WorldWideScience

Sample records for single space dimension

  1. Increase in data capacity utilising dimensions of wavelength, space, time, polarisation and multilevel modulation using a single laser

    DEFF Research Database (Denmark)

    Clausen, Anders; Hu, Hao; Ye, Feihong

    2015-01-01

    Increasing the capacity of optical networks while have the objective of lowering the total consumed energy per bit is challenging. By exploiting several dimensions, i.e. wavelength, space, time, polarisation and multilevel modulation simultaneously, a single laser can offer formidable capacity pe...... performance with potentially reduced energy consumption per bit. Up to 43 Tbit/s has been demonstrated....

  2. Extra Dimensions of Space

    Science.gov (United States)

    Lincoln, Don

    2013-01-01

    They say that there is no such thing as a stupid question. In a pedagogically pure sense, that's probably true. But some questions do seem to flirt dangerously close to being really quite ridiculous. One such question might well be, "How many dimensions of space are there?" I mean, it's pretty obvious that there are three:…

  3. search of extra space dimensions with ATLAs

    Indian Academy of Sciences (India)

    search of extra space dimensions with ATLAs. AMBREEsH GUPTA (for the ATLAs Collaboration). 5640 South Ellis Avenue, Enrico Fermi Institute, University of Chicago, Chicago,. IL 60637, USA. Abstract. If extra spatial dimensions were to exist, they could provide a solution to the hierarchy problem. The studies done by the ...

  4. Space: The Hunt for Hidden Dimensions

    International Nuclear Information System (INIS)

    Hewett, JoAnne

    2006-01-01

    Extra dimensions of space may be present in our universe. Their discovery would dramatically change our view of the cosmos and would prompt many questions. How do they hide? What is their shape? How many are there? How big are they? Do particles and forces feel their presence? This lecture will explain the concept of dimensions and show that current theoretical models predict the existence of extra spatial dimensions which could be in the discovery reach of present and near-term experiments. The manner by which these additional dimensions reveal their existence will be described. Searches for modifications of the gravitational force, astrophysical effects, and collider signatures already constrain the size of extra dimensions and will be summarized. Once new dimensions are discovered, the technology by which the above questions can be answered will be discussed.

  5. Strings in arbitrary space-time dimensions

    International Nuclear Information System (INIS)

    Fabbrichesi, M.E.; Leviant, V.M.

    1988-01-01

    A modified approach to the theory of a quantum string is proposed. A discussion of the gauge fixing of conformal symmetry by means of Kac-Moody algebrae is presented. Virasoro-like operators are introduced to cancel the conformal anomaly in any number of space-time dimensions. The possibility of massless states in the spectrum is pointed out. 18 refs

  6. Moduli space for endomorphisms of finite dimension vector spaces

    International Nuclear Information System (INIS)

    Kanarek, H.

    1990-12-01

    Consider the set (End n ) of endomorphisms of vector spaces of dimension n n ). What we present here is a decomposition of (End n ) in which each element has a fine moduli space and one of them is composed by the semisimple endomorphisms as D. Mumford shows. (author). 2 refs

  7. Coset space dimension reduction of gauge theories

    International Nuclear Information System (INIS)

    Farakos, K.; Kapetanakis, D.; Koutsoumbas, G.; Zoupanos, G.

    1989-01-01

    A very interesting approach in the attempts to unify all the interactions is to consider that a unification takes place in higher than four dimensions. The most ambitious program based on the old Kaluza-Klein idea is not able to reproduce the low energy chiral nature of the weak interactions. A suggested way out was the introduction of Yang-Mills fields in the higher dimensional theory. From the particle physics point of view the most important question is how such a theory behaves in four dimensions and in particular in low energies. Therefore most of our efforts concern studies of the properties of an attractive scheme, the Coset-Space-Dimensional-Reduction (C.S.D.R.) scheme, which permits the study of the effective four dimensional theory coming from a gauge theory defined in higher dimensions. Here we summarize the C.S.D.R. procedure the main the rems which are obeyed and to present a realistic model which is the result of the model building efforts that take into account all the C.S.D.R. properties. (orig./HSI)

  8. Extra dimensions in space and time

    CERN Document Server

    Bars, Itzhak

    2010-01-01

    Covers topics such as Einstein and the Fourth Dimension; Waves in a Fifth Dimension; and String Theory and Branes Experimental Tests of Extra Dimensions. This book offers a discussion on Two-Time Physics

  9. Hydrogen equation in spaces of arbitrary dimensions

    International Nuclear Information System (INIS)

    Amusia, M Ya

    2015-01-01

    We note that presenting Hydrogen atom Schrodinger equation in the case of arbitrary dimensions require simultaneous modification of the Coulomb potential that only in three dimensions has the form Z / r. This was not done in a number of relatively recent papers (see [1] and references therein). Therefore, some results obtained in [1] seem to be doubtful. Several required considerations in the area are mentioned. (paper)

  10. The dimension of the pore space in sponges

    International Nuclear Information System (INIS)

    Silva, L H F; Yamashita, M T

    2009-01-01

    A simple experiment to reveal the dimension of the pore space in sponges is proposed. This experiment is suitable for the first year of a physics or engineering course. The calculated dimension of the void space in a sponge of density 16 mg cm -3 was 2.948± 0.008

  11. Space - the essential dimension of sustainable development

    DEFF Research Database (Denmark)

    Buch-Hansen, Mogens

    , economic and social development and their impact on development of space. The structure of space or the territorial structure hereby plays an essential role in the options of further economic and social development and its sustainability. The focus is on support of livelihoods and enhancing human welfare...

  12. Nonlinear damped Schrodinger equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Tarek Saanouni

    2015-04-01

    Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.

  13. Inside School Spaces: Rethinking the Hidden Dimension.

    Science.gov (United States)

    Sitton, Thad

    1980-01-01

    Considers the spatial arrangements of public schools as culturally derived characteristics that reflect particular traditional expectations in regard to the learning process and teacher student interactions. Discusses fixed spatial arrangements as well as the territorial manipulation of school space by students. (GC)

  14. Weyl-Wigner correspondence in two space dimensions

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Varro, S.; Wolf, A.

    2007-01-01

    We consider Wigner functions in two space dimensions. In particular, we focus on Wigner functions corresponding to energy eigenstates of a non-relativistic particle moving in two dimensions in the absence of a potential. With the help of the Weyl-Wigner correspondence we first transform...... the eigenvalue equations for energy and angular momentum into phase space. As a result we arrive at partial differential equations in phase space which determine the corresponding Wigner function. We then solve the resulting equations using appropriate coordinates....

  15. Toward de Sitter space from ten dimensions

    Science.gov (United States)

    Moritz, Jakob; Retolaza, Ander; Westphal, Alexander

    2018-02-01

    Using a 10D lift of nonperturbative volume stabilization in type IIB string theory, we study the limitations for obtaining de Sitter vacua. Based on this we find that the simplest Kachru, Kallosh, Linde, and Trivedi vacua with a single Kähler modulus stabilized by a gaugino condensate cannot be uplifted to de Sitter. Rather, the uplift flattens out due to stronger backreaction on the volume modulus than has previously been anticipated, resulting in vacua which are metastable and supersymmetry breaking, but that are always anti-de Sitter (AdS). However, we also show that setups such as racetrack stabilization can avoid this issue. In these models it is possible to obtain supersymmetric AdS vacua with a cosmological constant that can be tuned to zero while retaining finite moduli stabilization. In this regime, it seems that de Sitter uplifts are possible with negligible backreaction on the internal volume. We exhibit this behavior also from the 10D perspective.

  16. Correlation dimension and phase space contraction via extreme value theory

    Science.gov (United States)

    Faranda, Davide; Vaienti, Sandro

    2018-04-01

    We show how to obtain theoretical and numerical estimates of correlation dimension and phase space contraction by using the extreme value theory. The maxima of suitable observables sampled along the trajectory of a chaotic dynamical system converge asymptotically to classical extreme value laws where: (i) the inverse of the scale parameter gives the correlation dimension and (ii) the extremal index is associated with the rate of phase space contraction for backward iteration, which in dimension 1 and 2, is closely related to the positive Lyapunov exponent and in higher dimensions is related to the metric entropy. We call it the Dynamical Extremal Index. Numerical estimates are straightforward to obtain as they imply just a simple fit to a univariate distribution. Numerical tests range from low dimensional maps, to generalized Henon maps and climate data. The estimates of the indicators are particularly robust even with relatively short time series.

  17. Fermions in odd space-time dimensions: back to basics

    International Nuclear Information System (INIS)

    Anguiano Jesus de, Ma.; Bashir, A.

    2005-01-01

    It is a well-known feature of odd space-time dimensions d that there exist two inequivalent fundamental representations A and B of the Dirac gamma matrices. Moreover, the parity transformation swaps the fermion fields living in A and B. As a consequence, a parity-invariant Lagrangian can only be constructed by incorporating both the representation. Based upon these ideas and contrary to long-held belief, we show that in addition to a discrete exchange symmetry for the massless case, we can also define chiral symmetry provided the Lagrangian contains fields corresponding to both the inequivalent representations. We also study the transformation properties of the corresponding chiral currents under parity and charge-conjugation operations. We work explicitly in 2 + 1 dimensions and later show how some of these ideas generalize to an arbitrary number of odd dimensions. (author)

  18. GLOBAL AND INSULAR DIMENSIONS: SPACE IN SARDINIA BLUES

    Directory of Open Access Journals (Sweden)

    Ana Maria Chiarini

    2010-11-01

    Full Text Available The aim of this work is to focus attention on the dimension of space in Sardinia Blues (Publisher Bompiani, 2008, by Flavio Soriga. This is justified by the centrality of space throughout the novel and by the title itself. The island of Sardinia is not just a mere setting, but it is most importantly the articulating and conducting thread for all the themes related to the characters’ self-identity and existential issues. The regional Sardinian space, perceived as stereotyped and folkloristic, and the global space, seen as a source of both desire and fear, are problematized by the three young self-proclaimed “pirates of the island” in their long hours of idleness. It is our intention to highlight the conflicts of this marginal insular condition, heavily contaminated by an inevitable process of change, in Soriga’s simultaneously innovative and nostalgic fragmented text, filled with songs’ extracts and languages hybrids.

