15

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.

  9. Ultrafast energy relaxation in single light-harvesting complexes

    Energy Technology Data Exchange (ETDEWEB)

    Malý, Pavel; Gruber, J. Michael; Cogdell, Richard J.; Mančal, Tomáš; van Grondelle, Rienk

    2016-02-22

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub–100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump–probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.

  10. Single-photon absorption by single photosynthetic light-harvesting complexes

    Science.gov (United States)

    Chan, Herman C. H.; Gamel, Omar E.; Fleming, Graham R.; Whaley, K. Birgitta

    2018-03-01

    We provide a unified theoretical approach to the quantum dynamics of absorption of single photons and subsequent excitonic energy transfer in photosynthetic light-harvesting complexes. Our analysis combines a continuous mode -photon quantum optical master equation for the chromophoric system with the hierarchy of equations of motion describing excitonic dynamics in presence of non-Markovian coupling to vibrations of the chromophores and surrounding protein. We apply the approach to simulation of absorption of single-photon coherent states by pigment–protein complexes containing between one and seven chromophores, and compare with results obtained by excitation using a thermal radiation field. We show that the values of excitation probability obtained under single-photon absorption conditions can be consistently related to bulk absorption cross-sections. Analysis of the timescale and efficiency of single-photon absorption by light-harvesting systems within this full quantum description of pigment–protein dynamics coupled to a quantum radiation field reveals a non-trivial dependence of the excitation probability and the excited state dynamics induced by exciton–phonon coupling during and subsequent to the pulse, on the bandwidth of the incident photon pulse. For bandwidths equal to the spectral bandwidth of Chlorophyll a, our results yield an estimation of an average time of ∼0.09 s for a single chlorophyll chromophore to absorb the energy equivalent of one (single-polarization) photon under irradiation by single-photon states at the intensity of sunlight.

  11. A multi-modal stereo microscope based on a spatial light modulator.

    Science.gov (United States)

    Lee, M P; Gibson, G M; Bowman, R; Bernet, S; Ritsch-Marte, M; Phillips, D B; Padgett, M J

    2013-07-15

    Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample.

  12. Topography and refractometry of sperm cells using spatial light interference microscopy.

    Science.gov (United States)

    Liu, Lina; Kandel, Mikhail E; Rubessa, Marcello; Schreiber, Sierra; Wheeler, Mathew B; Popescu, Gabriel

    2018-02-01

    Characterization of spermatozoon viability is a common test in treating infertility. Recently, it has been shown that label-free, phase-sensitive imaging can provide a valuable alternative for this type of assay. We employ spatial light interference microscopy (SLIM) to perform high-accuracy single-cell phase imaging and decouple the average thickness and refractive index information for the population. This procedure was enabled by quantitative-phase imaging cells on media of two different refractive indices and using a numerical tool to remove the curvature from the cell tails. This way, we achieved ensemble averaging of topography and refractometry of 100 cells in each of the two groups. The results show that the thickness profile of the cell tail goes down to 150 nm and the refractive index can reach values of 1.6 close to the head. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  13. A low-voltage high-speed terahertz spatial light modulator using active metamaterial

    Directory of Open Access Journals (Sweden)

    Saroj Rout

    2016-11-01

    Full Text Available An all solid-state metamaterial based terahertz (THz spatial light modulator (SLM is presented which uses high mobility 2DEG to manipulate the metamaterial resonant frequency (0.45 THz leading to terahertz wave modulation. The 2DEG is created by embedding pseudomorphic high-electron mobility transistors in the capacitive gap of each electrical-LC resonator, allowing the charge density to be controlled with very low voltage (1 V and modulating speeds up to 10 MHz while consuming sub-milliwatt power. We have demonstrated our SLM as a 2 × 2 pixel array operating around 0.45 THz by raster scanning a 6 × 6 image of an occluded metal object behind a thick polystyrene screen using a single-pixel THz imaging setup.

  14. Spatial Heterogeneity in Light Supply Affects Intraspecific Competition of a Stoloniferous Clonal Plant

    OpenAIRE

    Wang, Pu; Lei, Jing-Pin; Li, Mai-He; Yu, Fei-Hai

    2012-01-01

    Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition) or nine ramets (with intraspecific competition) of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensit...

  15. Spatial distribution of mineral dust single scattering albedo based on DREAM model

    Science.gov (United States)

    Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka

    2016-04-01

    Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.

  16. High-precision beam shaper for coherent and incoherent light using a DLP spatial light modulator

    Science.gov (United States)

    Liang, Jinyang; Kohn, Rudolph N., Jr.; Becker, Michael F.; Heinzen, Daniel J.

    2011-03-01

    We designed a precision laser beam shaper using a Texas Instruments digital micromirror device (DMD) with a telescope system containing a pinhole low-pass filter. The performance of the beam shaper was measured by comparing the intensity and wave-front uniformity to the target function and by the energy conversion efficiency. We demonstrated flattop and other laser beam profiles with 1-1.5% root-mean-square (RMS) error for a raw camera image and nearly flat phase. A noise analysis of the system revealed that lower error is possible and that most of the error came from coherent speckle noise in the camera. A previous experiment using a 1064 nm single-mode fiber (SMF) laser produced around 7% beam power conversion efficiency. Here we report improvements in system automation and laser source flexibility that result in increasing both the speed of the system to calculate and produce a beam, and the beam uniformity and energy conversion efficiency. A LabVIEW program was written to accelerate the speed of the iterative process for beam profile refinement. A 760 nm super-luminescent light emitting diode (SLED) and a 781 nm Laser Diode (LD) were used as light sources in order to reduce the beam coherence and approach the ultimate performance of the shaper. Both sources greatly reduced the speckle noise and increased measured intensity uniformity. Experiments achieved less than 0.9% RMS error over the entire flattop area with a diameter of 1.32 mm. In addition, simulations were conducted to determine the optimized wavelengths for different types of DMDs. For the .7XGA DMD, the 5th diffraction order matches 750-800 nm. Matching the laser diode to this wavelength increased the power conversion efficiency (input beam to output beam) to 19.8%.

  17. Spatial quantum correlations induced by random multiple scattering of quadrature squeezed light

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2007-01-01

    The authors demonstrates that spatial quantum correlations are induced by multiple scattering of quadrature squeezed light through a random medium. As a consequence, light scattered along two different directions by the random medium will not be independent, but be correlated to an extent that can...... only be described by a quantum mechanical theory for multiple scattering. The spatial quantum correlation is revealed in the fluctuations of the total intensity transmission or reflection through the multiple scattering medium....

  18. Focusing of atoms with spatially localized light pulses

    International Nuclear Information System (INIS)

    Helseth, Lars Egil

    2002-01-01

    We theoretically study the focusing of atoms using strongly localized light pulses. It is shown that when inhomogenously polarized light is focused at high angular apertures, one may obtain useful potentials for atom focusing. Here we analyze the case of pulsed light potentials for red- and blue-detuned focusings of atoms. In particular, we show that the atomic beam aperture must be stopped considerably down in order to reduce the sidelobes of the atomic density, which is similar to the situation often encountered in conventional optics. It is suggested that an annular aperture in front of the atomic beam could be useful for increasing the resolution, at the cost of a lower atomic density

  19. Continuous-wave spatial quantum correlations of light induced by multiple scattering

    DEFF Research Database (Denmark)

    Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander

    2012-01-01

    We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance and ...

  20. High spatial sampling light-guide snapshot spectrometer

    Science.gov (United States)

    Wang, Ye; Pawlowski, Michal E.; Tkaczyk, Tomasz S.

    2017-08-01

    A prototype fiber-based imaging spectrometer was developed to provide snapshot hyperspectral imaging tuned for biomedical applications. The system is designed for imaging in the visible spectral range from 400 to 700 nm for compatibility with molecular imaging applications as well as satellite and remote sensing. An 81×96 pixel spatial sampling density is achieved by using a custom-made fiber-optic bundle. The design considerations and fabrication aspects of the fiber bundle and imaging spectrometer are described in detail. Through the custom fiber bundle, the image of a scene of interest is collected and divided into discrete spatial groups, with spaces generated in between groups for spectral dispersion. This reorganized image is scaled down by an image taper for compatibility with following optical elements, dispersed by a prism, and is finally acquired by a CCD camera. To obtain an (x,y,λ) datacube from the snapshot measurement, a spectral calibration algorithm is executed for reconstruction of the spatial-spectral signatures of the observed scene. System characterization of throughput, resolution, and crosstalk was performed. Preliminary results illustrating changes in oxygen-saturation in an occluded human finger are presented to demonstrate the system's capabilities.

  1. Non-classical light emission from single conjugated polymers

    Science.gov (United States)

    Hollars, Christopher; Lane, Stephen; Huser, Thomas

    2002-03-01

    Photon-antibunching from single, isolated molecules of collapsed-chain poly[2-methoxy,5-(2’-ethyl-hexyloxy)-p-phenylene-vinylene] (MEH-PPV) has been observed using confocal microscopy techniques. Efficient inter-segment energy transfer in collapsed-chain conjugated polymers leads to emission from an average of only 2-3 active sites on a polymer chain that is composed of hundreds of quasi-chromophores. These few centers consist of the segments with the lowest excitation energy and are supplied by the efficient light-harvesting and energy transfer of the surrounding higher-energy segments. This effect depends on the conformation of the polymer molecules, which is controlled by solvent polarity. These results provide new insight into the controversial photophysics of conjugated polymers and their application in optoelectronic devices.

  2. Single bunch transfer system for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Sheehan, J.; Singh, O.; Rambo, W.

    1983-01-01

    The accelerator system at the National Synchrotron Light Source consists of an S-band 85 MeV linac and three synchrotron rings. The electron beam from the linac is accelerated by the booster ring to 600 MeV and transferred to one of the two storage rings. The smaller of the two rings operates between 300 and 800 MeV emtting photons in the vacuum ultraviolet (VUV), while the larger storage ring operates up to 2.5 GeV and emits photons in the x-ray spectrum. A system is described for loading the storage rings by filling a single-phase space bunch in the booster ring and transferring it at the end of each booster cycle into a selected bucket in one of the storage rings. By controlling the timing of the transfer on successive transfer cycles, many fill patterns may be obtained

  3. Electrically pumped single-defect light emitters in WSe2

    Science.gov (United States)

    Schwarz, S.; Kozikov, A.; Withers, F.; Maguire, J. K.; Foster, A. P.; Dufferwiel, S.; Hague, L.; Makhonin, M. N.; Wilson, L. R.; Geim, A. K.; Novoselov, K. S.; Tartakovskii, A. I.

    2016-06-01

    Recent developments in fabrication of van der Waals heterostructures enable new type of devices assembled by stacking atomically thin layers of two-dimensional materials. Using this approach, we fabricate light-emitting devices based on a monolayer WSe2, and also comprising boron nitride tunnelling barriers and graphene electrodes, and observe sharp luminescence spectra from individual defects in WSe2 under both optical and electrical excitation. This paves the way towards the realisation of electrically-pumped quantum emitters in atomically thin semiconductors. In addition we demonstrate tuning by more than 1 meV of the emission energy of the defect luminescence by applying a vertical electric field. This provides an estimate of the permanent electric dipole created by the corresponding electron-hole pair. The light-emitting devices investigated in our work can be assembled on a variety of substrates enabling a route to integration of electrically pumped single quantum emitters with existing technologies in nano-photonics and optoelectronics.

  4. High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea.

    Science.gov (United States)

    Kim, Yun Jeong; Park, Man Sik; Lee, Eunil; Choi, Jae Wook

    2016-01-01

    We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in R2 from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

  5. Light-Induced Charge Transport within a Single Asymmetric Nanowire

    Energy Technology Data Exchange (ETDEWEB)

    LIU, CHONG; HWANG, YUN YEONG; JEONG, HOON EIU; YANG, PEIDONG

    2011-01-21

    Artificial photosynthetic systems using semiconductor materials have been explored for more than three decades in order to store solar energy in chemical fuels such as hydrogen. By mimicking biological photosynthesis with two light-absorbing centers that relay excited electrons in a nanoscopic space, a dual-band gap photoelectrochemical (PEC) system is expected to have higher theoretical energy conversion efficiency than a single band gap system. This work demonstrates the vectorial charge transport of photo-generated electrons and holes within a single asymmetric Si/TiO2 nanowire using Kelvin probe force microscopy (KPFM). Under UV illumination, higher surface potential was observed on the n-TiO₂ side, relative to the potential of the p-Si side, as a result of majority carriers’ recombination at the Si/TiO₂ interface. These results demonstrate a new approach to investigate charge separation and transport in a PEC system. This asymmetric nanowire heterostructure, with a dual band gap configuration and simultaneously exposed anode and cathode surfaces represents an ideal platform for the development of technologies for the generation of solar fuels, although better photoanode materials remain to be discovered.

  6. Device physics of single layer organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Crone, B.K.; Campbell, I.H.; Davids, P.S.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Neef, C.J.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    1999-11-01

    We present experimental and device model results for electron only, hole only, and bipolar organic light-emitting diodes fabricated using a soluble poly ({ital p}-phenylene vinylene) based polymer. Current{endash}voltage (I{endash}V) characteristics were measured for a series of electron only devices in which the polymer thickness was varied. The I{endash}V curves were described using a device model from which the electron mobility parameters were extracted. Similarly, the hole mobility parameters were extracted using a device model description of I{endash}V characteristics for a series of hole only devices where the barrier to hole injection was varied by appropriate choices of hole injecting electrode. The electron and hole mobilities extracted from the single carrier devices are then used, without additional adjustable parameters, to describe the measured current{endash}voltage characteristics of a series of bipolar devices where both the device thickness and contacts were varied. The model successfully describes the I{endash}V characteristics of single carrier and bipolar devices as a function of polymer thickness and for structures that are contact limited, space charge limited, and for cases in between. We find qualitative agreement between the device model and measured external luminance for a thickness series of devices. We investigate the sensitivity of the device model calculations to the magnitude of the bimolecular recombination rate prefactor. {copyright} {ital 1999 American Institute of Physics.}

  7. High spatial sampling light-guide snapshot spectrometer

    Science.gov (United States)

    Wang, Ye; Pawlowski, Michal E.; Tkaczyk, Tomasz S.

    2017-01-01

    A prototype fiber-based imaging spectrometer was developed to provide snapshot hyperspectral imaging tuned for biomedical applications. The system is designed for imaging in the visible spectral range from 400 to 700 nm for compatibility with molecular imaging applications as well as satellite and remote sensing. An 81 × 96 pixel spatial sampling density is achieved by using a custom-made fiber-optic bundle. The design considerations and fabrication aspects of the fiber bundle and imaging spectrometer are described in detail. Through the custom fiber bundle, the image of a scene of interest is collected and divided into discrete spatial groups, with spaces generated in between groups for spectral dispersion. This reorganized image is scaled down by an image taper for compatibility with following optical elements, dispersed by a prism, and is finally acquired by a CCD camera. To obtain an (x, y, λ) datacube from the snapshot measurement, a spectral calibration algorithm is executed for reconstruction of the spatial–spectral signatures of the observed scene. System characterization of throughput, resolution, and crosstalk was performed. Preliminary results illustrating changes in oxygen-saturation in an occluded human finger are presented to demonstrate the system’s capabilities. PMID:29238115

  8. Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape.

    Science.gov (United States)

    Hale, James D; Davies, Gemma; Fairbrass, Alison J; Matthews, Thomas J; Rogers, Christopher D F; Sadler, Jon P

    2013-01-01

    Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.

  9. Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape.

    Directory of Open Access Journals (Sweden)

    James D Hale

    Full Text Available Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.

  10. Spatial heterogeneity in light supply affects intraspecific competition of a stoloniferous clonal plant.

    Science.gov (United States)

    Wang, Pu; Lei, Jing-Pin; Li, Mai-He; Yu, Fei-Hai

    2012-01-01

    Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition) or nine ramets (with intraspecific competition) of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity) and two heterogeneous ones differing in patch size (large and small patch treatments). The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length) of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants.

  11. Spatial heterogeneity in light supply affects intraspecific competition of a stoloniferous clonal plant.

    Directory of Open Access Journals (Sweden)

    Pu Wang

    Full Text Available Spatial heterogeneity in light supply is common in nature. Many studies have examined the effects of heterogeneous light supply on growth, morphology, physiology and biomass allocation of clonal plants, but few have tested those effects on intraspecific competition. In a greenhouse experiment, we grew one (no competition or nine ramets (with intraspecific competition of a stoloniferous clonal plant, Duchesnea indica, in three homogeneous light conditions (high, medium and low light intensity and two heterogeneous ones differing in patch size (large and small patch treatments. The total light in the two heterogeneous treatments was the same as that in the homogeneous medium light treatment. Both decreasing light intensity and intraspecific competition significantly decreased the growth (biomass, number of ramets and total stolon length of D. indica. As compared with the homogeneous medium light treatment, the large patch treatment significantly increased the growth of D. indica without intraspecific competition. However, the growth of D. indica with competition did not differ among the homogeneous medium light, the large and the small patch treatments. Consequently, light heterogeneity significantly increased intraspecific competition intensity, as measured by the decreased log response ratio. These results suggest that spatial heterogeneity in light supply can alter intraspecific interactions of clonal plants.

  12. Mapping Lightscapes: Spatial Patterning of Artificial Lighting in an Urban Landscape

    Science.gov (United States)

    Hale, James D.; Davies, Gemma; Fairbrass, Alison J.; Matthews, Thomas J.; Rogers, Christopher D. F.; Sadler, Jon P.

    2013-01-01

    Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city’s brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas. PMID:23671566

  13. Single molecule experiments challenge the strict wave-particle dualism of light.

    Science.gov (United States)

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  14. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    Directory of Open Access Journals (Sweden)

    Karl Otto Greulich

    2010-01-01

    Full Text Available Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise―only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  15. Study on real-time images compounded using spatial light modulator

    Science.gov (United States)

    Xu, Jin; Chen, Zhebo; Ni, Xuxiang; Lu, Zukang

    2007-01-01

    Image compounded technology is often used on film and its facture. In common, image compounded use image processing arithmetic, get useful object, details, background or some other things from the images firstly, then compounding all these information into one image. When using this method, the film system needs a powerful processor, for the process function is very complex, we get the compounded image for a few time delay. In this paper, we introduce a new method of image real-time compounded, use this method, we can do image composite at the same time with movie shot. The whole system is made up of two camera-lens, spatial light modulator array and image sensor. In system, the spatial light modulator could be liquid crystal display (LCD), liquid crystal on silicon (LCoS), thin film transistor liquid crystal display (TFTLCD), Deformable Micro-mirror Device (DMD), and so on. Firstly, one camera-lens images the object on the spatial light modulator's panel, we call this camera-lens as first image lens. Secondly, we output an image to the panel of spatial light modulator. Then, the image of the object and image that output by spatial light modulator will be spatial compounded on the panel of spatial light modulator. Thirdly, the other camera-lens images the compounded image to the image sensor, and we call this camera-lens as second image lens. After these three steps, we will gain the compound images by image sensor. For the spatial light modulator could output the image continuously, then the image will be compounding continuously too, and the compounding procedure is completed in real-time. When using this method to compounding image, if we will put real object into invented background, we can output the invented background scene on the spatial light modulator, and the real object will be imaged by first image lens. Then, we get the compounded images by image sensor in real time. The same way, if we will put real background to an invented object, we can output the

  16. Adaptive illumination through spatial modulation of light intensity and image inversion

    Science.gov (United States)

    Castellini, P.; Cecchini, S.; Stroppa, L.; Paone, N.

    2013-05-01

    The paper introduces the concept of spatial modulation of light intensity in the context of vision-based quality control, with the aim to improve image quality, measurable by indices such as image contrast and Tenengrad, so as to enhance the level of confidence of the diagnosis performed by image processing. The proposed technique is based on the projection of spatially modulated light intensity distribution by a digital light projector that allows an arbitrary light distribution to be projected on the target. The projected spatial distribution of light is determined by implementing an algorithm based on image inversion: the image acquired by the camera under uniform illumination is inverted and it is then used to modulate the light spatial distribution for projection. The process is repeated iteratively with the purpose to enhance image quality until convergence. The technique proves particularly valuable to avoid saturation from reflecting surfaces, which are often found in industrial practice. The procedure is tested and validated both by a numerical model and by an experimental validation, referring to a significant problem for the washing machine manufacturing industry. The use of image quality estimators confirms the effectiveness of the method.

  17. Adaptive illumination through spatial modulation of light intensity and image inversion

    International Nuclear Information System (INIS)

    Castellini, P; Cecchini, S; Stroppa, L; Paone, N

    2013-01-01

    The paper introduces the concept of spatial modulation of light intensity in the context of vision-based quality control, with the aim to improve image quality, measurable by indices such as image contrast and Tenengrad, so as to enhance the level of confidence of the diagnosis performed by image processing. The proposed technique is based on the projection of spatially modulated light intensity distribution by a digital light projector that allows an arbitrary light distribution to be projected on the target. The projected spatial distribution of light is determined by implementing an algorithm based on image inversion: the image acquired by the camera under uniform illumination is inverted and it is then used to modulate the light spatial distribution for projection. The process is repeated iteratively with the purpose to enhance image quality until convergence. The technique proves particularly valuable to avoid saturation from reflecting surfaces, which are often found in industrial practice. The procedure is tested and validated both by a numerical model and by an experimental validation, referring to a significant problem for the washing machine manufacturing industry. The use of image quality estimators confirms the effectiveness of the method. (paper)

  18. Three-dimension reconstruction based on spatial light modulator

    International Nuclear Information System (INIS)

    Deng Xuejiao; Zhang Nanyang; Zeng Yanan; Yin Shiliang; Wang Weiyu

    2011-01-01

    Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .

  19. The generation of flat-top beams by complex amplitude modulation with a phase-only spatial light modulator

    CSIR Research Space (South Africa)

    Hendriks, A

    2012-08-01

    Full Text Available Phase-only spatial light modulators are now ubiquitous tools in modern optics laboratories, and are often used to generate so-called structured light. In this work we outline the use of a phase-only spatial light modulator to achieve full complex...

  20. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  1. Single Canonical Model of Reflexive Memory and Spatial Attention.

    Science.gov (United States)

    Patel, Saumil S; Red, Stuart; Lin, Eric; Sereno, Anne B

    2015-10-23

    Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey's task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes.

  2. Spatial layout optimization design of multi-type LEDs lighting source based on photoelectrothermal coupling theory

    Science.gov (United States)

    Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.

  3. Optimization of spatial light distribution through genetic algorithms for vision systems applied to quality control

    International Nuclear Information System (INIS)

    Castellini, P; Cecchini, S; Stroppa, L; Paone, N

    2015-01-01

    The paper presents an adaptive illumination system for image quality enhancement in vision-based quality control systems. In particular, a spatial modulation of illumination intensity is proposed in order to improve image quality, thus compensating for different target scattering properties, local reflections and fluctuations of ambient light. The desired spatial modulation of illumination is obtained by a digital light projector, used to illuminate the scene with an arbitrary spatial distribution of light intensity, designed to improve feature extraction in the region of interest. The spatial distribution of illumination is optimized by running a genetic algorithm. An image quality estimator is used to close the feedback loop and to stop iterations once the desired image quality is reached. The technique proves particularly valuable for optimizing the spatial illumination distribution in the region of interest, with the remarkable capability of the genetic algorithm to adapt the light distribution to very different target reflectivity and ambient conditions. The final objective of the proposed technique is the improvement of the matching score in the recognition of parts through matching algorithms, hence of the diagnosis of machine vision-based quality inspections. The procedure has been validated both by a numerical model and by an experimental test, referring to a significant problem of quality control for the washing machine manufacturing industry: the recognition of a metallic clamp. Its applicability to other domains is also presented, specifically for the visual inspection of shoes with retro-reflective tape and T-shirts with paillettes. (paper)

  4. Observation of spatial quantum correlations induced by multiple scattering of nonclassical light

    DEFF Research Database (Denmark)

    Smolka, Stephan; Huck, Alexander; Andersen, Ulrik Lund

    2009-01-01

    and negative spatial quantum correlations are observed when varying the quantum state incident to the multiple scattering medium, and the strength of the correlations is controlled by the number of photons. The experimental results are in excellent agreement with recent theoretical proposals by implementing......We present the experimental realization of spatial quantum correlations of photons that are induced by multiple scattering of squeezed light. The quantum correlation relates photons propagating along two different light paths through the random medium and is infinite in range. Both positive...... the full quantum model of multiple scattering....

  5. Smell sensing and visualizing based on multi-quantum wells spatial light modulator

    Science.gov (United States)

    Tian, Fengchun; Zhao, Zhenzhen; Jia, Pengfei; Liao, Hailin; Chen, Danyu; Liu, Shouqiong

    2014-09-01

    For the existing drawbacks of traditional detecting methods which use gratings or prisms to detect light intensity distribution at each wavelength of polychromatic light, a novel method based on multi-quantum wells spatial light modulator (MQWs-SLM) has been proposed in this paper. In the proposed method, MQWs-SLM serves as a distribution features detector of the signal light. It is on the basis of quantum-confine Stark effect (QCSE) that the vertical applied voltage can change the absorption features of exciton in multi-quantum wells, and further change the distribution features of the readout polychromatic light of MQWs-SLM. It can be not only an universal detecting method, but also especially recommended to use in the Electronic nose system for features detecting of signal light so as to realize smell sensing and visualizing. The feasibility of the proposed method has been confirmed by mathematical modeling and analysis, simulation experiments and research status analysis.

  6. Improving the light-emitting properties of single-layered polyfluorene light-emitting devices by simple ionic liquid blending

    Science.gov (United States)

    Horike, Shohei; Nagaki, Hiroto; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Fukushima, Tatsuya; Ishida, Kenji

    2018-03-01

    This paper describes an evaluation of ionic liquids (ILs) as potential electrolytes for single-layered light-emitting devices with good emission performance. As optoelectronic devices continue to grow in abundance, high-performance light-emitting devices with a single emission layer are becoming increasingly important for low-cost production. We show that a simple technique of osmosing IL into the polymer layer can result in high luminous efficiency and good response times of single-layered light-emitting polymers, even without the additional stacking of charge carrier injection and transport layers. The IL contributions to the light-emission of the polymer are discussed from the perspectives of energy diagrams and of the electric double layers on the electrodes. Our findings enable a faster, cheaper, and lower-in-waste production of light-emitting devices.

  7. Inverse scattering solution for the spatially heterogeneous compliance of a single fracture

    NARCIS (Netherlands)

    Minato, S.; Ghose, R.

    2013-01-01

    Characterizing the spatially heterogeneous fracture compliance through use of elastic waves has the potential to illuminate the hydraulic and mechanical properties along a fracture. We formulate the inverse scattering problem to estimate the heterogeneous compliance distribution along a single

  8. Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators

    Science.gov (United States)

    Trolinger, James; Lal, Amit; Jo, Joshua; Kupiec, Stephen

    2012-01-01

    For many aspheric and freeform optical components, existing interferometric solutions require a custom computer-generated hologram (CGH) to characterize the part. The overall objective of this research is to develop hardware and a procedure to produce a combined, dynamic, Hartmann/ Digital Holographic interferometry inspection system for a wide range of advanced optical components, including aspheric and freeform optics. This new instrument would have greater versatility and dynamic range than currently available measurement systems. The method uses a spatial light modulator to pre-condition wavefronts for imaging, interferometry, and data processing to improve the resolution and versatility of an optical inspection instrument. Existing interferometers and Hartmann inspection systems have either too small a dynamic range or insufficient resolution to characterize conveniently unusual optical surfaces like aspherical and freeform optics. For interferometers, a specially produced, computer-generated holographic optical element is needed to transform the wavefront to within the range of the interferometer. A new hybrid wavefront sensor employs newly available spatial light modulators (SLMs) as programmable holographic optical elements (HOEs). The HOE is programmed to enable the same instrument to inspect an optical element in stages, first by a Hartmann measurement, which has a very large dynamic range but less resolution. The first measurement provides the information required to precondition a reference wave that avails the measurement process to the more precise phase shifting interferometry. The SLM preconditions a wavefront before it is used to inspect an optical component. This adds important features to an optical inspection system, enabling not just wavefront conditioning for null testing and dynamic range extension, but also the creation of hybrid measurement procedures. This, for example, allows the combination of dynamic digital holography and Hartmann

  9. Selective excitation of vortex fibre modes using a spatial light modulator

    Czech Academy of Sciences Publication Activity Database

    Bouchal, Z.; Haderka, Ondřej; Čelechovský, R.

    2005-01-01

    Roč. 7, - (2005), s. 125 ISSN 1367-2630 Institutional research plan: CEZ:AV0Z10100522 Keywords : selective excitation * fibre modes * spatial light modulator Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.585, year: 2005 http://www.iop.org/EJ/mmedia/1367-2630/7/1/125/

  10. Fast Multi-Spectral Liquid-Crystal-On Silicon Spatial Light Modulators (Preprint)

    National Research Council Canada - National Science Library

    McNeil, John R; O'Callaghan, Michael J; Handschy, Mark A; Zhang, Guoqiang; Glushchenko, Anatoliy; West, John L; Lane, Kerry; Gaalema, Stephen D

    2006-01-01

    ...) spatial light modulators (SLMs) in the near-IR band (lambda = 1.8 to 2.5 mum), mid-IR band (3 to 5.5 mum) and far-IR band (8 to 14 mum). For these three bands, we fabricated SLC devices with 5, 10, and 20 mum thicknesses...

  11. Digital control of laser modes with an intra-cavity spatial light modulator

    CSIR Research Space (South Africa)

    Ngcobo, S

    2014-02-01

    Full Text Available In this paper we outline a simple laser cavity which produces customised on-demand digitally controlled laser modes by replacing the end-mirror of the cavity with an electrically addressed reflective phase-only spatial light modulator as a digital...

  12. Reduction of the Differential Light Shift by the Spatial Periodicity in an Optical Lattice

    Science.gov (United States)

    Yue, Xu-Guang; Xu, Xia; Chen, Xu-Zong; Zhou, Xiao-Ji

    2013-10-01

    We study the spatial periodicity effects on the differential light shift of noninteracting atoms in an optical lattice. Through the Rabi-spectrum approach, when the wavelength of the optical lattice is not magic, a reduction to the differential light shift is expected. The reduction results from the Bloch bands induced by the quantized motion in the periodic potential. Taking the microwave transition of rubidium atoms as an example, this reduction at some wavelengths can reach one order of magnitude, compared to the data without considering the spatial profile of the optical lattice. When the atomic temperature is considered, the differential light shift increases or decreases with temperature, depending on the wavelength of the lattice. Our results should be beneficial for microwave optical lattice clock and precision measurements.

  13. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator.

    Science.gov (United States)

    Förster, Ronny; Lu-Walther, Hui-Wen; Jost, Aurélie; Kielhorn, Martin; Wicker, Kai; Heintzmann, Rainer

    2014-08-25

    We describe a two-beam interference structured illumination fluorescence microscope. The novelty of the presented system lies in its simplicity. A programmable spatial light modulator (ferroelectric LCoS) in an intermediate image plane enables precise and rapid control of the excitation pattern in the specimen. The contrast of the projected light pattern is strongly influenced by the polarization state of the light entering the high NA objective. To achieve high contrast, we use a segmented polarizer. Furthermore, a mask with six holes blocks unwanted components in the spatial frequency spectrum of the illumination grating. Both these passive components serve their purpose in a simpler and almost as efficient way as active components. We demonstrate a lateral resolution of 114.2 ± 9.5 nm at a frame rate of 7.6 fps per reconstructed 2D slice.

  14. Single Gradientless Light Beam Drags Particles as Tractor Beams

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Qiu, Cheng-Wei; Wang, Haifeng

    2011-01-01

    is the strong nonparaxiality of the light beam, which contributes to the pulling force owing to momentum conservation. The nonparaxiality of the Bessel beam can be manipulated to possess a dragging force along both the radial longitudinal directions, i.e., a "tractor beam" with stable trajectories is achieved......Usually a light beam pushes a particle when the photons act upon it. We investigate the optical forces by nonparaxial gradientless beams and find that the forces can drag suitable particles all the way towards the light source. The major criterion of realizing the backward dragging force...

  15. LIGHT ABERRATION IN OPTICAL ANISOTROPIC SINGLE-AXIS MEDIUM

    Directory of Open Access Journals (Sweden)

    V. M. Svishch

    2017-10-01

    Full Text Available The entrainment of the light flux by a uniaxial anisotropic medium and its influence on the measurement of stellar aberration are analyzed. The influence of the entrainment of the light flux by an isotropic medium on the measurement of stellar aberration was considered by Fresnel early. The absence of such influence was confirmed by Erie's experience when filling the telescope tube with water. The formula itself was perfectly confirmed by Fizeau's experiments with moving water and the repetition of this experiment with an increase in the accuracy of measurements by Michelson, Zeeman, and others. G.A. Lorentz already on the basis of the electromagnetic theory specified the formula with allowance for the frequency dispersion of the light flux. A. Einstein made an analysis of the schemes of experiments for determining the drag coefficient, covering all possible variants of similar experiments. As a result, he obtained Fresnel and Lorentz formulas, taking into account the frequency dispersion of light, starting from the theory of relativity. The entrainment of light and its influence on the measurement of stellar aberration by a uniaxial anisotropic medium have not been considered anywhere. An analysis of such influence is carried out. The results of the analysis indicate the possibility of measuring the current value of stellar aberration using a uniaxial anisotropic medium. The concept of active light aberration is introduced. The proposed schemes of experiments of using the entrainment of a light flux by an anisotropic substance for measuring the current value of stellar aberration are investigated. It is concluded that it is possible to study the determination of the current velocity of an inertial system relative to the light flux.

  16. Measuring spatially- and directionally-varying light scattering from biological material.

    Science.gov (United States)

    Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve

    2013-05-20

    Light interacts with an organism's integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism's body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons. In order to study the directional patterns of light scattering from feathers, and their relationship to the bird's milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple

  17. Resolution enhancement method for lensless in-line holographic microscope with spatially-extended light source.

    Science.gov (United States)

    Feng, Shaodong; Wu, Jigang

    2017-10-02

    We propose a resolution enhancement method for lensless in-line holographic microscope (LIHM) with spatially-extended light source, where the resolution is normally deteriorated by the insufficient spatial coherence of the illumination. In our LIHM setup, a light-emitting diode (LED), which was a spatially-extended light source, directly illuminated the sample, and the in-line hologram were recorded by a CMOS imaging sensor located behind the sample. In our holographic reconstruction process, the in-line hologram was first deconvoled with a properly resized image of the LED illumination area, and then back-propagated with scalar diffraction formula to reconstruct the sample image. We studied the hologram forming process and showed that the additional deconvolution process besides normal scalar diffraction reconstruction in LIHM can effectively enhance the imaging resolution. The resolution enhancements capability was calibrated by numerical simulations and imaging experiments with the U.S. air force target as the sample. We also used our LIHM to image the wing of a green lacewing to further demonstrate the capability of our methods for practical imaging applications. Our methods provide a way for LIHM to achieve satisfactory resolution with less stringent requirement for spatial coherence of the source and could reduce the cost for compact imaging system.

  18. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation.

    Science.gov (United States)

    Rout, Saroj; Sonkusale, Sameer

    2016-06-27

    The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation.

  19. Study on the Phase Modulation Characteristics of Liquid Crystal Spatial Light Modulator

    International Nuclear Information System (INIS)

    Zhang, Y; Wu, L Y; Zhang, J

    2006-01-01

    A special Twyman-Green interferometer is designed to measure the phase modulation characteristics of liquid crystal spatial light modulator (LC-SLM), namely, the relationship between phase shift and gray value (applied voltage). By measuring a reflective LC-SLM produced by BNS (Boulder Nonlinear Systems), it is indicated that the LC-SLM has linear phase response within a gray value range between 60 and 200, and the RMS deviation between the average phase and the spatially resolved phase measurements increases with the gray value but is always less than λ/10

  20. Closed-loop adaptive optics using a spatial light modulator for sensing and compensating of optical aberrations in ophthalmic applications

    Science.gov (United States)

    Akondi, Vyas; Jewel, Md. Atikur Rahman; Vohnsen, Brian

    2014-09-01

    Sensing and compensating of optical aberrations in closed-loop mode using a single spatial light modulator (SLM) for ophthalmic applications is demonstrated. Notwithstanding the disadvantages of the SLM, in certain cases, this multitasking capability of the device makes it advantageous over existing deformable mirrors (DMs), which are expensive and in general used for aberration compensation alone. A closed-loop adaptive optics (AO) system based on a single SLM was built. Beam resizing optics were used to utilize the large active area of the device and hence make it feasible to generate 137 active subapertures for wavefront sensing. While correcting Zernike aberrations up to fourth order introduced with the help of a DM (for testing purposes), diffraction-limited resolution was achieved. It is shown that matched filter and intensity-weighted centroiding techniques stand out among others. Closed-loop wavefront correction of aberrations in backscattered light from the eyes of three healthy human subjects was demonstrated after satisfactory results were obtained using an artificial eye, which was simulated with a short focal length lens and a sheet of white paper as diffuser. It is shown that the closed-loop AO system based on a single SLM is capable of diffraction-limited correction for ophthalmic applications.

  1. Dynamic light scattering microscope: accessing opaque samples with high spatial resolution.

    Science.gov (United States)

    Hiroi, Takashi; Shibayama, Mitsuhiro

    2013-08-26

    We developed a new technique that conducts dynamic light scattering (DLS) under a microscope with high spatial resolution. This technique dramatically extends the range of DLS application from transparent to opaque samples. The total scattered electric field contains both electric field generated from the samples and time-independent reflected electric field. These two components are decomposed by applying a partial heterodyne method. By using this technique, we successfully calculate the characteristic size distribution of both multiple-scattering samples and strong light-absorbing samples. This is the first study to observe the collective motion of particles in a highly concentrated solution by using DLS.

  2. Determination of the complex refractive index segments of turbid sample with multispectral spatially modulated structured light and models approximation

    Science.gov (United States)

    Meitav, Omri; Shaul, Oren; Abookasis, David

    2017-09-01

    Spectral data enabling the derivation of a biological tissue sample's complex refractive index (CRI) can provide a range of valuable information in the clinical and research contexts. Specifically, changes in the CRI reflect alterations in tissue morphology and chemical composition, enabling its use as an optical marker during diagnosis and treatment. In the present work, we report a method for estimating the real and imaginary parts of the CRI of a biological sample using Kramers-Kronig (KK) relations in the spatial frequency domain. In this method, phase-shifted sinusoidal patterns at single high spatial frequency are serially projected onto the sample surface at different near-infrared wavelengths while a camera mounted normal to the sample surface acquires the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength are converted to spatial phase maps using KK analysis and are then calibrated against phase-models derived from diffusion approximation. The amplitude of the reflected light, together with phase data, is then introduced into Fresnel equations to resolve both real and imaginary segments of the CRI at each wavelength. The technique was validated in tissue-mimicking phantoms with known optical parameters and in mouse models of ischemic injury and heat stress. Experimental data obtained indicate variations in the CRI among brain tissue suffering from injury. CRI fluctuations correlated with alterations in the scattering and absorption coefficients of the injured tissue are demonstrated. This technique for deriving dynamic changes in the CRI of tissue may be further developed as a clinical diagnostic tool and for biomedical research applications. To the best of our knowledge, this is the first report of the estimation of the spectral CRI of a mouse head following injury obtained in the spatial frequency domain.

  3. OSA Trends in Optics and Photonics Series, Volume 14 Spatial Light Modulators

    Science.gov (United States)

    1998-05-26

    Spatial Light Modulators, Lake Tahoe, Nev., 1997. 7. J. B. Sampsell, "An overview of Texas Instruments digital micromirror device (DMD) and its...Hughes-JVC, In Focus, Sharp, and Texas Instruments. Head-mounted displays used to be bulky because of the electronics and the high voltages required... micromirror device (DMD), and photorefractive crystal. Note that other devices not discussed in this article have been developed, such as the charge

  4. A single dopant atom in silicon sees the light

    Science.gov (United States)

    Rogge, Sven

    2014-03-01

    Optical access to a single qubit is very attractive since it allows for readout with unprecedented high spectral resolution and long distance coupling. Substantial progress has been demonstrated for nitrogen-vacancy centers in diamond (Bernien, Nature, 2013). Optical access to qubits in silicon been an important goal but has to date only been achieved in the ensemble limit (Steger, Science, 2012). Here, we present the photoionization of an individual erbium dopant in silicon (Yin, Nature, 2013). A single-electron transistor is used as a single-shot charge detector to observe the resonant ionization of a single atom as a function of photon energy. This allows for optical addressing and electrical detection of individual erbium dopants with exceptionally narrow line width. The hyperfine coupling is clearly resolved which paves the way to single shot readout of the nuclear spin. This hybrid approach is a first step towards an optical interface to dopants in silicon. in collaboration with Chunming Yin, Milos Rancic, Gabriele G. de Boo, Nikolas Stavrias, Jeffrey C. McCallum, Matthew J. Sellars.

  5. Spatial extrapolation of light use efficiency model parameters to predict gross primary production

    Directory of Open Access Journals (Sweden)

    Karsten Schulz

    2011-12-01

    Full Text Available To capture the spatial and temporal variability of the gross primary production as a key component of the global carbon cycle, the light use efficiency modeling approach in combination with remote sensing data has shown to be well suited. Typically, the model parameters, such as the maximum light use efficiency, are either set to a universal constant or to land class dependent values stored in look-up tables. In this study, we employ the machine learning technique support vector regression to explicitly relate the model parameters of a light use efficiency model calibrated at several FLUXNET sites to site-specific characteristics obtained by meteorological measurements, ecological estimations and remote sensing data. A feature selection algorithm extracts the relevant site characteristics in a cross-validation, and leads to an individual set of characteristic attributes for each parameter. With this set of attributes, the model parameters can be estimated at sites where a parameter calibration is not possible due to the absence of eddy covariance flux measurement data. This will finally allow a spatially continuous model application. The performance of the spatial extrapolation scheme is evaluated with a cross-validation approach, which shows the methodology to be well suited to recapture the variability of gross primary production across the study sites.

  6. Single-photon light detection with transition-edge sensors

    International Nuclear Information System (INIS)

    Rajteri, M.; Taralli, E.; Portesi, C.; Monticone, E.

    2008-01-01

    Transition-Edge Sensors (TESs) are micro calorimeters that measure the energy of incident single-photons by the resistance increase of a superconducting film biased within the superconducting-to-normal transition. TES are able to detect single photons from x-ray to IR with an intrinsic energy resolution and photon-number discrimination capability. Metrological, astronomical and quantum communication applications are the fields where these properties can be particularly important. In this work, we report about characterization of different TESs based on Ti films. Single-photons have been detected from 200 nm to 800 nm working at T c ∼ 100 m K. Using a pulsed laser at 690 nm we have demonstrated the capability to resolve up to five photons.

  7. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision.

    Science.gov (United States)

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-12-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway.

  8. Spatial light modulator based laser microfabrication of volume optics inside solar modules.

    Science.gov (United States)

    Lamprecht, Bernhard; Satzinger, Valentin; Schmidt, Volker; Peharz, Gerhard; Wenzl, Franz P

    2018-03-19

    Ultrashort pulse laser systems enable new approaches of material processing and manufacturing with enhanced precision and productivity. Time- and cost-effectiveness in the context of the industrialization of ultrashort laser pulse processes require an improvement of processing speed, which is of key importance for strengthening industrial photonics based manufacturing and extending its field of applications. This article presents results on improving the speed of a laser process by parallelization for creating light deflecting volume optics. Diffractive optical elements are fabricated directly inside the encapsulant of solar modules by utilizing a spatial light modulator based parallel laser microfabrication method. The fabricated volume optical elements effectively deflect light away from front side electrodes and significantly reduce the corresponding optical losses.

  9. Flexure-beam micromirror spatial light modulator devices for acquisition, tracking, and pointing

    Science.gov (United States)

    Rhoadarmer, Troy A.; Gustafson, Steven C.; Little, Gordon R.; Li, Tsen-Hwang

    1994-07-01

    The new flexure-beam micromirror (FBM) spatial light modulator devices developed by Texas Instruments Inc. have characteristics that enable superior acquisition, tracking, and pointing in communications and other applications. FBM devices can have tens of thousands of square micromirror elements, each as small as 20 microns on a side, each spaced relative to neighbors so that optical efficiency exceeds 90 percent, and each individually controlled with response times as small as 10 microseconds for piston-like motions that cover more than one-half optical wavelength. These devices may enable order-of-magnitude improvements in space-bandwidth product, efficiency, and speed relative to other spatial light modulator devices that could be used to generate arbitrary coherent light patterns in real time. However, the amplitude and phase of each mirror element cannot be specified separately because there is only one control voltage for each element. This issue can be addressed by adjusting the control voltages so that constructive and destructive interference in the coherent light reflected from many elements produces the desired far field coherent light pattern. Appropriate control voltages are best determined using a robust software optimization procedure such as simulated annealing. Simulated annealing yields excellent results, but it is not real time (it may require hours of execution time on workstation-class computers). An approach that permits real-time applications stores control voltages determined off-line by simulated annealing that produce key desired far field coherent light beam shapes. These stored results are then used as training data for radial basis function neural networks that interpolate in real time between the training cases.

  10. Development of Adaptive Feedback Control System of Both Spatial and Temporal Beam Shaping for UV-Laser Light Source for RF Gun

    CERN Document Server

    Tomizawa, H; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Yanagida, K

    2004-01-01

    The ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from a photo-cathode rf gun. We have been developing highly qualified UV-laser pulse as a light source of the rf gun for an injector candidate of future light sources. The gun cavity is a single-cell pillbox, and the copper inner wall is used as a photo cathode. The electron beam was accelerated up to 4.1 MeV at the maximum electric field on the cathode surface of 175 MV/m. For emittance compensation, two solenoid coils were used. As the first test run, with a microlens array as a simple spatial shaper, we obtained a minimum emittance value of 2 π·mm·mrad with a beam energy of 3.1 MeV, holding its charge to 0.1 nC/bunch. In the next test run, we prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. We applied the both adaptive optics to automatically shape the bot...

  11. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  12. Integrated single- and two-photon light sheet microscopy using accelerating beams

    DEFF Research Database (Denmark)

    Piksarv, Peeter; Marti, Dominik; Le, Tuan

    2017-01-01

    We demonstrate the first light sheet microscope using propagation invariant, accelerating Airy beams that operates both in single- and two-photon modes. The use of the Airy beam permits us to develop an ultra compact, high resolution light sheet system without beam scanning. In two-photon mode, a...

  13. Double-channel vector spatial light modulator for generation of arbitrary complex vector beams.

    Science.gov (United States)

    Guo, Cheng-Shan; Rong, Zhen-Yu; Wang, Shu-Zhen

    2014-01-15

    We propose an approach for implementation of an arbitrary vector beam based on a vector spatial light modulator (VSLM), which is simply composed by a phase-only spatial light modulator (SLM) and a composed half-wave plate with checkerboard structure. In combination with a four-phase encoding algorithm, the VSLM can transform a linear polarized Gaussian beam or a plane wave into a vector beam with both arbitrary spatial polarization and complex amplitude distributions in two dimensions. It is demonstrated that the VSLM can directly transform pure phase values into two orthogonal polarized complex values with high-diffraction efficiency. Compared with the existing methods for generation of vector beams with SLMs, our approach is on-axis and common-path with simple structure and only involves the zero-order diffraction. The proposed structure is also easier to make an integration and design portable device since it abstains from using optical elements such as special gratings, prisms, and reflectors.

  14. Spatial Interactions in Multiple-Use Forestry and Substitution and Wealth Effects for the Single Stand

    Science.gov (United States)

    Stephen K. Swallow; David N. Wear

    1993-01-01

    Forestry models often ignore spatial relationships between forest stands. This paper isolates the effects of stand interactions in muitiple-use forestry through a straightforward extension of the single-stand model. Effects of stand interactions decompose into wealth and substitution effects and may cause time-varying patterns of resource use for a forest...

  15. Light-induced spatial control of pH-jump reaction at smart gel interface.

    Science.gov (United States)

    Techawanitchai, Prapatsorn; Ebara, Mitsuhiro; Idota, Naokazu; Aoyagi, Takao

    2012-11-01

    We proposed here a 'smart' control of an interface movement of proton diffusion in temperature- and pH-responsive hydrogels using a light-induced spatial pH-jump reaction. A photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (NBA) was integrated into poly(N-isopropylacrylamide-o-2-carboxyisopropylacrylamide) (P(NIPAAm-co-CIPAAm)) hydrogels. NBA-integrated hydrogels demonstrated quick release of proton upon UV irradiation, allowing the pH inside the gel to decrease below the pK(a) of P(NIPAAm-co-CIPAAm) within a minute. The NBA-integrated gel was shown to shrink rapidly upon UV irradiation without polymer "skin layer" formation due to a uniform decrease of pH inside the gel. Spatial control of gel shrinking was also created by irradiating UV light to a limited region of the gel through a photomask. The interface of proton diffusion ("active interface") gradually moved toward non-illuminated area. The apparent position of "active interface", however, did not change remarkably above the LCST, while protons continuously diffused outward direction. This is because the "active interface" also moved inward direction as gel shrank above the LCST. As a result, slow movement of the apparent interface was observed. The NBA-integrated gel was also successfully employed for the controlled release of an entrapped dextran in a light controlled manner. This system is highly promising as smart platforms for triggered and programmed transportation of drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Automated measurement of spatial preference in the open field test with transmitted lighting.

