The Spatial Dimension of House Prices
Directory of Open Access Journals (Sweden)
Yunlong Gong
2017-04-01
This research underlines market forces in the operation of Chinese interurban housing markets in the post-reform era, and contributes to the understanding of spatial dimension of house prices, not only in China, but also in other market-oriented economies.
The spatial dimension of cycle logistics
Directory of Open Access Journals (Sweden)
Luca Staricco
2016-08-01
Full Text Available Cycle logistics is emerging as a promising alternative in urban freight transport. Compared to fossil fuelled vans, the use of cycles for delivering goods within urban areas offers advantages in terms of environmental friendliness, economic efficiency, flexibility, and liveability of urban neighbourhood. At the same time, cycle logistics has to face limits in terms of weight and volume of goods that can be delivered, distances that can be covered, and spatial urban structures that can be served. This latter issue has till now received less attention in the scientific literature: it is generally recognized that cycle logistics performs at its best in inner urban areas, but no systematic study has been realized to identify specific spatial requisites for the effectiveness of cycle logistics. This paper provides a brief review of the main issues that emerge from the literature over cycle logistics, and contributes to stimulate the debate over the spatial dimension of cycle logistics: it presents a classification of cycle logistics schemes, on the basis of their integration with other urban logistic facilities and of the spatial structure of delivery operations. A three-level classification is proposed, depending on the type of goods consolidation: only distribution without consolidation, consolidation in a fixed urban consolidation centre, or consolidation in a mobile depot; for each level, operational examples and case studies are provided. This systematizing typology could support both public and private operators in decisions about the organization of cycle logistics facilities, such as the location of urban consolidation centres or the composition of cycle fleets.
Interacting fermions in one spatial dimensions
International Nuclear Information System (INIS)
Wolf, D.
1982-01-01
This thesis contains in its first part a critical survey about the method of the bosonization of fermi fields in one spatial dimension and its application to the Luttinger and the massive Thirring model. The first chapter served for the explanation of the term of the unitary inequivalence. Thereby two generally valid facts could be demonstrated very illustratively by the example of a fermion algebra and its representations, namely first that infinite, direct product space are not separable, and second that weak equivalence of the vacua is equivalent to the unitary equivalence of the corresponding representations of the field algebra. In the second part the statement first studied by Luther (1976) and since then often cited, that the continuum limit of the Heisenberg model is the massive Thirring model. It is concluded that it can up to today not be considered as proved although indications for its validity can be found. (orig./HSI) [de
Spatial dimensions of the demand for homeownership
DEFF Research Database (Denmark)
Sørensen, Jens Fyhn Lykke
2010-01-01
This paper introduces the concept of "spatial location satisfaction" and examines its relation to the individual demand for homeownership. Based on a Danish questionnaire survey carried out in a rural study area (N=1000) and in an urban study area (N=1015), a tenure choice model was estimated...... relating spatial location satisfaction to homeownership, while adjusting for control variables. The spatial location satisfaction variable was constructed from two questionnaire items asking respondents to state their actual and preferred place of settlement given five location type options: large city......, medium-sized city, small town, village, and "in the countryside". As hypothesised, the study shows a strong association between spatial location satisfaction and the individual demand for homeownership. This association is robust across study areas. Spatial location satisfaction is highest in the rural...
Investigating the Spatial Dimension of Food Access
Directory of Open Access Journals (Sweden)
Jackie Yenerall
2017-08-01
Full Text Available The purpose of this article is to investigate the sensitivity of food access models to a dataset’s spatial distribution and the empirical definition of food access, which contributes to understanding the mixed findings of previous studies. Data was collected in the Dan River Region in the United States using a telephone survey for individual-level variables (n = 784 and a store audit for the location of food retailers and grocery store quality. Spatial scanning statistics assessed the spatial distribution of obesity and detected a cluster of grocery stores overlapping with a cluster of obesity centered on a grocery store suggesting that living closer to a grocery store increased the likelihood of obesity. Logistic regression further examined this relationship while controlling for demographic and other food environment variables. Similar to the cluster analysis results, increased distance to a grocery store significantly decreased the likelihood of obesity in the urban subsample (average marginal effects, AME = −0.09, p-value = 0.02. However, controlling for grocery store quality nullified these results (AME = −0.12, p-value = 0.354. Our findings suggest that measuring grocery store accessibility as the distance to the nearest grocery store captures variability in the spatial distribution of the health outcome of interest that may not reflect a causal relationship between the food environment and health.
Tourism: spatial dimension and driving force
Lourenço, Nelson; Jorge, Rosário
2003-01-01
Spatial and socio-economic impacts of tourism have been quite significant in some regions, causing changes in the economic structure, stimulating some sectors and displacing others. Tourism creates pressures on different domains—natural resources and environment, the built environment, and hospitality and cultural resources. The tourism infrastructure has impacted on the existing social, economic, and environmental dynamics of Goan society. Some of the tourism-related influences are discu...
Towards a fourth spatial dimension of brain activity.
Tozzi, Arturo; Peters, James F
2016-06-01
Current advances in neurosciences deal with the functional architecture of the central nervous system, paving the way for general theories that improve our understanding of brain activity. From topology, a strong concept comes into play in understanding brain functions, namely, the 4D space of a "hypersphere's torus", undetectable by observers living in a 3D world. The torus may be compared with a video game with biplanes in aerial combat: when a biplane flies off one edge of gaming display, it does not crash but rather it comes back from the opposite edge of the screen. Our thoughts exhibit similar behaviour, i.e. the unique ability to connect past, present and future events in a single, coherent picture as if we were allowed to watch the three screens of past-present-future "glued" together in a mental kaleidoscope. Here we hypothesize that brain functions are embedded in a imperceptible fourth spatial dimension and propose a method to empirically assess its presence. Neuroimaging fMRI series can be evaluated, looking for the topological hallmark of the presence of a fourth dimension. Indeed, there is a typical feature which reveal the existence of a functional hypersphere: the simultaneous activation of areas opposite each other on the 3D cortical surface. Our suggestion-substantiated by recent findings-that brain activity takes place on a closed, donut-like trajectory helps to solve long-standing mysteries concerning our psychological activities, such as mind-wandering, memory retrieval, consciousness and dreaming state.
Fractal dimension evolution and spatial replacement dynamics of urban growth
International Nuclear Information System (INIS)
Chen Yanguang
2012-01-01
Highlights: ► The fractal dimension growth can be modeled by Boltzmann’s equation. ► Boltzmann’s model suggests urban spatial replacement dynamics. ► If the rate of urban growth is too high, periodic oscillations or chaos will arise. ► Chaos is associated with fractals by the fractal dimension evolution model. ► The fractal dimension of urban form implies the space-filling ratio of a city. - Abstract: This paper presents a new perspective of looking at the relation between fractals and chaos by means of cities. Especially, a principle of space filling and spatial replacement is proposed to interpret the fractal dimension of urban form. The fractal dimension evolution of urban growth can be empirically modeled with Boltzmann’s equation. For the normalized data, Boltzmann’s equation is just equivalent to the logistic function. The logistic equation can be transformed into the well-known 1-dimensional logistic map, which is based on a 2-dimensional map suggesting spatial replacement dynamics of city development. The 2-dimensional recurrence relations can be employed to generate the nonlinear dynamical behaviors such as bifurcation and chaos. A discovery is thus made in this article that, for the fractal dimension growth following the logistic curve, the normalized dimension value is the ratio of space filling. If the rate of spatial replacement (urban growth) is too high, the periodic oscillations and chaos will arise. The spatial replacement dynamics can be extended to general replacement dynamics, and bifurcation and chaos mirror a process of complex replacement.
Neighborhood Poverty and Nonmarital Fertility: Spatial and Temporal Dimensions
South, Scott J.; Crowder, Kyle
2010-01-01
Data from 4,855 respondents to the Panel Study of Income Dynamics were used to examine spatial and temporal dimensions of the effect of neighborhood poverty on teenage premarital childbearing. Although high poverty in the immediate neighborhood increased the risk of becoming an unmarried parent, high poverty in surrounding neighborhoods reduced…
Spatially parallel processing of within-dimension conjunctions.
Linnell, K J; Humphreys, G W
2001-01-01
Within-dimension conjunction search for red-green targets amongst red-blue, and blue-green, nontargets is extremely inefficient (Wolfe et al, 1990 Journal of Experimental Psychology: Human Perception and Performance 16 879-892). We tested whether pairs of red-green conjunction targets can nevertheless be processed spatially in parallel. Participants made speeded detection responses whenever a red-green target was present. Across trials where a second identical target was present, the distribution of detection times was compatible with the assumption that targets were processed in parallel (Miller, 1982 Cognitive Psychology 14 247-279). We show that this was not an artifact of response-competition or feature-based processing. We suggest that within-dimension conjunctions can be processed spatially in parallel. Visual search for such items may be inefficient owing to within-dimension grouping between items.
Spatial attention can be biased towards an expected dimension.
Burnett, Katherine E; Close, Alex C; d'Avossa, Giovanni; Sapir, Ayelet
2016-11-01
A commonly held view in both exogenous and endogenous orienting is that spatial attention is associated with enhanced processing of all stimuli at the attended location. However, we often search for a specific target at a particular location, so an observer should be able to jointly specify the target identity and expected location. Whether attention can bias dimension-specific processes at a particular location is not yet clear. We used a dual task to examine the effects of endogenous spatial cues on the accuracy of perceptual judgments of different dimensions. Participants responded to a motion target and a colour target, presented at the same or different locations. We manipulated a central cue to predict the location of the motion or colour target. While overall performance in the two tasks was comparable, cueing effects were larger for the target whose location was predicted by the cue, implying that when attending a particular location, processing of the likely dimension was preferentially enhanced. Additionally, an asymmetry between the motion and colour tasks was seen; motion was modulated by attention, and colour was not. We conclude that attention has some ability to select a dimension at a particular location, indicating integration of spatial and feature-based attention.
Spatial Correlation Characterization of a Full Dimension Massive MIMO System
Nadeem, Qurrat-Ul-Ain
2017-02-07
Elevation beamforming and Full Dimension MIMO (FD-MIMO) are currently active areas of research and standardization in 3GPP LTE-Advanced. FD-MIMO utilizes an active antenna array system (AAS), that provides the ability of adaptive electronic beam control over the elevation dimension, resulting in a better system performance as compared to the conventional 2D MIMO systems. FD-MIMO is more advantageous when amalgamated with massive MIMO systems, in that it exploits the additional degrees of freedom offered by a large number of antennas in the elevation. To facilitate the evaluation of these systems, a large effort in 3D channel modeling is needed. This paper aims at providing a summary of the recent 3GPP activity around 3D channel modeling. The 3GPP proposed approach to model antenna radiation pattern is compared with the ITU approach. A closed-form expression is then worked out for the spatial correlation function (SCF) for channels constituted by individual antenna elements in the array by exploiting results on spherical harmonics and Legendre polynomials. The proposed expression can be used to obtain correlation coefficients for any arbitrary 3D propagation environment. Simulation results corroborate and study the derived spatial correlation expression. The results are directly applicable to the analysis of future 5G 3D massive MIMO systems.
Virial Theorem for Nonrelativistic Quantum Fields in D Spatial Dimensions
International Nuclear Information System (INIS)
Lin, Chris L.; Ordóñez, Carlos R.
2015-01-01
The virial theorem for nonrelativistic complex fields in D spatial dimensions and with arbitrary many-body potential is derived, using path-integral methods and scaling arguments recently developed to analyze quantum anomalies in low-dimensional systems. The potential appearance of a Jacobian J due to a change of variables in the path-integral expression for the partition function of the system is pointed out, although in order to make contact with the literature most of the analysis deals with the J=1 case. The virial theorem is recast into a form that displays the effect of microscopic scales on the thermodynamics of the system. From the point of view of this paper the case usually considered, J=1, is not natural, and the generalization to the case J≠1 is briefly presented
Non-Abelian gauge fields in two spatial dimensions
International Nuclear Information System (INIS)
Hagen, C.R.
1987-01-01
Generalizing an earlier work on the Abelian case the most general non-Abelian gauge theory in two spatial dimensions is derived. It is shown that local gauge invariance leads to a new term in the action which in turn requires that the gauge current operator have a part which is bilinear in the non-Abelian gauge field-strength tensor. Although a radiation (or axial) gauge quantization is possible, this approach is found not to yield the maximal set of commutation relations among the basic fields. The latter goal can be accomplished only by a rather unusual gauge choice which has not previously been studied. Quantization conditions on the coupling constant implied by invariance under large gauge transformations are also derived
Impact of spatial dimension on structural ordering in metallic glass.
Hu, Yuan-Chao; Tanaka, Hajime; Wang, Wei-Hua
2017-08-01
Metallic glasses (MGs) have so far attracted considerable attention for their applications as bulk materials. However, new physics and applications often emerge by dimensional reduction from three dimensions (3D) to two dimensions (2D). Here, we study, by molecular dynamics simulations, how the liquid-to-glass transition of a binary Cu_{50}Zr_{50} MG is affected by spatial dimensionality. We find clear evidence that crystal-like structural ordering controls both dynamic heterogeneity and slow dynamics, and thus plays a crucial role in the formation of the 2DMG. Although the 2DMG reproduces the dynamical behaviors of its 3D counterpart by considering Mermin-Wagner-type fluctuations specific to 2D, this atomic-scale structural mechanism is essentially different from that for the 3DMG in which icosahedral clusters incompatible with crystallographic symmetry play a key role in glassy behaviors. Our finding provides a structural mechanism for the formation of 2DMGs, which cannot be inferred from the knowledge of 3DMGs. The results suggest a structural basis for the glass transition in 2DMG and provide possible explanations for some previous experimental observations in ultrathin film MGs.
Spatial Dimension as a Variable in Quantum Mechanics
Doren, Douglas James
Several approximation methods potentially useful in electronic structure calculations are developed. These methods all treat the spatial dimension, D, as a variable. In an Introduction, the motivations for these methods are described, with special attention to the semiclassical 1/D expansion. Several terms in this expansion have been calculated for two-electron atoms. The results have qualitative appeal but poor convergence properties when D = 3. Chapter 1 shows that this convergence problem is due to singularities in the energy at D = 1 and a method of removing their effects is demonstrated. Chapter 2 treats several model problems, showing how to identify special dimensions at which the energy becomes singular or the Hamiltonian simplifies. Expansions are developed about these special finite values of D which are quite accurate at low order, regardless of the physical parameters of the Hamiltonian. In Chapter 3, expansions about singular points in the energy at finite values of D are used to resum the 1/D series in cases where its leading orders are not sufficient. This leads to a hybrid expansion which typically improves on both the 1/D and the finite D series. These methods are applied in Chapter 4 to two -electron atoms. The ground state energy of few-electron systems is dominated by the presence of a pole when D = 1. The residue of this pole is determined by the eigenvalue of a simple limiting Schrodinger equation. The limit and first order correction are determined for both unapproximated nonrelativistic two-electron atoms and the Hartree-Fock approximation to them. The hybrid expansion using only the first few terms in the 1/D series determines the energy at arbitrary D, providing estimates accurate to four or five figures when D = 3. Degeneracies between D = 3 states and those in nonphysical dimensions are developed in Chapter 5 which provide additional applications for this series. Chapter 6 illustrates these methods in an application to the H(' -) ion, an
Directory of Open Access Journals (Sweden)
Jia Zheqiang
2017-01-01
Full Text Available The water-soaking time affects the physical and mechanical properties of coals, and the temporal and spatial evolution of acoustic emissions reflects the fracture damage process of rock. This study conducted uniaxial compression acoustic emissions tests of coal samples with different water-soaking times to investigate the influence of water-soaking time on the acoustic emissions characteristics and spatial fractal dimensions during the deformation and failure process of coals. The results demonstrate that the acoustic emissions characteristics decrease with increases in the water-soaking time. The acoustic emissions spatial fractal dimension changes from a single dimensionality reduction model to a fluctuation dimensionality reduction model, and the stress level of the initial descending point of the fractal dimension increases. With increases in the water-soaking time, the destruction of coal transitions from continuous intense failure throughout the process to a lower release of energy concentrated near the peak strength.
Fractal Dimension analysis for seismicity spatial and temporal ...
Indian Academy of Sciences (India)
23
The research can further promote the application of fractal theory in the study ... spatial-temporal propagation characteristics of seismic activities, fractal theory is not ... provide a theoretical basis for the prevention and control of earthquakes. 2. ... random self-similar structure of the earthquake in the time series and the spatial.
Three-dimension reconstruction based on spatial light modulator
International Nuclear Information System (INIS)
Deng Xuejiao; Zhang Nanyang; Zeng Yanan; Yin Shiliang; Wang Weiyu
2011-01-01
Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .
Three-dimension reconstruction based on spatial light modulator
Energy Technology Data Exchange (ETDEWEB)
Deng Xuejiao; Zhang Nanyang; Zeng Yanan; Yin Shiliang; Wang Weiyu, E-mail: daisydelring@yahoo.com.cn [Huazhong University of Science and Technology (China)
2011-02-01
Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .
Three-dimension reconstruction based on spatial light modulator
Deng, Xuejiao; Zhang, Nanyang; Zeng, Yanan; Yin, Shiliang; Wang, Weiyu
2011-02-01
Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .
Paciello, Rossana; Coviello, Irina; Filizzola, Carolina; Genzano, Nicola; Lisi, Mariano; Mazzeo, Giuseppe; Pergola, Nicola; Sileo, Giancanio; Tramutoli, Valerio
2014-05-01
In environmental studies the integration of heterogeneous and time-varying data, is a very common requirement for investigating and possibly visualize correlations among physical parameters underlying the dynamics of complex phenomena. Datasets used in such kind of applications has often different spatial and temporal resolutions. In some case superimposition of asynchronous layers is required. Traditionally the platforms used to perform spatio-temporal visual data analyses allow to overlay spatial data, managing the time using 'snapshot' data model, each stack of layers being labeled with different time. But this kind of architecture does not incorporate the temporal indexing neither the third spatial dimension which is usually given as an independent additional layer. Conversely, the full representation of a generic environmental parameter P(x,y,z,t) in the 4D space-time domain could allow to handle asynchronous datasets as well as less traditional data-products (e.g. vertical sections, punctual time-series, etc.) . In this paper we present the 4 Dimensions Environmental Observation Platform (4-DEOS), a system based on a web services architecture Client-Broker-Server. This platform is a new open source solution for both a timely access and an easy integration and visualization of heterogeneous (maps, vertical profiles or sections, punctual time series, etc.) asynchronous, geospatial products. The innovative aspect of the 4-DEOS system is that users can analyze data/products individually moving through time, having also the possibility to stop the display of some data/products and focus on other parameters for better studying their temporal evolution. This platform gives the opportunity to choose between two distinct display modes for time interval or for single instant. Users can choose to visualize data/products in two ways: i) showing each parameter in a dedicated window or ii) visualize all parameters overlapped in a single window. A sliding time bar, allows
Spatial dimensions of the effect of neighborhood disadvantage on delinquency
Vogel, M.S.; South, S.J.
2016-01-01
esearch examining the relationship between neighborhood socioeconomic disadvantage and adolescent offending typically examines only the influence of residential neighborhoods. This strategy may be problematic as 1) neighborhoods are rarely spatially independent of each other and 2) adolescents spend
SPATIAL SEGMENTATION WITHIN METROPOLITAN LABOUR MARKET: MAPPING THE GENDER DIMENSION
DEBNATH, TANIA
2017-01-01
Spatial segmentation of the labour market of informal workers within the metropolitan is observed globally. InIndia it is not only compartmentalised on gender, caste, ethnic lines but also geographically segmented by thecreation of spatially disjoined markets. The differential impact of this limited mobility on female and malelabour remains largely unexplored. The present paper argues that the labour market for informal workers issegmented into smaller labour markets separated by commuting (h...
On spatial coalescents with multiple mergers in two dimensions.
Heuer, Benjamin; Sturm, Anja
2013-08-01
We consider the genealogy of a sample of individuals taken from a spatially structured population when the variance of the offspring distribution is relatively large. The space is structured into discrete sites of a graph G. If the population size at each site is large, spatial coalescents with multiple mergers, so called spatial Λ-coalescents, for which ancestral lines migrate in space and coalesce according to some Λ-coalescent mechanism, are shown to be appropriate approximations to the genealogy of a sample of individuals. We then consider as the graph G the two dimensional torus with side length 2L+1 and show that as L tends to infinity, and time is rescaled appropriately, the partition structure of spatial Λ-coalescents of individuals sampled far enough apart converges to the partition structure of a non-spatial Kingman coalescent. From a biological point of view this means that in certain circumstances both the spatial structure as well as larger variances of the underlying offspring distribution are harder to detect from the sample. However, supplemental simulations show that for moderately large L the different structure is still evident. Copyright © 2012 Elsevier Inc. All rights reserved.
Bent dark soliton dynamics in two spatial dimensions beyond the mean field approximation
Mistakidis, Simeon; Katsimiga, Garyfallia; Koutentakis, Georgios; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The dynamics of a bented dark soliton embedded in two spatial dimensions beyond the mean-field approximation is explored. We examine the case of a single bented dark soliton comparing the mean-field approximation to a correlated approach that involves multiple orbitals. Fragmentation is generally present and significantly affects the dynamics, especially in the case of stronger interparticle interactions and in that of lower atom numbers. It is shown that the presence of fragmentation allows for the appearance of solitonic and vortex structures in the higher-orbital dynamics. In particular, a variety of excitations including dark solitons in multiple orbitals and vortex-antidark complexes is observed to arise spontaneously within the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
A.A.G. Annual Conference Participation: The Spatial Dimension.
Fairweather, Malcolm
This paper analyzes the spatial patterning of participants attending four annual conferences of the Association of American Geographers (AAG). The four most recent conventions were selected for the study: Los Angeles in 1981, Louisville in 1980, Philadelphia in 1979, and New Orleans in 1980. A conference participant is defined as a person whose…
3D GEOMARKETING SEGMENTATION: A HIGHER SPATIAL DIMENSION PLANNING PERSPECTIVE
Directory of Open Access Journals (Sweden)
A. Suhaibah
2016-09-01
Full Text Available Geomarketing is a discipline which uses geographic information in the process of planning and implementation of marketing activities. It can be used in any aspect of the marketing such as price, promotion or geo targeting. The analysis of geomarketing data use a huge data pool such as location residential areas, topography, it also analyzes demographic information such as age, genre, annual income and lifestyle. This information can help users to develop successful promotional campaigns in order to achieve marketing goals. One of the common activities in geomarketing is market segmentation. The segmentation clusters the data into several groups based on its geographic criteria. To refine the search operation during analysis, we proposed an approach to cluster the data using a clustering algorithm. However, with the huge data pool, overlap among clusters may happen and leads to inefficient analysis. Moreover, geomarketing is usually active in urban areas and requires clusters to be organized in a three-dimensional (3D way (i.e. multi-level shop lots, residential apartments. This is a constraint with the current Geographic Information System (GIS framework. To avoid this issue, we proposed a combination of market segmentation based on geographic criteria and clustering algorithm for 3D geomarketing data management. The proposed approach is capable in minimizing the overlap region during market segmentation. In this paper, geomarketing in urban area is used as a case study. Based on the case study, several locations of customers and stores in 3D are used in the test. The experiments demonstrated in this paper substantiated that the proposed approach is capable of minimizing overlapping segmentation and reducing repetitive data entries. The structure is also tested for retrieving the spatial records from the database. For marketing purposes, certain radius of point is used to analyzing marketing targets. Based on the presented tests in this paper
D Geomarketing Segmentation: a Higher Spatial Dimension Planning Perspective
Suhaibah, A.; Uznir, U.; Rahman, A. A.; Anton, F.; Mioc, D.
2016-09-01
Geomarketing is a discipline which uses geographic information in the process of planning and implementation of marketing activities. It can be used in any aspect of the marketing such as price, promotion or geo targeting. The analysis of geomarketing data use a huge data pool such as location residential areas, topography, it also analyzes demographic information such as age, genre, annual income and lifestyle. This information can help users to develop successful promotional campaigns in order to achieve marketing goals. One of the common activities in geomarketing is market segmentation. The segmentation clusters the data into several groups based on its geographic criteria. To refine the search operation during analysis, we proposed an approach to cluster the data using a clustering algorithm. However, with the huge data pool, overlap among clusters may happen and leads to inefficient analysis. Moreover, geomarketing is usually active in urban areas and requires clusters to be organized in a three-dimensional (3D) way (i.e. multi-level shop lots, residential apartments). This is a constraint with the current Geographic Information System (GIS) framework. To avoid this issue, we proposed a combination of market segmentation based on geographic criteria and clustering algorithm for 3D geomarketing data management. The proposed approach is capable in minimizing the overlap region during market segmentation. In this paper, geomarketing in urban area is used as a case study. Based on the case study, several locations of customers and stores in 3D are used in the test. The experiments demonstrated in this paper substantiated that the proposed approach is capable of minimizing overlapping segmentation and reducing repetitive data entries. The structure is also tested for retrieving the spatial records from the database. For marketing purposes, certain radius of point is used to analyzing marketing targets. Based on the presented tests in this paper, we strongly
Lessons from non-Abelian plasma instabilities in two spatial dimensions
International Nuclear Information System (INIS)
Arnold, Peter; Leang, P.-S.
2007-01-01
Plasma instabilities can play a fundamental role in quark-gluon plasma equilibration in the high energy (weak coupling) limit. Early simulations of the evolution of plasma instabilities in non-Abelian gauge theory, performed in one spatial dimension, found behavior qualitatively similar to traditional QED plasmas. Later simulations of the fully three-dimensional theory found different behavior, unlike traditional QED plasmas. To shed light on the origin of this difference, we study the intermediate case of two spatial dimensions. Depending on how the 'two-dimensional' theory is formulated, we can obtain either behavior
Directory of Open Access Journals (Sweden)
Alison J. Gilbert
2015-03-01
Full Text Available The European Union Marine Strategy Framework Directive requires the Good Environmental Status of marine environments in Europe's regional seas; yet, maritime activities, including sources of marine degradation, are diversifying and intensifying in an increasingly globalized world. Marine spatial planning is emerging as a tool for rationalizing competing uses of the marine environment while guarding its quality. A directive guiding the development of such plans by European Union member states is currently being formulated. There is an undeniable need for marine spatial planning. However, we argue that considerable care must be taken with marine spatial planning, as the spatial and temporal scales of maritime activities and of Good Environmental Status may be mismatched. We identify four principles for careful and explicit consideration to align the requirements of the two directives and enable marine spatial planning to support the achievement of Good Environmental Status in Europe's regional seas.
CERN LEP2 constraint on 4D QED having a dynamically generated spatial dimension
International Nuclear Information System (INIS)
Cho, G.-C.; Izumi, Etsuko; Sugamoto, Akio
2002-01-01
We study 4D QED in which one spatial dimension is dynamically generated from the 3D action, following the mechanism proposed by Arkani-Hamed, Cohen, and Georgi. In this model, the generated fourth dimension is discretized by an interval parameter a. We examine the phenomenological constraint on the parameter a coming from collider experiments on the QED process e + e - →γγ. It is found that the CERN e + e - collider LEP2 experiments give the constraint of 1/a > or approx. 461 GeV. The expected bound on the same parameter a at a future e + e - linear collider is briefly discussed
Spatial reconstruction of single-cell gene expression data.
Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv
2015-05-01
Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.
Spatial reconstruction of single-cell gene expression
Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv
2015-01-01
Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923
Effect of Spatial Dimension and External Potential on Joule-Thomson Coefficients of Ideal Bose Gases
International Nuclear Information System (INIS)
Yuan Duqi; Wang Canjun
2010-01-01
Based on the form of the n-dimensional generic power-law potential, the state equation and the heat capacity, the analytical expressions of the Joule-Thomson coefficient (JTC) for an ideal Bose gas are derived in n-dimensional potential. The effect of the spatial dimension and the external potential on the JTC are discussed, respectively. These results show that: (i) For the free ideal Bose gas, when n/s ≤ 2 (n is the spatial dimension, s is the momentum index in the relation between the energy and the momentum), and T → T C (T C is the critical temperature), the JTC can obviously improve by means of changing the throttle valve's shape and decreasing the spatial dimension of gases. (ii) For the inhomogeneous external potential, the discriminant Δ = [1 - Π[ n i=1 (kT/varpi i ) 1/t i Γ(1/t i + 1)] (k is the Boltzmann Constant, T is the thermodynamic temperature, varpi i is the external field's energy), is obtained. The potential makes the JTC increase when Δ > 0, on the contrary, it makes the JTC decrease when Δ i < 1. (general)
Samaitis, Vykintas; Mažeika, Liudas
2017-08-08
Ultrasonic guided wave (UGW)-based condition monitoring has shown great promise in detecting, localizing, and characterizing damage in complex systems. However, the application of guided waves for damage detection is challenging due to the existence of multiple modes and dispersion. This results in distorted wave packets with limited resolution and the interference of multiple reflected modes. To develop reliable inspection systems, either the transducers have to be optimized to generate a desired single mode of guided waves with known dispersive properties, or the frequency responses of all modes present in the structure must be known to predict wave interaction. Currently, there is a lack of methods to predict the response spectrum of guided wave modes, especially in cases when multiple modes are being excited simultaneously. Such methods are of vital importance for further understanding wave propagation within the structures as well as wave-damage interaction. In this study, a novel method to predict the response spectrum of guided wave modes was proposed based on Fourier analysis of the particle velocity distribution on the excitation area. The method proposed in this study estimates an excitability function based on the spatial dimensions of the transducer, type of vibration, and dispersive properties of the medium. As a result, the response amplitude as a function of frequency for each guided wave mode present in the structure can be separately obtained. The method was validated with numerical simulations on the aluminum and glass fiber composite samples. The key findings showed that it can be applied to estimate the response spectrum of a guided wave mode on any type of material (either isotropic structures, or multi layered anisotropic composites) and under any type of excitation if the phase velocity dispersion curve and the particle velocity distribution of the wave source was known initially. Thus, the proposed method may be a beneficial tool to explain
International Nuclear Information System (INIS)
Jo, Junghyo; Periwal, Vipul; Hörnblad, Andreas; Ahlgren, Ulf; Kilimnik, German; Hara, Manami
2013-01-01
The islets of Langerhans, responsible for controlling blood glucose levels, are dispersed within the pancreas. A universal power law governing the fractal spatial distribution of islets in two-dimensional pancreatic sections has been reported. However, the fractal geometry in the actual three-dimensional pancreas volume, and the developmental process that gives rise to such a self-similar structure, has not been investigated. Here, we examined the three-dimensional spatial distribution of islets in intact mouse pancreata using optical projection tomography and found a power law with a fractal dimension of 2.1. Furthermore, based on two-dimensional pancreatic sections of human autopsies, we found that the distribution of human islets also follows a universal power law with a fractal dimension of 1.5 in adult pancreata, which agrees with the value previously reported in smaller mammalian pancreas sections. Finally, we developed a self-avoiding growth model for the development of the islet distribution and found that the fractal nature of the spatial islet distribution may be associated with the self-avoidance in the branching process of vascularization in the pancreas. (paper)
Linear optical quantum computing in a single spatial mode.
Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A
2013-10-11
We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.
Search for extra spatial dimensions and TeV scale quantum gravity at LEP-2
International Nuclear Information System (INIS)
Litke, A.M.
2001-01-01
A number of measurements which probe the experimental consequences of extra spatial dimensions and TeV scale quantum gravity are accessible at the LEP-2 electron-positron collider. Preliminary results on the following processes, performed with the ALEPH detector at center of mass energies around 200 GeV, are presented: 1. search for direct graviton production in the reaction e + e - →γG; and, 2. search for effects due to virtual graviton exchange in the reactions e + e - →γγ and fermion-anti-fermion pairs
Is overall similarity classification less effortful than single-dimension classification?
Wills, Andy J; Milton, Fraser; Longmore, Christopher A; Hester, Sarah; Robinson, Jo
2013-01-01
It is sometimes argued that the implementation of an overall similarity classification is less effortful than the implementation of a single-dimension classification. In the current article, we argue that the evidence securely in support of this view is limited, and report additional evidence in support of the opposite proposition--overall similarity classification is more effortful than single-dimension classification. Using a match-to-standards procedure, Experiments 1A, 1B and 2 demonstrate that concurrent load reduces the prevalence of overall similarity classification, and that this effect is robust to changes in the concurrent load task employed, the level of time pressure experienced, and the short-term memory requirements of the classification task. Experiment 3 demonstrates that participants who produced overall similarity classifications from the outset have larger working memory capacities than those who produced single-dimension classifications initially, and Experiment 4 demonstrates that instructions to respond meticulously increase the prevalence of overall similarity classification.
One-dimension-based spatially ordered architectures for solar energy conversion.
Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun
2015-08-07
The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.
Directory of Open Access Journals (Sweden)
Kimber Haddix McKay
2010-02-01
Full Text Available This paper analyzes the socio-cultural dimensions of obstacles facing solar photovoltaic projects in two villages in rural Nepal. The study was conducted in Humla District, Nepal, one of the most remote and impoverished regions of the country. There are no roads in the district, homes lack running water and villagers’ health suffers from high levels of indoor air pollution from open cooking/heating fires and the smoky torches traditionally burned for light. The introduction of solar energy is important to these villagers, as it removes one major source of indoor air pollution from homes and provides brighter light than the traditional torches. Solar energy is preferable in many villages in the region due to the lack of suitable streams or rivers for micro-hydroelectric projects. In the villages under study in this paper, in-home solar electricity is a novel and recent innovation, and was installed within the last three years in two different geo-spatial styles, depending upon the configuration of homes in the village. In some villages, houses are grouped together, while in others households are widely dispersed. In the former, solar photovoltaic systems were installed in a “cluster” fashion with multiple homes utilizing power from a central battery store under the control of the householder storing the battery bank. In villages with widely spaced households, a single home system was used so that each home had a separate solar photovoltaic array, wiring system and battery bank. It became clear that the cluster system was the sensible choice due to the geographic layout of certain villages, but this put people into management groups that did not always work well due to caste or other differences. This paper describes the two systems and their management and usage costs and benefits from the perspective of the villagers themselves.
Efimov effect in D spatial dimensions in A A B systems
Rosa, D. S.; Frederico, T.; Krein, G.; Yamashita, M. T.
2018-05-01
The existence of the Efimov effect is drastically affected by the dimensionality of the space in which the system is embedded. The effective spatial dimension containing an atomic cloud can be continuously modified by compressing it in one or two directions. In the present Rapid Communication we determine the dimensionality D for which the Efimov effect can exist for different values of the mass ratio A =mB/mA for a general A A B system formed by two identical bosons A and a third particle B in the two-body unitary limit. In addition, we provide a prediction for the Efimov discrete scaling factor exp(π /s ) as a function of a wide range of values of A and D , which can be tested in experiments that can be realized with currently available technology.
Spatially single-mode source of bright squeezed vacuum
Pérez, A. M.; Iskhakov, T. Sh.; Sharapova, P.; Lemieux, S.; Tikhonova, O. V.; Chekhova, M. V.; Leuchs, G.
2014-01-01
Bright squeezed vacuum, a macroscopic nonclassical state of light, can be obtained at the output of a strongly pumped non-seeded traveling-wave optical parametric amplifier (OPA). By constructing the OPA of two consecutive crystals separated by a large distance we make the squeezed vacuum spatially single-mode without a significant decrease in the brightness or squeezing.
An Examination of XMOOCs: An Embedded Single Case Study Based on Conole’s 12 Dimensions
Directory of Open Access Journals (Sweden)
Serpil KOCDAR
2017-10-01
Full Text Available This study intends to examine the xMOOCs offered by one of the mainstream MOOC platforms in Conole’s 12 dimensions. For this purpose, the research employed an embedded single case study using heuristic inquiry to collect data. The researchers participated in three xMOOCs and took into consideration the characteristics of these MOOCs by rating them as low, medium or high in terms of Conole’s 12 dimensions. Inter-rater reliability was 92 percent. The study showed that the openness, massiveness, diversity, use of multimedia, communication among learners, learning pathway and amount of reflection dimensions were high. The communication with instructors, degree of collaboration and autonomy dimensions were medium, and the quality assurance, certification, and formal learning dimensions were low. After explaining characteristics of xMOOCs from the perspective of open learning, the study highlighted that xMOOCs dramatically differ with regard to the implementation of the freemium business model to education and course delivery methods. It was concluded that MOOCs are not a new form of learning, but a new form of organizing learning similar to the open university movement, but which promises more flexibility and access than open universities.
The role of spatial topology in a toy model of classical electrodynamics in (1+1) dimensions
International Nuclear Information System (INIS)
Boozer, A.D.
2010-01-01
We discuss the role of spatial topology in a toy model of classical electrodynamics in (1+1) dimensions. The model describes a collection of Newtonian point particles coupled to a pair of scalar fields E(t,x) and B(t,x), which mediate forces between the particles and support freely propagating radiation. We formulate the model on both a line and a circle, and show that the behavior of the model strongly depends on the choice of spatial topology.
Landscapes of Memories: Visual and Spatial Dimensions of Hajja's Narrative of Self
Directory of Open Access Journals (Sweden)
Karin Willemse
2012-11-01
Full Text Available In this article, the focus is on how to represent narratives of self well. This dilemma concerns the specific narrative of self of Hajja, a market woman who lived in the provincial town of Kebkabiya, North Darfur, Sudan. The challenge of "responsible representation" in relation to her narrative concerns the question of how to represent a narrative that does not follow the expected structure of such a narrative. By considering the narrative as a performance of identities in the discursive and material context of narration, the author points out that a narrative is part and parcel of its context of narration. A representation of that narrative should therefore include elements of this context. Not only the discursive and verbal, but also the visual, spatial, and ultimately the temporal dimensions of the context allow us to understand narratives as enactments of self in a specific context. This consideration ties into the current debate on the nature of narrative. Narratives should not only be understood in terms of the what and how, but also in relation to the where and when of their narration. Narratives constitute spaces that allow the narrator a temporal moment of closure, of constructing oneself as a unified, coherent, bounded self in a specific place at a specific time.
Directory of Open Access Journals (Sweden)
Lena Fiebig
2009-11-01
Full Text Available Ongoing economic losses by and exposure of humans to highly pathogenic avian influenza (HPAI in poultry flocks across Asia and parts of Africa and Europe motivate also outbreak-free countries such as Switzerland to invest in preparedness planning. Country-specific population data on between-farm contacts are required to anticipate probable patterns of pathogen spread. Information is scarce; in particular on how strongly small, non-commercial poultry farms are involved in between-farm contacts. We aimed to identify between-farm contacts of interest for HPAI spread at both commercial and non-commercial farms in a non-outbreak situation: whether or not commercial and non-commercial farms were involved in poultry and person movements and shared resources by company integration. Focus was on poultry movements for the purpose of purchase, sale and poultry show visits, their spatial dimension, their frequencies and the farm types they connected. Of the total 49,437 recorded poultry farms in Switzerland, 95% had less than 500 birds. The farm number resulted in densities of up to 8 poultry farms per km2 and a median number of 47 neighbour farms within a 3 km radius around the farms. Person movements and shared resources were identified in 78% of the surveyed farms (93% among commercials, 67% among non-commercials. Poultry trading movements over extensive spatial ranges were stated at 65% (79% among commercials, 55% among non-commercials. Movement frequencies depended on farm specialization and were higher for commercial than for non-commercial farms except for poultry show visits. Estimates however for the entire population revealed 3.5 times higher chances of a poultry purchase, and 14.6 times higher chances of exhibiting birds at poultry shows occurring in a given time by a farm smaller than 500 birds (non-commercial farm than by a larger (commercial farm. These findings indicate that both commercial and non-commercial farms are involved in
Three-dimensional single-particle tracking in live cells: news from the third dimension
International Nuclear Information System (INIS)
Dupont, A; Wehnekamp, F; Katayama, Y; Lamb, D C; Gorelashvili, M; Schüller, V; Arcizet, D; Heinrich, D
2013-01-01
Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased. (paper)
Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket
Gover, Avraham; Pan, Yiming
2018-06-01
In the foundation of quantum mechanics, the spatial dimensions of electron wavepacket are understood only in terms of an expectation value - the probability distribution of the particle location. One can still inquire how the quantum electron wavepacket size affects a physical process. Here we address the fundamental physics problem of particle-wave duality and the measurability of a free electron quantum wavepacket. Our analysis of stimulated radiative interaction of an electron wavepacket, accompanied by numerical computations, reveals two limits. In the quantum regime of long wavepacket size relative to radiation wavelength, one obtains only quantum-recoil multiphoton sidebands in the electron energy spectrum. In the opposite regime, the wavepacket interaction approaches the limit of classical point-particle acceleration. The wavepacket features can be revealed in experiments carried out in the intermediate regime of wavepacket size commensurate with the radiation wavelength.
Renal zoomed EPI-DWI with spatially-selective radiofrequency excitation pulses in two dimensions
Energy Technology Data Exchange (ETDEWEB)
He, Yong-Lan, E-mail: ylhe_526@163.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (China); Hausmann, Daniel, E-mail: daniel.hausmann@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim – Heidelberg University, Mannheim (Germany); Morelli, John N., E-mail: dr.john.morelli@gmail.com [St. John' s Medical Center, Tulsa, OK (United States); Attenberger, Ulrike I., E-mail: ulrike.attenberger@medma.uni-heidelberg.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim – Heidelberg University, Mannheim (Germany); Schoenberg, Stefan O., E-mail: stefan.schoenberg@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim – Heidelberg University, Mannheim (Germany); Riffel, Philipp, E-mail: philipp.riffel@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim – Heidelberg University, Mannheim (Germany)
2016-10-15
Highlights: • Renal zoomed diffusion-weighted imaging with spatially-selective radiofrequency excitation pulses is feasible. • z-EPI offers considerable potential for mitigating the limitations of conventional EPI techniques. • z-EPI of kidney may lead to substantial image quality improvements with reduced artifacts. - Abstract: Purpose: To evaluate the feasibility and clinical robustness of zoomed diffusion-weighted echo planar imaging (z-EPI) relative to conventional single-shot EPI (c-EPI) for DWI of the kidneys. Materials and methods: This retrospective study was approved by the institutional research ethics board. 66 patients (median age 58.5 years ± 13.4, range 23–83 years, 45 men, 21 women) undergoing 3T (Magnetom Skyra{sup ®}, Siemens Healthcare, Erlangen, Germany) using a dynamic parallel transmit array (TimTX TrueShape, Siemens Healthcare, Erlangen, Germany) for renal MRI were included in this study. Both c-EPI and z-EPI images were obtained. For z-EPI, a two-dimensional spatially-selective radiofrequency (RF) pulse was applied for echo planar imaging with the FOV reduced by a factor of 3. Two radiologists, blinded to clinical data and scan parameters evaluated the images with respect to their diagnostic confidence, overall preference, overall image quality, delineation of the kidney, spatial distortion, and image blur. Sequences were compared using a paired Wilcoxon test. ADC values for the upper pole, mid-zone, lower pole of the normal kidneys were compared between sequences as well as ADC values for renal lesions, using a paired t-test. Results: With z-EPI, the kidney was significantly better delineated with sharper boundaries, less image blur and distortion, and overall better image quality relative to c-EPI (all p < 0.001). The z-EPI technique led to greater diagnostic confidence than c-EPI (p = 0.020). z-EPI was preferred to c-EPI in 60 cases (90.9%, 60/66). No statistically significant differences in the ADC values of renal parenchyma or
Renal zoomed EPI-DWI with spatially-selective radiofrequency excitation pulses in two dimensions
International Nuclear Information System (INIS)
He, Yong-Lan; Hausmann, Daniel; Morelli, John N.; Attenberger, Ulrike I.; Schoenberg, Stefan O.; Riffel, Philipp
2016-01-01
Highlights: • Renal zoomed diffusion-weighted imaging with spatially-selective radiofrequency excitation pulses is feasible. • z-EPI offers considerable potential for mitigating the limitations of conventional EPI techniques. • z-EPI of kidney may lead to substantial image quality improvements with reduced artifacts. - Abstract: Purpose: To evaluate the feasibility and clinical robustness of zoomed diffusion-weighted echo planar imaging (z-EPI) relative to conventional single-shot EPI (c-EPI) for DWI of the kidneys. Materials and methods: This retrospective study was approved by the institutional research ethics board. 66 patients (median age 58.5 years ± 13.4, range 23–83 years, 45 men, 21 women) undergoing 3T (Magnetom Skyra ® , Siemens Healthcare, Erlangen, Germany) using a dynamic parallel transmit array (TimTX TrueShape, Siemens Healthcare, Erlangen, Germany) for renal MRI were included in this study. Both c-EPI and z-EPI images were obtained. For z-EPI, a two-dimensional spatially-selective radiofrequency (RF) pulse was applied for echo planar imaging with the FOV reduced by a factor of 3. Two radiologists, blinded to clinical data and scan parameters evaluated the images with respect to their diagnostic confidence, overall preference, overall image quality, delineation of the kidney, spatial distortion, and image blur. Sequences were compared using a paired Wilcoxon test. ADC values for the upper pole, mid-zone, lower pole of the normal kidneys were compared between sequences as well as ADC values for renal lesions, using a paired t-test. Results: With z-EPI, the kidney was significantly better delineated with sharper boundaries, less image blur and distortion, and overall better image quality relative to c-EPI (all p < 0.001). The z-EPI technique led to greater diagnostic confidence than c-EPI (p = 0.020). z-EPI was preferred to c-EPI in 60 cases (90.9%, 60/66). No statistically significant differences in the ADC values of renal parenchyma or of
International Nuclear Information System (INIS)
Cai, R.