  19. TVD schemes in one and two space dimensions

    International Nuclear Information System (INIS)

    Leveque, R.J.; Goodman, J.B.; New York Univ., NY)

    1985-01-01

    The recent development of schemes which are second order accurate in smooth regions has made it possible to overcome certain difficulties which used to arise in numerical computations of discontinuous solutions of conservation laws. The present investigation is concerned with scalar conservation laws, taking into account the employment of total variation diminishing (TVD) schemes. The concept of a TVD scheme was introduced by Harten et al. (1976). Harten et al. first constructed schemes which are simultaneously TVD and second order accurate on smooth solutions. In the present paper, a summary is provided of recently conducted work in this area. Attention is given to TVD schemes in two space dimensions, a second order accurate TVD scheme in one dimension, and the entropy condition and spreading of rarefaction waves. 19 references

  20. Vacuum polarization energy for general backgrounds in one space dimension

    Directory of Open Access Journals (Sweden)

    H. Weigel

    2017-03-01

    Full Text Available For field theories in one time and one space dimensions we propose an efficient method to compute the vacuum polarization energy of static field configurations that do not allow a decomposition into symmetric and anti-symmetric channels. The method also applies to scenarios in which the masses of the quantum fluctuations at positive and negative spatial infinity are different. As an example we compute the vacuum polarization energy of the kink soliton in the ϕ6 model. We link the dependence of this energy on the position of the soliton to the different masses.

  1. Fermi states of Bose systems in three space dimensions

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1985-01-01

    Recently an exact spectral solution was constructed by Sudarshan and Tata for the (NTHETA) Fermi version of the Lee model. We demonstrate that it provides a partial solution for the related pure Bose spectral problems. Moreover, the (NTHETA) Bose (Bolsterli--Nelson) version of the Lee model is shown to possess Fermi partners, both exhibiting the partial solubility interplay: finding solutions in the Fermi case would presumably be easier than in the original Bose model. Fermi states of the underlying Bose systems in three space dimensions are explicitly identified

  2. Continuum Vlasov Simulation in Four Phase-space Dimensions

    Science.gov (United States)

    Cohen, B. I.; Banks, J. W.; Berger, R. L.; Hittinger, J. A.; Brunner, S.

    2010-11-01

    In the VALHALLA project, we are developing scalable algorithms for the continuum solution of the Vlasov-Maxwell equations in two spatial and two velocity dimensions. We use fourth-order temporal and spatial discretizations of the conservative form of the equations and a finite-volume representation to enable adaptive mesh refinement and nonlinear oscillation control [1]. The code has been implemented with and without adaptive mesh refinement, and with electromagnetic and electrostatic field solvers. A goal is to study the efficacy of continuum Vlasov simulations in four phase-space dimensions for laser-plasma interactions. We have verified the code in examples such as the two-stream instability, the weak beam-plasma instability, Landau damping, electron plasma waves with electron trapping and nonlinear frequency shifts [2]^ extended from 1D to 2D propagation, and light wave propagation.^ We will report progress on code development, computational methods, and physics applications. This work was performed under the auspices of the U.S. DOE by LLNL under contract no. DE-AC52-07NA27344. This work was funded by the Lab. Dir. Res. and Dev. Prog. at LLNL under project tracking code 08-ERD-031. [1] J.W. Banks and J.A.F. Hittinger, to appear in IEEE Trans. Plas. Sci. (Sept., 2010). [2] G.J. Morales and T.M. O'Neil, Phys. Rev. Lett. 28,417 (1972); R. L. Dewar, Phys. Fluids 15,712 (1972).

  3. Effect of prolonged space flight on cardiac function and dimensions

    Science.gov (United States)

    Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.

    1974-01-01

    Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.

  4. Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions

    Directory of Open Access Journals (Sweden)

    Derek K. Wise

    2009-08-01

    Full Text Available Einstein gravity in both 3 and 4 dimensions, as well as some interesting generalizations, can be written as gauge theories in which the connection is a Cartan connection for geometry modeled on a symmetric space. The relevant models in 3 dimensions include Einstein gravity in Chern-Simons form, as well as a new formulation of topologically massive gravity, with arbitrary cosmological constant, as a single constrained Chern-Simons action. In 4 dimensions the main model of interest is MacDowell-Mansouri gravity, generalized to include the Immirzi parameter in a natural way. I formulate these theories in Cartan geometric language, emphasizing also the role played by the symmetric space structure of the model. I also explain how, from the perspective of these Cartan-geometric formulations, both the topological mass in 3d and the Immirzi parameter in 4d are the result of non-simplicity of the Lorentz Lie algebra so(3,1 and its relatives. Finally, I suggest how the language of Cartan geometry provides a guiding principle for elegantly reformulating any 'gauge theory of geometry'.

  5. Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula

    International Nuclear Information System (INIS)

    Jeffrey, L.C.; Weitsman, J.

    1992-01-01

    We show how the moduli space of flat SU(2) connections on a two-manifold can be quantized. The dimension of the quantization, given by the number of integral fibres of the polarization, matches the Verlinde formula, which is known to give the dimension of the quantization of this space in a Kaehler polarization. (orig./HSI)

  6. Numerical method for solution of transient, homogeneous, equilibrium, two-phase flows in one space dimension

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1979-10-01

    A solution method is presented for transient, homogeneous, equilibrium, two-phase flows of a single-component fluid in one space dimension. The method combines a direct finite-difference procedure and the method of characteristics. The finite-difference procedure solves the interior points of the computing domain; the boundary information is provided by a separate procedure based on the characteristics theory. The solution procedure for boundary points requires information in addition to the physical boundary conditions. This additional information is obtained by a new procedure involving integration of characteristics in the hodograph plane. Sample problems involving various combinations of basic boundary types are calculated for two-phase water/steam mixtures and single-phase nitrogen gas, and compared with independent method-of-characteristics solutions using very fine characteristic mesh. In all cases, excellent agreement is demonstrated

  7. Dimensions of design space: a decision-theoretic approach to optimal research design.

    Science.gov (United States)

    Conti, Stefano; Claxton, Karl

    2009-01-01

    Bayesian decision theory can be used not only to establish the optimal sample size and its allocation in a single clinical study but also to identify an optimal portfolio of research combining different types of study design. Within a single study, the highest societal payoff to proposed research is achieved when its sample sizes and allocation between available treatment options are chosen to maximize the expected net benefit of sampling (ENBS). Where a number of different types of study informing different parameters in the decision problem could be conducted, the simultaneous estimation of ENBS across all dimensions of the design space is required to identify the optimal sample sizes and allocations within such a research portfolio. This is illustrated through a simple example of a decision model of zanamivir for the treatment of influenza. The possible study designs include: 1) a single trial of all the parameters, 2) a clinical trial providing evidence only on clinical endpoints, 3) an epidemiological study of natural history of disease, and 4) a survey of quality of life. The possible combinations, samples sizes, and allocation between trial arms are evaluated over a range of cost-effectiveness thresholds. The computational challenges are addressed by implementing optimization algorithms to search the ENBS surface more efficiently over such large dimensions.

  8. Male involvement: the missing dimension in promoting child spacing ...

    African Journals Online (AJOL)

    Greater sensitivity to information needs for men, the training of male medical staff in child spacing and orienting them to the concept could to such staff acting as counsellors for fellow men beside their other responsibilities. There is great scope in the country for involving men in child spacing and the number of agencies ...

  9. On the dimension of Chowla–Milnor space

    Indian Academy of Sciences (India)

    Abstract. In a recent work, Gun, Murty and Rath defined the Chowla–Milnor space and proved a non-trivial lower bound for these spaces. They also obtained a conditional improvement of this lower bound and noted that an unconditional improvement of their lower bound will lead to irrationality of ζ(k)/πk for odd positive ...

  10. The social dimension of modern media space and its content

    Directory of Open Access Journals (Sweden)

    V L Mouzykant

    2014-12-01

    Full Text Available The article describes the nature of the relationships between subjects of the modern media space as a part of an open social system. The authors analyze the consequences of growth of media consumption, the Internet influence on the behavior of Russians and methods to measure the emerging media space and social networks.

  11. Are perceived sensory dimensions a reliable tool for urban green space assessment and planning?

    DEFF Research Database (Denmark)

    Qiu, Ling; Nielsen, Anders Busse

    2015-01-01

    , nature, rich in species, space, prospect, refuge, social and culture. Using an onsite questionnaire distributed to green space visitors in Helsingborg, Sweden, this study is the first to examine the representation of the eight sensory dimensions in different types of urban green spaces as experienced...

  12. Exact dimension estimation of interacting qubit systems assisted by a single quantum probe

    Science.gov (United States)

    Sone, Akira; Cappellaro, Paola

    2017-12-01

    Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine, e.g., the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics, and observables. Here we propose a more practical strategy that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the system dimension can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.

  13. New dimensions for man. [human functions in future space missions

    Science.gov (United States)

    Louviere, A. J.

    1978-01-01

    The functions of man in space have been in a state of constant change since the first manned orbital flight. Initially, the onboard crewmen performed those tasks essential to piloting and navigating the spacecraft. The time devoted to these tasks has steadily decreased and the crewman's time is being allotted to functions other than orbital operations. The evolving functions include added orbital operational capabilities, experimentation, spacecraft maintenance, and fabrication of useful end items. The new functions will include routine utilization of the crewman to extend mission life, satellite retrieval and servicing, remote manipulator systems operations, and piloting of free-flying teleoperator systems. The most demanding tasks are anticipated to be associated with construction of large space structures. The projected changes will introduce innovative designs and revitalize the concepts for utilizing man in space.

  14. Electrostatic energies of crystals in space of arbitrary dimension

    International Nuclear Information System (INIS)

    Takemoto, Hiroki; Tohsaki, Akihiro

    2005-01-01

    We present a new method to evaluate electrostatic energies under periodic boundary conditions. The lattice sum of Coulomb potentials is expressed through the elliptic Q function of the third kind. This enables us to evaluate electrostatic energies of ionic crystals very accurately and with very rapid convergence. In particular, we study the dimensionality of the electrostatic energies of NaCl-type and CsCl-type crystals, whose expressions are functions of the spatial dimension treated as a real number. Furthermore, the expressions we obtain are applicable to computational simulations using molecular dynamics and Monte Carlo methods. We generate random distributions of point charges under periodic boundary conditions, and we analyze the randomness and its anisotropy on the basis of potential distributions. (author)

  15. Hyperstate matrix models : extending demographic state spaces to higher dimensions

    NARCIS (Netherlands)

    Roth, G.; Caswell, H.