    Science.gov (United States)

    Kulikov, Alexander V; Tikhonova, Maria A; Kulikov, Victor A

    2008-05-30

    New modification of the open field was designed to improve automation of the test. The main innovations were: (1) transmitted lighting and (2) estimation of probability to find pixels associated with an animal in the selected region of arena as an objective index of spatial preference. Transmitted (inverted) lighting significantly ameliorated the contrast between an animal and arena and allowed to track white animals with similar efficacy as colored ones. Probability as a measure of preference of selected region was mathematically proved and experimentally verified. A good correlation between probability and classic indices of spatial preference (number of region entries and time spent therein) was shown. The algorithm of calculation of probability to find pixels associated with an animal in the selected region was implemented in the EthoStudio software. Significant interstrain differences in locomotion and the central zone preference (index of anxiety) were shown using the inverted lighting and the EthoStudio software in mice of six inbred strains. The effects of arena shape (circle or square) and a novel object presence in the center of arena on the open field behavior in mice were studied.

  17. Spatial light modulators for full cross-connections in optical networks

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    2004-01-01

    A polarization-independent optical switch is disclosed for switching at least one incoming beam from at least one input source to at least one output drain. The switch includes a polarizing beam splitter to split each of the at least one incoming beam into a first input beam and a second input beam, wherein the first input beam and the second input beams are independently polarized; a wave plate optically coupled to the second input beam for converting the polarization of the second input beam to an appropriately polarized second input beam; a beam combiner optically coupled to the first input beam and the modified second input beam, wherein the beam combiner accepts the first input beam and the modified second input beam to produce a combined beam; the combined beam is invariant to the polarization state of the input source's polarization; and a controllable spatial light modulator optically coupled to the combined beam, wherein the combined beam is diffracted by the controllable spatial light modulator to place light at a plurality of output locations.

  18. Single-acquisition method for simultaneous determination of extrinsic gamma-camera sensitivity and spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.A.M. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)], E-mail: a.miranda@portugalmail.pt; Sarmento, S. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Alves, P.; Torres, M.C. [Departamento de Fisica da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Bastos, A.L. [Servico de Medicina Nuclear, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Ponte, F. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2008-01-15

    A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector.

  19. Generating shaped femtosecond pulses in the far infrared using a spatial light modulator and difference frequency generation

    CSIR Research Space (South Africa)

    Botha, N

    2010-08-31

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  20. Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2011-09-01

    Full Text Available amplitude modulation on a phase-only spatial light modulator to implement controlled ring-slit experiments for the generation of nondiffracting speckle fields. The structure of the nondiffracting speckle due to binary and continuous phase modulations...

  1. Highly Effective Light Beam Diffraction on Holographic PDLC Photonic Structure, Controllable by the Spatially Inhomogeneous Electric Field

    Science.gov (United States)

    Semkin, A. O.; Sharangovich, S. N.

    In this work the highly effiective light beam diffraction on holographic photonic structure formed in polymer-dispersed liquid crystal (PDLCs) is theoretically described. The ability to manage its diffraction characteristics by the spatially inhomogeneous electric field is also shown.

  2. Improving spatial resolution of the light field microscope with Fourier ptychography

    Science.gov (United States)

    Tani, Yoshitake; Usuki, Shin; Miura, Kenjiro T.

    2017-09-01

    Light field microscope (LFM) is an optical microscope capable of obtaining images having large depth of field with different viewpoints. By using the parallax of these multi-view images, it is possible to reconstruct the 3D sample. However, the sampling interval of this multi-viewpoint image depends on the pitch interval of the microlens array, so the spatial resolution is low, and the accuracy of the 3D sample to be reconstructed is also low. Conventional research has a method of increasing the spatial resolution by subpixel-shifted multiple images. However, this method has problems such as the necessity of mechanical operation and high cost. Therefore, we propose applying Fourier ptychography to the LFM. Fourier ptychography is a technique to obtain high spatial resolution images by joining images obtained by irradiating samples from different angles using LED arrays in Fourier space. Fourier ptychography does not require mechanical scanning and is high throughput and low cost. In addition, Fourier ptycoography is possible to obtain phase information on a sample, and it is also possible to obtain a fine 3D sample. We propose a method to generate high spatial resolution multiview images using Fourier ptychography and reconstruct highly accurate 3D sample from those images. In this research, we experiment with the original LFM and verify the effect.

  3. Investigation of the state of polarization of light in a single-mode fiber waveguide

    Science.gov (United States)

    Kozel, S. M.; Kreopalov, V. I.; Listvin, V. N.; Glavatskikh, N. A.

    1983-01-01

    An analysis is made of the polarization anisotropy of a single-mode fiber with a twisted elliptic core. The Jones matrix is obtained and the complex function of the state of polarization of light in a fiber is investigated. The results are reported of measurements of the linear and circular birefringence of a borosilicate single-mode glass fiber.

  4. Experimental generation of non-Kolmogorov turbulence using a liquid crystal spatial light modulator

    Science.gov (United States)

    Toselli, Italo; Agrawal, Brij N.; Wilcox, Christopher C.; Restaino, Sergio

    2011-09-01

    Several experiments showed that the classical Kolmogorov power spectral density of the refractive-index sometimes does not properly describe the statistics of the atmosphere. In this paper we show an experimental testbed able to generate non-classical Kolmogorov turbulence by using a liquid crystal spatial light modulator. The testbed is used at Naval Postgraduate School for laboratory investigation of laser beam propagation in maritime environment where a power law different from classical Kolmogorov, 11/ 3, could be present. Applications of this testbed are ship to-ship free space optical communication, imaging and high energy laser weapons.

  5. Comparison of vision through surface modulated and spatial light modulated multifocal optics.

    Science.gov (United States)

    Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana

    2017-04-01

    Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near.

  6. Two Micron Pixel Pitch Active Matrix Spatial Light Modulator Driven by Spin Transfer Switching

    Directory of Open Access Journals (Sweden)

    Hidekazu Kinjo

    2016-09-01

    Full Text Available We have developed an active matrix-addressed magneto-optical spatial light modulator driven by spin-transfer switching (spin-SLM which has a 100 × 100 array pixel layout with a 2 µm pixel pitch. It has pixel-selection-transistors and logic circuits which convert serial data into parallel data to reduce input terminals. We have confirmed successful magnetization switching of each pixel by injecting a pulse current generated from the logic circuit, and its optical display capability by showing digital characters.

  7. Automated laser guidance of neuronal growth cones using a spatial light modulator.

    Science.gov (United States)

    Carnegie, David J; Cizmár, Tomás; Baumgartl, Jörg; Gunn-Moore, Frank J; Dholakia, Kishan

    2009-11-01

    The growth cone of a developing neuron can be guided using a focused infra-red (IR) laser beam [1]. In previous setups this process has required a significant amount of user intervention to adjust continuously the laser beam to guide the growing neuron. Previously, a system using an acousto-optical deflector (AOD) has been developed to steer the beam [2]. However, to enhance the controllability of this system, here we demonstrate the use of a computer controlled spatial light modulator (SLM) to steer and manipulate the shape of a laser beam for use in guided neuronal growth. This new experimental setup paves the way to enable a comprehensive investigation into beam shaping effects on neuronal growth and we show neuronal growth initiated by a Bessel light mode. This is a robust platform to explore the biochemistry of this novel phenomenon. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  8. Spatial Recognition of the Urban-Rural Fringe of Beijing Using DMSP/OLS Nighttime Light Data

    Directory of Open Access Journals (Sweden)

    Yuli Yang

    2017-11-01

    Full Text Available Spatial identification of the urban-rural fringes is very significant for deeply understanding the development processes and regulations of urban space and guiding urban spatial development in the future. Traditionally, urban-rural fringe areas are identified using statistical analysis methods that consider indexes from single or multiple factors, such as population densities, the ratio of building land, the proportion of the non-agricultural population, and economic levels. However, these methods have limitations, for example, the statistical data are not continuous, the statistical standards are not uniform, the data is seldom available in real time, and it is difficult to avoid issues on the statistical effects from edges of administrative regions or express the internal differences of these areas. This paper proposes a convenient approach to identify the urban-rural fringe using nighttime light data of DMSP/OLS images. First, a light characteristics–combined value model was built in ArcGIS 10.3, and the combined characteristics of light intensity and the degree of light intensity fluctuation are analyzed in the urban, urban-rural fringe, and rural areas. Then, the Python programming language was used to extract the breakpoints of the characteristic combination values of the nighttime light data in 360 directions taking Tian An Men as the center. Finally, the range of the urban-rural fringe area is identified. The results show that the urban-rural fringe of Beijing is mainly located in the annular band around Tian An Men. The average inner radius is 19 km, and the outer radius is 26 km. The urban-rural fringe includes the outer portions of the four city center districts, which are the Chaoyang District, Haidian District, Fengtai District, and Shijingshan District and the part area border with Daxing District, Tongzhou District, Changping District, Mentougou District, Shunyi District, and Fangshan District. The area of the urban-rural fringe

  9. Photoacoustic thermal flowmetry with a single light source

    Science.gov (United States)

    Liu, Wei; Lan, Bangxin; Hu, Leo; Chen, Ruimin; Zhou, Qifa; Yao, Junjie

    2017-09-01

    We report a photoacoustic thermal flowmetry based on optical-resolution photoacoustic microscopy (OR-PAM) using a single laser source for both thermal tagging and photoacoustic excitation. When an optically absorbing medium is flowing across the optical focal zone of OR-PAM, a small volume of the medium within the optical focus is repeatedly illuminated and heated by a train of laser pulses with a high repetition rate. The average temperature of the heated volume at each laser pulse is indicated by the photoacoustic signal excited by the same laser pulse due to the well-established linear relationship between the Grueneisen coefficient and the local temperature. The thermal dynamics of the heated medium volume, which are closely related to the flow speed, can therefore be measured from the time course of the detected photoacoustic signals. Here, we have developed a lumped mathematical model to describe the time course of the photoacoustic signals as a function of the medium's flow speed. We conclude that the rising time constant of the photoacoustic signals is linearly dependent on the flow speed. Thus, the flow speed can be quantified by fitting the measured photoacoustic signals using the derived mathematical model. We first performed proof-of-concept experiments using defibrinated bovine blood flowing in a plastic tube. The experiment results have demonstrated that the proposed method has high accuracy (˜±6%) and a wide range of measurable flow speeds. We further validated the method by measuring the blood flow speeds of the microvasculature in a mouse ear in vivo.

  10. Construction of Light-Harvesting Polymeric Vesicles in Aqueous Solution with Spatially Separated Donors and Acceptors.

    Science.gov (United States)

    Li, Huimei; Liu, Yannan; Huang, Tong; Qi, Meiwei; Ni, Yunzhou; Wang, Jie; Zheng, Yongli; Zhou, Yongfeng; Yan, Deyue

    2017-07-01

    This communication describes polymer vesicles self-assembled from hyperbranched polymers (branched polymersomes (BPs)) as scaffolds, conceptually mimicking the natural light-harvesting system in aqueous solution. The system is constructed with hydrophobic 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) as donors encapsulated in the hydrophobic hyperbranched cores of the vesicles and the hydrophilic Rhodamine B (RB) as acceptors incorporated on the surface of the vesicles through the cyclodextrin (CD)/RB host-guest interactions, through which the donors and acceptors are spatially separated to effectively avoid the self-quenching between donors. This vesicular light harvesting system has presented good energy transfer efficiency of about 80% in water, and can be used as the ink to write multiclolor letters. In addition, due to the giant dimension of BPs, the real-time fluorescent images of the vesicles under an optical microscope can be observed to prove the light-harvesting process. It is supposed that such a vesicular light-harvesting antenna can be used to construct artificial photosynthesis systems in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Self-compression of spatially limited laser pulses in a system of coupled light-guides

    Science.gov (United States)

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2018-04-01

    The self-action features of wave packets propagating in a 2D system of equidistantly arranged fibers are studied analytically and numerically on the basis of the discrete nonlinear Schrödinger equation. Self-consistent equations for the characteristic scales of a Gaussian wave packet are derived on the basis of the variational approach, which are proved numerically for powers P self-focusing. At higher powers, the wave beams become filamented, and their amplitude is limited due to the nonlinear breaking of the interaction between neighboring light-guides. This makes it impossible to collect a powerful wave beam in a single light-guide. Variational analysis shows the possibility of the adiabatic self-compression of soliton-like laser pulses in the process of 3D self-focusing on the central light-guide. However, further increase of the field amplitude during self-compression leads to the development of longitudinal modulation instability and the formation of a set of light bullets in the central fiber. In the regime of hollow wave beams, filamentation instability becomes predominant. As a result, it becomes possible to form a set of light bullets in optical fibers located on the ring.

  12. Spatial-Temporal Feature Analysis on Single-Trial Event Related Potential for Rapid Face Identification

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2017-11-01

    Full Text Available The event-related potential (ERP is the brain response measured in electroencephalography (EEG, which reflects the process of human cognitive activity. ERP has been introduced into brain computer interfaces (BCIs to communicate the computer with the subject's intention. Due to the low signal-to-noise ratio of EEG, most ERP studies are based on grand-averaging over many trials. Recently single-trial ERP detection attracts more attention, which enables real time processing tasks as rapid face identification. All the targets needed to be retrieved may appear only once, and there is no knowledge of target label for averaging. More interestingly, how the features contribute temporally and spatially to single-trial ERP detection has not been fully investigated. In this paper, we propose to implement a local-learning-based (LLB feature extraction method to investigate the importance of spatial-temporal components of ERP in a task of rapid face identification using single-trial detection. Comparing to previous methods, LLB method preserves the nonlinear structure of EEG signal distribution, and analyze the importance of original spatial-temporal components via optimization in feature space. As a data-driven methods, the weighting of the spatial-temporal component does not depend on the ERP detection method. The importance weights are optimized by making the targets more different from non-targets in feature space, and regularization penalty is introduced in optimization for sparse weights. This spatial-temporal feature extraction method is evaluated on the EEG data of 15 participants in performing a face identification task using rapid serial visual presentation paradigm. Comparing with other methods, the proposed spatial-temporal analysis method uses sparser (only 10% of the total features, and could achieve comparable performance (98% of single-trial ERP detection as the whole features across different detection methods. The interesting finding is

  13. Beam shaping to improve holography techniques based on spatial light modulators

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2013-03-01

    Modern holographic techniques based on Spatial Light Modulators get serious benefits from providing uniform intensity distribution of a laser beam: more predictable and reliable operation, higher efficiency of laser energy usage, more simple mathematical description of diffraction transformations, etc. Conversion of Gaussian intensity distribution of TEM00 lasers to flattop one is successfully realized with refractive field mapping beam shapers like piShaper, which operational principle presumes transformation with high flatness of output wavefront, conserving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with several laser sources with different wavelengths simultaneously. Applying of these beam shapers brings serious benefits to the Spatial Light Modulator based techniques like Computer Generated Holography, Dot-Matrix mastering of security holograms, holographic data storage. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.

  14. What makes single-helical metamaterials generate "pure" circularly polarized light?

    Science.gov (United States)

    Wu, Lin; Yang, ZhenYu; Zhao, Ming; Zhang, Peng; Lu, ZeQing; Yu, Yang; Li, ShengXi; Yuan, XiuHua

    2012-01-16

    Circular polarizers with left-handed helical metamaterials can transmit right-handed circularly polarized (RCP) light with few losses. But a certain amount of left-handed circularly polarized (LCP) light will occur in the transmitted light, which is the noise of the circular polarizer. Therefore, we defined the ratio of the RCP light intensity to the LCP light intensity as the signal-to-noise (S/N) ratio. In our previous work, it's found that circular polarizers with multi-helical metamaterials have two orders higher S/N ratios than that of single-helical metamaterials. However, it has been a great challenge to fabricate such multi-helical structures with micron or sub-micron feature sizes. Is it possible for the single-helical metamaterials to obtain equally high S/N ratios as the multi-helical ones? To answer this question, we systematically investigated the influences of structure parameters of single-helical metamaterials on the S/N ratios using the finite-different time-domain (FDTD) method. It was found that the single-helical metamaterials can also reach about 30dB S/N ratios, which are equal to the multi-helical ones. Furthermore, we explained the phenomenon by the antenna theory and optimized the performances of the single-helical circular polarizers.

  15. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light.

    Science.gov (United States)

    Ooi, Amanda; Wong, Aloysius; Ng, Tien Khee; Marondedze, Claudius; Gehring, Christoph; Ooi, Boon S

    2016-09-23

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture.

  16. Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light

    KAUST Repository

    Ooi, Amanda Siok Lee

    2016-09-23

    Indoor horticulture offers a sensible solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available horticultural lighting is suboptimal, and therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. They are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Furthermore, laser beams can be tailored to match the absorption profiles of different plant species. We have developed a prototype laser growth chamber and demonstrate that plants grown under laser illumination can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs reported previously. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteome data show that the single-wavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture.

  17. Female Sprague Dawley Rats Show Impaired Spatial Memory in the 8-Arm Radial Maze under Dim Blue and Red Light

    OpenAIRE

    Pirchl, Michael; Kemmler, Georg; Humpel, Christian

    2010-01-01

    Light intensity and wavelength strongly influence mood and cognition in humans and rodent animal models. The aim of the present study was to explore if dim white (7.6–17.7 lux) , blue (1.3–2.3 lux), and red light (0.8–1.4 lux) affect spatial memory of male and female Sprague Dawley rats in the 8-arm radial maze. Our data show that spatial memory significantly improved within 5 daily learning sessions (each 5 trials) under dim white light, which was not different between male and female rats. ...

  18. Coherent artifact suppression in line-field reflection confocal microscopy using a low spatial coherence light source.

    Science.gov (United States)

    Liu, Changgeng; Cao, Hui; Choma, Michael A

    2016-10-15

    Line-field reflection confocal microscopy (LF-RCM) has the potential to add a dimension of parallelization to traditional confocal microscopy while reducing the need for two-axis beam scanning. LF-RCM systems often employ light sources with a high degree of spatial coherence. This high degree of spatial coherence potentially leads to unwanted coherent artifact in the setting of nontrivial sample scattering. Here, we (a) confirm that a coherent artifact is a nontrivial problem in LF-RCM when using spatially coherent light, and (b) demonstrate that such a coherent artifact can be mitigated through the use of reduced spatial coherence line-field sources. We demonstrate coherent noise suppression in a full-pupil line-field confocal microscope using a large number of mutually incoherent emitters from a vertical-cavity surface-emitting lasers (VCSEL) array. The coherent noise from a highly scattering sample is significantly suppressed by the use of this synthesized reduced spatial coherence light source compared to a fully coherent light source. Lastly, with scattering samples, the axial confocality of line-field confocal microscopy is compromised independent of the source spatial coherence, as demonstrated by our experimental result. Our results highlight the importance of spatial coherence engineering in parallelized reflection confocal microscopy.

  19. An integrated single- and two-photon non-diffracting light-sheet microscope

    Science.gov (United States)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  20. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  1. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  2. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  3. 3D fluorescence emission difference microscopy based on spatial light modulator

    Directory of Open Access Journals (Sweden)

    Guangyuan Zhao

    2016-05-01

    Full Text Available We report three-dimensional fluorescence emission difference (3D-FED microscopy using a spatial light modulator (SLM. Zero phase, 0–2π vortex phase and binary 0-pi phase are loaded on the SLM to generate the corresponding solid, doughnut and z-axis hollow excitation spot, respectively. Our technique achieves super-resolved image by subtracting three differently acquired images with proper subtractive factors. Detailed theoretical analysis and simulation tests are proceeded to testify the performance of 3D-FED. Also, the improvement of lateral and axial resolution is demonstrated by imaging 100nm fluorescent beads. The experiment yields lateral resolution of 140nm and axial resolution of approximate 380nm.

  4. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    Science.gov (United States)

    Maxson, Jared; Lee, Hyeri; Bartnik, Adam C.; Kiefer, Jacob; Bazarov, Ivan

    2015-02-01

    The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.

  5. Efficient and accurate laser shaping with liquid crystal spatial light modulators

    Energy Technology Data Exchange (ETDEWEB)

    Maxson, Jared M.; Bartnik, Adam C.; Bazarov, Ivan V. [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States)

    2014-10-27

    A phase-only spatial light modulator (SLM) is capable of precise transverse laser shaping by either functioning as a variable phase grating or by serving as a variable mask via polarization rotation. As a phase grating, the highest accuracy algorithms, based on computer generated holograms (CGHs), have been shown to yield extended laser shapes with <10% rms error, but conversely little is known about the experimental efficiency of the method in general. In this work, we compare the experimental tradeoff between error and efficiency for both the best known CGH method and polarization rotation-based intensity masking when generating hard-edged flat top beams. We find that the masking method performs comparably with CGHs, both having rms error < 10% with efficiency > 15%. Informed by best practices for high efficiency from a SLM phase grating, we introduce an adaptive refractive algorithm which has high efficiency (92%) but also higher error (16%), for nearly cylindrically symmetric cases.

  6. Optical Implementation Of The Hopfield Model Using A Spatial Light Modulator Discussion Of Properties And Performance

    Science.gov (United States)

    Torzynski, Marc

    1989-01-01

    In this paper we propose an optical design for implementation of neuronic Hopfield network. We describe the algorithm and its potential possibilities as associative (or content addressable) memory. We then describe the optical set (using a magneto-optic spatial light modulator) and explaning its operating mode: the binary transparency of the SLM does not allow a direct and accurate experimental realisation of the theoretical algorithm. However, there is a particular setup that can implemented it powerfully but with a reduction of the effective number of neurons. The operating speed is then evaluated from the characteristics of the SLM "Sight-Mod" manufactured by SEMETEX corp.: the maximun operating frequency seems limited by the speed of the optical valve.

  7. Spatial and directional control of self-assembled wrinkle patterns by UV light absorption

    Science.gov (United States)

    Kortz, C.; Oesterschulze, E.

    2017-12-01

    Wrinkle formation on surfaces is a phenomenon that is observed in layered systems with a compressed elastic thin capping layer residing on a viscoelastic film. So far, the properties of the viscoelastic material could only be changed replacing it by another material. Here, we propose to use a photosensitive material whose viscoelastic properties, Young's modulus, and glass transition temperature can easily be adjusted by the absorption of UV light. Employing UV lithography masks during the exposure, we gain additionally spatial and directional control of the self-assembled wrinkle pattern formation that relies on a spinodal decomposition process. Inspired by the results on surface wrinkling and its dependence on the intrinsic stress, we also derive a method to avoid wrinkling locally by tailoring the mechanical stress distribution in the layered system choosing UV masks with convex patterns. This is of particular interest in technical applications where the buckling of surfaces is undesirable.

  8. On-axis programmable microscope using liquid crystal spatial light modulator

    Science.gov (United States)

    García-Martínez, Pascuala; Martínez, José Luís.; Moreno, Ignacio

    2017-06-01

    Spatial light modulators (SLM) are currently used in many applications in optical microscopy and imaging. One of the most promising methods is the use of liquid crystal displays (LCD) as programmable phase diffractive optical elements (DOE) placed in the Fourier plane giving access to the spatial frequencies which can be phased shifted individually, allowing to emulate a wealth of contrast enhancing methods for both amplitude and phase samples. We use phase and polarization modulation of LCD to implement an on-axis microscope optical system. The LCD used are Hamamatsu liquid crystal on silicon (LCOS) SLM free of flicker, thus showing a full profit of the SLM space bandwidth, as opposed to optical systems in the literature forced to work off-axis due to the strong zero-order component. Taking benefits of the phase modulation of the LCOS we have implemented different microscopic imaging operations, such as high-pass and low-pass filtering in parallel using programmable blazed gratings. Moreover, we are able to control polarization modulation to display two orthogonal linear state of polarization images than can be subtracted or added by changing the period of the blazed grating. In that sense, Differential Interference Contrast (DIC) microscopy can be easily done by generating two images exploiting the polarization splitting properties when a blazed grating is displayed in the SLM. Biological microscopy samples are also used.

  9. Role of light in the mediation of acute effects of a single afternoon ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 25; Issue 3. Role of light in the mediation of acute effects of a single afternoon melatonin injection on steroidogenic activity of testis in the rat. Saumen K Maitra Arun K Ray. Articles Volume 25 Issue 3 September 2000 pp 253-256 ...

  10. Spatial and temporal beam profiles for the LHC using synchrotron light

    Science.gov (United States)

    Jeff, A.; Bart Pedersen, S.; Boccardi, A.; Bravin, E.; Fisher, A. S.; Guerrero Ollacarizqueta, A.; Lefevre, T.; Rabiller, A.; Welsch, C. P.

    2010-04-01

    Synchrotron radiation is emitted whenever a beam of charged particles passes though a magnetic field. The power emitted is strongly dependent on the relativistic Lorentz factor of the particles, which itself is proportional to the beam energy and inversely proportional to the particle rest mass. Thus, synchrotron radiation is usually associated with electron accelerators, which are commonly used as light sources. However the largest proton machines reach sufficiently high energies to make synchrotron light useful for diagnostic purposes. The Large Hadron Collider at CERN will accelerate protons up to an energy of 7TeV. An optical arrangement has been made which focuses synchrotron light from two LHC magnets to image the cross-section of the beam. It is also planned to use this setup to produce a longitudinal profile of the beam by use of fast Single Photon Counting. This is complicated by the bunched nature of the beam which needs to be measured with a very large dynamic range. In this contribution we present early experimental data of the transverse LHC beam profile together with a scheme for measuring the longitudinal profile with a time resolution of 50 ps. It includes the use of a gating regime to increase the dynamic range of the photon counter and a three-stage correction algorithm to compensate for the detector's deadtime, afterpulsing and pile-up effects.

  11. Cross-talk compensation of a spatial light modulator for iterative phase retrieval applications.

    Science.gov (United States)

    Gemayel, Pierre; Colicchio, Bruno; Dieterlen, Alain; Ambs, Pierre

    2016-02-01

    Beam-propagation-based phase recovery approaches, also known as phase retrieval methods, retrieve the amplitude and the phase of arbitrary complex-valued fields. We present and experimentally demonstrate a simple and robust iterative method using a liquid crystal spatial light modulator located at an object diffraction plane. M random phase masks are applied between the object and the image sensor using the modulator, and then M diffraction patterns are collected in the Fourier plane. An iterative algorithm using these patterns and simulating the propagation of the light between the two planes allow us to recover the object wavefront. The use of this type of dynamic modulator makes the experimental setup simpler and more flexible. We need no a priori knowledge about the object field, and the convergence rate is high. Simulation results show that the method exhibits high immunity to noise and does not suffer any stagnation problem. However, experimental results have shown that the technique is sensitive to the cross talk of the modulator. We propose a method for compensating these modulator defects that are validated by experimental results.

  12. Analysis of photoenzymatic repair of UV lesions in DNA by single light flashes. XII

    International Nuclear Information System (INIS)

    Harm, W.

    1979-01-01

    Yeast photoreactivity enzyme (PRE) preilluminated with wavelengths ranging from the near-UV to the red spectral region, forms with 254 nm-irradiated transforming DNA of Haemophilus influenzae enzyme-substrate complexes that are more efficiently photorepaired than complexes formed from non-preilluminated PRE. The action spectrum for this 'preillumination effect', previously shown to have a maximum in the near-UV region, has another maximum near 577 nm. In complexes formed from non-preilluminated PRE the repair probability per incident photon is only about 25% of that in complexes fromed from preilluminated PRE, if low-intensity photoreactivating light is applied continuously or as a sequence of flashes. However, photoreactivating light in the form of a single, high-intensity flash of 1 msec duration raises the repair probability to >50%. Two light flashes, discharged with a delay of slightly more than a millisecond, may already achieve less photorepair than the same energy given as a single flash. (Auth.)

  13. Spatial and frequency domain ring source models for the single muscle fiber action potential

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey

    1994-01-01

    In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....

  14. Light-induced heat and mass transfer in a single-component gas in a capillary

    International Nuclear Information System (INIS)

    Chermyaninov, I. V.; Chernyak, V. G.; Vilisova, E. A.

    2007-01-01

    A theoretical analysis is presented of light-induced heat and mass transfer in a single-component gas in a capillary tube at arbitrary Knudsen numbers. Surface and collisional mechanisms of transfer are analyzed, due to differences in accommodation coefficient and collision cross section between excited-and ground-state particles, respectively. Analytical expressions for kinetic coefficients characterizing the gas drift and heat transfer in a capillary tube are obtained in the limits of low and high Knudsen numbers. Numerical computations are performed for intermediate Knudsen numbers. Both drift and heat fluxes are determined as functions of the light beam frequency. In the case of an inhomogeneously broadened absorption line, the light-induced fluxes are found to depend not only on the sign, but also on the amount, of light beam detuning from the absorption line center frequency

  15. White-light-emitting diode based on a single-layer polymer

    Science.gov (United States)

    Wang, B. Z.; Zhang, X. P.; Liu, H. M.

    2013-05-01

    A broad-band light-emitting diode was achieved in a single-layer device based on pure poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB). Electromer emission was observed in the red with a center wavelength of about 620 nm in electroluminescence (EL) spectrum. This kind of emission exhibits strong dependence on the thickness of the PFB layer, so that the shape of the EL spectrum may be adjusted through changing the thickness of the active polymer layer to balance between the intrinsic PFB emission in the blue and the electromer emission in the red. Thus, white light emission may be achieved from such a single-layer single-material diode.

  16. Pixel-addressable phase calibration of spatial light modulators: a common-path phase-shifting interferometric microscopy approach

    Science.gov (United States)

    Xia, Jianpei; Chang, Chenliang; Chen, Zhaozhong; Zhu, Zheyuan; Zeng, Tingting; Liang, Pei-Ying; Ding, Jianping

    2017-12-01

    As spatial light modulators (SLMs) are becoming flexible and the preferred device for light steering, the SLM’s modulation calibration still remains challenging. No pixel-addressable measurement of the SLM has yet been practically implemented. We present a quantitative phase measurement and calibration method for a parallel aligned liquid crystal spatial light modulator (PAL-SLM) based on Pancharatnam phase-shifting interferometric microscopy. The pixel-wise phase of SLM can be detected from microscopic interference pattern formed from two orthogonally polarized light waves reflected off the PAL-SLM. The wave phase is modulated or non-modulated depending on its polarization direction parallel or orthogonal to the liquid crystal director. Owing to self-referencing common-path interferometric microscopic imaging, the proposed method is quite robust against environmental disturbance and enables a high-precision pixel-wise characterization of SLM.

  17. Spatial filtering technique to image and measure two-dimensional near-forward scattering from single particles.

    Science.gov (United States)

    Berg, Matthew J; Hill, Steven C; Videen, Gorden; Gurton, Kristan P

    2010-04-26

    This work describes the design and use of an optical apparatus to measure the far-field elastic light-scattering pattern for a single particle over two angular-dimensions. A spatial filter composed of a mirror with a small through-hole is used to enable collection of the pattern uncommonly close to the forward direction; to within tenths of a degree. Minor modifications of the design allow for the simultaneous measurement of a particle's image along with its two-dimensional scattering pattern. Example measurements are presented involving single micrometer-sized glass spherical particles confined in an electrodynamic trap and a dilute suspension of polystyrene latex particles in water. A small forward-angle technique, called Guinier analysis, is used to determine a particle-size estimate directly from the measured pattern without a priori knowledge of the particle refractive index. Comparison of these size estimates to those obtained by fitting the measurements to Mie theory reveals relative errors low as 2%.

  18. Voxel-Based Spatial Filtering Method for Canopy Height Retrieval from Airborne Single-Photon Lidar

    Directory of Open Access Journals (Sweden)

    Hao Tang

    2016-09-01

    Full Text Available Airborne single-photon lidar (SPL is a new technology that holds considerable potential for forest structure and carbon monitoring at large spatial scales because it acquires 3D measurements of vegetation faster and more efficiently than conventional lidar instruments. However, SPL instruments use green wavelength (532 nm lasers, which are sensitive to background solar noise, and therefore SPL point clouds require more elaborate noise filtering than other lidar instruments to determine canopy heights, particularly in daytime acquisitions. Histogram-based aggregation is a commonly used approach for removing noise from photon counting lidar data, but it reduces the resolution of the dataset. Here we present an alternate voxel-based spatial filtering method that filters noise points efficiently while largely preserving the spatial integrity of SPL data. We develop and test our algorithms on an experimental SPL dataset acquired over Garrett County in Maryland, USA. We then compare canopy attributes retrieved using our new algorithm with those obtained from the conventional histogram binning approach. Our results show that canopy heights derived using the new algorithm have a strong agreement with field-measured heights (r2 = 0.69, bias = 0.42 m, RMSE = 4.85 m and discrete return lidar heights (r2 = 0.94, bias = 1.07 m, RMSE = 2.42 m. Results are consistently better than height accuracies from the histogram method (field data: r2 = 0.59, bias = 0.00 m, RMSE = 6.25 m; DRL: r2 = 0.78, bias = −0.06 m and RMSE = 4.88 m. Furthermore, we find that the spatial-filtering method retains fine-scale canopy structure detail and has lower errors over steep slopes. We therefore believe that automated spatial filtering algorithms such as the one presented here can support large-scale, canopy structure mapping from airborne SPL data.

  19. Spatial mapping of exciton lifetimes in single ZnO nanowires

    Directory of Open Access Journals (Sweden)

    J. S. Reparaz

    2013-07-01

    Full Text Available We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.

  20. Spatial assessment of wolf-dog hybridization in a single breeding period

    OpenAIRE

    Pacheco, C.; L?pez-Bao, J. V.; Garc?a, E. J.; Lema, F. J.; Llaneza, L.; Palacios, V.; Godinho, R.

    2017-01-01

    Understanding the dynamics of wolf-dog hybridization and delineating evidence-based conservation strategies requires information on the spatial extent of wolf-dog hybridization in real-time, which remains largely unknown. We collected 332 wolf-like scats over ca. 5,000km2 in the NW Iberian Peninsula to evaluate wolf-dog hybridization at population level in a single breeding/pup-rearing season. Mitochondrial DNA (MtDNA) and 18 ancestry informative markers were used for species and individual i...

  1. Integrated single grating compressor for variable pulse front tilt in simultaneously spatially and temporally focused systems.

    Science.gov (United States)

    Block, Erica; Thomas, Jens; Durfee, Charles; Squier, Jeff

    2014-12-15

    A Ti:Al(3)O(2) multipass chirped pulse amplification system is outfitted with a single-grating, simultaneous spatial and temporal focusing (SSTF) compressor platform. For the first time, this novel design has the ability to easily vary the beam aspect ratio of an SSTF beam, and thus the degree of pulse-front tilt at focus, while maintaining a net zero-dispersion system. Accessible variation of pulse front tilt gives full spatiotemporal control over the intensity distribution at the focus and could lead to better understanding of effects such as nonreciprocal writing and SSTF-material interactions.

  2. Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection.

    Science.gov (United States)

    Parniak, Michał; Dąbrowski, Michał; Mazelanik, Mateusz; Leszczyński, Adam; Lipka, Michał; Wasilewski, Wojciech

    2017-12-15

    Parallelized quantum information processing requires tailored quantum memories to simultaneously handle multiple photons. The spatial degree of freedom is a promising candidate to facilitate such photonic multiplexing. Using a single-photon resolving camera, we demonstrate a wavevector multiplexed quantum memory based on a cold atomic ensemble. Observation of nonclassical correlations between Raman scattered photons is confirmed by an average value of the second-order correlation function [Formula: see text] in 665 separated modes simultaneously. The proposed protocol utilizing the multimode memory along with the camera will facilitate generation of multi-photon states, which are a necessity in quantum-enhanced sensing technologies and as an input to photonic quantum circuits.

  3. Single-port, single-operator-light endoscopic robot-assisted laparoscopic urology: pilot study in a pig model.

    Science.gov (United States)

    Crouzet, Sebastien; Haber, Georges-Pascal; White, Wesley M; Kamoi, Kazumi; Goel, Raj K; Kaouk, Jihad H

    2010-03-01

    To present our initial operative experience in which single-port-light endoscopic robot-assisted reconstructive and extirpative urological surgery was performed by one surgeon, using a pig model. This pilot study was conducted in male farm pigs to determine the feasibility and safety of single-port, single-surgeon urological surgery. All pigs had a general anaesthetic and were placed in the flank position. A 2-cm umbilical incision was made, through which a single port was placed and pneumoperitoneum obtained. An operative laparoscope was introduced and securely held using a novel low-profile robot under foot and/or voice control. Using articulating instruments, each pig had bilateral reconstructive and extirpative renal surgery. Salient intraoperative and postmortem data were recorded. Results were analysed statistically to determine if outcomes improved with surgeon experience. Five male farm pigs underwent bilateral partial nephrectomy and bilateral pyeloplasty before a completion bilateral radical nephrectomy. There were no intraoperative complications and there was no need for additional ports to be placed. The mean (range) operative duration for partial nephrectomy, pyeloplasty, and nephrectomy were 120 (100-150), 110 (95-130) and 20 (15-30) min, respectively. The mean (range) estimated blood loss for all procedures was 240 (200-280) mL. The preparation time decreased with increasing number of cases (P = 0.002). The combination of a single-port, a robotic endoscope holder and articulated instruments operated by one surgeon is feasible. With a single-port access, the robot allows more room to the surgeon than an assistant.

  4. Single particle analysis with a 360/sup 0/ light scattering photometer

    Energy Technology Data Exchange (ETDEWEB)

    Bartholdi, M.F.

    1979-06-01

    Light scattering by single spherical homogeneous particles in the diameter range 1 to 20 ..mu..m and relative refractive index 1.20 is measured. Particle size of narrowly dispersed populations is determined and a multi-modal dispersion of five components is completely analyzed. A 360/sup 0/ light scattering photometer for analysis of single particles has been designed and developed. A fluid stream containing single particles intersects a focused laser beam at the primary focal point of an ellipsoidal reflector ring. The light scattered at angles theta = 2.5/sup 0/ to 177.5/sup 0/ at phi = 0/sup 0/ and 180/sup 0/ is reflected onto a circular array of photodiodes. The ellipsoidal reflector is situated in a chamber filled with fluid matching that of the stream to minimize refracting and reflecting interfaces. The detector array consists of 60 photodiodes each subtending 3/sup 0/ in scattering angle on 6/sup 0/ centers around 360/sup 0/. 32 measurements on individual particles can be acquired at rates of 500 particles per second. The intensity and angular distribution of light scattered by spherical particles are indicative of size and relative refractive index. Calculations, using Lorenz--Mie theory, of differential scattering patterns integrated over angle corresponding to the detector geometry determined the instrument response to particle size. From this the expected resolution and experimental procedures are determined.Ultimately, the photometer will be utilized for identification and discrimination of biological cells based on the sensitivity of light scattering to size, shape, refractive index differences, internal granularity, and other internal morphology. This study has demonstrated the utility of the photometer and indicates potential for application to light scattering studies of biological cells.

  5. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.

    Science.gov (United States)

    Truong, Phuoc Long; Ma, Xingyi; Sim, Sang Jun

    2014-02-21

    Scientific interest in nanotechnology is driven by the unique and novel properties of nanometer-sized metallic materials such as the strong interaction between the conductive electrons of the nanoparticles and the incident light, caused by localized surface plasmon resonances (LSPRs). In this article, we analysed the relationship of the Rayleigh scattering properties of a single Au nanoparticle with its size, shape, and local dielectric environment. We also provided a detailed study on the refractive index sensitivity of three types of differently shaped Au nanoparticles, which were nanospheres, oval-shaped nanoparticles and nanorods. This study helps one to differentiate the Rayleigh light scattering from individual nanoparticles of different sizes and/or shapes and precisely obtain quantitative data as well as the correlated optical spectra of single gold nanoparticles from the inherently inhomogeneous solution of nanoparticles. These results suggest that the shape, size and aspect ratio of Au nanoparticles are important structural factors in determining the resonant Rayleigh light scattering properties of a single Au nanoparticle such as its spectral peak position, scattering-cross-section and refractive index sensitivity, which gives a handle for the choice of gold nanoparticles for the design and fabrication of single nanosensors.

  6. Top asymmetry and the search for a light hadronic resonance in association with single top

    CERN Document Server

    Jung, Sunghoon; Wells, James D

    2011-01-01

    The exchange of a light $t$-channel flavor-changing gauge boson, $\\Vp$, with mass $\\sim m_{top}$ remains a leading explanation for the anomalous forward backward asymmetry in top quark production at the Tevatron. Unlike other ideas, including heavier $t$-channel mediators, the light $\\Vp$ model is not easily seen in the $\\mtt$ distribution. We advocate a more promising strategy. While current analyses at hadron colliders may not be sensitive, we propose searching for a $jj$ resonance in association with single top that may allow discovery in existing data. Deviations in the lepton charge asymmetry in this sample should also be present.

  7. GDP Spatialization and Economic Differences in South China Based on NPP-VIIRS Nighttime Light Imagery

    Science.gov (United States)

    Zhao, M.

    2017-12-01

    Accurate data on gross domestic product (GDP) at pixel level are needed to understand the dynamics of regional economies. GDP spatialization is the basis of quantitative analysis on economic diversities of different administrative divisions and areas with different natural or humanistic attributes. Data from the Visible Infrared Imaging Radiometer Suite (VIIRS), carried by the Suomi National Polar-orbiting Partnership (NPP) satellite, are capable of estimating GDP, but few studies have been conducted for mapping GDP at pixel level and further pattern analysis of economic differences in different regions using the VIIRS data. This paper produced a pixel-level (500 m × 500 m) GDP map for South China in 2014 and quantitatively analyzed economic differences among diverse geomorphological types. Based on a regression analysis, the total nighttime light (TNL) of corrected VIIRS data were found to exhibit R2 values of 0.8935 and 0.9243 for prefecture GDP and county GDP, respectively. This demonstrated that TNL showed a more significant capability in reflecting economic status (R2 > 0.88) than other nighttime light indices (R2 < 0.52), and showed quadratic polynomial relationships with GDP rather than simple linear correlations at both prefecture and county levels. The corrected NPP-VIIRS data showed a better fit than the original data, and the estimation at the county level was better than at the prefecture level. The pixel-level GDP map indicated that: (a) economic development in coastal areas was higher than that in inland areas; (b) low altitude plains were the most developed areas, followed by low altitude platforms and low altitude hills; and (c) economic development in middle altitude areas, and low altitude hills and mountains remained to be strengthened.

  8. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    Science.gov (United States)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  9. Laser beam shaping limitations for laboratory simulation of turbulence using a phase-only spatial light modulator

    CSIR Research Space (South Africa)

    Litvin, IA

    2007-09-01

    Full Text Available phase screens. In this work the authors investigate the limitation of laser beam shaping with a phase-only spatial light modulator for the simulation of dynamic and pseudo-random turbulence in the laboratory. Findings state that there are regimes where...

  10. Single Cell Responses to Spatially Controlled Photosensitized Production of Extracellular Singlet Oxygen

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served...... to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance...... between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach...

  11. Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

    Directory of Open Access Journals (Sweden)

    Yusuke Niino

    Full Text Available Fluorescence resonance energy transfer (FRET between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca(2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.

  12. A two-step method for spatial circle orientation with a structured light vision sensor and error analysis

    International Nuclear Information System (INIS)

    Wu, Bin; Ye, Shenghua; Xue, Ting

    2010-01-01

    A novel two-step method for spatial circle orientation with a structured light vision sensor is proposed for a 3D flexible visual inspection system guided by an industrial robot. Firstly the z coordinate of a spatial circle center is estimated, secondly the x and y coordinates are estimated with the center orientation relative to the camera optic center, and then its radius is computed. Simultaneously, the x, y and z coordinate orientation errors are analyzed in detail. It shows that the method is feasible and valid, and the orientation accuracy for the spatial circle exceeds 0.15 mm by experiment. It eliminates the bottleneck of the traditional orientation method with a stereovision sensor, and greatly expands the application of the structured light visual inspection system

  13. Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator.

    Science.gov (United States)

    Aulbach, Laura; Salazar Bloise, Félix; Lu, Min; Koch, Alexander W

    2017-03-15

    The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler.

  14. Adaptive electron beam shaping using a photoemission gun and spatial light modulator

    Directory of Open Access Journals (Sweden)

    Jared Maxson

    2015-02-01

    Full Text Available The need for precisely defined beam shapes in photoelectron sources has been well established. In this paper, we use a spatial light modulator and simple shaping algorithm to create arbitrary, detailed transverse laser shapes with high fidelity. We transmit this shaped laser to the photocathode of a high voltage dc gun. Using beam currents where space charge is negligible, and using an imaging solenoid and fluorescent viewscreen, we show that the resultant beam shape preserves these detailed features with similar fidelity. Next, instead of transmitting a shaped laser profile, we use an active feedback on the unshaped electron beam image to create equally accurate and detailed shapes. We demonstrate that this electron beam feedback has the added advantage of correcting for electron optical aberrations, yielding shapes without skew. The method may serve to provide precisely defined electron beams for low current target experiments, space-charge dominated beam commissioning, as well as for online adaptive correction of photocathode quantum efficiency degradation.

  15. Holographic Fabrication of Designed Functional Defect Lines in Photonic Crystal Lattice Using a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Jeffrey Lutkenhaus

    2016-04-01

    Full Text Available We report the holographic fabrication of designed defect lines in photonic crystal lattices through phase engineering using a spatial light modulator (SLM. The diffracted beams from the SLM not only carry the defect’s content but also the defect related phase-shifting information. The phase-shifting induced lattice shifting in photonic lattices around the defects in three-beam interference is less than the one produced by five-beam interference due to the alternating shifting in lattice in three beam interference. By designing the defect line at a 45 degree orientation and using three-beam interference, the defect orientation can be aligned with the background photonic lattice, and the shifting is only in one side of the defect line, in agreement with the theory. Finally, a new design for the integration of functional defect lines in a background phase pattern reduces the relative phase shift of the defect and utilizes the different diffraction efficiency between the defect line and background phase pattern. We demonstrate that the desired and functional defect lattice can be registered into the background lattice through the direct imaging of designed phase patterns.

  16. Design of coupled mace filters for optical pattern recognition using practical spatial light modulators

    Science.gov (United States)

    Rajan, P. K.; Khan, Ajmal

    1993-01-01

    Spatial light modulators (SLMs) are being used in correlation-based optical pattern recognition systems to implement the Fourier domain filters. Currently available SLMs have certain limitations with respect to the realizability of these filters. Therefore, it is necessary to incorporate the SLM constraints in the design of the filters. The design of a SLM-constrained minimum average correlation energy (SLM-MACE) filter using the simulated annealing-based optimization technique was investigated. The SLM-MACE filter was synthesized for three different types of constraints. The performance of the filter was evaluated in terms of its recognition (discrimination) capabilities using computer simulations. The correlation plane characteristics of the SLM-MACE filter were found to be reasonably good. The SLM-MACE filter yielded far better results than the analytical MACE filter implemented on practical SLMs using the constrained magnitude technique. Further, the filter performance was evaluated in the presence of noise in the input test images. This work demonstrated the need to include the SLM constraints in the filter design. Finally, a method is suggested to reduce the computation time required for the synthesis of the SLM-MACE filter.

  17. PHASE QUANTIZATION STUDY OF SPATIAL LIGHT MODULATOR FOR EXTREME HIGH-CONTRAST IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Jiangpei; Ren, Deqing, E-mail: jpdou@niaot.ac.cn, E-mail: jiangpeidou@gmail.com [Physics and Astronomy Department, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States)

    2016-11-20

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10{sup -10}. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10{sup -10} in comparison to that by using a deformable mirror.

  18. Light radiation through a transparent cathode plate with single-walled carbon nanotube field emitters

    International Nuclear Information System (INIS)

    Jang, E.S.; Goak, J.C.; Lee, H.S.; Lee, S.H.; Han, J.H.; Lee, C.S.; Sok, J.H.; Seo, Y.H.; Park, K.S.; Lee, N.S.

    2010-01-01

    In the conventional carbon nanotube backlight units (CNT-BLUs), light passes through the phosphor-coated anode glass plate, which thus faces closely the thin film transistor (TFT) backplate of a liquid crystal display panel. This configuration makes heat dissipation structurally difficult because light emission and heat generation occur simultaneously at the anode. We propose a novel configuration of a CNT-BLU where the cathode rather than the anode faces the TFT backplate by turning it upside down. In this design, light passes through the transparent cathode glass plate while heating occurs at the anode. We demonstrated a novel design of CNT-BLU by fabricating transparent single-walled CNT field emitters on the cathode and by coating a reflecting metal layer on the anode. This study hopefully provides a clue to solve the anode-heating problem which would be inevitably confronted for high-luminance and large-area CNT-BLUs.

  19. Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells.

    Science.gov (United States)

    Kelbauskas, Laimonas; Shetty, Rishabh; Cao, Bin; Wang, Kuo-Chen; Smith, Dean; Wang, Hong; Chao, Shi-Hui; Gangaraju, Sandhya; Ashcroft, Brian; Kritzer, Margaret; Glenn, Honor; Johnson, Roger H; Meldrum, Deirdre R

    2017-12-01

    Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field.

  20. From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective

    Science.gov (United States)

    Gruber, J. Michael; Malý, Pavel; Krüger, Tjaart P. J.; Grondelle, Rienk van

    2018-01-01

    The conversion of solar radiation to chemical energy in plants and green algae takes place in the thylakoid membrane. This amphiphilic environment hosts a complex arrangement of light-harvesting pigment-protein complexes that absorb light and transfer the excitation energy to photochemically active reaction centers. This efficient light-harvesting capacity is moreover tightly regulated by a photoprotective mechanism called non-photochemical quenching to avoid the stress-induced destruction of the catalytic reaction center. In this review we provide an overview of single-molecule fluorescence measurements on plant light-harvesting complexes (LHCs) of varying sizes with the aim of bridging the gap between the smallest isolated complexes, which have been well-characterized, and the native photosystem. The smallest complexes contain only a small number (10-20) of interacting chlorophylls, while the native photosystem contains dozens of protein subunits and many hundreds of connected pigments. We discuss the functional significance of conformational dynamics, the lipid environment, and the structural arrangement of this fascinating nano-machinery. The described experimental results can be utilized to build mathematical-physical models in a bottom-up approach, which can then be tested on larger in vivo systems. The results also clearly showcase the general property of biological systems to utilize the same system properties for different purposes. In this case it is the regulated conformational flexibility that allows LHCs to switch between efficient light-harvesting and a photoprotective function.