1997-01-01
By investigating the critical behavior appearing at the extremal limit of the nondilatonic, black p-branes in (d+p) dimensions, we find that some critical exponents related to the critical point obey the scaling laws. From the scaling laws we obtain that the effective spatial dimension of the nondilatonic black holes and black strings is one, and is p for the nondilatonic black p-branes. For the dilatonic black holes and black p-branes, the effective dimension will depend on the parameters in theories. Thus, we give an interpretation why the Bekenstein-Hawking entropy may be given a simple world volume interpretation only for the nondilatonic black p-branes. copyright 1997 The American Physical Society
Graphene metamaterial spatial light modulator for infrared single pixel imaging.
Fan, Kebin; Suen, Jonathan Y; Padilla, Willie J
2017-10-16
High-resolution and hyperspectral imaging has long been a goal for multi-dimensional data fusion sensing applications - of interest for autonomous vehicles and environmental monitoring. In the long wave infrared regime this quest has been impeded by size, weight, power, and cost issues, especially as focal-plane array detector sizes increase. Here we propose and experimentally demonstrated a new approach based on a metamaterial graphene spatial light modulator (GSLM) for infrared single pixel imaging. A frequency-division multiplexing (FDM) imaging technique is designed and implemented, and relies entirely on the electronic reconfigurability of the GSLM. We compare our approach to the more common raster-scan method and directly show FDM image frame rates can be 64 times faster with no degradation of image quality. Our device and related imaging architecture are not restricted to the infrared regime, and may be scaled to other bands of the electromagnetic spectrum. The study presented here opens a new approach for fast and efficient single pixel imaging utilizing graphene metamaterials with novel acquisition strategies.
Brock, Colin
2010-01-01
This article attempts to illustrate the significance of the geographical dimension of certain connections between Christianity and education in Europe. It does so by initially introducing the nature of the three components of the triangle with special reference to theory. Taking the fundamental geographical issue of scale, the discussion proceeds…
Chaos in non-diagonal spatially homogeneous cosmological models in spacetime dimensions <=10
Demaret, Jacques; de Rop, Yves; Henneaux, Marc
1988-08-01
It is shown that the chaotic oscillatory behaviour, absent in diagonal homogeneous cosmological models in spacetime dimensions between 5 and 10, can be reestablished when off-diagonal terms are included. Also at Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile
Human and spatial dimensions of retail density: Revisiting the role of perceived control
van Rompay, Thomas Johannes Lucas; Galetzka, Mirjam; Pruyn, Adriaan T.H.; Moreno Garcia, Jaime
2008-01-01
Previous research in environmental psychology and consumer behavior has demonstrated mostly negative effects of human density on consumer experience in retail settings. The effects of spatial density, however, have received scant attention. Results from previous studies show that retail density
Nugroho, P.
2018-02-01
Creative industries existence is inseparable from the underlying social construct which provides sources for creativity and innovation. The working of social capital in a society facilitates information exchange, knowledge transfer and technology acquisition within the industry through social networks. As a result, a socio-spatial divide exists in directing the growth of the creative industries. This paper aims to examine how such a socio-spatial divide contributes to the local creative industry development in Semarang and Kudus batik clusters. Explanatory sequential mixed methods approach covering a quantitative approach followed by a qualitative approach is chosen to understand better the interplay between tangible and intangible variables in the local batik clusters. Surveys on secondary data taken from the government statistics and reports, previous studies, and media exposures are completed in the former approach to identify clustering pattern of the local batik industry and the local embeddedness factors which have shaped the existing business environment. In-depth interviews, content analysis, and field observations are engaged in the latter approach to explore reciprocal relationships between the elements of social capital and the local batik cluster development. The result demonstrates that particular social ties have determined the forms of spatial proximity manifested in forward and backward business linkages. Trust, shared norms, and inherited traditions are the key social capital attributes that lead to such a socio-spatial divide. Therefore, the intermediating roles of the bridging actors are necessary to encouraging cooperation among the participating stakeholders for a better cluster development.
de Vaan, M.
2012-01-01
The high-tech industry in Silicon Valley, automobile production in Detroit, and financial services in New York and London are just a few examples of industries that are spatially concentrated. This phenomenon has attracted interest from a wide range of social scientists and regional and national
Quantum phase space for an ideal relativistic gas in d spatial dimensions
International Nuclear Information System (INIS)
Hayashi, M.; Vera Mendoza, H.
1992-01-01
We present the closed formula for the d-dimensional invariant phase-space integral for an ideal relativistic gas in an exact integral form. In the particular cases of the nonrelativistic and the extreme relativistic limits the phase-space integrals are calculated analytically. Then we consider the d-dimensional invariant phase space with quantum statistic and derive the cluster decomposition for the grand canonical and canonical partition functions as well as for the microcanonical and grand microcanonical densities of states. As a showcase, we consider the black-body radiation in d dimensions (Author)
International Nuclear Information System (INIS)
Suddle, Shahid; Ale, Ben
2005-01-01
Buildings above roads and railways are examples of multiple use of space. Safety is one of the critical issues for such projects. Risk analyses can be undertaken to investigate what safety measures that are required to realise these projects. The results of these analyses can also be compared to risk acceptance criteria, if they are applicable. In The Netherlands, there are explicit criteria for acceptability of individual risk and societal risk. Traditionally calculations of individual risk result in contours of equal risk on a map and thus are considered in two-dimensional space only. However, when different functions are layered the third spatial dimension, height, becomes an important parameter. The various activities and structures above and below each other impose mutual risks. There are no explicit norms or policies about how to deal with the individual or group risk approach in the third dimension. This paper proposes an approach for these problems and gives some examples. Finally, the third dimension risk approach is applied in a case study of Bos en Lommer, Amsterdam
Analysis of spatial relationships in three dimensions: tools for the study of nerve cell patterning
Directory of Open Access Journals (Sweden)
Raven Mary A
2008-07-01
Full Text Available Abstract Background Multiple technologies have been brought to bear on understanding the three-dimensional morphology of individual neurons and glia within the brain, but little progress has been made on understanding the rules controlling cellular patterning. We describe new matlab-based software tools, now available to the scientific community, permitting the calculation of spatial statistics associated with 3D point patterns. The analyses are largely derived from the Delaunay tessellation of the field, including the nearest neighbor and Voronoi domain analyses, and from the spatial autocorrelogram. Results Our tools enable the analysis of the spatial relationship between neurons within the central nervous system in 3D, and permit the modeling of these fields based on lattice-like simulations, and on simulations of minimal-distance spacing rules. Here we demonstrate the utility of our analysis methods to discriminate between two different simulated neuronal populations. Conclusion Together, these tools can be used to reveal the presence of nerve cell patterning and to model its foundation, in turn informing on the potential developmental mechanisms that govern its establishment. Furthermore, in conjunction with analyses of dendritic morphology, they can be used to determine the degree of dendritic coverage within a volume of tissue exhibited by mature nerve cells.
DEFF Research Database (Denmark)
Clausen, Anders; Hu, Hao; Ye, Feihong
2015-01-01
Increasing the capacity of optical networks while have the objective of lowering the total consumed energy per bit is challenging. By exploiting several dimensions, i.e. wavelength, space, time, polarisation and multilevel modulation simultaneously, a single laser can offer formidable capacity pe...... performance with potentially reduced energy consumption per bit. Up to 43 Tbit/s has been demonstrated....
International Nuclear Information System (INIS)
Kolesnichenko, A.V.
1980-01-01
An expression for the anomalous dimension of the single-particle Green function is derived in the scalar theory with the interaction Hamiltonian Hsub(int)=g(phisup(n)/n) in the limit n→infinity. It is simultaneously shown that in this model the range of essential distances is of order of nsup(-1/2)
Solving the Vlasov equation in two spatial dimensions with the Schrödinger method
Kopp, Michael; Vattis, Kyriakos; Skordis, Constantinos
2017-12-01
We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2 d -dimensional phase space density. The ScM also allows calculating the d -dimensional cumulants directly through quasilocal manipulations of the wave function, avoiding the complexity of 2 d -dimensional phase space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver in d =2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We discuss, the emergence of effective vorticity in the ScM through the winding number around the points where the wave function vanishes. As an application we evaluate the background pressure induced by the non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with expectations from the effective field theory of large scale structure.
Exact dimension estimation of interacting qubit systems assisted by a single quantum probe
Sone, Akira; Cappellaro, Paola
2017-12-01
Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine, e.g., the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics, and observables. Here we propose a more practical strategy that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the system dimension can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.
On the physical problem of spatial dimensions: an alternative procedure to stability arguments
International Nuclear Information System (INIS)
Caruso, F.; Xavier, R.M.
1986-01-01
The three-dimensionality of space as a physical problem is discussed. Consideration on previous works is done, in which it is showed that the n-dimensional solar system can be stable only for n=3 and, from quantum mechanics, that this is the case also for hydrogen atons. Thus the epistemological consequences of the use of the stability postulate to derive spatial dimensionality is critically reviewed. The distinguished role of Maxwell's eletromagnetic theory in the determination of space dimensionality is stressed. 'Metric versus' 'topological' 'arguments are compared and shown to apply respectively to 'matter' and 'fields'. (G.D.F.) [pt
The Spatial Dimension of Trade- and FDI-driven Productivity Growth in Chinese Provinces
DEFF Research Database (Denmark)
Mitze, T.; Ozyurt, S.
2014-01-01
This paper analyses the major determinants of long- and short-run labour productivity evolution for Chinese provinces between 1978 and 2010. The role played by openness to trade and foreign direct investment (FDI) constitutes the main focus of this analysis. From a methodological perspective, our...... main contribution is the inclusion of spatial effects into a dynamic error correction modelling framework. The results show that, in addition to domestic factors such as investment intensity and infrastructure use, trade openness and inward FDI also exert a direct impact on labour productivity...
Can all heritable biology really be reduced to a single dimension?
Babbitt, Gregory A; Coppola, Erin E; Alawad, Mohammed A; Hudson, André O
2016-03-10
A long-held presupposition in the field of bioinformatics holds that genetic, and now even epigenetic 'information' can be abstracted from the physicochemical details of the macromolecular polymers in which it resides. It is perhaps rather ironic that this basic conjecture originated upon the first observations of DNA structure itself. This static model of DNA led very quickly to the conclusion that only the nucleobase sequence itself is rich enough in molecular complexity to replicate a complex biology. This idea has been pervasive throughout genomic science, higher education and popular culture ever since; to the point that most of us would accept it unquestioningly as fact. What is more alarming is that this conjecture is driving a significant portion of the technological development in modern genomics towards methods strongly rooted in DNA sequencing, thereby reducing a dynamic multi-dimensional biology into single-dimensional forms of data. Evidence countering this central tenet of bioinformatics has been quietly mounting over many decades, prompting some to propose that the genome must be studied from the perspective of its molecular reality, rather than as a body of information to be represented symbolically. Here, we explore the epistemological boundary between bioinformatics and molecular biology, and warn against an 'overtly' bioinformatic perspective. We review a selection of new bioinformatic methods that move beyond sequence-based approaches to include consideration of databased three dimensional structures. However, we also note that these hybrid methods still ignore the most important element of gene function when attempting to improve outcomes; the fourth dimension of molecular dynamics over time. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Stochastic dynamics of penetrable rods in one dimension: occupied volume and spatial order.
Craven, Galen T; Popov, Alexander V; Hernandez, Rigoberto
2013-06-28
The occupied volume of a penetrable hard rod (HR) system in one dimension is probed through the use of molecular dynamics simulations. In these dynamical simulations, collisions between penetrable rods are governed by a stochastic penetration algorithm (SPA), which allows for rods to either interpenetrate with a probability δ, or collide elastically otherwise. The limiting values of this parameter, δ = 0 and δ = 1, correspond to the HR and the ideal limits, respectively. At intermediate values, 0 exclusive and independent events is observed, making prediction of the occupied volume nontrivial. At high hard core volume fractions φ0, the occupied volume expression derived by Rikvold and Stell [J. Chem. Phys. 82, 1014 (1985)] for permeable systems does not accurately predict the occupied volume measured from the SPA simulations. Multi-body effects contribute significantly to the pair correlation function g2(r) and the simplification by Rikvold and Stell that g2(r) = δ in the penetrative region is observed to be inaccurate for the SPA model. We find that an integral over the penetrative region of g2(r) is the principal quantity that describes the particle overlap ratios corresponding to the observed penetration probabilities. Analytic formulas are developed to predict the occupied volume of mixed systems and agreement is observed between these theoretical predictions and the results measured from simulation.
Guerrero, Adán; Carneiro, Jorge; Pimentel, Arturo; Wood, Christopher D.; Corkidi, Gabriel; Darszon, Alberto
2011-01-01
The spermatozoon must find its female gamete partner and deliver its genetic material to generate a new individual. This requires that the spermatozoon be motile and endowed with sophisticated swimming strategies to locate the oocyte. A common strategy is chemotaxis, in which spermatozoa detect and follow a gradient of chemical signals released by the egg and its associated structures. Decoding the female gamete’s positional information is a process that spermatozoa undergo in a three-dimensional (3D) space; however, due to their speed and small size, this process has been studied almost exclusively in spermatozoa restricted to swimming in two dimensions (2D). This review examines the relationship between the mechanics of sperm propulsion and the physiological function of these cells in 3D. It also considers whether it is possible to derive all the 3D sperm swimming characteristics by extrapolating from 2D measurements. It is concluded that full insight into flagellar beat dynamics, swimming paths and chemotaxis under physiological conditions will eventually require quantitative imaging of flagellar form, ion flux changes, cell trajectories and modelling of free-swimming spermatozoa in 3D. PMID:21642645
Application of GIS in exploring spatial dimensions of Efficiency in Competitiveness of Regions
Rahmat, Shahid; Sen, Joy
2017-04-01
Infrastructure is an important component in building competitiveness of a region. Present global scenario of economic slowdown that is led by slump in demand of goods and services and decreasing capacity of government institutions in investing public infrastructure. Strategy of augmenting competitiveness of a region can be built around improving efficient distribution of public infrastructure in the region. This efficiency in the distribution of infrastructure will reduce the burden of government institution and improve the relative output of the region in relative lesser investment. A rigorous literature study followed by an expert opinion survey (RIDIT scores) reveals that Railway, Road, ICTs and Electricity infrastructure is very crucial for better competitiveness of a region. Discussion with Experts in ICTs, Railways and Electricity sectors were conducted to find the issues, hurdles and possible solution for the development of these sectors. In an underdeveloped country like India, there is a large constrain of financial resources, for investment in infrastructure sector. Judicious planning for allocation of resources for infrastructure provisions becomes very important for efficient and sustainable development. Data Envelopment Analysis (DEA) is the mathematical programming optimization tool that measure technical efficiency of the multiple-input and/or multiple-output case by constructing a relative technical efficiency score. This paper tries to utilize DEA to identify the efficiency at which present level of selected components of Infrastructure (Railway, Road, ICTs and Electricity) is utilized in order to build competitiveness of the region. This paper tries to identify a spatial pattern of efficiency of Infrastructure with the help of spatial auto-correlation and Hot-spot analysis in Arc GIS. This analysis leads to policy implications for efficient allocation of financial resources for the provision of infrastructure in the region and building a
Energy Technology Data Exchange (ETDEWEB)
Leaf, G K; Minkoff, M; Byrne, G D; Sorensen, D; Bleakney, T; Saltzman, J
1978-11-01
DISPL is a software package for solving some second-order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types such as parabolic--elliptic equations. Fairly general nonlinear boundary conditions are allowed as well as interface conditions for problems in an inhomogeneous media. The spatial domain is one- or two-dimensional with Cartesian, cylindrical, or spherical (in one dimension only) geometry. The numerical method is based on the use of Galerkin's procedure combined with the use of B-splines in order to reduce the system of PDE's to a system of ODE's. The latter system is then solved with a sophisticated ODE software package. Software features include extensive dump/restart facilities, free format input, moderate printed output capability, dynamic storage allocation, and three graphics packages. 17 figures, 9 tables.
Single beam write and/or replay of spatial heterodyne holograms
Thomas, Clarence E.; Hanson, Gregory R.
2007-11-20
A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.
International Nuclear Information System (INIS)
Kim, Ki-Seok
2005-01-01
We investigate the quantum phase transition of the O(3) nonlinear σ model without Berry phase in two spatial dimensions. Utilizing the CP 1 representation of the nonlinear σ model, we obtain an effective action in terms of bosonic spinons interacting via compact U(1) gauge fields. Based on the effective field theory, we find that the bosonic spinons are deconfined to emerge at the quantum critical point of the nonlinear σ model. It is emphasized that the deconfinement of spinons is realized in the absence of Berry phase. This is in contrast to the previous study of Senthil et al. [Science 303, 1490 (2004)], where the Berry phase plays a crucial role, resulting in the deconfinement of spinons. It is the reason why the deconfinement is obtained even in the absence of the Berry phase effect that the quantum critical point is described by the XY ('neutral') fixed point, not the IXY ('charged') fixed point. The IXY fixed point is shown to be unstable against instanton excitations and the instanton excitations are proliferated. At the IXY fixed point it is the Berry phase effect that suppresses the instanton excitations, causing the deconfinement of spinons. On the other hand, the XY fixed point is found to be stable against instanton excitations because an effective internal charge is zero at the neutral XY fixed point. As a result the deconfinement of spinons occurs at the quantum critical point of the O(3) nonlinear σ model in two dimensions
Honigman, Liat; Yarnitsky, David; Sprecher, Elliot; Weissman-Fogel, Irit
2013-08-01
The endogenous analgesia (EA) system is psychophysically evaluated using various paradigms, including conditioned pain modulation (CPM) and offset analgesia (OA) testing, respectively, the spatial and temporal filtering processes of noxious information. Though both paradigms assess the function of the EA system, it is still unknown whether they reflect the same aspects of EA and consequently whether they provide additive or equivalent data. Twenty-nine healthy volunteers (15 males) underwent 5 trials of different stimulation conditions in random order including: (1) the classic OA three-temperature stimulus train ('OA'); (2) a three-temperature stimulus train as control for the OA ('OAcon'); (3) a constant temperature stimulus ('constant'); (4) the classic parallel CPM ('CPM'); and (5) a combination of OA and CPM ('OA + CPM'). We found that in males, the pain reduction during the OA + CPM condition was greater than during the OA (P = 0.003) and CPM (P = 0.07) conditions. Furthermore, a correlation was found between OA and CPM (r = 0.62, P = 0.01) at the time of maximum OA effect. The additive effect found suggests that the two paradigms represent at least partially different aspects of EA. The moderate association between the CPM and OA magnitudes indicates, on the other hand, some commonality of their underlying mechanisms.
Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon.
Rosa, Isabel M D; Gabriel, Cristina; Carreiras, Joāo M B
2017-01-01
The Brazilian Amazon in the past decades has been suffering severe landscape alteration, mainly due to anthropogenic activities, such as road building and land clearing for agriculture. Using a high-resolution time series of land cover maps (classified as mature forest, non-forest, secondary forest) spanning from 1984 through 2011, and four uncorrelated fragmentation metrics (edge density, clumpiness index, area-weighted mean patch size and shape index), we examined the temporal and spatial dynamics of forest fragmentation in three study areas across the Brazilian Amazon (Manaus, Santarém and Machadinho d'Oeste), inside and outside conservation units. Moreover, we compared the impacts on the landscape of: (1) different land uses (e.g. cattle ranching, crop production), (2) occupation processes (spontaneous vs. planned settlements) and (3) implementation of conservation units. By 2010/2011, municipalities located along the Arc of Deforestation had more than 55% of the remaining mature forest strictly confined to conservation units. Further, the planned settlement showed a higher rate of forest loss, a more persistent increase in deforested areas and a higher relative incidence of deforestation inside conservation units. Distinct agricultural activities did not lead to significantly different landscape structures; the accessibility of the municipality showed greater influence in the degree of degradation of the landscapes. Even with a high proportion of the landscapes covered by conservation units, which showed a strong inhibitory effect on forest fragmentation, we show that dynamic agriculturally driven economic activities, in municipalities with extensive road development, led to more regularly shaped, heavily fragmented landscapes, with higher densities of forest edge.
Wang, Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.
2010-01-01
The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski–Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM. PMID:21198103
Single Canonical Model of Reflexive Memory and Spatial Attention
Patel, Saumil S.; Red, Stuart; Lin, Eric; Sereno, Anne B.
2015-01-01
Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey’s task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes. PMID:26493949
Single Canonical Model of Reflexive Memory and Spatial Attention.
Patel, Saumil S; Red, Stuart; Lin, Eric; Sereno, Anne B
2015-10-23
Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey's task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes.
Energy Technology Data Exchange (ETDEWEB)
Pavluchenko, Sergey A. [Universidade Federal do Maranhao (UFMA), Programa de Pos-Graduacao em Fisica, Sao Luis, Maranhao (Brazil)
2017-08-15
In this paper we perform a systematic study of spatially flat [(3+D)+1]-dimensional Einstein-Gauss-Bonnet cosmological models with Λ-term. We consider models that topologically are the product of two flat isotropic subspaces with different scale factors. One of these subspaces is three-dimensional and represents our space and the other is D-dimensional and represents extra dimensions. We consider no ansatz of the scale factors, which makes our results quite general. With both Einstein-Hilbert and Gauss-Bonnet contributions in play, D = 3 and the general D ≥ 4 cases have slightly different dynamics due to the different structure of the equations of motion. We analytically study the equations of motion in both cases and describe all possible regimes with special interest on the realistic regimes. Our analysis suggests that the only realistic regime is the transition from high-energy (Gauss-Bonnet) Kasner regime, which is the standard cosmological singularity in that case, to the anisotropic exponential regime with expanding three and contracting extra dimensions. Availability of this regime allows us to put a constraint on the value of Gauss-Bonnet coupling α and the Λ-term - this regime appears in two regions on the (α, Λ) plane: α < 0, Λ > 0, αΛ ≤ -3/2 and α > 0, αΛ ≤ (3D{sup 2} - 7D + 6)/(4D(D-1)), including the entire Λ < 0 region. The obtained bounds are confronted with the restrictions on α and Λ from other considerations, like causality, entropy-to-viscosity ratio in AdS/CFT and others. Joint analysis constrains (α, Λ) even further: α > 0, D ≥ 2 with (3D{sup 2} - 7D + 6)/(4D(D-1)) ≥ αΛ ≥ -(D+2)(D+3)(D{sup 2} + 5D + 12)/(8(D{sup 2} + 3D + 6){sup 2}). (orig.)
Single-server queues with spatially distributed arrivals
Kroese, Dirk; Schmidt, Volker
1994-01-01
Consider a queueing system where customers arrive at a circle according to a homogeneous Poisson process. After choosing their positions on the circle, according to a uniform distribution, they wait for a single server who travels on the circle. The server's movement is modelled by a Brownian motion
Single-photon three-qubit quantum logic using spatial light modulators.
Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A
2017-09-29
The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.
Single-port access laparoscopic hysterectomy: a new dimension of minimally invasive surgery.
Liliana, Mereu; Alessandro, Pontis; Giada, Carri; Luca, Mencaglia
2011-01-01
The fundamental idea is to have all of the laparoscopic working ports entering the abdominal wall through the same incision. Single-incision laparoscopic surgery is an alternative to conventional multiport laparoscopy. Single-access laparoscopy using a transumbilical port affords maximum cosmetic benefits because the surgical incision is hidden in the umbilicus and reduces morbidity of minimally invasive surgery. The advantages of single-access laparoscopic surgery may include less bleeding, infection, and hernia formation and better cosmetic outcome and less pain. The disadvantages and limitations include longer surgery time, difficulty in learning the technique, and the need for specialized instruments. This review summarizes the history of SPAL hysterectomy (single-port access laparoscopy), and emphasizes nomenclature, surgical technique, instrumentation, and perioperative outcomes. Specific gynecological applications of single-port hysterectomy to date are summarized. Using the PubMed database, the English-language literature was reviewed for the past 40 years. Keyword searches included scarless, scar free, single-port/trocar/incision, single-port access laparoscopic hysterectomy. Within the bibliography of selected references, additional sources were retrieved. The purpose of the present article was to review the development and current status of SPAL hysterectomy and highlight important advances associated with this innovative approach.
Bloch surface waves confined in one dimension with a single polymeric nanofibre
Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.
2017-02-01
Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor-memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes.
An evaluation for spatial resolution, using a single target on a medical image
Energy Technology Data Exchange (ETDEWEB)
Lee, Kyung Sung [Dept. of Radiotechnology, Cheju Halla University, Cheju (Korea, Republic of)
2016-12-15
Hitherto, spatial resolution has commonly been evaluated by test patterns or phantoms built on some specific distances (from close to far) between two objects (or double targets). This evaluation method's shortcoming is that resolution is restricted to target distances of phantoms made for test. Therefore, in order to solve the problem, this study proposes and verifies a new method to efficiently test spatial resolution with a single target. For the research I used PSF and JND to propose an idea to measure spatial resolution. After that, I made experiments by commonly used phantoms to verify my new evaluation hypothesis inferred from the above method. To analyse the hypothesis, I used LabVIEW program and got a line pixel from digital image. The result was identical to my spatial-resolution hypothesis inferred from a single target. The findings of the experiment proves only a single target can be enough to relatively evaluate spatial resolution on a digital image. In other words, the limit of the traditional spatial-resolution evaluation method, based on double targets, can be overcome by my new evaluation one using a single target.
Search for large spatial extra dimensions with dimuon events from 7 TeV pp collisions at CMS
International Nuclear Information System (INIS)
Schmitz, Stefan Antonius
2013-01-01
Data recorded by the CMS (Compact Muon Solenoid) experiment is analyzed to study the production of high-mass muon pairs in proton-proton collisions at the LHC (Large Hadron Collider). Most of the presented results are based on a dataset of 5.3 fb -1 at a center-of-mass energy of √(s)=7 TeV. The interpretation of the measured dimuon mass spectrum focuses on a potential non-resonant signal from s-channel graviton exchange. Such a signature of new physics is motivated by the ADD (Arkani-Hamed, Dimopoulos, Dvali) model of large spatial extra dimensions. The main background for the search is given by the SM (Standard Model) prediction of neutral current Drell-Yan events. Other background sources like for example t anti t production are also considered. The Standard Model expectation is evaluated based on simulation studies and can be tested for dimuon masses below the signal region. Estimates of theory uncertainties on the background prediction and uncertainties related to the detector performance are included in the statistical evaluation of the measurement. The dimuon mass spectrum observed in the 2011 CMS dataset is found to be compatible with the SM expectation. For masses greater than 1.3 TeV, signal cross sections of greater than 0.84 fb -1 can be excluded at 95% confidence level. This result corresponds to an exclusion of values below 3.0 TeV for the ADD model parameters Λ T . A combination of dimuon, dielectron and diphoton results based on a dataset of about 2.0 fb -1 extends the excluded range to Λ T <3.3 TeV. Also limits based on the 2012 CMS dataset at collision energies of √(s)=8 TeV and some aspects of the CMS search for new dilepton resonances are briefly discussed.
Dimensions of Family Functioning: Perspectives of Low-Income African American Single Parent Families
Mccreary, Linda L.; Dancy, Barbara L.
2004-01-01
Family functioning is influenced by socio-economic status, culture, family structure, and developmental stage, and is assessed primarily using instruments developed for middle-income European American two-parent families. These instruments may not validly assess low-income African American single-parent families. This qualitative study was…
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.
Baker, Matthew A B; Tuckwell, Andrew J; Berengut, Jonathan F; Bath, Jonathan; Benn, Florence; Duff, Anthony P; Whitten, Andrew E; Dunn, Katherine E; Hynson, Robert M; Turberfield, Andrew J; Lee, Lawrence K
2018-06-04
The rational design of complementary DNA sequences can be used to create nanostructures that self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides complementary structural information on the ensemble-averaged state of DNA nanostructures in solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA origami tiles that look identical when immobilized on a mica surface and imaged with atomic force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles with different crossover periodicities: these measurements highlight the extreme structural sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA origami tile and use this method to measure the overall dimensions and geometry of the DNA nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used for the interpretation of SAXS data from biomolecules, to measure the distance between DNA helix pairs in a DNA origami nanotube. Together, these results provide important methodological advances in the use of SAXS to analyze DNA nanostructures in solution and insights into the structures of single-layer DNA origami.
Energy Technology Data Exchange (ETDEWEB)
Santos, J.A.M. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)], E-mail: a.miranda@portugalmail.pt; Sarmento, S. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Alves, P.; Torres, M.C. [Departamento de Fisica da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Bastos, A.L. [Servico de Medicina Nuclear, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Ponte, F. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)
2008-01-15
A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector.
International Nuclear Information System (INIS)
Santos, J.A.M.; Sarmento, S.; Alves, P.; Torres, M.C.; Bastos, A.L.; Ponte, F.
2008-01-01
A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector
High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods.
Ben-Eliezer, Noam; Shrot, Yoav; Frydman, Lucio
2010-01-01
An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting "hybrid" imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T(2)(*) effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T(2) contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.
Li, Guoliang; Cherqui, Charles; Bigelow, Nicholas W; Duscher, Gerd; Straney, Patrick J; Millstone, Jill E; Masiello, David J; Camden, Jon P
2015-05-13
Energy transfer from plasmonic nanoparticles to semiconductors can expand the available spectrum of solar energy-harvesting devices. Here, we spatially and spectrally resolve the interaction between single Ag nanocubes with insulating and semiconducting substrates using electron energy-loss spectroscopy, electrodynamics simulations, and extended plasmon hybridization theory. Our results illustrate a new way to characterize plasmon-semiconductor energy transfer at the nanoscale and bear impact upon the design of next-generation solar energy-harvesting devices.
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel
2015-04-24
A search is presented for quark contact interactions and extra spatial dimensions in proton-proton collisions at $\\sqrt{s}$ = 8 TeV using dijet angular distributions. The search is based on a data set corresponding to an integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS detector at the CERN LHC. Dijet angular distributions are found to be in agreement with the perturbative QCD predictions that include electroweak corrections. Limits on the contact interaction scale from a variety of models at next-to-leading order in QCD corrections are obtained. A benchmark model in which only left-handed quarks participate is excluded up to a scale of 9.0 (11.7) TeV for destructive (constructive) interference at 95% confidence level. Lower limits between 6.0 and 8.4 TeV on the scale of virtual graviton exchange are extracted for the Arkani-Hamed--Dimopoulos--Dvali model of extra spatial dimensions.
Study on the Spatial Resolution of Single and Multiple Coincidences Compton Camera
Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna
2012-10-01
In this paper we study the image resolution that can be obtained from the Multiple Coincidences Compton Camera (MCCC). The principle of MCCC is based on a simultaneous acquisition of several gamma-rays emitted in cascade from a single nucleus. Contrary to a standard Compton camera, MCCC can theoretically provide the exact location of a radioactive source (based only on the identification of the intersection point of three cones created by a single decay), without complicated tomographic reconstruction. However, practical implementation of the MCCC approach encounters several problems, such as low detection sensitivities result in very low probability of coincident triple gamma-ray detection, which is necessary for the source localization. It is also important to evaluate how the detection uncertainties (finite energy and spatial resolution) influence identification of the intersection of three cones, thus the resulting image quality. In this study we investigate how the spatial resolution of the reconstructed images using the triple-cone reconstruction (TCR) approach compares to images reconstructed from the same data using standard iterative method based on single-cone. Results show, that FWHM for the point source reconstructed with TCR was 20-30% higher than the one obtained from the standard iterative reconstruction based on expectation maximization (EM) algorithm and conventional single-cone Compton imaging. Finite energy and spatial resolutions of the MCCC detectors lead to errors in conical surfaces definitions (“thick” conical surfaces) which only amplify in image reconstruction when intersection of three cones is being sought. Our investigations show that, in spite of being conceptually appealing, the identification of triple cone intersection constitutes yet another restriction of the multiple coincidence approach which limits the image resolution that can be obtained with MCCC and TCR algorithm.
Laser direct-write of single microbeads into spatially-ordered patterns
International Nuclear Information System (INIS)
Phamduy, Theresa B; Schiele, Nathan R; Corr, David T; Chrisey, Douglas B; Raof, Nurazhani Abdul; Xie Yubing; Yan Zijie; Huang Yong
2012-01-01
Fabrication of heterogeneous microbead patterns on a bead-by-bead basis promotes new opportunities for sensors, lab-on-a-chip technology and cell-culturing systems within the context of customizable constructs. Laser direct-write (LDW) was utilized to target and deposit solid polystyrene and stem cell-laden alginate hydrogel beads into computer-programmed patterns. We successfully demonstrated single-bead printing resolution and fabricated spatially-ordered patterns of microbeads. The probability of successful microbead transfer from the ribbon surface increased from 0 to 80% with decreasing diameter of 600 to 45 µm, respectively. Direct-written microbeads retained spatial pattern registry, even after 10 min of ultrasonication treatment. SEM imaging confirmed immobilization of microbeads. Viability of cells encapsulated in transferred hydrogel microbeads achieved 37 ± 11% immediately after the transfer process, whereas randomly-patterned pipetted control beads achieved a viability of 51 ± 25%. Individual placement of >10 µm diameter microbeads onto planar surfaces has previously been unattainable. We have demonstrated LDW as a valuable tool for the patterning of single, micrometer-diameter beads into spatially-ordered patterns. (paper)
International Nuclear Information System (INIS)
Song Peijun; Lue Xinyou; Huang Pei; Hao Xiangying; Yang Xiaoxue
2010-01-01
We propose a new scheme for realizing deterministic quantum state transfer (QST) between two spatially separated single molecule magnets (SMMs) with the framework of cavity quantum electrodynamics (QED). In the present scheme, two SMMs are trapped in two spatially separated optical cavities coupled by an optical fiber. Through strictly numerically simulating, we demonstrate that our scheme is robust with respect to the SMMs' spontaneous decay and fiber loss under the conditions of dispersive SMMs-field interaction and strong coupling of cavity fiber. In addition, we also discuss the influence of photon leakage out of cavities and show that our proposal is good enough to demonstrate the generation of QST with high fidelity utilizing the current experimental technology. The present investigation provides research opportunities for realizing QST between solid-state qubits and may result in a substantial impact on the progress of solid-state-based quantum communications network. (general)
Philippeos, Christina; Telerman, Stephanie B; Oulès, Bénédicte; Pisco, Angela O; Shaw, Tanya J; Elgueta, Raul; Lombardi, Giovanna; Driskell, Ryan R; Soldin, Mark; Lynch, Magnus D; Watt, Fiona M
2018-04-01
Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Spatial and frequency domain ring source models for the single muscle fiber action potential
DEFF Research Database (Denmark)
Henneberg, Kaj-åge; R., Plonsey
1994-01-01
In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....
Spatial variation in carrier dynamics along a single CdSSe nanowire
International Nuclear Information System (INIS)
Blake, Jolie C.; Eldridge, Peter S.; Gundlach, Lars
2014-01-01
Highlights: • Femtosecond Kerr-gate microscopy allows ultrafast fluorescence measurements along different positions of a single nanowire. • Amplified spontaneous emission observed at high fluences can be used to calculate recombination rates. • Observation of ASE at different locations along a single CdSSe nanowire provides the ability to extract defect densities. - Abstract: Ultrafast charge carrier dynamics along individual CdS x Se 1−x nanowires has been measured. The use of an improved ultrafast Kerr-gated microscope allows for spatially resolved luminescence measurements along a single nanowire. Amplified spontaneous emission (ASE) was observed at high excitation fluences. Position dependent variations of ultrafast ASE dynamics were observed. SEM and colorimetric measurements showed that the difference in dynamics can be attributed to variations in non-radiative recombination rates along the wire. The dominant Shockley-Read recombination rate can be extracted from ASE dynamics and can be directly related to charge carrier mobility and defect density. Employing ASE as a probe for defect densities provides a new sub-micron spatially resolved, contactless method for measurements of charge carrier mobility
Ding, Xin-yuan; Zhou, Zhi-bin; Xu, Xin-wen; Lei, Jia-qiang; Lu, Jing-jing; Ma, Xue-xi; Feng, Xiao
2015-09-01
Three-dimension temporal and spatial dynamics of the soil water characteristics during four irrigating cycles of months from April to July for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation had been analyzed by timely measuring the soil water content in horizontal and vertical distances 60 cm and 120 cm away from the irrigating drips, respectively. Periodic spatial and temporal variations of soil water content were observed. When the precipitation effect was not considered, there were no significant differences in the characteristics of soil water among the irrigation intervals in different months, while discrepancies were obvious in the temporal and spatial changes of soil moisture content under the conditions of rainfall and non-rainfall. When it referred to the temporal changes of soil water, it was a little higher in April but a bit lower in July, and the soil water content in June was the highest among four months because some remarkable events of precipitation happened in this month. However, as a whole, the content of soil moisture was reduced as months (from April to July) went on and it took a decreasing tendency along with days (1-15 d) following a power function. Meanwhile, the characteristics of soil water content displayed three changeable stages in an irrigation interval. When it referred to the spatial distributions of soil water, the average content of soil moisture was reduced along with the horizontal distance following a linear regression function, and varied with double peaks along with the vertical distance. In addition, the spatial distribution characteristics of the soil water were not influenced by the factors of precipitation and irrigating time but the physical properties of soil.
DEFF Research Database (Denmark)
Özyurt, Selin; Mitze, Timo
Since the introduction of its “open door” policy in the late 1970s, China has been attracting a growing share of FDI inflows and its international trade integration has advanced considerably. In this study, we take a closer look at the regional growth impact of the Chinese internationalization......-run relationship, regional labour productivity is indeed driven by direct and indirect spatial effects of FDI and trade activity next to further supply side factors such as the regional infrastructure equipment and human capital endowment. Similarly, in the short-run, changes in FDI activity and especially human...
Energy Technology Data Exchange (ETDEWEB)
Carrera, Edgar Fernando [Florida State Univ., Tallahassee, FL (United States)
2008-12-01
This dissertation presents a search for large extra dimensions in the single photon plus missing transverse energy final states. We use a data sample of approximately 2.7 fb^{-1} of p$\\bar{p}$ collisions at √s = 1.96 TeV (recorded with the D^{-} detector) to investigate direct Kaluza Klein graviton production and set limits, at the 95% C.L., on the fundamental mass scale M_{D} from 970 GeV to 816 GeV for two to eight extra dimensions.
Voxel-Based Spatial Filtering Method for Canopy Height Retrieval from Airborne Single-Photon Lidar
Directory of Open Access Journals (Sweden)
Hao Tang
2016-09-01
Full Text Available Airborne single-photon lidar (SPL is a new technology that holds considerable potential for forest structure and carbon monitoring at large spatial scales because it acquires 3D measurements of vegetation faster and more efficiently than conventional lidar instruments. However, SPL instruments use green wavelength (532 nm lasers, which are sensitive to background solar noise, and therefore SPL point clouds require more elaborate noise filtering than other lidar instruments to determine canopy heights, particularly in daytime acquisitions. Histogram-based aggregation is a commonly used approach for removing noise from photon counting lidar data, but it reduces the resolution of the dataset. Here we present an alternate voxel-based spatial filtering method that filters noise points efficiently while largely preserving the spatial integrity of SPL data. We develop and test our algorithms on an experimental SPL dataset acquired over Garrett County in Maryland, USA. We then compare canopy attributes retrieved using our new algorithm with those obtained from the conventional histogram binning approach. Our results show that canopy heights derived using the new algorithm have a strong agreement with field-measured heights (r2 = 0.69, bias = 0.42 m, RMSE = 4.85 m and discrete return lidar heights (r2 = 0.94, bias = 1.07 m, RMSE = 2.42 m. Results are consistently better than height accuracies from the histogram method (field data: r2 = 0.59, bias = 0.00 m, RMSE = 6.25 m; DRL: r2 = 0.78, bias = −0.06 m and RMSE = 4.88 m. Furthermore, we find that the spatial-filtering method retains fine-scale canopy structure detail and has lower errors over steep slopes. We therefore believe that automated spatial filtering algorithms such as the one presented here can support large-scale, canopy structure mapping from airborne SPL data.
Block, Erica; Thomas, Jens; Durfee, Charles; Squier, Jeff
2014-12-15
A Ti:Al(3)O(2) multipass chirped pulse amplification system is outfitted with a single-grating, simultaneous spatial and temporal focusing (SSTF) compressor platform. For the first time, this novel design has the ability to easily vary the beam aspect ratio of an SSTF beam, and thus the degree of pulse-front tilt at focus, while maintaining a net zero-dispersion system. Accessible variation of pulse front tilt gives full spatiotemporal control over the intensity distribution at the focus and could lead to better understanding of effects such as nonreciprocal writing and SSTF-material interactions.
Spatial mapping of exciton lifetimes in single ZnO nanowires
Directory of Open Access Journals (Sweden)
J. S. Reparaz
2013-07-01
Full Text Available We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.
Directory of Open Access Journals (Sweden)
Christina N Service
Full Text Available Range shifts among wildlife can occur rapidly and impose cascading ecological, economic, and cultural consequences. However, occurrence data used to define distributional limits derived from scientific approaches are often outdated for wide ranging and elusive species, especially in remote environments. Accordingly, our aim was to amalgamate indigenous and western scientific evidence of grizzly bear (Ursus arctos horribilis records and detail a potential range shift on the central coast of British Columbia, Canada. In addition, we test the hypothesis that data from each method yield similar results, as well as illustrate the complementary nature of this coupled approach. Combining information from traditional and local ecological knowledge (TEK/LEK interviews with remote camera, genetic, and hunting data revealed that grizzly bears are now present on 10 islands outside their current management boundary. LEK interview data suggested this expansion has accelerated over the last 10 years. Both approaches provided complementary details and primarily affirmed one another: all islands with scientific evidence for occupation had consistent TEK/LEK evidence. Moreover, our complementary methods approach enabled a more spatially and temporally detailed account than either method would have afforded alone. In many cases, knowledge already held by local indigenous people could provide timely and inexpensive data about changing ecological processes. However, verifying the accuracy of scientific and experiential knowledge by pairing sources at the same spatial scale allows for increased confidence and detail. A similarly coupled approach may be useful across taxa in many regions.