    2016-01-01

    1. Demographic models describe population dynamics in terms of the movement of individuals among states (e.g. size, age, developmental stage, parity, frailty, physiological condition). Matrix population models originally classified individuals by a single characteristic. This was enlarged to two

  16. The Integrative Dimension of the Economic Globalization in European Space

    Directory of Open Access Journals (Sweden)

    Daniela Mariana Alexandrache

    2010-06-01

    Full Text Available We believe that globalization and its socio-economic implications of the world and world economic crisis is one of the most debated issues from several years. The publication "The Economist’’ named globalization as the most used word of the century. The most relevant dimension of globalization is the economy with the more dynamic factors: technological development, the hegemony of liberal conceptions (closely linked to the triumph of the ideology of market economy and explosive development of countries or regions. Economic globalization has manifested a series of visible effects such as: the emergence of new markets and foreign trade (interconnected at global level, the appearance of: transnational companies, multilateral agreements on trade, broadening the scope of WTO, transformation of multinational companies in transnational companies and the emergence of global economic markets. Regionally, we noticed that the trendof concentration of economic activity is more pronounced and advanced in the European continent. Expanding globalization in Europe was achieved because of the fall of communism, and the neoliberal reformation which took place in Western European countries. Events like the fall of the Berlin Wall, followed by the fall of communism eradicated many political, economic, religious or cultural barriers. There were born new relations between state and market, public and private. European Union is, in our view, a regional office ofglobalization, representing the best performing integrative system in the world (by creating free trade area, customs union, common market, the Economic and Monetary Union. In terms of the European Commission,European model is a third way towards globalization, a middle path between protectionism and uncontrolled economy. To understand why the EU is an advanced approximation of globalization, perhaps a regional model of globalization, we must first understand the link between globalization and regional

  17. Space, time, and the third dimension (model error)

    Science.gov (United States)

    Moss, Marshall E.

    1979-01-01

    The space-time tradeoff of hydrologic data collection (the ability to substitute spatial coverage for temporal extension of records or vice versa) is controlled jointly by the statistical properties of the phenomena that are being measured and by the model that is used to meld the information sources. The control exerted on the space-time tradeoff by the model and its accompanying errors has seldom been studied explicitly. The technique, known as Network Analyses for Regional Information (NARI), permits such a study of the regional regression model that is used to relate streamflow parameters to the physical and climatic characteristics of the drainage basin.The NARI technique shows that model improvement is a viable and sometimes necessary means of improving regional data collection systems. Model improvement provides an immediate increase in the accuracy of regional parameter estimation and also increases the information potential of future data collection. Model improvement, which can only be measured in a statistical sense, cannot be quantitatively estimated prior to its achievement; thus an attempt to upgrade a particular model entails a certain degree of risk on the part of the hydrologist.

  18. The Multigroup Neutron Diffusion Equations/1 Space Dimension

    Energy Technology Data Exchange (ETDEWEB)

    Linde, Sven

    1960-06-15

    A description is given of a program for the Ferranti Mercury computer which solves the one-dimensional multigroup diffusion equations in plane, cylindrical or spherical geometry, and also approximates automatically a two-dimensional solution by separating the space variables. In section A the method of calculation is outlined and the preparation of data for two group problems is described. The spatial separation of two-dimensional equations is considered in section B. Section C covers the multigroup equations. These parts are self contained and include all information required for the use of the program. Details of the numerical methods are given in section D. Three sample problems are solved in section E. Punching and operating instructions are given in an appendix.

  19. The Quantum Hydrodynamics System in Two Space Dimensions

    KAUST Repository

    Antonelli, Paolo

    2011-09-16

    In this paper we study global existence of weak solutions for the quantum hydrodynamics system in two-dimensional energy space. We do not require any additional regularity and/or smallness assumptions on the initial data. Our approach replaces the WKB formalism with a polar decomposition theory which is not limited by the presence of vacuum regions. In this way we set up a self consistent theory, based only on particle density and current density, which does not need to define velocity fields in the nodal regions. The mathematical techniques we use in this paper are based on uniform (with respect to the approximating parameter) Strichartz estimates and the local smoothing property. © 2011 Springer-Verlag.

  20. The Multigroup Neutron Diffusion Equations/1 Space Dimension

    International Nuclear Information System (INIS)

    Linde, Sven

    1960-06-01

    A description is given of a program for the Ferranti Mercury computer which solves the one-dimensional multigroup diffusion equations in plane, cylindrical or spherical geometry, and also approximates automatically a two-dimensional solution by separating the space variables. In section A the method of calculation is outlined and the preparation of data for two group problems is described. The spatial separation of two-dimensional equations is considered in section B. Section C covers the multigroup equations. These parts are self contained and include all information required for the use of the program. Details of the numerical methods are given in section D. Three sample problems are solved in section E. Punching and operating instructions are given in an appendix

  1. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, S., E-mail: nishioka@ppl.appi.keio.ac.jp; Goto, I.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [School of Natural and Living Sciences Education, Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Fukano, A. [Toshiba, 33 Isogo-chou, Isogo-ku, Yokohama-shi, Kanagawa 235-001 (Japan)

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  2. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    International Nuclear Information System (INIS)

    Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Okuda, S.; Fukano, A.

    2014-01-01

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result

  3. Picture this! grasping the dimensions of time and space

    CERN Document Server

    Carroll, Michael

    2016-01-01

    Astronomical concepts can be truly hard to comprehend, especially those of planetary sizes and distances from Earth and from each other. These concepts are made more comprehensible by the group of illustrations in this book, which put, in scale, side by side extraterrestrial objects with objects on Earth we can more easily relate to. For example, study the pictures of Earth floating above Jupiter’s Great Red Spot and the asteroid Itokawa resting beside Toronto’s CN Tower. These mind-bending images bring things better into perspective and will help you understand the size and scale of our Solar System. In later chapters, you will be told how close the visionaries of the past came to guessing what today’s explorers would find. Astronomer/painter Lucien Rudaux’s masterpieces of Mars dust storms anticipated Viking and Mars rover images by nearly a century. Space artist Ludek Pesek envisioned astronauts setting up camp on the lunar surface in scenes hauntingly similar to photos taken by Apollo a...

  4. Is overall similarity classification less effortful than single-dimension classification?

    Science.gov (United States)

    Wills, Andy J; Milton, Fraser; Longmore, Christopher A; Hester, Sarah; Robinson, Jo

    2013-01-01

    It is sometimes argued that the implementation of an overall similarity classification is less effortful than the implementation of a single-dimension classification. In the current article, we argue that the evidence securely in support of this view is limited, and report additional evidence in support of the opposite proposition--overall similarity classification is more effortful than single-dimension classification. Using a match-to-standards procedure, Experiments 1A, 1B and 2 demonstrate that concurrent load reduces the prevalence of overall similarity classification, and that this effect is robust to changes in the concurrent load task employed, the level of time pressure experienced, and the short-term memory requirements of the classification task. Experiment 3 demonstrates that participants who produced overall similarity classifications from the outset have larger working memory capacities than those who produced single-dimension classifications initially, and Experiment 4 demonstrates that instructions to respond meticulously increase the prevalence of overall similarity classification.

  5. The dimensions of urban public space in user’s mental image

    Directory of Open Access Journals (Sweden)

    Matej Nikšič

    2006-01-01

    Full Text Available The article presents a method for recognising qualitative and quantitative dimensions of open urban space in the user’s perceptual image. It stems from the hypothesis that the open urban space in mental perception isn’t a uniform continuum, which in general applies to its physical phenomenon. It discloses where and how users experience the limits of real open public space that they occupy and what they perceive as the neighbourhood of such a place. Therefore it researches rules applied by the user to mentally structure physically continuous space into smaller units and then reassemble these into a network. Knowledge of such rules enables expansion of open urban public spaces, which user’s experience as positive, into the wider area, thus revitalising those neighbouring spaces that are perceived as negative or are completely absent in the mental image and consequentially unused. The presence of people is in fact the essential component of quality public spaces.

  6. Arbitrary Dimension Convection-Diffusion Schemes for Space-Time Discretizations

    Energy Technology Data Exchange (ETDEWEB)

    Bank, Randolph E. [Univ. of California, San Diego, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zikatanov, Ludmil T. [Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2016-01-20

    This note proposes embedding a time dependent PDE into a convection-diffusion type PDE (in one space dimension higher) with singularity, for which two discretization schemes, the classical streamline-diffusion and the EAFE (edge average finite element) one, are investigated in terms of stability and error analysis. The EAFE scheme, in particular, is extended to be arbitrary order which is of interest on its own. Numerical results, in combined space-time domain demonstrate the feasibility of the proposed approach.

  7. On mass-shell parametric space renormalization of PHI3 theory in six dimensions

    International Nuclear Information System (INIS)

    Smith, A.W.

    1977-05-01

    An on mass shell, parametric space renormalization procedure for phi 3 theory in six dimensions is defined and its formal equivalence to the usual Lagrangian counter procedure demonstrated. Two loop contributions to the self-energy are used as an illustration of the method. (author)

  8. Analytic smoothing effect for the cubic hyperbolic Schrodinger equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Gaku Hoshino

    2016-01-01

    Full Text Available We study the Cauchy problem for the cubic hyperbolic Schrodinger equation in two space dimensions. We prove existence of analytic global solutions for sufficiently small and exponential decaying data. The method of proof depends on the generalized Leibniz rule for the generator of pseudo-conformal transform acting on pseudo-conformally invariant nonlinearity.