  1. The Suitability of Different Nighttime Light Data for GDP Estimation at Different Spatial Scales and Regional Levels

    Directory of Open Access Journals (Sweden)

    Zhaoxin Dai

    2017-02-01

    Full Text Available Nighttime light data offer a unique view of the Earth’s surface and can be used to estimate the spatial distribution of gross domestic product (GDP. Historically, using a simple regression function, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS has been used to correlate regional and global GDP values. In early 2013, the first global Suomi National Polar-orbiting Partnership (NPP visible infrared imaging radiometer suite (VIIRS nighttime light data were released. Compared with DMSP/OLS, they have a higher spatial resolution and a wider radiometric detection range. This paper aims to study the suitability of the two nighttime light data sources for estimating the GDP relationship between the provincial and city levels in Mainland China, as well as of different regression functions. First, NPP/VIIRS nighttime light data for 2014 are corrected with DMSP/OLS data for 2013 to reduce the background noise in the original data. Subsequently, three regression functions are used to estimate the relationship between nighttime light data and GDP statistical data at the provincial and city levels in Mainland China. Then, through the comparison of the relative residual error (RE and the relative root mean square error (RRMSE parameters, a systematical assessment of the suitability of the GDP estimation is provided. The results show that the NPP/VIIRS nighttime light data are better than the DMSP/OLS data for GDP estimation, whether at the provincial or city level, and that the power function and polynomial models are better for GDP estimation than the linear regression model. This study reveals that the accuracy of GDP estimation based on nighttime light data is affected by the resolution of the data and the spatial scale of the study area, as well as by the land cover types and industrial structures of the study area.

  2. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  3. An update on single field models of inflation in light of WMAP7

    International Nuclear Information System (INIS)

    Alabidi, Laila; Huston, Ian

    2010-01-01

    In this paper we summarise the status of single field models of inflation in light of the WMAP 7 data release. We find little has changed since the 5 year release, and results are consistent with previous findings. The increase in the upper bound on the running of the spectral index impacts on the status of the production of Primordial Black Holes from single field models. The lower bound on f equi NL is reduced and thus the bounds on the theoretical parameters of (UV) DBI single brane models are weakened. In the case of multiple coincident branes the bounds are also weakened and the two, three or four brane cases will produce a tensor-signal that could possibly be observed in the future

  4. Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution.

    Science.gov (United States)

    Brede, Jens; Atodiresei, Nicolae; Kuck, Stefan; Lazić, Predrag; Caciuc, Vasile; Morikawa, Yoshitada; Hoffmann, Germar; Blügel, Stefan; Wiesendanger, Roland

    2010-07-23

    We investigate the spin- and energy-dependent tunneling through a single organic molecule (CoPc) adsorbed on a ferromagnetic Fe thin film, spatially resolved by low-temperature spin-polarized scanning tunneling microscopy. Interestingly, the metal ion as well as the organic ligand show a significant spin dependence of tunneling current flow. State-of-the-art ab initio calculations including also van der Waals interactions reveal a strong hybridization of molecular orbitals and substrate 3d states. The molecule is anionic due to a transfer of one electron, resulting in a nonmagnetic (S=0) state. Nevertheless, tunneling through the molecule exhibits a pronounced spin dependence due to spin-split molecule-surface hybrid states.

  5. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. H.

    1976-07-01

    This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center.

  6. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations

    International Nuclear Information System (INIS)

    Adams, C.H.

    1976-07-01

    This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center

  7. Single-molecule fluorescence microscopy review: shedding new light on old problems.

    Science.gov (United States)

    Shashkova, Sviatlana; Leake, Mark C

    2017-08-31

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. © 2017 The Author(s).

  8. Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals

    Science.gov (United States)

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-07-01

    Light beams with extraordinary spatial structures, such as the Airy beam (AB), the Bessel-Gaussian beam (BGB) and the Laguerre-Gaussian beam (LGB), are widely studied and applied in many optical scenarios. We report on preparation of light beams with controllable spatial structures through sum frequency generation (SFG) using two Gaussian pump beams in a quasi-phase matching (QPM) crystal. The spatial structures, including multi-ring-like BGB, donut-like LGB, and super-Gaussian-like beams, can be controlled periodically via crystal phase mismatching by tuning the pump frequency or crystal temperature. This phenomenon has not been reported or discussed previously. Additionally, we present numerical simulations of the phenomenon, which agree very well with the experimental observations. Our findings give further insight into the SFG process in QPM crystals, provide a new way to generate light with unusual spatial structures, and may find applications in the fields of laser optics, all-optical switching, and optical manipulation and trapping.

  9. PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras.

    Science.gov (United States)

    Zheng, Lei; Lukac, Rastislav; Wu, Xiaolin; Zhang, David

    2009-04-01

    Single-sensor digital color cameras use a process called color demosiacking to produce full color images from the data captured by a color filter array (CAF). The quality of demosiacked images is degraded due to the sensor noise introduced during the image acquisition process. The conventional solution to combating CFA sensor noise is demosiacking first, followed by a separate denoising processing. This strategy will generate many noise-caused color artifacts in the demosiacking process, which are hard to remove in the denoising process. Few denoising schemes that work directly on the CFA images have been presented because of the difficulties arisen from the red, green and blue interlaced mosaic pattern, yet a well-designed "denoising first and demosiacking later" scheme can have advantages such as less noise-caused color artifacts and cost-effective implementation. This paper presents a principle component analysis (PCA)-based spatially-adaptive denoising algorithm, which works directly on the CFA data using a supporting window to analyze the local image statistics. By exploiting the spatial and spectral correlations existing in the CFA image, the proposed method can effectively suppress noise while preserving color edges and details. Experiments using both simulated and real CFA images indicate that the proposed scheme outperforms many existing approaches, including those sophisticated demosiacking and denoising schemes, in terms of both objective measurement and visual evaluation.

  10. One-trial spatial learning: wild hummingbirds relocate a reward after a single visit.

    Science.gov (United States)

    Flores-Abreu, I Nuri; Hurly, T Andrew; Healy, Susan D

    2012-07-01

    Beaconing to rewarded locations is typically achieved by visual recognition of the actual goal. Spatial recognition, on the other hand, can occur in the absence of the goal itself, relying instead on the landmarks surrounding the goal location. Although the duration or frequency of experiences that an animal needs to learn the landmarks surrounding a goal have been extensively studied with a variety of laboratory tasks, little is known about the way in which wild vertebrates use them in their natural environment. Here, we allowed hummingbirds to feed once only from a rewarding flower (goal) before it was removed. When we presented a similar flower at a different height in another location, birds frequently returned to the location the flower had previously occupied (spatial recognition) before flying to the flower itself (beaconing). After experiencing three rewarded flowers, each in a different location, they were more likely to beacon to the current visible flower than they were to return to previously rewarded locations (without a visible flower). These data show that hummingbirds can encode a rewarded location on the basis of the surrounding landmarks after a single visit. After multiple goal location manipulations, however, the birds changed their strategy to beaconing presumably because they had learned that the flower itself reliably signalled reward.

  11. DVimage spatial light modulator: a new real-time interface for the Texas Instruments Discovery 3000 DMD chipset

    Science.gov (United States)

    Saggese, Steven; Thomas, Tudor

    2007-02-01

    This paper will present the development of a new driver board for the Texas Instruments Discovery TM 3000 Micromirror Device (DMD) chipset being offered by Texas Instruments. A requirement of our current research is to have a real-time digital interface to a reflective spatial light modulator to project patterns based upon images obtained via a camera system. As a result, we developed the DVimage TM spatial light modulator driver board based upon the Texas Instruments Discovery TM 3000 chipset. The DVimage TM can be run from any computer through the standard DVI port, can display 8-bit grayscale at 60Hz in real-time and can store 4600 full resolution 1-bit images on the board and display them at a maximum frame rate of 16,300 fps. The board also has programmable sync pins to trigger other systems (e.g. light sources, cameras). An SDK and software examples have been developed to allow for integration into custom applications. This paper will describe the general hardware architecture and software tools along with example applications for this spatial light modulator system.

  12. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    Science.gov (United States)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  13. Theoretical and experimental investigations of efficient light coupling with spatially varied all dielectric striped waveguides

    Science.gov (United States)

    Yilmaz, Y. A.; Tandogan, S. E.; Hayran, Z.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-07-01

    Integrated photonic systems require efficient, compact, and broadband solutions for strong light coupling into and out of optical waveguides. The present work investigates an efficient optical power transferring the problem between optical waveguides having different widths of in/out terminals. We propose a considerably practical and feasible concept to implement and design an optical coupler by introducing gradually index modulation to the coupler section. The index profile of the coupler section is modulated with a Gaussian function by the help of striped waveguides. The effective medium theory is used to replace the original spatially varying index profile with dielectric stripes of a finite length/width having a constant effective refractive index. 2D and 3D finite-difference time-domain analyzes are utilized to investigate the sampling effect of the designed optical coupler and to determine the parameters that play a crucial role in enhancing the optical power transfer performance. Comparing the coupling performance of conventional benchmark adiabatic and butt couplers with the designed striped waveguide coupler, the corresponding coupling efficiency increases from approximately 30% to 95% over a wide frequency interval. In addition, to realize the realistic optical coupler appropriate to integrated photonic applications, the proposed structure is numerically designed on a silicon-on-insulator wafer. The implemented SOI platform based optical coupler operates in the telecom wavelength regime (λ = 1.55 μm), and the dimensions of the striped coupler are kept as 9.77 μm (along the transverse to propagation direction) and 7.69 μm (along the propagation direction) where the unit distance is fixed to be 465 nm. Finally, to demonstrate the operating design principle, the microwave experiments are conducted and the spot size conversion ratio as high as 7.1:1 is measured, whereas a coupling efficiency over 60% in the frequency range of 5.0-16.0 GHz has been also

  14. Free-space data transfer using the spatial modes of light

    CSIR Research Space (South Africa)

    Gailele, Lucas M

    2016-07-01

    Full Text Available The orbital angular momentum (OAM) of light has become the focus of intensive research. Traditional optical communication systems optimize multiplexing in the polarization and the wavelength of light to attain an increase in bandwith. However we...

  15. Solid-phase laser-induced forward transfer of variable shapes using a liquid-crystal spatial light modulator

    Science.gov (United States)

    Pohl, R.; Jansink, M.; Römer, G. R. B. E.; Huis in `t Veld, A. J.

    2015-08-01

    Laser-induced forward transfer is a promising method for 3D printing of various materials, including metals. The ejection mechanism is complex and depends strongly on the experimental parameters, such as laser fluence and donor layer thickness. However, the process can be categorized by the physical condition of the ejected material, i.e., the donor layer is transferred in liquid phase or the material is transferred as a `pellet' in solid phase. Currently, solid-phase transfer faces several problems. Large shearing forces, occurring at the pellet perimeter during transfer, limit the similarity between the desired pellet shape and the deposited pellet shape. Furthermore, the deposited pellet may be surrounded by debris particles formed by undesired transferred donor material. This work introduces a novel approach for laser-induced forward transfer of variable shaped solid-phase pellets. A liquid-crystal spatial light modulator (SLM) is used to apply grayscale intensity modulation to an incident laser beam to shape the intensity profile. Optimized beams consist of a high fluence perimeter around an interior characterized by a lower fluence level. These beams are used successfully to transfer solid-phase pellets out of a 100-nm Au donor layer using a single laser pulse. The flexibility of the SLM allows a variable desired pellet shape. The shapes of the resulting deposited pellets show a high degree of similarity to the desired shapes. Debris-free deposited pellets are achieved by pre-machining the donor layer, prior to the transfer, using a double-pulse process.

  16. Full field tomography using interference fringes casting of a non spatially-coherent extended spectrally modulated broadband light source

    Science.gov (United States)

    Arieli, Yoel; Epshtein, Shlomi; Harris, Alon; Yaacubov, Igor; Cohen, Yoel

    2018-01-01

    A method for full field tomographic measurements using a fully non spatially-coherent extended broadband light source and a common path interferometry is described. A layered object's is being tomographed by acquiring multiple images of the object while modulating the spectrum of the extended broadband light source. In order to overcome the non spatially-coherence of the light source, interference fringes are created by amplitude division interferometry at a focal plane of the illuminating optical system and are casted on the measured object. In addition, due to exploiting one of the object's layers as a reference layer for the interference the need for an auxiliary reference beam is avoided and inherent Full Field ;en-face; common path interferometry measurements are obtained. Another advantage is that by using spectrally modulated broadband illumination and obviating the reference beam, the requirement that the object should be used as one of the interferometer arms as in common dual beam interferometry is also avoided. This enables to relay the spectrally modulated light to illuminate the measured object which is just being imaged using a simplified imaging system while modulating the light. However, since there is no reference arm, the tomography of the object is calculated by a complex iterative algorithm where some knowledge on the object's structure is required.

  17. Field Geometric Calibration Method for Line Structured Light Sensor Using Single Circular Target

    Directory of Open Access Journals (Sweden)

    Tianfei Chen

    2017-01-01

    Full Text Available To achieve fast calibration of line structured light sensor, a geometric calibration approach based on single circular calibration target is proposed. The proposed method uses the circular points to establish linear equations, and according to the angle constraint, the camera intrinsic parameters can be calculated through optimization. Then, the light plane calibration is accomplished in two steps. Firstly, when the vanishing lines of target plane at various postures are obtained, the intersections between vanishing lines and laser stripe can be computed, and the normal vector of light plane can be calibrated via line fitting method using intersection points. After that, the distance from the origin of camera coordinate system to the light plane can be derived based on the model of perspective-three-point. The actual experimental result shows that this calibration method has high accuracy, its average measuring accuracy is 0.0451 mm, and relative error is 0.2314%. In addition, the entire calibration process has no complex operations. It is simple, convenient, and suitable for calibration on sites.

  18. From Animaculum to single molecules: 300 years of the light microscope.

    Science.gov (United States)

    Wollman, Adam J M; Nudd, Richard; Hedlund, Erik G; Leake, Mark C

    2015-04-01

    Although not laying claim to being the inventor of the light microscope, Antonj van Leeuwenhoek (1632-1723) was arguably the first person to bring this new technological wonder of the age properly to the attention of natural scientists interested in the study of living things (people we might now term 'biologists'). He was a Dutch draper with no formal scientific training. From using magnifying glasses to observe threads in cloth, he went on to develop over 500 simple single lens microscopes (Baker & Leeuwenhoek 1739 Phil. Trans. 41, 503-519. (doi:10.1098/rstl.1739.0085)) which he used to observe many different biological samples. He communicated his finding to the Royal Society in a series of letters (Leeuwenhoek 1800 The select works of Antony Van Leeuwenhoek, containing his microscopical discoveries in many of the works of nature, vol. 1) including the one republished in this edition of Open Biology. Our review here begins with the work of van Leeuwenhoek before summarizing the key developments over the last ca 300 years, which has seen the light microscope evolve from a simple single lens device of van Leeuwenhoek's day into an instrument capable of observing the dynamics of single biological molecules inside living cells, and to tracking every cell nucleus in the development of whole embryos and plants.

  19. From Animaculum to single molecules: 300 years of the light microscope

    Science.gov (United States)

    Wollman, Adam J. M.; Nudd, Richard; Hedlund, Erik G.; Leake, Mark C.

    2015-01-01

    Although not laying claim to being the inventor of the light microscope, Antonj van Leeuwenhoek (1632–1723) was arguably the first person to bring this new technological wonder of the age properly to the attention of natural scientists interested in the study of living things (people we might now term ‘biologists’). He was a Dutch draper with no formal scientific training. From using magnifying glasses to observe threads in cloth, he went on to develop over 500 simple single lens microscopes (Baker & Leeuwenhoek 1739 Phil. Trans. 41, 503–519. (doi:10.1098/rstl.1739.0085)) which he used to observe many different biological samples. He communicated his finding to the Royal Society in a series of letters (Leeuwenhoek 1800 The select works of Antony Van Leeuwenhoek, containing his microscopical discoveries in many of the works of nature, vol. 1) including the one republished in this edition of Open Biology. Our review here begins with the work of van Leeuwenhoek before summarizing the key developments over the last ca 300 years, which has seen the light microscope evolve from a simple single lens device of van Leeuwenhoek's day into an instrument capable of observing the dynamics of single biological molecules inside living cells, and to tracking every cell nucleus in the development of whole embryos and plants. PMID:25924631

  20. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection

    KAUST Repository

    Shaikh, Parvez Abdul Ajij

    2016-08-16

    Schottky junctions formed between semiconductors and metal contacts are ubiquitous in modern electronic and optoelectronic devices. Here we report on the physical properties of Schottky-junctions formed on hybrid perovskite CH3NH3PbBr3 single crystals. It is found that light illumination can significantly increase the dielectric constant of perovskite junctions by 2300%. Furthermore, such Pt/perovskite junctions are used to fabricate self-biased photodetectors. A photodetectivity of 1.4 × 1010 Jones is obtained at zero bias, which increases to 7.1 × 1011 Jones at a bias of +3 V, and the photodetectivity remains almost constant in a wide range of light intensity. These devices also exhibit fast responses with a rising time of 70 μs and a falling time of 150 μs. As a result of the high crystal quality and low defect density, such single-crystal photodetectors show stable performance after storage in air for over 45 days. Our results suggest that hybrid perovskite single crystals provide a new platform to develop promising optoelectronic applications. © 2016 The Royal Society of Chemistry.

  1. Light beam diffraction on inhomogeneous holographic photonic PDLC structures under the influence of spatially non-uniform electric field

    Science.gov (United States)

    Semkin, A. O.; Sharangovich, S. N.

    2016-08-01

    In this work the theoretical model of two-dimensional Bragg diffraction of quasimonochromatic light beams on amplitude- and phase- inhomogeneous holographic photonic PDLC structures under the impact of spatially non-uniform electric field is proposed. The selfconsistent solutions for the light diffraction on PDLC structure with uniform amplitude and quasi-quadratic profiles are obtained for the case of influence of linearly varying electric field. The possibility to compensate the PDLC structure response inhomogeneity by the impact of non-unifrom external field is shown.

  2. Excitation of random intense single-cycle light-pulse chains in optical fiber

    International Nuclear Information System (INIS)

    Ding, Y C; Zhang, F L; Gao, J B; Chen, Z Y; Lin, C Y; Yu, M Y

    2014-01-01

    Excitation of intense periodic single-cycle light pulses in a stochastic background arising from continuous wave stimulated Brillouin scattering (SBS) in a long optical fiber with weak optical feedback is found experimentally and modeled theoretically. Such intense light-pulse chains occur randomly and the optical feedback is a requirement for their excitation. The probability of these forms, among the large number of experimental output signals with identifiable waveforms, appearing is only about 3%, with the remainder exhibiting regular SBS characteristics. It is also found that pulses with low period numbers appear more frequently and the probability distribution for their occurrence in terms of the pulse power is roughly L-shaped, like that for rogue waves. The results from a three-wave-coupling model for SBS including feedback phase control agree well qualitatively with the observed phenomena. (paper)

  3. Light-induced cross transport phenomena in a single-component gas

    Energy Technology Data Exchange (ETDEWEB)

    Chermyaninov, I. V.; Chernyak, V. G., E-mail: Vladimir.Chernyak@usu.ru [Ural Federal University (Russian Federation)

    2013-07-15

    The cross transport processes that occur in a single-component gas in a capillary and are caused by resonance laser radiation and pressure and temperature gradients are studied. An expression for entropy production is derived using a system of kinetic Boltzmann equations in a linear approximation. The kinetic coefficients that determine the transport processes are shown to satisfy the Onsager reciprocal relations at any Knudsen numbers and any character of the elastic interaction of gas particles with the capillary surface. The light-induced baro- and thermoeffects that take place in a closed heat-insulated system in the field of resonance laser radiation are considered. Analytical expressions are obtained for the Onsager coefficients in an almost free-molecular regime. The light-induced pressure and temperature gradients that appear in a closed heat-insulated capillary under typical experimental conditions are numerically estimated.

  4. Manipulating femtosecond laser interactions in bulk glass and thin-film with spatial light modulation (Conference Presentation)

    Science.gov (United States)

    Alimohammadian, Ehsan; Ho, Stephen; Ertorer, Erden; Gherghe, Sebastian; Li, Jianzhao; Herman, Peter R.

    2017-03-01

    Spatial Light Modulators (SLM) are emerging as a power tool for laser beam shaping whereby digitally addressed phase shifts can impose computer-generated hologram patterns on incoming laser light. SLM provide several additional advantages with ultrashort-pulsed lasers in controlling the shape of both surface and internal interactions with materials. Inside transparent materials, nonlinear optical effects can confine strong absorption only to the focal volume, extend dissipation over long filament tracks, or reach below diffraction-limited spot sizes. Hence, SLM beam shaping has been widely adopted for laser material processing applications that include parallel structuring, filamentation, fiber Bragg grating formation and optical aberration correction. This paper reports on a range of SLM applications we have studied in femtosecond processing of transparent glasses and thin films. Laser phase-fronts were tailored by the SLM to compensate for spherical surface aberration, and to further address the nonlinear interactions that interplay between Kerr-lens self-focusing and plasma defocusing effects over shallow and deep focusing inside the glass. Limits of strong and weak focusing were examined around the respective formation of low-loss optical waveguides and long uniform filament tracks. Further, we have employed the SLM for beam patterning inside thin film, exploring the limits of phase noise, resolution and fringe contrast during interferometric intra-film structuring. Femtosecond laser pulses of 200 fs pulse duration and 515 nm wavelength were shaped by a phase-only LCOS-SLM (Hamamatsu X10468-04). By imposing radial phase profiles, axicon, grating and beam splitting gratings, volume shape control of filament diameter, length, and uniformity as well as simultaneous formation of multiple filaments has been demonstrated. Similarly, competing effects of spherical surface aberration, self-focusing, and plasma de-focusing were studied and delineated to enable formation

  5. Disparity in Cutaneous Pigmentary Response to LED vs Halogen Incandescent Visible Light: Results from a Single Center, Investigational Clinical Trial Determining a Minimal Pigmentary Visible Light Dose.

    Science.gov (United States)

    Soleymani, Teo; Cohen, David E; Folan, Lorcan M; Okereke, Uchenna R; Elbuluk, Nada; Soter, Nicholas A

    2017-11-01

    Background: While most of the attention regarding skin pigmentation has focused on the effects of ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. The purpose of this study was to investigate the cutaneous pigmentary response to pure visible light irradiation, examine the difference in response to different sources of visible light irradiation, and determine a minimal pigmentary dose of visible light irradiation in melanocompetent subjects with Fitzpatrick skin type III - VI. The study was designed as a single arm, non-blinded, split-side dual intervention study in which subjects underwent visible light irradiation using LED and halogen incandescent light sources delivered at a fluence of 0.14 Watts/cm2 with incremental dose progression from 20 J/cm2 to 320 J/cm2. Pigmentation was assessed by clinical examination, cross-polarized digital photography, and analytic colorimetry. Immediate, dose-responsive pigment darkening was seen with LED light exposure in 80% of subjects, beginning at 60 Joules. No pigmentary changes were seen with halogen incandescent light exposure at any dose in any subject. This study is the first to report a distinct difference in cutaneous pigmentary response to different sources of visible light, and the first to demonstrate cutaneous pigment darkening from visible LED light exposure. Our findings raise the concern that our increasing daily artificial light surroundings may have clandestine effects on skin biology. J Drugs Dermatol. 2017;16(11):1105-1110..

  6. Study on spatial-temporal change of Changsha-Zhuzhou-Xiangtan urban agglomeration based on DMSP / OLS night light data

    Science.gov (United States)

    Li, Mao; Li, Lel-in

    2018-03-01

    For the sake of curbing the spreading of Changsha-Zhuzhou-Xiangtan urban agglomeration and spatial disorder in the process of urbanization development on the regional bearing capacity of land resources and ecological environment and assisting to plan the integration process of ChangZhuTan,this paper uses the DMSP/OLS night light data of Chang ZhuTan in 1992 to 2013 to invert the urbanization process index of ChangZhuTan urban agglomeration. Based on the two scales of time and space, this paper analyzes the average index of lights, the speed of urban expansion and urban compactness index et al and studies the temporal and spatial characteristics of ChangZhuTan urban agglomeration in this period.

  7. Characterization of Plant Growth under Single-Wavelength Laser Light Using the Model Plant Arabidopsis Thaliana

    KAUST Repository

    Ooi, Amanda

    2016-12-01

    Indoor horticulture offers a promising solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available lighting is suboptimal, therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. Lasers are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Besides, laser beams can be tailored to match the absorption profiles of different plants. We have developed a prototype laser growth chamber and demonstrate that laser-grown plants can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteomic data show that the singlewavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. Furthermore, stomatal movement partly determines the plant productivity and stress management. Abscisic acid (ABA) induces stomatal closure by promoting net K+-efflux from guard cells through outwardrectifying K+ (K+ out) channels to regulate plant water homeostasis. Here, we show that the Arabidopsis thaliana guard cell outward-rectifying K+ (ATGORK) channel is a direct target for ABA in the regulation of stomatal aperture and hence gas exchange and transpiration. Addition of (±)-ABA, but not the biologically inactive (−)-isomer, increases K+ out channel activity in Vicia faba guard cell protoplast. A similar ABA

  8. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  9. Single layer graphene electrodes for quantum dot-light emitting diodes

    Science.gov (United States)

    Yan, Long; Zhang, Yu; Zhang, Xiaoyu; Zhao, Jia; Wang, Yu; Zhang, Tieqiang; Jiang, Yongheng; Gao, Wenzhu; Yin, Jingzhi; Zhao, Jun; Yu, William W.

    2015-03-01

    Single layer graphene was employed as the electrode in quantum dot-light emitting diodes (QD-LEDs) to replace indium tin oxide (ITO). The graphene layer demonstrated low surface roughness, good hole injection ability, and proper work function matching with the poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) layer. Together with the hole transport layer and electron transport layer, the fabricated QD-LED showed good current efficiency and power efficiency, which were even higher than an ITO-based similar device under low current density. The result indicates that graphene can be used as anodes to replace ITO in QD-LEDs.

  10. Highly simplified small molecular phosphorescent organic light emitting devices with a solution-processed single layer

    Directory of Open Access Journals (Sweden)

    Zhaokui Wang

    2011-09-01

    Full Text Available A highly simplified single layer solution-processed phosphorescent organic light emitting device (PHOLED with the maximum ηP 11.5 lm/W corresponding to EQE 9.6% has been demonstrated. The solution-processed device is shown having comparable even exceeding device performance to vacuum-processed PHOLED. The simplified device design strategy represents a pathway toward large area, low cost and high efficiency OLEDs in the future. The charge injection and conduction mechanisms in two solution- and vacuum-processed devices are also investigated by evaluating the temperature dependence of current density – voltage characteristics.

  11. Parity generator and parity checker in the modified trinary number system using savart plate and spatial light modulator

    Science.gov (United States)

    Ghosh, Amal K.

    2010-09-01

    The parity generators and the checkers are the most important circuits in communication systems. With the development of multi-valued logic (MVL), the proposed system with parity generators and checkers is the most required using the recently developed optoelectronic technology in the modified trinary number (MTN) system. This system also meets up the tremendous needs of speeds by exploiting the savart plates and spatial light modulators (SLM) in the optical tree architecture (OTA).

  12. Single-molecule exploration of photoprotective mechanisms in light-harvesting complexes

    Science.gov (United States)

    Yang, Hsiang-Yu; Schlau-Cohen, Gabriela S.; Gwizdala, Michal; Krüger, Tjaart; Xu, Pengqi; Croce, Roberta; van Grondelle, Rienk; Moerner, W. E.

    2015-03-01

    Plants harvest sunlight by converting light energy to electron flow through the primary events in photosynthesis. One important question is how the light harvesting machinery adapts to fluctuating sunlight intensity. As a result of various regulatory processes, efficient light harvesting and photoprotection are balanced. Some of the biological steps in the photoprotective processes have been extensively studied and physiological regulatory factors have been identified. For example, the effect of lumen pH in changing carotenoid composition has been explored. However, the importance of photophysical dynamics in the initial light-harvesting steps and its relation to photoprotection remain poorly understood. Conformational and excited-state dynamics of multi-chromophore pigment-protein complexes are often difficult to study and limited information can be extracted from ensemble-averaged measurements. To address the problem, we use the Anti-Brownian ELectrokinetic (ABEL) trap to investigate the fluorescence from individual copies of light-harvesting complex II (LHCII), the primary antenna protein in higher plants, in a solution-phase environment. Perturbative surface immobilization or encapsulation schemes are avoided, and therefore the intrinsic dynamics and heterogeneity in the fluorescence of individual proteins are revealed. We perform simultaneous measurements of fluorescence intensity (brightness), excited-state lifetime, and emission spectrum of single trapped proteins. By analyzing the correlated changes between these observables, we identify forms of LHCII with different fluorescence intensities and excited-state lifetimes. The distinct forms may be associated with different energy dissipation mechanisms in the energy transfer chain. Changes of relative populations in response to pH and carotenoid composition are observed, which may extend our understanding of the molecular mechanisms of photoprotection.

  13. An environmental index of noise and light pollution at EU by spatial correlation of quiet and unlit areas.

    Science.gov (United States)

    Votsi, Nefta-Eleftheria P; Kallimanis, Athanasios S; Pantis, Ioannis D

    2017-02-01

    Quietness exists in places without human induced noise sources and could offer multiple benefits to citizens. Unlit areas are sites free of human intense interference at night time. The aim of this research is to develop an integrated environmental index of noise and light pollution. In order to achieve this goal the spatial pattern of quietness and darkness of Europe was identified, as well as their overlap. The environmental index revealed that the spatial patterns of Quiet and Unlit Areas differ to a great extent highlighting the importance of preserving quietness as well as darkness in EU. The spatial overlap of these two environmental characteristics covers 32.06% of EU surface area, which could be considered a feasible threshold for protection. This diurnal and nocturnal metric of environmental quality accompanied with all direct and indirect benefits to human well-being could indicate a target for environmental protection in the EU policy and practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  15. A new approach to sum frequency generation of single-frequency blue light in a coupled ring cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2014-01-01

    We present a generic approach for the generation of tunable single-frequency light and demonstrate generation of more than 300 mW tunable light around 460 nm. One tapered diode laser is operated in a coupled ring cavity containing the nonlinear crystal and another tapered diode laser is sent thro...

  16. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    OpenAIRE

    Mejia, J.; Reis, M.A.; Miranda, A.C.C.; Batista, I.R.; Barboza, M.R.F.; Shih, M.C.; Fu, G.; Chen, C.T.; Meng, L.J.; Bressan, R.A.; Amaro Jr, E.

    2013-01-01

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and ...

  17. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  18. Spatial assessment of wolf-dog hybridization in a single breeding period.

    Science.gov (United States)

    Pacheco, C; López-Bao, J V; García, E J; Lema, F J; Llaneza, L; Palacios, V; Godinho, R

    2017-02-14

    Understanding the dynamics of wolf-dog hybridization and delineating evidence-based conservation strategies requires information on the spatial extent of wolf-dog hybridization in real-time, which remains largely unknown. We collected 332 wolf-like scats over ca. 5,000km 2 in the NW Iberian Peninsula to evaluate wolf-dog hybridization at population level in a single breeding/pup-rearing season. Mitochondrial DNA (MtDNA) and 18 ancestry informative markers were used for species and individual identification, and to detect wolf-dog hybrids. Genetic relatedness was assessed between hybrids and wolves. We identified 130 genotypes, including 67 wolves and 7 hybrids. Three of the hybrids were backcrosses to dog whereas the others were backcrosses to wolf, the latter accounting for a 5.6% rate of introgression into the wolf population. Our results show a previously undocumented scenario of multiple and widespread wolf-dog hybridization events at the population level. However, there is a clear maintenance of wolf genetic identity, as evidenced by the sharp genetic identification of pure individuals, suggesting the resilience of wolf populations to a small amount of hybridization. We consider that real-time population level assessments of hybridization provide a new perspective into the debate on wolf conservation, with particular focus on current management guidelines applied in wolf-dog hybridization events.

  19. Spatial assessment of wolf-dog hybridization in a single breeding period

    Science.gov (United States)

    Pacheco, C.; López-Bao, J. V.; García, E. J.; Lema, F. J.; Llaneza, L.; Palacios, V.; Godinho, R.

    2017-01-01

    Understanding the dynamics of wolf-dog hybridization and delineating evidence-based conservation strategies requires information on the spatial extent of wolf-dog hybridization in real-time, which remains largely unknown. We collected 332 wolf-like scats over ca. 5,000km2 in the NW Iberian Peninsula to evaluate wolf-dog hybridization at population level in a single breeding/pup-rearing season. Mitochondrial DNA (MtDNA) and 18 ancestry informative markers were used for species and individual identification, and to detect wolf-dog hybrids. Genetic relatedness was assessed between hybrids and wolves. We identified 130 genotypes, including 67 wolves and 7 hybrids. Three of the hybrids were backcrosses to dog whereas the others were backcrosses to wolf, the latter accounting for a 5.6% rate of introgression into the wolf population. Our results show a previously undocumented scenario of multiple and widespread wolf-dog hybridization events at the population level. However, there is a clear maintenance of wolf genetic identity, as evidenced by the sharp genetic identification of pure individuals, suggesting the resilience of wolf populations to a small amount of hybridization. We consider that real-time population level assessments of hybridization provide a new perspective into the debate on wolf conservation, with particular focus on current management guidelines applied in wolf-dog hybridization events. PMID:28195213

  20. Application of a single-flicker online SSVEP BCI for spatial navigation.

    Science.gov (United States)

    Chen, Jingjing; Zhang, Dan; Engel, Andreas K; Gong, Qin; Maye, Alexander

    2017-01-01

    A promising approach for brain-computer interfaces (BCIs) employs the steady-state visual evoked potential (SSVEP) for extracting control information. Main advantages of these SSVEP BCIs are a simple and low-cost setup, little effort to adjust the system parameters to the user and comparatively high information transfer rates (ITR). However, traditional frequency-coded SSVEP BCIs require the user to gaze directly at the selected flicker stimulus, which is liable to cause fatigue or even photic epileptic seizures. The spatially coded SSVEP BCI we present in this article addresses this issue. It uses a single flicker stimulus that appears always in the extrafoveal field of view, yet it allows the user to control four control channels. We demonstrate the embedding of this novel SSVEP stimulation paradigm in the user interface of an online BCI for navigating a 2-dimensional computer game. Offline analysis of the training data reveals an average classification accuracy of 96.9±1.64%, corresponding to an information transfer rate of 30.1±1.8 bits/min. In online mode, the average classification accuracy reached 87.9±11.4%, which resulted in an ITR of 23.8±6.75 bits/min. We did not observe a strong relation between a subject's offline and online performance. Analysis of the online performance over time shows that users can reliably control the new BCI paradigm with stable performance over at least 30 minutes of continuous operation.

  1. Single-step collision-free trajectory planning of biped climbing robots in spatial trusses.

    Science.gov (United States)

    Zhu, Haifei; Guan, Yisheng; Chen, Shengjun; Su, Manjia; Zhang, Hong

    For a biped climbing robot with dual grippers to climb poles, trusses or trees, feasible collision-free climbing motion is inevitable and essential. In this paper, we utilize the sampling-based algorithm, Bi-RRT, to plan single-step collision-free motion for biped climbing robots in spatial trusses. To deal with the orientation limit of a 5-DoF biped climbing robot, a new state representation along with corresponding operations including sampling, metric calculation and interpolation is presented. A simple but effective model of a biped climbing robot in trusses is proposed, through which the motion planning of one climbing cycle is transformed to that of a manipulator. In addition, the pre- and post-processes are introduced to expedite the convergence of the Bi-RRT algorithm and to ensure the safe motion of the climbing robot near poles as well. The piecewise linear paths are smoothed by utilizing cubic B-spline curve fitting. The effectiveness and efficiency of the presented Bi-RRT algorithm for climbing motion planning are verified by simulations.

  2. Light pollution: spatial analysis and potential ecological effects in rural Ireland

    OpenAIRE

    ESPEY, BRIAN

    2017-01-01

    PUBLISHED This paper examines the implications of light pollution for the region of the Mayo Dark Sky Park in the Wild Nephin/Ballycroy area using a combination of satellite and in-situ light pollution measurements and studies of resident species sensitivity.

  3. Terahertz light-emitting graphene-channel transistor toward single-mode lasing

    Directory of Open Access Journals (Sweden)

    Yadav Deepika

    2018-03-01

    Full Text Available A distributed feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET was fabricated as a current-injection terahertz (THz light-emitting laser transistor. We observed a broadband emission in a 1–7.6-THz range with a maximum radiation power of ~10 μW as well as a single-mode emission at 5.2 THz with a radiation power of ~0.1 μW both at 100 K when the carrier injection stays between the lower cutoff and upper cutoff threshold levels. The device also exhibited peculiar nonlinear threshold-like behavior with respect to the current-injection level. The LED-like broadband emission is interpreted as an amplified spontaneous THz emission being transcended to a single-mode lasing. Design constraints on waveguide structures for better THz photon field confinement with higher gain overlapping as well as DFB cavity structures with higher Q factors are also addressed towards intense, single-mode continuous wave THz lasing at room temperature.

  4. Manipulation of intracellular auxin in a single cell by light with esterase-resistant caged auxins.

    Science.gov (United States)

    Kusaka, Naoyuki; Maisch, Jan; Nick, Peter; Hayashi, Ken-ichiro; Nozaki, Hiroshi

    2009-09-04

    Auxin, a plant hormone, is polar transported from its site of production. This auxin polar transport system establishes an auxin gradient in plant tissue that is necessary for proper plant development. Therefore, the spatial effect of the auxin gradient on plant development is highly important for the understanding of plant auxin responses. Herein we report the design, syntheses and biological properties of esterase-resistant caged auxins. The conventional caging group, 2-nitrobenzyl ester, was found to be enzymatically hydrolyzed in plant cells and released original auxin without photolysis. The esterase-resistant caging group, (2,5-dimethoxyphenyl)(2-nitrobenzyl) ester, (DMPNB) was designed to improve the stability of caged auxins. Three auxins, indole 3-acetic acid, naphthalene 1-acetic acid and 2,4-dichlorophenoxy acetic acid were caged with the DMPNB caging group. DMPNB-caged auxins were inactive within a plant cell until photolysis, but they release auxins with photoirradiation to activate auxin-responsive gene expression. We demonstrated spatial and temporal control of intracellular auxin levels with photoirradiation by using this caged auxin system and were able to photocontrol the physiological auxin response in Arabidopsis plants. Additionally, the photoirradiation of DMPNB-caged auxin within a single cell can manipulate the intracellular auxin level and triggers auxin response.

  5. 500 nm Continuous Wave Tunable SingleFrequency MidIR Light Source for C–H Spectroscopy

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Jensen, Ole Bjarlin; Dam, Jeppe Seidelin

    2012-01-01

    A computer controlled tunable mid-IR light source, based on single resonant difference frequency generation (DFG), is experimentally investigated. The DFG process is pumped by an external cavity tapered diode laser, tunable over a spectral range of 30 nm. Grating feedback to the single mode channel...

  6. BRIEF COMMUNICATIONS: Investigation of the state of polarization of light in a single-mode fiber waveguide

    Science.gov (United States)

    Kozel, S. M.; Kreopalov, V. I.; Listvin, V. N.; Glavatskikh, N. A.

    1983-01-01

    An analysis is made of the polarization anisotropy of a single-mode fiber with a twisted elliptic core. The Jones matrix is obtained and the complex function of the state of polarization of light in a fiber is investigated. The results are reported of measurements of the linear and circular birefringence of a borosilicate single-mode glass fiber.

  7. Adaptive shaping system for both spatial and temporal profiles of a highly stabilized UV laser light source for a photocathode RF gun

    Science.gov (United States)

    Tomizawa, H.; Dewa, H.; Taniuchi, T.; Mizuno, A.; Asaka, T.; Yanagida, K.; Suzuki, S.; Kobayashi, T.; Hanaki, H.; Matsui, F.

    2006-02-01

    We have been developing a stable and highly qualified ultraviolet (UV) laser pulse as a light source of an RF gun for an injector candidate of future light sources. Our gun cavity is a single-cell pillbox, and the copper inner wall is used as a photocathode. The chirped pulse amplification (CPA) Ti:sapphire laser system is operated at a repetition rate of 10 Hz. At the third harmonic generation (central wavelength—263 nm), the laser pulse energy after a 45 cm silica rod is up to 850 μJ/pulse. In its present status, the laser's pulse energy stability has been improved down to 0.2˜0.3% at the fundamental, and 0.7-1.4% (rms; 10 pps; 33,818 shots) at the third harmonic generation, respectively. This stability has been held for 1 month continuously, 24 h a day. The improvements we had passively implemented were to stabilize the laser system as well as the environmental conditions. We introduced a humidity-control system kept at 50-60% in a clean room to reduce damage to the optics. In addition, we prepared a deformable mirror for spatial shaping and a spatial light modulator based on fused-silica plates for temporal shaping. We are applying both the adaptive optics to automatic optimization of the electron beam bunch to produce lower emittance with the feedback routine. Before the improvements, the electron beam produced from a cathode suffered inhomogeneous distribution caused by the quantum efficiency effect, and some pulse distortions caused by its response time. However, we can now freely form any arbitrary electron beam distribution on the surface of the cathode.

  8. Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas

    Science.gov (United States)

    Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun

    2016-01-01

    Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST. PMID:27598186

  9. Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas

    Directory of Open Access Journals (Sweden)

    Jun-Hyun Kim

    2016-09-01

    Full Text Available Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI. Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS, and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST.

  10. Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas.

    Science.gov (United States)

    Kim, Jun-Hyun; Gu, Donghwan; Sohn, Wonmin; Kil, Sung-Ho; Kim, Hwanyong; Lee, Dong-Kun

    2016-09-02

    Rapid urbanization has accelerated land use and land cover changes, and generated the urban heat island effect (UHI). Previous studies have reported positive effects of neighborhood landscapes on mitigating urban surface temperatures. However, the influence of neighborhood landscape spatial patterns on enhancing cooling effects has not yet been fully investigated. The main objective of this study was to assess the relationships between neighborhood landscape spatial patterns and land surface temperatures (LST) by using multi-regression models considering spatial autocorrelation issues. To measure the influence of neighborhood landscape spatial patterns on LST, this study analyzed neighborhood environments of 15,862 single-family houses in Austin, Texas, USA. Using aerial photos, geographic information systems (GIS), and remote sensing, FRAGSTATS was employed to calculate values of several landscape indices used to measure neighborhood landscape spatial patterns. After controlling for the spatial autocorrelation effect, results showed that larger and better-connected landscape spatial patterns were positively correlated with lower LST values in neighborhoods, while more fragmented and isolated neighborhood landscape patterns were negatively related to the reduction of LST.

  11. High-power green light generation by second harmonic generation of single-frequency tapered diode lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Sumpf, Bernd

    2010-01-01

    laser emits in excess of 9 W single-frequency output power with a good beam quality. The output from the tapered diode laser is frequency doubled using periodically poled MgO:LiNbO3. We investigate the modulation potential of the green light and improve the modulation depth from 1:4 to 1:50.......We demonstrate the generation of high power (>1.5W) and single-frequency green light by single-pass second harmonic generation of a high power tapered diode laser. The tapered diode laser consists of a DBR grating for wavelength selectivity, a ridge section and a tapered section. The DBR tapered...

  12. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  13. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.

    Science.gov (United States)

    Nowell, Harriott; Barnett, Sarah A; Christensen, Kirsten E; Teat, Simon J; Allan, David R

    2012-05-01

    The dedicated small-molecule single-crystal X-ray diffraction beamline (I19) at Diamond Light Source has been operational and supporting users for over three years. I19 is a high-flux tunable-wavelength beamline and its key details are described in this article. Much of the work performed on the beamline involves structure determination from small and weakly diffracting crystals. Other experiments that have been supported to date include structural studies at high pressure, studies of metastable species, variable-temperature crystallography, studies involving gas exchange in porous materials and structural characterizations that require analysis of the diffuse scattering between Bragg reflections. A range of sample environments to facilitate crystallographic studies under non-ambient conditions are available as well as a number of options for automation. An indication of the scope of the science carried out on the beamline is provided by the range of highlights selected for this paper.

  14. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  15. Self-Excited Single-Stage Power Factor Correction Driving Circuit for LED Lighting

    Directory of Open Access Journals (Sweden)

    Yong-Nong Chang

    2014-01-01

    Full Text Available This pa\tper proposes a self-excited single-stage high power factor LED lighting driving circuit. Being featured with power factor correction capability without needing any control devices, the proposed circuit structure is with low cost and suitable for commercial production. The power factor correction function is accomplished by using inductor in combination with a half-bridge quasi resonant converter to achieve active switching and yield out voltage regulation according to load requirement. Furthermore, the zero-voltage switching in the half-bridge converter can be attained to promote the overall performance efficiency of the proposed circuit. Finally, the validity and production availability of the proposed circuit will be verified as well.

  16. Planet detection and spectroscopy in visible light with a single aperture telescope and a nulling coronagraph

    Science.gov (United States)

    Shao, Michael; Serabyn, Eugene; Levine, Bruce Martin; Beichman, Charles; Liu, Duncan; Martin, Stefan; Orton, Glen; Mennesson, Bertrand; Morgan, Rhonda; Velusamy, Thangasamy; hide

    2003-01-01

    This talk describes a new concept for visible direct detection of Earth like extra solar planets using a nulling coronagraph instrument behind a 4m telescope in space. In the baseline design, a 4 beam nulling interferometer is synthesized from the telescope pupil, producing a very deep theta^4null which is then filtered by a coherent array of single mode fibers to suppress the residual scattered light. With perfect optics, the stellar leakage is less than 1e-11 of the starlight at the location of the planet. With diffraction limited telescope optics (lambda/20), suppression of the starlight to 1e-10 is possible. The concept is described along with the key advantages over more traditional approaches such as apodized aperture telescopes and Lyot type coronagraphs.

  17. Measurement of Spatial Coherence of Light Propagating in a Turbulent Atmosphere

    Directory of Open Access Journals (Sweden)

    P. Barcik

    2013-04-01

    Full Text Available A lot of issues have to be taken into account when designing a reliable free space optical communication link. Among these are e.g.,beam wander, fluctuation of optical intensity and loss of spatial coherence that are caused by atmospheric turbulence. This paper presents experimental measurements of spatial coherence of a laser beam. The experimental setup is based on Young's double pinhole experiment. Fringe patterns under atmospheric turbulence for four different pinhole separations are presented. From these fringe patterns, visibility is determined and the coherence radius is estimated.

  18. Investigation of fringing electric field effect on high-resolution blue phase liquid crystal spatial light modulator.

    Science.gov (United States)

    Yan, Jing; Guo, Zhengbo; Xing, Yufei; Li, Qing

    2015-08-20

    The fringing electric field effect which determines the performance of a high-resolution blue phase liquid crystal spatial light modulator (BPLC-SLM) is investigated by numerical modeling. The BPLC-SLM is polarization-dependent due to the transverse electric field component. The physical mechanism of the phase profile properties for different polarization states is analyzed. General design issues related to the BPLC-SLM configuration and phase profile properties are discussed. Notably, the material parameters and cell gap thickness are both optimized to obtain a low operation voltage (V2π=26.07  V). This work provides fundamental understanding for the feasibility of low operation voltage and high spatial resolution BPLC-SLM.

  19. Hermitian symmetry free optical-single-carrier frequency division multiple access for visible light communication

    Science.gov (United States)

    Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine

    2018-05-01

    Optical-orthogonal frequency division multiplexing (O-OFDM) is an effective scheme for visible light communications (VLC), offering a candid extension to multiple access (MA) scenarios, i.e., O-OFDMA. However, O-OFDMA exhibits high peak-to-average power ratio (PAPR), which exacerbates the non-linear distortions from the light emitting diode (LED). To overcome high PAPR while sustaining MA, optical-single-carrier frequency-division multiple access (O-SCFDMA) is used. For both O-OFDMA and O-SCFDMA, Hermitian symmetry (HS) constraint is imposed in frequency-domain (FD) to obtain a real-valued time-domain (TD) signal for intensity modulation-direct detection (IM-DD) implementation of VLC. Howbeit, HS results in an increase of PAPR for O-SCFDMA. In this regard, we propose HS free (HSF) O-SCFDMA (HSFO-SCFDMA). We compare HSFO-SCFDMA with several approaches in key parameters, such as, bit error rate (BER), optical power penalty, PAPR, quantization, electrical power efficiency and system complexity. BER performance and optical power penalty is evaluated considering multipath VLC channel and taking into account the bandwidth limitation of LED in combination with its optimized driver. It is illustrated that HSFO-SCFDMA outperforms other alternatives.