Yu, Yang; Zeng, Zheng
2009-10-01
By discussing the causes behind the high amendments ratio in the implementation of urban regulatory detailed plans in China despite its law-ensured status, the study aims to reconcile conflict between the legal authority of regulatory detailed planning and the insufficient scientific support in its decision-making and compilation by introducing into the process spatial analysis based on GIS technology and 3D modeling thus present a more scientific and flexible approach to regulatory detailed planning in China. The study first points out that the current compilation process of urban regulatory detailed plan in China employs mainly an empirical approach which renders it constantly subjected to amendments; the study then discusses the need and current utilization of GIS in the Chinese system and proposes the framework of a GIS-assisted 3D spatial analysis process from the designer's perspective which can be regarded as an alternating processes between the descriptive codes and physical design in the compilation of regulatory detailed planning. With a case study of the processes and results from the application of the framework, the paper concludes that the proposed framework can be an effective instrument which provides more rationality, flexibility and thus more efficiency to the compilation and decision-making process of urban regulatory detailed plan in China.
Energy Technology Data Exchange (ETDEWEB)
Zolotov, D. A., E-mail: zolotovden@crys.ras.ru; Buzmakov, A. V.; Elfimov, D. A.; Asadchikov, V. E.; Chukhovskii, F. N. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)
2017-01-15
The spatial arrangement of single linear defects in a Si single crystal (input surface (111)) has been investigated by X-ray topo-tomography using laboratory X-ray sources. The experimental technique and the procedure of reconstructing a 3D image of dislocation half-loops near the Si crystal surface are described. The sizes of observed linear defects with a spatial resolution of about 10 μm are estimated.
Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L
2015-01-01
Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.
Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei
2017-10-01
In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.
International Nuclear Information System (INIS)
Kolb, E.W.; Lindley, D.; Seckel, D.
1984-01-01
For a cosmological model with d noncompact and D compact spatial dimensions and symmetry R 1 x S/sup d/ x S/sup D/, we calculate the entropy produced in d dimensions due to the compactification of D dimensions and show it too small to be of cosmological interest. Although insufficient entropy is produced in the model we study, the contraction of extra dimensions does lead to entropy production. We discuss modifications of our assumptions, including changing our condition for decoupling of the extra dimensions, which may lead to a large entropy production and change our conclusions
De Palma, Adriana; Kuhlmann, Michael; Bugter, Rob; Ferrier, Simon; Hoskins, Andrew J; Potts, Simon G; Roberts, Stuart P M; Schweiger, Oliver; Purvis, Andy
2017-12-01
Agricultural intensification and urbanization are important drivers of biodiversity change in Europe. Different aspects of bee community diversity vary in their sensitivity to these pressures, as well as independently influencing ecosystem service provision (pollination). To obtain a more comprehensive understanding of human impacts on bee diversity across Europe, we assess multiple, complementary indices of diversity. One Thousand four hundred and forty six sites across Europe. We collated data on bee occurrence and abundance from the published literature and supplemented them with the PREDICTS database. Using Rao's Quadratic Entropy, we assessed how species, functional and phylogenetic diversity of 1,446 bee communities respond to land-use characteristics including land-use class, cropland intensity, human population density and distance to roads. We combined these models with statistically downscaled estimates of land use in 2005 to estimate and map-at a scale of approximately 1 km 2 -the losses in diversity relative to semi-natural/natural baseline (the predicted diversity of an uninhabited grid square, consisting only of semi-natural/natural vegetation). We show that-relative to the predicted local diversity in uninhabited semi-natural/natural habitat-half of all EU27 countries have lost over 10% of their average local species diversity and two-thirds of countries have lost over 5% of their average local functional and phylogenetic diversity. All diversity measures were generally lower in pasture and higher-intensity cropland than in semi-natural/natural vegetation, but facets of diversity showed less consistent responses to human population density. These differences have led to marked spatial mismatches in losses: losses in phylogenetic diversity were in some areas almost 20 percentage points (pp.) more severe than losses in species diversity, but in other areas losses were almost 40 pp. less severe. These results highlight the importance of exploring
International Nuclear Information System (INIS)
Yin, L.; Albright, B. J.; Rose, H. A.; Bowers, K. J.; Bergen, B.; Montgomery, D. S.; Kline, J. L.; Fernandez, J. C.
2009-01-01
A suite of three-dimensional (3D) VPIC[K. J. Bowers et al., Phys. Plasmas 15, 055703 (2008)] particle-in-cell simulations of backward stimulated Raman scattering (SRS) in inertial confinement fusion hohlraum plasma has been performed on the heterogeneous multicore supercomputer, Roadrunner, presently the world's most powerful supercomputer. These calculations reveal the complex nonlinear behavior of SRS and point to a new era of 'at scale' 3D modeling of SRS in solitary and multiple laser speckles. The physics governing nonlinear saturation of SRS in a laser speckle in 3D is consistent with that of prior two-dimensional (2D) studies [L. Yin et al., Phys. Rev. Lett. 99, 265004 (2007)], but with important differences arising from enhanced diffraction and side loss in 3D compared with 2D. In addition to wave front bowing of electron plasma waves (EPWs) due to trapped electron nonlinear frequency shift and amplitude-dependent damping, we find for the first time that EPW self-focusing, which evolved from trapped particle modulational instability [H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008)], also exhibits loss of angular coherence by formation of a filament necklace, a process not available in 2D. These processes in 2D and 3D increase the side-loss rate of trapped electrons, increase wave damping, decrease source coherence for backscattered light, and fundamentally limit how much backscatter can occur from a laser speckle. For both SRS onset and saturation, the nonlinear trapping induced physics is not captured in linear gain modeling of SRS. A simple metric is described for using single-speckle reflectivities obtained from VPIC simulations to infer the total reflectivity from the population of laser speckles of amplitude sufficient for significant trapping-induced nonlinearity to arise.
SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations
Energy Technology Data Exchange (ETDEWEB)
Adams, C. H.
1976-07-01
This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center.
Brede, Jens; Atodiresei, Nicolae; Kuck, Stefan; Lazić, Predrag; Caciuc, Vasile; Morikawa, Yoshitada; Hoffmann, Germar; Blügel, Stefan; Wiesendanger, Roland
2010-07-23
We investigate the spin- and energy-dependent tunneling through a single organic molecule (CoPc) adsorbed on a ferromagnetic Fe thin film, spatially resolved by low-temperature spin-polarized scanning tunneling microscopy. Interestingly, the metal ion as well as the organic ligand show a significant spin dependence of tunneling current flow. State-of-the-art ab initio calculations including also van der Waals interactions reveal a strong hybridization of molecular orbitals and substrate 3d states. The molecule is anionic due to a transfer of one electron, resulting in a nonmagnetic (S=0) state. Nevertheless, tunneling through the molecule exhibits a pronounced spin dependence due to spin-split molecule-surface hybrid states.
SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations
International Nuclear Information System (INIS)
Adams, C.H.
1976-07-01
This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center
PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras.
Zheng, Lei; Lukac, Rastislav; Wu, Xiaolin; Zhang, David
2009-04-01
Single-sensor digital color cameras use a process called color demosiacking to produce full color images from the data captured by a color filter array (CAF). The quality of demosiacked images is degraded due to the sensor noise introduced during the image acquisition process. The conventional solution to combating CFA sensor noise is demosiacking first, followed by a separate denoising processing. This strategy will generate many noise-caused color artifacts in the demosiacking process, which are hard to remove in the denoising process. Few denoising schemes that work directly on the CFA images have been presented because of the difficulties arisen from the red, green and blue interlaced mosaic pattern, yet a well-designed "denoising first and demosiacking later" scheme can have advantages such as less noise-caused color artifacts and cost-effective implementation. This paper presents a principle component analysis (PCA)-based spatially-adaptive denoising algorithm, which works directly on the CFA data using a supporting window to analyze the local image statistics. By exploiting the spatial and spectral correlations existing in the CFA image, the proposed method can effectively suppress noise while preserving color edges and details. Experiments using both simulated and real CFA images indicate that the proposed scheme outperforms many existing approaches, including those sophisticated demosiacking and denoising schemes, in terms of both objective measurement and visual evaluation.
Mattson, Eric C; Unger, Miriam; Clède, Sylvain; Lambert, François; Policar, Clotilde; Imtiaz, Asher; D'Souza, Roshan; Hirschmugl, Carol J
2013-10-07
Advancements in widefield infrared spectromicroscopy have recently been demonstrated following the commissioning of IRENI (InfraRed ENvironmental Imaging), a Fourier Transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center. The present study demonstrates the effects of magnification, spatial oversampling, spectral pre-processing and deconvolution, focusing on the intracellular detection and distribution of an exogenous metal tris-carbonyl derivative 1 in a single MDA-MB-231 breast cancer cell. We demonstrate here that spatial oversampling for synchrotron-based infrared imaging is critical to obtain accurate diffraction-limited images at all wavelengths simultaneously. Resolution criteria and results from raw and deconvoluted images for two Schwarzschild objectives (36×, NA 0.5 and 74×, NA 0.65) are compared to each other and to prior reports for raster-scanned, confocal microscopes. The resolution of the imaging data can be improved by deconvolving the instrumental broadening that is determined with the measured PSFs, which is implemented with GPU programming architecture for fast hyperspectral processing. High definition, rapidly acquired, FTIR chemical images of respective spectral signatures of the cell 1 and shows that 1 is localized next to the phosphate- and Amide-rich regions, in agreement with previous infrared and luminescence studies. The infrared image contrast, localization and definition are improved after applying proven spectral pre-processing (principal component analysis based noise reduction and RMie scattering correction algorithms) to individual pixel spectra in the hyperspectral cube.
One-trial spatial learning: wild hummingbirds relocate a reward after a single visit.
Flores-Abreu, I Nuri; Hurly, T Andrew; Healy, Susan D
2012-07-01
Beaconing to rewarded locations is typically achieved by visual recognition of the actual goal. Spatial recognition, on the other hand, can occur in the absence of the goal itself, relying instead on the landmarks surrounding the goal location. Although the duration or frequency of experiences that an animal needs to learn the landmarks surrounding a goal have been extensively studied with a variety of laboratory tasks, little is known about the way in which wild vertebrates use them in their natural environment. Here, we allowed hummingbirds to feed once only from a rewarding flower (goal) before it was removed. When we presented a similar flower at a different height in another location, birds frequently returned to the location the flower had previously occupied (spatial recognition) before flying to the flower itself (beaconing). After experiencing three rewarded flowers, each in a different location, they were more likely to beacon to the current visible flower than they were to return to previously rewarded locations (without a visible flower). These data show that hummingbirds can encode a rewarded location on the basis of the surrounding landmarks after a single visit. After multiple goal location manipulations, however, the birds changed their strategy to beaconing presumably because they had learned that the flower itself reliably signalled reward.
International Nuclear Information System (INIS)
Ruprecht, V.
2010-01-01
Fluorescence microscopy techniques are currently among the most important experimental tools to study cellular processes. Ultra-sensitive detection devices nowadays allow for measuring even individual farnesylacetate labeled target molecules with nanometer spatial accuracy and millisecond time resolution. The emergence of single molecule fluorescence techniques especially contributed to the field of membrane biology and provided basic knowledge on structural and dynamic features of the cellular plasma membrane. However, we are still confronted with a rather fragmentary understanding of the complex architecture and functional interrelations of membrane constituents. In this thesis new concepts in one- and dual-color single molecule fluorescence techniques are presented that allow for addressing organization principles and interaction dynamics in the live cell plasma membrane. Two complementary experimental strategies are described which differ in their detection principle: single molecule fluorescence imaging and fluorescence correlation spectroscopy. The presented methods are discussed in terms of their implementation, accuracy, quantitative and statistical data analysis, as well as live cell applications. State-of-the-art dual color single molecule imaging is introduced as the most direct experimental approach to study interaction dynamics between differently labeled target molecules. New analytical estimates for robust data analysis are presented that facilitate quantitative recording and identification of co localizations in dual color single molecule images. A novel dual color illumination scheme is further described that profoundly extends the current range and sensitivity of conventional dual color single molecule experiments. The method enables working at high surface densities of fluorescent molecules - a feature typically incommensurable with single molecule imaging - and is especially suited for the detection of rare interactions by tracking co localized
Van der Heyden, H; Dutilleul, P; Brodeur, L; Carisse, O
2014-06-01
Spatial distribution of single-nucleotide polymorphisms (SNPs) related to fungicide resistance was studied for Botrytis cinerea populations in vineyards and for B. squamosa populations in onion fields. Heterogeneity in this distribution was characterized by performing geostatistical analyses based on semivariograms and through the fitting of discrete probability distributions. Two SNPs known to be responsible for boscalid resistance (H272R and H272Y), both located on the B subunit of the succinate dehydrogenase gene, and one SNP known to be responsible for dicarboximide resistance (I365S) were chosen for B. cinerea in grape. For B. squamosa in onion, one SNP responsible for dicarboximide resistance (I365S homologous) was chosen. One onion field was sampled in 2009 and another one was sampled in 2010 for B. squamosa, and two vineyards were sampled in 2011 for B. cinerea, for a total of four sampled sites. Cluster sampling was carried on a 10-by-10 grid, each of the 100 nodes being the center of a 10-by-10-m quadrat. In each quadrat, 10 samples were collected and analyzed by restriction fragment length polymorphism polymerase chain reaction (PCR) or allele specific PCR. Mean SNP incidence varied from 16 to 68%, with an overall mean incidence of 43%. In the geostatistical analyses, omnidirectional variograms showed spatial autocorrelation characterized by ranges of 21 to 1 m. Various levels of anisotropy were detected, however, with variograms computed in four directions (at 0°, 45°, 90°, and 135° from the within-row direction used as reference), indicating that spatial autocorrelation was prevalent or characterized by a longer range in one direction. For all eight data sets, the β-binomial distribution was found to fit the data better than the binomial distribution. This indicates local aggregation of fungicide resistance among sampling units, as supported by estimates of the parameter θ of the β-binomial distribution of 0.09 to 0.23 (overall median value = 0
Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting
Roeffaers, Maarten B. J.; Sels, Bert F.; Uji-I, Hiroshi; de Schryver, Frans C.; Jacobs, Pierre A.; de Vos, Dirk E.; Hofkens, Johan
2006-02-01
Catalytic processes on surfaces have long been studied by probing model reactions on single-crystal metal surfaces under high vacuum conditions. Yet the vast majority of industrial heterogeneous catalysis occurs at ambient or elevated pressures using complex materials with crystal faces, edges and defects differing in their catalytic activity. Clearly, if new or improved catalysts are to be rationally designed, we require quantitative correlations between surface features and catalytic activity-ideally obtained under realistic reaction conditions. Transmission electron microscopy and scanning tunnelling microscopy have allowed in situ characterization of catalyst surfaces with atomic resolution, but are limited by the need for low-pressure conditions and conductive surfaces, respectively. Sum frequency generation spectroscopy can identify vibrations of adsorbed reactants and products in both gaseous and condensed phases, but so far lacks sensitivity down to the single molecule level. Here we adapt real-time monitoring of the chemical transformation of individual organic molecules by fluorescence microscopy to monitor reactions catalysed by crystals of a layered double hydroxide immersed in reagent solution. By using a wide field microscope, we are able to map the spatial distribution of catalytic activity over the entire crystal by counting single turnover events. We find that ester hydrolysis proceeds on the lateral {1010} crystal faces, while transesterification occurs on the entire outer crystal surface. Because the method operates at ambient temperature and pressure and in a condensed phase, it can be applied to the growing number of liquid-phase industrial organic transformations to localize catalytic activity on and in inorganic solids. An exciting opportunity is the use of probe molecules with different size and functionality, which should provide insight into shape-selective or structure-sensitive catalysis and thus help with the rational design of new or
Xiang, D.; Fu, F.; Zhang, J.; Huang, X.; Wang, L.; Wang, X.; Wan, W.
2014-09-01
We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. We anticipate that u-TEMs with a product of temporal and spatial resolution beyond 10-19 ms will open up new opportunities in probing matter at ultrafast temporal and ultrasmall spatial scales.
The spatial dimensions of innovation
DEFF Research Database (Denmark)
Lorentzen, Anne
2005-01-01
This article takes a critical look at assumptions and ideas fundamental to theories of ‘regional innovation systems’ and ‘learning regions’. First the original theories and their roots are presented briefly. Then a number of key concepts and assumptions will be discussed. After that two trends...... of development of the original theories will be discussed. One trend is the diversification of the notion of proximity. The other is the inclusion of the global or extralocal linkages in the models. The concluding part suggests a change in perspective in the study of innovation towards a focus on the actors...... of this process and their societal embeddedness on different scales. More exploratory methods of research would be useful for the creation of relevant scientific knowledge on social processes of innovation....
The Spatial Dimension of Theatre.
Longman, Stanley Vincent
1981-01-01
Analyzes the use of physical and imagined space and time in three plays. Describes how these features interact, assume dramatic force, and augment the tension, irony, and meaning of the play. The plays used are Chekhov's "The Three Sisters," Moliere's "Tartuffe," and Stoppard's "Rosencrantz and Guildenstern Are Dead." (JMF)
DEFF Research Database (Denmark)
Peng, Min; Fei, Wei; Hosseini, Mandana
2013-01-01
The aims of the present study were to evaluate the influence of implant position on clinical crown length and marginal soft tissue dimensions at implant-supported single crowns of maxillary central incisors, and to validate the papilla index score (PIS). Twenty-five patients, who had lost one of ...... abutments and did not necessarily result in an increased crown length. The distal implant papilla heightwas obviously shorter, althoughthe mesial papilla height was similar to thatof the healthy dentition.The papilla index score was tested to be a valid index for papilla fill....
Application of a single-flicker online SSVEP BCI for spatial navigation.
Chen, Jingjing; Zhang, Dan; Engel, Andreas K; Gong, Qin; Maye, Alexander
2017-01-01
A promising approach for brain-computer interfaces (BCIs) employs the steady-state visual evoked potential (SSVEP) for extracting control information. Main advantages of these SSVEP BCIs are a simple and low-cost setup, little effort to adjust the system parameters to the user and comparatively high information transfer rates (ITR). However, traditional frequency-coded SSVEP BCIs require the user to gaze directly at the selected flicker stimulus, which is liable to cause fatigue or even photic epileptic seizures. The spatially coded SSVEP BCI we present in this article addresses this issue. It uses a single flicker stimulus that appears always in the extrafoveal field of view, yet it allows the user to control four control channels. We demonstrate the embedding of this novel SSVEP stimulation paradigm in the user interface of an online BCI for navigating a 2-dimensional computer game. Offline analysis of the training data reveals an average classification accuracy of 96.9±1.64%, corresponding to an information transfer rate of 30.1±1.8 bits/min. In online mode, the average classification accuracy reached 87.9±11.4%, which resulted in an ITR of 23.8±6.75 bits/min. We did not observe a strong relation between a subject's offline and online performance. Analysis of the online performance over time shows that users can reliably control the new BCI paradigm with stable performance over at least 30 minutes of continuous operation.
Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.
Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R
2018-01-01
A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.
Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele
2018-05-01
A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.
Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo
2013-01-01
Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.
Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar
2014-05-28
The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.
Turchin, Peter; Currie, Thomas E.; Whitehouse, Harvey; François, Pieter; Feeney, Kevin; Mullins, Daniel; Hoyer, Daniel; Collins, Christina; Grohmann, Stephanie; Mendel-Gleason, Gavin; Turner, Edward; Dupeyron, Agathe; Cioni, Enrico; Reddish, Jenny; Levine, Jill; Jordan, Greine; Brandl, Eva; Williams, Alice; Cesaretti, Rudolf; Krueger, Marta; Ceccarelli, Alessandro; Figliulo-Rosswurm, Joe; Tuan, Po-Ju; Peregrine, Peter; Marciniak, Arkadiusz; Preiser-Kapeller, Johannes; Kradin, Nikolay; Korotayev, Andrey; Palmisano, Alessio; Baker, David; Bidmead, Julye; Bol, Peter; Christian, David; Cook, Connie; Covey, Alan; Feinman, Gary; Júlíusson, Árni Daníel; Kristinsson, Axel; Miksic, John; Mostern, Ruth; Petrie, Cameron; Rudiak-Gould, Peter; ter Haar, Barend; Wallace, Vesna; Mair, Victor; Xie, Liye; Baines, John; Bridges, Elizabeth; Manning, Joseph; Lockhart, Bruce; Bogaard, Amy; Spencer, Charles
2018-01-01
Do human societies from around the world exhibit similarities in the way that they are structured, and show commonalities in the ways that they have evolved? These are long-standing questions that have proven difficult to answer. To test between competing hypotheses, we constructed a massive repository of historical and archaeological information known as “Seshat: Global History Databank.” We systematically coded data on 414 societies from 30 regions around the world spanning the last 10,000 years. We were able to capture information on 51 variables reflecting nine characteristics of human societies, such as social scale, economy, features of governance, and information systems. Our analyses revealed that these different characteristics show strong relationships with each other and that a single principal component captures around three-quarters of the observed variation. Furthermore, we found that different characteristics of social complexity are highly predictable across different world regions. These results suggest that key aspects of social organization are functionally related and do indeed coevolve in predictable ways. Our findings highlight the power of the sciences and humanities working together to rigorously test hypotheses about general rules that may have shaped human history. PMID:29269395
Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz
2014-01-01
Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal's body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance.
Directory of Open Access Journals (Sweden)
Kristine Meise
Full Text Available Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal's body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6% and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%. Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%. In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance.
Xiang, D.; Fu, F.; Zhang, J.; Huang, X.; Wang, L.; Wang, X.; Wan, W.
2014-01-01
We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs, and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. W...
Monsef, Florian; Cozza, Andrea
2011-10-01
The ensemble-average value of the mean-square pressure is often assessed by using the spatial-average technique, underlying an equivalence principle between spatial and ensemble estimators. Using the ideal-diffuse-field model, the accuracy of the spatial-average method has been studied theoretically forty years ago in the case of a single-tone excitation. This study is revisited in the present work on the basis of a more realistic description of the sound field accounting for a finite number of plane waves. The analysis of the spatial-average estimator is based on the study of its convergence rate. Using experimental data from practical examples, it is shown that the classical expression underestimates the estimator uncertainty even for frequencies greater than Schroeder's frequency, and that the number of plane waves may act as lower bound on the spatial-average estimator accuracy. The comparison of the convergence rate with an ensemble-estimator shows that the two statistics cannot be regarded as equivalent in a general case. © 2011 Acoustical Society of America
Bilinear common spatial pattern for single-trial ERP-based rapid serial visual presentation triage
Yu, K.; Shen, K.; Shao, S.; Ng, W. C.; Li, X.
2012-08-01
Common spatial pattern (CSP) analysis is a useful tool for the feature extraction of event-related potentials (ERP). However, CSP is essentially time invariant, and thus unable to exploit the temporal information of ERP. This paper proposes a variant of CSP, namely bilinear common spatial pattern (BCSP), which is capable of accommodating both spatial and temporal information. BCSP generalizes CSP through iteratively optimizing bilinear filters. These bilinear filters constitute a spatio-temporal subspace in which the separation between two conditions is maximized. The method is unique in the sense that it is mathematically intuitive and simple, as all the bilinear filters are obtained by maximizing the power ratio as CSP does. The proposed method was evaluated on 20 subjects’ ERP data collected in rapid serial visual presentation triage experiments. The results show that BCSP achieved significantly higher average test accuracy (12.3% higher, p < 0.001).
Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor); Bearman, Gregory H. (Inventor)
2011-01-01
Computed tomography imaging spectrometers ("CTISs") employing a single lens are provided. The CTISs may be either transmissive or reflective, and the single lens is either configured to transmit and receive uncollimated light (in transmissive systems), or is configured to reflect and receive uncollimated light (in reflective systems). An exemplary transmissive CTIS includes a focal plane array detector, a single lens configured to transmit and receive uncollimated light, a two-dimensional grating, and a field stop aperture. An exemplary reflective CTIS includes a focal plane array detector, a single mirror configured to reflect and receive uncollimated light, a two-dimensional grating, and a field stop aperture.
Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells
DEFF Research Database (Denmark)
Breitenbach, Thomas; Kuimova, Marina; Gbur, Peter
2009-01-01
be monitored using viability assays. Time- and spatially-resolved optical measurements of both singlet oxygen and its precursor, the excited state sensitizer, reflect the complex and dynamic morphology of the cell. These experiments help elucidate photoinduced, oxygen-dependent events that compromise cell...
Ribordy Lambert, Farfalla; Lavenex, Pierre; Banta Lavenex, Pamela
2017-03-01
Allocentric spatial memory, "where" with respect to the surrounding environment, is one of the three fundamental components of episodic memory: what, where, when. Whereas basic allocentric spatial memory abilities are reliably observed in children after 2 years of age, coinciding with the offset of infantile amnesia, the resolution of allocentric spatial memory acquired over repeated trials improves from 2 to 4 years of age. Here, we first show that single-trial allocentric spatial memory performance improves in children from 3.5 to 7 years of age, during the typical period of childhood amnesia. Second, we show that large individual variation exists in children's performance at this age. Third, and most importantly, we show that improvements in single-trial allocentric spatial memory performance are due to an increasing ability to spatially and temporally separate locations and events. Such improvements in spatial and temporal processing abilities may contribute to the gradual offset of childhood amnesia. © 2016 Wiley Periodicals, Inc.
Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten
1999-05-01
Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.
Pisanello, Ferruccio; Mandelbaum, Gil; Pisanello, Marco; Oldenburg, Ian A; Sileo, Leonardo; Markowitz, Jeffrey E; Peterson, Ralph E; Della Patria, Andrea; Haynes, Trevor M; Emara, Mohamed S; Spagnolo, Barbara; Datta, Sandeep Robert; De Vittorio, Massimo; Sabatini, Bernardo L
2017-08-01
Optogenetics promises precise spatiotemporal control of neural processes using light. However, the spatial extent of illumination within the brain is difficult to control and cannot be adjusted using standard fiber optics. We demonstrate that optical fibers with tapered tips can be used to illuminate either spatially restricted or large brain volumes. Remotely adjusting the light input angle to the fiber varies the light-emitting portion of the taper over several millimeters without movement of the implant. We use this mode to activate dorsal versus ventral striatum of individual mice and reveal different effects of each manipulation on motor behavior. Conversely, injecting light over the full numerical aperture of the fiber results in light emission from the entire taper surface, achieving broader and more efficient optogenetic activation of neurons, compared to standard flat-faced fiber stimulation. Thus, tapered fibers permit focal or broad illumination that can be precisely and dynamically matched to experimental needs.
International Nuclear Information System (INIS)
Cohen, A.G.
2003-01-01
Extra-dimensional physics is realized as the low-energy limit of lower-dimensional gauge theories. This 'deconstruction' of dimensions provides a UV completion of higher-dimensional theories, and has been used to investigate the physics of extra-dimensions. This technique has also led to a variety of interesting phenomenological applications, especially a new class of models of electroweak superconductivity, called the 'little Higgs'. (author)
Serag, Maged F.
2014-10-06
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.
Plasmonic Circuit Theory for Multiresonant Light Funneling to a Single Spatial Hot Spot.
Hughes, Tyler W; Fan, Shanhui
2016-09-14
We present a theoretical framework, based on plasmonic circuit models, for generating a multiresonant field intensity enhancement spectrum at a single "hot spot" in a plasmonic device. We introduce a circuit model, consisting of an array of coupled LC resonators, that directs current asymmetrically in the array, and we show that this circuit can funnel energy efficiently from each resonance to a single element. We implement the circuit model in a plasmonic nanostructure consisting of a series of metal bars of differing length, with nearest neighbor metal bars strongly coupled electromagnetically through air gaps. The resulting nanostructure resonantly traps different wavelengths of incident light in separate gap regions, yet it funnels the energy of different resonances to a common location, which is consistent with our circuit model. Our work is important for a number of applications of plasmonic nanoantennas in spectroscopy, such as in single-molecule fluorescence spectroscopy or Raman spectroscopy.
Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi
2014-01-01
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.
International Nuclear Information System (INIS)
Buchner, S.; Langworthy, J.B.; Stapor, W.J.; Campbell, A.B.; Rivet, S.
1994-01-01
Pulsed laser light was used to measure single event upset (SEU) thresholds for a large number of memory cells in both CMOS and bipolar SRAMs. Results showed that small variations in intercell upset threshold could not explain the gradual rise in the curve of cross section versus linear energy transfer (LET). The memory cells exhibited greater intracell variations implying that the charge collection efficiency within a memory cell varies spatially and contributes substantially to the shape of the curve of cross section versus LET. The results also suggest that the pulsed laser can be used for hardness-assurance measurements on devices with sensitive areas larger than the diameter of the laser beam
Energy Technology Data Exchange (ETDEWEB)
Kunitsyna, T. S.; Teplyakova, L. A., E-mail: lat168@mail.ru; Koneva, N. A. [Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Poltaranin, M. A. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)
2015-10-27
It is established that different structure of slip dislocation at the end of the linear hardening stage results in different distribution of dislocation charges in the volume of a single crystal. In the alloy with a near atomic order the slip of single dislocations leads to formation of planar structures—layers with the excess density of dislocations. In the alloy with long-range atomic order the slip of superdislocations brings the formation of the system of parallel rod-like charged dislocation linking.
Spatial structure of single and interacting Mn acceptors in GaAs
Koenraad, Paul
2005-03-01
Ferromagnetic semiconductors such as Ga1-xMnxAs are receiving a lot of attention at the moment because of their application in spintronic devices. However, despite intense study of deep acceptors in III-V semiconductors such as MnGa, little information has been obtained on their electronic properties at the atomic scale. Yet the spatial shape of the Mn acceptor state will influence the hole-mediated Mn-Mn coupling and thus all of the magnetic properties of ferromagnetic semiconductors such as Ga1-xMnxAs. This study presents an experimental and theoretical description of the spatial symmetry of the Mn acceptor wave-function in GaAs. We present measurements of the spatial mapping of the anisotropic wavefunction of a hole localized at a Mn acceptor. To achieve this, we have used the STM tip not only to image the Mn acceptor but also to manipulate its charge state A^0/A^- at room temperature. Within an envelope function effective mass model (EFM) the anisotropy in the acceptor wave-function can be traced to the influence of the cubic symmetry of the GaAs crystal which selects specific d-states that mix into the ground state due to the spin-orbit interaction in the valence band. Comparison with calculations based on a tight-binding model (TBM) for the Mn acceptor structure supports this conclusion. Using the same experimental and theoretical approach we furthermore explored the interaction between Mn acceptors directly by analyzing close Mn-Mn pairs, which were separated by less than 2 nm. We will discuss some implications of these results for Mn delta-doped layers grown on differently oriented growth surfaces.
DEFF Research Database (Denmark)
Leza, Cristina; Puthusserypady, Sadasivan
2017-01-01
Brain Computer Interfaces (BCIs) use brain signals to communicate with the external world. The main challenges to address are speed, accuracy and adaptability. Here, a novel algorithm for P300 based BCI spelling system is presented, speciﬁcally suited for single-trial detection of Event...
International Nuclear Information System (INIS)
Poppe, Bjoern; Djouguela, Armand; Blechschmidt, Arne; Willborn, Kay; Ruehmann, Antje; Harder, Dietrich
2007-01-01
The spatial resolution of 2D detector arrays equipped with ionization chambers or diodes, used for the dose verification of IMRT treatment plans, is limited by the size of the single detector and the centre-to-centre distance between the detectors. Optimization criteria with regard to these parameters have been developed by combining concepts of dosimetry and pattern analysis. The 2D-ARRAY Type 10024 (PTW-Freiburg, Germany), single-chamber cross section 5 x 5 mm 2 , centre-to-centre distance between chambers in each row and column 10 mm, served as an example. Additional frames of given dose distributions can be taken by shifting the whole array parallel or perpendicular to the MLC leaves by, e.g., 5 mm. The size of the single detector is characterized by its lateral response function, a trapezoid with 5 mm top width and 9 mm base width. Therefore, values measured with the 2D array are regarded as sample values from the convolution product of the accelerator generated dose distribution and this lateral response function. Consequently, the dose verification, e.g., by means of the gamma index, is performed by comparing the measured values of the 2D array with the values of the convolution product of the treatment planning system (TPS) calculated dose distribution and the single-detector lateral response function. Sufficiently small misalignments of the measured dose distributions in comparison with the calculated ones can be detected since the lateral response function is symmetric with respect to the centre of the chamber, and the change of dose gradients due to the convolution is sufficiently small. The sampling step width of the 2D array should provide a set of sample values representative of the sampled distribution, which is achieved if the highest spatial frequency contained in this function does not exceed the 'Nyquist frequency', one half of the sampling frequency. Since the convolution products of IMRT-typical dose distributions and the single
Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution
Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.
High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of 5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.
DEFF Research Database (Denmark)
Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas
2011-01-01
The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served...... to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance...... between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach...
Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing; Shi, Jianqiang
2014-01-01
By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation.
Directory of Open Access Journals (Sweden)
J. Mejia
2013-11-01
Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.
International Nuclear Information System (INIS)
Mejia, J.; Reis, M.A.; Miranda, A.C.C.; Batista, I.R.; Barboza, M.R.F.; Shih, M.C.; Fu, G.; Chen, C.T.; Meng, L.J.; Bressan, R.A.; Amaro, E. Jr
2013-01-01
The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s -1 ·MBq -1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99m Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99m Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity
Energy Technology Data Exchange (ETDEWEB)
Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)
2013-11-06
The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.
Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn
2014-01-01
Instrumented postural control analysis plays an important role in evaluating the effects of injury on dynamic stability during balance tasks, and is often conveyed with measures based on the displacement of the center-of-pressure (COP) assessed with a force platform. However, the desired outcome of the task is frequently characterized by a loss of dynamic stability, secondary to injury. Typically, these failed trials are discarded during research investigations, with the potential loss of informative data pertaining to task success. The novelty of the present study is that COP characteristics of failed trials in injured participants are compared to successful trial data in another injured group, and a control group of participants, using the fractal dimension (FD) method. Three groups of participants attempted a task of eyes closed single limb stance (SLS): twenty-nine participants with acute ankle sprain successfully completed the task on their non-injured limb (successful injury group); twenty eight participants with acute ankle sprain failed their attempt on their injured limb (failed injury group); sixteen participants with no current injury successfully completed the task on their non-dominant limb (successful non-injured group). Between trial analyses of these groups revealed significant differences in COP trajectory FD (successful injury group: 1.58±0.06; failed injury group: 1.54±0.07; successful non-injured group: 1.64±0.06) with a large effect size (0.27). These findings demonstrate that successful eyes-closed SLS is characterized by a larger FD of the COP path when compared to failed trials, and that injury causes a decrease in COP path FD. Copyright © 2014 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Birjiniuk, Alona; Doyle, Patrick S; Billings, Nicole; Ribbeck, Katharina; Nance, Elizabeth; Hanes, Justin
2014-01-01
Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time. (paper)
Pandey, Shristi; Shekhar, Karthik; Regev, Aviv; Schier, Alexander F
2018-04-02
The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a reference atlas created a resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wei, Xiaohua; Zhang, Mingfang
2010-12-01
Climatic variability and forest disturbance are commonly recognized as two major drivers influencing streamflow change in large-scale forested watersheds. The greatest challenge in evaluating quantitative hydrological effects of forest disturbance is the removal of climatic effect on hydrology. In this paper, a method was designed to quantify respective contributions of large-scale forest disturbance and climatic variability on streamflow using the Willow River watershed (2860 km2) located in the central part of British Columbia, Canada. Long-term (>50 years) data on hydrology, climate, and timber harvesting history represented by equivalent clear-cutting area (ECA) were available to discern climatic and forestry influences on streamflow by three steps. First, effective precipitation, an integrated climatic index, was generated by subtracting evapotranspiration from precipitation. Second, modified double mass curves were developed by plotting accumulated annual streamflow against annual effective precipitation, which presented a much clearer picture of the cumulative effects of forest disturbance on streamflow following removal of climatic influence. The average annual streamflow changes that were attributed to forest disturbances and climatic variability were then estimated to be +58.7 and -72.4 mm, respectively. The positive (increasing) and negative (decreasing) values in streamflow change indicated opposite change directions, which suggest an offsetting effect between forest disturbance and climatic variability in the study watershed. Finally, a multivariate Autoregressive Integrated Moving Average (ARIMA) model was generated to establish quantitative relationships between accumulated annual streamflow deviation attributed to forest disturbances and annual ECA. The model was then used to project streamflow change under various timber harvesting scenarios. The methodology can be effectively applied to any large-scale single watershed where long-term data (>50
Restoration of spatial hearing in adult cochlear implant users with single-sided deafness.
Litovsky, Ruth Y; Moua, Keng; Godar, Shelly; Kan, Alan; Misurelli, Sara M; Lee, Daniel J
2018-04-14
In recent years, cochlear implants (CIs) have been provided in growing numbers to people with not only bilateral deafness but also to people with unilateral hearing loss, at times in order to alleviate tinnitus. This study presents audiological data from 15 adult participants (ages 48 ± 12 years) with single sided deafness. Results are presented from 9/15 adults, who received a CI (SSD-CI) in the deaf ear and were tested in Acoustic or Acoustic + CI hearing modes, and 6/15 adults who are planning to receive a CI, and were tested in the unilateral condition only. Testing included (1) audiometric measures of threshold, (2) speech understanding for CNC words and AzBIO sentences, (3) tinnitus handicap inventory, (4) sound localization with stationary sound sources, and (5) perceived auditory motion. Results showed that when listening to sentences in quiet, performance was excellent in the Acoustic and Acoustic + CI conditions. In noise, performance was similar between Acoustic and Acoustic + CI conditions in 4/6 participants tested, and slightly worse in the Acoustic + CI in 2/6 participants. In some cases, the CI provided reduced tinnitus handicap scores. When testing sound localization ability, the Acoustic + CI condition resulted in improved sound localization RMS error of 29.2° (SD: ±6.7°) compared to 56.6° (SD: ±16.5°) in the Acoustic-only condition. Preliminary results suggest that the perception of motion direction, whereby subjects are required to process and compare directional cues across multiple locations, is impaired when compared with that of normal hearing subjects. Copyright © 2018 Elsevier B.V. All rights reserved.
Das, Sulagna; Yin, Taofei; Yang, Qingfen; Zhang, Jingqiao; Wu, Yi I.; Yu, Ji
2015-01-01
Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction. PMID:25561548
Ghosh, Dwaipayan; Febriansyah, Benny; Gupta, Disha; Ng, Leonard Kia-Sheun; Xi, Shibo; Du, Yonghua; Baikie, Tom; Dong, ZhiLi; Soo, Han Sen
2018-05-22
Catalyst deactivation is a persistent problem not only for the scientific community but also in industry. Isolated single-site heterogeneous catalysts have shown great promise to overcome these problems. Here, a versatile anchoring strategy for molecular complex immobilization on a broad range of semiconducting or insulating metal oxide ( e. g., titanium dioxide, mesoporous silica, cerium oxide, and tungsten oxide) nanoparticles to synthesize isolated single-site catalysts has been studied systematically. An oxidatively stable anchoring group, maleimide, is shown to form covalent linkages with surface hydroxyl functionalities of metal oxide nanoparticles by photoclick chemistry. The nanocomposites have been thoroughly characterized by techniques including UV-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy (XAS). The IR spectroscopic studies confirm the covalent linkages between the maleimide group and surface hydroxyl functionalities of the oxide nanoparticles. The hybrid nanomaterials function as highly efficient catalysts for essentially quantitative oxidations of terminal and internal alkenes and show molecular catalyst product selectivities even in more eco-friendly solvents. XAS studies verify the robustness of the catalysts after several catalytic cycles. We have applied the photoclick anchoring methodology to precisely control the deposition of a luminescent variant of our catalyst on the metal oxide nanoparticles. Overall, we demonstrate a general approach to use irradiation to anchor molecular complexes on oxide nanoparticles to create recyclable, hybrid, single-site catalysts that function with high selectivity in a broad range of solvents. We have achieved a facile, spatially and temporally controllable photoclick method that can potentially be extended to other ligands, catalysts, functional molecules, and surfaces.
Caldú-Primo, Anahi; Schruba, Andreas; Walter, Fabian; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart
2015-02-01
Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%-74% for NGC 4736 and 81%-92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ˜(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(˜1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (˜3″ or ˜100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.
International Nuclear Information System (INIS)
Caldú-Primo, Anahi; Walter, Fabian; Schruba, Andreas; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart
2015-01-01
Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%–74% for NGC 4736 and 81%–92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ∼(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(∼1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (∼3″ or ∼100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.
Magnetic resonance imaging of single rice kernels during cooking
Mohoric, A.; Vergeldt, F.J.; Gerkema, E.; Jager, de P.A.; Duynhoven, van J.P.M.; Dalen, van G.; As, van H.
2004-01-01
The RARE imaging method was used to monitor the cooking of single rice kernels in real time and with high spatial resolution in three dimensions. The imaging sequence is optimized for rapid acquisition of signals with short relaxation times using centered out RARE. Short scan time and high spatial
Energy Technology Data Exchange (ETDEWEB)
Livingstone, Jayde, E-mail: Jayde.Livingstone@synchrotron.org.au; Häusermann, Daniel [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168 (Australia); Stevenson, Andrew W. [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and CSIRO Manufacturing, Clayton South, Victoria 3169 (Australia); Butler, Duncan J. [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia); Adam, Jean-François [Equipe d’accueil Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, European Synchrotron Radiation Facility - ID17, Grenoble 38043, France and Centre Hospitalier Universitaire de Grenoble, Grenoble 38043 (France)
2016-07-15
Purpose: Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy. Methods: Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence of the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30–120 keV. The dose-rate dependence was measured in the range 1–700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters. Results: The detector exhibits an energy dependence; however, beam quality correction factors (k{sub Q}) have been measured for energies in the range 30–120 keV. The k{sub Q} factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1–700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic film data
Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers
Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela
2010-01-01
Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.
Su, Yanfeng; Cai, Zhijian; Liu, Quan; Lu, Yifan; Guo, Peiliang; Shi, Lingyan; Wu, Jianhong
2018-04-01
In this paper, an autostereoscopic three-dimensional (3D) display system based on synthetic hologram reconstruction is proposed and implemented. The system uses a single phase-only spatial light modulator to load the synthetic hologram of the left and right stereo images, and the parallax angle between two reconstructed stereo images is enlarged by a grating to meet the split angle requirement of normal stereoscopic vision. To realize the crosstalk-free autostereoscopic 3D display with high light utilization efficiency, the groove parameters of the grating are specifically designed by the rigorous coupled-wave theory for suppressing the zero-order diffraction, and then the zero-order nulled grating is fabricated by the holographic lithography and the ion beam etching. Furthermore, the diffraction efficiency of the fabricated grating is measured under the illumination of a laser beam with a wavelength of 532 nm. Finally, the experimental verification system for the proposed autostereoscopic 3D display is presented. The experimental results prove that the proposed system is able to generate stereoscopic 3D images with good performances.
Effects of an additional dimension in the Young experiment
Energy Technology Data Exchange (ETDEWEB)
Barros, Allan Kardec, E-mail: allan@elo.com.br
2015-09-15
The results of the Young experiment can be analyzed either by classical or Quantum Physics. The later one though leads to a more complete interpretation, based on two different patterns that appear when one works either with single or double slits. Here we show that the two patterns can be derived from a single principle, in the context of General Relativity, if one assumes an additional spatial dimension to the four known today. The found equations yield the same results as those in Quantum Mechanics.