  9. Dimension elevation in Müntz spaces: A new emergence of the Müntz condition

    KAUST Repository

    Ait-Haddou, Rachid

    2014-01-01

    We show that the limiting polygon generated by the dimension elevation algorithm with respect to the Müntz space span(1,tr1,tr2,trm,. . .), with 0 < r1 < r2 < ⋯ < r m < ⋯ and lim n →∞r n = ∞, over an interval [a, b] ⊂ ] 0

  10. Life-space mobility and dimensions of depressive symptoms among community-dwelling older adults.

    Science.gov (United States)

    Polku, Hannele; Mikkola, Tuija M; Portegijs, Erja; Rantakokko, Merja; Kokko, Katja; Kauppinen, Markku; Rantanen, Taina; Viljanen, Anne

    2015-01-01

    To examine the association between life-space mobility and different dimensions of depressive symptoms among older community-dwelling people. Cross-sectional analyses of baseline data of the 'Life-Space Mobility in Old Age' cohort study were carried out. The participants were community-dwelling women and men aged 75-90 years (N = 848). Data were gathered via structured interviews in participants' home. Life-space mobility (the University of Alabama at Birmingham (UAB) Life-Space Assessment - questionnaire) and depressive symptoms (Centre for Epidemiological Studies Depression Scale, CES-D) were assessed. Other factors examined included sociodemographic factors, difficulties walking 500 m, number of chronic diseases and the sense of autonomy in participation outdoors (subscale of Impact on Participation and Autonomy questionnaire). Poorer life-space mobility was associated with higher prevalence of different dimensions of depressive symptoms. The associations were partially mediated through walking difficulties, health and the sense of autonomy in participation outdoor activities. Poorer life-space mobility interrelates with higher probability for depressive symptoms, thus compromising older adults' mental wellbeing. A focus on older adults' life-space mobility may assist early identification of persons, who have elevated risk for depressive symptoms. The association between life-space mobility and depressive symptoms should be studied further utilizing longitudinal study designs to examine temporality and potential causality.

  11. Time-Homogeneous Parabolic Wick-Anderson Model in One Space Dimension: Regularity of Solution

    OpenAIRE

    Kim, Hyun-Jung; Lototsky, Sergey V

    2017-01-01

    Even though the heat equation with random potential is a well-studied object, the particular case of time-independent Gaussian white noise in one space dimension has yet to receive the attention it deserves. The paper investigates the stochastic heat equation with space-only Gaussian white noise on a bounded interval. The main result is that the space-time regularity of the solution is the same for additive noise and for multiplicative noise in the Wick-It\\^o-Skorokhod interpretation.

  12. Quantum phase space for an ideal relativistic gas in d spatial dimensions

    International Nuclear Information System (INIS)

    Hayashi, M.; Vera Mendoza, H.

    1992-01-01

    We present the closed formula for the d-dimensional invariant phase-space integral for an ideal relativistic gas in an exact integral form. In the particular cases of the nonrelativistic and the extreme relativistic limits the phase-space integrals are calculated analytically. Then we consider the d-dimensional invariant phase space with quantum statistic and derive the cluster decomposition for the grand canonical and canonical partition functions as well as for the microcanonical and grand microcanonical densities of states. As a showcase, we consider the black-body radiation in d dimensions (Author)

  13. Infrared behaviour of massless QED in space-time dimensions 2

    International Nuclear Information System (INIS)

    Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.

    2005-01-01

    We show that the logarithmic infrared divergences in electron self-energy and vertex function of massless QED in 2+1 dimensions can be removed at all orders of 1/N by an appropriate choice of a non-local gauge. Thus the infrared behaviour given by the leading order in 1/N is not modified by higher order corrections. Our analysis gives a computational scheme for the Amati-Testa model, resulting in a non-trivial conformal invariant field theory for all space-time dimensions 2< d<4

  14. Infrared behaviour of massless QED in space-time dimensions 2

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Indrajit [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India) and Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indra@theory.saha.ernet.in; Ratabole, Raghunath [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: sharat@imsc.res.in

    2005-04-07

    We show that the logarithmic infrared divergences in electron self-energy and vertex function of massless QED in 2+1 dimensions can be removed at all orders of 1/N by an appropriate choice of a non-local gauge. Thus the infrared behaviour given by the leading order in 1/N is not modified by higher order corrections. Our analysis gives a computational scheme for the Amati-Testa model, resulting in a non-trivial conformal invariant field theory for all space-time dimensions 2

  15. Socio-Cultural Dimensions of Cluster vs. Single Home Photovoltaic Solar Energy Systems in Rural Nepal

    Directory of Open Access Journals (Sweden)

    Kimber Haddix McKay

    2010-02-01

    Full Text Available This paper analyzes the socio-cultural dimensions of obstacles facing solar photovoltaic projects in two villages in rural Nepal. The study was conducted in Humla District, Nepal, one of the most remote and impoverished regions of the country. There are no roads in the district, homes lack running water and villagers’ health suffers from high levels of indoor air pollution from open cooking/heating fires and the smoky torches traditionally burned for light. The introduction of solar energy is important to these villagers, as it removes one major source of indoor air pollution from homes and provides brighter light than the traditional torches. Solar energy is preferable in many villages in the region due to the lack of suitable streams or rivers for micro-hydroelectric projects. In the villages under study in this paper, in-home solar electricity is a novel and recent innovation, and was installed within the last three years in two different geo-spatial styles, depending upon the configuration of homes in the village. In some villages, houses are grouped together, while in others households are widely dispersed. In the former, solar photovoltaic systems were installed in a “cluster” fashion with multiple homes utilizing power from a central battery store under the control of the householder storing the battery bank. In villages with widely spaced households, a single home system was used so that each home had a separate solar photovoltaic array, wiring system and battery bank. It became clear that the cluster system was the sensible choice due to the geographic layout of certain villages, but this put people into management groups that did not always work well due to caste or other differences. This paper describes the two systems and their management and usage costs and benefits from the perspective of the villagers themselves.

  16. An Examination of XMOOCs: An Embedded Single Case Study Based on Conole’s 12 Dimensions

    Directory of Open Access Journals (Sweden)

    Serpil KOCDAR

    2017-10-01

    Full Text Available This study intends to examine the xMOOCs offered by one of the mainstream MOOC platforms in Conole’s 12 dimensions. For this purpose, the research employed an embedded single case study using heuristic inquiry to collect data. The researchers participated in three xMOOCs and took into consideration the characteristics of these MOOCs by rating them as low, medium or high in terms of Conole’s 12 dimensions. Inter-rater reliability was 92 percent. The study showed that the openness, massiveness, diversity, use of multimedia, communication among learners, learning pathway and amount of reflection dimensions were high. The communication with instructors, degree of collaboration and autonomy dimensions were medium, and the quality assurance, certification, and formal learning dimensions were low. After explaining characteristics of xMOOCs from the perspective of open learning, the study highlighted that xMOOCs dramatically differ with regard to the implementation of the freemium business model to education and course delivery methods. It was concluded that MOOCs are not a new form of learning, but a new form of organizing learning similar to the open university movement, but which promises more flexibility and access than open universities.

  17. Dimension elevation in Müntz spaces: A new emergence of the Müntz condition

    KAUST Repository

    Ait-Haddou, Rachid

    2014-05-01

    We show that the limiting polygon generated by the dimension elevation algorithm with respect to the Müntz space span(1,tr1,tr2,trm,. . .), with 0 < r1 < r2 < ⋯ < r m < ⋯ and lim n →∞r n = ∞, over an interval [a, b] ⊂ ] 0, ∞ [ converges to the underlying Chebyshev-Bézier curve if and only if the Müntz condition ∑i=1∞1ri=∞ is satisfied. The surprising emergence of the Müntz condition in the problem raises the question of a possible connection between the density questions of nested Chebyshev spaces and the convergence of the corresponding dimension elevation algorithms. The question of convergence with no condition of monotonicity or positivity on the pairwise distinct real numbers r i remains an open problem. © 2014 Elsevier Inc.

  18. An integrodifferential Dirac equation with quantized charge in one space dimension

    International Nuclear Information System (INIS)

    Ranada, A.F.

    1985-01-01

    An integrodifferential Dirac equation in one space dimension is proposed, such that there is a close correspondence between its solutions and a subset of those of the sine-Gordon equation. It has solitonic solutions, quantized charge and positive definite energy density, so that it can be considered a spinorial version of sine-Gordon. Accordingly, it could be named the sine-Dirac equation. (orig.)

  19. Phases of a stack of membranes in a large number of dimensions of configuration space

    Science.gov (United States)

    Borelli, M. E.; Kleinert, H.

    2001-05-01

    The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical temperature is determined as a function of the interlayer separation l.

  20. Reality and dimension of space and the complexity of quantum mechanics

    International Nuclear Information System (INIS)

    Mirman, R.

    1988-01-01

    The dimension (and signature) of space is a result of distances being real numbers and quantum mechanical state functions being complex ones; it is an inescapable consequence of quantum mechanics and group theory. So nonrelativistic quantum mechanics cannot be complete (it requires ad hoc additional assumptions) and consistent (nor can classical physics), leading to relativity, quantum mechanics, and field theory. Implications of the constraints of consistency and physical reasonableness and of group theory for the structure of these theories are considered. It appears that there are simple, perhaps unavoidable reasons for the laws of physics, the nature of the world they describe, and the space in which they act

  1. Identify the Rotating Stall in Centrifugal Compressors by Fractal Dimension in Reconstructed Phase Space

    Directory of Open Access Journals (Sweden)

    Le Wang

    2015-11-01

    Full Text Available Based on phase space reconstruction and fractal dynamics in nonlinear dynamics, a method is proposed to extract and analyze the dynamics of the rotating stall in the impeller of centrifugal compressor, and some numerical examples are given to verify the results as well. First, the rotating stall of an existing low speed centrifugal compressor (LSCC is numerically simulated, and the time series of pressure in the rotating stall is obtained at various locations near the impeller outlet. Then, the phase space reconstruction is applied to these pressure time series, and a low-dimensional dynamical system, which the dynamics properties are included in, is reconstructed. In phase space reconstruction, C–C method is used to obtain the key parameters, such as time delay and the embedding dimension of the reconstructed phase space. Further, the fractal characteristics of the rotating stall are analyzed in detail, and the fractal dimensions are given for some examples to measure the complexity of the flow in the post-rotating stall. The results show that the fractal structures could reveal the intrinsic dynamics of the rotating stall flow and could be considered as a characteristic to identify the rotating stall.