  20. Investigation of single nucleotide polymorphism loci susceptible to degradation by ultraviolet light.

    Science.gov (United States)

    Machida, Mitsuyo; Taki, Takashi; Shimada, Ryo; Kibayashi, Kazuhiko

    2016-10-01

    DNA in biological fluids is often degraded by environmental factors. Given that single nucleotide polymorphism (SNP) analyses require shorter amplicons than short tandem repeat (STR) analyses do, their use in human identification using degraded samples has recently attracted attention. Although various SNP loci are used to analyze degraded samples, it is unclear which ones are more appropriate. To characterize and identify SNP loci that are susceptible or resistant to degradation, we artificially degraded DNA, obtained from buccal swabs from 11 volunteers, by exposure to ultraviolet (UV) light for different durations (254 nm for 5, 15, 30, 60, or 120 min) and analyzed the resulting SNP loci. DNA degradation was assessed using gel electrophoresis, STR, and SNP profiling. DNA fragmentation occurred within 5 min of UV irradiation, and successful STR and SNP profiling decreased with increasing duration. However, 73% of SNP loci were still detected correctly in DNA samples irradiated for 120 min, a dose that rendered STR loci undetectable. The unsuccessful SNP typing and the base call failure of nucleotides neighboring the SNPs were traced to rs1031825, and we found that this SNP was susceptible to UV light. When comparing the detection efficiencies of STR and SNP loci, SNP typing was more successful than STR typing, making it effective when using degraded DNA. However, it is important to use rs1031825 with caution when interpreting SNP analyses of degraded DNA. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  1. Designing conical intersections for light-driven single molecule rotary motors: from precessional to axial motion.

    Science.gov (United States)

    Filatov, Michael; Olivucci, Massimo

    2014-04-18

    In the past, the design of light-driven single molecule rotary motors has been mainly guided by the modification of their ground-state conformational properties. Further progress in this field is thus likely to be achieved through a detailed understanding of light-induced dynamics of the system and the ways of modulating it by introducing chemical modifications. In the present theoretical work, the analysis of model organic chromophores and synthesized rotary motors is used for rationalizing the effect of electron-withdrawing heteroatoms (such as a cationic nitrogen) on the topography and branching plane of mechanistically relevant conical intersections. Such an analysis reveals how the character of rotary motion could be changed from a precessional motion to an axial rotational motion. These concepts are then used to design and build quantum chemical models of three distinct types of Schiff base rotary motors. One of these models, featuring the synthetically viable indanylidenepyrroline framework, has conical intersection structures consistent with an axial rotation not hindered by ground-state conformational barriers. It is expected that this type of motor should be capable of funneling the photon energy into specific rotary modes, thus achieving photoisomerization quantum efficiencies comparable to those seen in visual pigments.

  2. Dual-plane in-line digital holography based on liquid crystal on silicon spatial light modulator.

    Science.gov (United States)

    Panezai, Spozmai; Wang, Dayong; Zhao, Jie; Wang, Yunxin; Rong, Lu

    2014-09-20

    A dual-plane in-line digital holographic method is proposed with a liquid crystal on silicon (LCOS) spatial light modulator (SLM) for recording holograms at two slightly displaced planes. The computer-generated chirp-like complex reflectance is displayed on the LCOS SLM to adapt the object beam at two planes for recording two holograms processed to eliminate the DC term and twin image accurately; no mechanical components or manual operation during data acquisition is required. The proposed approach improves the speed, accuracy, and stability of the experiment. Computer simulation and experiments for both amplitude and phase objects are carried out to validate the proposed method.

  3. Trinary flip-flops using Savart plate and spatial light modulator for optical computation in multivalued logic

    Science.gov (United States)

    Ghosh, Amal K.; Basuray, Amitabha

    2008-11-01

    The memory devices in multi-valued logic are of most significance in modern research. This paper deals with the implementation of basic memory devices in multi-valued logic using Savart plate and spatial light modulator (SLM) based optoelectronic circuits. Photons are used here as the carrier to speed up the operations. Optical tree architecture (OTA) has been also utilized in the optical interconnection network. We have exploited the advantages of Savart plates, SLMs and OTA and proposed the SLM based high speed JK, D-type and T-type flip-flops in a trinary system.

  4. Cross-calibrating Spatial Positions of Light-viewing Diagnostics using Plasma Edge Sweeps in DIII-D

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; Gohil, P.; Groebner, R.; Kaplan, D.

    2003-01-01

    An experimental technique is presented that permits diagnostics viewing light from the plasma edge to be spatially calibrated relative to one another. By sweeping the plasma edge, each chord of each diagnostic sweeps out a portion of the light emission profile. A nonlinear least-squares fit to such data provides superior cross-calibration of diagnostics located at different toroidal locations compared with simple surveying. Another advantage of the technique is that it can be used to monitor the position of viewing chords during an experimental campaign to ensure that alignment does not change over time. Moreover, should such a change occur, the data can still be cross-calibrated and its usefulness retained

  5. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences.

    Science.gov (United States)

    Rudd, Michael E

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  6. A Cortical Edge-integration Model of Object-Based Lightness Computation that Explains Effects of Spatial Context and Individual Differences

    Directory of Open Access Journals (Sweden)

    Michael E Rudd

    2014-08-01

    Full Text Available Previous work demonstrated that perceived surface reflectance (lightness can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatial integrates these steps along paths through the image to compute lightness (Rudd & Zemach, 2004, 2005, 2007. This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013 suggests that the human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010 further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer’s interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd & Zemach, 2005. Here, I show how the separate influences of grouping and attention on lightness can be together modeled by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013, and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  7. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences

    Science.gov (United States)

    Rudd, Michael E.

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253

  8. Circular dichroism measured on single chlorosomal light-harvesting complexes of green photosynthetic bacteria

    KAUST Repository

    Furumaki, Shu

    2012-12-06

    We report results on circular dichroism (CD) measured on single immobilized chlorosomes of a triple mutant of green sulfur bacterium Chlorobaculum tepidum. The CD signal is measured by monitoring chlorosomal bacteriochlorphyll c fluorescence excited by alternate left and right circularly polarized laser light with a fixed wavelength of 733 nm. The excitation wavelength is close to a maximum of the negative CD signal of a bulk solution of the same chlorosomes. The average CD dissymmetry parameter obtained from an ensemble of individual chlorosomes was gs = -0.025, with an intrinsic standard deviation (due to variations between individual chlorosomes) of 0.006. The dissymmetry value is about 2.5 times larger than that obtained at the same wavelength in the bulk solution. The difference can be satisfactorily explained by taking into account the orientation factor in the single-chlorosome experiments. The observed distribution of the dissymmetry parameter reflects the well-ordered nature of the mutant chlorosomes. © 2012 American Chemical Society.

  9. Enhanced efficiency in single-host white organic light-emitting diode by triplet exciton conversion

    International Nuclear Information System (INIS)

    Wu, Qingyang; Zhang, Shiming; Yue, Shouzhen; Zhang, Zhensong; Xie, Guohua; Zhao, Yi; Liu, Shiyong

    2013-01-01

    The authors observe that the external quantum efficiency (EQE) of the Iridium (III) bis(4-phenylthieno [3,2-c]pyridinato-N,C 2′ )acetylacetonate (PO-01) based yellow organic light-emitting diode (OLED) is significantly increased by uniformly co-doping Iridium (III)bis[(4,6-difluorophenyl)-pyridinato-N,C 2− ] (FIrpic) and PO-01 into the same wide band-gap host of N,N ′ -dicarbazolyl-3, 5-benzene (mCP). Detailed investigation indicates that the efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. Compared to the control device, which has maximum EQE of 10.5%, an improved maximum EQE of 13.2% is obtained in the optimization white device based on FIrpic and PO-01 emission according to this principle. This work makes it easier for a single host white OLED to simultaneously harvest high efficiency in both blue and yellow units. Comprehensive experimental results show that this phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices. -- Highlights: • This work makes easier for a single host white OLED to harvest high efficiency in both blue and yellow units. • Efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. • This phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices

  10. Single shot imaging through turbid medium and around corner using coherent light

    Science.gov (United States)

    Li, Guowei; Li, Dayan; Situ, Guohai

    2018-01-01

    Optical imaging through turbid media and around corner is a difficult challenge. Even a very thin layer of a turbid media, which randomly scatters the probe light, can appear opaque and hide any objects behind it. Despite many recent advances, no current method can image the object behind turbid media with single record using coherent laser illumination. Here we report a method that allows non-invasive single-shot optical imaging through turbid media and around corner via speckle correlation. Instead of being as an obstacle in forming diffractionlimited images, speckle actually can be a carrier that encodes sufficient information to imaging through visually opaque layers. Optical imaging through turbid media and around corner is experimentally demonstrated using traditional imaging system with the aid of iterative phase retrieval algorithm. Our method require neither scan of illumination nor two-arm interferometry or long-time exposure in acquisition, which has new implications in optical sensing through common obscurants such as fog, smoke and haze.

  11. Optical access network using centralized light source, single-mode fiber + broad wavelength window multimode fiber

    Science.gov (United States)

    Yam, Scott S.-H.; Kim, Jaedon; Gutierrez, David; Achten, Frank

    2006-08-01

    Access networks based on a single-mode fiber (SMF) using a centralized light source (CLS) have attracted much attention recently due to their wavelength management flexibility and potential for cost reduction at customers' premises. Future networks, in addition, are likely to contain segments of multimode fiber (MMF), whose core dimension is relatively large in comparison with its single-mode counterpart, substantially reducing fiber alignment constraints and the subsequent network construction and installation cost. In this study, a CLS-based passive optical network (PON) is proposed, which will use a new generation of high-performance MMF optimized for a broad wavelength transmission window spanning from 1300to1550 nm, with a bandwidth distance product (BDP) of 40 Gbit/s-km. The proposed architecture is implemented in a test bed, and its performance is verified by bit error ratio (BER) measurement. Results show that we can implement high-performance CLS-based PONs containing both an SMF and an MMF infrastructure, simultaneously.

  12. Quantitative and Isolated Measurement of Far-Field Light Scattering by a Single Nanostructure

    Science.gov (United States)

    Kim, Donghyeong; Jeong, Kwang-Yong; Kim, Jinhyung; Ee, Ho-Seok; Kang, Ju-Hyung; Park, Hong-Gyu; Seo, Min-Kyo

    2017-11-01

    Light scattering by nanostructures has facilitated research on various optical phenomena and applications by interfacing the near fields and free-propagating radiation. However, direct quantitative measurement of far-field scattering by a single nanostructure on the wavelength scale or less is highly challenging. Conventional back-focal-plane imaging covers only a limited solid angle determined by the numerical aperture of the objectives and suffers from optical aberration and distortion. Here, we present a quantitative measurement of the differential far-field scattering cross section of a single nanostructure over the full hemisphere. In goniometer-based far-field scanning with a high signal-to-noise ratio of approximately 27.4 dB, weak scattering signals are efficiently isolated and detected under total-internal-reflection illumination. Systematic measurements reveal that the total and differential scattering cross sections of a Au nanorod are determined by the plasmonic Fabry-Perot resonances and the phase-matching conditions to the free-propagating radiation, respectively. We believe that our angle-resolved far-field measurement scheme provides a way to investigate and evaluate the physical properties and performance of nano-optical materials and phenomena.

  13. Impact of the spectral and spatial properties of natural light on indoor gas-phase chemistry: Experimental and modeling study.

    Science.gov (United States)

    Blocquet, M; Guo, F; Mendez, M; Ward, M; Coudert, S; Batut, S; Hecquet, C; Blond, N; Fittschen, C; Schoemaecker, C

    2018-05-01

    The characteristics of indoor light (intensity, spectral, spatial distribution) originating from outdoors have been studied using experimental and modeling tools. They are influenced by many parameters such as building location, meteorological conditions, and the type of window. They have a direct impact on indoor air quality through a change in chemical processes by varying the photolysis rates of indoor pollutants. Transmittances of different windows have been measured and exhibit different wavelength cutoffs, thus influencing the potential of different species to be photolysed. The spectral distribution of light entering indoors through the windows was measured under different conditions and was found to be weakly dependent on the time of day for indirect cloudy, direct sunshine, partly cloudy conditions contrary to the light intensity, in agreement with calculations of the transmittance as a function of the zenithal angle and the calculated outdoor spectral distribution. The same conclusion can be drawn concerning the position within the room. The impact of these light characteristics on the indoor chemistry has been studied using the INCA-Indoor model by considering the variation in the photolysis rates of key indoor species. Depending on the conditions, photolysis processes can lead to a significant production of radicals and secondary species. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Design and fabrication of a spatial light modulator using thermally tunable grating and a thin-film heater.

    Science.gov (United States)

    Riahi, Mohammadreza; Latifi, Hamid; Madani, Abbas; Moazzenzadeh, Ali

    2009-10-20

    We propose the application of a thermally tunable grating as a spatial light modulator. The grooves of a square-well grating are filled with a liquid whose refractive index depends on temperature. The variation of optical characteristics of such a grating with respect to temperature is investigated theoretically and also by simulation and experiment. A thin-film heater is then used as a heat source. The relation between intensity of the first order of diffraction versus power consumption of the thin-film heater is investigated. Finally, a thin-film heater with a desired pattern is placed at the surface of the grating to fabricate spatial light modulator. By applying electrical current to different elements of the thin-film heater, the fabricated device can project a desired pattern on a screen using a 4f imaging system. The restrictions of such a device are discussed and another structure is proposed and discussed by numerical calculations to increase the ability of the device.

  15. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  16. Light source depth estimation in porcine skin using spatially resolved diffuse imaging.

    Science.gov (United States)

    Brennan, Kieran A; Ruddy, Bryan P; Nielsen, Poul M F; Taberner, Andrew J

    2016-08-01

    We present an inexpensive imaging system for measuring the diffuse surface radiance profile produced by a light source within a turbid medium. The diffusion model of light propagation in multiple scattering media is used to estimate the optical properties of a sample and subsequently approximate the depth of an optical source. The system is shown to accurately estimate the relative changes in source depth in a homogeneous phantom. The absolute depth estimate may be improved with a better estimate of the optical parameters. Preliminary tests on a porcine skin sample show that the simple model can be used to roughly track the relative changes in the depth of a source in a layered medium. However, a rigorous model of the layered geometry may be required to more accurately localize a source, particularly near interfaces between tissue layers.

  17. Single-grain cosmogenic Ne-21 concentrations in fluvial sediment reveal spatially variable erosion rates

    OpenAIRE

    Alexandru T. Codilean; P. Bishop; F. M. Stuart; T. B. Hoey; D. Fabel; S. P. H. T. Freeman;  

    2008-01-01

    We evaluated the hypothesis that the spatial variation in erosion in a catchment is refl ected in the distribution of the cosmogenic nuclide concentrations in sediments leaving the catchment. Using published data and four new 10Be measurements in fl uvial sediment collected from the outlets of small river catchments, we constrained the spatial variability of erosion rates in the Gaub River catchment in Namibia. We combined these catchment-averaged erosion rates, and the mean slope values with...

  18. Poincaré-sphere representation of phase-mostly twisted nematic liquid crystal spatial light modulators

    OpenAIRE

    Durán Bosch, Vicente Andrés; Clemente Pesudo, Pedro Javier; Martínez León, Lluís; Climent Jordà, Vicent; Lancis Sáez, Jesús

    2009-01-01

    We establish necessary conditions in order to design a phase-only wave front modulation system from a liquid crystal display. These conditions determine the dependence of the polarization state of the light emerging from the display on the addressing gray level. The analysis, which is carried out by means of the coherence-matrix formalism, includes the depolarization properties of the device. Two different types of polarization distributions at the output of the liquid crystal cel...

  19. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    International Nuclear Information System (INIS)

    Gong, Maogao; Xiang, Weidong; Liang, Xiaojuan; Zhong, Jiasong; Chen, Daqin; Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run

    2015-01-01

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y 3 Al 5 O 12 single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application

  20. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  1. Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design.

    Science.gov (United States)

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2016-11-01

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Limitations of the equivalence between spatial and ensemble estimators in the case of a single-tone excitation.

    Science.gov (United States)

    Monsef, Florian; Cozza, Andrea

    2011-10-01

    The ensemble-average value of the mean-square pressure is often assessed by using the spatial-average technique, underlying an equivalence principle between spatial and ensemble estimators. Using the ideal-diffuse-field model, the accuracy of the spatial-average method has been studied theoretically forty years ago in the case of a single-tone excitation. This study is revisited in the present work on the basis of a more realistic description of the sound field accounting for a finite number of plane waves. The analysis of the spatial-average estimator is based on the study of its convergence rate. Using experimental data from practical examples, it is shown that the classical expression underestimates the estimator uncertainty even for frequencies greater than Schroeder's frequency, and that the number of plane waves may act as lower bound on the spatial-average estimator accuracy. The comparison of the convergence rate with an ensemble-estimator shows that the two statistics cannot be regarded as equivalent in a general case. © 2011 Acoustical Society of America

  3. Spatial decoupling of light absorption and catalytic activity of Ni-Mo-loaded high-aspect-ratio silicon microwire photocathodes

    Science.gov (United States)

    Vijselaar, Wouter; Westerik, Pieter; Veerbeek, Janneke; Tiggelaar, Roald M.; Berenschot, Erwin; Tas, Niels R.; Gardeniers, Han; Huskens, Jurriaan

    2018-01-01

    A solar-driven photoelectrochemical cell provides a promising approach to enable the large-scale conversion and storage of solar energy, but requires the use of Earth-abundant materials. Earth-abundant catalysts for the hydrogen evolution reaction, for example nickel-molybdenum (Ni-Mo), are generally opaque and require high mass loading to obtain high catalytic activity, which in turn leads to parasitic light absorption for the underlying photoabsorber (for example silicon), thus limiting production of hydrogen. Here, we show the fabrication of a highly efficient photocathode by spatially and functionally decoupling light absorption and catalytic activity. Varying the fraction of catalyst coverage over the microwires, and the pitch between the microwires, makes it possible to deconvolute the contributions of catalytic activity and light absorption to the overall device performance. This approach provided a silicon microwire photocathode that exhibited a near-ideal short-circuit photocurrent density of 35.5 mA cm-2, a photovoltage of 495 mV and a fill factor of 62% under AM 1.5G illumination, resulting in an ideal regenerative cell efficiency of 10.8%.

  4. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  5. SPATIALLY RESOLVING THE HK Tau B EDGE-ON DISK FROM 1.2 TO 4.7 μm: A UNIQUE SCATTERED LIGHT DISK

    International Nuclear Information System (INIS)

    McCabe, C.; Duchene, G.; Pinte, C.; Menard, F.; Stapelfeldt, K. R.; Ghez, A. M.

    2011-01-01

    We present spatially resolved scattered light images of the circumstellar disk around HK Tau B at 3.8 and 4.7 μm taken with the Keck Telescope Laser Guide Star Adaptive Optics (AO) system, and 1.6-2.12 μm images taken with the Very Large Telescope/NACO AO system. Combined with previously published optical Hubble Space Telescope data, we investigate the spatially resolved scattered light properties of this edge-on circumstellar disk and probe for the presence of large grains. The 0.6-3.8 μm scattered light observations reveal strong, and in some cases, unusual, wavelength dependencies in the observed disk morphology. The separation between the two scattered light nebulae, which is directly proportional to the disk-mass-opacity product, decreases by 30% between 0.6 and 3.8 μm. Over the same wavelength range, the FWHM of the disk nebulosity declines by a factor of two, while the flux ratio between the two nebulae increases by a factor of ∼8. No other disk known to date shows a flux ratio that increases with wavelength. Both the FWHM and nebula flux ratio are affected by the scattering phase function and the observed behavior can most readily be explained by a phase function that becomes more forward throwing with wavelength. The multi-wavelength scattered light observations also confirm the asymmetric nature of the disk and show that the level of asymmetry is a function of wavelength. We use the MCFOST radiative transfer code to model the disk at four wavelengths, corresponding to the I, H, Ks, and L' bandpasses. A single power-law grain size distribution can recreate the observed disk properties simultaneously at all four wavelengths. Bayesian analysis of the dust parameters finds a 99% probability that the maximum grain size is 5.5 μm or larger. We also find that the grain size distribution is steep, with a 99% probability of a power-law index of 4.2 or larger, suggesting that these large grains are a small fraction of the overall dust population. The best

  6. Compressed gas combined single- and two-stage light-gas gun

    Science.gov (United States)

    Lamberson, L. E.; Boettcher, P. A.

    2018-02-01

    With more than 1 trillion artificial objects smaller than 1 μm in low and geostationary Earth orbit, space assets are subject to the constant threat of space debris impact. These collisions occur at hypervelocity or speeds greater than 3 km/s. In order to characterize material behavior under this extreme event as well as study next-generation materials for space exploration, this paper presents a unique two-stage light-gas gun capable of replicating hypervelocity impacts. While a limited number of these types of facilities exist, they typically are extremely large and can be costly and dangerous to operate. The design presented in this paper is novel in two distinct ways. First, it does not use a form of combustion in the first stage. The projectile is accelerated from a pressure differential using air and inert gases (or purely inert gases), firing a projectile in a nominal range of 1-4 km/s. Second, the design is modular in that the first stage sits on a track sled and can be pulled back and used in itself to study lower speed impacts without any further modifications, with the first stage piston as the impactor. The modularity of the instrument allows the ability to investigate three orders of magnitude of impact velocities or between 101 and 103 m/s in a single, relatively small, cost effective instrument.

  7. Abrupt change of luminescence spectrum in single-layer phosphorescent polymer light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.; Lee, D.-H.; Chae, H. [School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, S.M., E-mail: sungmcho@skku.edu [School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Advanced Materials and Process Research Center for IT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2012-01-15

    PVK-based single-layer phosphorescent polymer OLEDs (organic light emitting diodes) with different rubrene concentrations were fabricated and examined for the Foerster energy transfer from phosphorescent FIrpic dye to rubrene. We found out that at a certain rubrene concentration the energy transfer occurs abruptly and the transfer shows an abnormal evolution of electroluminescence (EL) spectrum due to the coincidence of peak wavelengths of bis[(4,6-difluorophenyl)-pyridinato-N,C{sup 2'}](picolinate) iridium(III) (FIrpic) emission and 5,6,11,12-tetraphenylnaphthacene (rubrene) absorption. With the calculation of Foerster radius and average distance between FIrpic molecules, we have related the calculated ratio between the number of FIrpic molecules within to that out of Foerster radius with the degree of Foerster energy transfer from EL spectra measured in the experiment. Experimental results were found to fit well with the predicted results especially at low rubrene concentrations. - Highlights: > Foerster energy transfer between FIrpic and rubrene. > Energy transfer shows an abnormal evolution of emission spectrum. > Calculated Foerster radius and degree of energy transfer by a simple model.

  8. Determination of the optical constants of polymer light-emitting diode films from single reflection measurements

    International Nuclear Information System (INIS)

    Zhu Dexi; Shen Weidong; Ye Hui; Liu Xu; Zhen Hongyu

    2008-01-01

    We present a simple and fast method to determine the optical constant and physical thickness of polymer films from a single reflectivity measurement. A self-consistent dispersion formula of the Forouhi-Bloomer model was introduced to fit the measured spectral curves by a modified 'Downhill' simplex algorithm. Four widely used polymer light-emitting diodes materials: poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene], poly(9,9-dioctylfluoreny-2,7-diyl) (PFO), poly(N-vinyl carbazole) and poly(3,4-ethylene dioxythiophene) : poly(styrenesulfonate) were investigated by this technique. The refractive indices over the whole visible region as well as the optical band gap extracted by this method agree well with those reported in the literature. The determined physical thicknesses present a deviation less than 4% compared with the experimental values measured by the stylus profiler. The influence of scattering loss on the fitted results is discussed to demonstrate the applicability of this technology for polymer films.

  9. Bilinear common spatial pattern for single-trial ERP-based rapid serial visual presentation triage.

    Science.gov (United States)

    Yu, K; Shen, K; Shao, S; Ng, W C; Li, X

    2012-08-01

    Common spatial pattern (CSP) analysis is a useful tool for the feature extraction of event-related potentials (ERP). However, CSP is essentially time invariant, and thus unable to exploit the temporal information of ERP. This paper proposes a variant of CSP, namely bilinear common spatial pattern (BCSP), which is capable of accommodating both spatial and temporal information. BCSP generalizes CSP through iteratively optimizing bilinear filters. These bilinear filters constitute a spatio-temporal subspace in which the separation between two conditions is maximized. The method is unique in the sense that it is mathematically intuitive and simple, as all the bilinear filters are obtained by maximizing the power ratio as CSP does. The proposed method was evaluated on 20 subjects' ERP data collected in rapid serial visual presentation triage experiments. The results show that BCSP achieved significantly higher average test accuracy (12.3% higher, p < 0.001).

  10. Small-Scale Spatial Analysis of In Situ Sea Temperature throughout a Single Coral Patch Reef

    Directory of Open Access Journals (Sweden)

    Kelvin D. Gorospe

    2011-01-01

    Full Text Available Thermal stress can cause geographically widespread bleaching events, during which corals become decoupled from their symbiotic algae. Bleaching, however, also can occur on smaller, spatially patchy scales, with corals on the same reef exhibiting varying bleaching responses. Thus, to investigate fine spatial scale sea temperature variation, temperature loggers were deployed on a 4 m grid on a patch reef in Kāne'ohe Bay, Oahu, Hawai‘i to monitor in situ, benthic temperature every 50 minutes at 85 locations for two years. Temperature variation on the reef was characterized using several summary indices related to coral thermal stress. Results show that stable, biologically significant temperature variation indeed exists at small scales and that depth, relative water flow, and substrate cover and type were not significant drivers of this variation. Instead, finer spatial and temporal scale advection processes at the benthic boundary layer are likely responsible. The implications for coral ecology and conservation are discussed.

  11. Single-molecule exploration of photoprotective mechanisms in light-harvesting complexes

    NARCIS (Netherlands)

    Yang, Hsiang Yu; Schlau-Cohen, Gabriela S.; Gwizdala, Michal; Krüger, Tjaart; Xu, Pengqi; Croce, Roberta; Van Grondelle, Rienk; Moerner, W. E.

    2015-01-01

    Plants harvest sunlight by converting light energy to electron flow through the primary events in photosynthesis. One important question is how the light harvesting machinery adapts to fluctuating sunlight intensity. As a result of various regulatory processes, efficient light harvesting and

  12. Light

    CERN Document Server

    Rivera, Andrea

    2017-01-01

    Light is all around us. Learn how it is used in art, technology, and engineering. Five easy-to-read chapters explain the science behind light, as well as its real-world applications. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  13. Reflection of light by anisotropic molecular crystals including exciton-polaritons and spatial dispersion.

    Science.gov (United States)

    Meskers, Stefan C J; Lakhwani, Girish

    2016-11-21

    A theory for the reflection of light by molecular crystals is described, which reproduces the minimum within the reflection band that is observed experimentally. The minimum in reflection is related to the excitation of polaritons in the crystal. The theory involves reformulation of the boundary conditions for electromagnetic waves at the interface between vacuum and material. The material is modeled by a cubic lattice of oriented Lorentz oscillators. By requiring uniformity of gauge of the electromagnetic potential across the interface between vacuum and the dipole lattice, the need for additional boundary conditions is obviated. The frequency separation between the maxima in reflectance on both sides of the minimum allows for the extraction of a plasma frequency. The plasma frequencies extracted from reflection spectra are compared to the plasma frequencies calculated directly from structural data on the crystals and the oscillator strengths of the constituent molecules. A good agreement between extracted and calculated plasma frequency is obtained for a set of 11 dye molecules.

  14. Spatial instabilities of light bullets in passively-mode-locked lasers

    Science.gov (United States)

    Gurevich, S. V.; Javaloyes, J.

    2017-08-01

    Recently, the existence of robust three-dimensional light bullets (LBs) was predicted theoretically in the output of a laser coupled to a distant saturable absorber. In this paper, we analyze the stability and the range of existence of these dissipative localized structures and provide guidelines and realistic parameter sets for their experimental observation. In order to reduce the complexity of the analysis, we first approximate the three-dimensional problem by a reduced equation governing the dynamics of the transverse profile. This effective theory provides an intuitive picture of the LB formation mechanism. Moreover, it allows us to perform a detailed multiparameter bifurcation study and to identify the different mechanisms of instability. It is found that the LBs experience dominantly either homogeneous oscillation or symmetry-breaking transversal wave radiation. In addition, our analysis reveals several nonintuitive scaling behaviors as functions of the linewidth enhancement factors and the saturation parameters. Our results are confirmed by direct numerical simulations of the full system.

  15. Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Kuimova, Marina; Gbur, Peter

    2009-01-01

    be monitored using viability assays. Time- and spatially-resolved optical measurements of both singlet oxygen and its precursor, the excited state sensitizer, reflect the complex and dynamic morphology of the cell. These experiments help elucidate photoinduced, oxygen-dependent events that compromise cell...

  16. Spectral trends in the fluorescence of single bacterial light-harvesting complexes: Experiments and modified redfield simulations

    NARCIS (Netherlands)

    Rutkauskas, D.; Novoderezhkin, V.; Gall, A.; Olsen, J.; Cogdell, R.J.; Hunter, C.N.; van Grondelle, R.

    2006-01-01

    In this work we present and discuss the single-molecule fluorescence spectra of a variety of species of light-harvesting complexes: LH2 of Rhodopseudomonas acidophila, Rhodobacter sphaeroides, and Rhodospirillum molischianum and LH1 of Rhodobacter sphaeroides. The emission spectrum of these

  17. The "when" and the "where" of single-trial allocentric spatial memory performance in young children: Insights into the development of episodic memory.

    Science.gov (United States)

    Ribordy Lambert, Farfalla; Lavenex, Pierre; Banta Lavenex, Pamela

    2017-03-01

    Allocentric spatial memory, "where" with respect to the surrounding environment, is one of the three fundamental components of episodic memory: what, where, when. Whereas basic allocentric spatial memory abilities are reliably observed in children after 2 years of age, coinciding with the offset of infantile amnesia, the resolution of allocentric spatial memory acquired over repeated trials improves from 2 to 4 years of age. Here, we first show that single-trial allocentric spatial memory performance improves in children from 3.5 to 7 years of age, during the typical period of childhood amnesia. Second, we show that large individual variation exists in children's performance at this age. Third, and most importantly, we show that improvements in single-trial allocentric spatial memory performance are due to an increasing ability to spatially and temporally separate locations and events. Such improvements in spatial and temporal processing abilities may contribute to the gradual offset of childhood amnesia. © 2016 Wiley Periodicals, Inc.

  18. Repair of ultraviolet light damage in Saccharomyces cerevisiae as studied with double- and single-stranded incoming DNAs

    International Nuclear Information System (INIS)

    Keszenman-Pereyra, D.; Hieda, K.

    1992-01-01

    Purified double- and single-stranded DNAs of the autonomously replicating vector M13RK9-T were irradiated with ultraviolet light (UV) in vitro and introduced into competent whole cells of Saccharomyces cerevisiae. Incoming double-stranded DNA was more sensitive to UV in excision repair-deficient rad2-1 cells than in proficient repair RAD + cells, while single-stranded DNA exhibited high sensitivity in both host cells. The results indicate that in yeast there is no effective rescue of UV-incoming single-stranded DNA by excision repair or other constitutive dark repair processes

  19. Chemometric strategies to unmix information and increase the spatial description of hyperspectral images: a single-cell case study.

    Science.gov (United States)

    Piqueras, S; Duponchel, L; Offroy, M; Jamme, F; Tauler, R; de Juan, A

    2013-07-02

    Hyperspectral images are analytical measurements that provide spatial and structural information. The spatial description of the samples is the specific asset of these measurements and the reason why they have become so important in (bio)chemical fields, where the microdistribution of sample constituents or the morphology or spatial pattern of sample elements constitute very relevant information. Often, because of the small size of the samples, the spatial detail provided by the image acquisition systems is insufficient. This work proposes a data processing strategy to overcome this instrumental limitation and increase the natural spatial detail present in the acquired raw images. The approach works by combining the information of a set of images, slightly shifted from each other with a motion step among them lower than the pixel size of the raw images. The data treatment includes the application of multivariate curve resolution (unmixing) multiset analysis to the set of collected images to obtain the distribution maps and spectral signatures of the sample constituents. These sets of maps are noise-filtered and compound-specific representations of all the relevant information in the pixel space and decrease the dimensionality of the original image from hundreds of spectral channels to few sets of maps, one per sample constituent or element. The information in each compound-specific set of maps is combined via a super-resolution post-processing algorithm, which takes into account the shifting, decimation, and point spread function of the instrument to reconstruct a single map per sample constituent with much higher spatial detail than that of the original image measurement.

  20. Lighting up the World The first global application of the open source, spatial electrification toolkit (ONSSET)

    Science.gov (United States)

    Mentis, Dimitrios; Howells, Mark; Rogner, Holger; Korkovelos, Alexandros; Siyal, Shahid; Broad, Oliver; Zepeda, Eduardo; Bazilian, Morgan

    2016-04-01

    In September 2015, the international community has adopted a new set of targets, following and expanding on the millennium development goals (MDGs), the Sustainable Development Goals (SDGs). Ensuring access to affordable, reliable, sustainable and modern energy for all is one of the 17 set goals that each country should work towards realizing. According to the latest Global Tracking Framework, 15% of the global population live without access to electricity. The majority of those (87%) reside in rural areas. Countries can reach universal access through various electrification options, depending on different levels of energy intensity and local characteristics of the studied areas, such as renewable resources availability, spatially differentiated costs of diesel-fuelled electricity generation, distance from power network and major cities, population density and others, data which are usually inadequate in national databases. This general paucity of reliable energy-related information in developing countries calls for the utilization of geospatial data. This paper presents a Geographic Information Systems (GIS) based electrification analysis for all countries that have not yet reached full access to electricity (Sub-Saharan Africa, Developing Asia, Latin America and Middle East). The cost optimal mix of electrification options ranges from grid extensions to mini-grid and stand-alone applications and is identified for all relevant countries. It is illustrated how this mix is influenced by scrolling through various electrification levels and different oil prices. Such an analysis helps direct donors and investors and inform multinational actions with regards to investments related to energy access.

  1. Mechanochromic MOF nanoplates: spatial molecular isolation of light-emitting guests in a sodalite framework structure.

    Science.gov (United States)

    Chaudhari, Abhijeet K; Tan, Jin-Chong

    2018-02-22

    Mechanochromic materials have a wide range of promising technological applications, such as photonics-based sensors and smart optoelectronics. The examples of mechanochromic metal-organic framework (MOF) materials, however, are still relatively uncommon in the literature. Herein, we present a previously undescribed Guest@MOF system, comprising "Perylene@ZIF-8" nanoplates, which will undergo a reversible 442 nm ⇌ 502 nm photoemission switching when subjected to a moderate level of mechanically-induced pressure at several tens of MPa. The nanoplates were constructed via high-concentration reaction (HCR) strategy at ambient conditions to yield a crystalline ZIF-8 framework hosting the luminous Perylene guests. The latter confined within the porous sodalite cages of ZIF-8. Remarkably, we show that in a solid-state condition, it is the spatial isolation and nano-partitioning of the luminescent guests that bestow the unique solution-like optical properties measured in the host-guest assembly. As such, we demonstrate that switchable red- or blue-shifts of the visible emission can be accomplished by mechanically modifying the nanoscale packing of the nanoplates (e.g. monoliths, pellets). Theoretical calculations suggest that the elasticity of the host's sodalite cage coupled with the intermolecular weak interactions of the confined guest are responsible for the unique mechanochromic luminescence behavior observed.

  2. Efficient polymer white-light-emitting diodes with a single-emission layer of fluorescent polymer blend

    International Nuclear Information System (INIS)

    Niu Qiaoli; Xu Yunhua; Jiang Jiaxing; Peng Junbiao; Cao Yong

    2007-01-01

    Efficient polymer white-light-emitting diodes (WPLEDs) have been fabricated with a single layer of fluorescent polymer blend. The device structure consists of ITO/PEDOT/PVK/emissive layer/Ba/Al. The emissive layer is a blend of poly(9,9-dioctylfluorene) (PFO), phenyl-substituted PPV derivative (P-PPV) and a copolymer of 9,9-dioctylfluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole (PFO-DHTBT), which, respectively, emits blue, green and red light. The emission of pure and efficient white light was implemented by tuning the blend weight ratio of PFO: P-PPV: PFO-DHTBT to 96:4:0.4. The maximum current efficiency and luminance are, respectively, 7.6 cd/A at 6.7 V and 11930 cd/m 2 at 11.2 V. The CIE coordinates of white-light emission were stable with the drive voltages

  3. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Assef, R. J.; Diaz-Santos, T. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Walton, D. J.; Brightman, M. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-236, Pasadena, CA 91109 (United States); Alexander, D. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Blain, A. W. [Physics and Astronomy, University of Leicester, 1 University Road, Leicester LE1 7RH (United Kingdom); Finkelstein, S. L. [The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Wu, J. W., E-mail: roberto.assef@mail.udp.cl [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  4. Generation of sinusoidal fringes with a holographic phase grating and a phase-only spatial light modulator

    International Nuclear Information System (INIS)

    Berberova, Natalia; Stoykova, Elena; Sainov, Ventseslav

    2012-01-01

    A variety of pattern projection methods for the three-dimensional capture of objects is based on the generation of purely sinusoidal fringes. This is not an easy task, especially when a portable non-interferometric system for outdoor usage is required. The use of phase gratings with coherent illumination as a possible solution has the advantage of providing good stability and a large measurement volume. In this work, we analyze the quality of fringes projected with two sinusoidal phase gratings. The first grating is recorded on a silver-halide holographic plate by means of a Michelson interferometer. The spatial resolution of the silver-halide material used is greater than 6000 lines per millimeter, and the recorded grating is practically analogous to a smooth variation of the phase profile. The second grating is formed as a sinusoidal phase variation on a liquid crystal-on-silicon phase-only reflective display with a resolution of 1920×1080 pixels, a pixel pitch of 8 μm and 256 phase levels. The frequency content of the fringes projected with both gratings is analyzed and compared on the basis of the calculated Fresnel diffraction pattern, taking into account that the sinusoidal phase distribution in the case of a spatial light modulator is both sampled and quantized. Experimental fringe patterns projected using both gratings are also provided.

  5. Poincaré-sphere representation of phase-mostly twisted nematic liquid crystal spatial light modulators

    Science.gov (United States)

    Durán, V.; Clemente, P.; Martínez-León, Ll; Climent, V.; Lancis, J.

    2009-08-01

    We establish necessary conditions in order to build a phase-only wavefront modulation system from a liquid crystal display. These conditions determine the dependence of the polarization state of the light emerging from the display on the addressing gray level. The analysis, which is carried out by means of the coherence-matrix formalism, includes the depolarization properties of the device. Two different types of polarization distributions at the output of the liquid crystal cells are found. This approach is applied to a twisted nematic liquid crystal display. In this case, an optimization algorithm must be designed in order to select the input polarization state that leads to the required distributions. We show that the Poincaré-sphere representation provides a convenient framework to design the optimization algorithm as it allows for a reduced number of degrees of freedom. This feature significantly decreases the computation time. Laboratory results are presented for a liquid crystal on silicon display showing a phase modulation depth greater than 2π rad with an intensity variation lower than 6%. In addition, a hybrid ternary modulation (HTM), an operation regime employed in holographic data storage, is achieved.

  6. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity

    Directory of Open Access Journals (Sweden)

    M. Schrön

    2017-10-01

    Full Text Available In the last few years the method of cosmic-ray neutron sensing (CRNS has gained popularity among hydrologists, physicists, and land-surface modelers. The sensor provides continuous soil moisture data, averaged over several hectares and tens of decimeters in depth. However, the signal still may contain unidentified features of hydrological processes, and many calibration datasets are often required in order to find reliable relations between neutron intensity and water dynamics. Recent insights into environmental neutrons accurately described the spatial sensitivity of the sensor and thus allowed one to quantify the contribution of individual sample locations to the CRNS signal. Consequently, data points of calibration and validation datasets are suggested to be averaged using a more physically based weighting approach. In this work, a revised sensitivity function is used to calculate weighted averages of point data. The function is different from the simple exponential convention by the extraordinary sensitivity to the first few meters around the probe, and by dependencies on air pressure, air humidity, soil moisture, and vegetation. The approach is extensively tested at six distinct monitoring sites: two sites with multiple calibration datasets and four sites with continuous time series datasets. In all cases, the revised averaging method improved the performance of the CRNS products. The revised approach further helped to reveal hidden hydrological processes which otherwise remained unexplained in the data or were lost in the process of overcalibration. The presented weighting approach increases the overall accuracy of CRNS products and will have an impact on all their applications in agriculture, hydrology, and modeling.

  7. Simultaneous multislice imaging for native myocardial T1mapping: Improved spatial coverage in a single breath-hold.

    Science.gov (United States)

    Weingärtner, Sebastian; Moeller, Steen; Schmitter, Sebastian; Auerbach, Edward; Kellman, Peter; Shenoy, Chetan; Akçakaya, Mehmet

    2017-08-01

    To develop a saturation recovery myocardial T 1 mapping method for the simultaneous multislice acquisition of three slices. Saturation pulse-prepared heart rate independent inversion recovery (SAPPHIRE) T 1 mapping was implemented with simultaneous multislice imaging using FLASH readouts for faster coverage of the myocardium. Controlled aliasing in parallel imaging (CAIPI) was used to achieve minimal noise amplification in three slices. Multiband reconstruction was performed using three linear reconstruction methods: Slice- and in-plane GRAPPA, CG-SENSE, and Tikhonov-regularized CG-SENSE. Accuracy, spatial variability, and interslice leakage were compared with single-band T 1 mapping in a phantom and in six healthy subjects. Multiband phantom T 1 times showed good agreement with single-band T 1 mapping for all three reconstruction methods (normalized root mean square error spatial variability compared with single-band imaging was lowest for GRAPPA (1.29-fold), with higher penalties for Tikhonov-regularized CG-SENSE (1.47-fold) and CG-SENSE (1.52-fold). In vivo multiband T 1 times showed no significant difference compared with single-band (T 1 time ± intersegmental variability: single-band, 1580 ± 119 ms; GRAPPA, 1572 ± 145 ms; CG-SENSE, 1579 ± 159 ms; Tikhonov, 1586 ± 150 ms [analysis of variance; P = 0.86]). Interslice leakage was smallest for GRAPPA (5.4%) and higher for CG-SENSE (6.2%) and Tikhonov-regularized CG-SENSE (7.9%). Multiband accelerated myocardial T 1 mapping demonstrated the potential for single-breath-hold T 1 quantification in 16 American Heart Association segments over three slices. A 1.2- to 1.4-fold higher in vivo spatial variability was observed, where GRAPPA-based reconstruction showed the highest homogeneity and the least interslice leakage. Magn Reson Med 78:462-471, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations

    KAUST Repository

    Serag, Maged F.

    2014-10-06

    Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.

  9. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  10. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Jorge [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Barbagallo, Nunzio [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Charas, Ana [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Matos, Manuel [Departamento de Engenharia Quimica, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro-1, P-1949-001 Lisbon (Portugal); Alcacer, Luis [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Cacialli, Franco [Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT (United Kingdom)

    2003-03-07

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  11. Kinetics of oxygen consumption after a single flash of light in photoreceptors of the drone (Apis mellifera)

    OpenAIRE

    1982-01-01

    The time course of the rate of oxygen consumption (QO2) after a single flash of light has been measured in 300-micrometers slices of drone retina at 22 degrees C. To measure delta QO2(t), the change in QO2 from its level in darkness, the transients of the partial pressure of O2 (PO2) were recorded with O2 microelectrodes simultaneously in two sites in the slice and delta QO2 was calculated by a computer using Fourier transforms. After a 40-ms flash of intense light, delta QO2, reached a peak ...

  12. Detection of User Independent Single Trial ERPs in Brain Computer Interfaces: An Adaptive Spatial Filtering Approach

    DEFF Research Database (Denmark)

    Leza, Cristina; Puthusserypady, Sadasivan

    2017-01-01

    Brain Computer Interfaces (BCIs) use brain signals to communicate with the external world. The main challenges to address are speed, accuracy and adaptability. Here, a novel algorithm for P300 based BCI spelling system is presented, specifically suited for single-trial detection of Event...

  13. Calculations of the transverse spatial distribution of NE102 scintillation light made by recoil protons from collimated 14-MeV neutrons

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1979-01-01

    A calculation has been made of the spatial distribution of NE102 scintillation light produced by recoil protons from collimated 14-MeV neutron illumination. Results were then averaged over offset circles of various radii, thus determining the fraction of the total scintillation light created inside cylindrical scintillators for uniform neutron illumination over the front face of the scintillator. The results are useful in sensitivity considerations for neutron-imaging camera design

  14. Solid-state molecular organometallic chemistry. Single-crystal to single-crystal reactivity and catalysis with light hydrocarbon substrates.

    Science.gov (United States)

    Chadwick, F Mark; McKay, Alasdair I; Martinez-Martinez, Antonio J; Rees, Nicholas H; Krämer, Tobias; Macgregor, Stuart A; Weller, Andrew S

    2017-08-01

    Single-crystal to single-crystal solid/gas reactivity and catalysis starting from the precursor sigma-alkane complex [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(η 2 η 2 -NBA)][BAr F 4 ] (NBA = norbornane; Ar F = 3,5-(CF 3 ) 2 C 6 H 3 ) is reported. By adding ethene, propene and 1-butene to this precursor in solid/gas reactions the resulting alkene complexes [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(alkene) x ][BAr F 4 ] are formed. The ethene ( x = 2) complex, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Oct , has been characterized in the solid-state (single-crystal X-ray diffraction) and by solution and solid-state NMR spectroscopy. Rapid, low temperature recrystallization using solution methods results in a different crystalline modification, [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(ethene) 2 ][BAr F 4 ]-Hex , that has a hexagonal microporous structure ( P 6 3 22). The propene complex ( x = 1) [Rh(Cy 2 PCH 2 CH 2 PCy 2 )(propene)][BAr F 4 ] is characterized as having a π-bound alkene with a supporting γ-agostic Rh···H 3 C interaction at low temperature by single-crystal X-ray diffraction, variable temperature solution and solid-state NMR spectroscopy, as well as periodic density functional theory (DFT) calculations. A fluxional process occurs in both the solid-state and solution that is proposed to proceed via a tautomeric allyl-hydride. Gas/solid catalytic isomerization of d 3 -propene, H 2 C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111

  15. Temporal and spatial evolution characteristics of disturbance wave in a hypersonic boundary layer due to single-frequency entropy disturbance.

    Science.gov (United States)

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing; Shi, Jianqiang

    2014-01-01

    By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation.

  16. Can zebrafish learn spatial tasks? An empirical analysis of place and single CS-US associative learning.

    Science.gov (United States)

    Karnik, Indraneel; Gerlai, Robert

    2012-08-01

    The zebrafish may be an ideal tool with which genes underlying learning and memory can be identified and functionally investigated. From a translational viewpoint, relational learning and episodic memory are particularly important as their impairment is the hallmark of prevalent human neurodegenerative diseases. Recent reports suggest that zebrafish are capable of solving complex relational-type associative learning tasks, namely spatial learning tasks. However, it is not known whether good performance in these tasks was truly based upon relational learning or upon a single CS-US association. Here we study whether zebrafish can find a rewarding stimulus (sight of conspecifics) based upon a single associative cue or/and upon the location of the reward using a method conceptually similar to 'context and cue dependent fear conditioning' employed with rodents. Our results confirm that zebrafish can form an association between a salient visual cue and the rewarding stimulus and at the same time they can also learn where the reward is presented. Although our results do not prove that zebrafish form a dynamic spatial map of their surroundings and use this map to locate their reward, they do show that these fish perform similarly to rodents whose hippocampal function is unimpaired. These results further strengthen the notion that complex cognitive abilities exist in the zebrafish and thus they may be analyzed using the excellent genetic tool set developed for this simple vertebrate. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Correlated spectroscopic imaging of calf muscle in three spatial dimensions using group sparse reconstruction of undersampled single and multichannel data.

    Science.gov (United States)

    Wilson, Neil E; Burns, Brian L; Iqbal, Zohaib; Thomas, M Albert

    2015-11-01

    To implement a 5D (three spatial + two spectral) correlated spectroscopic imaging sequence for application to human calf. Nonuniform sampling was applied across the two phase encoded dimensions and the indirect spectral dimension of an echo planar-correlated spectroscopic imaging sequence. Reconstruction was applied that minimized the group sparse mixed ℓ2,1-norm of the data. Multichannel data were compressed using a sensitivity map-based approach with a spatially dependent transform matrix and utilized the self-sparsity of the individual coil images to simplify the reconstruction. Single channel data with 8× and 16× undersampling are shown in the calf of a diabetic patient. A 15-channel scan with 12× undersampling of a healthy volunteer was reconstructed using 5 virtual channels and compared to a fully sampled single slice scan. Group sparse reconstruction faithfully reconstructs the lipid cross peaks much better than ℓ1 minimization. COSY spectra can be acquired over a 3D spatial volume with scan time under 15 min using echo planar readout with highly undersampled data and group sparse reconstruction. © 2015 Wiley Periodicals, Inc.

  18. Pre-embedding staining of single muscle fibers for light and electron microscopy studies of subcellular organization

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1996-01-01

    ) immunocytochemistry. Here we show that pre-embedding staining of single teased fibers, or of single enzymatically dissociated fibers, has several advantages over the use of sections for observing discrete patterns that extend over long distances in the cells. We report on an optimization study carried out......Skeletal muscle fibers are large, multinucleated cells which pose a challenge to the morphologist. In the course of studies of the distribution of the glucose transporter GLUT4, in muscle, we have compared different preparative procedures, for both light (LM) and electron microscopy (EM...

  19. Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale.

    Science.gov (United States)

    Wertz, Esther; Isaacoff, Benjamin P; Flynn, Jessica D; Biteen, Julie S

    2015-04-08

    The greatly enhanced fields near metal nanoparticles have demonstrated remarkable optical properties and are promising for applications from solar energy to biosensing. However, direct experimental study of these light-matter interactions at the nanoscale has remained difficult due to the limitations of optical microscopy. Here, we use single-molecule fluorescence imaging to probe how a plasmonic nanoantenna modifies the fluorescence emission from a dipole emitter. We show that the apparent fluorophore emission position is strongly shifted upon coupling to an antenna and that the emission of dyes located up to 90 nm away is affected by this coupling. To predict this long-ranged effect, we present a framework based on a distance-dependent partial coupling of the dye emission to the antenna. Our direct interpretation of these light-matter interactions will enable more predictably optimized, designed, and controlled plasmonic devices and will permit reliable plasmon-enhanced single-molecule nanoscopy.