2013-01-01
A few weeks ago, I had a vague notion of what TED was, and how it worked, but now I’m a confirmed fan. It was my privilege to host CERN’s first TEDx event last Friday, and I can honestly say that I can’t remember a time when I was exposed to so much brilliance in such a short time. TEDxCERN was designed to give a platform to science. That’s why we called it Multiplying Dimensions – a nod towards the work we do here, while pointing to the broader importance of science in society. We had talks ranging from the most subtle pondering on the nature of consciousness to an eighteen year old researcher urging us to be patient, and to learn from our mistakes. We had musical interludes that included encounters between the choirs of local schools and will.i.am, between an Israeli pianist and an Iranian percussionist, and between Grand Opera and high humour. And although I opened the event by announcing it as a day off from physics, we had a quite brill...
Fractal nature of hydrocarbon deposits. 2. Spatial distribution
International Nuclear Information System (INIS)
Barton, C.C.; Schutter, T.A; Herring, P.R.; Thomas, W.J.; Scholz, C.H.
1991-01-01
Hydrocarbons are unevenly distributed within reservoirs and are found in patches whose size distribution is a fractal over a wide range of scales. The spatial distribution of the patches is also fractal and this can be used to constrain the design of drilling strategies also defined by a fractal dimension. Fractal distributions are scale independent and are characterized by a power-law scaling exponent termed the fractal dimension. The authors have performed fractal analyses on the spatial distribution of producing and showing wells combined and of dry wells in 1,600-mi 2 portions of the Denver and Powder River basins that were nearly completely drilled on quarter-mile square-grid spacings. They have limited their analyses to wells drilled to single stratigraphic intervals so that the map pattern revealed by drilling is representative of the spatial patchiness of hydrocarbons at depth. The fractal dimensions for the spatial patchiness of hydrocarbons in the two basins are 1.5 and 1.4, respectively. The fractal dimension for the pattern of all wells drilled is 1.8 for both basins, which suggests a drilling strategy with a fractal dimension significantly higher than the dimensions 1.5 and 1.4 sufficient to efficiently and economically explore these reservoirs. In fact, the fractal analysis reveals that the drilling strategy used in these basins approaches a fractal dimension of 2.0, which is equivalent to random drilling with no geologic input. Knowledge of the fractal dimension of a reservoir prior to drilling would provide a basis for selecting and a criterion for halting a drilling strategy for exploration whose fractal dimension closely matches that of the spatial fractal dimension of the reservoir, such a strategy should prove more efficient and economical than current practice
Inflation from extra dimensions
International Nuclear Information System (INIS)
Barr, S.M.
1984-01-01
Recently there has been growing interest (1) in the possibility that the universe could have more than four dimensions. Aside from any light this may shed on problems in particle physics, if true it would undoubtedly have important implications for early cosmology. A rather speculative but very appealing possibility suggested by D. Sahdev and by E. Alvarez and B. Gavela is that the gravitational collapse of extra spatial dimensions could drive an inflation of ordinary space. This kind of inflationary cosmology would be quite different from the inflationary cosmologies now so intensively studied which are supposed to result from changes in vacuum energy during phase transitions in the early universe. In our work we examine the physics of these Kaluza-Klein inflationary cosmologies and come to three main conclusions. (1) It is desirable to have many extra dimensions, many being of order forty or fifty. (2) For models which give a realistically large inflation almost all of this inflation occurs in a period when quantum gravity is certainly important. This means that Einstein's equations cannot be used to calculate the details of this inflationary period. (3) Under plausible assumptions one may argue from the second law of thermodynamics that given appropriate initial conditions a large inflation will occur even when details of the inflationary phase cannot be calculated classically
Langdon, Blake B; Mirhossaini, Roya B; Mabry, Joshua N; Sriram, Indira; Lajmi, Ajay; Zhang, Yanxia; Rojas, Orlando J; Schwartz, Daniel K
2015-02-18
Although polymeric membranes are widely used in the purification of protein pharmaceuticals, interactions between biomolecules and membrane surfaces can lead to reduced membrane performance and damage to the product. In this study, single-molecule fluorescence microscopy provided direct observation of bovine serum albumin (BSA) and human monoclonal antibody (IgG) dynamics at the interface between aqueous buffer and polymeric membrane materials including regenerated cellulose and unmodified poly(ether sulfone) (PES) blended with either polyvinylpyrrolidone (PVP), polyvinyl acetate-co-polyvinylpyrrolidone (PVAc-PVP), or polyethylene glycol methacrylate (PEGM) before casting. These polymer surfaces were compared with model surfaces composed of hydrophilic bare fused silica and hydrophobic trimethylsilane-coated fused silica. At extremely dilute protein concentrations (10(-3)-10(-7) mg/mL), protein surface exchange was highly dynamic with protein monomers desorbing from the surface within ∼1 s after adsorption. Protein oligomers (e.g., nonspecific dimers, trimers, or larger aggregates), although less common, remained on the surface for 5 times longer than monomers. Using newly developed super-resolution methods, we could localize adsorption sites with ∼50 nm resolution and quantify the spatial heterogeneity of the various surfaces. On a small anomalous subset of the adsorption sites, proteins adsorbed preferentially and tended to reside for significantly longer times (i.e., on "strong" sites). Proteins resided for shorter times overall on surfaces that were more homogeneous and exhibited fewer strong sites (e.g., PVAc-PVP/PES). We propose that strong surface sites may nucleate protein aggregation, initiated preferentially by protein oligomers, and accelerate ultrafiltration membrane fouling. At high protein concentrations (0.3-1.0 mg/mL), fewer strong adsorption sites were observed, and surface residence times were reduced. This suggests that at high concentrations
Lovelock inflation and the number of large dimensions
Ferrer, Francesc
2007-01-01
We discuss an inflationary scenario based on Lovelock terms. These higher order curvature terms can lead to inflation when there are more than three spatial dimensions. Inflation will end if the extra dimensions are stabilised, so that at most three dimensions are free to expand. This relates graceful exit to the number of large dimensions.
Spectral dimension of quantum geometries
International Nuclear Information System (INIS)
Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes
2014-01-01
The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)
The spatial dimension of knowledge sourcing
DEFF Research Database (Denmark)
Lorentzen, Anne
2005-01-01
This article takes a critical look at assumptions and ideas fundamental to theories of regional innovation systems? and ?learning regions?. First the original theories and their roots are presented briefly. Then a number of key concepts and assumptions will be discussed. After that two trends...
SPATIAL DIMENSIONS OF POVERTY AND FINANCIAL PRECARIOUSNESS
Directory of Open Access Journals (Sweden)
Andrei CHIRILA
2013-02-01
Full Text Available In the article it is presented an territorial analysis2 taking into consideration the workforce occupational status and the incomes features of each of its socio-occupational categories. Two were calculated (based on the last Population Census with available data: the workforce precariousness index (which considers the labour resources that do not realize any income by their own forces and the relative average occupational poverty index (that takes into consideration the national average incomes level and the percentage of the occupational categories whose incomes are situated below the national average. A special attention was paid to the analysis of the institutional means conceived to diminish these phenomena and the vulnerabilities they imply, given the concept of financial territorial resources (European structural funds.
Marsh, Herbert W.; And Others
1988-01-01
Self-concept measures and state certificate program achievement grades were used to determine the effects on 7th through 11th graders in Sydney (Australia) of converting two single-sex high schools to coeducational institutions. Pre- to post-transition data were collected from 1982 to 1985. Coeducational organizations benefit self-concept, while…
search of extra space dimensions with ATLAs
Indian Academy of Sciences (India)
search of extra space dimensions with ATLAs. AMBREEsH GUPTA (for the ATLAs Collaboration). 5640 South Ellis Avenue, Enrico Fermi Institute, University of Chicago, Chicago,. IL 60637, USA. Abstract. If extra spatial dimensions were to exist, they could provide a solution to the hierarchy problem. The studies done by the ...
Fu, Jiaqi; Fernandez, Daniel; Ferrer, Marc; Titus, Steven A; Buehler, Eugen; Lal-Nag, Madhu A
2017-06-01
The widespread use of two-dimensional (2D) monolayer cultures for high-throughput screening (HTS) to identify targets in drug discovery has led to attrition in the number of drug targets being validated. Solid tumors are complex, aberrantly growing microenvironments that harness structural components from stroma, nutrients fed through vasculature, and immunosuppressive factors. Increasing evidence of stromally-derived signaling broadens the complexity of our understanding of the tumor microenvironment while stressing the importance of developing better models that reflect these interactions. Three-dimensional (3D) models may be more sensitive to certain gene-silencing events than 2D models because of their components of hypoxia, nutrient gradients, and increased dependence on cell-cell interactions and therefore are more representative of in vivo interactions. Colorectal cancer (CRC) and breast cancer (BC) models composed of epithelial cells only, deemed single-cell-type tumor spheroids (SCTS) and multi-cell-type tumor spheroids (MCTS), containing fibroblasts were developed for RNAi HTS in 384-well microplates with flat-bottom wells for 2D screening and round-bottom, ultra-low-attachment wells for 3D screening. We describe the development of a high-throughput assay platform that can assess physiologically relevant phenotypic differences between screening 2D versus 3D SCTS, 3D SCTS, and MCTS in the context of different cancer subtypes. This assay platform represents a paradigm shift in how we approach drug discovery that can reduce the attrition rate of drugs that enter the clinic.
Webber, C J
2001-05-01
This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.
Space: The Hunt for Hidden Dimensions
International Nuclear Information System (INIS)
Hewett, JoAnne
2006-01-01
Extra dimensions of space may be present in our universe. Their discovery would dramatically change our view of the cosmos and would prompt many questions. How do they hide? What is their shape? How many are there? How big are they? Do particles and forces feel their presence? This lecture will explain the concept of dimensions and show that current theoretical models predict the existence of extra spatial dimensions which could be in the discovery reach of present and near-term experiments. The manner by which these additional dimensions reveal their existence will be described. Searches for modifications of the gravitational force, astrophysical effects, and collider signatures already constrain the size of extra dimensions and will be summarized. Once new dimensions are discovered, the technology by which the above questions can be answered will be discussed.
Searches for dark matter and extra dimensions with the ATLAS detector
Mueller, T; The ATLAS collaboration
2014-01-01
Different approaches to finding evidence for dark matter at the LHC are presented. These include searches for events with large missing transverse momentum and a single jet, photon or W/Z boson, as well as events with long-lived particles resulting in displaced hadronic vertices or lepton-jet signatures. Those studies are also sensitive to the presence of extra spatial dimensions. Additional searches for classical and quantum black holes are also described.
Searches for dark matter and extra dimensions with the ATLAS detector
Directory of Open Access Journals (Sweden)
Kruskal Michael
2015-01-01
Full Text Available Different approaches to finding evidence for dark matter at the LHC are presented. These include searches for events with large missing transverse momentum and a single jet, photon or W/Z boson. Studies sensitive to the presence of extra spatial dimensions are also described, such as classical or quantum black holes and other non-resonant phenomena. Results are presented from the √s=8 TeV data taking period.
DEFF Research Database (Denmark)
Belhage, B; Frandsen, A; Schousboe, A
1996-01-01
characteristics of voltage gated Ca++ channels are dramatically different in cell bodies and neurites. Moreover, the distribution of L-type channels activated by glutamate differs in cell bodies and neurites. Such differences in the spatial distribution of Ca++ channels are likely to be of major importance...... after exposure to K+. The Ca++ channel blockers verapamil and nifedipine affecting N- and L-type channels, respectively had differential effects on K+ stimulated increases in [Ca++]i. Nifedipine only affected the increase marginally whereas verapamil inhibited the response by 50-60% both in cell bodies...
Guilbert, Alma; Clément, Sylvain; Moroni, Christine
2017-02-01
Two major limitations of unilateral spatial neglect (USN) rehabilitation methods are actually reported: a lack of long-term efficiency and a lack of generalization to daily life. The aim of our case study was to underline how a multisensory method-music practice-could avoid these limitations. Mrs BV suffered from a chronic severe USN. She had rehabilitation sessions of music practice over 8 weeks. An improvement of her USN was found on paper-pencil tests but also in daily activities. Benefits subsisted 4 months after rehabilitation. Music practice seemed to avoid the major limitations of USN rehabilitations and could represent a promising tool.
Physics with large extra dimensions
Antoniadis, Ignatios
2004-01-01
A theory with such a mathematical beauty cannot be wrong: this was one of the main arguments in favor of string theory, which unifies all known physical theories of fundamental interactions in a single coherent description of the universe. But no one has ever observed strings, not even indirectly, neither the space of extra dimensions where they live. However, there is a hope that the “hidden”dimensions of string theory are much larger than what we thought in the past and they become within experimental reach in the near future, together with the strings themselves.
Takagi, Yoshihiro; Yamada, Yoshifumi; Ishikawa, Kiyoshi; Shimizu, Seiji; Sakabe, Shuji
2005-09-01
A simple method for single-shot sub-picosecond optical pulse diagnostics has been demonstrated by imaging the time evolution of the optical mixing onto the beam cross section of the sum-frequency wave when the interrogating pulse passes over the tested pulse in the mixing crystal as a result of the combined effect of group-velocity difference and walk-off beam propagation. A high linearity of the time-to-space projection is deduced from the process solely dependent upon the spatial uniformity of the refractive indices. A snap profile of the accidental coincidence between asynchronous pulses from separate mode-locked lasers has been detected, which demonstrates the single-shot ability.
Münchberg, Ute; Wagner, Lysett; Spielberg, Eike T; Voigt, Kerstin; Rösch, Petra; Popp, Jürgen
2013-02-01
Zygomycetes are well known for their ability to produce various secondary metabolites. Fungi of the genus Mortierella can accumulate highly unsaturated lipids in large amounts as lipid droplets. However, no information about the spatial distribution or homogeneity of the oil inside the fungi is obtainable to date due to the invasive and destructive analytical techniques applied so far. Raman spectroscopy has been demonstrated to be well suited to investigate biological samples on a micrometre scale. It also has been shown that the degree of unsaturation of lipids can be determined from Raman spectra. We applied micro-Raman spectroscopy to investigate the spatial distribution and composition of lipid vesicles inside intact hyphae. For Mortierella alpina and Mortierella elongata distinct differences in the degree of unsaturation and even the impact of growth conditions are determined from the Raman spectra. In both species we found that the fatty acid saturation in the vesicles is highly variable in the first 600 μm of the growing hyphal tip and fluctuates towards a constant composition and saturation ratio in all of the remaining mycelium. Our approach facilitates in vivo monitoring of the lipid production and allows us to investigate the impact of cultivation parameters on the oil composition directly in the growing hyphae without the need for extensive extraction procedures. Copyright © 2012 Elsevier B.V. All rights reserved.
Afsharipour, Babak; Petracca, Francesco; Gasparini, Mauro; Merletti, Roberto
2016-12-01
Musicians activate their muscles in different patterns, depending on their posture, the instrument being played, and their experience level. Bipolar surface electrodes have been used in the past to monitor such activity, but this method is highly sensitive to the location of the electrode pair. In this work, the spatial distribution of surface EMG (sEMG) of the right trapezius and right and left erector spinae muscles were studied in 16 violin players and 11 cello players. Musicians played their instrument one string at a time in sitting position with/without backrest support. A 64 sEMG electrode (16×4) grid, 10mm inter-electrode distance (IED), was placed over the middle and lower trapezius (MT and LT) of the bowing arm. Two 16×2 electrode grids (IED=10mm) were placed on the left and right erector spinae muscles. Subjects played each of the four strings of the instrument either in large (1bow/s) or detaché tip/tail (8bows/s) bowing in two sessions (two days). In each of two days, measurements were repeated after half an hour of exercise to see the effect of exercise on the muscle activity and signal stability. A "muscle activity index" (MAI) was defined as the spatial average of the segmented active region of the RMS map. Spatial maps were automatically segmented using the watershed algorithm and thresholding. Results showed that, for violin players, sliding the bow upward from the tip toward the tail results in a higher MAI for the trapezius muscle than a downward bow. On the contrary, in cello players, higher MAI is produced in the tail to tip movement. For both instruments, an increasing MAI in the trapezius was observed as the string position became increasingly lateral, from string 1 (most medial) toward string 4 (most lateral). Half an hour of performance did not cause significant differences between the signal quality and the MAI values measured before and after the exercise. The MAI of the left and right erector spinae was smaller in the case of
Han, Huili; Dai, Chunfang; Dong, Zhifang
2015-01-01
A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals. PMID:26218751
Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager
Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna
2010-02-01
We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.
Goparaju Purna SUDHAKAR
2013-01-01
Popularity of teams is growing in 21st Century. Organizations are getting their work done through different types of teams. Teams have proved that the collective performance is more than the sum of the individual performances. Thus, the teams have got different dimensions such as quantitative dimensions and qualitative dimensions. The Quantitative dimensions of teams such as team performance, team productivity, team innovation, team effectiveness, team efficiency, team decision making and tea...
Dimension of chaotic attractors
Energy Technology Data Exchange (ETDEWEB)
Farmer, J.D.; Ott, E.; Yorke, J.A.
1982-09-01
Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensions take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.
Dacuña, Javier
2012-09-06
We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.
Ren, Yongxiong; Liu, Cong; Pang, Kai; Zhao, Jiapeng; Cao, Yinwen; Xie, Guodong; Li, Long; Liao, Peicheng; Zhao, Zhe; Tur, Moshe; Boyd, Robert W; Willner, Alan E
2017-12-01
We experimentally demonstrate spatial multiplexing of an orbital angular momentum (OAM)-encoded quantum channel and a classical Gaussian beam with a different wavelength and orthogonal polarization. Data rates as large as 100 MHz are achieved by encoding on two different OAM states by employing a combination of independently modulated laser diodes and helical phase holograms. The influence of OAM mode spacing, encoding bandwidth, and interference from the co-propagating Gaussian beam on registered photon count rates and quantum bit error rates is investigated. Our results show that the deleterious effects of intermodal crosstalk effects on system performance become less important for OAM mode spacing Δ≥2 (corresponding to a crosstalk value of less than -18.5 dB). The use of OAM domain can additionally offer at least 10.4 dB isolation besides that provided by wavelength and polarization, leading to a further suppression of interference from the classical channel.
Dimensions of Creative Evaluation
DEFF Research Database (Denmark)
Christensen, Bo; Ball, Linden J.
2016-01-01
We examined evaluative reasoning taking place during expert ‘design critiques’. We focused on key dimensions of creative evaluation (originality, functionality and aesthetics) and ways in which these dimensions impact reasoning strategies and suggestions offered by experts for how the student could...... continue. Each dimension was associated with a specific underpinning ‘logic’ determining how these dimensions were evaluated in practice. Our analysis clarified how these dimensions triggered reasoning strategies such as running mental simulations or making design suggestions, ranging from ‘go...
Directory of Open Access Journals (Sweden)
Po-Hsun Shih
2017-10-01
Full Text Available The impact of mixed defects on ZnO phononic and photonic properties at the nanoscale is only now being investigated. Here we report an effective strategy to study the distribution of defects along the growth direction of a single ZnO nanowire (NW, performed qualitatively as well as quantitatively using energy dispersive spectroscopy (EDS, confocal Raman-, and photoluminescence (PL-mapping technique. A non-concomitant near-infrared (NIR emission of 1.53 ± 0.01 eV was observed near the bottom region of 2.05 ± 0.05 μm along a single ZnO NW and could be successfully explained by the radiative recombination of shallowly trapped electrons V_O^(** with deeply trapped holes at V_Zn^''. A linear chain model modified from a phonon confinement model was used to describe the growth of short-range correlations between the mean distance of defects and its evolution with spatial position along the axial growth direction by fitting the E2H mode. Our results are expected to provide new insights into improving the study of the photonic and photonic properties of a single nanowire.
Fractal dimension of turbulent black holes
Westernacher-Schneider, John Ryan
2017-11-01
We present measurements of the fractal dimension of a turbulent asymptotically anti-de Sitter black brane reconstructed from simulated boundary fluid data at the perfect fluid order using the fluid-gravity duality. We argue that the boundary fluid energy spectrum scaling as E (k )˜k-2 is a more natural setting for the fluid-gravity duality than the Kraichnan-Kolmogorov scaling of E (k )˜k-5 /3, but we obtain fractal dimensions D for spatial sections of the horizon H ∩Σ in both cases: D =2.584 (1 ) and D =2.645 (4 ), respectively. These results are consistent with the upper bound of D =3 , thereby resolving the tension with the recent claim in Adams et al. [Phys. Rev. Lett. 112, 151602 (2014), 10.1103/PhysRevLett.112.151602] that D =3 +1 /3 . We offer a critical examination of the calculation which led to their result, and show that their proposed definition of the fractal dimension performs poorly as a fractal dimension estimator on one-dimensional curves with known fractal dimension. Finally, we describe how to define and in principle calculate the fractal dimension of spatial sections of the horizon H ∩Σ in a covariant manner, and we speculate on assigning a "bootstrapped" value of fractal dimension to the entire horizon H when it is in a statistically quasisteady turbulent state.
Wang, Qu; Guo, Qing; Lei, Liang; Zhou, Jinyun
2014-12-01
A new optical security system for image encryption based on optical interference principle and translation property of Fresnel transform (FrT) has been proposed in this article. The algorithm of this proposal is specially designed for single-beam optical decryption and can thoroughly resolve the silhouette problem existing in the previous interference-based scheme. Different from earlier schemes using interference of phase-only masks (POMs), the inverse FrT of primitive image is digitally decomposed into a random POM and a complex field distribution. Information associated with the primitive images can be completely smoothed away by the modulation of this random POM. Through the translation property of FrT, two linear phase-only terms are then used to modulate the obtained random POM and the complex distribution, respectively. Two complex ciphertexts are generated by performing digital inverse FrT again. One cannot recover any visible information of secret image using only one ciphertext. Moreover, to recover the primitive image correctly, the correct ciphertexts must be placed in the certain positions of input plane of decryption system, respectively. As additional keys, position center coordinates of ciphertexts can increase the security strength of this encryption system against brute force attacks greatly. Numerical simulations have been given to verify the performance and feasibility of this proposal. To further enhance the application value of this algorithm, an alternative approach based on Fourier transform has also been discussed briefly.
Vargas, Ignacio T.
2013-05-29
Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57V and CE=22% vs. 0.51V and CE=12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57±4% of recovered sequences for the brush and 27±5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. © 2013 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Seo, Ho Geon; Kim, Myung Hwan; Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2012-08-15
Using a single-line pulsed laser beam is well known as a useful noncontact method to generate a directional surface acoustic wave. In this method, different laser beam energy profiles produce different waveforms and frequency characteristics. In this paper, we considered two typical kinds of laser beam energy profiles, Gaussian and square-like, to find out a difference in the frequency characteristics. To achieve this, mathematical models were proposed first for Gaussian laser beam profile and square-like respectively, both of which depended on the laser beam width. To verify the theoretical models, experimental setups with a cylindrical lens and a line-slit mask were respectively designed to produce a line laser beam with Gaussian spatial energy profile and square-like. The frequency responses of the theoretical models showed good agreement with experimental results in terms of the existence of harmonic frequency components and the shift of the first peak frequencies to low.
Crypto-harmonic oscillator in higher dimensions: classical and quantum aspects
International Nuclear Information System (INIS)
Ghosh, Subir; Majhi, Bibhas Ranjan
2008-01-01
We study complexified harmonic oscillator models in two and three dimensions. Our work is a generalization of the work of Smilga (2007 Preprint 0706.4064 (J. Phys. A: Math. Theor. at press)) who initiated the study of these Crypto-gauge invariant models that can be related to PT-symmetric models. We show that rotational symmetry in higher spatial dimensions naturally introduces more constraints (in contrast to Smilga (2007 Preprint 0706.4064 (J. Phys. A: Math. Theor. at press)) where one deals with a single constraint) with a much richer constraint structure. Some common as well as distinct features in the study of the same Crypto-oscillator in different dimensions are revealed. We also quantize the two dimensional Crypto-oscillator
Rosiyadi, Didi; Suryana, Nana; Cahyana, Ade; Nuryani, Nuryani
2007-01-01
Makalah ini mengemukakan E-Government Dimension yang merupakan salah satu hasil TahapanPengumpulan Data, dimana tahapan ini adalah bagian dari penelitian kompetitif di Lembaga Ilmu PengetahuanIndonesia 2007 yang sekarang sedang dilakukan. Data E-Government Dimension ini didapatkan dari berbagaisumber yang meliputi E-Government beberapa Negara di dunia, E-Government yang dibangun oleh beberapapenyedia aplikasi E-Government. E-Government Dimension terdiri dari tiga dimensi yaitu DemocraticDimen...
CERN. Geneva
2006-01-01
Extra dimensions of space might be present in our universe. If so, we want to know 'How do dimensions hide?' and 'Why are three dimensions special?' I'll give potential answers to both these questions in the context of localized gravity. Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00. Talk is broadcasted in Council Chamber
Directory of Open Access Journals (Sweden)
Giluano Torrengo
2018-05-01
Full Text Available Space and time are two obvious candidates as dimensions of reality. Yet, are they the only two dimensions of reality? Famously, David Lewis maintained the doctrine of ―modal realism‖, the thesis that possible worlds exist and are entities as concrete as the actual world that we live in. In this paper, I will explore the idea that modality can be construed as a dimension along with space and time. However, although Lewis‘ modal realism is the main source of inspiration for this construal of modality, I will argue that something else is required for having a modal dimension.
ACCURACY DIMENSIONS IN REMOTE SENSING
Directory of Open Access Journals (Sweden)
Á. Barsi
2018-04-01
Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides
Accuracy Dimensions in Remote Sensing
Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.
2018-04-01
The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice
Large compact dimensions and high energy experiments
Indian Academy of Sciences (India)
Minkowski, there are d additional spatial dimensions which are curled up into circles, ... In the framework of string theory, this is also related to the string tension .... This marks an ..... of about 1 TeV, with an uncertainty of about 50 GeV either way — which improves only .... [5] J C Long, H W Chan and J C Price, Nucl. Phys.
Dimensions of Adolescent Employment.
Mael, Fred A.; Morath, Ray A.; McLellan, Jeffrey A.
1997-01-01
Examines positive and negative correlates of adolescent work as a function of work dimensions. Results indicate that concurrent costs and benefits of adolescent employment may depend on dimensions of work as well as adolescent characteristics. Adolescent employment was generally related to subsequent work motivation and nonacademic performance.…
DEFF Research Database (Denmark)
Lykke, Marianne; Jantzen, Christian
2016-01-01
The present study develops a set of 10 dimensions based on a systematic understanding of the concept of experience as a holistic psychological. Seven of these are derived from a psychological conception of what experiencing and experiences are. Three supplementary dimensions spring from the obser...
Dimensions des stabulations 2018
Früh, Barbara; Maurer, Veronika; Schneider, Claudia; Schürmann, Stefan; Spengler Neff, Anet; Werne, Steffen
2018-01-01
Les «Dimensions des stabulations» contiennent toutes les dimensions pour les stabulations et les parcours pour la production animale en agriculture biologique. Cette liste sert d’instrument de planification pour les éleveurs, d’outil de travail pour la vulgarisation et d’ouvrage de référence pour le contrôle bio.
DEFF Research Database (Denmark)
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....
Shen, Shan; Szameitat, André J; Sterr, Annette
2008-07-01
Detection of infarct lesions using traditional segmentation methods is always problematic due to intensity similarity between lesions and normal tissues, so that multispectral MRI modalities were often employed for this purpose. However, the high costs of MRI scan and the severity of patient conditions restrict the collection of multiple images. Therefore, in this paper, a new 3-D automatic lesion detection approach was proposed, which required only a single type of anatomical MRI scan. It was developed on a theory that, when lesions were present, the voxel-intensity-based segmentation and the spatial-location-based tissue distribution should be inconsistent in the regions of lesions. The degree of this inconsistency was calculated, which indicated the likelihood of tissue abnormality. Lesions were identified when the inconsistency exceeded a defined threshold. In this approach, the intensity-based segmentation was implemented by the conventional fuzzy c-mean (FCM) algorithm, while the spatial location of tissues was provided by prior tissue probability maps. The use of simulated MRI lesions allowed us to quantitatively evaluate the performance of the proposed method, as the size and location of lesions were prespecified. The results showed that our method effectively detected lesions with 40-80% signal reduction compared to normal tissues (similarity index > 0.7). The capability of the proposed method in practice was also demonstrated on real infarct lesions from 15 stroke patients, where the lesions detected were in broad agreement with true lesions. Furthermore, a comparison to a statistical segmentation approach presented in the literature suggested that our 3-D lesion detection approach was more reliable. Future work will focus on adapting the current method to multiple sclerosis lesion detection.
Evolution Of The Concept Of Dimension
International Nuclear Information System (INIS)
Journeau, Philippe F.
2007-01-01
Concepts of time elapsing 'in' a space measuring the real emerge over the centuries. But Kant refutes absolute time and defines it, with space, as forms reacting to Newtonian mechanics. Einstein and Minkowski open a 20th century where time is a dimension, a substratum of reality 'with' space rather than 'in' it. Kaluza-Klein and String theories then develop a trend of additional spatial dimensions while de Broglie and Bohm open the possiblity that form, to begin with wave, be a reality together 'with' a space-time particle. Other recent theories, such as spin networks, causal sets and twistor theory, even head to the idea of other 'systems of dimensions'. On the basis of such progresses and recent experiments the paper then considers a background independent fourfold time-form-action-space system of dimensions
Quantum simulation of an extra dimension.
Boada, O; Celi, A; Latorre, J I; Lewenstein, M
2012-03-30
We present a general strategy to simulate a D+1-dimensional quantum system using a D-dimensional one. We analyze in detail a feasible implementation of our scheme using optical lattice technology. The simplest nontrivial realization of a fourth dimension corresponds to the creation of a bi-volume geometry. We also propose single- and many-particle experimental signatures to detect the effects of the extra dimension.
Extra dimensions round the corner?
International Nuclear Information System (INIS)
Abel, S.
1999-01-01
How many dimensions are we living in? This question is fundamental and yet, astonishingly, it remains unresolved. Of course, on the everyday level it appears that we are living in four dimensions three space plus one time dimension. But in recent months theoretical physicists have discovered that collisions between high-energy particles at accelerators may reveal the presence of extra space-time dimensions. On scales where we can measure the acceleration of falling objects due to gravity or study the orbital motion of planets or satellites, the gravitational force seems to be described by a 1/r 2 law. The most sensitive direct tests of the gravitational law are based on torsion-balance experiments that were first performed by Henry Cavendish in 1798. However, the smallest scales on which this type of experiment can be performed are roughly 1 mm (see J C Long, H W Chan and J C Price 1999 Nucl. Phys. B 539 23). At smaller distances, objects could be gravitating in five or more dimensions that are rolled up or ''compactified'' - an idea that is bread-and-butter to string theorists. Most string theorists however believe that the gravitational effects of compact extra dimensions are too small to be observed. Now Nima Arkani-Hamed from the Stanford Linear Accelerator Center (SLAC) in the US, Savas Dimopoulos at Stanford University and Gia Dvali, who is now at New York University, suggest differently (Phys. Lett. B 1998 429 263). They advanced earlier ideas from string theory in which the strong, weak and electromagnetic forces are confined to membranes, like dirt particles trapped in soap bubbles, while the gravitational force operates in the entire higher-dimensional volume. In their theory extra dimensions should have observable effects inside particle colliders such as the Tevatron accelerator at Fermilab in the US or at the future Large Hadron Collider at CERN. The effect will show up as an excess of events in which a single jet of particles is produced with no
Mixed quantization dimensions of self-similar measures
International Nuclear Information System (INIS)
Dai Meifeng; Wang Xiaoli; Chen Dandan
2012-01-01
Highlights: ► We define the mixed quantization dimension of finitely many measures. ► Formula of mixed quantization dimensions of self-similar measures is given. ► Illustrate the behavior of mixed quantization dimension as a function of order. - Abstract: Classical multifractal analysis studies the local scaling behaviors of a single measure. However recently mixed multifractal has generated interest. The purpose of this paper is some results about the mixed quantization dimensions of self-similar measures.
Rucker, Rudy
2014-01-01
""This is an invigorating book, a short but spirited slalom for the mind."" - Timothy Ferris, The New York Times Book Review ""Highly readable. One is reminded of the breadth and depth of Hofstadter's Gödel, Escher, Bach."" - Science""Anyone with even a minimal interest in mathematics and fantasy will find The Fourth Dimension informative and mind-dazzling... [Rucker] plunges into spaces above three with a zest and energy that is breathtaking."" - Martin Gardner ""Those who think the fourth dimension is nothing but time should be encouraged to read The Fourth Dimension, along with anyone else
Dimension from covariance matrices.
Carroll, T L; Byers, J M
2017-02-01
We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.
International Nuclear Information System (INIS)
Xi Yibin; Liu Kang; Zhe Xia; Mu Yunfeng; Yin Hong; Huan Yi; Yang Xiaobin; Du Ping
2013-01-01
Objective: To study the changes of the brain white matter microstructure at the acute stage of posttraumatic stress disorder (PTSD) resulting from a single-prolonged stress. Methods: DTI scans were performed on 17 survivors buried more than 190 h in Shanxi Wangjialing mine disaster and 17 cases of normal controls using Siemens 3.0 T MR. The differences of the FA values measured from the whole brain DTI between the two groups were analyzed based on tract based spatial statistics (TBSS). FA data were statistically compared between the two groups based on nonparametric random permutation test (RPT), and the brain areas of the PTSD patients with abnormal FA were defined. Results: Compared with control group, FA values in the PTSD (at acute stage) group decreased in genu, rostral body of corpus callosum, and increased in the left thalamic and corticospinal tract region of bilateral corona radiata and the posterior limb of the left internal capsule, the left cerebral peduncle. The differences were statistically significant (P < 0.01 TFCE-corrected). Conclusions: TBSS is a comprehensive and accurate method for evaluating the changes of whole brain DTI in PTSD cases. The fiber structural abnormalities in the genu, rostral body of bilateral corpus callosum, anterior radiation of left thalamic may be due to stress. TBSS can provide a more objective basis for the early diagnosis and intervention of PTSD. (authors)
CERN. Geneva. Audiovisual Unit
2002-01-01
Recent progress in the formulation of fundamental theories for a Universe with more than 4 dimensions will be reviewed. Particular emphasis will be given to theories predicting the existence of extra dimensions at distance scales within the reach of current or forthcoming experiments. The phenomenological implications of these theories, ranging from detectable deviations from Newton's law at sub-millimeter scales, to phenomena of cosmological and astrophysical interest, as well as to high-energy laboratory experiments, will be discussed.
Gender Dimensions Framework Application
Rubin, D.
2011-01-01
This is a presentation of the The Gender Dimensions Framework (GDF). The GDF was developed to provide guidance to USAID staff and partner organizations for working with USAID projects looking at promoting equitable opportunities in agricultural value chains. The GDF contemplates four dimensions: access to and control over key productive assets (tangible and intangible); beliefs and perceptions; practices and participation, and legal frameworks. CCRA-7 (Gendered Knowledge)
Accessible solitons of fractional dimension
Energy Technology Data Exchange (ETDEWEB)
Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Zhang, Yiqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)
2016-05-15
We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential. •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.
Visual perception of spatial subjects
International Nuclear Information System (INIS)
Osterloh, K.R.S.; Ewert, U.
2007-01-01
Principally, any imaging technology consists of two consecutive, though strictly separated processes: data acquisition and subsequent processing to generate an image that can be looked at, either on a monitor screen or printed on paper. Likewise, the physiological process of viewing can be separated into vision and perception, though these processes are much more overlapping. Understanding the appearance of a subject requires the entire sequence from receiving the information carried e.g. by photons up to an appropriate processing leading to the perception of the subject shown. As a consequence, the imagination of a subject is a result of both, technological and physiological processes. Whenever an evaluation of an image is critical, also the physiological part of the processing should be considered. However, an image has two dimensions in the first place and reality is spatial, it has three dimensions. This problem has been tackled on a philosophical level at least since Platon's famous discussion on the shadow image in a dark cave. The mere practical point is which structural details can be perceived and what may remain undetected depending on the mode of presentation. This problem cannot be resolved without considering each single step of visual perception. Physiologically, there are three 'tools' available to understanding the spatial structure of a subject: binocular viewing, following the course of perspective projection and motion to collect multiple aspects. Artificially, an object may be cut in various ways to display the interior or covering parts could be made transparent within a model. Samples will be shown how certain details of a subject can be emphasised or hidden depending on the way of presentation. It needs to be discussed what might help to perceive the true spatial structure of a subject with all relevant details and what could be misleading. (authors)
Visual perception of spatial subjects
Energy Technology Data Exchange (ETDEWEB)
Osterloh, K.R.S.; Ewert, U. [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany)
2007-07-01
Principally, any imaging technology consists of two consecutive, though strictly separated processes: data acquisition and subsequent processing to generate an image that can be looked at, either on a monitor screen or printed on paper. Likewise, the physiological process of viewing can be separated into vision and perception, though these processes are much more overlapping. Understanding the appearance of a subject requires the entire sequence from receiving the information carried e.g. by photons up to an appropriate processing leading to the perception of the subject shown. As a consequence, the imagination of a subject is a result of both, technological and physiological processes. Whenever an evaluation of an image is critical, also the physiological part of the processing should be considered. However, an image has two dimensions in the first place and reality is spatial, it has three dimensions. This problem has been tackled on a philosophical level at least since Platon's famous discussion on the shadow image in a dark cave. The mere practical point is which structural details can be perceived and what may remain undetected depending on the mode of presentation. This problem cannot be resolved without considering each single step of visual perception. Physiologically, there are three 'tools' available to understanding the spatial structure of a subject: binocular viewing, following the course of perspective projection and motion to collect multiple aspects. Artificially, an object may be cut in various ways to display the interior or covering parts could be made transparent within a model. Samples will be shown how certain details of a subject can be emphasised or hidden depending on the way of presentation. It needs to be discussed what might help to perceive the true spatial structure of a subject with all relevant details and what could be misleading. (authors)
A variational principle for the Hausdorff dimension of fractal sets
DEFF Research Database (Denmark)
Olsen, Lars; Cutler, Colleen D.
1994-01-01
Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)......Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)...
Perceptual dimensions differentiate emotions.
Cavanaugh, Lisa A; MacInnis, Deborah J; Weiss, Allen M
2015-08-26
Individuals often describe objects in their world in terms of perceptual dimensions that span a variety of modalities; the visual (e.g., brightness: dark-bright), the auditory (e.g., loudness: quiet-loud), the gustatory (e.g., taste: sour-sweet), the tactile (e.g., hardness: soft vs. hard) and the kinaesthetic (e.g., speed: slow-fast). We ask whether individuals use perceptual dimensions to differentiate emotions from one another. Participants in two studies (one where respondents reported on abstract emotion concepts and a second where they reported on specific emotion episodes) rated the extent to which features anchoring 29 perceptual dimensions (e.g., temperature, texture and taste) are associated with 8 emotions (anger, fear, sadness, guilt, contentment, gratitude, pride and excitement). Results revealed that in both studies perceptual dimensions differentiate positive from negative emotions and high arousal from low arousal emotions. They also differentiate among emotions that are similar in arousal and valence (e.g., high arousal negative emotions such as anger and fear). Specific features that anchor particular perceptual dimensions (e.g., hot vs. cold) are also differentially associated with emotions.
Murphy, Paul V; André, Sabine; Gabius, Hans-Joachim
2013-04-04
Coding of biological information is not confined to nucleic acids and proteins. Endowed with the highest level of structural versatility among biomolecules, the glycan chains of cellular glycoconjugates are well-suited to generate molecular messages/signals in a minimum of space. The sequence and shape of oligosaccharides as well as spatial aspects of multivalent presentation are assumed to underlie the natural specificity/selectivity that cellular glycans have for endogenous lectins. In order to eventually unravel structure-activity profiles cyclic scaffolds have been used as platforms to produce glycoclusters and afford valuable tools. Using adhesion/growth-regulatory galectins and the pan-galectin ligand lactose as a model, emerging insights into the potential of cyclodextrins, cyclic peptides, calixarenes and glycophanes for this purpose are presented herein. The systematic testing of lectin panels with spatially defined ligand presentations can be considered as a biomimetic means to help clarify the mechanisms, which lead to the exquisite accuracy at which endogenous lectins select their physiological counterreceptors from the complexity of the cellular glycome.
Lowell, Jennifer L; Antolin, Michael F; Andersen, Gary L; Hu, Ping; Stokowski, Renee P; Gage, Kenneth L
2015-05-01
In western North America, plague epizootics caused by Yersinia pestis appear to sweep across landscapes, primarily infecting and killing rodents, especially ground squirrels and prairie dogs. During these epizootics, the risk of Y. pestis transmission to humans is highest. While empirical models that include climatic conditions and densities of rodent hosts and fleas can predict when epizootics are triggered, bacterial transmission patterns across landscapes, and the scale at which Y. pestis is maintained in nature during inter-epizootic periods, are poorly defined. Elucidating the spatial extent of Y. pestis clones during epizootics can determine whether bacteria are propagated across landscapes or arise independently from local inter-epizootic maintenance reservoirs. We used DNA microarray technology to identify single-nucleotide polymorphisms (SNPs) in 34 Y. pestis isolates collected in the western United States from 1980 to 2006, 21 of which were collected during plague epizootics in Colorado. Phylogenetic comparisons were used to elucidate the hypothesized spread of Y. pestis between the mountainous Front Range and the eastern plains of northern Colorado during epizootics. Isolates collected from across the western United States were included for regional comparisons. By identifying SNPs that mark individual clones, our results strongly suggest that Y. pestis is maintained locally and that widespread epizootic activity is caused by multiple clones arising independently at small geographic scales. This is in contrast to propagation of individual clones being transported widely across landscapes. Regionally, our data are consistent with the notion that Y. pestis diversifies at relatively local scales following long-range translocation events. We recommend that surveillance and prediction by public health and wildlife management professionals focus more on models of local or regional weather patterns and ecological factors that may increase risk of widespread
International Nuclear Information System (INIS)
Sarkar, Utpal
2001-05-01
We live in a four dimensional world. But the idea of unification of fundamental interactions lead us to higher dimensional theories. Recently a new theory with extra dimensions has emerged where only gravity propagates in the extra dimension and all other interactions are confined to only four dimensions. This theory gives us many new hopes. In earlier theories unification of strong, weak and the electromagnetic forces was possible at around 10 16 GeV in a grand unified theory (GUT) and it could get unified with gravity at around the Planck scale of 10 19 GeV. With this new idea it is possible to bring down all unification scales within the reach of the new generation accelerators, i.e., around 10 4 GeV. (author)
DEFF Research Database (Denmark)
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....... of these criteria are widely used ones, while the remaining four are ones derived from the H-principle of mathematical modeling. Many examples from practice show that the criteria derived from the H-principle function better than the known and popular criteria for the number of components. We shall briefly review...
International Nuclear Information System (INIS)
Marmo, A.R.
1980-01-01
A pellet dimension checker was developed for use in making nuclear-fuel pellets. This checker eliminates operator handling of the pellet but permits remote-monitoring of the operation, and is thus suitable for mass production of green fuel pellets particularly in reprocessing plants handling irradiated uranium or plutonium. It comprises a rotatable arm for transferring a pellet from a conveyor to several dimensional measuring stations and back to the conveyor if the dimensions of the pellet are within predetermined limits. If the pellet is not within the limits, the arm removes the pellet from the process stream. (DN)
International Nuclear Information System (INIS)
Antoniadis, I
2006-01-01
Lowering the string scale in the TeV region provides a theoretical framework for solving the mass hierarchy problem and unifying all interactions. The apparent weakness of gravity can then be accounted by the existence of large internal dimensions, in the submillimeter region, and transverse to a braneworld where our universe must be confined. I review the main properties of this scenario and its implications for observations at both particle colliders, and in non-accelerator gravity experiments. Such effects are for instance the production of Kaluza-Klein resonances, graviton emission in the bulk of extra dimensions, and a radical change of gravitational forces in the submillimeter range
International Nuclear Information System (INIS)
Li, W.; Bak, P.