  2. Robust numerical simulation of porosity evolution in chemical vapor infiltration III: three space dimension

    CERN Document Server

    Jin Shi

    2003-01-01

    Chemical vapor infiltration (CVI) process is an important technology to fabricate ceramic matrix composites (CMC's). In this paper, a three-dimension numerical model is presented to describe pore microstructure evolution during the CVI process. We extend the two-dimension model proposed in [S. Jin, X.L. Wang, T.L. Starr, J. Mater. Res. 14 (1999) 3829; S. Jin. X.L. Wang, T.L. Starr, X.F. Chen, J. Comp. Phys. 162 (2000) 467], where the fiber surface is modeled as an evolving interface, to the three space dimension. The 3D method keeps all the virtue of the 2D model: robust numerical capturing of topological changes of the interface such as the merging, and fast detection of the inaccessible pores. For models in the kinetic limit, where the moving speed of the interface is constant, some numerical examples are presented to show that this three-dimension model will effectively track the change of porosity, close-off time, location and shape of all pores.

  3. Categorical dimensions of human odor descriptor space revealed by non-negative matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Chennubhotla, Chakra [University of Pittsburgh School of Medicine, Pittsburgh PA; Castro, Jason [Bates College

    2013-01-01

    In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain un- clear. Here, we use non-negative matrix factorization (NMF) - a dimensionality reduction technique - to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor di- mensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures.

  4. Three-dimensional single-particle tracking in live cells: news from the third dimension

    International Nuclear Information System (INIS)

    Dupont, A; Wehnekamp, F; Katayama, Y; Lamb, D C; Gorelashvili, M; Schüller, V; Arcizet, D; Heinrich, D

    2013-01-01

    Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased. (paper)

  5. Variability of ischiofemoral space dimensions with changes in hip flexion: an MRI study

    International Nuclear Information System (INIS)

    Johnson, Adam C.; Howe, Benjamin M.; Hollman, John H.; Finnoff, Jonathan T.

    2017-01-01

    The primary aim of this study was to determine if ischiofemoral space (IFS) dimensions vary with changes in hip flexion as a result of placing a bolster behind the knees during magnetic resonance imaging (MRI). A secondary aim was to determine if IFS dimensions vary between supine and prone hip neutral positions. The study employed a prospective design. Sports medicine center within a tertiary care institution. Five male and five female adult subjects (age mean = 29.2, range = 23-35; body mass index [BMI] mean = 23.5, range = 19.5-26.6) were recruited to participate in the study. An axial, T1-weighted MRI sequence of the pelvis was obtained of each subject in a supine position with their hips in neutral and flexed positions, and in a prone position with their hips in neutral position. Supine hip flexion was induced by placing a standard, 9-cm-diameter MRI knee bolster under the subject's knees. The order of image acquisition (supine hip neutral, supine hip flexed, prone hip neutral) was randomized. The IFS dimensions were then measured on a separate workstation. The investigator performing the IFS measurements was blinded to the subject position for each image. The main outcome measurements were the IFS dimensions acquired with MRI. The mean IFS dimensions in the prone position were 28.25 mm (SD 5.91 mm, standard error mean 1.32 mm). In the supine hip neutral position, the IFS dimensions were 25.1 (SD 5.6) mm. The mean difference between the two positions of 3.15 (3.6) mm was statistically significant (95 % CI of the difference = 1.4 to 4.8 mm, t_1_9 = 3.911, p =.001). The mean IFS dimensions in the hip flexed position were 36.9 (SD 5.7) mm. The mean difference between the two supine positions of 11.8 (4.1) mm was statistically significant (95 % CI of the difference = 9.9 to 13.7 mm, t_1_9 = 12.716, p <.001). Our findings demonstrate that the IFS measurements obtained with MRI are dependent upon patient positioning with respect to hip flexion and supine versus

  6. Variability of ischiofemoral space dimensions with changes in hip flexion: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Adam C.; Howe, Benjamin M. [Mayo Clinic College of Medicine, Department of Radiology, Rochester, MN (United States); Hollman, John H.; Finnoff, Jonathan T. [Mayo Clinic College of Medicine, Department of Physical Medicine and Rehabilitation, Rochester, MN (United States)

    2017-01-15

    The primary aim of this study was to determine if ischiofemoral space (IFS) dimensions vary with changes in hip flexion as a result of placing a bolster behind the knees during magnetic resonance imaging (MRI). A secondary aim was to determine if IFS dimensions vary between supine and prone hip neutral positions. The study employed a prospective design. Sports medicine center within a tertiary care institution. Five male and five female adult subjects (age mean = 29.2, range = 23-35; body mass index [BMI] mean = 23.5, range = 19.5-26.6) were recruited to participate in the study. An axial, T1-weighted MRI sequence of the pelvis was obtained of each subject in a supine position with their hips in neutral and flexed positions, and in a prone position with their hips in neutral position. Supine hip flexion was induced by placing a standard, 9-cm-diameter MRI knee bolster under the subject's knees. The order of image acquisition (supine hip neutral, supine hip flexed, prone hip neutral) was randomized. The IFS dimensions were then measured on a separate workstation. The investigator performing the IFS measurements was blinded to the subject position for each image. The main outcome measurements were the IFS dimensions acquired with MRI. The mean IFS dimensions in the prone position were 28.25 mm (SD 5.91 mm, standard error mean 1.32 mm). In the supine hip neutral position, the IFS dimensions were 25.1 (SD 5.6) mm. The mean difference between the two positions of 3.15 (3.6) mm was statistically significant (95 % CI of the difference = 1.4 to 4.8 mm, t{sub 19} = 3.911, p =.001). The mean IFS dimensions in the hip flexed position were 36.9 (SD 5.7) mm. The mean difference between the two supine positions of 11.8 (4.1) mm was statistically significant (95 % CI of the difference = 9.9 to 13.7 mm, t{sub 19} = 12.716, p <.001). Our findings demonstrate that the IFS measurements obtained with MRI are dependent upon patient positioning with respect to hip flexion and

  7. Scalar one-loop vertex integrals as meromorphic functions of space-time dimension d

    International Nuclear Information System (INIS)

    Bluemlein, Johannes; Phan, Khiem Hong; Vietnam National Univ., Ho Chi Minh City; Riemann, Tord; Silesia Univ., Chorzow

    2017-11-01

    Representations are derived for the basic scalar one-loop vertex Feynman integrals as meromorphic functions of the space-time dimension d in terms of (generalized) hypergeometric functions 2 F 1 and F 1 . Values at asymptotic or exceptional kinematic points as well as expansions around the singular points at d=4+2n, n non-negative integers, may be derived from the representations easily. The Feynman integrals studied here may be used as building blocks for the calculation of one-loop and higher-loop scalar and tensor amplitudes. From the recursion relation presented, higher n-point functions may be obtained in a straightforward manner.

  8. Approximating second-order vector differential operators on distorted meshes in two space dimensions

    International Nuclear Information System (INIS)

    Hermeline, F.

    2008-01-01

    A new finite volume method is presented for approximating second-order vector differential operators in two space dimensions. This method allows distorted triangle or quadrilateral meshes to be used without the numerical results being too much altered. The matrices that need to be inverted are symmetric positive definite therefore, the most powerful linear solvers can be applied. The method has been tested on a few second-order vector partial differential equations coming from elasticity and fluids mechanics areas. These numerical experiments show that it is second-order accurate and locking-free. (authors)

  9. Z4-symmetric factorized S-matrix in two space-time dimensions

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1979-01-01

    The factorized S-matrix with internal symmetry Z 4 is constructed in two space-time dimensions. The two-particle amplitudes are obtained by means of solving the factorization, unitarity and analyticity equations. The solution of factorization equations can be expressed in terms of elliptic functions. The S-matrix cotains the resonance poles naturally. The simple formal relation between the general factorized S-matrices and the Baxter-type lattice transfer matrices is found. In the sense of this relation the Z 4 -symmetric S-matrix corresponds to the Baxter transfer matrix itself. (orig.)

  10. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  11. A discrete classical space-time could require 6 extra-dimensions

    Science.gov (United States)

    Guillemant, Philippe; Medale, Marc; Abid, Cherifa

    2018-01-01

    We consider a discrete space-time in which conservation laws are computed in such a way that the density of information is kept bounded. We use a 2D billiard as a toy model to compute the uncertainty propagation in ball positions after every shock and the corresponding loss of phase information. Our main result is the computation of a critical time step above which billiard calculations are no longer deterministic, meaning that a multiverse of distinct billiard histories begins to appear, caused by the lack of information. Then, we highlight unexpected properties of this critical time step and the subsequent exponential evolution of the number of histories with time, to observe that after certain duration all billiard states could become possible final states, independent of initial conditions. We conclude that if our space-time is really a discrete one, one would need to introduce extra-dimensions in order to provide supplementary constraints that specify which history should be played.

  12. Scalable implicit methods for reaction-diffusion equations in two and three space dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Veronese, S.V.; Othmer, H.G. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    This paper describes the implementation of a solver for systems of semi-linear parabolic partial differential equations in two and three space dimensions. The solver is based on a parallel implementation of a non-linear Alternating Direction Implicit (ADI) scheme which uses a Cartesian grid in space and an implicit time-stepping algorithm. Various reordering strategies for the linearized equations are used to reduce the stride and improve the overall effectiveness of the parallel implementation. We have successfully used this solver for large-scale reaction-diffusion problems in computational biology and medicine in which the desired solution is a traveling wave that may contain rapid transitions. A number of examples that illustrate the efficiency and accuracy of the method are given here; the theoretical analysis will be presented.