  20. Visible near-infrared light scattering of single silver split-ring structure made by nanosphere lithography.

    Science.gov (United States)

    Okamoto, Toshihiro; Fukuta, Tetsuya; Sato, Shuji; Haraguchi, Masanobu; Fukui, Masuo

    2011-04-11

    We succeeded in making a silver split-ring (SR) structure of approximately 130 nm in diameter on a glass substrate using a nanosphere lithography technique. The light scattering spectrum in visible near-infrared region of a single, isolated SR was measured using a microscope spectroscopy optical system. The electromagnetic field enhancement spectrum and distribution of the SR structure were simulated by the finite-difference time-domain method, and the excitation modes were clarified. The long wavelength peak in the light scattering spectra corresponded to a fundamental LC resonance mode excited by an incident electric field. It was shown that a single SR structure fabricated as abovementioned can operate as a resonator and generate a magnetic dipole. © 2011 Optical Society of America

  1. Radiofrequency Ablation, MR Thermometry, and High-Spatial-Resolution MR Parametric Imaging with a Single, Minimally Invasive Device

    Science.gov (United States)

    Ertürk, M. Arcan; Sathyanarayana Hegde, Shashank

    2016-01-01

    Purpose To develop and demonstrate in vitro and in vivo a single interventional magnetic resonance (MR)–active device that integrates the functions of precise identification of a tissue site with the delivery of radiofrequency (RF) energy for ablation, high-spatial-resolution thermal mapping to monitor thermal dose, and quantitative MR imaging relaxometry to document ablation-induced tissue changes for characterizing ablated tissue. Materials and Methods All animal studies were approved by the institutional animal care and use committee. A loopless MR imaging antenna composed of a tuned microcable either 0.8 or 2.2 mm in diameter with an extended central conductor was switched between a 3-T MR imaging unit and an RF power source to monitor and perform RF ablation in bovine muscle and human artery samples in vitro and in rabbits in vivo. High-spatial-resolution (250–300-μm) proton resonance frequency shift MR thermometry was interleaved with ablations. Quantitative spin-lattice (T1) and spin-spin (T2) relaxation time MR imaging mapping was performed before and after ablation. These maps were compared with findings from gross tissue examination of the region of ablated tissue after MR imaging. Results High-spatial-resolution MR imaging afforded temperature mapping in less than 8 seconds for monitoring ablation temperatures in excess of 85°C delivered by the same device. This produced irreversible thermal injury and necrosis. Quantitative MR imaging relaxation time maps demonstrated up to a twofold variation in mean regional T1 and T2 after ablation versus before ablation. Conclusion A simple, integrated, minimally invasive interventional probe that provides image-guided therapy delivery, thermal mapping of dose, and detection of ablation-associated MR imaging parametric changes was developed and demonstrated. With this single-device approach, coupling-related safety concerns associated with multiple conductor approaches were avoided. © RSNA, 2016 Online

  2. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  3. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    International Nuclear Information System (INIS)

    Mejia, J.; Reis, M.A.; Miranda, A.C.C.; Batista, I.R.; Barboza, M.R.F.; Shih, M.C.; Fu, G.; Chen, C.T.; Meng, L.J.; Bressan, R.A.; Amaro, E. Jr

    2013-01-01

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s -1 ·MBq -1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99m Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99m Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity

  4. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  5. Characterization of single particle aerosols by elastic light scattering at multiple wavelengths

    Science.gov (United States)

    Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.

    2018-03-01

    We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.

  6. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    Science.gov (United States)

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  7. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes.

    Science.gov (United States)

    Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei

    2017-11-09

    Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.

  8. Exploring single chain amphiphile self-assembly and their possible roles in light transduction

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    amphiphiles on the early Earth seems reasonably well-documented either by exo-terrestrial delivery or endogeneous syntheses, a fact that singles them out as potential building blocks of primitive membranes. These studies have highlighted two important aspects of the self-assembly of single chain amphiphiles......Self-assembled structures of single-chain amphiphiles have been used as hosts for biochemical, and chemical reactions. Their use as models for protocells (i.e., precursors to the first biological cells) has been extensively researched by various groups because the availability of single chain...... source studied to date can supply one single type of amphiphile at concentrations conducive to self-assembly. Mixtures of single-chain amphiphiles were therefore proposed to better model primitive membranes and potentially enhance their structural integrity1-3. Recently, we have established that complex...

  9. Quantitative analysis with advanced compensated polarized light microscopy on wavelength dependence of linear birefringence of single crystals causing arthritis

    Science.gov (United States)

    Takanabe, Akifumi; Tanaka, Masahito; Taniguchi, Atsuo; Yamanaka, Hisashi; Asahi, Toru

    2014-07-01

    To improve our ability to identify single crystals causing arthritis, we have developed a practical measurement system of polarized light microscopy called advanced compensated polarized light microscopy (A-CPLM). The A-CPLM system is constructed by employing a conventional phase retardation plate, an optical fibre and a charge-coupled device spectrometer in a polarized light microscope. We applied the A-CPLM system to measure linear birefringence (LB) in the visible region, which is an optical anisotropic property, for tiny single crystals causing arthritis, i.e. monosodium urate monohydrate (MSUM) and calcium pyrophosphate dihydrate (CPPD). The A-CPLM system performance was evaluated by comparing the obtained experimental data using the A-CPLM system with (i) literature data for a standard sample, MgF2, and (ii) experimental data obtained using an established optical method, high-accuracy universal polarimeter, for the MSUM. The A-CPLM system was found to be applicable for measuring the LB spectra of the single crystals of MSUM and CPPD, which cause arthritis, in the visible regions. We quantitatively reveal the large difference in LB between MSUM and CPPD crystals. These results demonstrate the usefulness of the A-CPLM system for distinguishing the crystals causing arthritis.

  10. A L1-TV algorithm for robust perspective photometric stereo with spatially-varying lightings

    DEFF Research Database (Denmark)

    Quéau, Yvain; Lauze, Francois Bernard; Durou, Jean-Denis

    2015-01-01

    We tackle the problem of perspective 3D-reconstruction of Lambertian surfaces through photometric stereo, in the presence of outliers to Lambert's law, depth discontinuities, and unknown spatially-varying lightings. To this purpose, we introduce a robust $L^1$-TV variational formulation of the re...

  11. Influence of gold coating and interplate voltage on the performance of chevron micro-channel plates for temporally and spatially resolved single particle detection

    Science.gov (United States)

    Hoendervanger, A. L.; Clément, D.; Aspect, A.; Westbrook, C. I.; Dowek, D.; Picard, Y. J.; Boiron, D.

    2013-02-01

    We present a study of two different sets of Micro-Channel Plates used for time and space resolved single particle detection. We investigate the effects of the gold coating and that of introducing an interplate voltage between the spatially separated plates. We find that the gold coating increases the count rate of the detector and the pulse amplitude as previously reported for non-spatially resolved setups. The interplate voltage also increases count rates. In addition, we find that a non-zero interplate voltage improves the spatial accuracy in determining the arrival position of incoming single particles (by ˜20%) while the gold coating has a negative effect (by ˜30%).

  12. Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq.

    Science.gov (United States)

    Pandey, Shristi; Shekhar, Karthik; Regev, Aviv; Schier, Alexander F

    2018-04-02

    The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a reference atlas created a resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Radiative Absorption by Light Absorbing Carbon: Uncertainty, Temporal and Spatial Variation in a Typical Polluted City in Yangtze River Delta

    Science.gov (United States)

    Chen, D.; Zhao, Y.; Lyu, R.

    2017-12-01

    The optical properties of light absorbing carbon (LAC) in atmospheric aerosols, including their uncertainties, temporal change and spatial pattern were studied at suburban, urban and industrial sites in Nanjing, a typical polluted city in Yangtze River Delta (YRD). The optical properties of black carbon (BC) and the uncertainty in radiative absorption of BC were quantified combining cavity attenuated phase shift (CAPS) and thermal-optical techniques. It was found that applying a constant value from previous studies for multiple scattering factor could not well represent the actual absorption characteristics of aerosols in Nanjing. The relative deviation between calculated and measured absorption coefficient of BC was up to 56 ± 34%. A significant positive correlation (R2=0.95) was found between multiple scattering factor (C*) and the mixing state of EC (ECopt/EC) within the ECopt/EC ranged 0.43 0.92 (C*=1.64(ECopt/EC)+1.47, 0.43opt/ECbiogenic volatile organic compounds (BVOCs) was higher in summer (5.8%) than that in autumn (0.5%). Brown carbon (BrC) associated with anthropogenic precursors was stronger in light absorption than that from biogenic sources, thus precursors of secondary organic aerosol (SOA) was probably the main reason for seasonal variation in MAE of BrC. At industrial site, linear positive correlation (R=0.87) was found between measured MSOC and secondary organic carbon (SOC), suggesting SOA formation was the major source of MSOC in this area. The lower MAE values of MSOC indicated that BrC generated from secondary sources might demonstrate weaker light absorbing ability than that from primary emissions. Furthermore, quantitative analysis showed that MAE BrC, 365 reduced by 0.26 m2/g when SOC increased by 1μgC/m3. This study provided insights into a more comprehensive understanding of LAC aerosol in cities with heavy particle pollution, since MSOC served as a surrogate for BrC and EC was measured with reliable and effective methods.

  14. Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO{sub 2} microsphere

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yaocheng [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Tang, Lin, E-mail: tanglin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Dong, Haoran; Yan, Ming; Wang, Jingjing [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Hu, Wei [College of Physics and Microelectronics Science, Hunan University, Changsha, 410082 (China); Wang, Jiajia; Zhou, Yaoyu; Tang, Jing [College of Environmental Science and Engineering, Hunan University, Changsha, 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2016-11-30

    Highlights: • The mesoporous single crystal microsphere of PANI/MS-TiO{sub 2} improved the light absorption. • The mesoporous structure of MS-TiO{sub 2} can increase the loading amount of PANI. • The synergistic effect between PANI and MS-TiO{sub 2} promoted the separation of charges. • Improved photocatalysis was achieved via PANI modified mesoporous single crystal TiO{sub 2} microsphere. - Abstract: Polyaniline (PANI) modified mesoporous single crystal TiO{sub 2} microsphere (PANI/MS-TiO{sub 2}) with excellent photocatalytic activity was successfully prepared by a simple method of solution evaporation and chemisorption. The X-ray diffraction characterization demonstrated that the whole MS-TiO{sub 2} kept the crystal type of anatase. The nitrogen adsorption-desorption characterization coupled with scanning electron microscopy indicated that the MS-TiO{sub 2} possessed a unique mesoporous structure with high specific surface area, which resulted in the increased load of PANI on the surface of MS-TiO{sub 2} and multiple light reflection in the photocatalyst. The UV–vis diffuse reflectance spectra confirmed that PANI/MS-TiO{sub 2} presented more absorption ability in the visible light range than that of the pristine MS-TiO{sub 2}. The transient photocurrent responses and electrochemical impedance spectroscopy (EIS) indicated the high photo responses and fast photogenerated charge separation efficiency of PANI/MS-TiO{sub 2}. The photocatalytic activity of the PANI/MS-TiO{sub 2} was evaluated by the photodegradation of RhB and MB under visible light irradiation. MS-TiO{sub 2} photocatalyst with different molar ration of PANI had been prepared, and the results showed that the optimal photocatalyst (PANI/MS-TiO{sub 2} (1:40)) exhibited the highest photocatalytic efficiency which is nearly three times as great as that of pristine MS-TiO{sub 2} for the degradation of the RhB and MB under visible light irradiation. The remarkable performance of the PANI

  15. Adaptive optics scanning laser ophthalmoscope using liquid crystal on silicon spatial light modulator: Performance study with involuntary eye movement

    Science.gov (United States)

    Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi

    2017-09-01

    The performance of an adaptive optics scanning laser ophthalmoscope (AO-SLO) using a liquid crystal on silicon spatial light modulator and Shack-Hartmann wavefront sensor was investigated. The system achieved high-resolution and high-contrast images of human retinas by dynamic compensation for the aberrations in the eyes. Retinal structures such as photoreceptor cells, blood vessels, and nerve fiber bundles, as well as blood flow, could be observed in vivo. We also investigated involuntary eye movements and ascertained microsaccades and drifts using both the retinal images and the aberrations recorded simultaneously. Furthermore, we measured the interframe displacement of retinal images and found that during eye drift, the displacement has a linear relationship with the residual low-order aberration. The estimated duration and cumulative displacement of the drift were within the ranges estimated by a video tracking technique. The AO-SLO would not only be used for the early detection of eye diseases, but would also offer a new approach for involuntary eye movement research.

  16. Wave instability induced by nonlocal spatial coupling in a model of the light-sensitive Belousov-Zhabotinsky reaction

    Science.gov (United States)

    Nicola, Ernesto M.; Bär, Markus; Engel, Harald

    2006-06-01

    We study spatiotemporal patterns resulting from instabilities induced by nonlocal spatial coupling in the Oregonator model of the light-sensitive Belousov-Zhabotinsky reaction. In this system, nonlocal coupling can be externally imposed by means of an optical feedback loop which links the intensity of locally applied illumination with the activity in a certain vicinity of a particular point weighted by a given coupling function. This effect is included in the three-variable Oregonator model by an additional integral term in the photochemically induced bromide flow. A linear stability analysis of this modified Oregonator model predicts that wave and Turing instabilities of the homogeneous steady state can be induced for experimentally realistic parameter values. In particular, we find that a long-range inhibition in the optical feedback leads to a Turing instability, while a long-range activation induces wave patterns. Using a weakly nonlinear analysis, we derive amplitude equations for the wave instability which are valid close to the instability threshold. Therein, we find that the wave instability occurs supercritically or subcritically and that traveling waves are preferred over standing waves. The results of the theoretical analysis are in good agreement with numerical simulations of the model near the wave instability threshold. For larger distances from threshold, a secondary breathing instability is found for traveling waves.

  17. Light from Within: Sensing Weak Strains and FemtoNewton Forces in Single Molecules

    NARCIS (Netherlands)

    Laar, van de Ties; Schuurman, Hent; Scheer, van der Pieter; Maarten van Doorn, Jan; Gucht, van der Jasper; Sprakel, Joris

    2018-01-01

    Weak mechanical forces acting on molecules are in control of a wide variety of (bio)chemical and physical processes. The spatially inhomogeneous nature of these forces has a profound effect on the structure and mechanics of soft and biological materials. Yet, the lack of methods for probing

  18. Singly-resonant sum frequency generation of visible light in a semiconductor disk laser

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.

    2009-01-01

    In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...

  19. Fabricating ZnO single microwire light-emitting diode with transparent conductive ITO film

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yingtian [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Dai, Jun [State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China); Shi, Zhifeng [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Long, Beihong [College of Materials Science and Engineering, Jinlin University, 2699 Qianjin Street, Changchun 130012 (China); Wu, Bin; Cai, Xupu; Chu, Xianwei; Du, Guotong; Zhang, Baolin [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Yin, Jingzhi, E-mail: yjz886666@163.com [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2014-05-01

    In this paper, n-ZnO single microwire/p{sup +}-Si heterojunction LEDs are fabricated using the transparent conductive ITO film as an electrode. A distinct UV emission resulting from free exciton recombination in a ZnO single microwire is observed in the electroluminescence. Size difference of ZnO single microwire shows significant influence on emission efficiency. The EL spectra of n-ZnO single microwire/p-Si heterostructure exhibited relatively stronger UV emission which was compared with the EL spectra of n-ZnO single nanowire/p-Si heterostructure and n-ZnO film/p-Si heterostructure, respectively. - Highlights: • The ZnO microwires were synthesized with a vapor phase transport method. • ZnO single microwire/Si LEDs were fabricated using the ITO film as an electrode. • The EL spectra had been compared with n-ZnO film/p-Si heterostructure. • The EL spectra had been compared with n-ZnO single nanowire/p-Si heterostructure.

  20. Spectroscopy of Single Light-Harvesting Complexes from Purple Photosynthetic Bacteria at 1.2 K

    NARCIS (Netherlands)

    Oijen, A.M. van; Ketelaars, M.; Köhler, J.; Aartsma, T.J.; Schmidt, J.

    1998-01-01

    In this Letter we present the first observation of the fluorescence-excitation spectra of individual light-harvesting complexes (LH2) from purple photosynthetic bacteria at 1.2 K. The spectra reveal the electronic transitions to the individual excitonic states of the assembly of absorbing

  1. Solid state detector for high spatial resolution coupled to a single event acquisition system for slow neutron detection

    Science.gov (United States)

    Casinini, F.; Petrillo, C.; Sacchetti, F.

    2012-05-01

    In the next years the slow neutron scattering community is waiting for a continuous improvement of the neutron detectors because of the development of the new and more intense neutron sources and to obtain a better performance of the neutron instrumentation to face the higher demands and new capabilities necessary for the novel experiments. In particular detectors having a faster response and a better shape of the time response must be produced, while new and more flexible acquisition systems must be introduced in order to collect in the proper way the information carried by the scattered neutrons. At present inside the neutron detector community the lack for detectors having a spatial resolution below 1 mm is evident. In the past it has been already demonstrated that a silicon microstrip detector coupled to a Gadolinium foil, used as neutron converter, provides a good performance neutron detector. In the present paper we present a 128 channel detector which has been designed for operation in the thermal neutron region with 0.55 mm spatial resolution, 100 ns time resolution and 25 ns time stamp accuracy. We present a new approach for the acquisition of the neutron arrival time, based on a single event storage by manipulating the detector digital output using a programmable acquisition system which takes advantage from high performance industrial standard hardware employing a FPGA and a real-time on board processor. We suggest the use of the single neutron event storing to make the time to energy transformation more efficient in the case of time of flight inelastic scattering, where the conversion from angle and time to momentum and energy is necessary.

  2. Spatial averaging of velocity measurements in wall-bounded turbulence: single hot-wires

    International Nuclear Information System (INIS)

    Philip, Jimmy; Hutchins, Nicholas; Monty, Jason P; Marusic, Ivan

    2013-01-01

    Recent advancements in velocity measurements to understand high Reynolds number (Re) wall turbulence have pushed the boundaries of sensor size required to resolve the smallest scales. We present here a framework for studying the effect of finite sensor size on velocity measurements, and scrutinize in detail the behaviour of single-wire hot-wires. Starting with a general linear filter, expressions for the filtered correlation, spectrum and the corresponding variance are derived. Considering the special case of a box-type filter and a simple model for the two-point correlation, theoretical results are developed, which are favourably compared with the numerical simulation of hot-wires based on the turbulent channel flow direct numerical simulation databases. The results clarify the reason why previous studies found the approximate shape of the spectra not resolved by hot-wires as Gaussian. The length scale based on the correlation over the sensor length is found to be the appropriate length scale for characterizing averaging due to finite sensor size. The efficacy of the linear box filter is established by comparing the numerical simulation of hot-wires with experiments conducted at matched sensor lengths and Re in a channel flow, at least for hot-wire lengths of less than 40 in viscous scaling. Finally, a model of the streamwise two-point correlation is presented, which is employed to estimate the filtering effect on the peak of the streamwise velocity variances for a range of Re, and the model results compare favourably with that obtained from measurements. Even though the theoretical results are compared here in the case of wall turbulence, they are suitable for hot-wire measurements in turbulent flows in general. (paper)

  3. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.

    Science.gov (United States)

    Hildner, Richard; Brinks, Daan; Nieder, Jana B; Cogdell, Richard J; van Hulst, Niek F

    2013-06-21

    The initial steps of photosynthesis comprise the absorption of sunlight by pigment-protein antenna complexes followed by rapid and highly efficient funneling of excitation energy to a reaction center. In these transport processes, signatures of unexpectedly long-lived coherences have emerged in two-dimensional ensemble spectra of various light-harvesting complexes. Here, we demonstrate ultrafast quantum coherent energy transfer within individual antenna complexes of a purple bacterium under physiological conditions. We find that quantum coherences between electronically coupled energy eigenstates persist at least 400 femtoseconds and that distinct energy-transfer pathways that change with time can be identified in each complex. Our data suggest that long-lived quantum coherence renders energy transfer in photosynthetic systems robust in the presence of disorder, which is a prerequisite for efficient light harvesting.

  4. Fully Printed Flexible Single-Chip RFID Tag with Light Detection Capabilities

    Directory of Open Access Journals (Sweden)

    Aniello Falco

    2017-03-01

    Full Text Available A printed passive radiofrequency identification (RFID tag in the ultra-high frequency band for light and temperature monitoring is presented. The whole tag has been manufactured by printing techniques on a flexible substrate. Antenna and interconnects are realized with silver nanoparticles via inkjet printing. A sprayed photodetector performs the light monitoring, whereas temperature measurement comes from an in-built sensor in the silicon RFID chip. One of the advantages of this system is the digital read-out and transmission of the sensors information on the RFID tag that ensures reliability. Furthermore, the use of printing techniques allows large-scale manufacturing and the direct fabrication of the tag on the desired surface. This work proves for the first time the feasibility of the embedment of large-scale organic photodetectors onto inkjet printed RFID tags. Here, we solve the problem of integration of different manufacturing techniques to develop an optimal final sensor system.

  5. Single cavity Fabry-Perot modulator enhancements and integrated vertically coupled cavity light-emitting diode

    Science.gov (United States)

    Liu, Daxin

    Fabry-Perot modulators with Multi-Quantum Wells (MQWs) cavities have been studied with great interest during recent years. Usually operating as intensity modulators, these devices have very high modulation contrast ratios, can be operated at very high speed, can be easily made into two dimensional arrays and can be integrated with silicon ICs. They are thus very promising for optical interconnects, optical switching and image processing applications. But before these modulators are to be used in real applications, there are several issues that need to be solved, including the parasitic phase modulation, the bandwidth of such modulators and the alignment of modulator operation wavelength with the wavelength of lasers or light emitting diodes. In this work, the phase properties of Fabry-Perot reflection modulators will be discussed first and an experimental method using a modified Michelson interferometer to characterize the exact phase change will be demonstrated. It is demonstrated that the phase of the reflection light beam from a Fabry-Perot modulator is determined not only by the refractive index change inside the cavity but also by the absorption change inside the cavity. With the purpose of expanding the limited bandwidth of such modulator, devices with short passive cavities are designed and fabricated, the results are described and trade-offs between modulation depth and bandwidth will be discussed. In order to solve the problem of alignment and expand the functionality of Fabry-Perot modulators further, vertically coupled cavity devices with each cavity being electrically controlled independently have been developed. Both a coupled cavity modulator and an integrated light emitting diode with a transmission Fabry-Perot modulator are demonstrated; the first device enhances the modulation bandwidth while the second device has the potential of combining the advantage of high speed operation of MQWs modulators with the long lifetime and low cost of light

  6. A single night light exposure acutely alters hormonal and metabolic responses in healthy participants

    Directory of Open Access Journals (Sweden)

    Mohammed S Albreiki

    2017-01-01

    Full Text Available Many animal studies have reported an association between melatonin suppression and the disturbance of metabolic responses; yet, few human studies have investigated bright light effects on metabolic and hormonal responses at night. This study investigated the impact of light on plasma hormones and metabolites prior to, and after, an evening meal in healthy participants. Seventeen healthy participants, 8 females (22.2 ± 2.59 years, mean ± s.d. and 9 males (22.8 ± 3.5 years were randomised to a two-way cross-over design protocol; dim light (DL (500 lux sessions, separated by at least seven days. Saliva and plasma samples were collected prior to and after a standard evening meal at specific intervals. Plasma non-esterified fatty acid (NEFA levels were significantly higher pre-meal in DL compared to BL (P < 0.01. Plasma glucose and insulin levels were significantly greater post-meal in the BL compared to DL session (P = 0.02, P = 0.001, respectively. Salivary melatonin levels were significantly higher in the DL compared to those in BL session (P = 0.005. BL at night was associated with significant increases in plasma glucose and insulin suggestive of glucose intolerance and insulin insensitivity. Raised pre-prandial NEFA levels may be due to changes in insulin sensitivity or the presence of melatonin and/or light at night. Plasma triglyceride (TAG levels were the same in both sessions. These results may explain some of the health issues reported in shift workers; however, further studies are needed to elucidate the cause of these metabolic changes.

  7. Shedding light on protein folding, structural and functional dynamics by single molecule studies

    DEFF Research Database (Denmark)

    Bavishi, Krutika; Hatzakis, Nikos

    2014-01-01

    The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean...... property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out...

  8. Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling

    Science.gov (United States)

    Das, Sulagna; Yin, Taofei; Yang, Qingfen; Zhang, Jingqiao; Wu, Yi I.; Yu, Ji

    2015-01-01

    Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction. PMID:25561548

  9. Temporal and spatial gait parameters in children with Cri du Chat Syndrome under single and dual task conditions.

    Science.gov (United States)

    Abbruzzese, Laurel D; Salazar, Rachel; Aubuchon, Maddie; Rao, Ashwini K

    2016-10-01

    To describe temporal and spatial gait characteristics in individuals with Cri du Chat syndrome (CdCS) and to explore the effects of performing concurrent manual tasks while walking. The gait parameters of 14 participants with CdCS (mean age 10.3, range 3-20 years) and 14 age-matched controls (mean age 10.1, range 3-20 years) were collected using the GAITRite ® instrumented walkway. All participants first walked without any concurrent tasks and then performed 2 motor dual task walking conditions (pitcher and tray). Individuals with CdCS took more frequent, smaller steps than controls, but, on average, had a comparable gait speed. In addition, there was a significant task by group interaction. Participants decreased gait speed, decreased cadence, decreased step length, and increased% time in double limb support under dual task conditions compared to single task conditions. However, the age-matched controls altered their gait for both manual tasks, and the participants with CdCS only altered their gait for the tray task. Although individuals with CdCS ambulate with a comparable gait speed to age-matched controls under single task conditions, they did not significantly alter their gait when carrying a pitcher with a cup of water inside, like controls. It is not clear whether or not individuals with CdCS had difficulty attending to task demands or had difficulty modifying their gait. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A single early life seizure impairs short-term memory but does not alter spatial learning, recognition memory, or anxiety

    Science.gov (United States)

    Cornejo, Brandon J.; Mesches, Michael H.; Benke, Timothy A.

    2008-01-01

    The impact of a single seizure on cognition remains controversial. We hypothesized that a single early life seizure (sELS) on rat post-natal day (P) 7 would alter only hippocampal-dependent learning and memory in mature (P60) rats. The Morris Water Maze (MWM), Novel Object and Novel Place Recognition (NOR/NPR) tasks, and Contextual Fear Conditioning (CFC) were used to assess learning and memory associated with hippocampal/prefrontal cortex, perirhinal/hippocampal cortex, and amygdala function, respectively. The Elevated Plus Maze (EPM) and Open Field Test (OFT) were used to assess anxiety associated with the septum. We report that sELS impaired hippocampal-dependent short-term memory but not spatial learning or recall. sELS did not disrupt performance in the NOR/NPR. CFC performance suggested intact amydgala function. sELS did not change anxiety levels as measured by the EPM or OFT. Our data suggests that the long-term cognitive impacts of sELS are largely limited to the hippocampus/prefrontal cortex. PMID:18678283

  11. Controlling light emission from single-photon sources using photonic nanowires

    DEFF Research Database (Denmark)

    Gregersen, Niels; Chen, Yuntian; Mørk, Jesper

    2012-01-01

    The photonic nanowire has recently emerged as an promising alternative to microcavity-based single-photon source designs. In this simple structure, a geometrical effect ensures a strong coupling between an embedded emitter and the optical mode of interest and a combination of tapers and mirrors a...... designs allowing for electrical contacting, polarization control, improved efficiency and simplified fabrication....

  12. Shedding Light on Protein Folding, Structural and Functional Dynamics by Single Molecule Studies

    Directory of Open Access Journals (Sweden)

    Krutika Bavishi

    2014-11-01

    Full Text Available The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions in deciphering mechanisms that underlie protein folding, structural and functional dynamics by single molecule fluorescence microscopy techniques. We will discuss a few selected examples highlighting the power of the emerging techniques and finally discuss the future improvements and directions.

  13. A Fluorescence Light-Up Ag Nanocluster Probe that Discriminates Single-Nucleotide Variants by Emission Color

    OpenAIRE

    Yeh, Hsin-Chih; Sharma, Jaswinder; Shih, Ie-Ming; Vu, Dung M.; Martinez, Jennifer S.; Werner, James H.

    2012-01-01

    Rapid and precise screening of small genetic variations, such as single-nucleotide polymorphisms (SNPs), among an individual’s genome is still an unmet challenge at point-of-care settings. One crucial step towards this goal is the development of discrimination probes that require no enzymatic reaction and are easy to use. Here we report a new type of fluorescent molecular probe, termed a chameleon NanoCluster Beacon (cNCB), that lights up into different colors upon binding SNP targets. NanoCl...

  14. Spatially Extended and High-Velocity Dispersion Molecular Component in Spiral Galaxies: Single-Dish Versus Interferometric Observations

    Science.gov (United States)

    Caldú-Primo, Anahi; Schruba, Andreas; Walter, Fabian; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-02-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%-74% for NGC 4736 and 81%-92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ˜(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(˜1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (˜3″ or ˜100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  15. Spatially extended and high-velocity dispersion molecular component in spiral galaxies: Single-dish versus interferometric observations

    International Nuclear Information System (INIS)

    Caldú-Primo, Anahi; Walter, Fabian; Schruba, Andreas; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-01-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%–74% for NGC 4736 and 81%–92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ∼(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(∼1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (∼3″ or ∼100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  16. Magneto-electroluminescence effects in the single-layer organic light-emitting devices with macrocyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    S.-T. Pham

    2018-02-01

    Full Text Available Magneto-electroluminescence (MEL effects are observed in single-layer organic light-emitting devices (OLEDs comprising only macrocyclic aromatic hydrocarbons (MAHs. The fluorescence devices were prepared using synthesized MAHs, namely, [n]cyclo-meta-phenylene ([n]CMP, n = 5, 6. The MEL ratio of the resulting OLED is 1%–2% in the spectral wavelength range of 400-500 nm, whereas it becomes negative (−1.5% to −2% in the range from 650 to 700 nm. The possible physical origins of the sign change in the MEL are discussed. This wavelength-dependent sign change in the MEL ratio could be a unique function for future single-layer OLEDs capable of magnetic-field-induced color changes.

  17. Algorithm for extracting multiple object waves without Fourier transform from a single image recorded by spatial frequency-division multiplexing and its application to digital holography

    Science.gov (United States)

    Tahara, Tatsuki; Akamatsu, Takanori; Arai, Yasuhiko; Shimobaba, Tomoyoshi; Ito, Tomoyoshi; Kakue, Takashi

    2017-11-01

    We propose a novel algorithm that does not require any Fourier transform to extract multiple object waves in a single image recorded with spatial frequency-division multiplexing. Smoothing is utilized to extract the desired object-wave information from a spatially multiplexed image. Numerical and experimental results show its validity and applicability for image and Fresnel digital holography. Our investigations clarify the speeding up of both the object-wave extractions and multiple object-image reconstructions quantitatively.

  18. Evolution of radius and light scattering properties of single drying microdroplets of colloidal suspension

    Science.gov (United States)

    Archer, J.; Kolwas, M.; Jakubczyk, D.; Derkachov, G.; Woźniak, M.; Kolwas, K.

    2017-11-01

    We report on observation of well-pronounced characteristic features of elastic light scattering of evaporating solution and suspension microdroplet of the anionic surfactant sodium dodecyl sulfate (SDS) and colloidal silica (SiO2) nanospheres in diethylene glycol (DEG) during SDS surface layer and structure formation (crystallization). For pure DEG/SDS solution droplet evaporation process, characteristic evaporation transitions manifested in the evolution of the droplet radius, a(t) for all the SDS concentrations (C = 20 mM, 40 mM and 100 mM) studied as well as well-pronounced intensity signals characterizing SDS soft gel-solid transitions for initial SDS concentrations, C > 40 mM. In the case of microdroplets composed of DEG/SDS with controlled addition of colloidal silica, the intensity fluctuations were enhanced and had profiles dependent on the initial composition of the suspension. Exemplary wet droplets at the initial evaporation stages and final dry aggregates of SDS and SDS/SiO2 were deposited on a substrate and observed with Scanning Electron Microscopy (SEM). Features of the deposited structures correlate well with the elastic scattered light measurements characterizing the drying processes.

  19. White light emission from an exciplex interface with a single emitting layer (Conference Presentation)

    Science.gov (United States)

    Bernal, Wilson; Perez-Gutierrez, Enrique; Agular, Andres; Barbosa G, J. Oracio C.; Maldonado, Jose L.; Meneses-Nava, Marco Antonio; Rodriguez Rivera, Mario A.; Rodriguez, Braulio

    2017-02-01

    Efficient solid state lighting devices based in inorganic emissive materials are now available in the market meanwhile for organic emissive materials still a lot of research work is in its way. [1,2] In this work a new organic emissive material based on carbazole, N-(4-Ethynylphenyl) carba-zole-d4 (6-d4), is used as electron-acceptor and commercial PEDOT:PSS as the electron-donor to obtain white emission. Besides the HOMO-LUMO levels of materials the white emission showed dependence on the films thicknesses and applied voltages. In here it is reported that by diminishing the thickness of the PEDOT:PSS layer, from 60 to 35 nm, and by keeping the derivative carbazole layer constant at 100 nm the electro-luminescence (EL) changed from emissive exciton states to the mixture of emissive exciton and exciplex states. [3] For the former thicknesses no white light was obtained meanwhile for the later the EL spectra broadened due to the emission of exciplex states. Under this condition, the best-achieved CIE coordinate was (0.31,0.33) with a driving voltage of 8 V. To lower the driving voltage of the devices a thin film of LiF was added between the derivative of carbazol and cathode but the CIE coordinates changed. The best CIE coordinates for this case were (0.29, 0.34) and (0.32, 0.37) with driving voltage of about 6.5 V. Acknowledgments: CeMie-Sol/27 (Mexico) 207450 References [1] Timothy L Dawson, Society of Dyers and Colourists, Color. Technol., 126, 1-10 (2010), doi: 10.1111/j.1478-4408.2010.00220.x [2] G. M. Farinola, R. Ragni, Journal of Solid State Lighting, 2:9 (2015), doi: 10.1186/s40539-015-0028-7. [3] E. Angioni, et al, J. Mater. Chem. C, 2016, 4, 3851, doi: 10.1039/c6tc00750c.

  20. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.

    Science.gov (United States)

    Zhou, Xin X; Zou, Xinzhi; Chung, Hokyung K; Gao, Yuchen; Liu, Yanxia; Qi, Lei S; Lin, Michael Z

    2018-02-16

    Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.

  1. Review of single particle dynamics for third generation light sources through frequency map analysis

    Directory of Open Access Journals (Sweden)

    L. Nadolski

    2003-11-01

    Full Text Available Frequency map analysis [J. Laskar, Icarus 88, 266 (1990] is used here to analyze the transverse dynamics of four third generation synchrotron light sources: the ALS, the ESRF, the SOLEIL project, and Super-ACO. Time variations of the betatron tunes give additional information for the global dynamics of the beam. The main resonances are revealed; a one-to-one correspondence between the configuration space and the frequency space can be performed. We stress that the frequency maps, and therefore the dynamics optimization, are highly sensitive to sextupolar strengths and vary in a large amount from one machine to another. The frequency maps can thus be used to characterize the different machines.

  2. Electric light scattering from single-stranded DNA in linear polyacrylamide solutions.

    Science.gov (United States)

    Todorov, R; Starchev, K; Stoylov, S P

    2001-01-01

    The electric light scattering (ELS) of ssDNA (calf thymus, 10 kbp, 55 micrograms/mL) in denaturing polyacrylamide (PAA) solutions was studied as a function of applied sinusoidal electric field and polymer concentration. Electric fields of strengths up to 300 V/cm and of frequencies between 100 and 5000 Hz were applied. It was found that the ELS effect increases with the field strength and decreases at high frequencies. The dependence of the ELS effect of ssDNA on polymer concentration passes through a maximum at 1% PAA. The relaxation times of decay of the ELS effect increase with increasing polymer concentrations. It was demonstrated that ELS is a useful method for investigation of ssDNA behavior in the course of pulse-field electrophoresis in polymer solutions.

  3. Effect of particle shape and structure on the results of single-particle light-scattering size analysis.

    Science.gov (United States)

    Umhauer, H; Bottlinger, M

    1991-11-20

    To evaluate quantitatively the influence exerted by the shape and structure of nonspherical, nonideal particles on the results of single-particle scattered-light size analysis, measurements were conducted with individual particles of different materials (glass, limestone, and quartz). For this purpose, the particles were suspended in an electrodynamic balance and repeatedly passed through the analyzer's measuring volume with a continually changing random orientation. The scattered-light signal spectra thus obtained specify the probability with which a certain pulse height is induced when the particle passes once through the measuring volume at a given coincidental orientation. The spectra reflect the material-characteristic influence. They allow the loss of resolution of common scattered-light size analyses to be assessed and algorithms (matrices) to be compiled with which the shape and structure influence may be mathematically eliminated. Because a shape and structure independent size parameter is also determined from the individual particles, exact calibration curves can be derived in which the shape and structure influence are incorporated.

  4. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, D. [Departamento de Ciência dos Materiais e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica (Portugal); Pinto, A.; Califórnia, A.; Gomes, J. [CeNTI – Centro de Nanotecnologia, Materiais Técnicos, Funcionais e Inteligentes, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão (Portugal); Pereira, L., E-mail: luiz@ua.pt [Departmento de Física e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2016-09-15

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  5. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    International Nuclear Information System (INIS)

    Pereira, D.; Pinto, A.; Califórnia, A.; Gomes, J.; Pereira, L.

    2016-01-01

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  6. Oxide-apertured microcavity single-photon-emitting diodes-simultaneous confinement of current and light

    International Nuclear Information System (INIS)

    Ellis, David J P; Bennett, Anthony J; Dewhurst, Samuel J; Shields, Andrew J; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A

    2008-01-01

    We report on the development of a generation of microcavity single-photon sources in which an aluminium oxide aperture provides simultaneous confinement of the injected current and the optical mode. The aperture is formed by the wet oxidation of an aluminium-rich AlGaAs layer. This approach allows a high quality cavity to be successfully integrated into an electrical device, from which enhanced photon emission is observed through the Purcell effect. The resulting source demonstrated an improved photon collection efficiency and was shown to operate at repetition rates in excess of 0.5 GHz.

  7. Directional Sensitivity in Light-Mass Dark Matter Searches with Single-Electron-Resolution Ionization Detectors

    Science.gov (United States)

    Kadribasic, Fedja; Mirabolfathi, Nader; Nordlund, Kai; Sand, Andrea E.; Holmström, Eero; Djurabekova, Flyura

    2018-03-01

    We propose a method using solid state detectors with directional sensitivity to dark matter interactions to detect low-mass weakly interacting massive particles (WIMPs) originating from galactic sources. In spite of a large body of literature for high-mass WIMP detectors with directional sensitivity, no available technique exists to cover WIMPs in the mass range <1 GeV /c2 . We argue that single-electron-resolution semiconductor detectors allow for directional sensitivity once properly calibrated. We examine the commonly used semiconductor material response to these low-mass WIMP interactions.

  8. A novel single fiber optical tweezers based on light-induced thermal effect

    Science.gov (United States)

    Zhang, Yu; Liu, Zhihai; Liang, Peibo; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2015-07-01

    We present and demonstrate a novel single fiber optical tweezers which can trap and launch (clean) a target polystyrene (PS) microsphere (diameter~10μm) with independent control by using two wavelengths beams: 980nm and 1480nm. We employ 980nm laser beam to trap the target PS microsphere by molding the fiber tip into a special tapered-shape; and we employ 1480nm laser beam to launch the trapped PS microsphere with a certain velocity by using the thermophoresis force generated from the thermal effect due to the high absorption of the 1480nm laser beams in water. When the launching force is smaller than the trapping force, the PS microsphere will be trapped near the fiber tip, and the launching force will blow away other PS microspheres in the workspace realizing the cleaning function; When the launching force is larger than the trapping force, the trapped PS microsphere will be launched away from the fiber tip with a certain velocity and towards a certain direction, realizing the launching function. This PS microsphere launching and cleaning functions expanded new features of single fiber optical tweezers, providing for the possibility of more practical applications in the micro manipulation research fields.

  9. Single-frequency operation of a broad-area laser diode by injection locking of a complex spatial mode via a double phase conjugate mirror

    NARCIS (Netherlands)

    van Voorst, P.D.; Offerhaus, Herman L.; Boller, Klaus J.

    2006-01-01

    We demonstrate what is believed to be the first phase-coherent locking of a high-power broad-area diode to a single-frequency master laser. We use photorefractive double phase conjugation to lock the diode in a selfoptimized complex spatial mode while the photorefractive crystal diffracts that

  10. Tracking Quantum Jumps of Light with Repeated Single-Shot Parity Measurements

    Science.gov (United States)

    Sun, Luyan; Petrenko, Andrei; Leghtas, Zaki; Vlastakis, Brian; Kirchmair, Gerhard; Sliwa, Katrina; Narla, Anirudh; Hatridge, Michael; Shankar, Shyam; Blumoff, Jacob; Frunzio, Luigi; Mirrahimi, Mazyar; Devoret, Michel; Schoelkopf, Robert

    2014-03-01

    Quantum error correction (QEC) is required for a practical quantum computer because of the fragile nature of quantum information. A measurement-based QEC requires the measurement of error syndromes in a quantum non-demolition way and at a rate which is faster than errors occur. In a 3D circuit quantum electrodynamics architecture, we realize a parity measurement of a microwave field with about 90% fidelity by mapping its parity onto an ancilla qubit. The projective nature of the parity measurement onto a degenerate parity eigenspace, the cat states, is confirmed by Wigner tomography after a single parity measurement, showing 84% fidelity to ideal cats. The parity can therefore serve as an error syndrome for a recently proposed QEC scheme [Leghtas et.al. PRL (2013)]. We then demonstrate a tracking of quantum jumps of this error syndrome by repeated parity measurements. We will also discuss a quantum filter developed to mitigate the imperfections during the parity measurement for a best estimate of the photon state parity. The demonstrated extraction of error syndromes without perturbing the encoded information is essential for QEC. Current address: CQI, IIIS, Tsinghua University, Beijing, China.

  11. Low-Threshold Light Amplification in Bifluorene Single Crystals: Role of the Trap States.

    Science.gov (United States)

    Baronas, Paulius; Kreiza, Gediminas; Adomėnas, Povilas; Adomėnienė, Ona; Kazlauskas, Karolis; Ribierre, Jean-Charles; Adachi, Chihaya; Juršėnas, Saulius

    2018-01-24

    Organic single crystals (SCs) expressing long-range periodicity and dense molecular packing are an attractive amplifying medium for the realization of electrically driven organic lasers. However, the amplified spontaneous emission (ASE) threshold (1-10 kW/cm 2 ) of SCs is still significantly higher compared to those of amorphous neat or doped films. The current study addresses this issue by investigating ASE properties of rigid bridging group-containing bifluorene SCs. Introduction of the rigid bridges in bifluorenes enables considerable reduction of nonradiative decay, which, along with enhanced fluorescence quantum yield (72-82%) and short excited state lifetime (1.5-2.5 ns), results in high radiative decay rates (∼0.5 × 10 9 s -1 ) of the SCs, making them highly attractive for lasing applications. The revealed ASE threshold of 400 W/cm 2 in acetylene-bridged bifluorene SCs is found to be among the lowest ever reported for organic crystals. Ultrafast transient absorption spectroscopy enabled one to disclose pronounced differences in the excited state dynamics of the studied SCs, pointing out the essential role of radiative traps in achieving a record low ASE threshold. Although the origin of the trap states was not completely unveiled, the obtained results clearly evidence that the crystal doping approach can be successful in achieving extremely low ASE thresholds required for electrically pumped organic laser.

  12. Influence of light intensity on surface-free energy and dentin bond strength of single-step self-etch adhesives.

    Science.gov (United States)

    Nojiri, Kie; Tsujimoto, Akimasa; Suzuki, Takayuki; Shibasaki, Syo; Matsuyoshi, Saki; Takamizawa, Toshiki; Miyazaki, Masashi

    2015-01-01

    In this study, we investigated the influence of light intensity on the surface-free energy and dentin bond strength of single-step selfetch adhesives. The adhesives were applied to the dentin surfaces of bovine mandibular incisors and cured with light intensities of 0 (no irradiation), 200, 400, and 600 mW/cm(2). Surface-free energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. Dentin bond strengths of the specimens were also measured. Polymerization with a higher light intensity resulted in a lower surface-free energy of the cured adhesives. The greatest bond strength was achieved when a light intensity of 400 mW/cm(2) or greater was used. Our data suggest that the surface-free energy and dentin bond strength of single-step self-etch adhesives are affected by light intensity of the curing unit.

  13. Structural, mechanical and light yield characterisation of heat treated LYSO:Ce single crystals for medical imaging applications

    CERN Document Server

    Mengucci, P; Auffray, E; Barucca, G; Cecchi, C; Chipaux, R; Cousson, A; Davì, F; Di Vara, N; Rinaldi, D; Santecchia, E

    2015-01-01

    Five single crystals of cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) grown by the Czochralski method were submitted to structural characterisation by X-ray (XRD) and neutron (ND) diffraction, scanning (SEM) and transmission (TEM) electron microscopy and energy dispersive microanalysis (EDS). The Ultimate Tensile Strength (UTS), the Young Modulus (YM) and the Light Yield (LY) of the samples were also measured in order to correlate the mechanical and the optical behaviour of the crystals with the characteristics of their microstructure. Two of the samples analysed were also heat treated at 300 °C for 10 h to evidence possible variations induced by the temperature in the optical and mechanical response of the crystals. Results showed that the mean compositional variations evidenced by the structural analyses do not affect the mechanical and optical behaviour of the samples. On the contrary, the thermal treatment could induce the formation of coherent spherical particles (size 10 to 15 nm), not unifo...

  14. Production of 10.4 W of single frequency coherent light at 780 nm by second harmonic generation

    Science.gov (United States)

    Lichtman, Martin; Piotrowicz, Michal; Saffman, Mark

    2013-05-01

    We have developed a high power, 10.4 W single frequency source at 780 nm, using second harmonic generation in a double-pass arrangement through a 50 mm long PPLN crystal. The source power is from a 20 W erbium-doped fiber amplifier at 1560 nm, giving a conversion efficiency of 52%. Comparison of the conversion efficiency with calculations based on a modified Boyd-Kleinman theory and numerical solution of the non-linear Schrödinger equation will be presented. The 780 nm light is used to create an array of blue-detuned traps for quantum computing experiments with Cs atoms. This work was supported by IARPA through ARO and DARPA through AFOSR.

  15. Luminescence and light yield of (Gd2Y)(Ga3Al2)O12:Pr3+ single crystal scintillators

    Science.gov (United States)

    Lertloypanyachai, Prapon; Pathumrangsan, Nichakorn; Sreebunpeng, Krittiya; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Yoshikawa, Akira; Kamada, Kei; Nikl, Martin

    2017-06-01

    Praseodymium-doped (Gd2Y)(Ga3Al2)O12 (GYGAG: Pr) single crystals are grown by the micro-pulling down method with different Pr concentrations. The energy transfer process between Pr3+ and Gd3+ is investigated by photoluminescence excitation (PLE) and emission (PL) spectra measurements. Photoelectron yield measurements are carried out using photomultiplier. At 662 keV γ-rays, photoelectron yield of 2520 phe/MeV obtained for the GYGAG: Pr (0.01%) sample is larger than that of 1810 phe/MeV obtained for BGO crystal. Light yield degradation for the GYGAG: Pr scintillators is presumably due to the energy transfer from 5d state of Pr3+ to 4f state of Gd3+ together with the concentration quenching in the Gd3+-sublattice.

  16. Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF.

    Science.gov (United States)

    Cassataro, Marco; Novoa, David; Günendi, Mehmet C; Edavalath, Nitin N; Frosz, Michael H; Travers, John C; Russell, Philip St J

    2017-04-03

    We report generation of an ultrafast supercontinuum extending into the mid- infrared in gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF) pumped by 1.7 µm light from an optical parametric amplifier. The simple fiber structure offers shallow dispersion and flat transmission in the near and mid-infrared, enabling the generation of broadband spectra extending from 270 nm to 3.1 µm, with a total energy of a few µJ. In addition, we demonstrate the emission of ultraviolet dispersive waves whose frequency can be tuned simply by adjusting the pump wavelength. SR-PCF thus constitutes an effective means of compressing and delivering tunable ultrafast pulses in the near and mid-infrared spectral regions.

  17. Spatial light modulators using polymer-dispersed liquid crystal and Bi12SiO20 photoconductive layers for projection display

    Science.gov (United States)

    Takizawa, Kuniharu; Kikuchi, Hiroshi; Fujikake, Hideo; Fujii, Takanori; Kawakita, Masahiro; Yokozawa, Minori; Murata, Akiko

    1995-04-01

    There is hopefully expected a projection display using spatial light modulators (SLMs) converting a faint input-image into a brilliant output-image. A conventional liquid crystal SLM loses more than 50% of a reading light in polarizer. To solve this problem, we developed a new SLM consisting of polymer-dispersed liquid crystal (PDLC) and Bi12SiO20 photoconductive layers. This SLM needs no polarizer, because it lets a reading light pass or scatter depending on whether a writing light is incident upon the photoconductive layer. We calculated the dependence of the resolution of the device on the several parameters including thickness, dielectric constants and conductivities of the dielectric mirror and PDLC layer by using a new electrical image method. A high-definition SLM with limiting resolution (36 - 50 lp/mm) was fabricated by stacking the optimized mirror and PDLC layer. In cooperating the device into a Schlieren optical system consisting of an LC panel as an input image source and a 1 kW Xenon lamp as a projection light source, we performed high-contrast green image projection with a total luminous flux of 1500 lumen.