1986-01-01
At a critical point the golden-mean Kolmogorov-Arnol'd-Moser trajectory of Chirikov's standard map breaks up into a fractal orbit called a cantorus. The transition describes a pinning of the incommensurate phase of the Frenkel-Kontorowa model. We find that the fractal dimension of the cantorus is D = 0 and that the transition from the Kolmogorov-Arnol'd-Moser trajectory with dimension D = 1 to the cantorus is governed by an exponent ν = 0.98. . . and a universal scaling function. It is argued that the exponent is equal to that of the Lyapunov exponent
Searches for dark matter and extra dimensions with the ATLAS detector
Clement, C; The ATLAS collaboration
2014-01-01
This paper presents the results of different approaches to finding evidence for dark matter with the ATLAS experiment at LHC. These include searches for events with large missing transverse momentum and a single jet, photon or W/Z boson. Searches for hidden sectors in events with long-lived particles resulting in displaced hadronic vertices or lepton-jet signatures are also reported. Finally, studies sensitive to the presence of extra spatial dimensions are described, as for example classical and quantum black holes and other non-resonant phenomena. Results from s = 8 TeV ATLAS data taking are presented.
Searches for dark matter and extra dimensions with the ATLAS detector
Clement, C; The ATLAS collaboration
2014-01-01
Different approaches to finding evidence for dark matter at the LHC are presented. These include searches for events with large missing transverse momentum and a single jet, photon or W/Z boson. Searches for hidden sectors in events with long-lived particles resulting in displaced hadronic vertices or lepton-jet signatures are also reported. Finally, studies sensitive to the presence of extra spatial dimensions are described, as for example classical and quantum black holes and other non-resonant phenomena. Results from sqrt(s) = 8 TeV data taking are presented.
Searches for dark matter and extra dimensions with the ATLAS detector
Kruskal, M; The ATLAS collaboration
2015-01-01
Different approaches to finding evidence for dark matter at the LHC are presented. These include searches for events with large missing transverse momentum and a single jet, photon or W/Z boson. Searches for hidden sectors in events with long-lived particles resulting in displaced hadronic vertices or lepton-jet signatures are also reported. Finally, studies sensitive to the presence of extra spatial dimensions are described, as for example classical and quantum black holes and other non-resonant phenomena. Results from $\\sqrt{s}=8$ TeV data taking are presented.
Selective Attention to Perceptual Dimensions and Switching between Dimensions
Meiran, Nachshon; Dimov, Eduard; Ganel, Tzvi
2013-01-01
In the present experiments, the question being addressed was whether switching attention between perceptual dimensions and selective attention to dimensions are processes that compete over a common resource? Attention to perceptual dimensions is usually studied by requiring participants to ignore a never-relevant dimension. Selection failure…
Energy Technology Data Exchange (ETDEWEB)
Nguyen-Ngoc, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1969-07-01
In order to reduce computing time, two and three-dimensional multigroup neutron diffusion equations in cylindrical, rectangular (X, Y), (X, Y, Z) and hexagonal geometries are solved by the method of synthesis using an appropriate variational principle (stationary principle). The basic idea is to reduce the number of independent variables by constructing two or three-dimensional solutions from solutions of fewer variables, hence the name 'synthesis method'. Whatever the geometry, we are led to solve a system of ordinary differential equations with matrix coefficients to which one can apply well-known numerical methods: CHEBYSHEV's polynomial method, Gaussian elimination. Numerical results furnished by synthesis programs written for the IBM 7094, the IBM 360-75 and the CDC 6600 computers, are confronted with those which are given by programs employing the classical finite difference method. [French] En vue de reduire le-temps de calcul, les equations de diffusion neutronique, multigroupe, a deux et trois dimensions d'espace dans les geometries cylindrique, rectangulaire (X, Y), (X, Y, Z) et hexagonale sont resolues par la methode de synthese utilisant un principe variationnel approprie (principe stationnaire). L'idee consiste a reduire le nombre de variables independantes par construction d'une solution bi ou tridimensionnelle au moyen de solutions dependant d'un nombre inferieur de variables, d'ou le nom de la methode. Dans tous les cas de geometrie, nous sommes conduits a resoudre un systeme d'equations differentielles a coefficients matriciels auquel peuvent s'appliquer les methodes numeriques courantes; methode polynomiale de TCHEBYCHEFF et methode d'elimination de GAUSS. Les resultats numeriques obtenus par nos codes de synthese programmes sur IBM 7094, IBM 360-75 et CDC 6600, sont confrontes avec ceux que fournissent les programmes adoptant la methode classique des differences finies. (auteur)
Aarts, JM
1993-01-01
Two types of seemingly unrelated extension problems are discussed in this book. Their common focus is a long-standing problem of Johannes de Groot, the main conjecture of which was recently resolved. As is true of many important conjectures, a wide range of mathematical investigations had developed, which have been grouped into the two extension problems. The first concerns the extending of spaces, the second concerns extending the theory of dimension by replacing the empty space with other spaces. The problem of de Groot concerned compactifications of spaces by means of an adjunction of a set of minimal dimension. This minimal dimension was called the compactness deficiency of a space. Early success in 1942 lead de Groot to invent a generalization of the dimension function, called the compactness degree of a space, with the hope that this function would internally characterize the compactness deficiency which is a topological invariant of a space that is externally defined by means of compact extensions of a...
Lincoln, Don
2013-01-01
They say that there is no such thing as a stupid question. In a pedagogically pure sense, that's probably true. But some questions do seem to flirt dangerously close to being really quite ridiculous. One such question might well be, "How many dimensions of space are there?" I mean, it's pretty obvious that there are three:…
Czech Academy of Sciences Publication Activity Database
Zapletal, Jindřich
2014-01-01
Roč. 167, April 15 (2014), s. 31-35 ISSN 0166-8641 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : Cohen real * infinite dimension * calibrated ideal Subject RIV: BA - General Mathematics Impact factor: 0.551, year: 2014 http://www.sciencedirect.com/science/article/pii/S0166864114001151
Krull dimension in modal logic
Bezhanishvili, G.; Bezhanishvili, N.; Lucero-Bryan, J.; van Mill, J.
2017-01-01
We develop the theory of Krull dimension for S4-algebras and Heyting algebras. This leads to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension to other well-known dimension functions, and show that it can detect differences between topological spaces that
Interactive Dimensioning of Parametric Models
Kelly, T.
2015-06-22
We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.
Black Holes, Cosmology and Extra Dimensions
International Nuclear Information System (INIS)
Frolov, Valeri P
2013-01-01
Book review: The book Black holes, Cosmology and Extra Dimensions written by Kirill A Bronnikov and Sergey G Rubin has been published recently by World Scientific Publishing Company. The authors are well known experts in gravity and cosmology. The book is a monograph, a considerable part of which is based on the original work of the authors. Their original point of view on some of the problems makes the book quite interesting, covering a variety of important topics of the modern theory of gravity, astrophysics and cosmology. It consists of 11 chapters which are organized in three parts. The book starts with an introduction, where the authors briefly discuss the main ideas of General Relativity, giving some historical remarks on its development and application to cosmology, and mentioning some more recent subjects such as brane worlds, f (R)−theories and gravity in higher dimensions. Part I of the book is called ‘Gravity’. Chapters two and three are devoted to the Einstein equations and their spherical symmetric black hole solutions. Part II (Cosmology) starts with discussion of the Friedmann–Robertson–Walker and de Sitter solutions of the Einstein equations and their properties. Part III covers the material on extra dimensions. It describes how Einstein gravity is modified in the presence of one or more additional spatial dimensions and how these extra dimensions are compactified in the Kaluza–Klein scheme
BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions
Frolov, Valeri P.
2013-10-01
flatness of the Universe, the horizon problem and isotropy of cosmological microwave background. All this material is covered in chapter seven. Chapter eight contains brief discussion of several popular inflation models. Chapter nine is devoted to the problem of the large-scale structure formation from initial quantum vacuum fluctuation during the inflation and the spectrum of the density fluctuations. It also contains remarks on the baryonic asymmetry of the Universe, baryogenesis and primordial black holes. Part III covers the material on extra dimensions. It describes how Einstein gravity is modified in the presence of one or more additional spatial dimensions and how these extra dimensions are compactified in the Kaluza-Klein scheme. The authors also discuss how extra dimensions may affect low energy physics. They present examples of higher-dimensional generalizations of the gravity with higher-in-curvature corrections and discuss a possible mechanism of self-stabilization of an extra space. A considerable part of the chapter 10 is devoted to cosmological models with extra dimensions. In particular, the authors discuss how extra dimensions can modify 'standard' inflation models. At the end of this chapter they make several remarks on a possible relation of the value of fundamental constants in our universe with the existence of extra dimensions. Finally, in chapter 11 they demonstrate that several observable properties of the Universe are closely related with the special value of the fundamental physical constants and their fine tuning. They give interesting examples of such fine tuning and summarize many other cases. The book ends with discussion of a so-called 'cascade birth of universes in multidimensional spaces' model, proposed by one of the authors. As is evident from this brief summary of topics presented in the book, many interesting areas of modern gravity and cosmology are covered. However, since the subject is so wide, this inevitably implies that the
New estimates for human lung dimensions
International Nuclear Information System (INIS)
Kennedy, Christine; Sidavasan, Sivalal; Kramer, Gary
2008-01-01
Full text: The currently used lung dimensions in dosimetry were originally estimated in the 1940s from Army recruits. This study provides new estimates of lung dimensions based on images acquired from a sample from the general population (varying age and sex). Building accurate models, called phantoms, of the human lung requires that the spatial dimensions (length, width, and depth) be quantified, in addition to volume. Errors in dose estimates may result from improperly sized lungs as the counting efficiency of externally mounted detectors (e.g., in a lung counter) is dependent on the position of internally deposited radioactive material (i.e., the size of the lung). This study investigates the spatial dimensions of human lungs. Lung phantoms have previously been made in one of two sizes. The Lawrence Livermore National Laboratory Torso Phantom (LLNL) has deep, short lungs whose dimensions do not comply well with the data published in Report 23 (Reference Man) issued by the International Commission on Radiological Protection (ICRP). The Japanese Atomic Energy Research Institute Torso Phantom(JAERI), has longer, shallower lungs that also deviate from the ICRP values. However, careful examination of the ICRP recommended values shows that they are soft. In fact, they have been dropped from the ICRP's Report 89 which updates Report 23. Literature surveys have revealed a wealth of information on lung volume, but very little data on the spatial dimensions of human lungs. Better lung phantoms need to be constructed to more accurately represent a person so that dose estimates may be quantified more accurately in view of the new, lower, dose limits for occupationally exposed workers and the general public. Retrospective chest images of 60 patients who underwent imaging of the chest- lungs as part of their healthy persons occupational screening for lung disease were chosen. The chosen normal lung images represent the general population). Ages, gender and weight of the
Cultural dimensions of learning
Eyford, Glen A.
1990-06-01
How, what, when and where we learn is frequently discussed, as are content versus process, or right brain versus left brain learning. What is usually missing is the cultural dimension. This is not an easy concept to define, but various aspects can be identified. The World Decade for Cultural Development emphasizes the need for a counterbalance to a quantitative, economic approach. In the last century poets also warned against brutalizing materialism, and Sorokin and others have described culture more recently in terms of cohesive basic values expressed through aesthetics and institutions. Bloom's taxonomy incorporates the category of affective learning, which internalizes values. If cultural learning goes beyond knowledge acquisition, perhaps the surest way of understanding the cultural dimension of learning is to examine the aesthetic experience. This can use myths, metaphors and symbols, and to teach and learn by using these can help to unlock the human potential for vision and creativity.
DEFF Research Database (Denmark)
Dalsgaard, Christian; Thestrup, Klaus
2015-01-01
The objective of the paper is to present a pedagogical approach to openness. The paper develops a framework for understanding the pedagogical opportunities of openness in education. Based on the pragmatism of John Dewey and sociocultural learning theory, the paper defines openness in education...... as a matter of engaging educational activities in sociocultural practices of a surrounding society. Openness is not only a matter of opening up the existing, but of developing new educational practices that interact with society. The paper outlines three pedagogical dimensions of openness: transparency...... practices. Openness as joint engagement in the world aims at establishing interdependent collaborative relationships between educational institutions and external practices. To achieve these dimensions of openness, educational activities need to change and move beyond the course as the main format...
Introduction to Extra Dimensions
Energy Technology Data Exchange (ETDEWEB)
Rizzo, Thomas G.; /SLAC
2010-04-29
Extra dimensions provide a very useful tool in addressing a number of the fundamental problems faced by the Standard Model. The following provides a very basic introduction to this very broad subject area as given at the VIII School of the Gravitational and Mathematical Physics Division of the Mexican Physical Society in December 2009. Some prospects for extra dimensional searches at the 7 TeV LHC with {approx}1 fb{sup -1} of integrated luminosity are provided.
International Nuclear Information System (INIS)
Emery, V.J.
1981-03-01
This article is a qualitative account of some aspects of physics in few dimensions, and its relationship to nonlinear field theories. After a survey of materials and some of the models that have been used to describe them, the various methods of solution are compared and contrasted. The roles of exact results, operator representations and the renormalization group transformation are described, and a uniform picture of the behavior of low-dimensional systems is presented
Directory of Open Access Journals (Sweden)
Aylene Bousquat
2004-12-01
Full Text Available Este artigo recupera as concepções de espaço incorporadas pela saúde pública entre final do século XVIII e meados do XX. É proposta uma padronização, com base na produção intelectual da área, iniciando-se com a apresentação da obra de Finke (1792, passando-se então à análise do século XIX, quando geografia e medicina se transformaram em disciplinas científicas. A concepção de espaço como ambiente físico, abstraído da ação humana - consolida-se no interior da geografia, enquanto na medicina prevalece o paradigma biológico-individual. Discute-se a importância da incorporação das noções geográficas de determinismo, gênero de vida e ecologia humana pela saúde pública e apresentam-se as contribuições de Max Sorré e Pavlovsky. Recupera-se a criação, em 1952, da Comissão de Geografia Médica de Saúde e Doença da União Geográfica Internacional e analisa-se o surgimento e a consolidação da New Geography.Focusing on concepts taken from critical geography, this article re-examines the spatial notions that were incorporated by the public health field between the late eighteenth and mid-twentieth centuries. Based on a review and systematization of intellectual production within the field of medical geography, this time span is broken into periods. We begin with a presentation of Finke's work (1792 and then move on to analyze the nineteenth century, when geography and medicine became scientific disciplines. The concept of space as a physical environment, with human action abstracted out, took hold within geography, while the biological-individual paradigm prevailed within the field of medicine. The text discusses the implications of the public health field's decision to embrace the geographic notions of determinism, type of life, and human ecology, and describes the contributions of Max Sorré and Pavlovsky. It also looks at the International Geographical Union's 1952 creation of a Commission on the Medical
Design of 5G Full Dimension Massive MIMO Systems
Nadeem, Qurrat-Ul-Ain
2017-10-13
This work discusses full-dimension multiple-inputmultiple- output (FD-MIMO) technology, which is currently an active area of research and standardization in wireless communications for evolution towards Fifth Generation (5G) cellular systems. FD-MIMO utilizes an active antenna system (AAS) with a two-dimensional (2D) planar array structure, that not only allows a large number of antenna elements to be packed within feasible base station form factors but also provides the ability of adaptive electronic beamforming in the threedimensional (3D) space. However, the compact structure of largescale planar arrays drastically increases the spatial correlation in FD-MIMO systems. In order to account for its effects, the generalized spatial correlation functions for channels constituted by individual elements and overall antenna ports in the AAS are derived. Exploiting the quasi-static channel covariance matrices of users, the problem of determining the optimal downtilt weight vector for antenna ports, which maximizes the minimum signalto- interference ratio of a multi-user multiple-input-single-output system, is formulated as a fractional optimization problem. A quasi-optimal solution is obtained through the application of semi-definite relaxation and Dinkelbach’s method. Finally, the user-group specific elevation beamforming scenario is devised, which offers significant performance gains as confirmed through simulations. These results have direct application in the analysis of 5G FD-MIMO systems.
Design of 5G Full Dimension Massive MIMO Systems
Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim
2017-01-01
This work discusses full-dimension multiple-inputmultiple- output (FD-MIMO) technology, which is currently an active area of research and standardization in wireless communications for evolution towards Fifth Generation (5G) cellular systems. FD-MIMO utilizes an active antenna system (AAS) with a two-dimensional (2D) planar array structure, that not only allows a large number of antenna elements to be packed within feasible base station form factors but also provides the ability of adaptive electronic beamforming in the threedimensional (3D) space. However, the compact structure of largescale planar arrays drastically increases the spatial correlation in FD-MIMO systems. In order to account for its effects, the generalized spatial correlation functions for channels constituted by individual elements and overall antenna ports in the AAS are derived. Exploiting the quasi-static channel covariance matrices of users, the problem of determining the optimal downtilt weight vector for antenna ports, which maximizes the minimum signalto- interference ratio of a multi-user multiple-input-single-output system, is formulated as a fractional optimization problem. A quasi-optimal solution is obtained through the application of semi-definite relaxation and Dinkelbach’s method. Finally, the user-group specific elevation beamforming scenario is devised, which offers significant performance gains as confirmed through simulations. These results have direct application in the analysis of 5G FD-MIMO systems.
Brane-world motion in compact dimensions
Greene, Brian; Levin, Janna; Parikh, Maulik
2011-08-01
The topology of extra dimensions can break global Lorentz invariance, singling out a globally preferred frame even in flat spacetime. Through experiments that probe global topology, an observer can determine her state of motion with respect to the preferred frame. This scenario is realized if we live on a brane universe moving through a flat space with compact extra dimensions. We identify three experimental effects due to the motion of our universe that one could potentially detect using gravitational probes. One of these relates to the peculiar properties of the twin paradox in multiply-connected spacetimes. Another relies on the fact that the Kaluza-Klein modes of any bulk field are sensitive to boundary conditions. A third concerns the modification to the Newtonian potential on a moving brane. Remarkably, we find that even small extra dimensions are detectable by brane observers if the brane is moving sufficiently fast. Communicated by P R L V Moniz
[Christian dimension of suffering].
Kubik, K
1999-01-01
Human existence is marked by imperfection, whose expression--among other things--is suffering. The problem of answering the question about the meaning of suffering for human life in its entirety is of great significance in philosophy and theology. In the Old Testament it meant God's punishment for the evil done by man. In Christianity this bleak notion of suffering has found a new dimension--suffering is creative, redemptive in character; it enables a man to surpass his limits. The understanding of suffering and its sense has a profound meaning in building a suitable attitude of a sick person towards his own weakness.
DEFF Research Database (Denmark)
Andersen, lotte bøgh; Beck Jørgensen, Torben; Kjeldsen, Anne-Mette
2012-01-01
Further integration of the public value literature with other strands of literature within Public Administration necessitates a more specific classification of public values. This paper applies a typology linked to organizational design principles, because this is useful for empirical public...... administration studies. Based on an existing typology of modes of governance, we develop a classification and test it empirically, using survey data from a study of the values of 501 public managers. We distinguish between seven value dimensions (the public at large, rule abidance, societal interests, budget...... the integration between the public value literature and other parts of the Public Administration discipline....
Dimensions of energy efficiency
International Nuclear Information System (INIS)
Ramani, K.V.
1992-01-01
In this address the author describes three dimensions of energy efficiency in order of increasing costs: conservation, resource and technology substitution, and changes in economic structure. He emphasizes the importance of economic rather than environmental rationales for energy efficiency improvements in developing countries. These countries do not place high priority on the problems of global climate change. Opportunities for new technologies may exist in resource transfer, new fuels and, possibly, small reactors. More research on economic and social impacts of technologies with greater sensitivity to user preferences is needed
One dimension harmonic oscillator
International Nuclear Information System (INIS)
Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.
1977-01-01
The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr
Inhomogeneous compact extra dimensions
Energy Technology Data Exchange (ETDEWEB)
Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)
2017-10-01
We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.
MIMO Communication Using Single Feed Antenna Arrays
DEFF Research Database (Denmark)
Alrabadi, Osama
Multi-input-multi-output (MIMO) communication has emerged as a promis- ing technology for meeting the increasing demand on higher data rates. The technology exploits the spatial resource dimension by sending the datas- treams to different locations in the multi element array (MEA) domain while...... conventionally to a single antenna element while mod- ulating the other datastreams in the analogue RF domain, using simple switched antenna systems (SAS) or sophisticated reactance-assisted antenna systems. The use of a SAS is found simple to implement, but can hardly handle high order signal formats...
1. Dimensions of sustainable development
International Nuclear Information System (INIS)
Repetto, R.
1992-01-01
This chapter discusses the following topics: the concept of sustainable development; envisioning sustainable development (economic dimensions, human dimensions, environmental dimensions, technological dimensions); policy implications (economic policies, people-oriented policies, environmental policies, creating sustainable systems); and global issues (effect of war on development and the environment and the debt burden). This chapter also introduces the case studies by discussing the levels of economic development and comparing key trends (economic growth, human development, population growth, and energy use)
The neoliberalisation of strategic spatial planning
DEFF Research Database (Denmark)
Olesen, Kristian
2014-01-01
scales, and partly through the normalisation of neoliberal discourses in strategic spatial planning processes. This paper analyses the complex relationship, partly of unease and partly of coevolution, between neoliberalism and strategic spatial planning. Furthermore, the paper discusses the key......Strategic spatial planning practices have recently taken a neoliberal turn in many northwestern European countries. This neoliberalisation of strategic spatial planning has materialised partly in governance reforms aiming to reduce or abolish strategic spatial planning at national and regional...... challenges for strategic spatial planning in the face of neoliberalism and argues for a need to strengthen strategic spatial planning’s critical dimension....
Active materials by four-dimension printing
Ge, Qi; Qi, H. Jerry; Dunn, Martin L.
2013-09-01
We advance a paradigm of printed active composite materials realized by directly printing glassy shape memory polymer fibers in an elastomeric matrix. We imbue the active composites with intelligence via a programmed lamina and laminate architecture and a subsequent thermomechanical training process. The initial configuration is created by three-dimension (3D) printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration—the four-dimension (4D) aspect. We design and print laminates in thin plate form that can be thermomechanically programmed to assume complex three-dimensional configurations including bent, coiled, and twisted strips, folded shapes, and complex contoured shapes with nonuniform, spatially varying curvature. The original flat plate shape can be recovered by heating the material again. We also show how the printed active composites can be directly integrated with other printed functionalities to create devices; here we demonstrate this by creating a structure that can assemble itself.
Berseth, V.; Indenbom, M. V.; van der Beek, C. J.; D'Anna, G.; Benoit, W.
1997-08-01
Using a multiterminal contact configuration, we investigate the local variations of the resistivity drop near the vortex lattice first order phase transition in a very homogeneous Bi2Sr2CaCu2O8+δ (BSCCO) single crystal.
International Nuclear Information System (INIS)
Tyapkin, Yu.D.; Travina, N.T.; Ugarova, E.V.
1977-01-01
Electron microscope images were processed by statistical methods to investigate the space distribution of particles of the γ'-phase (formation of ''quasiperiodic micro-lattices'') after various conditions of single- and double-stage aging of the Ni-14 at.% Al alloy. Mechanical properties in uniaxial tension of single crystals were studied. Parameters of the space distribution of particles have been correlated with the mechanical properties
Shower fractal dimension analysis in a highly-granular calorimeter
Ruan, M
2014-01-01
We report on an investigation of the self-similar structure of particle showers recorded at a highly-granular calorimeter. On both simulated and experimental data, a strong correlation between the number of hits and the spatial scale of the readout channels is observed, from which we define the shower fractal dimension. The measured fractal dimension turns out to be strongly dependent on particle type, which enables new approaches for particle identification. A logarithmic dependence of the particle energy on the fractal dimension is also observed.
International Nuclear Information System (INIS)
Dudas, Emilian; Papineau, Chloe; Rubakov, Valery
2006-01-01
We analyze the properties of a model with four-dimensional brane-localized Higgs type potential of a six dimensional scalar field satisfying the Dirichlet boundary condition on the boundary of a transverse two-dimensional compact space. The regularization of the localized couplings generates classical renormalization group running. A tachyonic mass parameter grows in the infrared, in analogy with the QCD gauge coupling in four dimensions. We find a phase transition at a critical value of the bare mass parameter such that the running mass parameter becomes large in the infrared precisely at the compactification scale. Below the critical coupling, the theory is in symmetric phase, whereas above it spontaneous symmetry breaking occurs. Close to the phase transition point there is a very light mode in the spectrum. The massive Kaluza-Klein spectrum at the critical coupling becomes independent of the UV cutoff
DEFF Research Database (Denmark)
Frederiksen, Morten
2012-01-01
Georg Simmel is the seminal author on trust within sociology, but though inspired by Simmel, subsequent studies of intersubjective trust have failed to address Simmel’s suggestion that trust is as differentiated as the social relations of which it is part. Rather, trust has been studied within...... limited sets of exchange or work relations. This article revisits Simmel’s concept of trust as social form in order to investigate this differentiation. From an interview study, the differentiation and limits of trust are analysed within different types of social relations. Trust is found to vary greatly...... in scope and mode influenced by the intersecting dimensions of relations, objects and situations. Furthermore, trust exists between an outer threshold of expected deceit and an inner threshold of confident reliance. The findings from the qualitative study contribute new knowledge on the diversity of trust...
DEFF Research Database (Denmark)
Eskjær, Mikkel Fugl
2013-01-01
is largely dependent on regional media systems, yet the role this regional dimension plays has been largely overlooked. This article presents a comparative study of climate-change coverage in three geo-cultural regions, The Middle East, Scandinavia, and North America, and explores the link between global......Global perspectives and national approaches have dominated studies of climate-change communication, reflecting the global nature of climate change as well as the traditional research focus on national media systems. In the absence of a global public sphere, however, transnational issue attention...... climate-change communication and regional media systems. It finds that regional variations in climate-change communication carry important communicative implications concerning perceptions of climate change's relevance and urgency...
DEFF Research Database (Denmark)
Wölfel, Christiane; Merritt, T.
2013-01-01
There are many examples of cards used to assist or provide structure to the design process, yet there has not been a thorough articulation of the strengths and weaknesses of the various examples. We review eighteen card-based design tools in order to understand how they might benefit designers....... The card-based tools are explained in terms of five design dimensions including the intended purpose and scope of use, duration of use, methodology, customization, and formal/material qualities. Our analysis suggests three design patterns or archetypes for existing card-based design method tools...... and highlights unexplored areas in the design space. The paper concludes with recommendations for the future development of card-based methods for the field of interaction design....
Correlation dimension of financial market
Nie, Chun-Xiao
2017-05-01
In this paper, correlation dimension is applied to financial data analysis. We calculate the correlation dimensions of some real market data and find that the dimensions are significantly smaller than those of the simulation data based on geometric Brownian motion. Based on the analysis of the Chinese and US stock market data, the main results are as follows. First, by calculating three data sets for the Chinese and US market, we find that large market volatility leads to a significant decrease in the dimensions. Second, based on 5-min stock price data, we find that the Chinese market dimension is significantly larger than the US market; this shows a significant difference between the two markets for high frequency data. Third, we randomly extract stocks from a stock set and calculate the correlation dimensions, and find that the average value of these dimensions is close to the dimension of the original set. In addition, we analyse the intuitional meaning of the relevant dimensions used in this paper, which are directly related to the average degree of the financial threshold network. The dimension measures the speed of the average degree that varies with the threshold value. A smaller dimension means that the rate of change is slower.
Spatial resolution in optical transition radiation (OTR) beam diagnostics
International Nuclear Information System (INIS)
Castellano, M.; Verzilov, V. A.
1998-06-01
An evaluation of the OTR single particle image dimension is obtained using diffraction theory based on a realistic description of the radiation source. This approach allows the analysis of the effect of the finite size of the emitting screen and of the imaging system. The role of practical experimental conditions in treating the intensity tail problem is estimated. It is shown that by exploiting the polarization properties of OTR, a considerable enhancement in the spatial resolution can be achieved, which becomes very similar to that of a standard point source
Multiphase modelling of vascular tumour growth in two spatial dimensions
Hubbard, M.E.; Byrne, H.M.
2013-01-01
the (potentially highly irregular and ill-defined) tumour boundary. A hybrid finite volume/finite element algorithm is used to discretise the continuum model: the application of a conservative, upwind, finite volume scheme to the hyperbolic mass balance equations
Multiphase modelling of vascular tumour growth in two spatial dimensions
Hubbard, M.E.
2013-01-01
In this paper we present a continuum mathematical model of vascular tumour growth which is based on a multiphase framework in which the tissue is decomposed into four distinct phases and the principles of conservation of mass and momentum are applied to the normal/healthy cells, tumour cells, blood vessels and extracellular material. The inclusion of a diffusible nutrient, supplied by the blood vessels, allows the vasculature to have a nonlocal influence on the other phases. Two-dimensional computational simulations are carried out on unstructured, triangular meshes to allow a natural treatment of irregular geometries, and the tumour boundary is captured as a diffuse interface on this mesh, thereby obviating the need to explicitly track the (potentially highly irregular and ill-defined) tumour boundary. A hybrid finite volume/finite element algorithm is used to discretise the continuum model: the application of a conservative, upwind, finite volume scheme to the hyperbolic mass balance equations and a finite element scheme with a stable element pair to the generalised Stokes equations derived from momentum balance, leads to a robust algorithm which does not use any form of artificial stabilisation. The use of a matrix-free Newton iteration with a finite element scheme for the nutrient reaction-diffusion equations allows full nonlinearity in the source terms of the mathematical model.Numerical simulations reveal that this four-phase model reproduces the characteristic pattern of tumour growth in which a necrotic core forms behind an expanding rim of well-vascularised proliferating tumour cells. The simulations consistently predict linear tumour growth rates. The dependence of both the speed with which the tumour grows and the irregularity of the invading tumour front on the model parameters is investigated. © 2012 Elsevier Ltd.
3D geomarketing segmentation: A higher spatial dimension planning perspective
DEFF Research Database (Denmark)
Suhaibah, A.; Uznir, U.; Rahman, A. A.
2016-01-01
Geomarketing is a discipline which uses geographic information in the process of planning and implementation of marketing activities. It can be used in any aspect of the marketing such as price, promotion or geo targeting. The analysis of geomarketing data use a huge data pool such as location...... residential areas, topography, it also analyzes demographic information such as age, genre, annual income and lifestyle. This information can help users to develop successful promotional campaigns in order to achieve marketing goals. One of the common activities in geomarketing is market segmentation...... a combination of market segmentation based on geographic criteria and clustering algorithm for 3D geomarketing data management. The proposed approach is capable in minimizing the overlap region during market segmentation. In this paper, geomarketing in urban area is used as a case study. Based on the case study...
AN EVALUATION OF THE SPATIAL DIMENSION OF LANDSCAPE ...
African Journals Online (AJOL)
Osondu
2012-03-30
Mar 30, 2012 ... with adequate landscaping, - using landscape elements, to create a ... air, water and energy cycles that replenish and rejuvenate ... First, using the street map of. Ogbomoso ... swimming pools, etc, were regarded as conscious.
Supersymmetry Breaking through Transparent Extra Dimensions
Energy Technology Data Exchange (ETDEWEB)
Schmaltz, Martin
1999-11-23
We propose a new framework for mediating supersymmetry breaking through an extra dimension. It predicts positive scalar masses and solves the supersymmetric flavor problem. Supersymmetry breaks on a ''source'' brane that is spatially separated from a parallel brane on which the standard model matter fields and their superpartners live. The gauge and gaugino fields propagate in the bulk, the latter receiving a supersymmetry breaking mass from direct couplings to the source brane. Scalar masses are suppressed at the high scale but are generated via the renormalization group. We briefly discuss the spectrum and collider signals for a range of compactification scales.
Quantum Physics in One Dimension
International Nuclear Information System (INIS)
Logan, David
2004-01-01
, chapters 6--11, a range of different physical realizations of one-dimensional quantum physics ar e discussed. According to taste and interest, these chapters can be read in essentially any order. Spin systems are considered in chapter 6, beginning with spin chains - Jordan-Wigner, the bosonization solution - before moving to frustration, the spin-Peierls transition, and spin ladders; and including experimental examples of both spin chain and ladder materials. Chapters 7 and 8 deal with interacting lattice fermions, the former with single chain problems, notably the Hubbard, t-J and related models; and the latter with coupled fermionic chains, from finite to infinite, including a fulsome discussion of Bechgaard salts (organic conductors) as exemplars of Luttinger liquid behaviour. The effect of disorder in fermionic systems is taken up in chapter 9, and here the reader may react: interacting systems are tough enough, why make life harder? But disorder is always present to some degree in real systems - quantum wires, for example, discussed briefly in the chapter - and its effects particularly acute in one dimension. It simply cannot be avoided, even if the problem of interacting, disordered one-dimensional systems is still a long way off being solved. The penultimate chapter deals with the topical issues of boundaries, isolated impurities and constrictions, with a primary focus on mesoscopic examples of Luttinger liquids, notably carbon nanotubes and edge states in the quantum Hall effect. Finally 'significant other' examples of Luttinger liquids, namely interacting one-dimensional bosons, are considered in chapter 11; which concludes with a discussion of bosonization techniques in the context of quantum impurities in Fermi liquids - the x-ray, Kondo and multichannel Kondo problems. The quality of the product attests to the fact that writing this impressive tome was a labour of love for the author. (book review)
Hayward, O. T.; And Others
This publication is one of a series of single-topic problem modules designed for use in undergraduate geology and earth science courses. The first section, "Ain't It Flat? A Series of Experiments in Geodesy," presents various experiments for determining the earth's circumference (historically) and describes the use of satellites in determining the…
Directory of Open Access Journals (Sweden)
M. Joseph Hughes
2014-05-01
Full Text Available The use of Landsat data to answer ecological questions is greatly increased by the effective removal of cloud and cloud shadow from satellite images. We develop a novel algorithm to identify and classify clouds and cloud shadow, SPARCS: Spatial Procedures for Automated Removal of Cloud and Shadow. The method uses a neural network approach to determine cloud, cloud shadow, water, snow/ice and clear sky classification memberships of each pixel in a Landsat scene. It then applies a series of spatial procedures to resolve pixels with ambiguous membership by using information, such as the membership values of neighboring pixels and an estimate of cloud shadow locations from cloud and solar geometry. In a comparison with FMask, a high-quality cloud and cloud shadow classification algorithm currently available, SPARCS performs favorably, with substantially lower omission errors for cloud shadow (8.0% and 3.2%, only slightly higher omission errors for clouds (0.9% and 1.3%, respectively and fewer errors of commission (2.6% and 0.3%. Additionally, SPARCS provides a measure of uncertainty in its classification that can be exploited by other algorithms that require clear sky pixels. To illustrate this, we present an application that constructs obstruction-free composites of images acquired on different dates in support of a method for vegetation change detection.
Dimensions of ecosystem theory
International Nuclear Information System (INIS)
O'Neill, R.V.; Reichle, D.E.
1979-01-01
Various dimensions of ecosystem structure and behavior that seem to develop from the ubiquitous phenomena of system growth and persistence were studied. While growth and persistence attributes of ecosystems may appear to be simplistic phenomena upon which to base a comprehensive ecosystem theory, these same attributes have been fundamental to the theoretical development of other biological disciplines. These attributes were explored at a hierarchical level in a self-organizing system, and adaptive system strategies that result were analyzed. Previously developed causative relations (Reichle et al., 1975c) were examined, their theoretical implications expounded upon, and the assumptions tested with data from a variety of forest types. The conclusions are not a theory in themselves, but a state of organization of concepts contributing towards a unifying theory, along the lines promulgated by Bray (1958). The inferences drawn rely heavily upon data from forested ecosystems of the world, and have yet to be validated against data from a much more diverse range of ecosystem types. Not all of the interpretations are logically tight - there is room for other explanations, which it is hoped will provide fruitful grounds for further speculation
Preheating with extra dimensions
International Nuclear Information System (INIS)
Tsujikawa, S.
2000-01-01
We investigate preheating in a higher-dimensional generalized Kaluza-Klein theory with a quadratic inflaton potential V(/φ) = /frac12 m 2 /φ 2 including metric perturbations explicitly. The system we consider is the multi-field model where there exists a dilaton field /σ which corresponds to the scale of compactifications and another scalar field /χ coupled to inflaton with the interaction frac12 g 2 /φ 2 /χ 2 +/g-tilde 2 /φ 3 /χ. In the case of g-tilde=0, we find that the perturbation of dilaton does not undergo parametric amplification while the χ field fluctuation can be enhanced in the usual manner by parametric resonance. In the presence of the /g-tilde 2 /φ 3 /χ coupling, the dilaton fluctuation in sub-Hubble scales is modestly amplified by the growth of metric perturbations for the large coupling g-tilde. In super-Hubble scales, the enhancement of the dilaton fluctuation as well as metric perturbations is weak, taking into account the backreaction effect of created /χ particles. We argue that not only is it possible to predict the ordinary inflationary spectrum in large scales but extra dimensions can be held static during preheating in our scenario. (author)
Extra dimensions and color confinement
Energy Technology Data Exchange (ETDEWEB)
Pleitez, V
1995-04-01
An extension of the ordinary four dimensional Minkowski space by introducing additional dimensions which have their own Lorentz transformation is considered. Particles can transform in a different way under each Lorentz group. It is shown that only quark interactions are slightly modified and that color confinement automatic since these degrees of freedom run only in the extra dimensions. No compactification of the extra dimensions is needed. (author). 4 refs.
Fractal behavior of single-particle trajectories and isosets in isotropic and anisotropic fluids
International Nuclear Information System (INIS)
Kalia, R.K.; Vashishta, P.; de Leeuw, S.W.
1985-08-01
Molecular dynamics simulations for a variety of systems in 2 spatial dimensions reveal fractual behavior associated with trajectories and isosets of single particle motion. The fractual dimensions of trajectories and isosets are 2 and 0.5, respectively, irrespective of the nature of the interparticle interaction or thermodynamic state of the system. Recently, we have investigated the fractual behavior of diffusing Ag ions in the superionic phase of Ag 2 S. MD calculations have shown that the Ag ions diffuse anisotropically along certain directions in the lattice of S particles. Fractual dimensions D and anti D for Ag ions are again 2 and 0.5, respectively. These results confirm the universal nature of fractual dimensions of trails and isosets
Constructive Dimension and Turing Degrees
Bienvenu, Laurent; Doty, David; Stephan, Frank
2007-01-01
This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of...
Stochastic dynamics of penetrable rods in one dimension: Entangled dynamics and transport properties
Energy Technology Data Exchange (ETDEWEB)
Craven, Galen T.; Popov, Alexander V.; Hernandez, Rigoberto, E-mail: hernandez@chemistry.gatech.edu [Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 (United States)
2015-04-21
The dynamical properties of a system of soft rods governed by stochastic hard collisions (SHCs) have been determined over a varying range of softness using molecular dynamics simulations in one dimension and analytic theory. The SHC model allows for interpenetration of the system’s constituent particles in the simulations, generating overlapping clustering behavior analogous to the spatial structures observed in systems governed by deterministic bounded potentials. Through variation of an assigned softness parameter δ, the limiting ranges of intermolecular softness are bridged, connecting the limiting ensemble behavior from hard to ideal (completely soft). Various dynamical and structural observables are measured from simulation and compared to developed theoretical values. The spatial properties are found to be well predicted by theories developed for the deterministic penetrable-sphere model with a transformation from energetic to probabilistic arguments. While the overlapping spatial structures are complex, the dynamical properties can be adequately approximated through a theory built on impulsive interactions with Enskog corrections. Our theory suggests that as the softness of interaction is varied toward the ideal limit, correlated collision processes are less important to the energy transfer mechanism, and Markovian processes dominate the evolution of the configuration space ensemble. For interaction softness close to hard limit, collision processes are highly correlated and overlapping spatial configurations give rise to entanglement of single-particle trajectories.
Supersymmetric gauged scale covariance in ten and lower dimensions
International Nuclear Information System (INIS)
Nishino, Hitoshi; Rajpoot, Subhash
2004-01-01
We present globally supersymmetric models of gauged scale covariance in ten, six, and four dimensions. This is an application of a recent similar gauging in three dimensions for a massive self-dual vector multiplet. In ten dimensions, we couple a single vector multiplet to another vector multiplet, where the latter gauges the scale covariance of the former. Due to scale covariance, the system does not have a Lagrangian formulation, but has only a set of field equations, like Type IIB supergravity in ten dimensions. As by-products, we construct similar models in six dimensions with N=(2,0) supersymmetry, and four dimensions with N=1 supersymmetry. We finally get a similar model with N=4 supersymmetry in four dimensions with consistent interactions that have never been known before. We expect a series of descendant theories in dimensions lower than ten by dimensional reductions. This result also indicates that similar mechanisms will work for other vector and scalar multiplets in space-time lower than ten dimensions
Gao, Zhaofu; Zhu, Xiangkun; Sun, Jian; Luo, Zhaohua; Bao, Chuang; Tang, Chao; Ma, Jianxiong
2018-01-01
Analyses of sphalerite minerals from the characteristic brecciated Zn-Pb ores of the main ore body in the giant Dongshengmiao deposit have revealed variations in δ66Zn from 0.17 to 0.40‰ and in δ56Fe from -1.78 to -0.35‰. Further, the investigated pyrrhotite samples have iron that is isotopically similar to that of associated sphalerite minerals. The most distinctive pattern revealed by the zinc and iron isotope data is the lateral trend of increasing δ66Zn and δ56Fe values from southwest to northeast within the main ore body. The lead isotopic homogeneity of ore sulfides from the main ore body suggests that there is only one significant source for metal, thus precluding the mixing of multiple metal sources as the key factor controlling spatial variations of zinc and iron isotopes. The most likely control on spatial variations is Rayleigh fractionation during hydrothermal fluid flow, with lighter Zn and Fe isotopes preferentially incorporated into the earliest sulfides to precipitate from fluids. Precipitations of sphalerite and pyrrhotite have played vital roles in the Zn and Fe isotopic variations, respectively, of the ore-forming system. Accordingly, the larger isotopic variability for Fe than Zn within the same hydrothermal system perhaps resulted from a larger proportion of precipitation for pyrrhotite than for sphalerite. The lateral trend pattern revealed by the zinc and iron isotope data is consistent with the occurrence of a cystic-shaped breccia zone, which is characterized by marked elevation in Cu. The results further confirm that Zn and Fe isotopes can be used as a vectoring tool for mineral prospecting.
Black Holes and Sub-millimeter Dimensions
Argyres, Philip C; March-Russell, John David; Argyres, Philip C.; Dimopoulos, Savas; March-Russell, John
1998-01-01
Recently, a new framework for solving the hierarchy problem was proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a TeV and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this letter, we study how the properties of black holes are altered in these theories. Small black holes---with Schwarzschild radii smaller than the size of the new spatial dimensions---are quite different. They are bigger, colder, and longer-lived than a usual $(3+1)$-dimensional black hole of the same mass. Furthermore, they primarily decay into harmless bulk graviton modes rather than standard-model degrees of freedom. We discuss the interplay of our scenario with the holographic principle. Our results also have implications for the bounds on the spectrum of primordial black holes (PBHs) derived from the photo-dissociation of primordial nucleosynthesis products, distortion of the diffuse gamma-ray spectrum, overcl...
International Nuclear Information System (INIS)
Bellucci, S.; Saharian, A. A.