  13. Space-time supersymmetry of extended fermionic strings in 2 + 2 dimensions

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1993-04-01

    The N = 2 fermionic string theory is revisited in light of its recently proposed equivalence to the non-compact N = 4 fermionic string model. The issues of space-time Lorentz covariance and supersymmetry for the BRST quantized N = 2 strings living in uncompactified 2 + 2 dimensions are discussed. The equivalent local quantum supersymmetric field theory appears to be the most transparent way to represent the space-time symmetries of the extended fermionic strings and their interactions. Our considerations support the Siegel's ideas about the presence of SO(2,2) Lorentz symmetry as well as at least two self-dual space-time supersymmetries in the theory of the N = 2(4) fermionic strings, though we do not have a compelling reason to argue about the necessity of the maximal space-time supersymmetry. The world-sheet arguments about the absence of all string massive modes in the physical spectrum, and the vanishing of all string-loop amplitudes in the Polyakov approach, are given on the basis of general consistency of the theory. (orig.)

  14. Exploring the potential high energy locations and intensities in confined work spaces of waveguide dimensions

    International Nuclear Information System (INIS)

    Rodriguez, Ricardo; Lewis, Winston G

    2014-01-01

    Adequately identifying and managing hazards at the workplace can be a tedious task which extends into the realm of uncertainty, probability and prediction models in order to fully comprehend the nature of the hazard. As such, organizations cannot be blamed for knowledge gaps in the training of personnel they contract to ensure a safe and healthy work environment, especially where there are latent hazards. Electromagnetic wave propagation at frequencies in the SAR (specific absorption rate) region is a special concern to authorities involved in setting RF (radiofrequency) and microwave exposure guidelines. Despite that there is no conclusive evidence to suggest that non-ionizing electromagnetic radiation causes adverse health effects other than thermal, no effort should be lost to ensure that workers and the public at large are adequately protected from unnecessary exposure to radiation. Standards however set exposure limits for free space, plane wave propagation but fall short in compiling information on intensities of these waves after they undergo reflection and diffraction from wall surfaces. Waveguide technology has managed to constrain microwaves to remain within set boundaries, with fixed frequencies that force the waves to behave differently to if they were moving in free space. This technology has offered the ability to transport more energy for communication purposes other than transmission lines. The size of a waveguide may be to the order of a few centimetres and can guide RF of wavelengths of the order of centimetres also but what if spaces of larger dimensions are capable of being waveguides and can guide waves of larger wavelengths such as those that correspond to frequencies between 30MHz to 300MHz? Such RF waves belong to the SAR region of the spectrum where strict exposure limits are set for health and safety protection since a standing man acts as a dipole antenna for this radiation and can absorb maximum energy from propagating RF waves. This

  15. Exploring the potential high energy locations and intensities in confined work spaces of waveguide dimensions

    Science.gov (United States)

    Rodriguez, Ricardo; Lewis, Winston G.

    2014-07-01

    Adequately identifying and managing hazards at the workplace can be a tedious task which extends into the realm of uncertainty, probability and prediction models in order to fully comprehend the nature of the hazard. As such, organizations cannot be blamed for knowledge gaps in the training of personnel they contract to ensure a safe and healthy work environment, especially where there are latent hazards. Electromagnetic wave propagation at frequencies in the SAR (specific absorption rate) region is a special concern to authorities involved in setting RF (radiofrequency) and microwave exposure guidelines. Despite that there is no conclusive evidence to suggest that non-ionizing electromagnetic radiation causes adverse health effects other than thermal, no effort should be lost to ensure that workers and the public at large are adequately protected from unnecessary exposure to radiation. Standards however set exposure limits for free space, plane wave propagation but fall short in compiling information on intensities of these waves after they undergo reflection and diffraction from wall surfaces. Waveguide technology has managed to constrain microwaves to remain within set boundaries, with fixed frequencies that force the waves to behave differently to if they were moving in free space. This technology has offered the ability to transport more energy for communication purposes other than transmission lines. The size of a waveguide may be to the order of a few centimetres and can guide RF of wavelengths of the order of centimetres also but what if spaces of larger dimensions are capable of being waveguides and can guide waves of larger wavelengths such as those that correspond to frequencies between 30MHz to 300MHz? Such RF waves belong to the SAR region of the spectrum where strict exposure limits are set for health and safety protection since a standing man acts as a dipole antenna for this radiation and can absorb maximum energy from propagating RF waves. This

  16. Skeleton series and multivaluedness of the self-energy functional in zero space-time dimensions

    Science.gov (United States)

    Rossi, Riccardo; Werner, Félix

    2015-12-01

    Recently, Kozik, Ferrero and Georges discovered numerically that for a family of fundamental models of interacting fermions, the self-energy {{Σ }}[G] is a multi-valued functional of the fully dressed single-particle propagator G, and that the skeleton diagrammatic series {{{Σ }}}{{bold}}[G] converges to the wrong branch above a critical interaction strength. We consider the zero space-time dimensional case, where the same mathematical phenomena appear from elementary algebra. We also find a similar phenomenology for the fully bold formalism built on the fully dressed single-particle propagator and pair propagator.

  17. Equilibrium of field reversed configurations with rotation. I. One space dimension and one type of ion

    International Nuclear Information System (INIS)

    Rostoker, Norman; Qerushi, Artan

    2002-01-01

    Self-consistent solutions of the Vlasov-Maxwell equations are obtained. They involve rigid rotor distributions. This selection is justified on physical grounds. For this selection the Vlasov equation can be replaced by moment equations which terminate without any additional assumptions. For one-dimensional equilibria with one type of ion these equations have exact solutions. A complete equilibrium solution appropriate to a field reversed configuration with rotation can be obtained by solving a generalized Grad-Shafranov equation for the flux function. From this solution all other physical quantities can be determined. A Green's function method is developed to solve this equation, which provides a basis for an iterative solution. This method has the advantage that at every iteration the boundary conditions are satisfied. In this paper cylindrical geometry with one space dimension and one type of ion is considered, where analytic solutions are available. The convergence of the Green's function method is established. For this nonlinear problem there is usually more than one solution for completely specified boundary conditions (bifurcation). The present method selects one solution. It is applicable to equilibria with many ion species and to two dimensions

  18. Equilibrium of field reversed configurations with rotation. II. One space dimension and many ion species

    International Nuclear Information System (INIS)

    Qerushi, Artan; Rostoker, Norman

    2002-01-01

    In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] it was shown that a complete description of equilibria of field reversed configurations with rotation can be obtained by solving a generalized Grad-Shafranov equation for the flux function. In this paper we show how to solve this equation in the case of one space dimension and many ion species. The following fusion fuels are considered: D-T, D-He 3 , and p-B 11 . Using a Green's function the generalized Grad-Shafranov equation is converted to an equivalent integral equation. The integral equation can be solved by iteration. Approximate analytic solutions for a plasma with many ion species are found. They are used as starting trial functions of the iterations. They turn out to be so close to the true solutions that only a few iterations are needed

  19. Equilibrium of field reversed configurations with rotation. IV. Two space dimensions and many ion species

    International Nuclear Information System (INIS)

    Qerushi, Artan; Rostoker, Norman

    2003-01-01

    In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] a generalized Grad-Shafranov equation for the plasma flux function was derived which provides a complete description of equilibria of field reversed configurations with rotation. In this paper this fundamental equation is solved for two space dimensions and many ion species. The following fusion fuels are considered: D-T, D-He 3 , and p-B 11 . Using periodic boundary conditions the original differential equation is converted to an equivalent integral equation which involves a Green's function. The integral equation is solved by iteration. Approximate solutions are found for all the fusion fuels considered using a two-dimensional equilibrium model for one type of ion [A. Qerushi and N. Rostoker, Phys. Plasmas 9, 5001 (2002)]. They are used as starting trial functions of the iterations. They turn out to be so close to the real solutions that only a few iterations are needed

  20. On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions.

    Science.gov (United States)

    Gerencsér, Máté; Jentzen, Arnulf; Salimova, Diyora

    2017-11-01

    In a recent article (Jentzen et al. 2016 Commun. Math. Sci. 14 , 1477-1500 (doi:10.4310/CMS.2016.v14.n6.a1)), it has been established that, for every arbitrarily slow convergence speed and every natural number d ∈{4,5,…}, there exist d -dimensional stochastic differential equations with infinitely often differentiable and globally bounded coefficients such that no approximation method based on finitely many observations of the driving Brownian motion can converge in absolute mean to the solution faster than the given speed of convergence. In this paper, we strengthen the above result by proving that this slow convergence phenomenon also arises in two ( d =2) and three ( d =3) space dimensions.

  1. Principles of space-time-matter cosmology, particles and waves in five dimensions

    CERN Document Server

    Overduin, James

    2018-01-01

    This book is a summing up of the prospects for unification between relativity and particle physics based on the extension of Einstein's theory of General Relativity to five dimensions. This subject was first established by Paul Wesson in his previous best-seller, Space-Time-Matter, and discussed from a different perspective in Five-Dimensional Physics, both published by World Scientific in 1999 and 2006 respectively. This third book brings the field up to date and details many new developments and connections to particle theory and wave mechanics in particular. It was in largely finished form at the time of Paul Wesson's untimely death in 2015, and has been completed and expanded by his former student and longtime collaborator, James Overduin.

  2. Scalar one-loop vertex integrals as meromorphic functions of space-time dimension d

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Phan, Khiem Hong [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Vietnam National Univ., Ho Chi Minh City (Viet Nam). Univ. of Science; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Silesia Univ., Chorzow (Poland). Inst. of Physics

    2017-11-15

    Representations are derived for the basic scalar one-loop vertex Feynman integrals as meromorphic functions of the space-time dimension d in terms of (generalized) hypergeometric functions {sub 2}F{sub 1} and F{sub 1}. Values at asymptotic or exceptional kinematic points as well as expansions around the singular points at d=4+2n, n non-negative integers, may be derived from the representations easily. The Feynman integrals studied here may be used as building blocks for the calculation of one-loop and higher-loop scalar and tensor amplitudes. From the recursion relation presented, higher n-point functions may be obtained in a straightforward manner.

  3. Connection between Feynman integrals having different values of the space-time dimension

    International Nuclear Information System (INIS)

    Tarasov, O.V.

    1996-05-01

    A systematic algorithm for obtaining recurrence relations for dimensionally regularized Feynman integrals w.r.t. the space-time dimension d is proposed. The relation between d and d-2 dimensional integrals is given in terms of a differential operator for which an explicit formula can be obtained for each Feynman diagram. We show how the method works for one-, two- and three-loop integrals. The new recurrence relations w.r.t. d are complementary to the recurrence relations which derive from the method of integration by parts. We find that the problem of the irreducible numerators in Feynman integrals can be naturally solved in the framework of the proposed generalized recurrence relations. (orig.)