  18. Single-session combination treatment with intense pulsed light and nonablative fractional photothermolysis: a split-face study.

    Science.gov (United States)

    Kearney, Chris; Brew, Daniel

    2012-07-01

    Intense pulsed light (IPL) and fractional photothermolysis (FP) are effective nonablative treatments for photoaging. To investigate the safety and efficacy of administering these two treatments in the same session with the aim of maximizing results while maintaining safety and minimizing downtime. We sought to compare the efficacy of the combination treatment with that of individual treatments of IPL and FP by conducting a split-face study. Twenty-nine subjects received a full-face standard-strength treatment with IPL immediately followed by treatment with 1550-nm FP. A further 14 patients underwent a split-face study comparing combined IPL and FP on one side of the face with these two treatments performed in isolation, 4 weeks apart, on the other side. The combination treatment achieved results statistically superior to treatment with IPL alone, FP alone, and treatment with IPL and FP performed 4 weeks apart. Downtime and adverse events were similar to those expected with individual treatments of IPL or FP alone. Intense pulsed light and PF appear to be synergistic when performed together in a single session, and the combination treatment is associated with a good safety profile and minimal downtime. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  19. Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer

    Science.gov (United States)

    Kim, Jin Wook; You, Seung Il; Kim, Nam Ho; Yoon, Ju-An; Cheah, Kok Wai; Zhu, Fu Rong; Kim, Woo Young

    2014-01-01

    In this study, we report our effort to realize high performance single emissive layer three color white phosphorescent organic light emitting diodes (PHOLEDs) through sequential Dexter energy transfer of blue, green and red dopants. The PHOLEDs had a structure of; ITO(1500 Å)/NPB(700 Å)/mCP:Firpic-x%:Ir(ppy)3-0.5%:Ir(piq)3-y%(300 Å)/TPBi(300 Å)/Liq(20 Å)/Al(1200 Å). The dopant concentrations of FIrpic, Ir(ppy)3 and Ir(piq)3 were adjusted and optimized to facilitate the preferred energy transfer processes attaining both the best luminous efficiency and CIE color coordinates. The presence of a deep trapping center for charge carriers in the emissive layer was confirmed by the observed red shift in electroluminescent spectra. White PHOLEDs, with phosphorescent dopant concentrations of FIrpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% in the mCP host of the single emissive layer, had a maximum luminescence of 37,810 cd/m2 at 11 V and a luminous efficiency of 48.10 cd/A at 5 V with CIE color coordinates of (0.35, 0.41). PMID:25388087

  20. Spatial Light Modulators and Applications: Summaries of Papers Presented at the Spatial Light Modulators and Applications Topical Meeting Held on March 15-17, 1993 in Palm Springs, California

    Science.gov (United States)

    1993-03-17

    the field of information processing and optical computing. 11. Smectic A and C* liquid cristal light valves (LCLV): A LCLV is an optical-to-optical...dichromatic gelatin hololenes ",Appl. Opt. 22, 3451 (1983). 2. S. K. Case and V. Gerbig; " Efficient and flexible laser scanners constructed from

  1. Streambank erosion rates and loads within a single watershed: Bridging the gap between temporal and spatial scales

    Science.gov (United States)

    The importance of streambank erosion to watershed-scale sediment export is being increasingly recognized. However few studies have quantified bank erosion and watershed sediment flux at the basin scale across temporal and spatial scales. In this study we evaluated the spatial distribution, extent, a...

  2. Spectral and spatial properties of polarized light reflections from the arms of squid (Loligo pealeii) and cuttlefish (Sepia officinalis L.).

    Science.gov (United States)

    Chiou, Tsyr-Huei; Mäthger, Lydia M; Hanlon, Roger T; Cronin, Thomas W

    2007-10-01

    On every arm of cuttlefish and squid there is a stripe of high-reflectance iridophores that reflects highly polarized light. Since cephalopods possess polarization vision, it has been hypothesized that these polarized stripes could serve an intraspecific communication function. We determined how polarization changes when these boneless arms move. By measuring the spectral and polarizing properties of the reflected light from samples at various angles of tilt and rotation, we found that the actual posture of the arm has little or no effect on partial polarization or the e-vector angle of the reflected light. However, when the illumination angle changed, the partial polarization of the reflected light also changed. The spectral reflections of the signals were also affected by the angle of illumination but not by the orientation of the sample. Electron microscope samples showed that these stripes are composed of several groups of multilayer platelets within the iridophores. The surface normal to each group is oriented at a different angle, which produces essentially constant reflection of polarized light over a range of viewing angles. These results demonstrate that cuttlefish and squid could send out reliable polarization signals to a receiver regardless of arm orientation.

  3. Color-filter-free spatial visible light communication using RGB-LED and mobile-phone camera.

    Science.gov (United States)

    Chen, Shih-Hao; Chow, Chi-Wai

    2014-12-15

    A novel color-filter-free visible-light communication (VLC) system using red-green-blue (RGB) light emitting diode (LED) and mobile-phone camera is proposed and demonstrated for the first time. A feature matching method, which is based on the scale-invariant feature transform (SIFT) algorithm for the received grayscale image is used instead of the chromatic information decoding method. The proposed method is simple and saves the computation complexity. The signal processing is based on the grayscale image computation; hence neither color-filter nor chromatic channel information is required. A proof-of-concept experiment is performed and high performance channel recognition is achieved.

  4. Efficient generation of 3.5W laser light at 515nm by frequency doubling a single-frequency high power DBR tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    More than 3.5 W of green light at 515 nm is generated by frequency doubling a single-frequency high power DBR tapered diode laser. The frequency doubling is performed in a cascade of PPMgLN and PPMgSLT crystals in order to reach high power and avoid thermal effects present in PPMgLN at high power....... The green light is diffraction limited (M2

  5. A single haplotype hyposensitive to light and requiring strong vernalization dominates Arabidopsis thaliana populations in Patagonia, Argentina.

    Science.gov (United States)

    Kasulin, Luciana; Rowan, Beth A; León, Rolando J C; Schuenemann, Verena J; Weigel, Detlef; Botto, Javier F

    2017-07-01

    The growing collection of sequenced or genotyped Arabidopsis thaliana accessions includes mostly individuals from the native Eurasian and N. African range and introduced North American populations. Here, we describe the genetic and phenotypic diversity, along with habitats and life history, of A. thaliana plants collected at the southernmost end of its worldwide distribution. Seed samples were harvested from plants growing in four sites within a ~3500-km 2 -area in Patagonia, Argentina, and represent the first germplasm to be collected in South America for this species. Whole-genome resequencing revealed that plants from the four sites and a Patagonia herbarium specimen collected in 1967 formed a single haplogroup (Pat), indicating that the phenotypic variation observed in the field reflected plastic responses to the environment. admixture and principal components analyses suggest that the ancestor of the Pat haplogroup either came from Italy or the Balkan/Caucasus regions of Eurasia. In the laboratory, plants from the Pat haplogroup were hyposensitive to continuous red (Rc) and shade light, with corresponding changes in the expression of phytochrome signalling genes. Pat had higher PIF3 and PIF5 and lower HY5 expression under Rc light; and lower expression of PIL1, ATHB2 and HFR1 under shade compared to Col-0. In addition, Pat plants had a strong vernalization requirement associated with high levels of FLC expression. We conclude that including Pat in studies of natural variation and in comparison with other introduced populations will provide additional information for association studies and allow for a more detailed assessment of the demographic events following colonization. © 2017 John Wiley & Sons Ltd.

  6. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model

    NARCIS (Netherlands)

    Sarlikioti, V.; Visser, de P.H.B.; Marcelis, L.F.M.

    2011-01-01

    Background and Aims - At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy

  7. Light-induced spatial separation of charges toward different crystal facets of square-like WO3.

    Science.gov (United States)

    Gong, Huihua; Ma, Ruirui; Mao, Fang; Liu, Kewei; Cao, Hongmei; Yan, Hongjian

    2016-09-29

    Light-induced preferential migration of electrons and holes to the minor (200) and (020) facets and the dominant (002) facets of square-like WO 3 , respectively, resulted in the square-like WO 3 nanoplates with Pt loaded mainly on dominant (002) facets shows higher photocatalytic activity than that Pt loaded on the minor facets.

  8. Reflection-type spatial amplitude modulation of visible light based on a sub-wavelength plasmonic absorber.

    Science.gov (United States)

    Hwang, Chi-Young; Yi, Yoonsik; Choi, Choon-Gi

    2016-03-01

    We present a method for reflection-type spatial amplitude modulation using a sub-wavelength plasmonic absorber structure that can operate in the visible region. We utilize a pixelated array of absorbing elements based on a two-dimensional sub-wavelength metal grating, and the reflectance of each pixel is controlled by simple structural modification. For the purpose of validation, numerical simulations were performed on an amplitude modulation hologram fabricated using our method.

  9. CENTRAL AND EASTERN EUROPE IN THE LIGHT OF THE SPATIAL DISTRIBUTION OF LUXURY STORES – SOME PROBLEMS

    OpenAIRE

    Środa-Murawska, Stefania; Szymańska, Daniela

    2013-01-01

    This study analyses the characteristics and structure of luxury goods stores in Central and Eastern Europe (CEE). Studies dealing with the spatial distribution of services created for the super-rich people are relatively few. The authors of this article show luxury goods stores in CEE countries with respect to their locations (urban/rural), location factors, numbers, structure, and the differences between countries and regions. They also consider whether Central and Eastern Europe has space f...

  10. A depth-encoding PET detector that uses light sharing and single-ended readout with silicon photomultipliers.

    Science.gov (United States)

    Kuang, Zhonghua; Yang, Qian; Wang, Xiaohui; Fu, Xin; Ren, Ning; Sang, Ziru; Wu, San; Zheng, Yunfei; Zhang, Xianming; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-13

    Detectors with depth-encoding capability and good timing resolution are required to develop high-performance whole-body or total-body PET scanners. In this work, depth-encoding PET detectors that use light sharing between two discrete crystals and single-ended readout with silicon photomultipliers (SiPMs) were manufactured and evaluated. The detectors consisted of two unpolished 3  ×  3  ×  20 mm 3 LYSO crystals with different coupling materials between them and were read out by Hamamatsu 3  ×  3 mm 2 SiPMs with one-to-one coupling. The ratio of the energy of one SiPM to the total energy of two SiPMs was used to measure the depth of interaction (DOI). Detectors with different coupling materials in-between the crystals were measured in the singles mode in an effort to obtain detectors that can provide good DOI resolution. The DOI resolution and energy resolution of three types of detector were measured and the timing resolution was measured for the detector with the best DOI and energy resolution. The optimum detector, with 5 mm optical glue, a 9 mm triangular ESR and a 6 mm rectangular ESR in-between the unpolished crystals, provides a DOI resolution of 2.65 mm, an energy resolution of 10.0% and a timing resolution of 427 ps for events of E  >  400 keV. The detectors simultaneously provide good DOI and timing resolution, and show great promise for the development of high-performance whole-body and total-body PET scanners.

  11. A depth-encoding PET detector that uses light sharing and single-ended readout with silicon photomultipliers

    Science.gov (United States)

    Kuang, Zhonghua; Yang, Qian; Wang, Xiaohui; Fu, Xin; Ren, Ning; Sang, Ziru; Wu, San; Zheng, Yunfei; Zhang, Xianming; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-01

    Detectors with depth-encoding capability and good timing resolution are required to develop high-performance whole-body or total-body PET scanners. In this work, depth-encoding PET detectors that use light sharing between two discrete crystals and single-ended readout with silicon photomultipliers (SiPMs) were manufactured and evaluated. The detectors consisted of two unpolished 3  ×  3  ×  20 mm3 LYSO crystals with different coupling materials between them and were read out by Hamamatsu 3  ×  3 mm2 SiPMs with one-to-one coupling. The ratio of the energy of one SiPM to the total energy of two SiPMs was used to measure the depth of interaction (DOI). Detectors with different coupling materials in-between the crystals were measured in the singles mode in an effort to obtain detectors that can provide good DOI resolution. The DOI resolution and energy resolution of three types of detector were measured and the timing resolution was measured for the detector with the best DOI and energy resolution. The optimum detector, with 5 mm optical glue, a 9 mm triangular ESR and a 6 mm rectangular ESR in-between the unpolished crystals, provides a DOI resolution of 2.65 mm, an energy resolution of 10.0% and a timing resolution of 427 ps for events of E  >  400 keV. The detectors simultaneously provide good DOI and timing resolution, and show great promise for the development of high-performance whole-body and total-body PET scanners.

  12. Electrical manipulation of the light emission of single CdSe/CdS nanorods; Elektrische Manipulation der Lichtemission von einzelnen CdSe/CdS Nanostaebchen

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.

    2005-09-14

    In the center of the present thesis lies the study and manipulation of the light emission of novel rod-shaped cadmium-selenide/cadmium-sulfide (CdSe/CdS) nanocrystals. These nanocrystals consist of a spherical CdSe nucleus, on which a CdS nanorod is grown monocrystallinely. By this grow spatially asymmetric semiconductor nanorods with an aspect ratio between 1.6 and 4.0. By the measurement of the radiation rate in this thesis it could be shown that the electron is delocalized over the whole nanorod, while the hole is localized in the CdSe nucleus. Therefore by the length of the cadmium-sulfide rod the wave-function overlap can be directly manipulated. The wave functions and by this the emission energies can be beside the geometry especially also controlled by external fields. Because the magnitude of the so-called ''Stark effect in quantum-bounded structures'' increases with the spatial extension of the nanostructure, in the nanorods an in comparison with spherical nanocrystals distinctly increased field effect could be observed. Experiments on single CdSe/CdS nanorods exhibit however not only a shift of the emission energy by the 50-fold of the line width, but simultaneously a field-induced decreasement of the emission intensity by one order of magnitude. The experimental results can be excellently compared with a theoretical model. For this the effective-mass model was supplemented by the Coulomb interaction and extended by a finite-element method for asymmetric geometries. By this it is possible to predict both the radiation rate, the Stark shift of the emission energy, and the intensity modulation by electric fields qualitatively and quantitatively and to describe the Stark effect in colloidal nanocrystal by a quantum-mechanical model. The emission characteristics is not only influenced by external fields, but also by fluctuations of local fields, which arise by diffunding surface charges. These local field changes induce also a Stark shift

  13. On edge-aware path-based color spatial sampling for Retinex: from Termite Retinex to Light Energy-driven Termite Retinex

    Science.gov (United States)

    Simone, Gabriele; Cordone, Roberto; Serapioni, Raul Paolo; Lecca, Michela

    2017-05-01

    Retinex theory estimates the human color sensation at any observed point by correcting its color based on the spatial arrangement of the colors in proximate regions. We revise two recent path-based, edge-aware Retinex implementations: Termite Retinex (TR) and Energy-driven Termite Retinex (ETR). As the original Retinex implementation, TR and ETR scan the neighborhood of any image pixel by paths and rescale their chromatic intensities by intensity levels computed by reworking the colors of the pixels on the paths. Our interest in TR and ETR is due to their unique, content-based scanning scheme, which uses the image edges to define the paths and exploits a swarm intelligence model for guiding the spatial exploration of the image. The exploration scheme of ETR has been showed to be particularly effective: its paths are local minima of an energy functional, designed to favor the sampling of image pixels highly relevant to color sensation. Nevertheless, since its computational complexity makes ETR poorly practicable, here we present a light version of it, named Light Energy-driven TR, and obtained from ETR by implementing a modified, optimized minimization procedure and by exploiting parallel computing.

  14. The probe rules in single particle tracking

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    Single particle tracking (SPT) enables light microscopy at a sub-diffraction limited spatial resolution by a combination of imaging at low molecular labeling densities and computational image processing. SPT and related single molecule imaging techniques have found a rapidly expanded use within...

  15. Spatial Evolution of a Strong Field of Few-cycle Light Beam in Dielectric Media with Induced Plasma Nonlinearity

    International Nuclear Information System (INIS)

    Stumpf, S A; Korolev, A A; Kozlov, S A

    2013-01-01

    The paper reports results of computer simulation of strong light beam propagation in dielectric media in case of plasma generation. We investigate an extra-broadening of radiation spectrum to a 'violet' wing of visible range. We show that the resulting pulse spectrum is represented by sequence of well-separated maximums, broadening as propagation distance increases. Experimental data are compared with simulation results, showing a good mutual correspondence of spectral representations

  16. Structural, mechanical and light yield characterisation of heat treated LYSO:Ce single crystals for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Mengucci, P., E-mail: p.mengucci@univpm.it [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); André, G. [Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif sur Yvette cedex (France); Auffray, E. [Department PH-CMX CERN, Route de Meyrin, 1211 Geneva 23 (Switzerland); Barucca, G. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Cecchi, C. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, 06123 Perugia (Italy); Chipaux, R. [CEA DSM/IRFU/SEDI, CE-Saclay, 91191 Gif sur Yvette cedex (France); Cousson, A. [Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif sur Yvette cedex (France); Davì, F. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Di Vara, N. [Department PH-CMX CERN, Route de Meyrin, 1211 Geneva 23 (Switzerland); Rinaldi, D.; Santecchia, E. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2015-06-11

    Five single crystals of cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) grown by the Czochralski method were submitted to structural characterisation by X-ray (XRD) and neutron (ND) diffraction, scanning (SEM) and transmission (TEM) electron microscopy and energy dispersive microanalysis (EDS). The Ultimate Tensile Strength (UTS), the Young Modulus (YM) and the Light Yield (LY) of the samples were also measured in order to correlate the mechanical and the optical behaviour of the crystals with the characteristics of their microstructure. Two of the samples analysed were also heat treated at 300 °C for 10 h to evidence possible variations induced by the temperature in the optical and mechanical response of the crystals. Results showed that the mean compositional variations evidenced by the structural analyses do not affect the mechanical and optical behaviour of the samples. On the contrary, the thermal treatment could induce the formation of coherent spherical particles (size 10 to 15 nm), not uniformly distributed inside the sample, that strongly reduce the UTS and YM values, but it does not affect the optical response of the crystal. This latter result was attributed to the low value of the heating temperature (300 °C) that is not sufficiently high to induce annealing of the oxygen vacancies traps that are responsible of the deterioration of the scintillation properties of the LYSO:Ce crystals. This study was carried out in the framework of the Crystal Clear Collaboration (CCC)

  17. Development and characterization of light-emitting diodes (LEDs) based on ruthenium complex single layer for transparent displays

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.; Fonseca, F.; Andrade, A.M. [Laboratorio de Microelectronica, Departamento de Engenharia de Sistemas Electronicos, Escola Politecnica da Universidade de Sao Paulo (Brazil); Patrocinio, A.O.T.; Mizoguchi, S.K.; Murakami Iha, N.Y. [Laboratorio de Fotoquimica Inorganica e Conversao de Energia, Instituto de Quimica da Universidade de Sao Paulo (Brazil); Peres, M.; Monteiro, T.; Pereira, L. [Departamento de Fisica e I3N, Universidade de Aveiro (Portugal)

    2008-08-15

    In this work, two ruthenium complexes,[Ru(bpy){sub 3}](PF{sub 6}){sub 2} and[Ru(ph2phen){sub 3}](PF{sub 6}){sub 2} in poly(methylmethacrylate) matrix were employed to build single-layer light-emitting electrochemical cells by spin coating on indium tin oxide substrate. In both cases the electroluminescence spectra exhibit a relatively broad band with maxima near to 625 nm and CIE (x,y) color coordinates of (0.64,0.36), which are comparable with the photoluminescence data in the same medium. The best result was obtained with the[Ru(bpy){sub 3}](PF{sub 6}){sub 2} device where the optical output power approaches 10{mu}W at the band maximum with a wall-plug efficiency higher than 0.03%. The lowest driving voltage is about 4 V for an electrical current of 20 mA. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Use and validation of mirrorless digital single light reflex camera for recording of vitreoretinal surgeries in high definition

    Directory of Open Access Journals (Sweden)

    Sumeet Khanduja

    2018-01-01

    Full Text Available Purpose: The purpose of this study is to describe the use of commercial digital single light reflex (DSLR for vitreoretinal surgery recording and compare it to standard 3-chip charged coupling device (CCD camera. Methods: Simultaneous recording was done using Sony A7s2 camera and Sony high-definition 3-chip camera attached to each side of the microscope. The videos recorded from both the camera systems were edited and sequences of similar time frames were selected. Three sequences that selected for evaluation were (a anterior segment surgery, (b surgery under direct viewing system, and (c surgery under indirect wide-angle viewing system. The videos of each sequence were evaluated and rated on a scale of 0-10 for color, contrast, and overall quality Results: Most results were rated either 8/10 or 9/10 for both the cameras. A noninferiority analysis by comparing mean scores of DSLR camera versus CCD camera was performed and P values were obtained. The mean scores of the two cameras were comparable for each other on all parameters assessed in the different videos except of color and contrast in posterior pole view and color on wide-angle view, which were rated significantly higher (better in DSLR camera. Conclusion: Commercial DSLRs are an affordable low-cost alternative for vitreoretinal surgery recording and may be used for documentation and teaching.

  19. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2010-05-01

    Full Text Available The presence of clear coatings on atmospheric black carbon (BC particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate that the enhancement of light absorption (EAbs by atmospheric black carbon (BC when it is coated in mildly absorbing material (CBrown is reduced relative to the enhancement induced by non-absorbing coatings (CClear. This reduction, sensitive to both the CBrown coating thickness and imaginary refractive index (RI, can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of CClear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with CBrown is shown to be important to the calculated single scatter albedo only when models treat BC as large spherical cores (>50 nm. For smaller BC cores (or fractal agglomerates consideration of the BC and CBrown as an external mixture leads to relatively small errors in the particle single scatter albedo of <0.03. It has often been assumed that observation of an absorption Angström exponent (AAE>1 indicates absorption by a non-BC aerosol. Here, it is shown that BC cores coated in CClear can reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to CBrown within ambient particles. However, an AAE<1.6 does not exclude the possibility of CBrown; rather CBrown cannot be confidently assigned unless AAE>1.6. Comparison of these model

  20. Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer.

    Science.gov (United States)

    Tewolde, Fasil T; Lu, Na; Shiina, Kouta; Maruo, Toru; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2016-01-01

    Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 μmol m(-2) s(-1) measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also

  1. Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer

    Science.gov (United States)

    Tewolde, Fasil T.; Lu, Na; Shiina, Kouta; Maruo, Toru; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2016-01-01

    Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the canopy are low and day length is shorter than in summer. Therefore, providing supplemental lighting to the lower canopy can increase year-round productivity. However, supplemental lighting can be expensive. In some places, the cost of electricity is lower at night, but the effect of using supplemental light at night has not yet been examined. In this study, we examined the effects of supplemental LED inter-lighting (LED inter-lighting hereafter) during the daytime or nighttime on photosynthesis, growth, and yield of single-truss tomato plants both in winter and summer. We used LED inter-lighting modules with combined red and blue light to illuminate lower leaves right after the first anthesis. The PPFD of this light was 165 μmol m-2 s-1 measured at 10 cm from the LED module. LED inter-lighting was provided from 4:00 am to 4:00 pm for the daytime treatments and from 10:00 pm to 10:00 am for the nighttime treatments. Plants exposed only to solar light were used as controls. Daytime LED inter-lighting increased the photosynthetic capacity of middle and lower canopy leaves, which significantly increased yield by 27% in winter; however, photosynthetic capacity and yield were not significantly increased during summer. Nighttime LED inter-lighting increased photosynthetic capacity in both winter and summer, and yield increased by 24% in winter and 12% in summer. In addition, nighttime LED inter-lighting in winter significantly increased the total soluble solids and ascorbic acid content of the tomato fruits, by 20 and 25%, respectively. Use of nighttime LED inter-lighting was also more

  2. Wetland Accretion Rates Along Coastal Louisiana: Spatial and Temporal Variability in Light of Hurricane Isaac’s Impacts

    Directory of Open Access Journals (Sweden)

    Thomas A. Bianchette

    2015-12-01

    Full Text Available The wetlands of the southern Louisiana coast are disappearing due to a host of environmental stressors. Thus, it is imperative to analyze the spatial and temporal variability of wetland vertical accretion rates. A key question in accretion concerns the role of landfalling hurricanes as a land-building agent, due to their propensity to deposit significant volumes of inorganic sediments. Since 1996, thousands of accretion measurements have been made at 390 sites across coastal Louisiana as a result of a regional monitoring network, called the Coastal Reference Monitoring System (CRMS. We utilized this dataset to analyze the spatial and temporal patterns of accretion by mapping rates during time periods before, around, and after the landfall of Hurricane Isaac (2012. This analysis is vital for quantifying the role of hurricanes as a land-building agent and for understanding the main mechanism causing heightened wetland accretion. The results show that accretion rates averaged about 2.89 cm/year from stations sampled before Isaac, 4.04 cm/year during the period encompassing Isaac, and 2.38 cm/year from sites established and sampled after Isaac. Accretion rates attributable to Isaac’s effects were therefore 40% and 70% greater than before and after the event, respectively, indicating the event’s importance toward coastal land-building. Accretion associated with Isaac was highest at sites located 70 kilometers from the storm track, particularly those near the Mississippi River and its adjacent distributaries and lakes. This spatial pattern of elevated accretion rates indicates that freshwater flooding from fluvial channels, rather than storm surge from the sea per se, is the main mechanism responsible for increased wetland accretion. This significance of riverine flooding has implications toward future coastal restoration policies and practices.

  3. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments.

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Efthimion, P; Pablant, N A; Lu, J; Beiersdorfer, P; Chen, H; Magee, E

    2014-11-01

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10,000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  4. Single-phased CaAl2Si2O8:Tm3+, Dy3+ white-light phosphors under ultraviolet excitation

    International Nuclear Information System (INIS)

    Yang, Penghui; Yu, Xue; Xu, Xuhui; Jiang, Tingming; Yu, Hongling; Zhou, Dacheng; Yang, Zhengwen; Song, Zhiguo; Qiu, Jianbei

    2013-01-01

    A novel white-light-emitting phosphor CaAl 2 Si 2 O 8 :Tm, Dy was synthesized in ambient atmosphere by solid-state reaction. The energy transfer from Tm 3+ to Dy 3+ ions via a dipole–quadrupole reaction was observed and investigated. Upon UV excitation, white light emission was achieved by integrating a blue emission band located at 455 nm and an orange one located at 574 nm attributed to Tm 3+ and Dy 3+ ions, respectively. In addition, the energy-transfer efficiency and critical distance were calculated. Results suggested that the phosphor might be promising as a single-phased white-light-emitting phosphor for UV white-light LED. - Graphical abstract: The results indicate the existence of energy transfer from Tm 3+ to Dy 3+ . By tuning the concentration of Dy 3+ , single-phased white light can be realized. - Highlights: ► Energy transfer from Tm 3+ to Dy 3+ was investigated. ► Color tunable from blue to white can be achieved. ► White light can be realized in CaAl 2 Si 2 O 8 :Tm 3+ , Dy 3+ phosphor

  5. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Jensen, Ole Bjarlin; Sumpf, Bernd

    2014-01-01

    frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re...... power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications...

  6. GABA-mediated spatial and temporal asymmetries that contribute to the directionally selective light responses of starburst amacrine cells in retina.

    Science.gov (United States)

    Dmitriev, Andrey V; Gavrikov, Konstantin E; Mangel, Stuart C

    2012-04-01

    Starburst amacrine cells (SACs) are an essential component of the mechanism that generates direction selectivity in the retina. SACs exhibit opposite polarity, directionally selective (DS) light responses, depolarizing to stimuli that move centrifugally away from the cell through the receptive field surround, but hyperpolarizing to stimuli that move centripetally towards the cell through the surround.Recent findings suggest that (1) the intracellular chloride concentration ([Cl(−)](i)) is high in SAC proximal, but low in SAC distal dendritic compartments, so that GABA depolarizes and hyperpolarizes the proximal and distal compartments, respectively, and (2) this [Cl(−)](i) gradient plays an essential role in generating SAC DS light responses. Employing a biophysically realistic, computational model of SACs, which incorporated experimental measurements of SAC electrical properties and GABA and glutamate responses, we further investigated whether and how a [Cl(−)](i) gradient along SAC dendrites produces their DS responses. Our computational analysis suggests that robust DS light responses would be generated in both the SAC soma and distal dendrites if (1) the Cl(−) equilibrium potential is more positive in the proximal dendrite and more negative in the distal dendrite than the resting membrane potential, so that GABA depolarizes and hyperpolarizes the proximal and distal compartments, respectively, and (2) the GABA-evoked increase in the Cl(−) conductance lasts longer than the glutamate-evoked increase in cation conductance. The combination of these two specific GABA-associated spatial and temporal asymmetries, in conjunction with symmetric glutamate excitation, may underlie the opposite polarity, DS light responses of SACs.

  7. WASP-36b: A NEW TRANSITING PLANET AROUND A METAL-POOR G-DWARF, AND AN INVESTIGATION INTO ANALYSES BASED ON A SINGLE TRANSIT LIGHT CURVE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A. M. S.; Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Smalley, B.; Southworth, J. [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom); Collier Cameron, A. [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, Fife, KY16 9SS (United Kingdom); Gillon, M.; Jehin, E. [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout, 17 Bat. B5C, Liege 1 (Belgium); Lendl, M.; Queloz, D.; Triaud, A. H. M. J.; Pepe, F.; Segransan, D.; Udry, S. [Observatoire de Geneve, Universite de Geneve, 51 Chemin des Maillettes, 1290 Sauverny (Switzerland); West, R. G. [Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Barros, S. C. C.; Pollacco, D. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University, University Road, Belfast, BT7 1NN (United Kingdom); Street, R. A., E-mail: amss@astro.keele.ac.uk [Las Cumbres Observatory, 6740 Cortona Drive Suite 102, Goleta, CA 93117 (United States)

    2012-04-15

    We report the discovery, from WASP and CORALIE, of a transiting exoplanet in a 1.54 day orbit. The host star, WASP-36, is a magnitude V = 12.7, metal-poor G2 dwarf (T{sub eff} = 5959 {+-} 134 K), with [Fe/H] =-0.26 {+-} 0.10. We determine the planet to have mass and radius, respectively, 2.30 {+-} 0.07 and 1.28 {+-} 0.03 times that of Jupiter. We have eight partial or complete transit light curves, from four different observatories, which allow us to investigate the potential effects on the fitted system parameters of using only a single light curve. We find that the solutions obtained by analyzing each of these light curves independently are consistent with our global fit to all the data, despite the apparent presence of correlated noise in at least two of the light curves.

  8. Direct measuring of single-cycle mid-IR light bullets path length in LiF by the laser coloration method

    Science.gov (United States)

    Chekalin, Sergey; Kompanets, Victor; Kuznetsov, Andrey; Dormidonov, Alexander; Kandidov, Valerii

    2017-10-01

    A colour-centre structure formed in a LiF crystal under filamentation of a femtosecond mid-IR laser pulse with a power slightly exceeding the critical power for self-focusing has been experimentally and theoretically investigated. A single-cycle light bullet was recorded for the first time by observation of strictly periodic oscillations for the density of the color centers induced in an isotropic LiF crystal under filamentation of a laser beam with a wavelength tuned in the range from 2600 to 3900 nm, which is due to the periodic change in the light field amplitude in the light bullet formed under filamentation under propagation in dispersive medium. The light bullet path length was not more than one millimeter.

  9. Direct measuring of single-cycle mid-IR light bullets path length in LiF by the laser coloration method

    Directory of Open Access Journals (Sweden)

    Chekalin Sergey

    2017-01-01

    Full Text Available A colour-centre structure formed in a LiF crystal under filamentation of a femtosecond mid-IR laser pulse with a power slightly exceeding the critical power for self-focusing has been experimentally and theoretically investigated. A single-cycle light bullet was recorded for the first time by observation of strictly periodic oscillations for the density of the color centers induced in an isotropic LiF crystal under filamentation of a laser beam with a wavelength tuned in the range from 2600 to 3900 nm, which is due to the periodic change in the light field amplitude in the light bullet formed under filamentation under propagation in dispersive medium. The light bullet path length was not more than one millimeter.

  10. Intrinsic light yield and light loss coefficient of Bi.sub.4./sub.Ge.sub.3./sub.O.sub.12./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Yawai, N.; Chewpraditkul, W.; Wanarak, C.; Nikl, Martin; Ratanatongchai, W.

    2014-01-01

    Roč. 36, č. 12 (2014), s. 2030-2033 ISSN 0925- 3467 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : Bi 4 Ge 3 O 12 * energy resolution * light yield * photofraction * mass attenuation coefficient Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.981, year: 2014

  11. Heterogeneous Single-Atom Catalyst for Visible-Light-Driven High-Turnover CO2 Reduction: The Role of Electron Transfer.

    Science.gov (United States)

    Gao, Chao; Chen, Shuangming; Wang, Ying; Wang, Jiawen; Zheng, Xusheng; Zhu, Junfa; Song, Li; Zhang, Wenkai; Xiong, Yujie

    2018-03-01

    Visible-light-driven conversion of CO 2 into chemical fuels is an intriguing approach to address the energy and environmental challenges. In principle, light harvesting and catalytic reactions can be both optimized by combining the merits of homogeneous and heterogeneous photocatalysts; however, the efficiency of charge transfer between light absorbers and catalytic sites is often too low to limit the overall photocatalytic performance. In this communication, it is reported that the single-atom Co sites coordinated on the partially oxidized graphene nanosheets can serve as a highly active and durable heterogeneous catalyst for CO 2 conversion, wherein the graphene bridges homogeneous light absorbers with single-atom catalytic sites for the efficient transfer of photoexcited electrons. As a result, the turnover number for CO production reaches a high value of 678 with an unprecedented turnover frequency of 3.77 min -1 , superior to those obtained with the state-of-the-art heterogeneous photocatalysts. This work provides fresh insights into the design of catalytic sites toward photocatalytic CO 2 conversion from the angle of single-atom catalysis and highlights the role of charge kinetics in bridging the gap between heterogeneous and homogeneous photocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The spectral and spatial distribution of light pollution in the waters of the northern Gulf of Aqaba (Eilat).

    Science.gov (United States)

    Tamir, Raz; Lerner, Amit; Haspel, Carynelisa; Dubinsky, Zvy; Iluz, David

    2017-02-10

    The urbanization of the shores of the Gulf of Aqaba has exposed the marine environment there, including unique fringing coral reefs, to strong anthropogenic light sources. Here we present the first in situ measurements of artificial nighttime light under water in such an ecosystem, with irradiance measured in 12 wavelength bands, at 19 measurement stations spread over 44 square km, and at 30 depths down to 30-m depth. At 1-m depth, we find downwelling irradiance values that vary from 4.6 × 10 -4  μW cm -2  nm -1 500 m from the city to 1 × 10 -6  μW cm -2  nm -1 in the center of the gulf (9.5 km from the city) in the yellow channel (589-nm wavelength) and from 1.3 × 10 -4  μW cm -2  nm -1 to 4.3 × 10 -5  μW cm -2  nm -1 in the blue channel (443-nm wavelength). Down to 10-m depth, we find downwelling irradiance values that vary from 1 × 10 -6  μW cm -2  nm -1 to 4.6 × 10 -4  μW cm -2  nm -1 in the yellow channel and from 2.6 × 10 -5  μW cm -2  nm -1 to 1.3 × 10 -4  μW cm -2  nm -1 in the blue channel, and we even detected a signal at 30-m depth. This irradiance could influence such biological processes as the tuning of circadian clocks, the synchronization of coral spawning, recruitment and competition, vertical migration of demersal plankton, feeding patterns, and prey/predator visual interactions.

  13. Estimates of recharge in two arid basin aquifers: a model of spatially variable net infiltration and its implications (Red Light Draw and Eagle Flats, Texas, USA)

    Science.gov (United States)

    Robertson, Wendy Marie; Sharp, John M.

    2013-12-01

    Methods of estimating recharge in arid basin aquifers (such as the 1 % rule, Maxey-Eakin method, storm-runoff infiltration and others) overlook the potential contribution of direct recharge on the basin floors. In the Trans-Pecos region of west Texas, USA, this has resulted in potential recharge and solute flux to basin aquifers being ignored. Observed trends in groundwater nitrate (NO3 -) concentrations and the presence of young (floors. A spatially variable net infiltration model (INFIL 3.0.1) was used to estimate the volume and spatial distribution of potential recharge to two basins: Red Light Draw and Eagle Flats. The INFIL model provides insight into the mechanisms by which recharge and solute flux occurs in arid basin systems. This method demonstrated that recharge is widespread; it is not limited to the mountainous areas and mountain-front recharge mechanisms, and up to 15 % of total potential recharge in these basins occurs across widespread areas of the basin floors. Models such as this should improve scientific understanding and sustainable management of arid basin aquifers in Texas and elsewhere.

  14. Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review

    NARCIS (Netherlands)

    Muñoz, O.; Hovenier, J.W.

    2011-01-01

    In this paper we present an overview of light scattering experiments devoted to measure one or more elements of the scattering matrix as functions of the scattering angle of ensembles of randomly oriented small irregular particles in air. A summary of the most important findings in light scattering

  15. Improvement of laser dicing performance II: dicing rate enhancement by multi beams and simultaneous aberration correction with phase-only spatial light modulator

    Science.gov (United States)

    Takiguchi, Yu; Matsumoto, Naoya; Oyaizu, Masaki; Okuma, Jyunji; Nakano, Makoto; Sakamoto, Takeshi; Itoh, Haruyasu; Inoue, Takashi

    2013-03-01

    "Stealth Dicing" laser processing is a dry and debris-free semiconductor wafer dicing method achieved by generating thermal micro-cracks inside a wafer with a tightly focused laser beam. This method has two practical issues: (1) the dicing speed is limited by the repetition rate of the pulsed laser, and (2) integrated circuits on the opposite side of the wafer from the laser light are potentially damaged by excessive laser intensity required to compensate for insufficient beam convergence. The insufficient beam convergence is a result of spherical aberration due to a refractive index mismatch between air and the wafer. These problems can be resolved by incorporating a phase-only spatial light modulator (SLM) into the laser dicing system. The SLM produces two types of wavefront configurations simultaneously for two different functions. One is for multi-beam generation with a phase grating pattern. This improves the dicing speed by a factor equal to the number of diffracted beams. The other is for aberration correction of the multiple beams using a pre-distorted wavefront pattern. By correcting aberrations, the focused multiple beams inside the wafer will become sufficiently convergent to avoid undesirable laser damage. We demonstrated these improvements by dicing sapphire wafers with a pulsed laser and a high-numerical-aperture objective lens.

  16. Development of Guidelines for Use of Proton Single-Event Test Data to Bound Single-Event Effect Susceptibility Due to Light Ions

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional methods for Single-Event Effects (SEE) Hardness Assurance have proven difficult to adapt to Explorer, Cubesat and other risk tolerant platforms with...

  17. A single-spatial-mode semiconductor laser based on InAs/InGaAs quantum dots with a diffraction filter of optical modes

    International Nuclear Information System (INIS)

    Gordeev, N. Yu.; Novikov, I. I.; Kuznetsov, A. M.; Shernyakov, Yu. M.; Maximov, M. V.; Zhukov, A. E.; Chunareva, A. V.; Payusov, A. S.; Livshits, D. A.; Kovsh, A. R.

    2010-01-01

    The concept of a diffraction optical filter is used for prevention of high-order mode oscillation in a design of stripe laser diodes with an active region based on InAs/InGaAs quantum dots emitting in the 1.3-μm wavelength range grown on GaAs substrates. Incorporation of such a filter made it possible to increase the width of the stripe and obtain an output power as high as 700 mW with retention of a single-spatial-mode character of lasing.

  18. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications

    Science.gov (United States)

    Zhu, G.; Whitehead, D.; Perrie, W.; Allegre, O. J.; Olle, V.; Li, Q.; Tang, Y.; Dawson, K.; Jin, Y.; Edwardson, S. P.; Li, L.; Dearden, G.

    2018-03-01

    Spatial light modulators (SLMs) addressed with computer generated holograms (CGHs) can create structured light fields on demand when an incident laser beam is diffracted by a phase CGH. The power handling limitations of these devices based on a liquid crystal layer has always been of some concern. With careful engineering of chip thermal management, we report the detailed optical phase and temperature response of a liquid cooled SLM exposed to picosecond laser powers up to 〈P〉  =  220 W at 1064 nm. This information is critical for determining device performance at high laser powers. SLM chip temperature rose linearly with incident laser exposure, increasing by only 5 °C at 〈P〉  =  220 W incident power, measured with a thermal imaging camera. Thermal response time with continuous exposure was 1-2 s. The optical phase response with incident power approaches 2π radians with average power up to 〈P〉  =  130 W, hence the operational limit, while above this power, liquid crystal thickness variations limit phase response to just over π radians. Modelling of the thermal and phase response with exposure is also presented, supporting experimental observations well. These remarkable performance characteristics show that liquid crystal based SLM technology is highly robust when efficiently cooled. High speed, multi-beam plasmonic surface micro-structuring at a rate R  =  8 cm2 s-1 is achieved on polished metal surfaces at 〈P〉  =  25 W exposure while diffractive, multi-beam surface ablation with average power 〈P〉  =100 W on stainless steel is demonstrated with ablation rate of ~4 mm3 min-1. However, above 130 W, first order diffraction efficiency drops significantly in accord with the observed operational limit. Continuous exposure for a period of 45 min at a laser power of 〈P〉  =  160 W did not result in any detectable drop in diffraction efficiency, confirmed afterwards by the efficient

  19. A rehabilitation program based on music practice for patients with unilateral spatial neglect: a single-case study.

    Science.gov (United States)

    Guilbert, Alma; Clément, Sylvain; Moroni, Christine

    2017-02-01

    Two major limitations of unilateral spatial neglect (USN) rehabilitation methods are actually reported: a lack of long-term efficiency and a lack of generalization to daily life. The aim of our case study was to underline how a multisensory method-music practice-could avoid these limitations. Mrs BV suffered from a chronic severe USN. She had rehabilitation sessions of music practice over 8 weeks. An improvement of her USN was found on paper-pencil tests but also in daily activities. Benefits subsisted 4 months after rehabilitation. Music practice seemed to avoid the major limitations of USN rehabilitations and could represent a promising tool.

  20. Better to light a candle than curse the darkness: illuminating spatial localization and temporal dynamics of rapid microbial growth in the rhizosphere

    Directory of Open Access Journals (Sweden)

    Patrick M Herron

    2013-09-01

    Full Text Available The rhizosphere is a hotbed of microbial activity in ecosystems, fueled by carbon compounds from plant roots. Basic questions about the location and dynamics of plant-spurred microbial growth in the rhizosphere are difficult to answer with standard, destructive soil assays mixing a multitude of microbe-scale microenvironments in a single, often sieved, sample. Soil microbial biosensors designed with the luxCDABE reporter genes fused to a promoter of interest enable continuous imaging of the microbial perception of (and response to environmental conditions in soil. We used the common soil bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constituitive promoter nptII and luxCDABE (coding for light-emitting proteins from Vibrio fischeri. Experiments in liquid media demonstrated that high light production by KT2440/pZKH2 was associated with rapid microbial growth supported by high carbon availability. We applied the biosensors in microcosms filled with non-sterile soil in which corn (Zea mays L., black poplar (Populus nigra L. or tomato (Solanum lycopersicum L. was growing. We detected minimal light production from microbiosensors in the bulk soil, but biosensors reported continuously from around roots for as long as six days. For corn, peaks of luminescence were detected 1-4 and 20-35 mm along the root axis behind growing root tips, with the location of maximum light production moving farther back from the tip as root growth rate increased. For poplar, luminescence around mature roots increased and decreased on a coordinated diel rhythm, but was not bright near root tips. For tomato, luminescence was dynamic, but did not exhibit a diel rhythm, appearing in acropetal waves along roots. KT2440/pZKH2 revealed that root tips are not always the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots.

  1. A randomized, placebo-controlled, single-blinded, split-faced clinical trial evaluating the efficacy and safety of KLOX-001 gel formulation with KLOX light-emitting diode light on facial rejuvenation

    Directory of Open Access Journals (Sweden)

    Nikolis A

    2016-05-01

    Full Text Available Andreas Nikolis,1 Steven Bernstein,2 Brian Kinney,3 Nicolo Scuderi,4 Shipra Rastogi,5 John S Sampalis6 1Victoria Park, Plastic Surgery Section, Westmount, QC, Canada; 2Dermatology Department, University of Montreal Health Centre, Montreal, QC, Canada; 3Department of Plastic Surgery, USC School of Medicine, Beverley Hills, CA, USA; 4Department of Plastic and Reconstructive Surgery, La Sapienza, Rome, Italy; 5KLOX Technologies, Laval, 6JSS Medical Research, Montreal, QC, Canada Purpose: Many treatment modalities exist to counteract the effects of cutaneous aging. Ablative methods have been the mainstay for nonsurgical facial rejuvenation. In recent years, nonablative techniques have been developed with the aim of achieving facial rejuvenation without epidermal damage. Light-emitting diode (LED photorejuvenation is a novel nonablative technique that induces collagen synthesis through biophotomodulatory pathways. Materials and methods: A single-center, randomized, single-blinded, placebo-controlled, split-faced clinical trial was designed. Thirty-two patients were enrolled for a 12-week study. Patients were randomized into one of four groups: Group A, treatment with KLOX-001 gel formulation and white LED (placebo light; Group B, treatment with a placebo/base gel (no active chromophore formulation and KLOX LED light; Group C, treatment with KLOX-001 gel formulation and KLOX LED light; and Group D, treatment with the standard skin rejuvenating treatment (0.1% retinol-based cream. Patients received treatment at weeks 0, 1, 2, and 3, and returned to the clinic at weeks 4, 8, and 12 for clinical assessments performed by an independent, blinded committee of physicians using subjective clinician assessment scales. Tolerability, adverse outcomes, and patient satisfaction were also assessed. Results: Analysis demonstrated that the KLOX LED light with KLOX placebo/base gel and the KLOX LED light + KLOX-001 gel formulation groups were superior to standard of

  2. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color.

    Science.gov (United States)

    Canton, Jillian L; Smith, Mark R; Choi, Ho-Sun; Eastman, Charmane I

    2009-07-17

    Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Subjects (blue-eyed n = 7; brown eyed n = 6) maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO). Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux). An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline). A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment.Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. The average phase delay of the DLMO was -1.3 +/- 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. A single 2-hour bright light pulse combined with a moderate delay of the sleep/dark episode

  3. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color

    Directory of Open Access Journals (Sweden)

    Choi Ho-Sun

    2009-07-01

    Full Text Available Abstract Background Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Methods Subjects (blue-eyed n = 7; brown eyed n = 6 maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO. Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux. An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline. A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment. Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. Results The average phase delay of the DLMO was -1.3 ± 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. Conclusion A single 2-hour bright light

  4. A 3 W High-Voltage Single-Chip Green Light-Emitting Diode with Multiple-Cells Network

    Directory of Open Access Journals (Sweden)

    W. Wang

    2015-01-01

    Full Text Available A parallel and series network structure was introduced into the design of the high-voltage single-chip (HV-SC light-emitting diode to inhibit the effect of current crowding and to improve the yield. Using such a design, a 6.6×5 mm2 large area LED chip of 24 parallel stages was demonstrated with 3 W light output power (LOP at the current of 500 mA. The forward voltage was measured to be 83 V with the same current injection, corresponding to 3.5 V for a single stage. The LED chip’s average thermal resistance was identified to be 0.28 K/W by using infrared thermography analysis.

  5. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout.

    Science.gov (United States)

    Bläckberg, L; El Fakhri, G; Sabet, H

    2017-10-19

    A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to  >42%, and for rough interfaces  >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically

  6. Micro-X-ray fluorescence spectrometer with x-ray single bounce metallic capillary optics for light element analysis (Conference Presentation)

    Science.gov (United States)

    Mroczka, Robert; Żukociński, Grzegorz; Łopucki, Rafał

    2017-05-01

    In the last 20 years, , due to the rapid development of X-ray optics, micro X-ray fluorescence spectrometry (micro-XRF) has become a powerful tool to determine the spatial distribution of major, minor, and trace elements within a sample. Micro-X-ray fluorescence (micro-XRF) spectrometers for light element analysis (6 work was supported and co-funded by the European Union as part of the Operational Programme Development of Eastern Poland for 2007-2013, Priority I Innovative Economy, Measure I.3. Support for Innovations and The National Centre for Research and Development, Project no. TANGO1,267102/NCBR/2015

  7. Spatial filtering nearly eliminates the side-lobes in single- and multi-photon 4pi-type-C super-resolution fluorescence microscopy

    Science.gov (United States)

    Kavya, M.; Regmi, Raju; Mondal, Partha P.

    2013-09-01

    Super-resolution microscopy has tremendously progressed our understanding of cellular biophysics and biochemistry. Specifically, 4pi fluorescence microscopy technique stands out because of its axial super-resolution capability. All types of 4pi-microscopy techniques work well in conjugation with deconvolution techniques to get rid of artifacts due to side-lobes. In this regard, we propose a technique based on spatial filter in a 4pi-type-C confocal setup to get rid of these artifacts. Using a special spatial filter, we have reduced the depth-of-focus. Interference of two similar depth-of-focus beams in a 4π geometry result in substantial reduction of side-lobes. Studies show a reduction of side-lobes by 46% and 76% for single and two photon variant compared to 4pi - type - C confocal system. This is incredible considering the resolving capability of the existing 4pi - type - C confocal microscopy. Moreover, the main lobe is found to be 150 nm for the proposed spatial filtering technique as compared to 690 nm of the state-of-art confocal system. Reconstruction of experimentally obtained 2PE - 4pi data of green fluorescent protein (GFP)-tagged mitocondrial network shows near elimination of artifacts arising out of side-lobes. Proposed technique may find interesting application in fluorescence microscopy, nano-lithography, and cell biology.