2009-01-01
We evaluate the Casimir energy and force for a massive fermionic field in the geometry of two parallel plates on background of Minkowski spacetime with an arbitrary number of toroidally compactified spatial dimensions. The bag boundary conditions are imposed on the plates and periodicity conditions with arbitrary phases are considered along the compact dimensions. The Casimir energy is decomposed into purely topological, single plate and interaction parts. With independence of the lengths of the compact dimensions and the phases in the periodicity conditions, the interaction part of the Casimir energy is always negative. In order to obtain the resulting force, the contributions from both sides of the plates must be taken into account. Then, the forces coming from the topological parts of the vacuum energy cancel out and only the interaction term contributes to the Casimir force. Applications of the general formulae to Kaluza-Klein-type models and carbon nanotubes are given. In particular, we show that for finite-length metallic nanotubes, the Casimir forces acting on the tube edges are always attractive, whereas for semiconducting-type ones, they are attractive for small lengths of the nanotube and repulsive for large lengths.
Higher spin gauge theories in any dimension
International Nuclear Information System (INIS)
Vasiliev, M.A.
2004-01-01
Some general properties of higher spin (HS) gauge theories are summarized, with the emphasize on the nonlinear theories in any dimension. The main conclusion is that nonlinear HS theories exist in any dimension. Note that HS gauge symmetries in the nonlinear HS theory differ from the Yang-Mills gauging of the global HS symmetry of a free theory one starts with by HS field strength dependent nonlinear corrections resulting from the partial gauge fixing of spontaneously broken HS symmetries in the extended non-commutative space. The HS geometry is that of the fuzzy hyperboloid in the auxiliary (fiber) non-commutative space. Its radius depends on the Weyl 0-forms which take values in the infinitive-dimensional module dual to the space of single-particle states in the system
Saliency of social comparison dimensions
Kuyper, H.
2007-01-01
The present article discusses a theory of the saliency of social comparison dimensions and presents the results of an experiment about the effects of two different experimental situations on the saliency of exterior, task-related and socio-emotional dimensions. Saliency was operationalized with a
Physics with large extra dimensions
Indian Academy of Sciences (India)
can then be accounted by the existence of large internal dimensions, in the sub- ... strongly coupled heterotic theory with one large dimension is described by a weakly ..... one additional U(1) factor corresponding to an extra 'U(1)' D-brane is ...
Klein, Bruce
1982-01-01
Describes an art program for preschool children that includes four social dimensions of art in order to heighten aesthetic perception, improve artistic creativity, and nurture self-esteem. The social dimensions are children having power, children acting on norms legitimate in their own eyes, children functioning "nonestrangedly," and children…
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...
Graviton collider effects in one and more large extra dimensions
International Nuclear Information System (INIS)
Giudice, Gian F.; Plehn, Tilman; Strumia, Alessandro
2005-01-01
Astrophysical bounds severely limit the possibility of observing collider signals of gravity with less than 3 flat extra dimensions. However, small distortions of the compactified space can lift the masses of the lightest graviton excitations, evading astrophysical bounds without affecting collider signals of quantum gravity. Following this procedure we reconsider theories with one large extra dimension. A slight space warping gives a model which is safe in the infrared against astrophysical and observational bounds, and which has the ultraviolet properties of gravity with a single flat extra dimension. We extend collider studies to the case of one extra dimension, pointing out its peculiarities. Finally, for a generic number of extra dimensions, we compare different channels in LHC searches for quantum gravity, introducing an ultraviolet cutoff as an additional parameter besides the Planck mass
A distinguishing gravitational property for gravitational equation in higher dimensions
International Nuclear Information System (INIS)
Dadhich, Naresh
2016-01-01
It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d = 2N + 1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions. (orig.)
A distinguishing gravitational property for gravitational equation in higher dimensions
Dadhich, Naresh
2016-03-01
It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d=2N+1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions.
An introduction to extra dimensions
International Nuclear Information System (INIS)
Perez-Lorenzana, Abdel
2005-01-01
Models that involve extra dimensions have introduced completely new ways of looking up on old problems in theoretical physics. The aim of the present notes is to provide a brief introduction to the many uses that extra dimensions have found over the last few years, mainly following an effective field theory point of view. Most parts of the discussion are devoted to models with flat extra dimensions, covering both theoretical and phenomenological aspects. We also discuss some of the new ideas for model building where extra dimensions may play a role, including symmetry breaking by diverse new and old mechanisms. Some interesting applications of these ideas are discussed over the notes, including models for neutrino masses and proton stability. The last part of this review addresses some aspects of warped extra dimensions, and graviton localization
International Nuclear Information System (INIS)
Idrissi Fakhr-Eddine, Abdellah.
1978-01-01
With a view to improving the spatial resolution of the localization of thermal neutrons, the work covers four position sensitive detectors: - 800 cell multi-detectors (1 dimension), - linear 'Jeu de Jacquet' detectors (1 dimension) - Multi-detector XYP 128x128 (2 dimensions), - 'Jeu de Jacquet' detector with 2 dimensions. Mention is made of the various position finding methods known so far, as well as the reasons for selecting BF 3 as detector gas. A study is then made of the parameters of the multiwire chamber whose principle will form the basis of most of the position detecting appliances subsequently dealt with. Finally, a description is given of the detection tests of the thermal neutrons in the multiwire chamber depending on the pressure, a parameter that greatly affects the accuracy of the position finding. The single dimension position tests on two kinds of appliance, the 800 cell multi-detector for the wide angle diffraction studies, and the linear 'Jeu de Jacquet' detector designed for small angle diffraction are mentioned. A description is then given of two position appliances with two dimensions; the multi-detector XYP 128x128 and the two dimensional 'Jeu de Jacquet' detector. In the case of this latter detector, only the hoped for characteristics are indicated [fr
Spatial Modulation Improves Performance in CTIS
Bearman, Gregory H.; Wilson, Daniel W.; Johnson, William R.
2009-01-01
Suitably formulated spatial modulation of a scene imaged by a computed-tomography imaging spectrometer (CTIS) has been found to be useful as a means of improving the imaging performance of the CTIS. As used here, "spatial modulation" signifies the imposition of additional, artificial structure on a scene from within the CTIS optics. The basic principles of a CTIS were described in "Improvements in Computed- Tomography Imaging Spectrometry" (NPO-20561) NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 38 and "All-Reflective Computed-Tomography Imaging Spectrometers" (NPO-20836), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 7a. To recapitulate: A CTIS offers capabilities for imaging a scene with spatial, spectral, and temporal resolution. The spectral disperser in a CTIS is a two-dimensional diffraction grating. It is positioned between two relay lenses (or on one of two relay mirrors) in a video imaging system. If the disperser were removed, the system would produce ordinary images of the scene in its field of view. In the presence of the grating, the image on the focal plane of the system contains both spectral and spatial information because the multiple diffraction orders of the grating give rise to multiple, spectrally dispersed images of the scene. By use of algorithms adapted from computed tomography, the image on the focal plane can be processed into an image cube a three-dimensional collection of data on the image intensity as a function of the two spatial dimensions (x and y) in the scene and of wavelength (lambda). Thus, both spectrally and spatially resolved information on the scene at a given instant of time can be obtained, without scanning, from a single snapshot; this is what makes the CTIS such a potentially powerful tool for spatially, spectrally, and temporally resolved imaging. A CTIS performs poorly in imaging some types of scenes in particular, scenes that contain little spatial or spectral variation. The computed spectra of
Directory of Open Access Journals (Sweden)
Johnson Truong
2018-04-01
Full Text Available We demonstrate a straightforward and effective method to synthesize vertically oriented, Cu-doped ZnO nanorods (NRs using a novel multipurpose platform of copper silicide nanoblocks (Cu3Si NBs preformed laterally in well-defined directions on Si. The use of the surface-organized Cu3Si NBs for ZnO NR growth successfully results in densely assembled Cu-doped ZnO NRs on each NB platform, whose overall structures resemble thick bristles on a brush head. We show that Cu3Si NBs can uniquely serve as a catalyst for ZnO NRs, a local dopant source of Cu, and a prepatterned guide to aid the local assembly of the NRs on the growth substrate. We also ascertain the crystalline structures, optical properties, and spectroscopic signatures of the Cu-doped ZnO NRs produced on the NBs, both at each module of NRs/NB and at their ensemble level. Subsequently, we determine their augmented properties relative to the pristine form of undoped ZnO NRs and the source material of Cu3Si NBs. We provide spatially correlated structural and optical data for individual modules of Cu-doped ZnO NRs assembled on a Cu3Si NB by resolving them along the different positions on the NB. Ensemble-averaged versus individual behaviors of Cu-doped ZnO NRs on Cu3Si NBs are then compared. We further discuss the potential impact of such ZnO-derived NRs on their relatively unexplored biological and biomedical applications. Our efforts will be particularly useful when exploiting each integrated module of self-aligned, Cu-doped ZnO NRs on a NB as a discretely addressable, active element in solid-state sensors and miniaturized luminescent bioprobes.
Spatial and Social Networks in Organizational Innovation
Wineman, Jean D.; Kabo, Felichism W.; Davis, Gerald F.
2009-01-01
Research on the enabling factors of innovation has focused on either the social component of organizations or on the spatial dimensions involved in the innovation process. But no one has examined the aggregate consequences of the link from spatial layout, to social networks, to innovation. This project enriches our understanding of how innovation…
Thermal dimension of quantum spacetime
Energy Technology Data Exchange (ETDEWEB)
Amelino-Camelia, Giovanni, E-mail: amelino@roma1.infn.it [Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy); Brighenti, Francesco [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Dipartimento di Fisica e Astronomia dell' Università di Bologna and Sez. Bologna INFN, Via Irnerio 46, 40126 Bologna (Italy); Gubitosi, Giulia [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Santos, Grasiele [Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy)
2017-04-10
Recent results suggest that a crucial crossroad for quantum gravity is the characterization of the effective dimension of spacetime at short distances, where quantum properties of spacetime become significant. This is relevant in particular for various scenarios of “dynamical dimensional reduction” which have been discussed in the literature. We are here concerned with the fact that the related research effort has been based mostly on analyses of the “spectral dimension”, which involves an unphysical Euclideanization of spacetime and is highly sensitive to the off-shell properties of a theory. As here shown, different formulations of the same physical theory can have wildly different spectral dimension. We propose that dynamical dimensional reduction should be described in terms of the “thermal dimension” which we here introduce, a notion that only depends on the physical content of the theory. We analyze a few models with dynamical reduction both of the spectral dimension and of our thermal dimension, finding in particular some cases where thermal and spectral dimension agree, but also some cases where the spectral dimension has puzzling properties while the thermal dimension gives a different and meaningful picture.
Spatial Modulation in the Underwater Acoustic Communication Channel
National Research Council Canada - National Science Library
Kilfoyle, Daniel
2000-01-01
.... The technique, termed spatial modulation, seeks to control the spatial distribution of signal energy such that multiple parallel communication channels are supported by the single, physical ocean channel...
FONT DISCRIMINATIO USING FRACTAL DIMENSIONS
Directory of Open Access Journals (Sweden)
S. Mozaffari
2014-09-01
Full Text Available One of the related problems of OCR systems is discrimination of fonts in machine printed document images. This task improves performance of general OCR systems. Proposed methods in this paper are based on various fractal dimensions for font discrimination. First, some predefined fractal dimensions were combined with directional methods to enhance font differentiation. Then, a novel fractal dimension was introduced in this paper for the first time. Our feature extraction methods which consider font recognition as texture identification are independent of document content. Experimental results on different pages written by several font types show that fractal geometry can overcome the complexities of font recognition problem.
Supersymmetry breaking with extra dimensions
International Nuclear Information System (INIS)
Zwirner, Fabio
2004-01-01
This talk reviews some aspects of supersymmetry breaking in the presence of extra dimensions. The first part is a general introduction, recalling the motivations for supersymmetry and extra dimensions, as well as some unsolved problems of four-dimensional models of supersymmetry breaking. The central part is a more focused introduction to a mechanism for (super)symmetry breaking, proposed first by Scherk and Schwarz, where extra dimensions play a crucial role. The last part is devoted to the description of some recent results and of some open problems. (author)
Preimage entropy dimension of topological dynamical systems
Liu, Lei; Zhou, Xiaomin; Zhou, Xiaoyao
2014-01-01
We propose a new definition of preimage entropy dimension for continuous maps on compact metric spaces, investigate fundamental properties of the preimage entropy dimension, and compare the preimage entropy dimension with the topological entropy dimension. The defined preimage entropy dimension holds various basic properties of topological entropy dimension, for example, the preimage entropy dimension of a subsystem is bounded by that of the original system and topologically conjugated system...
International Nuclear Information System (INIS)
Lambert, D.
2006-07-01
Electronic systems in space and terrestrial environments are subjected to a flow of particles of natural origin, which can induce dysfunctions. These particles can cause Single Event Upsets (SEU) in SRAM memories. Although non-destructive, the SEU can have consequences on the equipment functioning in applications requiring a great reliability (airplane, satellite, launcher, medical, etc). Thus, an evaluation of the sensitivity of the component technology is necessary to predict the reliability of a system. In atmospheric environment, the SEU sensitivity is mainly caused by the secondary ions resulting from the nuclear reactions between the neutrons and the atoms of the component. In space environment, the protons with strong energies induce the same effects as the atmospheric neutrons. In our work, a new code of prediction of the rate of SEU has been developed (MC-DASIE) in order to quantify the sensitivity for a given environment and to explore the mechanisms of failures according to technology. This code makes it possible to study various technologies of memories SRAM (Bulk and SOI) in neutron and proton environment between 1 MeV and 1 GeV. Thus, MC-DASIE was used with experiment data to study the effect of integration on the sensitivity of the memories in terrestrial environment, a comparison between the neutron and proton irradiations and the influence of the modeling of the target component on the calculation of the rate of SEU. (author)
Marquardt, Torsten; Stange, Annette; Pecka, Michael; Grothe, Benedikt; McAlpine, David
2014-01-01
Recently, with the use of an amplitude-modulated binaural beat (AMBB), in which sound amplitude and interaural-phase difference (IPD) were modulated with a fixed mutual relationship (Dietz et al. 2013b), we demonstrated that the human auditory system uses interaural timing differences in the temporal fine structure of modulated sounds only during the rising portion of each modulation cycle. However, the degree to which peripheral or central mechanisms contribute to the observed strong dominance of the rising slope remains to be determined. Here, by recording responses of single neurons in the medial superior olive (MSO) of anesthetized gerbils and in the inferior colliculus (IC) of anesthetized guinea pigs to AMBBs, we report a correlation between the position within the amplitude-modulation (AM) cycle generating the maximum response rate and the position at which the instantaneous IPD dominates the total neural response. The IPD during the rising segment dominates the total response in 78% of MSO neurons and 69% of IC neurons, with responses of the remaining neurons predominantly coding the IPD around the modulation maximum. The observed diversity of dominance regions within the AM cycle, especially in the IC, and its comparison with the human behavioral data suggest that only the subpopulation of neurons with rising slope dominance codes the sound-source location in complex listening conditions. A comparison of two models to account for the data suggests that emphasis on IPDs during the rising slope of the AM cycle depends on adaptation processes occurring before binaural interaction. PMID:24554782
Inflation from periodic extra dimensions
Energy Technology Data Exchange (ETDEWEB)
Higaki, Tetsutaro [Department of Physics, Keio University, Kanagawa 223-8522 (Japan); Tatsuta, Yoshiyuki, E-mail: thigaki@rk.phys.keio.ac.jp, E-mail: y_tatsuta@akane.waseda.jp [Department of Physics, Waseda University, Tokyo 169-8555 (Japan)
2017-07-01
We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, and then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.
Physics with large extra dimensions
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 2 ... The recent understanding of string theory opens the possibility that the string scale can be as ... by the existence of large internal dimensions, in the sub-millimeter region.
Temporal dimension in cognitive models
International Nuclear Information System (INIS)
Decortis, F.; Cacciabue, P.C.
1988-01-01
Increased attention has been given to the role of humans in nuclear power plant safety, but one aspect seldom considered is the temporal dimension of human reasoning. Time is recognized as crucial in human reasoning and has been the subject of empirical studies where cognitive mechanisms and strategies to face the temporal dimension have been studied. The present study shows why temporal reasoning is essential in Human Reliability Analysis and how it could be introduced in a human model. Accounting for the time dimension in human behaviour is discussed first, with reference to proven field studies. Then, theoretical modelling of the temporal dimension in human reasoning and its relevance in simulation of cognitive activities of plant operator is discussed. Finally a Time Experience Model is presented
Interactive Dimensioning of Parametric Models
Kelly, T.; Wonka, Peter; Mueller, P.
2015-01-01
that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify
Conformal dimension theory and application
Mackay, John M
2010-01-01
Conformal dimension measures the extent to which the Hausdorff dimension of a metric space can be lowered by quasisymmetric deformations. Introduced by Pansu in 1989, this concept has proved extremely fruitful in a diverse range of areas, including geometric function theory, conformal dynamics, and geometric group theory. This survey leads the reader from the definitions and basic theory through to active research applications in geometric function theory, Gromov hyperbolic geometry, and the dynamics of rational maps, amongst other areas. It reviews the theory of dimension in metric spaces and of deformations of metric spaces. It summarizes the basic tools for estimating conformal dimension and illustrates their application to concrete problems of independent interest. Numerous examples and proofs are provided. Working from basic definitions through to current research areas, this book can be used as a guide for graduate students interested in this field, or as a helpful survey for experts. Background needed ...
The search for extra dimensions
International Nuclear Information System (INIS)
Abel, Steven; March-Russell, John
2000-01-01
The possibility of extra dimensions, beyond the three dimensions of space of our everyday experience, sometimes crops up as a convenient, if rather vague, plot in science fiction. In science, however, the idea of extra dimensions has a rich history, dating back at least as far as the 1920s. Recently there has been a remarkable renaissance in this area due to the work of a number of theoretical physicists. It now seems possible that we, the Earth and, indeed, the entire visible universe are stuck on a membrane in a higher-dimensional space, like dust particles that are trapped on a soap bubble. In this article the authors look at the major issues behind this new development. Why, for example, don't we see these extra dimensions? If they exist, how can we detect them? And perhaps the trickiest question of all: how did this fanciful idea come to be considered in the first place? (U.K.)
Learning to Change: New Dimensions.
Loughlin, Kathleen
1996-01-01
Change involves thoughts, emotions, values, and actions but thought gets the most attention. Learning to change necessitates an integration of rational and nonrational ways of knowing. Nonrational ways and human care are important dimensions of the learning process. (SK)
Wirsich, Jonathan; Bénar, Christian; Ranjeva, Jean-Philippe; Descoins, Médéric; Soulier, Elisabeth; Le Troter, Arnaud; Confort-Gouny, Sylviane; Liégeois-Chauvel, Catherine; Guye, Maxime
2014-10-15
Simultaneous EEG-fMRI has opened up new avenues for improving the spatio-temporal resolution of functional brain studies. However, this method usually suffers from poor EEG quality, especially for evoked potentials (ERPs), due to specific artifacts. As such, the use of EEG-informed fMRI analysis in the context of cognitive studies has particularly focused on optimizing narrow ERP time windows of interest, which ignores the rich diverse temporal information of the EEG signal. Here, we propose to use simultaneous EEG-fMRI to investigate the neural cascade occurring during face recognition in 14 healthy volunteers by using the successive ERP peaks recorded during the cognitive part of this process. N170, N400 and P600 peaks, commonly associated with face recognition, were successfully and reproducibly identified for each trial and each subject by using a group independent component analysis (ICA). For the first time we use this group ICA to extract several independent components (IC) corresponding to the sequence of activation and used single-trial peaks as modulation parameters in a general linear model (GLM) of fMRI data. We obtained an occipital-temporal-frontal stream of BOLD signal modulation, in accordance with the three successive IC-ERPs providing an unprecedented spatio-temporal characterization of the whole cognitive process as defined by BOLD signal modulation. By using this approach, the pattern of EEG-informed BOLD modulation provided improved characterization of the network involved than the fMRI-only analysis or the source reconstruction of the three ERPs; the latter techniques showing only two regions in common localized in the occipital lobe. Copyright © 2014 Elsevier Inc. All rights reserved.
New spatial and temporal indices of Indian summer monsoon rainfall
Dwivedi, Sanjeev; Uma, R.; Lakshmi Kumar, T. V.; Narayanan, M. S.; Pokhrel, Samir; Kripalani, R. H.
2018-02-01
The overall yearly seasonal performance of Indian southwest monsoon rainfall (ISMR) for the whole Indian land mass is presently expressed by the India Meteorological Department (IMD) by a single number, the total quantum of rainfall. Any particular year is declared as excess/deficit or normal monsoon rainfall year on the basis of this single number. It is well known that monsoon rainfall also has high interannual variability in spatial and temporal scales. To account for these aspects in ISMR, we propose two new spatial and temporal indices. These indices have been calculated using the 115 years of IMD daily 0.25° × 0.25° gridded rainfall data. Both indices seem to go in tandem with the in vogue seasonal quantum index. The anomaly analysis indicates that the indices during excess monsoon years behave randomly, while for deficit monsoon years the phase of all the three indices is the same. Evaluation of these indices is also studied with respect to the existing dynamical indices based on large-scale circulation. It is found that the new temporal indices have better link with circulation indices as compared to the new spatial indices. El Nino and Southern Oscillation (ENSO) especially over the equatorial Pacific Ocean still have the largest influence in both the new indices. However, temporal indices have much better remote influence as compared to that of spatial indices. Linkages over the Indian Ocean regions are very different in both the spatial and temporal indices. Continuous wavelet transform (CWT) analysis indicates that the complete spectrum of oscillation of the QI is shared in the lower oscillation band by the spatial index and in the higher oscillation band by the temporal index. These new indices may give some extra dimension to study Indian summer monsoon variability.
Directory of Open Access Journals (Sweden)
Anda VELICANU
2010-09-01
Full Text Available This paper contains a brief description of the most important operations that can be performed on spatial data such as spatial queries, create, update, insert, delete operations, conversions, operations on the map or analysis on grid cells. Each operation has a graphical example and some of them have code examples in Oracle and PostgreSQL.
DEFF Research Database (Denmark)
Thomsen, Bodil Marie Stavning
2011-01-01
The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations.......The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations....
2003-12-01
Computation and today’s microprocessors with the approach to operating system architecture, and the controversy between microkernels and monolithic kernels...Both Spatial Computation and microkernels break away a relatively monolithic architecture into in- dividual lightweight pieces, well specialized...for their particular functionality. Spatial Computation removes global signals and control, in the same way microkernels remove the global address
Transition of fractal dimension in a latticed dynamical system
International Nuclear Information System (INIS)
Duong-van, M.
1986-03-01
We study a recursion relation that manifests two distinct routes to turbulence, both of which reproduce commonly observed phenomena: the Feigenbaum route, with period-doubling frequencies; and a much more general route with noncommensurate frequencies and frequency entrainment, and locking. Intermittency and large-scale aperiodic spatial patterns are reproduced in this new route. In the oscillatory instability regime the fracal dimension saturates at D/sub F/ approx. = 2.6 with imbedding dimensions while in the turbulent regime D/sub F/ saturates at 6.0. 19 refs., 3 figs
Energy Technology Data Exchange (ETDEWEB)
Giubileo, F. [CNR-INFM Laboratorio Regionale SUPERMAT e Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, via Salvador Allende, 84081 Baronissi (Italy)], E-mail: giubileo@sa.infn.it; Bobba, F.; Scarfato, A. [CNR-INFM Laboratorio Regionale SUPERMAT e Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, via Salvador Allende, 84081 Baronissi (Italy); Roditchev, D. [Institut des Nanosciences de Paris, INSP, Universite P. et M.Curie Paris 6, CNRS, UMR 75-88, Paris (France); Zhigadlo, N.; Karpinski, J. [Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich (Switzerland); Cucolo, A.M. [CNR-INFM Laboratorio Regionale SUPERMAT e Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, via Salvador Allende, 84081 Baronissi (Italy)
2007-09-01
We have performed I(V) and dI/dV(V) measurements on high quality Mg{sub 0.9}Al{sub 0.1}B{sub 2} single crystals by means of a variable temperature scanning tunneling spectroscopy (STS) working in magnetic field up to 7 T. c-axis tunneling showed a single gap, probing the three-dimensional Dp that appeared highly non-homogeneous in its spatial distribution on nanometer scale, with an amplitude between 1.5 meV and 2.3 meV. Temperature and magnetic field dependence of the conductance spectra were studied in S-I-N configuration as well as in S-I-S configuration, after pushing the Pt/Ir tip in the sample to capture a superconducting grain at the very apex of the tip. For the largest energy gap (2.3 meV), we found H{sub c2} {approx} 3 T, i.e., a 25% raising with respect to what observed in the pure crystal.
Perceptual dimensions of style in paintings
Directory of Open Access Journals (Sweden)
Marković Slobodan
2007-01-01
Full Text Available The main purpose of this study is to specify the basic perceptual dimensions underlying the judgments of the physical features which define the style in paintings (e.g. salient form, colorful surface, oval contours etc.. The other aim of the study is to correlate these dimensions with the subjective (affective dimensions of the experience of paintings. In the preliminary study a set of 25 pairs of elementary perceptual descriptors were empirically specified, and a set of 25 bipolar scales were made (e.g. uncolored-multicolored. In the experiment 30 subjects judged 24 paintings (paintings were taken from the study of Radonjić and Marković, 2004 on 25 scales. Factor analysis revealed the four factors: form (scales: precise, neat, salient form etc., color (color contrast, lightness contrast, vivid colors, space (voluminosity, depth and oval contours and complexity (multicolored, ornate, detailed. Obtained factors reflected the nature of the phenomenological and neural segregation of form, color, depth processing, and partially of complexity processing (e.g. spatial frequency processing within both the form and color subsystem. The aim of the next step of analysis was to specify the correlations between two groups of judgments: (a mean judgments of 24 paintings on perceptual factors and (b mean judgments of the same set of 24 paintings on subjective (affective experience factors, i.e. regularity, attraction, arousal and relaxation (judgments taken from Radonjić and Marković, 2005. The following significant correlations were obtained: regularity-form, regularity-space, attraction-form and arousal-complexity (negative correlation. The reasons for the unexpected negative correlation between arousal and complexity should be specified in further studies.
Topological magnetoelectric pump in three dimensions
Fukui, Takahiro; Fujiwara, Takanori
2017-11-01
We study the topological pump for a lattice fermion model mainly in three spatial dimensions. We first calculate the U(1) current density for the Dirac model defined in continuous space-time to review the known results as well as to introduce some technical details convenient for the calculations of the lattice model. We next investigate the U(1) current density for a lattice fermion model, a variant of the Wilson-Dirac model. The model we introduce is defined on a lattice in space but in continuous time, which is suited for the study of the topological pump. For such a model, we derive the conserved U(1) current density and calculate it directly for the (1 +1 )-dimensional system as well as (3 +1 )-dimensional system in the limit of the small lattice constant. We find that the current includes a nontrivial lattice effect characterized by the Chern number, and therefore the pumped particle number is quantized by the topological reason. Finally, we study the topological temporal pump in 3 +1 dimensions by numerical calculations. We discuss the relationship between the second Chern number and the first Chern number, the bulk-edge correspondence, and the generalized Streda formula which enables us to compute the second Chern number using the spectral asymmetry.
Extra dimensions in space and time
Bars, Itzhak
2010-01-01
Covers topics such as Einstein and the Fourth Dimension; Waves in a Fifth Dimension; and String Theory and Branes Experimental Tests of Extra Dimensions. This book offers a discussion on Two-Time Physics
Higuchi dimension of digital images.
Directory of Open Access Journals (Sweden)
Helmut Ahammer
Full Text Available There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example, Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi dimension of these 1D signals is calculated using Higuchi's algorithm, and it is shown that both regions of interests and directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital images, are given. The main result is that Higuchi's algorithm allows a direction dependent as well as direction independent analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible. Moreover, the proposed method is not restricted to Higuchi's algorithm, as any 1D method of analysis, can be applied.
Single-particle colloid tracking in four dimensions.
Anthony, Stephen M; Hong, Liang; Kim, Minsu; Granick, Steve
2006-11-21
Coating a close-packed fluorescent colloid monolayer with a nanometer-thick metal film followed by sonication in liquid produces modulated optical nanoprobes. The metal coating modulates the fluorescence as these structures rotate in suspension, enabling the use of these particles as probes to monitor both rotational and center-of-mass (translational) dynamics in complex environments. Here, we demonstrate methods to simultaneously measure two translational and two rotational degrees of freedom, with excellent agreement to theory. The capability to determine two angles of rotation opens several new avenues of future research.
Angle sensitive single photon avalanche diode
Energy Technology Data Exchange (ETDEWEB)
Lee, Changhyuk, E-mail: cl678@cornell.edu; Johnson, Ben, E-mail: bcj25@cornell.edu; Molnar, Alyosha, E-mail: am699@cornell.edu [Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)
2015-06-08
An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.
Bianchi identities in higher dimensions
International Nuclear Information System (INIS)
Pravda, V; Pravdova, A; Coley, A; Milson, R
2004-01-01
A higher dimensional frame formalism is developed in order to study implications of the Bianchi identities for the Weyl tensor in vacuum spacetimes of the algebraic types III and N in arbitrary dimension n. It follows that the principal null congruence is geodesic and expands isotropically in two dimensions and does not expand in n - 4 spacelike dimensions or does not expand at all. It is shown that the existence of such principal geodesic null congruence in vacuum (together with an additional condition on twist) implies an algebraically special spacetime. We also use the Myers-Perry metric as an explicit example of a vacuum type D spacetime to show that principal geodesic null congruences in vacuum type D spacetimes do not share this property
Physics with large extra dimensions
Antoniadis, Ignatios
2004-01-01
The recent understanding of string theory opens the possibility that the string scale can be as low as a few TeV. The apparent weakness of gravitational interactions can then be accounted by the existence of large internal dimensions, in the submillimeter region. Furthermore, our world must be confined to live on a brane transverse to these large dimensions, with which it interacts only gravitationally. In my lecture, I describe briefly this scenario which gives a new theoretical framework for solving the gauge hierarchy problem and the unification of all interactions. I also discuss its main properties and implications for observations at both future particle colliders, and in non-accelerator gravity experiments. Such effects are for instance the production of Kaluza-Klein resonances, graviton emission in the bulk of extra dimensions, and a radical change of gravitational forces in the submillimeter range.
The Existential Dimension of Right
DEFF Research Database (Denmark)
Hartz, Emily
2017-01-01
for discussing the existential dimension of right by bringing central parts of Fichte’s and Arendt’s work into dialogue. By facilitating this – admittedly unusual – dialogue between Fichte and Arendt the author explicates how, for both Fichte and Arendt, the concept of right can only be adequately understood......The following article paves out the theoretical ground for a phenomenological discussion of the existential dimension of right. This refers to a dimension of right that is not captured in standard treatments of right, namely the question of whether – or how the concept of rights relates...... as referring to the existential condition of plurality and uses this insight to draw up a theoretical ground for further phenomenological analysis of right....
Collapse of large extra dimensions
International Nuclear Information System (INIS)
Geddes, James
2002-01-01
In models of spacetime that are the product of a four-dimensional spacetime with an 'extra' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided
Correlated Electrons in Reduced Dimensions
Energy Technology Data Exchange (ETDEWEB)
Bonesteel, Nicholas E [Florida State Univ., Tallahassee, FL (United States)
2015-01-31
This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.
The geographic dimensions of institutions
Bhupatiraju, S.
2014-01-01
In this paper we examine the role of institutions relative to economic performance, absolute geography and financial performance of a country. In order to do this, we use the spatial principal component analysis and a spatial canonical correlation analysis to obtain multi-dimensional measure of
Compactified vacuum in ten dimensions
International Nuclear Information System (INIS)
Wurmser, D.
1987-01-01
Since the 1920's, theories which unify gravity with the other fundamental forces have called for more than the four observed dimensions of space-time. According to such a theory, the vacuum consists of flat four-dimensional space-time described by the Minkowski metric M 4 and a compactified space B. The dimensions of B are small, and the space can only be observed at distance scales smaller than the present experimental limit. These theories have had serious difficulties. The equations of gravity severely restrict the possible choices for the space B. The allowed spaces are complicated and difficult to study. The vacuum is furthermore unstable in the sense that a small perturbation causes the compactified dimensions to expand indefinitely. There is an addition a semi-classical argument which implies that the compactified vacuum by annihilated by virtual black holes. It follows that a universe with compactified extra dimensions could not have survived to the present. These results were derived by applying the equations of general relativity to spaces of more than four dimensions. The form of these equations was assumed to be unchanged by an increase in the number of dimensions. The authors illustrate the effect of such terms by considering the example B = S 6 where S 6 is the six-dimensional sphere. Only when the extra terms are included is this choice of the compactified space allowed. He explore the effect of a small perturbation on such a vacuum. The ten-dimensional spherically symmetric potential is examined, and I determine conditions under which the formation of virtual black holes is forbidden. The examples M 4 x S 6 is still plagued by the semi-classical instability, but this result does not hold in general. The requirement that virtual black holes be forbidden provides a test for any theory which predicts a compactified vacuum
Spatial Attention and Audiovisual Interactions in Apparent Motion
Sanabria, Daniel; Soto-Faraco, Salvador; Spence, Charles
2007-01-01
In this study, the authors combined the cross-modal dynamic capture task (involving the horizontal apparent movement of visual and auditory stimuli) with spatial cuing in the vertical dimension to investigate the role of spatial attention in cross-modal interactions during motion perception. Spatial attention was manipulated endogenously, either…
Factors Affecting the Clinical Measurement of Visuo-Spatial Neglect
Directory of Open Access Journals (Sweden)
L. Pizzamiglio
1992-01-01
Full Text Available The present study examined a battery of tests to evaluate unilateral spatial neglect; the tests included different tasks involving several modalities of spatial exploration mapping perceptual, motor, attentional and personal or extrapersonal space dimensions. The subjects, 121 right-brain-damaged patients with unilateral neglect, were studied in seven laboratories in four European countries. Relationships among the various tests were examined by correlations, a cluster analysis and by an analysis of individual cases. Different sensitivity was found among various tests for detecting neglect performances. Both the cluster analysis and the single case analysis clearly showed a segregation between personal and extrapersonal neglect. Analysis of the large cluster, including a variety of tests of extra personal neglect, together with the study of single cases, suggests the possibility of differentiating the various manifestations of spatial neglect which can be interpreted on the basis of the descriptions of other individual cases previously reported in the literature. Finally, the present study indicated the relative stability of neglect following the acute phase and its independence from age.
van Noppen, Jean Pierre
1995-01-01
Descriptive theology («theography») frequently resorts to metaphorical modes of meaning. Among these metaphors, the spatial language of localization and orientation plays an important role to delineate tentative insights into the relationship between the human and the divine. These spatial metaphors are presumably based on the universal human experience of interaction between the body and its environment. It is dangerous, however, to postulate universal agreement on meanings associated with s...
On bosonization in 3 dimensions
International Nuclear Information System (INIS)
Barci, D.G.; Fosco, C.D.; Oxman, L.E.
1995-08-01
A recently proposed path-integral bosonization scheme for massive fermions in 3 dimensions is extended by keeping the full momentum-dependence of the one-loop vacuum polarization tensor. This makes it possible to discuss both the massive and massless fermion cases on an equal footing, and moreover the results it yields for massless fermions are consistent with the ones of another, seemingly different, canonical quantization approach to the problem of bosonization for a massless fermionic field in 3 dimensions. (author). 10 refs
The Ethical Dimension of Innovation
DEFF Research Database (Denmark)
Nogueira, Leticia Antunes; Nogueira, Tadeu Fernando
2014-01-01
The view of innovation as a positive concept has been deeply rooted in business and academic cultures ever since Schumpeter coined the concept of creative destruction. Even though there is a large body of literature on innovation studies, limited attention has been given to its ethical dimension....... In this chapter, the ethical implications of innovations are illustrated with a case study of “destructive creation” in the food industry, and upon which an argumentative analysis is conducted. The main message of this chapter is that innovations have inherent ethical dimensions and that quality innovations...
Quantum control in infinite dimensions
International Nuclear Information System (INIS)
Karwowski, Witold; Vilela Mendes, R.
2004-01-01
Accurate control of quantum evolution is an essential requirement for quantum state engineering, laser chemistry, quantum information and quantum computing. Conditions of controllability for systems with a finite number of energy levels have been extensively studied. By contrast, results for controllability in infinite dimensions have been mostly negative, stating that full control cannot be achieved with a finite-dimensional control Lie algebra. Here we show that by adding a discrete operation to a Lie algebra it is possible to obtain full control in infinite dimensions with a small number of control operators
Quantum physics in one dimension
Giamarchi, Thierry
2004-01-01
This book presents in a pedagogical yet complete way correlated systems in one dimension. Recent progress in nanotechnology and material research have made one dimensional systems a crucial part of today's physics. After an introduction to the basic concepts of correlated systems, the book gives a step by step description of the techniques needed to treat one dimension, and discusses the resulting physics. Then specific experimental realizations of one dimensional systems such asspin chains, quantum wires, nanotubes, organic superconductors etc. are examined. Given its progressive and pedagogi
High dimensions - a new approach to fermionic lattice models
International Nuclear Information System (INIS)
Vollhardt, D.
1991-01-01
The limit of high spatial dimensions d, which is well-established in the theory of classical and localized spin models, is shown to be a fruitful approach also to itinerant fermion systems, such as the Hubbard model and the periodic Anderson model. Many investigations which are probability difficult in finite dimensions, become tractable in d=∞. At the same time essential features of systems in d=3 and even lower dimensions are very well described by the results obtained in d=∞. A wide range of applications of this new concept (e.g., in perturbation theory, Fermi liquid theory, variational approaches, exact results, etc.) is discussed and the state-of-the-art is reviewed. (orig.)
Multi-dimension feature fusion for action recognition
Dong, Pei; Li, Jie; Dong, Junyu; Qi, Lin
2018-04-01
Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. The challenge for action recognition is to capture and fuse the multi-dimension information in video data. In order to take into account these characteristics simultaneously, we present a novel method that fuses multiple dimensional features, such as chromatic images, depth and optical flow fields. We built our model based on the multi-stream deep convolutional networks with the help of temporal segment networks and extract discriminative spatial and temporal features by fusing ConvNets towers multi-dimension, in which different feature weights are assigned in order to take full advantage of this multi-dimension information. Our architecture is trained and evaluated on the currently largest and most challenging benchmark NTU RGB-D dataset. The experiments demonstrate that the performance of our method outperforms the state-of-the-art methods.
Memory effect for particle scattering in odd spacetime dimensions
Satishchandran, Gautam; Wald, Robert M.
2018-01-01
We investigate the gravitational memory effect for linearized perturbations off of Minkowski space in odd spacetime dimensions d by examining the effects of gravitational radiation from classical point particle scattering. We also investigate analogous memory effects for electromagnetic and scalar radiation. We find that there is no gravitational memory effect in all odd dimensions. For scalar and electromagnetic fields, there is no memory effect for d ≥7 ; for d =3 there is an infinite momentum memory effect, whereas for d =5 there is no momentum memory effect but the displacement of a test particle will grow unboundedly with time. Our results are further elucidated by analyzing the memory effect for any slowly moving source of compact spatial support in odd dimensions.
Fractal Dimension of Particle Showers Measured in a Highly Granular Calorimeter
Ruan, Manqi; Bourdy, Vincent; Brients, Jean-Claude; Videau, Henri
2014-01-01
fractal dimension of showers measured in a high granularity calorimeter designed for a future lepton collider. The shower fractal dimension reveals detailed information of the spatial configuration of the shower. It is found to be characteristic of the type of interaction and highly sensitive to the nature of the incident particle. Using the shower fractal dimension, we demonstrate a particle identification algorithm that can efficiently separate electromagnetic showers, hadronic showers and non-showering tracks. We also find a logarithmic dependence of the shower fractal dimension on the particle energy.
Continuous dimensions and evanescent couplings
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1975-01-01
Analytical solutions for the wave equation in many dimensional calculation, are given. The difference for even or odd number of dimensions is shown. The simplest cases of the lowest order divergent diagrams (self-energy, vacuum polarization) are discussed. Causal solution of Klein-Gordon equation is used [pt
Quantum Gravity in Two Dimensions
DEFF Research Database (Denmark)
Ipsen, Asger Cronberg
The topic of this thesis is quantum gravity in 1 + 1 dimensions. We will focus on two formalisms, namely Causal Dynamical Triangulations (CDT) and Dy- namical Triangulations (DT). Both theories regularize the gravity path integral as a sum over triangulations. The difference lies in the class...
Massive particles in five dimensions
International Nuclear Information System (INIS)
Copeland, E.J.
1985-01-01
We consider a five-dimensional model of the universe with a dynamical extra dimension. Calculations of the ratio of the number density of Kolb and Slansky type pyrgons to that of photons show the model to be unacceptable. However by inserting N matter fields into the original action, it becomes possible to reduce the ratio below the observational bound. (orig.)
Teachers' Careers: The Objective Dimension.
Evetts, Julia
1986-01-01
Analyzes the objective dimension of teachers' careers showing how 530 British male/female teachers are distributed throughout the pay scale and promotions making up the formal structure of teaching. Indicates length of experience is the rewarding but not the sole factor in bureaucratic structure and differential male/female career achievements.…
THE DIMENSIONS OF COMPOSITION ANNOTATION.
MCCOLLY, WILLIAM
ENGLISH TEACHER ANNOTATIONS WERE STUDIED TO DETERMINE THE DIMENSIONS AND PROPERTIES OF THE ENTIRE SYSTEM FOR WRITING CORRECTIONS AND CRITICISMS ON COMPOSITIONS. FOUR SETS OF COMPOSITIONS WERE WRITTEN BY STUDENTS IN GRADES 9 THROUGH 13. TYPESCRIPTS OF THE COMPOSITIONS WERE ANNOTATED BY CLASSROOM ENGLISH TEACHERS. THEN, 32 ENGLISH TEACHERS JUDGED…
Unexploited Dimensions of Virtual Humans
Ruttkay, Z.M.; Reidsma, Dennis; Huang, Thomas; Nijholt, Antinus; Pantic, Maja; Pentlant, Alex
Virtual Humans are on the border of fiction and realism: while it is obvious that they do not exist in reality and function on different principles than real people, they have been endowed with human features such as being emotionally sensitive. In this article we argue that many dimensions, both
String theory in four dimensions
1988-01-01
``String Theory in Four Dimensions'' contains a representative collection of papers dealing with various aspects of string phenomenology, including compactifications on smooth manifolds and more general conformal field theories. Together with the lucid introduction by M. Dine, this material gives the reader a good working knowledge of our present ideas for connecting string theory to nature.
supersymmetry breaking with extra dimensions
Indian Academy of Sciences (India)
large number of parameters, there is no explanation for the origin and the stability of two different mass .... Theories formulated in more than four space-time dimensions have been discussed for several decades, starting from the historical papers by Kaluza and Klein on. 500 .... For the consistency of the orbifold construction,.
Complex numbers in n dimensions
Olariu, Silviu
2002-01-01
Two distinct systems of hypercomplex numbers in n dimensions are introduced in this book, for which the multiplication is associative and commutative, and which are rich enough in properties such that exponential and trigonometric forms exist and the concepts of analytic n-complex function, contour integration and residue can be defined. The first type of hypercomplex numbers, called polar hypercomplex numbers, is characterized by the presence in an even number of dimensions greater or equal to 4 of two polar axes, and by the presence in an odd number of dimensions of one polar axis. The other type of hypercomplex numbers exists as a distinct entity only when the number of dimensions n of the space is even, and since the position of a point is specified with the aid of n/2-1 planar angles, these numbers have been called planar hypercomplex numbers. The development of the concept of analytic functions of hypercomplex variables was rendered possible by the existence of an exponential form of the n-complex numbe...
The inner dimension of sustainability
Horlings, L.G.
2015-01-01
Transformation to sustainability has been defined as the fundamental alteration of the nature of a system, once the current conditions become untenable or undesirable. Transformation requires a shift in people's values, referred to as the inner dimension of sustainability, or change from the
Effective dimension in flocking mechanisms
International Nuclear Information System (INIS)
Baglietto, Gabriel; Albano, Ezequiel V.