  4. Figure and Dimension Metrology of Extremely Lightweight X-Ray Mirrors for Space Astronomy Applications

    Science.gov (United States)

    Zhang, William W.

    2010-01-01

    The International X-ray Observatory (IXO) is the next major space X-ray observatory, performing both imaging and spectroscopic studies of all kinds of objects in the Universe. It is a collaborative mission of the National Aeronautics and Space Administration of the United States, the European Space Agency, and Japan Aerospace Exploration Agency. It is to be launched into a Sun-Earth L2 orbit in 2021. One of the most challenging aspects of the mission is the construction of a flight mirror assembly capable focusing X-rays in the band of 0.1 to 40 keY with an angular resolution of better than 5 arc-seconds and with an effective collection area of more than 3 sq m. The mirror assembly will consist of approximately 15,000 parabolic and hyperbolic mirror segments, each of which is approximately 200mm by 300mm with a thickness of 0.4mm. The manufacture and qualification of these mirror segments and their integration into the giant mirror assembly have been the objectives of a vigorous technology development program at NASA's Goddard Space Flight Center. Each of these mirror segments needs to be measured and qualified for both optical figure and mechanical dimensions. In this talk, I will describe the technology program with a particular emphasis on a measurement system we are developing to meet those requirements, including the use of coordinate measuring machines, Fizeau interferometers, and custom-designed, and -built null lens. This system is capable of measuring highly off-axis aspherical or cylindrical mirrors with repeatability, accuracy, and speed.

  5. Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension

    International Nuclear Information System (INIS)

    Papalexandris, M.V.; Leonard, A.; Dimotakis, P.E.

    1997-01-01

    The present work is concerned with an application of the theory of characteristics to conservation laws with source terms in one space dimension, such as the Euler equations for reacting flows. Space-time paths are introduced on which the flow/chemistry equations decouple to a characteristic set of ODE's for the corresponding homogeneous laws, thus allowing the introduction of functions analogous to the Riemann invariants in classical theory. The geometry of these paths depends on the spatial gradients of the solution. This particular decomposition can be used in the design of efficient unsplit algorithms for the numerical integration of the equations. As a first step, these ideas are implemented for the case of a scalar conservation law with a nonlinear source term. The resulting algorithm belongs to the class of MUSCL-type, shock-capturing schemes. Its accuracy and robustness are checked through a series of tests. The stiffness of the source term is also studied. Then, the algorithm is generalized for a system of hyperbolic equations, namely the Euler equations for reacting flows. A numerical study of unstable detonations is performed. 57 refs

  6. A political dimension of public budget: the councils of rights as a space for collective and plural debate

    Directory of Open Access Journals (Sweden)

    Valdir Anhucci

    2013-12-01

    Full Text Available The consolidation of the political dimension of the Councils of Rights is linked to its understanding as plural public spaces, divergence and the constant struggle of ideas. The political dimension becomes crucial, especially in the process of defining and managing the public budget for both planning and to expand the debate on the allocation of financial resources for the implementation of public policies. It is this space that the different interests manifest themselves, becoming a field of political struggle for the appropriation of public resources in ensuring the rights and social protection of the most disenfranchised segments of society. The public budget in the spaces of advice gained a political dimension, the prospect of mere instrument accounting

  7. KOBRA 3 - a code for the calculation of space-charge-influenced trajectories in 3-dimensions

    International Nuclear Information System (INIS)

    Spaedtke, P.; Wipf, S.

    1989-06-01

    KOBRA3 is a three-dimensional multi-purpose program, written in standard FORTRAN77. The main purpose of the program is to calculate the trajectories of charged particles through a static electro-magnetic field in three dimensions. If space charge is not negligible its influence is taken into account by an iterative process. The Laplace equation is solved for the scalar potential. During the ray tracing, in which the equations of motion for charged particles are solved, the space charge term in the Poisson equation is distributed onto the mesh. By repeating this procedure the steady-state Vlasov equation is solved: ∇ 2 φ+∫∫∫f p dxdydz = 0, where φ is the electro-static potential and f p (r vector, v vector) describes the distribution of the charged particles in space. KOBRA3 can handle finite plasma boundaries, which are found by the program automatically. Special features are included within the program to investigate the beam quality (emittance, transverse energy), and to display the geometry, the trajectories and the potential and magnetic fields graphically. The modular structure of the program enables the user to create his (her) own diagnostic programs or interfaces to the main program. This report is intended to facilitate the use of KOBRA3 by describing the theory, structure and numerical methods used. At GSI (Gesellschaft fuer Schwerionenforschung) the program runs on an IBM 3090-40E. The program has been installed on other machines e.g. CRAY XM-P, CRAY II, VAX 8600, IBM 3090-200, IBM 3033, ATARI ST, IBM-AT. (orig./HSI)

  8. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    Science.gov (United States)

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  9. Spazi e dimensioni nella letteratura utopica vittoriana - Space and dimension in the Victorian utopian literature

    Directory of Open Access Journals (Sweden)

    Marianna Forleo

    2012-10-01

    Full Text Available In the last centuries, the relationship between science and literature has had numerous manifestations. One of the most interesting aspects was the use of the scientific language in utopian Victorian texts. The analysis of Flatland, a Romance of Many Dimensions by Edwin Abbott is a starting point for the description of utopian cities, where literature uses science as a technical tool for the explanation of the world. Science becomes a clear metaphor of a rational organization and strategic element for spreading “subliminal” messages. The combination between utopia and science can seem exclusively a theoretical and philosophical relationship, but in reality, it is only a tool to approach the utopian practice. The main feature of utopian texts is its criticism of society, which is made possible only if hidden in metaphorical terms. Indeed, Flatland, as many other mathematical utopias, presents itself as a multidimensional text. The use of geometric structures for the description of utopian spaces allows several interpretations. Science and literature intertwine throughout the text but nevertheless keep their own distinct features.

  10. Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

    International Nuclear Information System (INIS)

    Rosenberg, D; Pouquet, A; Mininni, P D

    2007-01-01

    We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang (OT) vortex made up of a magnetic X-point centred on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsaesser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context (Rosenberg et al 2006 J. Comput. Phys. 215 59-80); the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the OT solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo-spectral solutions quite well. We show that low-order truncation-even with a comparable number of global degrees of freedom-fails to correctly model some strong (sup-norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics

  11. The large dimension limit of a small black hole instability in anti-de Sitter space

    Science.gov (United States)

    Herzog, Christopher P.; Kim, Youngshin

    2018-02-01

    We study the dynamics of a black hole in an asymptotically AdS d × S d space-time in the limit of a large number of dimensions, d → ∞. Such a black hole is known to become dynamically unstable below a critical radius. We derive the dispersion relation for the quasinormal mode that governs this instability in an expansion in 1 /d. We also provide a full nonlinear analysis of the instability at leading order in 1 /d. We find solutions that resemble the lumpy black spots and black belts previously constructed numerically for small d, breaking the SO( d + 1) rotational symmetry of the sphere down to SO( d). We are also able to follow the time evolution of the instability. Due possibly to limitations in our analysis, our time dependent simulations do not settle down to stationary solutions. This work has relevance for strongly interacting gauge theories; through the AdS/CFT correspondence, the special case d = 5 corresponds to maximally supersymmetric Yang-Mills theory on a spatial S 3 in the microcanonical ensemble and in a strong coupling and large number of colors limit.

  12. Calculation of anomalous dimension of single-particle Green function in scalar field theory with strong nonlinear interaction

    International Nuclear Information System (INIS)

    Kolesnichenko, A.V.

    1980-01-01

    An expression for the anomalous dimension of the single-particle Green function is derived in the scalar theory with the interaction Hamiltonian Hsub(int)=g(phisup(n)/n) in the limit n→infinity. It is simultaneously shown that in this model the range of essential distances is of order of nsup(-1/2)

  13. El Naschie's ε (∞) space-time and scale relativity theory in the topological dimension D = 4

    International Nuclear Information System (INIS)

    Agop, M.; Murgulet, C.

    2007-01-01

    In the topological dimension D = 4 of the scale relativity theory, the self-structuring of a coherent quantum fluid implies the Golden mean renormalization group. Then, the transfinite set of El Naschie's ε (∞) space-time becomes the background of a new physics (the transfinite physics)

  14. Cubic scattering amplitudes for all massless representations of the Poincare group in any space-time dimension

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Metsaev, R.R.

    1996-02-01

    Using the language of highest weight representations and the light cone formalism we construct a full list of cubic amplitudes of scattering for all bosonic massless representations of the Poincare group in any even space-time dimension. (author). 29 refs

  15. Dual joint space arthrography in temporomandibular joint disorders: Comparison with single inferior joint space arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyung Sik; Chang, Duk Soo; Lee, Kyung Soo; Kim, Woo Sun; Sung, Jung Ho; Jun, Young Hwan [Capital Armed Forces General Hospital, Seoul (Korea, Republic of)

    1989-02-15

    The temporomandibular joint(TMJ) is really a complex of two synovial space separated by fibrocartilaginous disc. Single inferior joint space arthrography is commonly performed for evaluation of TMJ disorders, which is known to be superior in demonstrating joint dynamics. But it reveals only the inferior surface of the disc. Therefore, dual space arthrography is superior to demonstrate the soft tissue anatomic feature of the joint such as disc position and shape. Authors performed 83 TMJ arthrograms in TMJ problems. Initially, the inferior joint space was done and then the superior space was sequentially contrasted. The follow results were noted: 1. In all cases, dual space arthrography revealed accurate disc shape and positions. 2. Concordant findings between the two techniques: 68 cases (82%). Discordance between the two techniques: 15 cases (18%) 3. Possible causes of discordance between inferior and dual space arthrography. a) Normal varians of anterior recess: 3 cases b) Posterior disc displacement: 4 cases c) Influence of the patient's head position change :4 cases d) False perforation: 2 cases e) Reduction change: 2 cases 4. In 5 cases with anterior displacement, dual space arthrography gave additional findings such as adhesion within the superior space, which could not be evaluated by single inferior space.