  8. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats

    Science.gov (United States)

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-01-01

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals. PMID:26218751

  9. Spatial distribution of surface EMG on trapezius and lumbar muscles of violin and cello players in single note playing.

    Science.gov (United States)

    Afsharipour, Babak; Petracca, Francesco; Gasparini, Mauro; Merletti, Roberto

    2016-12-01

    Musicians activate their muscles in different patterns, depending on their posture, the instrument being played, and their experience level. Bipolar surface electrodes have been used in the past to monitor such activity, but this method is highly sensitive to the location of the electrode pair. In this work, the spatial distribution of surface EMG (sEMG) of the right trapezius and right and left erector spinae muscles were studied in 16 violin players and 11 cello players. Musicians played their instrument one string at a time in sitting position with/without backrest support. A 64 sEMG electrode (16×4) grid, 10mm inter-electrode distance (IED), was placed over the middle and lower trapezius (MT and LT) of the bowing arm. Two 16×2 electrode grids (IED=10mm) were placed on the left and right erector spinae muscles. Subjects played each of the four strings of the instrument either in large (1bow/s) or detaché tip/tail (8bows/s) bowing in two sessions (two days). In each of two days, measurements were repeated after half an hour of exercise to see the effect of exercise on the muscle activity and signal stability. A "muscle activity index" (MAI) was defined as the spatial average of the segmented active region of the RMS map. Spatial maps were automatically segmented using the watershed algorithm and thresholding. Results showed that, for violin players, sliding the bow upward from the tip toward the tail results in a higher MAI for the trapezius muscle than a downward bow. On the contrary, in cello players, higher MAI is produced in the tail to tip movement. For both instruments, an increasing MAI in the trapezius was observed as the string position became increasingly lateral, from string 1 (most medial) toward string 4 (most lateral). Half an hour of performance did not cause significant differences between the signal quality and the MAI values measured before and after the exercise. The MAI of the left and right erector spinae was smaller in the case of

  10. Airborne single particle mass spectrometers (SPLAT II & miniSPLAT) and new software for data visualization and analysis in a geo-spatial context.

    Science.gov (United States)

    Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus

    2015-02-01

    Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles-two fundamental properties that determine an aerosol's optical properties and ability to serve as cloud condensation or ice nuclei. Here we present our aircraft-compatible single particle mass spectrometers, SPLAT II and its new, miniaturized version, miniSPLAT that measure in-situ and in real-time the size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. Although miniSPLAT's size, weight, and power consumption are significantly smaller, its performance is on par with SPLAT II. Both instruments operate in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle compositions and their activity as cloud condensation nuclei.

  11. Tight control of light trapping in surface addressable photonic crystal membranes: application to spectrally and spatially selective optical devices (Conference Presentation)

    Science.gov (United States)

    Letartre, Xavier; Blanchard, Cédric; Grillet, Christian; Jamois, Cécile; Leclercq, Jean-Louis; Viktorovitch, Pierre

    2016-04-01

    Surface addressable Photonic Crystal Membranes (PCM) are 1D or 2D photonic crystals formed in a slab waveguides where Bloch modes located above the light line are exploited. These modes are responsible for resonances in the reflection spectrum whose bandwidth can be adjusted at will. These resonances result from the coupling between a guided mode of the membrane and a free-space mode through the pattern of the photonic crystal. If broadband, these structures represent an ideal mirror to form compact vertical microcavity with 3D confinement of photons and polarization selectivity. Among numerous devices, low threshold VCSELs with remarkable and tunable modal properties have been demonstrated. Narrow band PCMs (or high Q resonators) have also been extensively used for surface addressable optoelectronic devices where an active material is embedded into the membrane, leading to the demonstration of low threshold surface emitting lasers, nonlinear bistables, optical traps... In this presentation, we will describe the main physical rules which govern the lifetime of photons in these resonant modes. More specifically, it will be emphasized that the Q factor of the PCM is determined, to the first order, by the integral overlap between the electromagnetic field distributions of the guided and free space modes and of the dielectric periodic perturbation which is applied to the homogeneous membrane to get the photonic crystal. It turns out that the symmetries of these distributions are of prime importance for the strength of the resonance. It will be shown that, by molding in-plane or vertical symmetries of Bloch modes, spectrally and spatially selective light absorbers or emitters can be designed. First proof of concept devices will be also presented.

  12. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  13. Spatially multiplexed orbital-angular-momentum-encoded single photon and classical channels in a free-space optical communication link.

    Science.gov (United States)

    Ren, Yongxiong; Liu, Cong; Pang, Kai; Zhao, Jiapeng; Cao, Yinwen; Xie, Guodong; Li, Long; Liao, Peicheng; Zhao, Zhe; Tur, Moshe; Boyd, Robert W; Willner, Alan E

    2017-12-01

    We experimentally demonstrate spatial multiplexing of an orbital angular momentum (OAM)-encoded quantum channel and a classical Gaussian beam with a different wavelength and orthogonal polarization. Data rates as large as 100 MHz are achieved by encoding on two different OAM states by employing a combination of independently modulated laser diodes and helical phase holograms. The influence of OAM mode spacing, encoding bandwidth, and interference from the co-propagating Gaussian beam on registered photon count rates and quantum bit error rates is investigated. Our results show that the deleterious effects of intermodal crosstalk effects on system performance become less important for OAM mode spacing Δ≥2 (corresponding to a crosstalk value of less than -18.5  dB). The use of OAM domain can additionally offer at least 10.4 dB isolation besides that provided by wavelength and polarization, leading to a further suppression of interference from the classical channel.

  14. Phonon Confinement Induced Non-Concomitant Near-Infrared Emission along a Single ZnO Nanowire: Spatial Evolution Study of Phononic and Photonic Properties

    Directory of Open Access Journals (Sweden)

    Po-Hsun Shih

    2017-10-01

    Full Text Available The impact of mixed defects on ZnO phononic and photonic properties at the nanoscale is only now being investigated. Here we report an effective strategy to study the distribution of defects along the growth direction of a single ZnO nanowire (NW, performed qualitatively as well as quantitatively using energy dispersive spectroscopy (EDS, confocal Raman-, and photoluminescence (PL-mapping technique. A non-concomitant near-infrared (NIR emission of 1.53 ± 0.01 eV was observed near the bottom region of 2.05 ± 0.05 μm along a single ZnO NW and could be successfully explained by the radiative recombination of shallowly trapped electrons V_O^(** with deeply trapped holes at V_Zn^''. A linear chain model modified from a phonon confinement model was used to describe the growth of short-range correlations between the mean distance of defects and its evolution with spatial position along the axial growth direction by fitting the E2H mode. Our results are expected to provide new insights into improving the study of the photonic and photonic properties of a single nanowire.

  15. Further study on different dopings into PbWO.sub.4./sub. single crystals to increase the scintillation light yield

    Czech Academy of Sciences Publication Activity Database

    Kobayashi, M.; Usuki, Y.; Ishii, M.; Itoh, M.; Nikl, Martin

    2005-01-01

    Roč. 540, - (2005), s. 381-394 ISSN 0168-9002 R&D Projects: GA AV ČR(CZ) KSK1010104 Institutional research plan: CEZ:AV0Z10100521 Keywords : lead tungstate * scintillator * light yield * doping, PET Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.224, year: 2005

  16. Detecting and locating light atoms from high-resolution STEM images : The quest for a single optimal design

    NARCIS (Netherlands)

    Gonnissen, J; De Backer, A; den Dekker, A.J.; Sijbers, J.; Van Aert, S.

    2016-01-01

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of

  17. Light energy transmission and Vickers hardness ratio of bulk-fill resin based composites at different thicknesses cured by a dual-wave or a single-wave light curing unit.

    Science.gov (United States)

    Santini, Ario; Naaman, Reem Khalil; Aldossary, Mohammed Saeed

    2017-04-01

    To quantify light energy transmission through two bulk-fill resin-based composites and to measure the top to bottom surface Vickers hardness ratio (VHratio) of samples of various incremental thicknesses, using either a single-wave or dual-wave light curing unit (LCU). Tetric EvoCeram Bulk Fill (TECBF) and SonicFill (SF) were studied. Using MARC-RC, the irradiance delivered to the top surface of the samples 2, 3, 4 and 5 mm thick (n= 5 for each thickness) was adjusted to 800 mW/cm2 for 20 seconds (16 J/cm2) using either a single-wave, Bluephase or a dual-wave, Bluephase G2 LCUs. Light energy transmission through to the bottom surface of the specimens was measured at real time using MARC-RC. The Vickers hardness (VH) was determined using Vickers micro hardness tester and the VHratio was calculated. Data were analyzed using a general linear model in Minitab 16; α= 0.05. TECBF was more translucent than SF (Pcured with the dual-wave Bluephase G2). SF showed significantly higher VH ratio than TECBF at all different thickness levels (P 0.05). TECBF showed significantly greater VH ratio when cured with the single-wave Bluephase than when using the dual-wave Bluephase G2 (Plight energy through to the bottom surface and the VHratio are material dependent. Although TECBF is more translucent than SF, it showed lower VHratio compared to SF when cured with dual-wave Bluephase G2.

  18. Single-beam image encryption using spatially separated ciphertexts based on interference principle in the Fresnel domain

    Science.gov (United States)

    Wang, Qu; Guo, Qing; Lei, Liang; Zhou, Jinyun

    2014-12-01

    A new optical security system for image encryption based on optical interference principle and translation property of Fresnel transform (FrT) has been proposed in this article. The algorithm of this proposal is specially designed for single-beam optical decryption and can thoroughly resolve the silhouette problem existing in the previous interference-based scheme. Different from earlier schemes using interference of phase-only masks (POMs), the inverse FrT of primitive image is digitally decomposed into a random POM and a complex field distribution. Information associated with the primitive images can be completely smoothed away by the modulation of this random POM. Through the translation property of FrT, two linear phase-only terms are then used to modulate the obtained random POM and the complex distribution, respectively. Two complex ciphertexts are generated by performing digital inverse FrT again. One cannot recover any visible information of secret image using only one ciphertext. Moreover, to recover the primitive image correctly, the correct ciphertexts must be placed in the certain positions of input plane of decryption system, respectively. As additional keys, position center coordinates of ciphertexts can increase the security strength of this encryption system against brute force attacks greatly. Numerical simulations have been given to verify the performance and feasibility of this proposal. To further enhance the application value of this algorithm, an alternative approach based on Fourier transform has also been discussed briefly.

  19. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.

    2013-05-29

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57V and CE=22% vs. 0.51V and CE=12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57±4% of recovered sequences for the brush and 27±5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. © 2013 Wiley Periodicals, Inc.

  20. Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification.

    Science.gov (United States)

    Soto, Marcelo A; Taki, Mohammad; Bolognini, Gabriele; Di Pasquale, Fabrizio

    2012-03-26

    Sub-meter distributed optical fiber sensing based on Brillouin optical time-domain analysis with differential pulse-width pairs (DPP-BOTDA) is combined with the use of optical pre-amplification and pulse coding. In order to provide significant measurement SNR enhancement and to avoid distortions in the Brillouin gain spectrum due to acoustic-wave pre-excitation, the pulse width and duty cycle of Simplex coding based on return-to-zero pulses are optimized through simulations. In addition, the use of linear optical pre-amplification increases the receiver sensitivity and the overall dynamic range of DPP-BOTDA measurements. Experimental results demonstrate for first time a spatial resolution of ~25 cm over a 60 km standard single-mode fiber (equivalent to ~240 k discrete sensing points) with temperature resolution of 1.2°C and strain resolution of 24 με.

  1. Fluorescence polarization measures energy funneling in single light-harvesting antennas--LH2 vs conjugated polymers.

    Science.gov (United States)

    Camacho, Rafael; Tubasum, Sumera; Southall, June; Cogdell, Richard J; Sforazzini, Giuseppe; Anderson, Harry L; Pullerits, Tõnu; Scheblykin, Ivan G

    2015-10-19

    Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ε). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ε = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET.

  2. Fluorescence polarization measures energy funneling in single light-harvesting antennas—LH2 vs conjugated polymers

    Science.gov (United States)

    Camacho, Rafael; Tubasum, Sumera; Southall, June; Cogdell, Richard J.; Sforazzini, Giuseppe; Anderson, Harry L.; Pullerits, Tõnu; Scheblykin, Ivan G.

    2015-10-01

    Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ɛ). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ɛ = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET.

  3. Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu

    Science.gov (United States)

    Zhou, Zhenzhen; Liu, Guanghui; Ni, Jia; Liu, Wanlu; Liu, Qian

    2018-05-01

    A kind of novel compound Ba1-x(Zr,Ti)Si3O9:xEu simultaneously activated by different-valence Eu2+ and Eu3+ ions has been successfully synthesized. The existence of Ti4+-O2- charge transfer (CT) transitions in Ba1-xZrSi3O9:xEu is proved by the photoluminescence spectra and first principle calculations, and the Ti4+ ions come from the impurities in commercial ZrO2 raw materials. Under the excitation of multi-wavelength ultraviolet radiation (λEX = 392, 260, 180 nm), Ba1-xZrSi3O9:xEu (x = 0.15) can directly emit nearly white light. The coexistence of multiple luminescent centers and the energy transfer among Zr4+-O2- CT state, Ti4+-O2- CT state, Eu2+ and Eu3+ ions play important roles in the white light emission. Ba1-xZrSi3O9:xEu (x = 0.15) has good thermal stability, in particular, the intensity of emission spectrum (λEX = 392 nm) at 150 °C is ∼96% of that at room temperature. In general, the multi-wavelength ultraviolet-excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu possesses a promise for applications in white light emitting diodes (WLEDs), agriculture, medicine and other photonic fields.

  4. Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: donguser@henu.edu.cn; Xue, Xiaoxiao; Liu, Xiaogang; Xing, Xing; Li, Qiuye; Yang, Jianjun

    2015-03-01

    Carbon-modified TiO{sub 2} (CT) nanoparticles were prepared via a two-step method of heat treatment without the resorcinol-formaldehyde (RF) polymer. As-prepared CT nanoparticles were characterized by means of X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS), transmission electron microscopy (TEM), N{sub 2} adsorption–desorption isotherms, thermal analysis (TA), electron spin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities were evaluated on the basis of the degradation of methyl orange (MO). The synergistic effect of single-electron-trapped oxygen vacancies (SETOVs) and the carbon species on the visible light photocatalytic activities of the CT nanoparticles were discussed. It was found that the crystalline phase, the morphology, and particle size of the CT nanoparticles depended on the second heat-treatment temperature instead of the first heat-treatment temperature. The visible light photocatalytic activities were attributed to the synergistic effect of SETOVs and the carbon species, and also depended on the specific surface area of the photocatalysts. - Highlights: • Carbon-modified TiO{sub 2} particles have been prepared without RF polymer. • The visible light photocatalytic activities of the particles have been evaluated. • The band gap energy structure of the carbon-modified TiO{sub 2} has been proposed. • Synergistic effect of SETOVs and carbon species has been discussed. • The activities also depend on the specific surface area of the catalysts.

  5. Photodoping and enhanced visible light absorption in single-walled carbon nanotubes functionalized with a wide band gap oligomer.

    Science.gov (United States)

    Bunes, Benjamin R; Xu, Miao; Zhang, Yaqiong; Gross, Dustin E; Saha, Avishek; Jacobs, Daniel L; Yang, Xiaomei; Moore, Jeffrey S; Zang, Ling

    2015-01-07

    Carbon nanotubes feature excellent electronic properties but narrow absorption bands limit their utility in certain optoelectronic devices, including photovoltaic cells. Here, the addition of a wide-bandgap gap oligomer enhances light absorption in the visible spectrum. Furthermore, the oligomer interacts with the carbon nanotube through a peculiar charge transfer, which provides insight into Type II heterojunctions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  7. Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

    Science.gov (United States)

    Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.

    2018-03-01

    Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.

  8. Single-particle measurements of bouncing particles and in situ collection efficiency from an airborne aerosol mass spectrometer (AMS) with light-scattering detection

    Science.gov (United States)

    Liao, Jin; Brock, Charles A.; Murphy, Daniel M.; Sueper, Donna T.; Welti, André; Middlebrook, Ann M.

    2017-10-01

    A light-scattering module was coupled to an airborne, compact time-of-flight aerosol mass spectrometer (LS-AMS) to investigate collection efficiency (CE) while obtaining nonrefractory aerosol chemical composition measurements during the Southeast Nexus (SENEX) campaign. In this instrument, particles scatter light from an internal laser beam and trigger saving individual particle mass spectra. Nearly all of the single-particle data with mass spectra that were triggered by scattered light signals were from particles larger than ˜ 280 nm in vacuum aerodynamic diameter. Over 33 000 particles are characterized as either prompt (27 %), delayed (15 %), or null (58 %), according to the time and intensity of their total mass spectral signals. The particle mass from single-particle spectra is proportional to that derived from the light-scattering diameter (dva-LS) but not to that from the particle time-of-flight (PToF) diameter (dva-MS) from the time of the maximum mass spectral signal. The total mass spectral signal from delayed particles was about 80 % of that from prompt ones for the same dva-LS. Both field and laboratory data indicate that the relative intensities of various ions in the prompt spectra show more fragmentation compared to the delayed spectra. The particles with a delayed mass spectral signal likely bounced off the vaporizer and vaporized later on another surface within the confines of the ionization source. Because delayed particles are detected by the mass spectrometer later than expected from their dva-LS size, they can affect the interpretation of particle size (PToF) mass distributions, especially at larger sizes. The CE, measured by the average number or mass fractions of particles optically detected that had measurable mass spectra, varied significantly (0.2-0.9) in different air masses. The measured CE agreed well with a previous parameterization when CE > 0.5 for acidic particles but was sometimes lower than the minimum parameterized CE of 0.5.

  9. Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse

    Science.gov (United States)

    Xie, Xuming; Shen, Guozhen

    2015-03-01

    With a band gap of 2.28 eV, In2S3 is an excellent candidate for visible-light sensitive photodetectors. By growing single-crystalline In2S3 nanowires via a simple CVD method, we report the fabrication of high-performance single-crystal In2S3 nanowire-based flexible photodetectors. The as-fabricated flexible photodetectors exhibited an ultra-high Ion/Ioff ratio up to 106 and a high sensitivity to visible incident light with responsivity and quantum efficiency as high as 7.35 × 104 A W-1 and 2.28 × 107%, respectively. Besides, the flexible photodetectors were demonstrated to possess a robust flexibility and excellent stability. With these favorable merits, In2S3 nanowires are believed to have a promising future in the application of high performance and flexible integrated optoelectronic devices.With a band gap of 2.28 eV, In2S3 is an excellent candidate for visible-light sensitive photodetectors. By growing single-crystalline In2S3 nanowires via a simple CVD method, we report the fabrication of high-performance single-crystal In2S3 nanowire-based flexible photodetectors. The as-fabricated flexible photodetectors exhibited an ultra-high Ion/Ioff ratio up to 106 and a high sensitivity to visible incident light with responsivity and quantum efficiency as high as 7.35 × 104 A W-1 and 2.28 × 107%, respectively. Besides, the flexible photodetectors were demonstrated to possess a robust flexibility and excellent stability. With these favorable merits, In2S3 nanowires are believed to have a promising future in the application of high performance and flexible integrated optoelectronic devices. Electronic supplementary information (ESI) available: XRD pattern, SEM image of the back gate FETs, Electronic transport properties, and I-V curves of the device in dark. See DOI: 10.1039/c5nr00410a

  10. Nanoplasma dynamics of single large xenon clusters irradiated with superintense x-ray pulses from the linac coherent light source free-electron laser.

    Science.gov (United States)

    Gorkhover, T; Adolph, M; Rupp, D; Schorb, S; Epp, S W; Erk, B; Foucar, L; Hartmann, R; Kimmel, N; Kühnel, K-U; Rolles, D; Rudek, B; Rudenko, A; Andritschke, R; Aquila, A; Bozek, J D; Coppola, N; Erke, T; Filsinger, F; Gorke, H; Graafsma, H; Gumprecht, L; Hauser, G; Herrmann, S; Hirsemann, H; Hömke, A; Holl, P; Kaiser, C; Krasniqi, F; Meyer, J-H; Matysek, M; Messerschmidt, M; Miessner, D; Nilsson, B; Pietschner, D; Potdevin, G; Reich, C; Schaller, G; Schmidt, C; Schopper, F; Schröter, C D; Schulz, J; Soltau, H; Weidenspointner, G; Schlichting, I; Strüder, L; Ullrich, J; Möller, T; Bostedt, C

    2012-06-15

    The plasma dynamics of single mesoscopic Xe particles irradiated with intense femtosecond x-ray pulses exceeding 10(16)  W/cm2 from the Linac Coherent Light Source free-electron laser are investigated. Simultaneous recording of diffraction patterns and ion spectra allows eliminating the influence of the laser focal volume intensity and particle size distribution. The data show that for clusters illuminated with intense x-ray pulses, highly charged ionization fragments in a narrow distribution are created and that the nanoplasma recombination is efficiently suppressed.

  11. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure α-helices, β-sheets, and others such as β-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted α-helices, β-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm -1 , the results show that barley protein consisted of approximately 18-34% of α-helices, 14-25% of β-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P 0.05). The ratio of α-helices to others (0.3 to 1.0, P < 0.05) and that of β-sheets to others (0.2 to 0.8, P < 0.05) were different among the barley varieties. It needs to be pointed out that using a multi-peak modeling for protein structure analysis is only for making relative estimates and not exact determinations and only for the comparison purpose between varieties. The principal component analysis showed that protein amide I Fourier

  12. Metabolite and light regulation of metabolism in plants: lessons from the study of a single biochemical pathway

    Directory of Open Access Journals (Sweden)

    I.C. Oliveira

    2001-05-01

    Full Text Available We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2 and represses expression of asparagine synthetase (ASN1 genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.

  13. Influence of KF substitution on the ferroelectric phase transition of lead titanate single crystals studied by Brillouin light scattering

    Directory of Open Access Journals (Sweden)

    Seonhyeop Shin

    2015-06-01

    Full Text Available The elastic properties of KF-substituted perovskite lead titanate (PbTiO3 were investigated by dielectric measurements and Brillouin light scattering. The ferroelectric phase transition occurred at substantially lower temperature due to KF substitution, which was attributed to the modification of the covalency in Pb–O and Ti–O bonds. The longitudinal acoustic (LA mode of KF-substituted PbTiO3 showed a frequency softening in the paraelectric phase, which was accompanied by increasing acoustic damping. This indicated that polarization fluctuations responsible for the acoustic anomalies were enhanced by KF substitution.

  14. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study.

    Directory of Open Access Journals (Sweden)

    Lu-Ning Liu

    Full Text Available BACKGROUND: Photosynthetic organisms have developed multiple protective mechanisms to prevent photodamage in vivo under high-light conditions. Cyanobacteria and red algae use phycobilisomes (PBsomes as their major light-harvesting antennae complexes. The orange carotenoid protein in some cyanobacteria has been demonstrated to play roles in the photoprotective mechanism. The PBsome-itself-related energy dissipation mechanism is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, single-molecule spectroscopy is applied for the first time on the PBsomes of red alga Porphyridium cruentum, to detect the fluorescence emissions of phycoerythrins (PE and PBsome core complex simultaneously, and the real-time detection could greatly characterize the fluorescence dynamics of individual PBsomes in response to intense light. CONCLUSIONS/SIGNIFICANCE: Our data revealed that strong green-light can induce the fluorescence decrease of PBsome, as well as the fluorescence increase of PE at the first stage of photobleaching. It strongly indicated an energetic decoupling occurring between PE and its neighbor. The fluorescence of PE was subsequently observed to be decreased, showing that PE was photobleached when energy transfer in the PBsomes was disrupted. In contrast, the energetic decoupling was not observed in either the PBsomes fixed with glutaraldehyde, or the mutant PBsomes lacking B-PE and remaining b-PE. It was concluded that the energetic decoupling of the PBsomes occurs at the specific association between B-PE and b-PE within the PBsome rod. Assuming that the same process occurs also at the much lower physiological light intensities, such a decoupling process is proposed to be a strategy corresponding to PBsomes to prevent photodamage of the photosynthetic reaction centers. Finally, a novel photoprotective role of gamma-subunit-containing PE in red algae was discussed.

  15. Analysis of Spatial Pattern of Urban System along the Overland Silk Road Economic Belt Using DMSP-OLS Nighttime Light Data

    Science.gov (United States)

    Feng, Jianzhong; Bai, Linyan; wang, Kui; Zhang, Xuefu; Xie, Nengfu; Ran, Qiyun; Guo, Mingqiu; Xu, Lijun

    2017-02-01

    As China promotes the Belt and Road (BAR) initiative, the overland SREB development is widely concerned. The cities (including towns), population centers, of urban system are the cores of the economy along the SREB. Therefore, it is necessary to monitoring the urbanization of the belt so that the new growing points of urban development and the valid coupling mechanism between human and nature will be explored to promote the regional socio-economic sustainable development and effectively implement the BAR initiative. Using the DMSP-OLS stable nighttime lights (NTL) data in 1992, 2003, and 2014, in this paper we studied the urbanized spatial patterns of and the urbanized characteristics and trends of the main city system along the SREB in the view of the whole regionalized economic zone and typical cities and settlements (towns). The results showed that in general the NTL intensities in the SREB’s city system had the obvious geographical differentiation characteristics where there was maximum brightness of NTLs over the western European countries as well as being gradually decreasing from west to east. There were obvious increases of the NTL digital number (DN) values and NTL covering areas in 2003 and 2013 comparatively with that of 1992, which indicates the great urbanization development during this period. As for the four types of urban development process, there was an apparent consistency in a certain local area but a large heterogeneity among different areas. By analyzing the 273 pivot cities and the most pivot 26 cities, we found the number of the relatively small cities being decreasing but that of the large and medium-sized cities increasing. This study would provide the scientific support for the related researches and decision making of urbanization and urban economic development to promote the socio-economic comprehensive development of the overland SREB.

  16. Lasing thresholds of helical photonic structures with different positions of a single light-amplifying helix turn

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Palto, S P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation)

    2013-09-30

    Numerical simulation is used to assess the lasing threshold of helical structures of cholesteric liquid crystals (CLCs) in which only one turn amplifies light. This turn is located either in the centre of symmetric structures of various sizes or in an arbitrary place in asymmetric structures of preset size. In all cases, we find singularities in light amplification by a one-dimensional CLC structure for the most important band-edge modes (m1, m2 and m3) and plot the threshold gain coefficient k{sub th} against the position of the amplifying turn. For the symmetric structures, the lasing threshold of the m1 mode is shown to vary linearly with the inverse of the square of the cavity length. Moreover, modes with a lower density of photonic states (DOS) in the cavity may have a lower lasing threshold. This can be accounted for by the dependence of the density of photonic states on the position of the amplifying turn and, accordingly, by the nonuniform electromagnetic field intensity distribution along the cavity for different modes. In the asymmetric structures, the same field energy distribution is responsible for a correlation between k{sub th} and DOS curves. (lasers)

  17. Extended Algorithm for Simulation of Light Transport in Single Crystal Scintillation Detectors for S(T)EM

    Czech Academy of Sciences Publication Activity Database

    Schauer, Petr

    2007-01-01

    Roč. 29, č. 6 (2007), s. 249-253 ISSN 0161-0457 R&D Projects: GA ČR GA102/04/2144 Institutional research plan: CEZ:AV0Z20650511 Keywords : Monte Carlo simulation * photon transport * scintillation detector * single crystal scintillator * lightguides * signal processing * SEM * S(T)EM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.324, year: 2007

  18. Electric and magnetic properties of titanium-cobalt-oxide single crystals produced by floating zone melting with light heating

    Science.gov (United States)

    Balbashov, A. M.; Mukhin, A. A.; Ivanov, V. Yu.; Iskhakova, L. D.; Voronchikhina, M. E.

    2017-08-01

    Single crystals of spinel Co2TiO4, CoTiO3 of ilmenite structure and pseudobrookite CoTi2O5 were grown by means of zone melting equipment URN-2-ZM. The growth processes were performed in an air atmosphere with a speed ˜10 mm/h and a final annealing of the crystal at temperature of 1250 °C. Co2TiO4 and CoTi2O5 crystals were obtained with a diameter of 12-15 mm and length up to 60 mm, being free of any other phase inclusions and cracks. However, in the CoTiO3 crystals some controversial features were found: x-ray Laue analysis indicated high-structure perfection while an electronic microscopy revealed small amount of second phase inclusions in contradiction to known phase diagram of this system. Electrical and magnetic properties of grown Co2TiO4 and CoTiO3 single crystals were studied. Semiconducting behavior of the Co2TiO4 was established with the energy gap of ˜1.3 eV. No magnetic anisotropy was found in the cubic Co2TiO4 single crystals showing a magnetic behavior similar to polycrystals. The rhombohedral CoTiO3 crystals revealed a magnetic behavior of an easy plane antiferromagnet with a significant anisotropy of the transverse magnetic susceptibilities along and perpendicular to the trigonal c axis.

  19. Comparison of single and mixed ion implantation effects on the changes of the surface hardness, light transmittance, and electrical conductivity of polymeric materials

    International Nuclear Information System (INIS)

    Park, J. W.; Lee, J. H.; Lee, J. S.; Kil, J. G.; Choi, B. H.; Han, Z. H.

    2001-01-01

    Single or mixed ions of N, He, C were implanted onto the transparent PET(Polyethylen Terephtalate) with the ion energies of less than 100 keV and the surface hardness, light transmittance and electrical conductivity were examined. As measured with nanoindentation, mixed ion implantations such as N + +He + or N + + C + exhibited more increase in the surface hardness than the single ion implantation. Especially, implantation of C+N ions increased the surface hardness by about three times as compared to the implantation of N ion alone, which means more than 10 times increase than the untreated PET. Surface electrical conductivity was increased along with the hardness increase. The conductivity increase was more proportional to the hardness when used the higher ion energy and ion dose, while it did not show any relationship at as low as 50 keV of ion energy. The light at the 550 nm wavelength (visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet, implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays

  20. Rare-Earth Free Self-Activated Graphene Quantum Dots and Copper-Cysteamine Phosphors for Enhanced White Light-Emitting-Diodes under Single Excitation.

    Science.gov (United States)

    Dai, Wubin; Lei, Yifeng; Xu, Man; Zhao, Pei; Zhang, Zhanhui; Zhou, Jia

    2017-10-09

    Rare-earth (RE) based phosphors are attractive due to their potential applications. However, owing to the resource issue, these kinds of phosphors are expensive and costly. On the contrary, as for phosphor-convert white light-emitting-diodes (pc-WLEDs), a solution-processed tunable warm white emission LED composite is fabricated in this study under single excitation, with both RE free phosphors graphene quantum dots (GQDs) and Copper-Cysteamine (Cu-Cy). By using microwave-assisted wet-chemical method and with graphite as raw material, cold white fluorescence of the GQDs is obtained. Cu-Cy which shows intense photoluminescence in the red region has the structure where both the thio and amine groups connected with copper and forming cysteamine. Warm white light is achieved by mixing the two self-activated RE free phosphors at the weight ratio of 1: 1.7 under the excitation at 365 nm. The designed optimal LED device has the properties of CIE (x, y) = (0.341, 0.327), T = 4436 K, R = 87.9 EQE = 0.31%. The experimental results demonstrate that RE free phosphor(s) excited under a single chip can open up a new avenue to develop much lower device for warm WLEDs.

  1. Development of a Highly Efficient Hybrid White Organic-Light-Emitting Diode with a Single Emission Layer by Solution Processing.

    Science.gov (United States)

    Wu, Jun-Yi; Chen, Show-An

    2018-02-07

    We use a mixed host, 2,6-bis[3-(carbazol-9-yl)phenyl]pyridine blended with 20 wt % tris(4-carbazoyl-9-ylphenyl)amine, to lower the hole-injection barrier, along with the bipolar and high-photoluminescence-quantum-yield (Φ p = 84%), blue thermally activated delay fluorescence (TADF) material of 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine (DMAC-TRZ) as a blue dopant to compose the emission layer for the fabrication of a TADF blue organic-light-emitting diode (BOLED). The device is highly efficient with the following performance parameters: maximum brightness (B max ) = 57586 cd/m 2 , maximum current efficiency (CE max ) = 35.3 cd/A, maximum power efficiency (PE max ) = 21.4 lm/W, maximum external quantum efficiency (EQE max ) = 14.1%, and CIE coordinates (0.18, 0.42). This device has the best performance recorded among the reported solution-processed TADF BOLEDs and has a low efficiency roll-off: at brightness values of 1000 and 5000 cd/m 2 , its CEs are close, being 35.1 and 30.1 cd/A, respectively. Upon further doping of the red phosphor Ir(dpm)PQ 2 (emission peak λ max = 595 nm) into the blue emission layer, we obtained a TADF-phosphor hybrid white organic-light-emitting diode (T-P hybrid WOLED) with high performance: B max = 43594 cd/m 2 , CE max = 28.8 cd/A, PE max = 18.1 lm/W, and CIE coordinates (0.38, 0.44). This B max = 43594 cd/m 2 is better than that of the vacuum-deposited WOLED with a blue TADF emitter, 10000 cd/m 2 . This is also the first report on a T-P hybrid WOLED with a solution-processed emitting layer.

  2. Crystal growth and temperature dependence of light output of Ce-doped (Gd, La, Y)2Si2O7 single crystals

    Science.gov (United States)

    Horiai, Takahiko; Kurosawa, Shunsuke; Murakami, Rikito; Shoji, Yasuhiro; Pejchal, Jan; Yamaji, Akihiro; Ohashi, Yuji; Kamada, Kei; Yokota, Yuui; Ishizu, Tomohiro; Ohishi, Yasuo; Nakaya, Taisuke; Yoshikawa, Akira

    2018-03-01

    Ce-doped (Gd, La)2Si2O7 scintillation crystals are expected to be used as gamma-ray detectors for high temperature measurement. To realize scintillators for high temperature environment, we investigated (Ce0.01 Gd0.59-x La0.40 Yx)2Si2O7 (x = 0.00, 0.05, 0.10, 0.15) single crystals grown by the micro-pulling-down method. The results showed that a 5% Y-admixed Ce-doped (Gd, La)2Si2O7 scintillator can yield higher light output when compared with Y-free Ce-doped (Gd, La)2Si2O7 scintillator. The light outputs at 25°C and 175°C were determined to be ∼43,000 and ∼40,000 photons/MeV, respectively. Moreover, 1 inch size 5% Y-admixed Ce-doped (Gd, La)2Si2O7 scintillator was grown by the Czochralski technique, and its light output at 175°C kept the value of around 95% of the value at 25°C.

  3. Low-power-consumption flat-panel light-emitting device driven by field-emission electron source using high-crystallinity single-walled carbon nanotubes

    Science.gov (United States)

    Shimoi, Norihiro; Abe, Daisuke; Matsumoto, Kazuyuki; Sato, Yoshinori; Tohji, Kazuyuki

    2017-06-01

    Thin electrode films assembled through a wet process using single-walled carbon nanotubes (SWCNTs) are expected to play a role in reducing power consumption and saving energy in field-emission electron sources. The flat-panel light-emitting device for this study featured a line-sequential-scanning-type electrode structure equipped with electrodes for on-and-off controls of electron emissions, on which high-crystallinity SWCNTs were uniformly distributed. The device successfully emitted electrons on the flat panel in a stable manner. A technology for amplifying the luminance output by controlling the persistence characteristics of a fluorescent screen was also successfully developed. By combining such elemental technologies, a flat-panel light-emission device, as a stand-alone planar lighting device, which achieves a high-luminance efficiency of 87 lm/W and energy-conserved driving, was assembled for the first time in the world. The creation of field-emission electron sources driven with ultralow power consumption, along with applications that utilize such devices, is expected in the future.

  4. The light at the end of the tunnel: a single-operator learning curve analysis for per oral endoscopic myotomy.

    Science.gov (United States)

    Patel, Kumkum Sarkar; Calixte, Rose; Modayil, Rani J; Friedel, David; Brathwaite, Collin E; Stavropoulos, Stavros N

    2015-05-01

    Per oral endoscopic myotomy (POEM) represents a natural orifice transluminal endoscopic surgery approach to Heller myotomy. Our center was the first to offer POEM outside of Japan, allowing us to accumulate what is likely the highest single-operator POEM volume in the United States. To define the POEM learning curve of a gastroenterologist by using a larger data set and more detailed statistical analysis than used in 2 other reports of POEM performed by surgeons. Prospective cohort study. Tertiary-care academic medical center. We analyzed the first 93 consecutive POEMs on patients with achalasia aged >18 years without contraindications to POEM performed by a single operator from October 2009 to November 2013. (1) Efficiency estimation via cumulative sum (CUSUM) analysis, (2) mastery estimation via penalized basis-spline regression and CUSUM analysis, (3) correlation of operator experience with clinical outcomes (Eckardt score improvement, lower esophageal sphincter pressure reduction) and technical errors (accidental mucosotomy rate), and (4) unadjusted and adjusted regression analysis to assess how patient characteristics affected procedure time by using a generalized linear model. Clinical outcomes, procedure time, technical errors. Efficiency was attained after 40 POEMs and mastery after 60 POEMs. When we used the adjusted regression analysis, only case number (operator experience) significantly affected procedure time (P myotomy, or type of knife used (all P > .05). Our analysis may underestimate the number of POEMs required to achieve mastery for operators with limited or no endoscopic submucosal dissection experience. These results offer thresholds for efficiency and mastery of a single gastroenterologist operator that may guide the efforts of novice POEM operators. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  5. Initial Results of Accelerated Stress Testing on Single-Channel and Multichannel Drivers: Solid-State Lighting Technology Area

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-02-28

    This report is the first in a series of studies on accelerated stress testing (AST) of drivers used for SSL luminaires, such as downlights, troffers, and streetlights. A representative group of two-stage commercial driver products was exposed to an AST environment consisting of 75°C and 75% relative humidity (7575). These drivers were a mix of single-channel drivers (i.e., a single output current for one LED primary) and multichannel drivers (i.e., separate output currents for multiple LED primaries). This AST environment was chosen because previous testing on downlights with integrated drivers demonstrated that 38% of the sample population failed in less than 2,500 hours of testing using this method. In addition to AST test results, the performance of an SSL downlight product incorporating an integrated, multichannel driver during extended room temperature operational life (RTOL) testing is also reported. A battery of measurements was used to evaluate these products during accelerated testing, including full electrical characterization (i.e., power consumption, PF, total harmonic distortion [THD], and inrush current) and photometric characterization of external LED loads attached to the drivers (i.e., flicker performance and lumen maintenance).

  6. Comparative study of blue laser diode driven cerium-doped single crystal phosphors in application of high-power lighting and display technologies

    Science.gov (United States)

    Balci, Mustafa H.; Chen, Fan; Cunbul, A. Burak; Svensen, Øyvind; Akram, M. Nadeem; Chen, Xuyuan

    2018-02-01

    Cerium-doped single crystals (Ce:LuAG, Ce:YAG, Ce:GAGG, Ce:GdYAG) have been investigated as stationary phosphor candidates for blue laser driven solid-state lighting without heat sink. The luminous properties of the single crystals are superior compared to the commercial ceramic powder phosphor wheels (Ce3+: Y3Al5O12). The high-power blue laser diode driven temperature increase of the crystals versus quantum efficiency is experimentally measured and discussed. We have carried out realistic measurements at high excitation power levels and at high temperatures. Limitation of phosphors as stationary sources is determined for commercial usage. The measurements were done without any heat sink to see the relative comparison of SCPs in the worst-case scenarios. The results indicate that Gd and Ga addition decreases the luminescence quenching temperature. Based on their superior properties, these single crystals can serve as potential phosphor candidates for high-power blue diode laser driven picture projectors for the green and red channels.

  7. Comparing the capitalisation benefits of light-rail transit and overlay zoning for single-family houses and condos by neighbourhood type in metropolitan Phoenix, Arizona.

    Science.gov (United States)

    Atkinson-Palombo, Carol

    2010-01-01

    Light rail transit (LRT) is increasingly accompanied by overlay zoning which specifies the density and type of future development to encourage landscapes conducive to transit use. Neighbourhood type (based on land use mix) is used to partition data and investigate how pre-existing land use, treatment with a park-and-ride (PAR) versus walk-and-ride (WAR) station and overlay zoning interrelate. Hedonic models estimate capitalisation effects of LRT-related accessibility and overlay zoning on single-family houses and condos in different neighbourhoods for the system in metropolitan Phoenix, Arizona. Impacts differ by housing and neighbourhood type. Amenity-dominated mixed-use neighbourhoods-predominantly WAR communities-experience premiums of 6 per cent for single-family houses and over 20 per cent for condos, the latter boosted an additional 37 per cent by overlay zoning. Residential neighbourhoods-predominantly PAR communities-experience no capitalisation benefits for single-family houses and a discount for condos. The results suggest that land use mix is an important variable to select comparable neighbourhoods.

  8. Light emission ranging from blue to red from a series of Iguana/GaN single quantum wells

    International Nuclear Information System (INIS)

    Martin, R.W.; Edwards, P.R.; Pecharroman-Gallego, R.; O'Donnell, K.P.; Liu, C.; Deatcher, C.J.; Watson, I.M.

    2002-01-01

    In this paper, we describe the growth and characterization of InGaN single quantum wells with emission peaks in the blue, green, amber and red spectral regions, grown by metal-organic vapour phase epitaxy. Starting from the growth of a blue-emitting (peak ∼430 nm) InGaN quantum well at 860 deg. C the InGaN growth temperature was progressively reduced. The photoluminescence peak wavelength, measured at low temperature, shifts through the green and orange spectral regions and reaches 670 nm for an InGaN growth temperature of 760 deg. C. This corresponds to an energy lower than the currently accepted band-gap of the binary compound, InN. Spectral characteristics of the luminescence peaks will be discussed, including an analysis of the phonon-assisted contribution. Low energy secondary ion mass spectrometry analysis provides information on the indium content and thickness of the 'blue' and 'red' quantum wells. The results are combined to discuss the origin of the 'sub-band-gap' luminescence in terms of the combined influence of InN-GaN segregation and the effect of intense piezoelectric fields. (author)

  9. Light emission ranging from blue to red from a series of Iguana/GaN single quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.W. [Department of Physics, University of Strathclyde, Glasgow (United Kingdom)]. E-mail: r.w.martin@strath.ac.uk; Edwards, P.R.; Pecharroman-Gallego, R.; O' Donnell, K.P. [Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Liu, C.; Deatcher, C.J.; Watson, I.M. [Institute of Photonics, University of Strathclyde, Glasgow (United Kingdom)

    2002-04-07

    In this paper, we describe the growth and characterization of InGaN single quantum wells with emission peaks in the blue, green, amber and red spectral regions, grown by metal-organic vapour phase epitaxy. Starting from the growth of a blue-emitting (peak {approx}430 nm) InGaN quantum well at 860 deg. C the InGaN growth temperature was progressively reduced. The photoluminescence peak wavelength, measured at low temperature, shifts through the green and orange spectral regions and reaches 670 nm for an InGaN growth temperature of 760 deg. C. This corresponds to an energy lower than the currently accepted band-gap of the binary compound, InN. Spectral characteristics of the luminescence peaks will be discussed, including an analysis of the phonon-assisted contribution. Low energy secondary ion mass spectrometry analysis provides information on the indium content and thickness of the 'blue' and 'red' quantum wells. The results are combined to discuss the origin of the 'sub-band-gap' luminescence in terms of the combined influence of InN-GaN segregation and the effect of intense piezoelectric fields. (author)

  10. Small Field-of-view single-shot EPI-DWI of the prostate: Evaluation of spatially-tailored two-dimensional radiofrequency excitation pulses.

    Science.gov (United States)

    Attenberger, Ulrike I; Rathmann, Nils; Sertdemir, Metin; Riffel, Philipp; Weidner, Anja; Kannengiesser, Stefan; Morelli, John N; Schoenberg, Stefan O; Hausmann, Daniel

    2016-06-01

    Spatially-tailored (RF) excitation pulses in echo-planar imaging (EPI), combined with a decreased FOV in the phase-encoding direction, enable a reduction of k-space acquisition lines, which shortens the echo train length (ETL) and reduces susceptibility artifacts. The purpose of this study was to evaluate the image quality of a zoomed EPI (z-EPI) sequence in diffusion-weighted imaging (DWI) of the prostate in comparison to a conventional single-shot EPI using single-channel (c-EPI1) and multi-channel (c-EPI2) RF excitation, with and without use of an endorectal coil. 33 consecutive patients (mean age: 61 +/- 9 years; mean PSA: 8.67±6.23 ng/ml) with examinations between 10/2012 and 02/2014 were analyzed in this retrospective study. In 26 of 33 patients the initial multiparametric (mp)-MRI was performed on a whole-body 3T scanner (Magnetom Trio, Siemens, Erlangen, Germany) using an endorectal coil (c (conventional)-EPI1). Zoomed-EPI (Z-EPI) examinations of these patients and a complete mp-MRI protocol including c-EPI2 of 7 additional patients were carried out on another 3T wb MR scanner with two-channel dynamic parallel transmit capability (Magnetom Skyra with TimTX TrueShape, Siemens). For z-EPI, the one-dimensional spatially selective RF excitation pulse was replaced by a two-dimensional RF pulse. Degree of image blur and susceptibility artifacts (0=not present to 3= non-diagnostic), maximum image distortion (mm), apparent diffusion coefficient (ADC) values, as well as overall scan preference were evaluated. SNR maps were generated to compare c-EPI2 and z-EPI. Overall image quality of z-EPI was preferred by both readers in all examinations with a single exception. Susceptibility artifacts were rated significantly lower on z-EPI compared to both other methods (z-EPI vs c-EPI1: p<0.01; z-EPI vs c-EPI2: p<0.01) as well as image blur (z-EPI vs c-EPI1: p<0.01; z-EPI vs c-EPI2: p<0.01). Image distortion was not statistically significantly reduced with z-EPI (z-EPI vs c

  11. Multicolored Cd1-xZnxSe quantum dots with type-I core/shell structure: single-step synthesis and their use as light emitting diodes

    Science.gov (United States)

    Pu, Ying-Chih; Hsu, Yung-Jung

    2014-03-01

    We developed a single-step hot-injection process to synthesize Cd1-xZnxSe quantum dots (QDs) with tunable emission wavelengths. The multiple emission colors of the Cd1-xZnxSe QDs resulted from the variation in their compositions (x value) with the reaction time. Because of the higher reactivity of the Cd precursor, QDs whose composition was rich in CdSe were generated at the beginning of the reaction. As the reaction proceeded, the later-formed ZnSe shell was simultaneously alloyed with the core, giving rise to a progressive alloying treatment for the grown QDs. During the reaction period, the emission color of the Cd1-xZnxSe QDs shifted from red to orange, to yellow, to green and finally to blue. A light emitting diode (LED) composed of multilayers of ITO/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/poly(3-hexylthiophene) blended with Cd1-xZnxSe QDs/Al was fabricated to test the electroluminescence (EL) properties of the QDs. The EL results show high color purity for the emission from LED devices containing Cd1-xZnxSe QDs, revealing that the as-synthesized QDs can be easily processed and integrated into a light-emitting device without using a complicated procedure. The findings from the present work also demonstrate the advantage of using the current single-step synthetic approach to obtain a batch of Cd1-xZnxSe QDs that may emit different colors in prototype LEDs.We developed a single-step hot-injection process to synthesize Cd1-xZnxSe quantum dots (QDs) with tunable emission wavelengths. The multiple emission colors of the Cd1-xZnxSe QDs resulted from the variation in their compositions (x value) with the reaction time. Because of the higher reactivity of the Cd precursor, QDs whose composition was rich in CdSe were generated at the beginning of the reaction. As the reaction proceeded, the later-formed ZnSe shell was simultaneously alloyed with the core, giving rise to a progressive alloying treatment for the grown QDs. During the reaction period

  12. Single-crystal perovskite CH3NH3PbBr3 prepared by cast capping method for light-emitting diodes

    Science.gov (United States)

    Nguyen, Van-Cao; Katsuki, Hiroyuki; Sasaki, Fumio; Yanagi, Hisao

    2018-04-01

    In this study, electroluminescence from single crystals of CH3NH3PbBr3 perovskite is explored. The cast capping method was applied to fabricate simple devices with an ITO/CH3NH3PbBr3/ITO structure. The devices showed a low operation voltage of 2 V and a pure green luminescence with full width at half maximum of ∼20 nm. However, the emission occurring at the crystal edges demonstrated blinking with a subsecond time interval, which is similar to the previously reported photoluminescence behavior of nanocrystal perovskites. This electroluminescence blinking may provide new insight into the recombination processes depending on the carrier traps and defects of emission layers in perovskite light-emitting devices.

  13. Polarized Light Microscopy Study on the Reentrant Phase Transition in a (Ba1 – xKxFe2As2 Single Crystal with x = 0.24

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2016-11-01

    Full Text Available A sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba1 − xKxFe2As2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba1 − xKxFe2As2 (x = 0.24 single crystal below a temperature of simultaneous structural/magnetic transition TN ~ 80 K. The structural domains vanish below ~30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT to low temperature orthorhombic (LTO1 structure at TN ~ 80 K, LTO1 to low temperature tetragonal (LTT structure at Tc ~ 25 K, and LTT to low temperature orthorhombic (LTO2 structure at T ~ 15 K.