2011-01-01
Even in its minimal representation (Vicsek Model, VM [T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet. Phys. Rev. Lett. 75, 1226 (1995).]), the widespread phenomenon of flocking raises intriguing questions to the statistical physicists. While the VM is very close to the better understood XY Model because they share many symmetry properties, a major difference arises by the fact that the former can sustain long-range order in two dimensions, while the latter can not. Aiming to contribute to the understanding of this feature, by means of extensive numerical simulations of the VM, we study the network structure of clusters showing that they can also sustain purely orientational, mean-field-like, long-range order. We identify the reason of this capability with the key concept of ''effective dimension.'' In fact, by analyzing the behavior of the average path length and the mean degree, we show that this dimension is very close to four, which coincides with the upper critical dimension of the XY Model, where orientational order is also of a mean-field nature. We expect that this methodology could be generalized to other types of dynamical systems.
The Hidden Dimensions of Databases.
Jacso, Peter
1994-01-01
Discusses methods of evaluating commercial online databases and provides examples that illustrate their hidden dimensions. Topics addressed include size, including the number of records or the number of titles; the number of years covered; and the frequency of updates. Comparisons of Readers' Guide Abstracts and Magazine Article Summaries are…
Dimensions of the Composing Process.
Freedman, Aviva
As a by-product of a study concerning how university level writers develop new genres of discourse, a study was undertaken to examine what factors or dimensions affect the composing process of university writers. Six undergraduate students at Carleton University in Ottawa participated, making available to researchers information about how they…
Correlation Dimension-Based Classifier
Czech Academy of Sciences Publication Activity Database
Jiřina, Marcel; Jiřina jr., M.
2014-01-01
Roč. 44, č. 12 (2014), s. 2253-2263 ISSN 2168-2267 R&D Projects: GA MŠk(CZ) LG12020 Institutional support: RVO:67985807 Keywords : classifier * multidimensional data * correlation dimension * scaling exponent * polynomial expansion Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.469, year: 2014
Interpretation and the Aesthetic Dimension
Mortensen, Charles O.
1976-01-01
The author, utilizing a synthesis of philosophic comments on aesthetics, provides a discourse on the aesthetic dimension and offers examples of how interpreters can nurture the innate sense of beauty in man. Poetic forms, such as haiku, are used to relate the aesthetic relationship between man and the environment. (BT)
Correlation Dimension Estimation for Classification
Czech Academy of Sciences Publication Activity Database
Jiřina, Marcel; Jiřina jr., M.
2006-01-01
Roč. 1, č. 3 (2006), s. 547-557 ISSN 1895-8648 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : correlation dimension * probability density estimation * classification * UCI MLR Subject RIV: BA - General Mathematics
Dynamical system of scalar field from 2-dimension to 3-D and its cosmological implications
Energy Technology Data Exchange (ETDEWEB)
Fang, Wei [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Tu, Hong [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Huang, Jiasheng [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Shu, Chenggang [The Shanghai Key Lab for Astrophysics, Shanghai (China)
2016-09-15
We give the three-dimensional dynamical autonomous systems for most of the popular scalar field dark energy models including (phantom) quintessence, (phantom) tachyon, K-essence, and general non-canonical scalar field models, change the dynamical variables from variables (x, y, λ) to observable related variables (w{sub φ}, Ω{sub φ}, λ), and show the intimate relationships between those scalar fields that the three-dimensional system of K-essence can reduce to (phantom) tachyon, general non-canonical scalar field can reduce to (phantom) quintessence and K-essence can also reduce to (phantom) quintessence for some special cases. For the applications of the three-dimensional dynamical systems, we investigate several special cases and give the exactly dynamical solutions in detail. In the end of this paper, we argue that it is more convenient and also has more physical meaning to express the differential equations of dynamical systems in (w{sub φ}, Ω{sub φ}, λ) instead of variables (x, y, λ) and to investigate the dynamical system in three dimensions instead of two dimensions. We also raise a question about the possibility of the chaotic behavior in the spatially flat single scalar field FRW cosmological models in the presence of ordinary matter. (orig.)
Latent spatial models and sampling design for landscape genetics
Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.
2016-01-01
We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.
New black holes in five dimensions
International Nuclear Information System (INIS)
Lue, H.; Mei Jianwei; Pope, C.N.
2009-01-01
We construct new stationary Ricci-flat metrics of cohomogeneity 2 in five dimensions, which generalise the Myers-Perry rotating black hole metrics by adding a further non-trivial parameter. We obtain them via a construction that is analogous to the construction by Plebanski and Demianski in four dimensions of the most general type D metrics. Limiting cases of the new metrics contain not only the general Myers-Perry black hole with independent angular momenta, but also the single rotation black ring of Emparan and Reall. In another limit, we obtain new static metrics that describe black holes whose horizons are distorted lens spaces L(n;m)=S 3 /Γ(n;m), where m≥n+2≥3. They are asymptotic to Minkowski spacetime factored by Γ(m;n). In the general stationary case, by contrast, the new metrics describe spacetimes with a horizon and with a periodicity condition on the time coordinate; these examples can be thought of as five-dimensional analogues of the four-dimensional Taub-NUT metrics
Null structure groups in eleven dimensions
International Nuclear Information System (INIS)
Cariglia, Marco; Mac Conamhna, Oisin A. P.
2006-01-01
We classify all the structure groups which arise as subgroups of the isotropy group (Spin(7)xR 8 )xR, of a single null Killing spinor in 11 dimensions. We construct the spaces of spinors fixed by these groups. We determine the conditions under which structure subgroups of the maximal null structure group (Spin(7)xR 8 )xR may also be embedded in SU(5), and hence the conditions under which a supersymmetric spacetime admits only null, or both timelike and null, Killing spinors. We discuss how this purely algebraic material will facilitate the direct analysis of the Killing spinor equation of 11 dimensional supergravity, and the classification of supersymmetric spacetimes therein
Grazi, F.; van den Bergh, J.C.J.M.; Rietveld, P.
2007-01-01
A welfare framework for the analysis of the spatial dimensions of sustainability is developed. It covers agglomeration effects, interregional trade, negative environmental externalities, and various land use categories. The model is used to compare rankings of spatial configurations according to
Barthélemy, Marc
2011-02-01
Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.
Stein, A.
1991-01-01
The theory and practical application of techniques of statistical interpolation are studied in this thesis, and new developments in multivariate spatial interpolation and the design of sampling plans are discussed. Several applications to studies in soil science are
INTERDEPENDENCE BETWEEN RELATIONSHIP QUALITY DIMENSIONS
Directory of Open Access Journals (Sweden)
Mario Pepur
2011-02-01
Full Text Available Tourism-dependent economy, unfavourable structure of accommodation and hotel capacity, seasonality of business and liquidity problems indicate importance of the relationships between hotels and banks in Croatia. Since the capital investments in new and modern capacities are necessity, the quality of their relationship would determine the future of Croatian economy as a whole in the long run. Regarding the capital investments, it is crucially important that cooperation between the employees in both business entities is based on the satisfaction, trust and commitment. In this way, every potential uncertainty as a consequence of the entity’s actions could be minimized. In this paper, 356 tourist objects are hierarchically clustered according to the relationship quality dimensions for the purpose of testing the characteristics according to which the clusters significantly differentiate. Consequently, the interdependence between the observed relationship quality dimensions is examined.
The Creative Dimension of Visuality
DEFF Research Database (Denmark)
Michelsen, Anders Ib
2013-01-01
This essay reflects critically on the notion of visuality, a centrepiece of current theory on visual culture and its underlying idea of a structural ‘discursive determination’ of visual phenomena. Is the visual really to be addressed through the post-war heritage of discourse and representation...... analysis relying on language/linguistics as a model for explaining culture? More specifically, how can the – creative – novelty of visual culture be addressed by a notion of discourse? This essay will argue that the debate on visual culture is lacking with regard to discerning the creative dimension of its...... and the invisible’ to the notion of collective creativity and ‘the imaginary institution of society’ of Cornelius Castoriadis. In the theoretical relationship between Merleau-Ponty and Castoriadis it is possible to indicate a notion of visuality as a creative dimension....
Flavour physics from extra dimensions
Martinelli, G; Scrucca, C A; Silvestrini, L
2004-01-01
We discuss the possibility of introducing an SU(2) global flavour symmetry in the context of flat extra dimensions. In particular we concentrate on the 5-dimensional case and we study how to obtain the flavour structure of the Standard Model quark sector compacti(ying the fifth dimension on the orbifold St/Z2 a la Scberk-Scbwarz (SS). We show that in this case it is possible to justify the five orders of magnitude among the values of the quark masses with only one parameter: the SS flavour parameter. The non-local nature of the SS symmetry breaking mechanism allows to realize this without introducing new instabilities in the theory.
String theory in four dimensions
International Nuclear Information System (INIS)
Dine, M.
1988-01-01
A representative sample of current ideas about how one might develop a string phenomenology is presented. Some of the obstacles which lie in between string theory and contact with experiment are described. It is hoped that this volume will provide the reader with ways of thinking about string theory in four dimensions and provide tools for asking questions about string theory and ordinary physics. 102 refs
The social dimensions of entrepreneurship
DEFF Research Database (Denmark)
Ulhøi, John Parm
2005-01-01
This paper proposes an integrative framework to conceptualize important social dimensions of entrepreneurship. The paper reviews and evaluates the current status of research dealing with entrepreneurship, social capital and trust. The proposed framework rests on the recognition that entrepreneurial...... activities are results of social interactions and mechanisms. In consequence, entrepreneurship cannot merely be understood in terms of "personality characteristics" or in sterile economic terms. In closing, the paper addresses implications for practitioners and for research. Udgivelsesdato: AUG...
The social dimension of entrepreneurship
DEFF Research Database (Denmark)
Ulhøi, John Parm
2005-01-01
This paper proposes an integrative framework to conceptualize important social dimensions of entrepreneurship. The paper reviews and evaluates the current status of research dealing with entrepreneurship, social capital and trust. The proposed framework rests on the recognition that entrepreneurial...... activities are results of social interactions and mechanisms. In consequence, entrepreneurship cannot merely be understood in terms of 'personality characteristics' or in sterile economic terms. The paper addresses by concluding implications for practitioners and for research....
RELIGIOUS DIMENSION OF COMPUTER GAMES
Sukhov, Anton
2017-01-01
Modern computer games are huge virtual worlds that raisesophisticated social and even religious issues. The “external” aspect of thereligious dimension of computer games focuses on the problem of the polysemanticrelation of world religions (Judaism,Christianity, Islam, Buddhism) to computer games. The“inner” aspect represents transformation of monotheistic and polytheisticreligions within the virtual worlds in the view of heterogeneity and genredifferentiation of computer games (arcades, acti...
Cultural Dimensions of Military Training
2014-06-13
to military, and to make them able to operate effectively in multicultural dimensions. This cultural impact forced the military doctrine to adapt...degree the research findings and conclusions. The bibliography reviewed for this thesis is available at the Combined Arms Research Library . Unfortunately...in terms of increased ability of understanding and operating in a different cultural or multicultural setting, led the military decision makers to
Schwinger Model Mass Anomalous Dimension
Keegan, Liam
2016-06-20
The mass anomalous dimension for several gauge theories with an infrared fixed point has recently been determined using the mode number of the Dirac operator. In order to better understand the sources of systematic error in this method, we apply it to a simpler model, the massive Schwinger model with two flavours of fermions, where analytical results are available for comparison with the lattice data.
Quantum matrices in two dimensions
International Nuclear Information System (INIS)
Ewen, H.; Ogievetsky, O.; Wess, J.
1991-01-01
Quantum matrices in two-dimensions, admitting left and right quantum spaces, are classified: they fall into two families, the 2-parametric family GL p,q (2) and a 1-parametric family GL α J (2). Phenomena previously found for GL p,q (2) hold in this general situation: (a) powers of quantum matrices are again quantum and (b) entries of the logarithm of a two-dimensional quantum matrix form a Lie algebra. (orig.)
Cosmic censorship in higher dimensions
International Nuclear Information System (INIS)
Goswami, Rituparno; Joshi, Pankaj S.
2004-01-01
We show that the naked singularities arising in dust collapse from smooth initial data (which include those discovered by Eardley and Smarr, Christodoulou, and Newman) are removed when we make a transition to higher dimensional spacetimes. Cosmic censorship is then restored for dust collapse, which will always produce a black hole as the collapse end state for dimensions D≥6, under conditions to be motivated physically such as the smoothness of initial data from which the collapse develops
Directory of Open Access Journals (Sweden)
Anthea G. Blunden
2015-01-01
Full Text Available A variety of converging operations demonstrate key differences between separable dimensions, which can be analyzed independently, and integral dimensions, which are processed in a non-analytic fashion. A recent investigation of response time distributions, applying a set of logical rule-based models, demonstrated that integral dimensions are pooled into a single coactive processing channel, in contrast to separable dimensions, which are processed in multiple, independent processing channels. This paper examines the claim that arbitrary dimensions created by factorially morphing four faces are processed in an integral manner (i.e., coactively. In two experiments, sixteen participants completed a categorization task in which either upright or inverted morph stimuli were classified in a speeded fashion. Analyses focused on contrasting different assumptions about the psychological representation of the stimuli, perceptual and decisional separability, and the processing architecture. We report consistent individual differences which demonstrate a mixture of some observers who demonstrate coactive processing with other observers who process the dimensions in a parallel self-terminating manner.
A story about distributions of dimensions and locations of boulders
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager
2006-01-01
for making a bored tunnel through the till deposit. Geographical universality was discovered through the statistical analysis of observations of boulder coordinates and dimension measures from wide spread cliff beach locations. One conclusion is that the joint size distribution up to some degree of modeling...... distribution. Moreover, these ratios are independent of the maximal dimension. The random point field structure of the boulder coordinates as isolated points or as clusters of points makes Poisson fields reasonable modeling candidates for the fields of both single points and cluster points. The cluster size...
Wave equations in higher dimensions
Dong, Shi-Hai
2011-01-01
Higher dimensional theories have attracted much attention because they make it possible to reduce much of physics in a concise, elegant fashion that unifies the two great theories of the 20th century: Quantum Theory and Relativity. This book provides an elementary description of quantum wave equations in higher dimensions at an advanced level so as to put all current mathematical and physical concepts and techniques at the reader’s disposal. A comprehensive description of quantum wave equations in higher dimensions and their broad range of applications in quantum mechanics is provided, which complements the traditional coverage found in the existing quantum mechanics textbooks and gives scientists a fresh outlook on quantum systems in all branches of physics. In Parts I and II the basic properties of the SO(n) group are reviewed and basic theories and techniques related to wave equations in higher dimensions are introduced. Parts III and IV cover important quantum systems in the framework of non-relativisti...
Aad, G.; et al., [Unknown; Aben, R.; Beemster, L.J.; Bentvelsen, S.; Berglund, E.; Bobbink, G.J.; Bos, K.; Boterenbrood, H.; Colijn, A.P.; de Jong, P.; de Nooij, L.; Deluca, C.; Deviveiros, P.O.; Doxiadis, A.D.; Ferrari, P.; Garitaonandia, H.; Geerts, D.A.A.; Gosselink, M.; Hartjes, F.; Hessey, N.P.; Igonkina, O.; Kayl, M.S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Pani, P.; Rijpstra, M.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Deijl, P.C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Poel, E.; van Vulpen, I.; Verkerke, W.; Vermeulen, J.C.; Vranjes Milosavljevic, M.; Vreeswijk, M.
2013-01-01
The large difference between the Planck scale and the electroweak scale, known as the hierarchy problem, is addressed in certain models through the postulate of extra spatial dimensions. A search for evidence of extra spatial dimensions in the diphoton channel has been performed using the full set
The necessity for a time local dimension in systems with time-varying attractors
DEFF Research Database (Denmark)
Særmark, Knud H; Ashkenazy, Y; Levitan, J
1997-01-01
We show that a simple non-linear system for ordinary differential equations may possess a time-varying attractor dimension. This indicates that it is infeasible to characterize EEG and MEG time series with a single time global dimension. We suggest another measure for the description of non...
The spatialization of the european project
DEFF Research Database (Denmark)
Richardson, Tim; Jensen, Ole B.
This paper argues the need for more critical analysis of the ?spatialisation of the European Project? than has been the case in much previous academic work on the European Union`s spatial policy so far. The focus is on the EU, and the way that this huge institutional and territorial setting...... is organised, driven and imagined according to a particular hegemonic spatiality which gives shape to the political, economic, social and territorial dimensions of the European project....
Price and quality in spatial competition
Brekke, Kurt R.; Siciliani, Luigi; Straume, Odd Rune
2010-01-01
We study the relationship between competition and quality within a spatial competition framework where firms compete in prices and quality. We generalise existing literature on spatial price–quality competition along several dimensions, including utility functions that are non-linear in income and cost functions that are non-separable in output and quality. Our main message is that the scope for a positive relationship between competition and quality is underestimated in the existing literatu...
The Spatial and the Visual in Mental Spatial Reasoning: An Ill-Posed Distinction
Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas; Seifert, Inessa
It is an ongoing and controversial debate in cognitive science which aspects of knowledge humans process visually and which ones they process spatially. Similarly, artificial intelligence (AI) and cognitive science research, in building computational cognitive systems, tended to use strictly spatial or strictly visual representations. The resulting systems, however, were suboptimal both with respect to computational efficiency and cognitive plau sibility. In this paper, we propose that the problems in both research strands stem from a mis conception of the visual and the spatial in mental spatial knowl edge pro cessing. Instead of viewing the visual and the spatial as two clearly separable categories, they should be conceptualized as the extremes of a con tinuous dimension of representation. Regarding psychology, a continuous di mension avoids the need to exclusively assign processes and representations to either one of the cate gories and, thus, facilitates a more unambiguous rating of processes and rep resentations. Regarding AI and cognitive science, the con cept of a continuous spatial / visual dimension provides the possibility of rep re sentation structures which can vary continuously along the spatial / visual di mension. As a first step in exploiting these potential advantages of the pro posed conception we (a) introduce criteria allowing for a non-dichotomic judgment of processes and representations and (b) present an approach towards rep re sentation structures that can flexibly vary along the spatial / visual dimension.
DEFF Research Database (Denmark)
Borregaard, Michael Krabbe; Hendrichsen, Ditte Katrine; Nachman, Gøsta Støger
2008-01-01
, depending on the nature of intraspecific interactions between them: while the individuals of some species repel each other and partition the available area, others form groups of varying size, determined by the fitness of each group member. The spatial distribution pattern of individuals again strongly......Living organisms are distributed over the entire surface of the planet. The distribution of the individuals of each species is not random; on the contrary, they are strongly dependent on the biology and ecology of the species, and vary over different spatial scale. The structure of whole...... populations reflects the location and fragmentation pattern of the habitat types preferred by the species, and the complex dynamics of migration, colonization, and population growth taking place over the landscape. Within these, individuals are distributed among each other in regular or clumped patterns...
DEFF Research Database (Denmark)
Reeh, Henrik
2012-01-01
Spatial Culture – A Humanities Perspective Abstract of introductory essay by Henrik Reeh Secured by alliances between socio-political development and cultural practices, a new field of humanistic studies in spatial culture has developed since the 1990s. To focus on links between urban culture...... and modern society is, however, an intellectual practice which has a much longer history. Already in the 1980s, the debate on the modern and the postmodern cited Paris and Los Angeles as spatio-cultural illustrations of these major philosophical concepts. Earlier, in the history of critical studies, the work...... Foucault considered a constitutive feature of 20th-century thinking and one that continues to occupy intellectual and cultural debates in the third millennium. A conceptual framework is, nevertheless, necessary, if the humanities are to adequa-tely address city and space – themes that have long been...
Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke
2018-03-20
As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM ( f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with
The fourth dimension simply explained
Manning, Henry P
2005-01-01
To remove the contents of an egg without puncturing its shell or to drink the liquor in a bottle without removing the cork is clearly unthinkable - or is it? Understanding the world of Einstein and curved space requires a logical conception of the fourth dimension.This readable, informative volume provides an excellent introduction to that world, with 22 essays that employ a minimum of mathematics. Originally written for a contest sponsored by Scientific American, these essays are so well reasoned and lucidly written that they were judged to merit publication in book form. Their easily unders
Dimensions of problem based learning
DEFF Research Database (Denmark)
Nielsen, Jørgen Lerche; Andreasen, Lars Birch
2013-01-01
The article contributes to the literature on problem based learning and problem-oriented project work, building on and reflecting the experiences of the authors through decades of work with problem-oriented project pedagogy. The article explores different dimensions of problem based learning such...... and Learning (MIL). We discuss changes in the roles of the teachers as supervisors within this learning environment, and we explore the involvement of students as active participants and co-designers of how course and project activities unfold....
Keynote speech: Dimensions of Change
DEFF Research Database (Denmark)
Jørgensen, Kenneth Mølbjerg
2004-01-01
The presentation seeks to construct a framework for understanding knowledge and knowledge work. I argue that knowledge may be understood as a social construction of reality. I argue that people construct their reality by integrating four dimensions of reality: Facts, logic, values and communicati....... I argue that this framework leads to a new and critical understanding of the disciplines organizational learning and knowledge management. In particular I argue that these disciplines often contain their own image of work and identity, which may be a sharp contrast to extant work forms...
Massively Parallel Dimension Independent Adaptive Metropolis
Chen, Yuxin
2015-01-01
parameter dimension, by respecting the variance, for Gaussian targets. The result- ing algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non
Cosmology in theories with extra dimensions
International Nuclear Information System (INIS)
Kolb, E.W.
1985-01-01
Some possible cosmological effects of the existence of extra compact dimensions are discussed. Particular attention is given to the possibility that extra dimensions might naturally lead to an inflationary Universe scenario
Packing in Two and Three Dimensions
National Research Council Canada - National Science Library
Martins, Gustavo H
2003-01-01
...), the Multidimensional Knapsack Problem (MD-KP), and the Multidimensional Bin Packing Problem (MD-BPP). In these problems, there is a set of items, with rectangular dimensions, and a set of large containers, or bins, also with rectangular dimensions...
Personality dimensions and disorders in pathological gambling
DEFF Research Database (Denmark)
Odlaug, Brian Lawrence; Schreiber, Liana R N; Grant, Jon E
2013-01-01
This review presents the most current research in personality dimensions and disorders with respect to pathological gambling.......This review presents the most current research in personality dimensions and disorders with respect to pathological gambling....
Gravity theories in more than four dimensions
International Nuclear Information System (INIS)
Zumino, B.
1985-03-01
String theories suggest particular forms for gravity interactions in higher dimensions. We consider an interesting class of gravity theories in more than four dimensions, clarify their geometric meaning and discuss their special properties. 9 refs
Spatial heterogeneity analysis of brain activation in fMRI
Directory of Open Access Journals (Sweden)
Lalit Gupta
2014-01-01
Full Text Available In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD activation maps appear more (diffusively distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness, complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix, and gappiness between activated regions (lacunarity. To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70% and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients.
A New Dimension for Earth Science Learning
Bland, G.; Henry, A.; Bydlowski, D.
2017-12-01
NASA Science Objectives include capturing the global view of Earth from space. This unique perspective is often augmented by instrumented research aircraft, to provide in-situ and remote sensing observations in support of the world picture. Our "Advancing Earth Research Observations with Kites and Atmospheric /Terrestrial Sensors" (AEROKATS) project aims to bring this novel and exciting perspective into the hands of learners young and old. The practice of using instrumented kites as surrogate satellites and aircraft is gaining momentum, as our team undertakes the technical, operational, and scientific challenges in preparations to bring new and easy-to-field tools to broad audiences. The third dimension in spatial perception ("up") has previously been difficult to effectively incorporate in learning and local-scale research activities. AEROKATS brings simple to use instrumented aerial systems into the hands of students, educators, and scientists, with the tangible benefits of detailed, high resolution measurements and observations directly applicable to real-world studies of the environments around us.
Distinguishing dimensions of pro-environmental behaviour
Lynn, Peter
2014-01-01
This study empirically identifies dimensions of behaviour that are distinct in terms of the extent to which people act pro-environmentally. Three dimensions are identified, relating to at-home, transport-related and purchasing behaviour. The correlation between behaviour in each dimension is explored and the characteristics and attitudes associated with the extent to which behaviour is pro-environmental in each dimension are compared. The correlates of pro-environmental behaviour are found to...
Directory of Open Access Journals (Sweden)
Aida CÎMPEANU
2011-11-01
Full Text Available Because Europe is characterized by the coexistence of several cultures whose characteristics have both similarities and differences but appreciable, the results of researchers in this regard are different from each other, this distinction is often made based on the prevailing values of that culture , which determines the orientation of the country for a certain system, management style or to a specific profile manager. A particularly important role in characterizing cultural factors play European management, each differing from the other culture as module in addressing various fundamental issues that characterize that society. These issues can be characterized by certain general cultural dimensions that Hofstede defines them as aspects of a culture that can be measured in relation to other cultures. The differences between management systems in European countries (mainly EU countries in the context of this article, the study is based on four cultural dimensions of Hofstede model (power distance, individualism vs. collectivism, uncertainty avoidance, femininity vs. masculinity and change scores recorded for these dimensions in each country. Dimensions considered primarily affect organizational culture which in turn significantly influence the development and performance of the organization and its members, management practices and policies.Data from Hofstede's study reinforce and support the claim that European countries can be grouped systematically cultural groups (Nordic countries, Latin, Germanic, Anglo-Saxon, Eastern Europe that allow significant interpretation in terms of management organization, and that can speak of a typical single European culture but you can see all dimensions of cultural differences taken into account.
Why do we live in 3+1 dimensions?
International Nuclear Information System (INIS)
Nielsen, H.B.; Rugh, S.E.
1993-01-01
Noticing that really the fermions of the Standard Model are best thought of a Weyl - rather than Dirac - particles (relative to fundamental scales located at some presumably very high energies) it becomes interesting that the experimental space-time dimension is singled out by the Weyl equation: It is observed that precisely in the experimentally true space-time dimensionality 4=3+1 the number of linearly independent matrices n 2 Weyl dimensionized as the matrices in the Weyl equation equals the dimension d. So just in this dimension (in fact, also in a trivial case d = 1) do the sigma-matrices of the Weyl-equation form a basis. It is also characteristic for this dimension that there is no degeneracy of helicity states of the Weyl spinor for all nonzero momenta. We would like to interpret these features to signal a special 'form stability' of the Weyl equation in the phenomenologically true dimension of space-time. In an attempt of making this stability to occur in an as large as possible basin of allowed modifications we discuss whether it is possible to define what we could possibly mean by 'stability of Natural laws'. (orig.)
Topological dimension and dynamical systems
Coornaert, Michel
2015-01-01
Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts. A large number of revisions and additions have been made to the original text. Chapter 5 contains an entirely new section devoted to the Sorgenfrey line. Two chapters have also been added: Chapter 9 on amenable groups and Chapter 10 on mean topological dimension for continuous actions of countable amenable groups. These new chapters contain material that have never before appeared in textbook form. The chapter on amenable groups is based on Følner’s characterization of amenability and may be read independently from the rest of the book. Although the contents of this book lead directly to several active ar...
Optimization of MNSR upper reflector material and dimensions
International Nuclear Information System (INIS)
Albarhoum, M.
2007-04-01
Calculations for the optimization of the material and dimensions of the Syrian MNSR was performed. Calculations showed that the considerably important reflectors in this case are Beryllium, Heavy water and Graphite. Dimensions of the reflector cannot any way exceed the Shim Tray dimensions. Two different ways of filling the Shim Tray with the reflector material were established: 1- the radial filling mode, and 2- the axial mode. Both modes can be performed using single sectors or cumulative ones. The axial mode proved to be better than the radial one. The axial cumulative mode proved to be more efficient than the single axial one. The axial cumulative mode was studied from two points of view; the neutronic and the economic ones. From the neutronic point of view the beryllium proved to be the best reflector, and the best dimensions were found to coincide with a thickness equal to 0.11235 cm with the bottom end being 0.4494 cm distant from the bottom of the Shim Tray. From the economic point of view it was found that the cost of the reactivity unit is the smallest when the Graphite is used. Results of this study can be applied directly to the Syrian MNSR since fabrication of any plastic containment for the reflector can easily be achieved. This is because the reactivity worth resulting from mass unit of the reflector varies depending on its position positions in the Shim Tray.(author)
Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics
International Nuclear Information System (INIS)
Buividovich, P.V.; Kalaydzhyan, T.; Polikarpov, M.I.
2011-11-01
We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)
Conformal invariance at a deconfinement phase transition in (2+1) dimensions
International Nuclear Information System (INIS)
Christensen, J.; Damgaard, P.H.
1990-08-01
The conformal dimension of the Polyakov line at the deconfinement phase transition of (2+1)-dimensional SU(2) lattice gauge theory is determined numerically using two-dimensional finite size conformal field theory. Excellent agreement with two-dimensional Ising model values is found for both the renormalized coupling on a spatially toroidal geometry and the conformal dimensions on a finite-width strip geometry. (orig.)
Fractal dimension of the topological charge density distribution in SU(2) lattice gluodynamics
Energy Technology Data Exchange (ETDEWEB)
Buividovich, P.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation); Polikarpov, M.I. [Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)
2011-11-15
We study the effect of cooling on the spatial distribution of the topological charge density in quenched SU(2) lattice gauge theory with overlap fermions. We show that as the gauge field configurations are cooled, the Hausdorff dimension of regions where the topological charge is localized gradually changes from d=2/3 towards the total space dimension. Hence the cooling procedure destroys some of the essential properties of the topological charge distribution. (orig.)
New universality class in three dimensions
DEFF Research Database (Denmark)
Codello, A.; Safari, M.; Vacca, G. P.
2017-01-01
We study the Blume-Capel universality class in d=103-ϵ dimensions. The renormalization group flow is extracted by looking at poles in fractional dimension of three loop diagrams using MS. The theory is the only nontrivial universality class which admits an expansion to three dimensions with ϵ=13<...
Divergence, spacetime dimension and fractal structure
International Nuclear Information System (INIS)
Nakamura, Hiroshi
2000-01-01
With a Cantor spacetime in mind, we assume the dimension of spacetime to be slightly smaller than four. Within the framework of QED, this dimension can be determined by calculating Feynman diagrams. We infer that the dimension of spacetime may be influenced by holes in space. (author)
Degnan, John J. (Inventor)
2007-01-01
This invention is directed to a 3-dimensional imaging lidar, which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction to provide contiguous high spatial resolution mapping of surface features including ground, water, man-made objects, vegetation and submerged surfaces from an aircraft or a spacecraft.
Spatial filtring and thermocouple spatial filter
International Nuclear Information System (INIS)
Han Bing; Tong Yunxian
1989-12-01
The design and study on thermocouple spatial filter have been conducted for the flow measurement of integrated reactor coolant. The fundamental principle of spatial filtring, mathematical descriptions and analyses of thermocouple spatial filter are given
Can geodesics in extra dimensions solve the cosmological horizon problem?
International Nuclear Information System (INIS)
Chung, Daniel J. H.; Freese, Katherine
2000-01-01
We demonstrate a non-inflationary solution to the cosmological horizon problem in scenarios in which our observable universe is confined to three spatial dimensions (a three-brane) embedded in a higher dimensional space. A signal traveling along an extra-dimensional null geodesic may leave our three-brane, travel into the extra dimensions, and subsequently return to a different place on our three-brane in a shorter time than the time a signal confined to our three-brane would take. Hence, these geodesics may connect distant points which would otherwise be ''outside'' the four dimensional horizon (points not in causal contact with one another). (c) 2000 The American Physical Society
Finite entanglement entropy and spectral dimension in quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Arzano, Michele [Rome Univ. (Italy). Dipt. di Fisica; INFN, Rome (Italy); Calcagni, Gianluca [CSIC, Madrid (Spain). Inst. de Estructura de la Materia
2017-12-15
What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)
Finite entanglement entropy and spectral dimension in quantum gravity
International Nuclear Information System (INIS)
Arzano, Michele; Calcagni, Gianluca
2017-01-01
What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations. (orig.)
Finite entanglement entropy and spectral dimension in quantum gravity
Arzano, Michele; Calcagni, Gianluca
2017-12-01
What are the conditions on a field theoretic model leading to a finite entanglement entropy density? We prove two very general results: (1) Ultraviolet finiteness of a theory does not guarantee finiteness of the entropy density; (2) If the spectral dimension of the spatial boundary across which the entropy is calculated is non-negative at all scales, then the entanglement entropy cannot be finite. These conclusions, which we verify in several examples, negatively affect all quantum-gravity models, since their spectral dimension is always positive. Possible ways out are considered, including abandoning the definition of the entanglement entropy in terms of the boundary return probability or admitting an analytic continuation (not a regularization) of the usual definition. In the second case, one can get a finite entanglement entropy density in multi-fractional theories and causal dynamical triangulations.
Single photon emission tomography
International Nuclear Information System (INIS)
Buvat, Irene
2011-09-01
The objective of this lecture is to present the single photon emission computed tomography (SPECT) imaging technique. Content: 1 - Introduction: anatomic, functional and molecular imaging; Principle and role of functional or molecular imaging; 2 - Radiotracers: chemical and physical constraints, main emitters, radioisotopes production, emitters type and imaging techniques; 3 - Single photon emission computed tomography: gamma cameras and their components, gamma camera specifications, planar single photon imaging characteristics, gamma camera and tomography; 4 - Quantification in single photon emission tomography: attenuation, scattering, un-stationary spatial resolution, partial volume effect, movements, others; 5 - Synthesis and conclusion
Human dimension of strategic partnerships
Directory of Open Access Journals (Sweden)
Petković Mirjana M.
2004-01-01
Full Text Available This paper aims to point to the widespread practice of neglecting behavioral aspects of different forms of fusions and integrations of enterprises that have emerged in the process of privatization through strategic partnerships with foreign companies among Serbian enterprises. The initial hypothesis in this paper is that the process of privatization, restructuring and transformation in Serbian enterprises cannot be completely successful and equally advantageous for all the subjects involved if there is no concern for human dimension of these processes. Without this concern there is a possibility for behavioral problems to arise, and the only way to resolve them is through post festum respecting and introducing elements that should never have been neglected in the first place. This paper refers to the phenomenon of collision of cultures and the ways of resolving it while forming strategic partnerships.
Psychological dimensions of Energy Conservation
Directory of Open Access Journals (Sweden)
Tonello, Graciela
2012-12-01
Full Text Available One of the most serious current environmental problems is the depletion of non renewable natural resources. The vast majority of our daily actions involve the consumption of energy and they increase the problem. Environmental psychology studies the psychological motivations that determine pro-ecological behaviour. In this context the aim of this review was to determine which psychological models and variables are better descriptors of residential energy conservation, comparing the predictive power of different models related to behaviour, residential consumption as well as to the acceptability of energy policies. Results suggest that energy saving is mainly linked to altruistic motivations, followed by egoistic reasons and in a minor way to environmental concerns. People would act according to these dimensions when contextual conditions are perceived as appropriate.
Gravitational lensing and extra dimensions
International Nuclear Information System (INIS)
He, X-G.; University of Melbourne, Parkville, VIC; Joshi, G.C.; McKellar, B.H.J.
1999-08-01
We study gravitational tensing and the bending of light in low energy scale (M s ) gravity theories with extra space-time dimensions 'n'. We find that due to the presence of spin-2 Kaluza-Klein states from compactification, a correction to the deflection angle with a strong quadratic dependence on the photon energy is introduced. No deviation from the Einstein General Relativity prediction for the deflection angle for photons grazing the Sun in the visible band with 15% accuracy (90% c.l.) implies that the scale M s has to be larger than 1.4(2/(n-2)) 1/4 TeV and approximately 4 TeV for n=2. This lower bound is comparable with that from collider physics constraints. Gravitational tensing experiments with higher energy photons can provide stronger constraints. (authors)
Ultraviolet sensitivity in higher dimensions
International Nuclear Information System (INIS)
Hoover, Doug; Burgess, Clifford P.
2006-01-01
We calculate the first three Gilkey-DeWitt (heat-kernel) coefficients, a 0 , a 1 and a 2 , for massive particles having the spins of most physical interest in n dimensions, including the contributions of the ghosts and the fields associated with the appropriate generalized Higgs mechanism. By assembling these into supermultiplets we compute the same coefficients for general supergravity theories, and show that they vanish for many examples. One of the steps of the calculation involves computing these coefficients for massless particles, and our expressions in this case agree with - and extend to more general background spacetimes - earlier calculations, where these exist. Our results give that part of the low-energy effective action which depends most sensitively on the mass of heavy fields once these are integrated out. These results are used in hep-th/0504004 to compute the sensitivity to large masses of the Casimir energy in Ricci-flat 4D compactifications of 6D supergravity
ORGANIZATIONAL CULTURE DIMENSIONS AND VARIABLES
Directory of Open Access Journals (Sweden)
Brindusa Maria Popa
2017-11-01
Full Text Available There are numerous definitions of the concept in the specialized literature and the majority present organizational culture as a system of values, norms, rules, beliefs, habits learned and internalized by the organization members and embodied in their behaviors. Such definitions highlight the fact that organizational culture is a system of values, norms, customs and beliefs shared and assimilated by the entire membership of the organization in order to transform them into inherent characteristics of their behavior. The newly acquired behavior will be promoted, defended and developed throughout their work. Even if organizational culture is built upon such a strict, rigid, formal institutional support, it evolves and develops in order to help the organization adapt and perform efficiently. In order to have an easier understanding of the concept, in this paper we shall use for our analysis the following dimensions: cognitive, normative, human and material.
The Spatial Politics of Spatial Representation
DEFF Research Database (Denmark)
Olesen, Kristian; Richardson, Tim
2011-01-01
spatial planning in Denmark reveals how fuzzy spatial representations and relational spatial concepts are being used to depoliticise strategic spatial planning processes and to camouflage spatial politics. The paper concludes that, while relational geography might play an important role in building......This paper explores the interplay between the spatial politics of new governance landscapes and innovations in the use of spatial representations in planning. The central premise is that planning experiments with new relational approaches become enmeshed in spatial politics. The case of strategic...
VC-dimension of univariate decision trees.
Yildiz, Olcay Taner
2015-02-01
In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation.
The 3-D global spatial data model foundation of the spatial data infrastructure
Burkholder, Earl F
2008-01-01
Traditional methods for handling spatial data are encumbered by the assumption of separate origins for horizontal and vertical measurements. Modern measurement systems operate in a 3-D spatial environment. The 3-D Global Spatial Data Model: Foundation of the Spatial Data Infrastructure offers a new model for handling digital spatial data, the global spatial data model or GSDM. The GSDM preserves the integrity of three-dimensional spatial data while also providing additional benefits such as simpler equations, worldwide standardization, and the ability to track spatial data accuracy with greater specificity and convenience. This groundbreaking spatial model incorporates both a functional model and a stochastic model to connect the physical world to the ECEF rectangular system. Combining horizontal and vertical data into a single, three-dimensional database, this authoritative monograph provides a logical development of theoretical concepts and practical tools that can be used to handle spatial data mo...
Analysis of Spatial Voting Patterns: An Approach in Political Socialization
Klimasewski, Ted
1973-01-01
Passage of the 26th Amendment gave young adults the right to vote. This study attempts to further student understanding of the electoral process by presenting a method for analyzing spatial voting patterns. The spatial emphasis adds another dimension to the temporal and behavioral-structural approaches in studying the American electoral system.…
Nonlinear Filtering in High Dimension
2014-06-02
near J (that is, the spatial accumulation of errors is mitigated). This localization comes at a price , however; the local filter stability bound holds...Appendix A to complete the proof of the variance bound. The present approach is inspired by [15]. The price we pay is that the variance bound scales...Random fields and diffusion processes. In École d’Été de Prob- abilités de Saint- Flour XV–XVII, 1985–87, volume 1362 of Lecture Notes in Math., pages
Vacuum polarization energy for general backgrounds in one space dimension
Directory of Open Access Journals (Sweden)
H. Weigel
2017-03-01
Full Text Available For field theories in one time and one space dimensions we propose an efficient method to compute the vacuum polarization energy of static field configurations that do not allow a decomposition into symmetric and anti-symmetric channels. The method also applies to scenarios in which the masses of the quantum fluctuations at positive and negative spatial infinity are different. As an example we compute the vacuum polarization energy of the kink soliton in the ϕ6 model. We link the dependence of this energy on the position of the soliton to the different masses.
Simulation of time-dependent Heisenberg models in one dimension
DEFF Research Database (Denmark)
Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.
2016-01-01
In this Letter, we provide a theoretical analysis of strongly interacting quantum systems confined by a time-dependent external potential in one spatial dimension. We show that such systems can be used to simulate spin chains described by Heisenberg Hamiltonians in which the exchange coupling...... constants can be manipulated by time-dependent driving of the shape of the external confinement. As illustrative examples, we consider a harmonic trapping potential with a variable frequency and an infinite square well potential with a time-dependent barrier in the middle....
BOOK REVIEW: Quantum Physics in One Dimension
Logan, David
2004-05-01
--11, a range of different physical realizations of one-dimensional quantum physics are discussed. According to taste and interest, these chapters can be read in essentially any order. Spin systems are considered in chapter 6, beginning with spin chains---Jordan--Wigner, the bosonization solution---before moving to frustration, the spin-Peierls transition, and spin ladders; and including experimental examples of both spin chain and ladder materials. Chapters 7 and 8 deal with interacting lattice fermions, the former with single chain problems, notably the Hubbard, t-J and related models; and the latter with coupled fermionic chains, from finite to infinite, including a fulsome discussion of Bechgaard salts (organic conductors) as exemplars of Luttinger liquid behaviour. The effect of disorder in fermionic systems is taken up in chapter 9, and here the reader may react: interacting systems are tough enough, why make life harder? But disorder is always present to some degree in real systems---quantum wires, for example, discussed briefly in the chapter---and its effects particularly acute in one dimension. It simply cannot be avoided, even if the problem of interacting, disordered one-dimensional systems is still a long way off being solved. The penultimate chapter deals with the topical issues of boundaries, isolated impurities and constrictions, with a primary focus on mesoscopic examples of Luttinger liquids, notably carbon nanotubes and edge states in the quantum Hall effect. Finally `significant other' examples of Luttinger liquids, namely interacting one-dimensional bosons, are considered in chapter 11; which concludes with a discussion of bosonization techniques in the context of quantum impurities in Fermi liquids---the x-ray, Kondo and multichannel Kondo problems. The quality of the product attests to the fact that writing this impressive tome was a labour of love for the author. Anyone with a serious interest in getting to grips with one-dimensional quantum
Adding Another Dimension With Holography.
McNair, Rita H.; Rice, Dale R.
1984-01-01
Provides instructions for preparing, processing, and viewing single-beam reflection holograms in science classrooms. Indicates that the process is simple to demonstrate and moderate in cost. A description of the required equipment (optics table, laser, mirrors, lens, filmholder/plateholder, recording materials, and darkroom chemicals/equipment) is…
Spatial analysis and planning under imprecision
Leung, Y
1988-01-01
The book deals with complexity, imprecision, human valuation, and uncertainty in spatial analysis and planning, providing a systematic exposure of a new philosophical and theoretical foundation for spatial analysis and planning under imprecision. Regional concepts and regionalization, spatial preference-utility-choice structures, spatial optimization with single and multiple objectives, dynamic spatial systems and their controls are analyzed in sequence.The analytical framework is based on fuzzy set theory. Basic concepts of fuzzy set theory are first discussed. Many numerical examples and emp
Distinguishing Different Strategies of Across-Dimension Attentional Selection
Huang, Liqiang; Pashler, Harold
2012-01-01
Selective attention in multidimensional displays has usually been examined using search tasks requiring the detection of a single target. We examined the ability to perceive a spatial structure in multi-item subsets of a display that were defined either conjunctively or disjunctively. Observers saw two adjacent displays and indicated whether the…
Active processes in one dimension
Demaerel, Thibaut; Maes, Christian
2018-03-01
We consider the thermal and athermal overdamped motion of particles in one-dimensional geometries where discrete internal degrees of freedom (spin) are coupled with the translational motion. Adding a driving velocity that depends on the time-dependent spin constitutes the simplest model of active particles (run-and-tumble processes) where the violation of the equipartition principle and of the Sutherland-Einstein relation can be studied in detail even when there is generalized reversibility. We give an example (with four spin values) where the irreversibility of the translational motion manifests itself only in higher-order (than two) time correlations. We derive a generalized telegraph equation as the Smoluchowski equation for the spatial density for an arbitrary number of spin values. We also investigate the Arrhenius exponential law for run-and-tumble particles; due to their activity the slope of the potential becomes important in contrast to the passive diffusion case and activity enhances the escape from a potential well (if that slope is high enough). Finally, in the absence of a driving velocity, the presence of internal currents such as in the chemistry of molecular motors may be transmitted to the translational motion and the internal activity is crucial for the direction of the emerging spatial current.
Feng, Yongjiu; Liu, Miaolong; Tong, Xiaohua
2007-06-01
An improved fractal measurement, the weighted radial dimension, is put forward for highway transportation networks distribution. The radial dimension (DL), originated from subway investigation in Stuttgart, is a fractal measurement for transportation systems under ideal assumption considering all the network lines to be homogeneous curves, ignoring the difference on spatial structure, quality and level, especially the highway networks. Considering these defects of radial dimension, an improved fractal measurement called weighted radial dimension (D WL) is introduced and the transportation system in Guangdong province is studied in detail using this novel method. Weighted radial dimensions are measured and calculated, and the spatial structure, intensity and connectivity of transportation networks are discussed in Guangdong province and the four sub-areas: the Pearl River Delta area, the East Costal area, the West Costal area and the Northern Guangdong area. In Guangdong province, the fractal spatial pattern characteristics of transportation system vary remarkably: it is the highest in the Pearl River Delta area, moderate in Costal area and lowest in the Northern Guangdong area. With the Pearl River Delta area as the centre, the weighted radial dimensions decrease with the distance increasing, while the decline level is smaller in the costal area and greater in the Northern Guangdong province. By analysis of the conic of highway density, it is recognized that the density decrease with the distance increasing from the calculation centre (Guangzhou), demonstrating the same trend as weighted radial dimensions shown. Evidently, the improved fractal measurement, weighted radial dimension, is an indictor describing the characteristics of highway transportation system more effectively and accurately.
Rare events in finite and infinite dimensions
Reznikoff, Maria G.
domains, in one spatial dimension. We introduce a natural reference measure through which to analyze the invariant measure of stochastically perturbed, nonlinear partial differential equations. Also, for noisy reaction diffusion equations with an asymmetric potential, we discover how to rescale space and time in order to map the dynamics in the zero temperature limit to the Poisson Model, a simple version of the Johnson-Mehl-Avrami-Kolmogorov model for nucleation and growth.
Top Yukawa deviation in extra dimension
International Nuclear Information System (INIS)
Haba, Naoyuki; Oda, Kin-ya; Takahashi, Ryo
2009-01-01
We suggest a simple one-Higgs-doublet model living in the bulk of five-dimensional spacetime compactified on S 1 /Z 2 , in which the top Yukawa coupling can be smaller than the naive standard-model expectation, i.e. the top quark mass divided by the Higgs vacuum expectation value. If we find only single Higgs particle at the LHC and also observe the top Yukawa deviation, our scenario becomes a realistic candidate beyond the standard model. The Yukawa deviation comes from the fact that the wave function profile of the free physical Higgs field can become different from that of the vacuum expectation value, due to the presence of the brane-localized Higgs potentials. In the Brane-Localized Fermion scenario, we find sizable top Yukawa deviation, which could be checked at the LHC experiment, with a dominant Higgs production channel being the WW fusion. We also study the Bulk Fermion scenario with brane-localized Higgs potential, which resembles the Universal Extra Dimension model with a stable dark matter candidate. We show that both scenarios are consistent with the current electroweak precision measurements.
Pepe, S.; Di Martino, G.; Iodice, A.; Manzo, M.; Pepe, A.; Riccio, D.; Ruello, G.; Sansosti, E.; Tizzani, P.; Zinno, I.
2012-04-01
In the last two decades several aspects relevant to volcanic activity have been analyzed in terms of fractal parameters that effectively describe natural objects geometry. More specifically, these researches have been aimed at the identification of (1) the power laws that governed the magma fragmentation processes, (2) the energy of explosive eruptions, and (3) the distribution of the associated earthquakes. In this paper, the study of volcano morphology via satellite images is dealt with; in particular, we use the complete forward model developed by some of the authors (Di Martino et al., 2012) that links the stochastic characterization of amplitude Synthetic Aperture Radar (SAR) images to the fractal dimension of the imaged surfaces, modelled via fractional Brownian motion (fBm) processes. Based on the inversion of such a model, a SAR image post-processing has been implemented (Di Martino et al., 2010), that allows retrieving the fractal dimension of the observed surfaces, dictating the distribution of the roughness over different spatial scales. The fractal dimension of volcanic structures has been related to the specific nature of materials and to the effects of active geodynamic processes. Hence, the possibility to estimate the fractal dimension from a single amplitude-only SAR image is of fundamental importance for the characterization of volcano structures and, moreover, can be very helpful for monitoring and crisis management activities in case of eruptions and other similar natural hazards. The implemented SAR image processing performs the extraction of the point-by-point fractal dimension of the scene observed by the sensor, providing - as an output product - the map of the fractal dimension of the area of interest. In this work, such an analysis is performed on Cosmo-SkyMed, ERS-1/2 and ENVISAT images relevant to active stratovolcanoes in different geodynamic contexts, such as Mt. Somma-Vesuvio, Mt. Etna, Vulcano and Stromboli in Southern Italy, Shinmoe
Incommensurate crystallography without additional dimensions.
Kocian, Philippe
2013-07-01
It is shown that the Euclidean group of translations, when treated as a Lie group, generates translations not only in Euclidean space but on any space, curved or not. Translations are then not necessarily vectors (straight lines); they can be any curve compatible with the parameterization of the considered space. In particular, attention is drawn to the fact that one and only one finite and free module of the Lie algebra of the group of translations can generate both modulated and non-modulated lattices, the modulated character being given only by the parameterization of the space in which the lattice is generated. Moreover, it is shown that the diffraction pattern of a structure is directly linked to the action of that free and finite module. In the Fourier transform of a whole structure, the Fourier transform of the electron density of one unit cell (i.e. the structure factor) appears concretely, whether the structure is modulated or not. Thus, there exists a neat separation: the geometrical aspect on the one hand and the action of the group on the other, without requiring additional dimensions.
Moving into the third dimension
Alizée Dauvergne
2010-01-01
One detail at a time, digital 3-D models of CERN’s various machines are being created by the Integration Section in the Machines & Experimental Facilities Group (EN/MEF) . The work, which requires painstaking attention to detail on a colossal scale, facilitates improvements to existing accelerators and the design of new machines in the future. Virtual representation of the LHC A complete digital mockup of the LHC in three dimensions already exists, including of course the tunnel, the machine systems including magnets and vacuum chambers, but also all of the various services such as cable ladders, piping systems and access control and so on. Only the colour and the texture of the surfaces betray that it is a mockup and not the real thing! The mockup of LINAC4 is finished too. The mockups for the SPS, ISOLDE and the entire PS complex, including transfer lines, are still being created. “Creating these 3-D mockups will allow us to work on forthcoming machine improvements, esp...
Higgs bosons in extra dimensions
Quiros, Mariano
2015-05-01
In this paper, motivated by the recent discovery of a Higgs-like boson at the Large Hadron Collider (LHC) with a mass mH≃125 GeV, we review different models where the hierarchy problem is solved by means of a warped extra dimension. In the Randall-Sundrum (RS) model electroweak observables provide very strong bounds on the mass of KK modes which motivates extensions to overcome this problem. Two extensions are briefly discussed. One particular extension is based on the deformation of the metric such that it strongly departs from the AdS5 structure in the IR region while it goes asymptotically to AdS5 in the UV brane. This model has the IR brane close to a naked metric singularity (which is outside the physical interval) characteristic of soft-walls constructions. The proximity of the singularity provides a strong wave function renormalization for the Higgs field which suppresses the T and S parameters. The second class of considered extensions are based on the introduction of an extra gauge group in the bulk such that the custodial SU(2)R symmetry is gauged and protects the T parameter. By further enlarging the bulk gauge symmetry one can find models where the Higgs is identified with the fifth component of gauge fields and for which the Higgs potential along with the Higgs mass can be dynamically determined by the Coleman-Weinberg mechanism.
Directory of Open Access Journals (Sweden)
Cornelia Marcela Danu
2014-07-01
Full Text Available The present work presents the concept approach and the types of the market risks, considering the representatives of the two correlative dimensions of the market: the supply and the demand. This approach dissociates from the other ways to define and to manage the market risks by the message that it communicates: all the types of risk caused by the market activities are market risks. These are anthropic risks, based on information and decision. From the point of view of source, the market risks or the decisional risks have the actions of the deciders (natural person or legal person to achieving the personal goals or mission or the objectives of the firm which they represent. The market risks are those which pose a threat to the attainment of the major objectives or purposes and to maximizing of advantages: the utility for the consumer and profit for the enterprise. The results of the dynamic interdependences are determined by the optimal management of each type of risk, taking into account the system of risks and the potential for transformation of the risk-cause in risk-effect and vice versa.
Spectral dimension in causal set quantum gravity
International Nuclear Information System (INIS)
Eichhorn, Astrid; Mizera, Sebastian
2014-01-01
We evaluate the spectral dimension in causal set quantum gravity by simulating random walks on causal sets. In contrast to other approaches to quantum gravity, we find an increasing spectral dimension at small scales. This observation can be connected to the nonlocality of causal set theory that is deeply rooted in its fundamentally Lorentzian nature. Based on its large-scale behaviour, we conjecture that the spectral dimension can serve as a tool to distinguish causal sets that approximate manifolds from those that do not. As a new tool to probe quantum spacetime in different quantum gravity approaches, we introduce a novel dimensional estimator, the causal spectral dimension, based on the meeting probability of two random walkers, which respect the causal structure of the quantum spacetime. We discuss a causal-set example, where the spectral dimension and the causal spectral dimension differ, due to the existence of a preferred foliation. (paper)
CREDIBILITY OF WEBSITES THROUGH FACETS AND DIMENSIONS
Directory of Open Access Journals (Sweden)
Oana ȚUGULEA
2017-05-01
Full Text Available This study aims to investigate important aspects to concern on when building a commercial presentation website, in order to increase the credibility of the certain categories of a presentation website. Factor analysis was used in order to identify the dimensions of each category. The categories and resulted dimensions discussed were: “image” – with the following dimensions: Projected image, Specialist, Advert and Coherence, “relationship” – with the following dimensions: Bi-directional communication and Contact information, “product presentation” – with the following dimensions: In-depth description and Variety and “site functionality” – with the following dimensions: Usefulness, Official relationship, Complete communication, Exterior communication, Information format and References.
Thermodynamic Model of Spatial Memory
Kaufman, Miron; Allen, P.
1998-03-01
We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.
Analysis of fractal dimensions of rat bones from film and digital images
Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Yamauchi, M.
2001-01-01
OBJECTIVES: (1) To compare the effect of two different intra-oral image receptors on estimates of fractal dimension; and (2) to determine the variations in fractal dimensions between the femur, tibia and humerus of the rat and between their proximal, middle and distal regions. METHODS: The left femur, tibia and humerus from 24 4-6-month-old Sprague-Dawley rats were radiographed using intra-oral film and a charge-coupled device (CCD). Films were digitized at a pixel density comparable to the CCD using a flat-bed scanner. Square regions of interest were selected from proximal, middle, and distal regions of each bone. Fractal dimensions were estimated from the slope of regression lines fitted to plots of log power against log spatial frequency. RESULTS: The fractal dimensions estimates from digitized films were significantly greater than those produced from the CCD (P=0.0008). Estimated fractal dimensions of three types of bone were not significantly different (P=0.0544); however, the three regions of bones were significantly different (P=0.0239). The fractal dimensions estimated from radiographs of the proximal and distal regions of the bones were lower than comparable estimates obtained from the middle region. CONCLUSIONS: Different types of image receptors significantly affect estimates of fractal dimension. There was no difference in the fractal dimensions of the different bones but the three regions differed significantly.
Relationship between tooth dimensions and malocclusion
International Nuclear Information System (INIS)
Farooq, J.; Ahmed, I.; Erum, G.
2014-01-01
Objective: To observe the difference in dimension of teeth among adult females with and without malocclusion. Methods: The cross-sectional study was conducted at Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, from April 2011 to April 2013, and used non-probability consecutive sampling. Mesiodistal and buccolingual crown dimensions were measured on study casts by using digital sliding caliper in 2 groups of females. Group1 had 150 subjects with normal occlusion, while Group 2 had 234 with malocclusion. Independent t test was conducted to evaluate the difference between the dimensions of teeth of the two groups. Statistical analysis was done on SPSS version 16, and p value was considered significant at 0.05. Results: Overall, the difference between the groups showed a greater tooth dimension in the malocclusion group of population compared to the normal group, and the most significant difference was observed in the mesiodistal dimension of maxillary 2nd premolar, which was 0.9+-0.6801mm greater in dimension in the malocclusion group compared to the normal group. The least difference was observed in the buccolingual dimension of the mandibular central incisor where the malocclusion group had only 0.08+-0.5247mm larger mandibular central incisors in the buccolingual dimension compared to the normal group. Conclusion: Mesiodistal and buccolingual crown dimensions were characteristically larger in the malocclusion group. (author)
Compacted dimensions and singular plasmonic surfaces
Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele
2017-11-01
In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.
A DIMENSION REDUCTION-BASED METHOD FOR CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA
Directory of Open Access Journals (Sweden)
B. Abbasi
2015-12-01
Full Text Available The existence of various natural objects such as grass, trees, and rivers along with artificial manmade features such as buildings and roads, make it difficult to classify ground objects. Consequently using single data or simple classification approach cannot improve classification results in object identification. Also, using of a variety of data from different sensors; increase the accuracy of spatial and spectral information. In this paper, we proposed a classification algorithm on joint use of hyperspectral and Lidar (Light Detection and Ranging data based on dimension reduction. First, some feature extraction techniques are applied to achieve more information from Lidar and hyperspectral data. Also Principal component analysis (PCA and Minimum Noise Fraction (MNF have been utilized to reduce the dimension of spectral features. The number of 30 features containing the most information of the hyperspectral images is considered for both PCA and MNF. In addition, Normalized Difference Vegetation Index (NDVI has been measured to highlight the vegetation. Furthermore, the extracted features from Lidar data calculated based on relation between every pixel of data and surrounding pixels in local neighbourhood windows. The extracted features are based on the Grey Level Co-occurrence Matrix (GLCM matrix. In second step, classification is operated in all features which obtained by MNF, PCA, NDVI and GLCM and trained by class samples. After this step, two classification maps are obtained by SVM classifier with MNF+NDVI+GLCM features and PCA+NDVI+GLCM features, respectively. Finally, the classified images are fused together to create final classification map by decision fusion based majority voting strategy.
Spatial conceptions in Chinese and Canadian children.
Harvey, C B; Manshu, Z; Biao, K C; Jue, Z F
1986-12-01
Four-, five-, and six-year-old Chinese and Canadian boys and girls were presented a series of 11 graphic models and were asked to draw them. Supporting Piaget's theory, the data indicated that drawing performance on the topological dimension was better than the performance on the Euclidean dimension, and that there were neither gender nor cultural differences in performance. The research offers strong support for a main effect of biological or maturational factors as the foundation for the developmental influences in the acquisition of spatial conceptions.
Thermal dimensioning of spent fuel repository
International Nuclear Information System (INIS)
Ikonen, K.
2009-09-01
This report contains the temperature dimensioning of the KBS-3V type nuclear fuel repository in Olkiluoto for the BWR, VVER and EPR fuel canisters, which are disposed at vertical position in the horizontal tunnels in a rectangular geometry according to the preliminary Posiva plan. This report concerns only the temperature dimensioning of the repository and does not take into account the possible restrictions caused by the stresses induced in the rock. The maximum temperature on the canister-bentonite interface is limited to the design temperature of +100 deg C. However, due to uncertainties in thermal analysis parameters (like scattering in rock conductivity or in predicted decay power) the allowable calculated maximum canister temperature is set to 90 deg C causing a safety margin of 10 deg C. The allowable temperature is controlled by adjusting the space between adjacent canisters, adjacent tunnels and the pre-cooling time affecting on power of the canisters. The temperature of canister surfaces can be determined by superposing analytic line heat source models much more efficiently than by numerical analysis, if the analytic model is first calibrated by numerical analysis (by control volume method). This was done by comparing the surface temperatures of a single canister calculated numerically and analytically. For the Olkiluoto repository of one panel having 900 canisters of BWR, VVER and EPR spent fuel was analyzed. The analyses were performed with an initial canister power of 1 700 W, 1 370 W and 1 830 W, respectively. These decay heats are obtained when the pre-cooling times of the fuels are 32.9, 29.6 and 50.3 years (the burn-up values 40, 40 and 50 MWd/kgU, respectively). The analyses gave as a result the canister spacing (6.0-10.8 m), when the tunnel spacing was 25 m, 30 m or 40 m. On the edge areas of the panel with constant canister spacing the temperatures of the canisters are lower than in the middle area of the repository. Thus it is possible to pack
Origin of Everything and the 21 Dimensions of the Universe
Loev, Mark
2009-03-01
The Dimensions of the Universe correspond with the Dimensions of the human body. The emotion that is a positive for every dimension is Love. The negative emotion that effects each dimension are listed. All seven negative emotions effect Peace, Love and Happiness. 21st Dimension: Happiness Groin & Heart 20th Dimension: Love Groin & Heart 19th Dimension: Peace Groin & heart 18th Dimension: Imagination Wave Eyes Anger 17th Dimension: Z Wave / Closed Birth 16th Dimension: Electromagnetic Wave Ears Anger 15th Dimension: Universal Wave Skin Worry 14th Dimension: Lover Wave Blood Hate 13th Dimension: Disposal Wave Buttocks Fear 12th Dimension: Builder Wave Hands Hate 11th Dimension: Energy Wave Arms Fear 10th Dimension: Time Wave Brain Pessimism 9th Dimension: Gravity Wave Legs Fear 8th Dimension: Sweet Wave Pancreas Fear 7th Dimension: File Wave Left Lung Fear 6th Dimension: Breathing Wave Right Lung Fear 5th Dimension: Digestive Wave Stomach Fear 4th Dimension: Swab Wave Liver Guilt 3rd Dimension: Space Wave Face Sadness 2nd Dimension: Line Wave Mouth Revenge 1st Dimension: Dot Wave Nose Sadness The seven deadly sins correspond: Anger Hate Sadness Fear Worry Pessimism Revenge Note: Guilt is fear
Virtual reality and the unfolding of higher dimensions
Aguilera, Julieta C.
2006-02-01
As virtual/augmented reality evolves, the need for spaces that are responsive to structures independent from three dimensional spatial constraints, become apparent. The visual medium of computer graphics may also challenge these self imposed constraints. If one can get used to how projections affect 3D objects in two dimensions, it may also be possible to compose a situation in which to get used to the variations that occur while moving through higher dimensions. The presented application is an enveloping landscape of concave and convex forms, which are determined by the orientation and displacement of the user in relation to a grid made of tesseracts (cubes in four dimensions). The interface accepts input from tridimensional and four-dimensional transformations, and smoothly displays such interactions in real-time. The motion of the user becomes the graphic element whereas the higher dimensional grid references to his/her position relative to it. The user learns how motion inputs affect the grid, recognizing a correlation between the input and the transformations. Mapping information to complex grids in virtual reality is valuable for engineers, artists and users in general because navigation can be internalized like a dance pattern, and further engage us to maneuver space in order to know and experience.
Continuum Vlasov Simulation in Four Phase-space Dimensions
Cohen, B. I.; Banks, J. W.; Berger, R. L.; Hittinger, J. A.; Brunner, S.
2010-11-01
In the VALHALLA project, we are developing scalable algorithms for the continuum solution of the Vlasov-Maxwell equations in two spatial and two velocity dimensions. We use fourth-order temporal and spatial discretizations of the conservative form of the equations and a finite-volume representation to enable adaptive mesh refinement and nonlinear oscillation control [1]. The code has been implemented with and without adaptive mesh refinement, and with electromagnetic and electrostatic field solvers. A goal is to study the efficacy of continuum Vlasov simulations in four phase-space dimensions for laser-plasma interactions. We have verified the code in examples such as the two-stream instability, the weak beam-plasma instability, Landau damping, electron plasma waves with electron trapping and nonlinear frequency shifts [2]^ extended from 1D to 2D propagation, and light wave propagation.^ We will report progress on code development, computational methods, and physics applications. This work was performed under the auspices of the U.S. DOE by LLNL under contract no. DE-AC52-07NA27344. This work was funded by the Lab. Dir. Res. and Dev. Prog. at LLNL under project tracking code 08-ERD-031. [1] J.W. Banks and J.A.F. Hittinger, to appear in IEEE Trans. Plas. Sci. (Sept., 2010). [2] G.J. Morales and T.M. O'Neil, Phys. Rev. Lett. 28,417 (1972); R. L. Dewar, Phys. Fluids 15,712 (1972).
The Tacit-Explicit Dimension of the Learning of Mathematics: An Investigation Report
Frade, Cristina; Borges, Oto
2006-01-01
This paper reports on study that investigated the tacit-explicit dimension of the learning of mathematics. The study was carried out in a secondary school and consisted of an episode analysis related to a class discussion about the difference between plane figures and spatial figures. The data analysis was based on integration between some aspects…
Confinement limit of a Dirac particle in two and three dimensions
International Nuclear Information System (INIS)
Toyama, F.M.; Nogami, Y.
2010-01-01
Consider a particle that is in a stationary state described by the Dirac equation with a finite-range potential. In two and three dimensions the particle can be confined to an arbitrarily small spatial region. This is in contrast to the one-dimensional case in which the confinement region cannot be much narrower than the Compton wavelength.
Chimera states in three dimensions
International Nuclear Information System (INIS)
Maistrenko, Yuri; Sudakov, Oleksandr; Osiv, Oleksiy; Maistrenko, Volodymyr
2015-01-01
The chimera state is a recently discovered dynamical phenomenon in arrays of nonlocally coupled oscillators, that displays a self-organized spatial pattern of coexisting coherence and incoherence. In this paper, the first evidence of three-dimensional chimera states is reported for the Kuramoto model of phase oscillators in 3D grid topology with periodic boundary conditions. Systematic analysis of the dependence of the spatiotemporal dynamics on the range and strength of coupling shows that there are two principal classes of the chimera patterns which exist in large domains of the parameter space: (I) oscillating and (II) spirally rotating. Characteristic examples from the first class include coherent as well as incoherent balls, tubes, crosses, and layers in incoherent or coherent surrounding; the second class includes scroll waves with incoherent, randomized rolls of different modality and dynamics. Numerical simulations started from various initial conditions indicate that the states are stable over the integration time. Videos of the dynamics of the chimera states are presented in supplementary material. It is concluded that three-dimensional chimera states, which are novel spatiotemporal patterns involving the coexistence of coherent and incoherent domains, can represent one of the inherent features of nature. (paper)
Nursing Scholars, Writing Dimensions, and Productivity.
Megel, Mary Erickson
1987-01-01
A study to describe cognitive, affective, and behavioral dimensions associated with writing among doctorally prepared nurses and to determine relationships between writing dimensions and journal article publication is discussed. Multiple regression analysis showed that five variables accounted for 18 percent of the variance in research article…
Impact of Packet Sampling on Link Dimensioning
Schmidt, R.D.O.; Sadre, R.; Sperotto, A.; Berg, H. van den; Pras, A.
2015-01-01
Link dimensioning is used by network operators to properly provision the capacity of their network links. Proposed methods for link dimensioning often require statistics, such as traffic variance, that need to be calculated from packet-level measurements. In practice, due to increasing traffic
Impact of packet sampling on link dimensioning
de Oliveira Schmidt, R.; Stadler, R.; Sadre, R.; Sperotto, Anna; van den Berg, Hans Leo; Pras, Aiko
Link dimensioning is used by network operators to properly provision the capacity of their network links. Proposed methods for link dimensioning often require statistics, such as traffic variance, that need to be calculated from packet-level measurements. In practice, due to increasing traffic
Quantum Field Theory in (0 + 1) Dimensions
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
On the dimension of Archimedean solids
Directory of Open Access Journals (Sweden)
Tomáš Madaras
2014-01-01
Full Text Available We study the dimension of graphs of the Archimedean solids. For most of these graphs we find the exact value of their dimension by finding unit-distance embeddings in the euclidean plane or by proving that such an embedding is not possible.
Relationship Between Adult Renal Dimensions and Biometric ...
African Journals Online (AJOL)
We measured renal dimensions sonographically and correlated the values obtained with some anthropometric parameters in order to identify the best estimate of renal size in a clinical setting. The renal dimensions of 200 adult subjects referred for abdomino-pelvic scan at University of Nigeria Teaching Hospital, Enugu ...
A unified theory in higher dimensions
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))
1990-10-11
We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space (Su(3)/U(1)xU(1))/Z{sub 2} giving in four dimensions the standard model. (orig.).
A unified theory in higher dimensions
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1990-01-01
We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space [Su(3)/U(1)xU(1)]/Z 2 giving in four dimensions the standard model. (orig.)
World View: The Second Hidden Dimension.
Skow, Lisa; And Others
Proposing that world view is a dimension of culture which lies below the surface of human behavior at the level of the subconscious, this paper argues that this often ignored dimension of culture profoundly influences human communication. The paper is divided into two sections. First, world view is defined and its importance in explaining how…
Potential Dimension Yields From Direct Processing
Wenjie Lin; D. Earl Kline; Philip A. Araman
1994-01-01
As the price of timber increases and environmental leigslation limits harvestable log volumes, the process of converting logs directly into dimension parts needs further exploration. Direct processing converts logs directly into rough green dimension parts without the intermediate steps of lumber manufacturing, grading, trading, shipping and drying. A major attraction...
Four Essential Dimensions of Workplace Learning
Hopwood, Nick
2014-01-01
Purpose: This conceptual paper aims to argue that times, spaces, bodies and things constitute four essential dimensions of workplace learning. It examines how practices relate or hang together, taking Gherardi's texture of practices or connectedness in action as the foundation for making visible essential but often overlooked dimensions of…
[Penile dimensions in type 2 diabetes].
Belousov, I I; Kogan, M I; Ibishev, H S; Vorobyev, S V; Khripun, I A; Gusova, Z R
2015-12-01
The current literature provides a wide range of publications on the anthropometry of the penis specifying the relationship between penile dimensions and sex hormones, weight, height and erectile function. But most of the studies involved healthy volunteers or young patients with erectile dysfunction. Our study was conducted in patients with type 2 diabetes. Penile measurements obtained in the present study were compared those of the average Russian man. The patients were divided into groups with preserved and impaired erectile function. Erectile function was also studied relative to the variability of penile dimensions. The effect of DM duration on erectile function was defined. Comparative analysis revealed the relationship between penile anatomical dimensions and erectile function. We studied the effect of type 2 diabetes on the anatomical dimensions and elasticity of the penis, established the relationship between penile dimensions and elasticity of the penis. The correlation between the severity of erectile dysfunction and serum testosterone levels on one side, and penile dimensions on the other was found. The effect of penile dimensions on erectile function in DM patients was also examined. Determining penile dimensions and their variability due to various pathological conditions or processes, may eventually lead to better result of ED management.
Quality Dimensions of Internet Search Engines.
Xie, M.; Wang, H.; Goh, T. N.
1998-01-01
Reviews commonly used search engines (AltaVista, Excite, infoseek, Lycos, HotBot, WebCrawler), focusing on existing comparative studies; considers quality dimensions from the customer's point of view based on a SERVQUAL framework; and groups these quality expectations in five dimensions: tangibles, reliability, responsiveness, assurance, and…
Nuclear transport - The regulatory dimension
International Nuclear Information System (INIS)
Green, L.
2002-01-01
The benefits that the peaceful applications of nuclear energy have brought to society are due in no small part to industry's capacity to transport radioactive materials safely, efficiently and reliably. The nuclear transport industry has a vital role in realising a fundamental objective of the International Atomic Energy Agency (IAEA) as stated in its statute to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world. The context in which transports currently take place is complex, and rapidly changing. In many respects transport is being viewed as an integral market issue and not a subsidiary concern. The availability of carriers drives routing decisions and changes in material flows necessitate new approaches to packaging and transport scenarios. Pressures on the transport sector are not without serious consequences; they can cause delays and in some cases cancellation of planned movements. Complex routings and the necessary use of chartered carriers can push up costs and work against cost efficiency. Since the events of 11 September 2001 the security of nuclear transports has contributed an added dimension to how transports take place. Transports of radioactive material have an outstanding safety record, indeed the transport of such materials could be regarded as a model for the transport of other classes of dangerous goods. This safety record is achieved by two inter-related factors. It is due primarily to well founded regulations developed by such key intergovernmental organisations as the IAEA, with the essential contributions of the member states who participate in the implementation of regulations and the review process. It is due also to the professionalism of those in the industry. There is a necessary synergy between the two - between the regulators whose task it is to make and to enforce the rules for safe, efficient and reliable transport and those whose job it is to transport within the rules. It
Modeling spatial processes with unknown extremal dependence class
Huser, Raphaël G.
2017-03-17
Many environmental processes exhibit weakening spatial dependence as events become more extreme. Well-known limiting models, such as max-stable or generalized Pareto processes, cannot capture this, which can lead to a preference for models that exhibit a property known as asymptotic independence. However, weakening dependence does not automatically imply asymptotic independence, and whether the process is truly asymptotically (in)dependent is usually far from clear. The distinction is key as it can have a large impact upon extrapolation, i.e., the estimated probabilities of events more extreme than those observed. In this work, we present a single spatial model that is able to capture both dependence classes in a parsimonious manner, and with a smooth transition between the two cases. The model covers a wide range of possibilities from asymptotic independence through to complete dependence, and permits weakening dependence of extremes even under asymptotic dependence. Censored likelihood-based inference for the implied copula is feasible in moderate dimensions due to closed-form margins. The model is applied to oceanographic datasets with ambiguous true limiting dependence structure.
A new information dimension of complex networks
International Nuclear Information System (INIS)
Wei, Daijun; Wei, Bo; Hu, Yong; Zhang, Haixin; Deng, Yong
2014-01-01
Highlights: •The proposed measure is more practical than the classical information dimension. •The difference of information for box in the box-covering algorithm is considered. •Results indicate the measure can capture the fractal property of complex networks. -- Abstract: The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.
A new information dimension of complex networks
Energy Technology Data Exchange (ETDEWEB)
Wei, Daijun [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); School of Science, Hubei University for Nationalities, Enshi 445000 (China); Wei, Bo [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Hu, Yong [Institute of Business Intelligence and Knowledge Discovery, Guangdong University of Foreign Studies, Guangzhou 510006 (China); Zhang, Haixin [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Deng, Yong, E-mail: ydeng@swu.edu.cn [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); School of Engineering, Vanderbilt University, TN 37235 (United States)
2014-03-01
Highlights: •The proposed measure is more practical than the classical information dimension. •The difference of information for box in the box-covering algorithm is considered. •Results indicate the measure can capture the fractal property of complex networks. -- Abstract: The fractal and self-similarity properties are revealed in many complex networks. The classical information dimension is an important method to study fractal and self-similarity properties of planar networks. However, it is not practical for real complex networks. In this Letter, a new information dimension of complex networks is proposed. The nodes number in each box is considered by using the box-covering algorithm of complex networks. The proposed method is applied to calculate the fractal dimensions of some real networks. Our results show that the proposed method is efficient when dealing with the fractal dimension problem of complex networks.
Nonlinear saturation of the trapped-ion mode by mode coupling in two dimensions
International Nuclear Information System (INIS)
Cohen, B.I.; Tang, W.M.
1977-01-01
A study of the nonlinear saturation by mode coupling of the dissipative trapped-ion mode is presented in which both radial and poloidal variations are considered. The saturation mechanism consists of the nonlinear coupling via E x B convection of energy from linearly unstable modes to stable modes. Stabilization is provided at short poloidal wavelengths by Landau damping from trapped and circulating ions, at short radial wavelengths by effects associated with the finite ion banana excursions and at long wavelengths by ion collisions. A one-dimensional, nonlinear partial differential equation for the electrostatic potential derived in earlier work is extended to two dimensions and to third order in amplitude. Included systematically are kinetic effects, e.g., Landau damping and its spatial dependence due to magnetic shear. The stability and accessibility of equilibria are considered in detail for cases far from as well as close to marginal stability. In the first case three-wave interactions are found to be important when the spectrum of unstable modes is sufficiently narrow. In the latter case, it is found that for a single unstable mode, a four-wave interaction can provide the dominant saturation mechanism. Cross-field transport is calculated, and the scaling of results is considered for tokamak parameters
Handbook of Spatial Statistics
Gelfand, Alan E
2010-01-01
Offers an introduction detailing the evolution of the field of spatial statistics. This title focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and, spatial point patterns.
The Ground State Energy of a Dilute Bose Gas in Dimension $n\\geq 3$
DEFF Research Database (Denmark)
Aaen, Anders Gottfred
We consider a Bose gas in spatial dimension n≥3 with a repulsive, radially symmetric two-body potential V. In the limit of low density ρ, the ground state energy per particle in the thermodynamic limit is shown to be (n−2)|Sn−1|an−2ρ, where |Sn−1| denotes the surface measure of the unit sphere...... in Rn, and a is the scattering length of V. Furthermore, for smooth and compactly supported two-body potentials, we derive an upper bound to the ground state energy with a correction term (1+γ)8π4a6ρ2|ln(a4ρ)| in 4 dimensions, where 0... dimensions. Finally, we use a grand canonical construction to give a simplified proof of the second order upper bound to the Lee-Huang-Yang formula, a result first obtained by Yau and Yin. We also test this method in 4 dimensions, but with a negative outcome....
The probability of the creation of extra dimensions in nuclear collisions
International Nuclear Information System (INIS)
Nazarenko, A.V.
2008-01-01
The minisuperspace model in 3+d spatial dimensions with matter described by the bag model is considered with the aim of estimating the probability of creation of compactified extra dimensions in nuclear collisions. The amplitude of transition from three- to (3+d)-dimensional space has been calculated both in the case of completely confined matter, when the contribution of radiation is ignored, and in the case of radiation domination, when the bag constant is negligible. It turns out that the number of additional dimensions is limited in the first regime, while it is infinite in the second one. It is shown that the probability of creation of extra dimensions is finite in both regimes. (author)
Gravitating multidefects from higher dimensions
Giovannini, Massimo
2007-01-01
Warped configurations admitting pairs of gravitating defects are analyzed. After devising a general method for the construction of multidefects, specific examples are presented in the case of higher-dimensional Einstein-Hilbert gravity. The obtained profiles describe diverse physical situations such as (topological) kink-antikink systems, pairs of non-topological solitons and bound configurations of a kink and of a non-topological soliton. In all the mentioned cases the geometry is always well behaved (all relevant curvature invariants are regular) and tends to five-dimensional anti-de Sitter space-time for large asymptotic values of the bulk coordinate. Particular classes of solutions can be generalized to the framework where the gravity part of the action includes, as a correction, the Euler-Gauss-Bonnet combination. After scrutinizing the structure of the zero modes, the obtained results are compared with conventional gravitating configurations containing a single topological defect.
The fractal dimension of architecture
Ostwald, Michael J
2016-01-01
Fractal analysis is a method for measuring, analysing and comparing the formal or geometric properties of complex objects. In this book it is used to investigate eighty-five buildings that have been designed by some of the twentieth-century’s most respected and celebrated architects. Including designs by Le Corbusier, Eileen Gray, Frank Lloyd Wright, Robert Venturi, Frank Gehry, Peter Eisenman, Richard Meier and Kazuyo Sejima amongst others, this book uses mathematics to analyse arguments and theories about some of the world’s most famous designs. Starting with 625 reconstructed architectural plans and elevations, and including more than 200 specially prepared views of famous buildings, this book presents the results of the largest mathematical study ever undertaken into architectural design and the largest single application of fractal analysis presented in any field. The data derived from this study is used to test three overarching hypotheses about social, stylistic and personal trends in design, along...
Confined subdiffusion in three dimensions
International Nuclear Information System (INIS)
Qin Shan-Lin; He Yong
2014-01-01
Three-dimensional (3D) Fick's diffusion equation and fractional diffusion equation are solved for different reflecting boundaries. We use the continuous time random walk model (CTRW) to investigate the time-averaged mean square displacement (MSD) of a 3D single particle trajectory. Theoretical results show that the ensemble average of the time-averaged MSD can be expressed analytically by a Mittag—Leffler function. Our new expression is in agreement with previous formulas in two limiting cases: <δ 2 -bar> ∼ Δ in short lag time and <δ 2 -bar> ∼ Δ 1-α in long lag time. We also simulate the experimental data of mRNA diffusion in living E. coli using a 3D CTRW model under confined and crowded conditions. The simulation results are well consistent with experimental results. The calculations of power spectral density (PSD) further indicate the subdiffsive behavior of an individual trajectory. (general)
Directory of Open Access Journals (Sweden)
Masayoshi eOka
2014-08-01
Full Text Available Two conceptual and methodological foundations of segregation studies are that (i segregation involves more than one group, and (ii segregation measures need to quantify how different population groups are distributed across space. Therefore, percentage of population belonging to a group is not an appropriate measure of segregation because it does not describe how populations are spread across different areal units or neighborhoods. In principle, evenness and isolation are the two distinct dimensions of segregation that capture the spatial patterns of population groups. To portray people’s daily environment more accurately, segregation measures need to account for the spatial relationships between areal units and to reflect the situations at the neighborhood scale. For these reasons, the use of local spatial entropy-based diversity index (SHi and local spatial isolation index (Si to capture the evenness and isolation dimensions of segregation, respectively, are preferable. However, these two local spatial segregation indexes have rarely been incorporated into health research. Rather ineffective and insufficient segregation measures have been used in previous studies. Hence, this paper empirically demonstrates how the two measures can reflect the two distinct dimensions of segregation at the neighborhood level, and argues conceptually and set the stage for their future use to effectively and meaningfully examine the relationships between residential segregation and health.
Apparatus and method for tracking a molecule or particle in three dimensions
Werner, James H [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Lessard, Guillaume [Santa Fe, NM
2009-03-03
An apparatus and method were used to track the movement of fluorescent particles in three dimensions. Control software was used with the apparatus to implement a tracking algorithm for tracking the motion of the individual particles in glycerol/water mixtures. Monte Carlo simulations suggest that the tracking algorithms in combination with the apparatus may be used for tracking the motion of single fluorescent or fluorescently labeled biomolecules in three dimensions.
Single nanoparticle tracking spectroscopic microscope
Yang, Haw [Moraga, CA; Cang, Hu [Berkeley, CA; Xu, Cangshan [Berkeley, CA; Wong, Chung M [San Gabriel, CA
2011-07-19
A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.
National Oceanic and Atmospheric Administration, Department of Commerce — Spatial management files combine all related and relevant spatial management files into an integrated fisheries management file. Overlaps of the redundant spatial...
Particle Phenomenology of Compact Extra Dimensions
International Nuclear Information System (INIS)
Melbeus, Henrik
2012-01-01
This thesis is an investigation of the subject of extra dimensions in particle physics. In recent years, there has been a large interest in this subject. In particular, a number of models have been suggested that provide solutions to some of the problem with the current Standard Model of particle physics. These models typically give rise to experimental signatures around the TeV energy scale, which means that they could be tested in the next generation of high-energy experiments, such as the LHC. Among the most important of these models are the universal extra dimensions model, the large extra dimensions model by Arkani-Hamed, Dimopolous, and Dvali, and models where right-handed neutrinos propagate in the extra dimensions. In the thesis, we study phenomenological aspects of these models, or simple modifications of them. In particular, we focus on Kaluza-Klein dark matter in universal extra dimensions models, different aspects of neutrino physics in higher dimensions, and collider phenomenology of extra dimensions. In addition, we consider consequences of the enhanced renormalization group running of physical parameters in higher-dimensional models
Understanding the population dimension in development planning.
Rivera, P C
1983-01-01
In the Philippines initial efforts to adopt population policies focused on reducing rapid population growth through fertility control. The history of the national population welfare congress, which started in 1978, reflects this emphasis on family planning as a major deterrent to rapid population growth. It was only in recent years that the 2-way relationship between population and development came to be better appreciated. The 6th National Populaton Welfare Congress was a response to this need to broaden the scope of population concerns and integrate the population dimension into development planning. This viewpoint regards population not as a demand variable but as a factor that can be influenced by economic and social development. Dr. Mercedes B. Concepcion, dean of the University of the Philippines Population Institute (UPPI), discussed population trends, prospects, and problems in a paper presented before the 6th congress. In 1980, she said, the Philippine population was 48.1 million persons, up by 11.4 million persons or 31%, over the3l.7 million enumerated in 1970. While the rate of populated growth remains high, data indicate a decreasing post-World War II trend, from 3.06% in 1948-60 to 2.68% in 1975-80. The proportion of the population below 15 has dropped by 2 percentage points, while the number of persons in the working ages 15-64 has increased. In 1 of the 3 group sessions during the congress, the participants tried to define the Philippines' population distribution goals, the requirement of an urban-rural balance, and priority intervention areas. In that session 2 main papers were presented -- one on human settlements and urbanization and the other on macroeconomic policies and their spatial implications. In another sessionplanners and researchers examined the socioeconomic and demographic impact of development programs, specifically the impact of rural electrification on fertility change in Misamis Oriental, a province in Southern Philippines. In the
Recurrent Spatial Transformer Networks
DEFF Research Database (Denmark)
Sønderby, Søren Kaae; Sønderby, Casper Kaae; Maaløe, Lars
2015-01-01
We integrate the recently proposed spatial transformer network (SPN) [Jaderberg et. al 2015] into a recurrent neural network (RNN) to form an RNN-SPN model. We use the RNN-SPN to classify digits in cluttered MNIST sequences. The proposed model achieves a single digit error of 1.5% compared to 2.......9% for a convolutional networks and 2.0% for convolutional networks with SPN layers. The SPN outputs a zoomed, rotated and skewed version of the input image. We investigate different down-sampling factors (ratio of pixel in input and output) for the SPN and show that the RNN-SPN model is able to down-sample the input...
Social dimensions of nuclear waste disposal
Energy Technology Data Exchange (ETDEWEB)
Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis
2015-07-01
Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.
SCHEME ANALYSIS TREE DIMENSIONS AND TOLERANCES PROCESSING
Directory of Open Access Journals (Sweden)
Constanta RADULESCU
2011-07-01
Full Text Available This paper presents one of the steps that help us to determine the optimal tolerances depending on thetechnological capability of processing equipment. To determine the tolerances in this way is necessary to takethe study and to represent schematically the operations are used in technological process of making a piece.Also in this phase will make the tree diagram of the dimensions and machining tolerances, dimensions andtolerances shown that the design execution. Determination processes, and operations of the dimensions andtolerances tree scheme will make for a machined piece is both indoor and outdoor.
Social dimensions of nuclear waste disposal
International Nuclear Information System (INIS)
Grunwald, Armin
2015-01-01
Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.