  14. Single-Crystalline Gold Nanowires Synthesized from Light-Driven Oriented Attachment and Plasmon-Mediated Self-Assembly of Gold Nanorods or Nanoparticles

    Science.gov (United States)

    Yu, Shang-Yang; Gunawan, Hariyanto; Tsai, Shiao-Wen; Chen, Yun-Ju; Yen, Tzu-Chen; Liaw, Jiunn-Woei

    2017-03-01

    Through the light-driven geometrically oriented attachment (OA) and self-assembly of Au nanorods (NRs) or nanoparticles (NPs), single-crystalline Au nanowires (NWs) were synthesized by the irradiation of a linearly-polarized (LP) laser. The process was conducted in a droplet of Au colloid on a glass irradiated by LP near-infrared (e.g. 1064 nm and 785 nm) laser beam of low power at room temperature and atmospheric pressure, without any additive. The FE-SEM images show that the cross sections of NWs are various: tetragonal, pentagonal or hexagonal. The EDS spectrum verifies the composition is Au, and the pattern of X-ray diffraction identifies the crystallinity of NWs with the facets of {111}, {200}, {220} and {311}. We proposed a hypothesis for the mechanism that the primary building units are aligned and coalesced by the plasmon-mediated optical torque and force to form the secondary building units. Subsequently, the secondary building units undergo the next self-assembly, and so forth the tertiary ones. The LP light guides the translational and rotational motions of these building units to perform geometrically OA in the side-by-side, end-to-end and T-shaped manners. Consequently, micron-sized ordered mesocrystals are produced. Additionally, the concomitant plasmonic heating causes the annealing for recrystallizing the mesocrystals in water.

  15. High-dimensional quantum channel estimation using classical light

    CSIR Research Space (South Africa)

    Mabena, Chemist M

    2017-11-01

    Full Text Available A method is proposed to characterize a high-dimensional quantum channel with the aid of classical light. It uses a single nonseparable input optical field that contains correlations between spatial modes and wavelength to determine the effect...

  16. Controlled Growth of Large-Area Aligned Single-Crystalline Organic Nanoribbon Arrays for Transistors and Light-Emitting Diodes Driving

    Science.gov (United States)

    Wang, Wei; Wang, Liang; Dai, Gaole; Deng, Wei; Zhang, Xiujuan; Jie, Jiansheng; Zhang, Xiaohong

    2017-10-01

    Organic field-effect transistors (OFETs) based on organic micro-/nanocrystals have been widely reported with charge carrier mobility exceeding 1.0 cm2 V-1 s-1, demonstrating great potential for high-performance, low-cost organic electronic applications. However, fabrication of large-area organic micro-/nanocrystal arrays with consistent crystal growth direction has posed a significant technical challenge. Here, we describe a solution-processed dip-coating technique to grow large-area, aligned 9,10-bis(phenylethynyl) anthracene (BPEA) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) single-crystalline nanoribbon arrays. The method is scalable to a 5 × 10 cm2 wafer substrate, with around 60% of the wafer surface covered by aligned crystals. The quality of crystals can be easily controlled by tuning the dip-coating speed. Furthermore, OFETs based on well-aligned BPEA and TIPS-PEN single-crystalline nanoribbons were constructed. By optimizing channel lengths and using appropriate metallic electrodes, the BPEA and TIPS-PEN-based OFETs showed hole mobility exceeding 2.0 cm2 V-1 s-1 (average mobility 1.2 cm2 V-1 s-1) and 3.0 cm2 V-1 s-1 (average mobility 2.0 cm2 V-1 s-1), respectively. They both have a high on/off ratio ( I on/ I off) > 109. The performance can well satisfy the requirements for light-emitting diodes driving.

  17. Light in sacred architecture

    Directory of Open Access Journals (Sweden)

    Jurij Kryworuczko

    2014-11-01

    Full Text Available Described are the traditional means for the embodiment of theological and architectural nature of light in the spatial organization of Christian churches. Basic principles and tools for the spatial organization of lighting environment in the Ukrainian temple buildings are given. The importance of natural and artificial light for the creation of structure and space of the church is found. Revealed are the regularities for the church lighting environment in the temporal dynamics of worshiping; disclosed are the tools to transfer principles of the traditional church lighting practices to modern temples.

  18. A single-blind, dose escalation, phase I study of high-fluence light-emitting diode-red light (LED-RL) on human skin: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Ho, Derek; Kraeva, Ekaterina; Wun, Ted; Isseroff, R Rivkah; Jagdeo, Jared

    2016-08-02

    Skin fibrosis is involved in a variety of pathologic conditions ranging from scar formation secondary to surgery or trauma to immune-mediated processes. Skin fibrosis is a significant international health problem with an estimated incidence of greater than 100 million people affected per year worldwide with few effective treatment options available. Preliminary in vitro data generated by our research group suggests that red light can function as a stand-alone treatment for skin fibrosis. To our knowledge, no prior clinical trials have been performed to determine the safety of high-fluence (dose) light-emitting diode-red light (LED-RL) phototherapy. The goal of this study is to evaluate the safety of LED-RL fluences from 160 J/cm(2) up to 640 J/cm(2) in healthy subjects. This is a single-blind, dose escalation, randomized controlled, phase I study to evaluate the safety of high-fluence LED-RL on human skin. The protocol for dose escalation requires subjects be enrolled sequentially in groups of five. Within each group, three subjects will be randomized to LED-RL phototherapy and two subjects randomized to mock therapy. Subjects in group 1 randomized to LED-RL phototherapy will receive the maximum recommended starting dose (160 J/cm(2)). LED-RL dose will be escalated in subsequent groups (320 J/cm(2), 480 J/cm(2) and 640 J/cm(2)). The maximally tolerated dose (MTD) is defined as the dose level below the dose producing unacceptable but reversible toxicity and is considered to be the upper limit of subject tolerance. After either a MTD has been established, or the study endpoint of 640 J/cm(2) has been achieved, an additional 27 LED-RL phototherapy subjects (for a total of 30) and 18 mock therapy subjects (for a total of 20) (determined randomly) will be enrolled. Each subject will receive a total of nine procedures, three times per week for three consecutive weeks. This study may provide important safety information on the effects of high-fluence LED

  19. A single-phase white light emitting Pr3+ doped Ba2CaWO6 phosphor: synthesis, photoluminescence and optical properties

    Science.gov (United States)

    Sreeja, E.; Vidyadharan, Viji; Jose, Saritha K.; George, Anns; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.

    2018-04-01

    Pr3+ doped Ba2CaWO6 phosphor were prepared by traditional high-temperature solid-state reaction technique. The structure evolution was systematically investigated by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The X-ray powder diffraction patterns indicate that the prepared phosphors crystallized in the cubic double-perovskite structure. The functional groups were identified using FTIR spectra and the elements present in the composition were confirmed by the EDS profile. The morphology of the phosphor was identified using SEM and TEM analysis. The PL spectra illustrated that these phosphors could be efficiently excited by charge transfer band of host and the maximum luminescence intensity was observed at 0.06 wt% of Pr3+ ion. Upon the charge transfer band excitation, emission spectra showed peaks at 489, 532, 647, 685 and 737 nm corresponding to 3P0→3H4, 3P1→3H5, 3P0→3F2, 3P0→3F3 and 3P0→3F4 transitions respectively. The concentration quenching of Ba2CaWO6:Pr3+ phosphor can be mainly attributed to dipole-dipole interaction. The CIE coordinates were estimated to be close to the white region. The decay curves are well fitted with double exponential decay models. The standard and modified Judd-Ofelt (JO) theories were used to determine the Judd-Ofelt intensity parameters, radiative transition probabilities and branching ratios. The optical properties indicate that Ba2CaWO6:Pr3+ phosphors can produce white light emission from a single phase host and its potential application for solid-state lighting and display devices.

  20. 2D l-Di-toluoyl-tartaric acid Lanthanide Coordination Polymers: Toward Single-component White-Light and NIR Luminescent Materials.

    Science.gov (United States)

    Niu, Wan-Ying; Sun, Jing-Wen; Yan, Peng-Fei; Li, Yu-Xin; An, Guang-Hui; Li, Guang-Ming

    2016-02-18

    A series of five l-di-p-toluoyl-tartaric acid (l-DTTA) lanthanide coordination polymers, namely {[Ln4 K(4)  L6 (H2O)x ]⋅yH2 O}n , [Ln=Dy (1), x=24, y=12; Ln=Ho (2), x=23, y=12; Ln=Er (3), x=24, y=12; Ln=Yb (4), x=24, y=11; Ln=Lu (5), x=24, y=12] have been isolated by simple reactions of H2L (H2 L= L-DTTA) with LnCl3 ⋅6 H2O at ambient temperature. X-ray crystallographic analysis reveals that complexes 1-5 feature two-dimensional (2D) network structures in which the Ln(3+) ions are bridged by carboxylate groups of ligands in two unique coordinated modes. Luminescent spectra demonstrate that complex 1 realizes single-component white-light emission, while complexes 2-4 exhibit a characteristic near-infrared (NIR) luminescence in the solid state at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Twisted intramolecular charge transfer investigation of semi organic L-Glutamic acid hydrochloride single crystal for organic light-emitting and optical limiting applications

    Science.gov (United States)

    Joy, Lija K.; George, Merin; Alex, Javeesh; Aravind, Arun; Sajan, D.; Vinitha, G.

    2018-03-01

    Single crystals of L-Glutamic acid hydrochloride (LGHCl) were grown by slow evaporation solution technique and good crystalline perfection was confirmed by Powder X-ray diffraction studies. The complete vibrational studies of the compound were analyzed by FT-IR, FT-Raman and UV-visible spectra combined with Normal Coordinate Analysis (NCA) following the scaled quantum mechanical force field methodology and density functional theory (DFT). Twisted Intramolecular Charge Transfer (ICT) occurs due to the presence of strong ionic intra-molecular Nsbnd H⋯O hydrogen bonding was confirmed by Hirshfeld Surface analysis. The existence of intermolecular Nsbnd H⋯Cl hydrogen bonds due to the interaction between the lone pair of oxygen with the antibonding orbital was established by NBO analysis. The Z-scan result indicated that the title molecule exhibits saturable absorption behavior. The attractive third-order nonlinear properties suggest that LGHCl can be a promising candidate for the design and development devices for optical limiting applications. LGHCL exhibits distinct emission in the blue region of the fluorescence lifetime which proves to be a potential candidate for blue- Organic light-emitting diodes (OLEDs) fabrication.

  2. The efficiency enhancement of single-layer solution-processed blue phosphorescent organic light emitting diodes by hole injection layer modification

    International Nuclear Information System (INIS)

    Yeoh, K H; Talik, N A; Whitcher, T J; Ng, C Y B; Woon, K L

    2014-01-01

    Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) PEDOT : PSS is extensively used as a hole injection layer (HIL) in solution-processed organic light emitting diodes (OLEDs). The high work function of a HIL is crucial in improving OLED efficiency. The work function of PEDOT : PSS is usually around 5.1–5.3 eV. By adding perfluorinated ionomer (PFI), the work function of PEDOT : PSS has been reported to reach as high as 5.95 eV. We investigated the effects of PFI-modified PEDOT : PSS in a single-layer solution-processed blue phosphorescent OLED (PHOLED). We observed that high concentrations of a PFI in PEDOT : PSS has detrimental effects on the device efficiency due to the low conductivity of the PFI. Using this approach, blue PHOLEDs with efficiencies of 9.4 lm W −1 (18.2 cd A −1 ) and 7.9 lm W −1 (20.4 cd A −1 ) at 100 cd m −2 and 1000 cd m −2 , respectively, were demonstrated. (paper)

  3. Single wavelength light-mediated, synergistic bimodal cancer photoablation and amplified photothermal performance by graphene/gold nanostar/photosensitizer theranostics.

    Science.gov (United States)

    Wu, Chunhui; Li, Dan; Wang, Lianhui; Guan, Xiaotian; Tian, Yuan; Yang, Hong; Li, Shun; Liu, Yiyao

    2017-04-15

    Light-triggered nanotheranostics opens a fascinating but challenging avenue to achieve simultaneous and highly efficient anticancer outcomes for multimodal therapeutic and diagnostic modalities. Herein, a multifunctional phototheranostics based on a photosensitizer-assembled graphene/gold nanostar hybrid (GO/AuNS-PEG) was developed for cancer synergistic photodynamic (PDT) and photothermal therapy (PTT) as well as effective photothermal imaging. The stable and biocompatible GO/AuNS-PEG composite displayed a high photothermal conversion efficiency due to the enhanced optical absorbance of both graphene and gold nanostars in the near-infrared (NIR) range. By tuning the absorption wavelength of GO/AuNS-PEG to that of Chlorin e6 (Ce6), GO/AuNS-PEG/Ce6 completely eliminated the EMT6 xenograft tumors by the tremendous synergistic anticancer efficiency of simultaneous PDT and PTT under a single NIR laser irradiation (660nm) in vivo. The underlying mechanism may be the enhanced cytoplasmic uptake and accumulation of GO/AuNS-PEG/Ce6 and the subsequent photodestruction of the lysosomal membrane and mitochondria. Moreover, GO/AuNS-PEG/Ce6 exhibited negligible side-effects on the body and other organs. These results demonstrate that the graphene/gold nanostar nanoconstruct provides a versatile and reliable integrated platform for the photo-controlled cancer theragnostic applications. This work demonstrated the application of graphene-Au Nanostars hybridized system (denoted as GO/AuNS-PEG) in single wavelength laser induced synergistic photodynamic (PDT) and photothermal therapy (PTT) and effective cancer photothermal/fluorescence multimode imaging. GO/AuNS-PEG showed excellent biocompatibility and high dual-enhanced photothermal efficiency under the near-infrared laser irradiation that was very promise for deep tumor imaging. By combining with the photosensitizer Chlorin e6, both in vitro and in vivo data confirmed the efficient photoablation of the EMT6 tumors through the

  4. Simulations of light intensity variation in photobioreactors.

    Science.gov (United States)

    Perner-Nochta, Iris; Posten, Clemens

    2007-09-15

    In photobioreactors, turbulent flow conditions and light gradients frequently occur. Thus, algal cells cultivated in such reactors experience fluctuations in light intensity. This work presents a new method for the calculation of these light-dark patterns. The investigation is focused on temporal and spatial aspects of light patterns which may affect the photosynthetic reaction. The method combines computational fluid dynamics simulations of three-dimensional turbulent single-phase fluid flow with statistical particle tracking and signal analysis. In this way, light-dark phases are derived which affect singular (algal) cells. An example case is presented of a tubular photobioreactor in which static mixers are used for the efficient mixing of liquid and also of gases with liquid. Particle trajectories representing the path of algal cells were analysed to obtain light fluctuations on single cells. Particles were exposed to light-dark phases with frequencies between 3 and 25Hz in a helical mixer at a mean velocity of 0.5ms(-1), which contrasts to the case of a tube without static mixers, where only frequencies of 0.2-3.1Hz were obtained under the same conditions. The simulations show the potential of improving radial flow in a tubular photobioreactor by means of using a static mixer and the usefulness of CFD and trajectory analysis for scale-down/scale-up.

  5. Calculus light

    CERN Document Server

    Friedman, Menahem

    2011-01-01

    Another Calculus book? As long as students find calculus scary, the failure rate in mathematics is higher than in all other subjects, and as long as most people mistakenly believe that only geniuses can learn and understand mathematics, there will always be room for a new book of Calculus. We call it Calculus Light. This book is designed for a one semester course in ""light"" calculus -- mostly single variable, meant to be used by undergraduate students without a wide mathematical background and who do not major in mathematics but study subjects such as engineering, biology or management infor

  6. 3D characterization of the forces in optical traps based on counter-propagation beams shaped by a spatial light modulator

    DEFF Research Database (Denmark)

    Kristensen, M. V.; Lindballe, T.; Kylling, A.

    2010-01-01

    An experimental characterization of the 3D forces, acting on a trapped polystyrene bead in a counter-propagating beam geometry, is reported. Using a single optical trap with a large working distance (in the BioPhotonics Workstation), we simultaneously measure the transverse and longitudinal...... power of 2x35 mW) for displacements in opposite directions. The Equipartition method is limited by mechanical noise and is shown to be applicable only when the total laser power in a single 10 µm counter-propagating trap is below 2x20 mW....

  7. Focusing light through dynamical samples using fast continuous wavefront optimization.

    Science.gov (United States)

    Blochet, B; Bourdieu, L; Gigan, S

    2017-12-01

    We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO 2 particles in glycerol with tunable temporal stability.

  8. Light Beam Generation

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method and a system for synthesizing a set of controllable light beams by provision of a system for synthesizing a set of light beams, comprising a spatially modulated light source for generation of electromagnetic radiation with a set of replicas of a predetermined......(x-xs, y-ys), a Fourier transforming lens for Fourier transforming the electromagnetic radiation, a first spatial light modulator for phase shifting the Fourier transformed electromagnetic radiation with the phase -F(u, v) of S*, S* is the complex conjugate of the Fourier transformed symbol s, a Fourier...... transforming lens for Inverse Fourier transforming the spatially modulated radiation, whereby a set of light beams are formed propagating through the inverse Fourier plane (x', y') at desired positions (x's, y's), and a controller for controlling the position of a replica of the symbol, s, for movement...

  9. Effect of vanillin on methylene blue plus light-induced single-strand breaks in plasmid pBR322 DNA.

    Science.gov (United States)

    Kumar, S S; Ghosh, A; Devasagayam, T P; Chauhan, P S

    2000-09-20

    The ability of vanillin (4-hydroxy-3-methoxybenzaldehyde), a naturally occurring food flavouring agent, in inhibiting photosensitization-induced single-strand breaks (ssbs) in plasmid pBR322 DNA has been examined in an in vitro system, independent of DNA repair/replication processes. Photosensitization of DNA with methylene blue, visible light and oxygen, induced ssbs resulting in the production of open circular form (OC form) in a concentration-dependent manner. The yield of OC form induced by photosensitization was increased several-fold by deuteration of the buffer and was found to be inhibited by sodium azide, a scavenger of singlet oxygen (1O(2)). Vanillin, per se, did not induce but inhibited photosensitization-induced ssbs in plasmid DNA, at millimolar concentrations. The inhibitory effect of vanillin was both concentration- and time-dependent. On a molar basis, vanillin was, however, less effective than trolox, a water-soluble analogue of alpha-tocopherol. Photosensitization by methylene blue system generates singlet oxygen, as one of the major components of ROS. Therefore, interaction of singlet oxygen with vanillin was investigated. The rate constant of vanillin with 1O(2) was estimated to be 5.93x10(7)M(-1)s(-1) and that of sodium azide as 2. 7x10(8)M(-1)s(-1). The present investigations show that vanillin can protect against photosensitization-induced ssbs in the plasmid pBR322 DNA, and this effect may partly be due to its ability to scavenge 1O(2).

  10. Single-Particle Measurements of Midlatitude Black Carbon and Light-Scattering Aerosols from the Boundary Layer to the Lower Stratosphere

    Science.gov (United States)

    Schwartz, J. P.; Gao, R. S.; Fahey, D. W.; Thomson, D. S.; Watts, L. A.; Wilson, J. C.; Reeves, J. M.; Darbeheshti, M.; Baumgardner, D. G.; Kok, G. L.; hide

    2006-01-01

    A single-particle soot photometer (SP2) was flown on a NASA WB-57F high-altitude research aircraft in November 2004 from Houston, Texas. The SP2 uses laser-induced incandescence to detect individual black carbon (BC) particles in an air sample in the mass range of approx.3-300 fg (approx.0.15-0.7 microns volume equivalent diameter). Scattered light is used to size the remaining non-BC aerosols in the range of approx.0.17-0.7 microns diameter. We present profiles of both aerosol types from the boundary layer to the lower stratosphere from two midlatitude flights. Results for total aerosol amounts in the size range detected by the SP2 are in good agreement with typical particle spectrometer measurements in the same region. All ambient incandescing particles were identified as BC because their incandescence properties matched those of laboratory-generated BC aerosol. Approximately 40% of these BC particles showed evidence of internal mixing (e.g., coating). Throughout profiles between 5 and 18.7 km, BC particles were less than a few percent of total aerosol number, and black carbon aerosol (BCA) mass mixing ratio showed a constant gradient with altitude above 5 km. SP2 data was compared to results from the ECHAM4/MADE and LmDzT-INCA global aerosol models. The comparison will help resolve the important systematic differences in model aerosol processes that determine BCA loadings. Further intercomparisons of models and measurements as presented here will improve the accuracy of the radiative forcing contribution from BCA.

  11. Influence of soot mixing state on aerosol light absorption and single scattering albedo during air mass aging at a polluted regional site in northeastern China

    Science.gov (United States)

    Cheng, Y. F.; Berghof, M.; Garland, R. M.; Wiedensohler, A.; Wehner, B.; Müller, T.; Su, H.; Zhang, Y. H.; Achtert, P.; Nowak, A.; PöSchl, U.; Zhu, T.; Hu, M.; Zeng, L. M.

    2009-01-01

    An aerosol optical closure study was performed using the observed high time- and size-resolved soot mixing states determined by a Volatility Tandem Differential Mobility Analyzer (VTDMA) at a polluted regional site, Yufa, in the south of Beijing during the summer of 2006. Good agreement was found between the simulated and measured aerosol absorption (σap, R = 0.9) and scattering (σsp, R ≥ 0.95). The soot mixing state at Yufa can be generally determined by VTDMA, in terms of properly predicting the σap using a simple optical model combined with spherical homogeneous and core-shell coated Mie codes. The possible uncertainties in the modeled σap were discussed. Rapid soot aging was observed, which led to large variations in the fractional contributions to σap by externally mixed and coated soot. On average, about 37% of the σap (˜10-60%) arose by the coated soot. The coating enhancement in σap and σsp of the coated soot can reach up to a factor of 8-10 within several hours owing to the secondary processing during daytime. It was contributed not only by the increased thickness of coating shell, but also the transition of soot from externally mixed to coated one. Hence, assuming constant soot mixing state for the regional climate model is not realistic and may lead to uncertainties. In the highly polluted region in northeastern China, the aerosol single scattering albedo may increase very fast owing to the rapid secondary particle formation and condensation (up to 0.90-0.95). This increase took place although the concurrent coating processing enhanced the light absorption capability of soot.

  12. Dead reckoning (path integration) requires the hippocampal formation: evidence from spontaneous exploration and spatial learning tasks in light (allothetic) and dark (idiothetic) tests.

    Science.gov (United States)

    Whishaw, I Q; Hines, D J; Wallace, D G

    2001-12-14

    Animals navigate using cues generated by their own movements (self-movement cues or idiothetic cues), as well as the cues they encounter in their environment (distal cues or allothetic cues). Animals use these cues to navigate in two different ways. When dead reckoning (deduced reckoning or path integration), they integrate self-movement cues over time to locate a present position or to return to a starting location. When piloting, they use allothetic cues as beacons, or they use the relational properties of allothetic cues to locate places in space. The neural structures involved in cue use and navigational strategies are still poorly understood, although considerable attention is directed toward the contributions of the hippocampal formation (hippocampus and associated pathways and structures, including the fimbria-fornix and the retrosplenial cortex). In the present study, using tests in allothetic and idiothetic paradigms, we present four lines of evidence to support the hypothesis that the hippocampal formation plays a central role in dead reckoning. (1) Control but not fimbria-fornix lesion rats can return to a novel refuge location in both light and dark (infrared) food carrying tasks. (2). Control but not fimbria-fornix lesion rats make periodic direct high velocity returns to a starting location in both light and dark exploratory tests. Control but not fimbria-fornix rats trained in the light to carry food from a fixed location to a refuge are able to maintain accurate outward and homebound trajectories when tested in the dark. (3). Control but not fimbria-fornix rats are able to correct an outward trajectory to a food source when the food source is moved when allothetic cues are present. These, tests of spontaneous exploration and foraging suggest a role for the hippocampal formation in dead reckoning.

  13. A Difference in Cutaneous Pigmentary Response to LED Versus Halogen Incandescent Visible Light: A Case Report from a Single Center, Investigational Clinical Trial Determining a Minimal Pigmentary Visible Light Dose.

    Science.gov (United States)

    Soleymani, Teo; Soter, Nicholas A; Folan, Lorcan M; Elbuluk, Nada; Okereke, Uchenna R; Cohen, David E

    2017-04-01

    BACKGROUND: While most of the attention regarding skin pigmentation has focused on the effects on ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. In this report, we describe a case of painful erythema and induration that resulted from direct irradiation of UV-naïve skin with visible LED light in a patient with Fitzpatrick type II skin. METHODS AND RESULTS: A 24-year-old healthy woman with Fitzpatrick type II skin presented to our department to participate in a clinical study. As part of the study, the subject underwent visible light irradiation with an LED and halogen incandescent visible light source. After 5 minutes of exposure, the patient complained of appreciable pain at the LED exposed site. Evaluation demonstrated erythema and mild induration. There were no subjective or objective findings at the halogen incandescent irradiated site, which received equivalent fluence (0.55 Watts / cm2). The study was halted as the subject was unable to tolerate the full duration of visible light irradiation. CONCLUSION: This case illustrates the importance of recognizing the effects of visible light on skin. While the vast majority of investigational research has focused on ultraviolet light, the effects of visible light have been largely overlooked and must be taken into consideration, in all Fitzpatrick skin types. J Drugs Dermatol. 2017;16(4):388-392..

  14. Problems associated with simulated light sensitometry for low-crossover medical x-ray films.

    Science.gov (United States)

    Haus, A G; Dickerson, R E

    1990-01-01

    Over the past ten years the evolution of medical x-ray films has been toward films with reduced intensifying-screen light crossover in order to reduce blur and obtain higher spatial resolution. For films with very low crossover, misleading and incorrect sensitometric data may be obtained for film contrast evaluation and processor control if a simulated light sensitometer with a single-sided, light-exposing device is used. Screen light exposures were made using an inverse square, intensity-scale sensitometer. Simulated light exposures were made using a widely used single-sided, simulated-light sensitometer commonly used for film processor quality control, and a new simulated-light sensitometer capable of producing either single- or double-sided sensitometric exposures. The films used included one single-emulsion film and three double-emulsion medical x-ray films with light-crossover values ranging from approximately 3% to 30%. Sensitometric data showed a significant distortion (bump) in the characteristic curve for the 3% light-crossover film exposed with the single-sided, simulated-light sensitometer.

  15. Light beams interaction with highly effective holographic diffraction structure formed in polymer-stabilized liquid crystal under the impact of arbitrarily spatially inhomogeneous electric field

    Science.gov (United States)

    Sharangovich, Sergey N.; Semkin, Artem O.

    2016-11-01

    In this work we developed the analytical model of highly effective diffraction on holographic diffraction structures in polymer-stabilized liquid crystals (PSLC) under the impact of arbitrarily inhomogeneous external electric field. The exact self-consistent analytical solutions are obtained by solving the system of coupled-wave equations describing the diffraction process by Riemann's method. They takes into account the electrically-induced phase mismatch changing's inhomogeneity caused by the strong adhesion between liquid crystal molecules and bounding surfaces. According to the obtained relations, numerical simulation of the diffraction characteristics under the influence of external fields with different form of spatial inhomogeneity was made. The simulation results show qualitative compliance with the earlier obtained results.

  16. Framework for developing a spatial walkability index (SWI) for the light-rail transit (LRT) stations in Kuala Lumpur city centre using analytical network process (ANP) and GIS

    Science.gov (United States)

    Naharudin, Nabilah; Ahamad, Mohd Sanusi S.; Sadullah, Ahmad Farhan Mohd

    2017-10-01

    In support to the nation's goal of developing a liveable city, Malaysian government aims to improve the mobility in Kuala Lumpur by providing good quality transit services across the city. However, the public starts to demand for more than just a connectivity between two points. They want their transit journey to be comfortable and pleasant from the very first mile. The key here is the first and last mile (FLM) of the transit service which defines their journey to access the station itself. The question is, does the existing transit services' FLM satisfy public's needs? Therefore, many studies had emerged in attempt to assess the pedestrian-friendliness. While most of them did base on the pedestrian's perceptions, there were also studies that spatially measured the connectivity and accessibility to various landuses and point of interests. While both can be a good method, their integration could actually produce a better assessment. However, till date, only a few studies had attempted to do so. This paper proposes a framework to develop a Spatial Walkability Index (SWI) by integrating a multicriteria evaluation technique, Analytical Network Process (ANP) and network analysis on geographical information system (GIS) platform. First, ANP will aggregate the degree of importance for each walkability criteria based on the pedestrian's perceptions. Then, the network analysis will use the weighted criteria as attributes to find the walkable routes within half mile radius from each station. The index will be calculated by rationing the total length of walkable routes in respect to the available footpath. The final outcome is a percentage of walkable FLM transit routes for each station which will be named as the SWI. It is expected that the developed framework can be applied in other cities across the globe. It can also be improvised to suit the demand and purpose there.

  17. The potential of Neganov-Luke amplified cryogenic light detectors and the scintillation-light quenching mechanism in CaWO4 single crystals in the context of the dark matter search experiment CRESST-II

    International Nuclear Information System (INIS)

    Roth, Sabine B.

    2013-01-01

    The matter in universe is dominated by currently unknown elementary particles, the dark matter. Within the CRESST collaboration, it is attempted to directly detect dark matter for the first time. The interaction of this unknown kind of matter in the detector material creates phonons and light and allows, thus, for the detection and identification of these unknown particles. Within the present work, a new method for detecting the created light was investigated and a microscopic theory of the light creation in the detector material was developed as well as confirmed by experiments.

  18. A method for the rapid generation of nonsequential light-response curves of chlorophyll fluorescence.

    Science.gov (United States)

    Serôdio, João; Ezequiel, João; Frommlet, Jörg; Laviale, Martin; Lavaud, Johann

    2013-11-01

    Light-response curves (LCs) of chlorophyll fluorescence are widely used in plant physiology. Most commonly, LCs are generated sequentially, exposing the same sample to a sequence of distinct actinic light intensities. These measurements are not independent, as the response to each new light level is affected by the light exposure history experienced during previous steps of the LC, an issue particularly relevant in the case of the popular rapid light curves. In this work, we demonstrate the proof of concept of a new method for the rapid generation of LCs from nonsequential, temporally independent fluorescence measurements. The method is based on the combined use of sample illumination with digitally controlled, spatially separated beams of actinic light and a fluorescence imaging system. It allows the generation of a whole LC, including a large number of actinic light steps and adequate replication, within the time required for a single measurement (and therefore named "single-pulse light curve"). This method is illustrated for the generation of LCs of photosystem II quantum yield, relative electron transport rate, and nonphotochemical quenching on intact plant leaves exhibiting distinct light responses. This approach makes it also possible to easily characterize the integrated dynamic light response of a sample by combining the measurement of LCs (actinic light intensity is varied while measuring time is fixed) with induction/relaxation kinetics (actinic light intensity is fixed and the response is followed over time), describing both how the response to light varies with time and how the response kinetics varies with light intensity.

  19. Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument

    Science.gov (United States)

    Kristin Lewis; William P. Arnott; Hans Moosmuller; Cyle E. Wold

    2008-01-01

    A dual-wavelength photoacoustic instrument operating at 405 and 870 nm was used during the 2006 Fire Lab at Missoula Experiment to measure light scattering and absorption by smoke from the combustion of a variety of biomass fuels. Simultaneous measurements of aerosol light scattering by reciprocal nephelometry within the instrument's acoustic resonator accompany...

  20. 1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator.

    Science.gov (United States)

    Liang, Jinyang; Kohn, Rudolph N; Becker, Michael F; Heinzen, Daniel J

    2009-04-01

    We demonstrate a digital micromirror device (DMD)-based optical system that converts a spatially noisy quasi-Gaussian to an eighth-order super-Lorentzian flat-top beam. We use an error-diffusion algorithm to design the binary pattern for the Texas Instruments DLP device. Following the DMD, a telescope with a pinhole low-pass filters the beam and scales it to the desired sized image. Experimental measurements show a 1% root-mean-square (RMS) flatness over a diameter of 0.28 mm in the center of the flat-top beam and better than 1.5% RMS flatness over its entire 1.43 mm diameter. The power conversion efficiency is 37%. We develop an alignment technique to ensure that the DMD pattern is correctly positioned on the incident beam. An interferometric measurement of the DMD surface flatness shows that phase uniformity is maintained in the output beam. Our approach is highly flexible and is able to produce not only flat-top beams with different parameters, but also any slowly varying target beam shape. It can be used to generate the homogeneous optical lattice required for Bose-Einstein condensate cold atom experiments.

  1. Photothermal desorption of single-walled carbon nanotubes and coconut shell-activated carbons using a continuous light source for application in air sampling.

    Science.gov (United States)

    Floyd, Evan L; Sapag, Karim; Oh, Jonghwa; Lungu, Claudiu T

    2014-08-01

    Many techniques exist to measure airborne volatile organic compounds (VOCs), each with differing advantages; sorbent sampling is compact, versatile, has good sample stability, and is the preferred technique for collecting VOCs for hygienists. Development of a desorption technique that allows multiple analyses per sample (similar to chemical desorption) with enhanced sensitivity (similar to thermal desorption) would be helpful to field hygienists. In this study, activated carbon (AC) and single-walled carbon nanotubes (SWNT) were preloaded with toluene vapor and partially desorbed with light using a common 12-V DC, 50-W incandescent/halogen lamp. A series of experimental chamber configurations were explored starting with a 500-ml chamber under static conditions, then with low ventilation and high ventilation, finally a 75-ml high ventilation chamber was evaluated. When preloaded with toluene and irradiated at the highest lamp setting for 4min, AC desorbed 13.9, 18.5, 23.8, and 45.9% of the loaded VOC mass, in each chamber configuration, respectively; SWNT desorbed 25.2, 24.3, 37.4, and 70.5% of the loaded VOC mass, respectively. SWNT desorption was significantly greater than AC in all test conditions (P = 0.02-<0.0001) demonstrating a substantial difference in sorbent performance. When loaded with 0.435mg toluene and desorbed at the highest lamp setting for 4min in the final chamber design, the mean desorption for AC was 45.8% (39.7, 52.0) and SWNT was 72.6% (68.8, 76.4) (mean represented in terms of 95% confidence interval). All desorption measurements were obtained using a field grade photoionization detector; this demonstrates the potential of using this technique to perform infield prescreening of VOC samples for immediate exposure feedback and in the analytical lab to introduce sample to a gas chromatograph for detailed analysis of the sample. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  2. Using light transmission to watch hydrogen diffuse.

    Science.gov (United States)

    Pálsson, Gunnar K; Bliersbach, Andreas; Wolff, Max; Zamani, Atieh; Hjörvarsson, Björgvin

    2012-06-12

    Because of its light weight and small size, hydrogen exhibits one of the fastest diffusion rates in solid materials, comparable to the diffusion rate of liquid water molecules at room temperature. The diffusion rate is determined by an intricate combination of quantum effects and dynamic interplay with the displacement of host atoms that is still only partially understood. Here we present direct observations of the spatial and temporal changes in the diffusion-induced concentration profiles in a vanadium single crystal and we show that the results represent the experimental counterpart of the full time and spatial solution of Fick's diffusion equation. We validate the approach by determining the diffusion rate of hydrogen in a single crystal vanadium (001) film, with net diffusion in the [110] direction.

  3. A compact Airy beam light sheet microscope with a tilted cylindrical lens.

    Science.gov (United States)

    Yang, Zhengyi; Prokopas, Martynas; Nylk, Jonathan; Coll-Lladó, Clara; Gunn-Moore, Frank J; Ferrier, David E K; Vettenburg, Tom; Dholakia, Kishan

    2014-10-01

    Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies on complex programming of spatial light modulators or specialized, custom made, optical elements. Here we present a straightforward and low-cost modification to the traditional light-sheet setup, based on the open-access light-sheet microscope OpenSPIM, to achieve Airy light-sheet illumination. This brings wide field single-photon light-sheet imaging to a broader range of endusers. Fluorescent microspheres embedded in agarose and a zebrafish larva were imaged to demonstrate how such a microscope can have a minimal footprint and cost without compromising on imaging quality.

  4. The enhancement of photo-thermo-electric conversion in tilted Bi2Sr2Co2O(y) thin films through coating a layer of single-wall carbon nanotubes light absorber.

    Science.gov (United States)

    Wang, Shufang; Bai, Zilong; Yan, Guoying; Zhang, Hongrui; Wang, Jianglong; Yu, Wei; Fu, Guangsheng

    2013-07-29

    Light-induced transverse thermoelectric effect has been investigated in c-axis tilted Bi(2)Sr(2)Co(2)O(y) thin films coated with a single-wall carbon nanotubes light absorption layer. Open-circuit voltage signals were detected when the sample surface was irradiated by different lasers with wavelengths ranging from ultraviolet to near-infrared and the voltage sensitivity was enhanced as a result of the increased light absorption at the carbon nanotubes layer. Moreover, the enhancement degree was found to be dependent on the laser wavelength as well as the absorption coating size. This work opens up new strategy toward the practical applications of layered cobaltites in photo-thermo-electric conversion devices.

  5. Light-induced phase separation (LIPS) in [Fe(ptz)6](BF4)2 spin-crossover single crystals: Experimental data revisited through optical microscope investigation

    International Nuclear Information System (INIS)

    Varret, Francois; Chong, Christian; Boukheddaden, Kamel; Goujon, Antoine

    2009-01-01

    We discuss the available experimental data for light-induced phase separation (LIPS) in the spin-crossover crystal [Fe(ptz) 6 ](BF 4 ) 2 . They are found in qualitative agreement with a spinodal instability process described by a macroscopic mean-field master equation. Sizable discrepancies with the model are discussed in terms of diffusion of light due to structural transformations of the crystal.

  6. Blazards variability detected by the spatial Fermi-LAT telescope. Study of 3C454.3 and development of an optimised light curves generation method

    International Nuclear Information System (INIS)

    Escande, L.

    2012-01-01

    The Fermi Gamma-ray Space Telescope was launched on 2008 June 11, carrying the Large Area Telescope (LAT), sensitive to gamma-rays in the 20 MeV - 300 GeV energy range. The data collected since then allowed to multiply by a factor of 10 the number of Active Galactic Nuclei (AGN) detected in the GeV range. Gamma-rays observed in AGNs come from energetic precesses bringing into play very high energy charged particles. These particles are confined in a magnetized plasma jet rising in a region close to the supermassive black hole in the center of the host galaxy. This jet moves away with velocities as high as 0.9999 c, forming in many cases radio lobes on kilo-parsec or even mega-parsec scales. Among the AGNs, those whose jet inclination angle to the line of sight is small are called blazars. The combination of this small inclination angle with relativistic ejection speeds led to relativistic effects: apparent superluminal motions, amplification of the luminosity and modification of the time scales. Blazars are characterized by extreme variability at all wavelengths, on time scales from a few minutes to several months. A temporal and spectral study of the most luminous of those detected by the LAT, 3C 454.3, was done so as to constrain emission models. A new method for generating adaptive-binning light curves is also suggested in this thesis. It allows to extract the maximum of information from the LAT data whatever the flux state of the source. (author)

  7. Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing

    Directory of Open Access Journals (Sweden)

    M. Joseph Hughes

    2014-05-01

    Full Text Available The use of Landsat data to answer ecological questions is greatly increased by the effective removal of cloud and cloud shadow from satellite images. We develop a novel algorithm to identify and classify clouds and cloud shadow, SPARCS: Spatial Procedures for Automated Removal of Cloud and Shadow. The method uses a neural network approach to determine cloud, cloud shadow, water, snow/ice and clear sky classification memberships of each pixel in a Landsat scene. It then applies a series of spatial procedures to resolve pixels with ambiguous membership by using information, such as the membership values of neighboring pixels and an estimate of cloud shadow locations from cloud and solar geometry. In a comparison with FMask, a high-quality cloud and cloud shadow classification algorithm currently available, SPARCS performs favorably, with substantially lower omission errors for cloud shadow (8.0% and 3.2%, only slightly higher omission errors for clouds (0.9% and 1.3%, respectively and fewer errors of commission (2.6% and 0.3%. Additionally, SPARCS provides a measure of uncertainty in its classification that can be exploited by other algorithms that require clear sky pixels. To illustrate this, we present an application that constructs obstruction-free composites of images acquired on different dates in support of a method for vegetation change detection.

  8. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China

    Science.gov (United States)

    Gao, Zhaofu; Zhu, Xiangkun; Sun, Jian; Luo, Zhaohua; Bao, Chuang; Tang, Chao; Ma, Jianxiong

    2018-01-01

    Analyses of sphalerite minerals from the characteristic brecciated Zn-Pb ores of the main ore body in the giant Dongshengmiao deposit have revealed variations in δ66Zn from 0.17 to 0.40‰ and in δ56Fe from -1.78 to -0.35‰. Further, the investigated pyrrhotite samples have iron that is isotopically similar to that of associated sphalerite minerals. The most distinctive pattern revealed by the zinc and iron isotope data is the lateral trend of increasing δ66Zn and δ56Fe values from southwest to northeast within the main ore body. The lead isotopic homogeneity of ore sulfides from the main ore body suggests that there is only one significant source for metal, thus precluding the mixing of multiple metal sources as the key factor controlling spatial variations of zinc and iron isotopes. The most likely control on spatial variations is Rayleigh fractionation during hydrothermal fluid flow, with lighter Zn and Fe isotopes preferentially incorporated into the earliest sulfides to precipitate from fluids. Precipitations of sphalerite and pyrrhotite have played vital roles in the Zn and Fe isotopic variations, respectively, of the ore-forming system. Accordingly, the larger isotopic variability for Fe than Zn within the same hydrothermal system perhaps resulted from a larger proportion of precipitation for pyrrhotite than for sphalerite. The lateral trend pattern revealed by the zinc and iron isotope data is consistent with the occurrence of a cystic-shaped breccia zone, which is characterized by marked elevation in Cu. The results further confirm that Zn and Fe isotopes can be used as a vectoring tool for mineral prospecting.

  9. Quantum states of light

    CERN Document Server

    Furusawa, Akira

    2015-01-01

    This book explains what quantum states of light look like. Of special interest, a single photon state is explained by using a wave picture, showing that it corresponds to the complementarity of a quantum. Also explained is how light waves are created by photons, again corresponding to the complementarity of a quantum. The author shows how an optical wave is created by superposition of a "vacuum" and a single photon as a typical example. Moreover, squeezed states of light are explained as "longitudinal" waves of light and Schrödinger's cat states as macroscopic superposition states.

  10. The efficient model to define a single light source position by use of high dynamic range image of 3D scene

    Science.gov (United States)

    Wang, Xu-yang; Zhdanov, Dmitry D.; Potemin, Igor S.; Wang, Ying; Cheng, Han

    2016-10-01

    One of the challenges of augmented reality is a seamless combination of objects of the real and virtual worlds, for example light sources. We suggest a measurement and computation models for reconstruction of light source position. The model is based on the dependence of luminance of the small size diffuse surface directly illuminated by point like source placed at a short distance from the observer or camera. The advantage of the computational model is the ability to eliminate the effects of indirect illumination. The paper presents a number of examples to illustrate the efficiency and accuracy of the proposed method.

  11. Spatial Sense.

    Science.gov (United States)

    Del Grande, John

    1990-01-01

    Describes seven spatial abilities related to mathematics including eye-motor coordination, figure-ground perception, perceptual constancy, position-in-space perception, perception of spatial relationships, visual discrimination, and visual memory. Discusses the relationship of the spatial abilities to the study of geometry. Lists 19 references.…

  12. The Light Green Cells of Lymnaea: a neuroendocrine model system for stimulus-induced expression of multiple peptide genes in a single cell type

    NARCIS (Netherlands)

    Geraerts, W. P.; Smit, A. B.; Li, K. W.; Hordijk, P. L.

    1992-01-01

    We review recent experiments showing that the cerebral neuroendocrine Light Green Cells (LGCs) of the freshwater snail, Lymnaea stagnalis, express a family of distinct though related molluscan insulin-related peptide (MIP) genes. The LGCs are involved in the regulation of a wide range of

  13. 3.5 W of diffraction-limited green light at 515 nm from SHG of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    Multi-Watt efficient compact green laser sources are required for a number of applications e.g. within biophotonics, laser pumping and laser displays. We present generation of 3.5 W of diffraction-limited green light at 515 nm by second harmonic generation (SHG) of a tapered diode laser, itself...

  14. Single-Molecule Luminescence and High Efficiency Photovoltaic Cells Based on Percolated Conducting Carbon Nanotubes Scaffolds Templated with Light-Harvesting Conjugated Polymers and Nanohybrids

    National Research Council Canada - National Science Library

    Yang, Arnold C

    2009-01-01

    .... Nanocomposites constructed by surface-grafted multiwall carbon nanotubes (CNTs) with conjugated polymers dispersed in a polymer matrix were synthesized to form novel optoelectronic materials that exploit single-molecule effects...

  15. Directional emission of single photons from small atomic samples

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; V. Poulsen, Uffe; Mølmer, Klaus

    2013-01-01

    We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state i...... is coupled by a classical laser field to an optically excited state which rapidly decays to the ground atomic state. Our model accounts for the different field polarization components via re-absorption and emission of light by the Zeeman manifold of optically excited states.......We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state...

  16. Spatial Modulation in the Underwater Acoustic Communication Channel

    National Research Council Canada - National Science Library

    Kilfoyle, Daniel

    2000-01-01

    .... The technique, termed spatial modulation, seeks to control the spatial distribution of signal energy such that multiple parallel communication channels are supported by the single, physical ocean channel...

  17. Statistical studies on the light output and energy resolution of small LSO single crystals with different surface treatments combined with various reflector materials

    CERN Document Server

    Heinrichs, U; Bussmann, N; Engels, R; Kemmerling, G; Weber, S; Ziemons, K

    2002-01-01

    The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2x2x10 mm sup 3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO sub 4) and exposed to a sup 2 sup 2 Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551+-35% by mechanical polishing the surface compared to 100+-5% for raw crystals. Etching the surface increased the light output to 441+-29%. The untreated crystals had an energy resolution of 24.6+-4.0%. By mechanical polishing the surfac...

  18. Analysis by Monte Carlo simulations of the sensitivity to single event upset of SRAM memories under spatial proton or terrestrial neutron environment

    International Nuclear Information System (INIS)

    Lambert, D.

    2006-07-01

    Electronic systems in space and terrestrial environments are subjected to a flow of particles of natural origin, which can induce dysfunctions. These particles can cause Single Event Upsets (SEU) in SRAM memories. Although non-destructive, the SEU can have consequences on the equipment functioning in applications requiring a great reliability (airplane, satellite, launcher, medical, etc). Thus, an evaluation of the sensitivity of the component technology is necessary to predict the reliability of a system. In atmospheric environment, the SEU sensitivity is mainly caused by the secondary ions resulting from the nuclear reactions between the neutrons and the atoms of the component. In space environment, the protons with strong energies induce the same effects as the atmospheric neutrons. In our work, a new code of prediction of the rate of SEU has been developed (MC-DASIE) in order to quantify the sensitivity for a given environment and to explore the mechanisms of failures according to technology. This code makes it possible to study various technologies of memories SRAM (Bulk and SOI) in neutron and proton environment between 1 MeV and 1 GeV. Thus, MC-DASIE was used with experiment data to study the effect of integration on the sensitivity of the memories in terrestrial environment, a comparison between the neutron and proton irradiations and the influence of the modeling of the target component on the calculation of the rate of SEU. (author)

  19. Blumeria graminis interactions with barley conditioned by different single R genes demonstrate a temporal and spatial relationship between stomatal dysfunction and cell death.

    Science.gov (United States)

    Prats, Elena; Gay, Alan P; Roberts, Peter C; Thomas, Barry J; Sanderson, Ruth; Paveley, Neil; Lyngkjaer, Michael F; Carver, Tim L W; Mur, Luis A J

    2010-01-01

    Hypersensitive response (HR) against Blumeria graminis f. sp. hordei infection in barley (Hordeum vulgare) was associated with stomata "lock-up" leading to increased leaf water conductance (g(l)). Unique spatio-temporal patterns of HR formation occurred in barley with Mla1, Mla3, or MlLa R genes challenged with B. graminis f. sp. hordei. With Mla1, a rapid HR, limited to epidermal cells, arrested fungal growth before colonies initiated secondary attacks. With Mla3, mesophyll HR preceded that in epidermal cells whose initial survival supported secondary infections. With MlLa, mesophyll survived and not all attacked epidermal cells died immediately, allowing colony growth and secondary infection until arrested. Isolines with Mla1, Mla3, or MlLa genes inoculated with B. graminis f. sp. hordei ranging from 1 to 100 conidia mm(2) showed abnormally high g(l) during dark periods whose timing and extent correlated with those of each HR. Each isoline showed increased dark g(l) with the nonpathogen B. graminis f. sp. avenae which caused a single epidermal cell HR. Guard cell autofluorescence was seen only after drying of epidermal strips and closure of stomata suggesting that locked open stomata were viable. The data link stomatal lock-up to HR associated cell death and has implications for strategies for selecting disease resistant genotypes.

  20. Differentially-driven MEMS spatial light modulator

    Science.gov (United States)

    Stappaerts, Eddy A.

    2004-09-14

    A MEMS SLM and an electrostatic actuator associated with a pixel in an SLM. The actuator has three electrodes: a lower electrode; an upper electrode fixed with respect to the lower electrode; and a center electrode suspended and actuable between the upper and lower electrodes. The center electrode is capable of resiliently-biasing to restore the center electrode to a non-actuated first equilibrium position, and a mirror is operably connected to the center electrode. A first voltage source provides a first bias voltage across the lower and center electrodes and a second voltage source provides a second bias voltage across the upper and center electrodes, with the first and second bias voltages determining the non-actuated first equilibrium position of the center electrode. A third voltage source provides a variable driver voltage across one of the lower/center and upper/center electrode pairs in series with the corresponding first or second bias voltage, to actuate the center electrode to a dynamic second equilibrium position.