  16. Can all heritable biology really be reduced to a single dimension?

    Science.gov (United States)

    Babbitt, Gregory A; Coppola, Erin E; Alawad, Mohammed A; Hudson, André O

    2016-03-10

    A long-held presupposition in the field of bioinformatics holds that genetic, and now even epigenetic 'information' can be abstracted from the physicochemical details of the macromolecular polymers in which it resides. It is perhaps rather ironic that this basic conjecture originated upon the first observations of DNA structure itself. This static model of DNA led very quickly to the conclusion that only the nucleobase sequence itself is rich enough in molecular complexity to replicate a complex biology. This idea has been pervasive throughout genomic science, higher education and popular culture ever since; to the point that most of us would accept it unquestioningly as fact. What is more alarming is that this conjecture is driving a significant portion of the technological development in modern genomics towards methods strongly rooted in DNA sequencing, thereby reducing a dynamic multi-dimensional biology into single-dimensional forms of data. Evidence countering this central tenet of bioinformatics has been quietly mounting over many decades, prompting some to propose that the genome must be studied from the perspective of its molecular reality, rather than as a body of information to be represented symbolically. Here, we explore the epistemological boundary between bioinformatics and molecular biology, and warn against an 'overtly' bioinformatic perspective. We review a selection of new bioinformatic methods that move beyond sequence-based approaches to include consideration of databased three dimensional structures. However, we also note that these hybrid methods still ignore the most important element of gene function when attempting to improve outcomes; the fourth dimension of molecular dynamics over time. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Computer program to fit a hyperellipse to a set of phase-space points in as many as six dimensions

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1980-03-01

    A computer program that will fit a hyperellipse to a set of phase-space points in as many as 6 dimensions was written and tested. The weight assigned to the phase-space points can be varied as a function of their distance from the centroid of the distribution. Varying the weight enables determination of whether there is a difference in ellipse orientation between inner and outer particles. This program should be useful in studying the effects of longitudinal and transverse phase-space couplings

  18. The fractal dimension of cell membrane correlates with its capacitance: A new fractal single-shell model

    Science.gov (United States)

    Wang, Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.

    2010-01-01

    The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski–Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM. PMID:21198103

  19. Study on coupling of three-dimension space time neutron kinetics model and RELAP5 and improvement of RELAP5

    International Nuclear Information System (INIS)

    Gui Xuewen; Cai Qi; Luo Bangqi

    2007-01-01

    A two-group three-dimension space-time neutron kinetics model is applied to the RELAP5 code, which replaces the point reactor kinetics model. A visual operation interface is designed to convenience interactive operation between operator and computer. The calculation results and practical applications indicate that the functions and precision of improved RELAP5 are enhanced and can be easily used. The improved RELAP5 has a good application perspective in nuclear power plant simulation. (authors)

  20. Mitigating radiation damage of single photon detectors for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Cranmer, Miles [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Choi, Eric [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Magellan Aerospace, Ottawa, ON (Canada); Hudson, Danya; Piche, Louis P.; Scott, Alan [Honeywell Aerospace (formerly COM DEV Ltd.), Ottawa, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada)

    2017-12-15

    Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6, 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as -86 C. This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to +100 C. (orig.)

  1. Dimensions of Velopharyngeal Space following Maxillary Advancement with Le Fort I Osteotomy Compared to Zisser Segmental Osteotomy: A Cephalometric Study

    Directory of Open Access Journals (Sweden)

    Furkan Erol Karabekmez

    2015-01-01

    Full Text Available The objectives of this study are to assess the velopharyngeal dimensions using cephalometric variables of the nasopharynx and oropharynx as well as to compare the Le Fort I osteotomy technique to Zisser’s anterior maxillary osteotomy technique based on patients’ outcomes within early and late postoperative follow-ups. 15 patients with severe maxillary deficiency treated with Le Fort I osteotomy and maxillary segmental osteotomy were assessed. Preoperative, early postoperative, and late postoperative follow-up lateral cephalograms, patient histories, and operative reports are reviewed with a focus on defined cephalometric landmarks for assessing velopharyngeal space dimension and maxillary movement (measured for three different tracing points. A significant change was found between preoperative and postoperative lateral cephalometric measurements regarding the distance between the posterior nasal spine and the posterior pharyngeal wall in Le Fort I osteotomy cases. However, no significant difference was found between preoperative and postoperative measurements in maxillary segmental osteotomy cases regarding the same measurements. The velopharyngeal area calculated for the Le Fort I osteotomy group showed a significant difference between the preoperative and postoperative measurements. Le Fort I osteotomy for advancement of upper jaw increases velopharyngeal space. On the other hand, Zisser’s anterior maxillary segmental osteotomy does not alter the dimension of the velopharyngeal space significantly.

  2. A k-space method for acoustic propagation using coupled first-order equations in three dimensions.

    Science.gov (United States)

    Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C

    2009-09-01

    A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.

  3. Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law

    Czech Academy of Sciences Publication Activity Database

    Bureš, M.; Siegl, Petr

    2015-01-01

    Roč. 354, MAR (2015), s. 316-327 ISSN 0003-4916 Grant - others:GA ČR(CZ) GD202/08/H072 Institutional support: RVO:61389005 Keywords : extra dimensions * hydrogen atom * quantum stability Subject RIV: BE - Theoretical Physics Impact factor: 2.375, year: 2015

  4. Re-Imagining Spaces, Collectivity, and the Political Dimension of Contemporary Art

    Science.gov (United States)

    Peters, Clorinde

    2015-01-01

    In a neoliberal moment of cultural production marked by commodification and the dominance of economic values, it is necessary to investigate the cultural, social, and aesthetic value of art. By examining Herbert Marcuse's aesthetic dimension, this article seeks to locate the political and pedagogic potential both in the aesthetics and in the…

  5. The third spatial dimension risk approach for individual risk and group risk in multiple use of space

    International Nuclear Information System (INIS)

    Suddle, Shahid; Ale, Ben

    2005-01-01

    Buildings above roads and railways are examples of multiple use of space. Safety is one of the critical issues for such projects. Risk analyses can be undertaken to investigate what safety measures that are required to realise these projects. The results of these analyses can also be compared to risk acceptance criteria, if they are applicable. In The Netherlands, there are explicit criteria for acceptability of individual risk and societal risk. Traditionally calculations of individual risk result in contours of equal risk on a map and thus are considered in two-dimensional space only. However, when different functions are layered the third spatial dimension, height, becomes an important parameter. The various activities and structures above and below each other impose mutual risks. There are no explicit norms or policies about how to deal with the individual or group risk approach in the third dimension. This paper proposes an approach for these problems and gives some examples. Finally, the third dimension risk approach is applied in a case study of Bos en Lommer, Amsterdam

  6. Single-port access laparoscopic hysterectomy: a new dimension of minimally invasive surgery.

    Science.gov (United States)

    Liliana, Mereu; Alessandro, Pontis; Giada, Carri; Luca, Mencaglia

    2011-01-01

    The fundamental idea is to have all of the laparoscopic working ports entering the abdominal wall through the same incision. Single-incision laparoscopic surgery is an alternative to conventional multiport laparoscopy. Single-access laparoscopy using a transumbilical port affords maximum cosmetic benefits because the surgical incision is hidden in the umbilicus and reduces morbidity of minimally invasive surgery. The advantages of single-access laparoscopic surgery may include less bleeding, infection, and hernia formation and better cosmetic outcome and less pain. The disadvantages and limitations include longer surgery time, difficulty in learning the technique, and the need for specialized instruments. This review summarizes the history of SPAL hysterectomy (single-port access laparoscopy), and emphasizes nomenclature, surgical technique, instrumentation, and perioperative outcomes. Specific gynecological applications of single-port hysterectomy to date are summarized. Using the PubMed database, the English-language literature was reviewed for the past 40 years. Keyword searches included scarless, scar free, single-port/trocar/incision, single-port access laparoscopic hysterectomy. Within the bibliography of selected references, additional sources were retrieved. The purpose of the present article was to review the development and current status of SPAL hysterectomy and highlight important advances associated with this innovative approach.

  7. Space cooling by geocooling. Basic principles for a dimensioning handbook; Rafraichissement par geocooling - Bases pour un manuel de dimensionnement

    Energy Technology Data Exchange (ETDEWEB)

    Hollmuller, P.; Lachal, B. [Universite de Geneve, Centre Universitaire d' Etude des Problemes de l' Energie (CUEPE), Geneve (Switzerland); Pahud, D. [Scuola Universitaria Professionale della Svizzera Italiana (SUPSI), Laboratorio Energia Ecologia ed Economia (LEEE), Trevano-Canobbio (Switzerland)

    2005-07-01

    The study performed by two Swiss universities considers two types of passive systems for space cooling: geocooling using vertical underground borehole heat exchangers and geocooling by means of horizontal underground heat exchangers placed at low depth ('canadian wells'). The goal of the study was to summarize the experience gained from ten existing Swiss geocooling installations in order to establish a basis for a dimensioning manual for future projects. For both types of geothermal probes, rules of the thumb were derived. Methods for dimensioning the heat exchangers based on computer simulation of various complexity are also presented. Presently, the least known factor is the coupling of the building to the cooling source. Therefore, future geocooling systems should be considered as an integral part of a building and not just as an additional cooling system.

  8. Gauge-Higgs Unification Models in Six Dimensions with S2/Z2 Extra Space and GUT Gauge Symmetry

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Chiang

    2012-01-01

    Full Text Available We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12 gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6 gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with the SU(3×SU(2L×U(1Y(×U(12 symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.

  9. Connecting physical and social dimensions of place attachment: What can we learn from attachment to urban recreational spaces?

    Science.gov (United States)

    Madgin, Rebecca; Bradley, Lisa; Hastings, Annette

    2016-01-01

    This paper is concerned with the ways in which people form attachments to recreational spaces. More specifically it examines the relationship between recreational spaces associated with sporting activity in urban neighbourhoods and place attachment. The focus is on the ways in which changes to these spaces exposes the affective bonds between people and their surroundings. The paper applies a qualitative methodology, namely focus groups and photo elicitation, to the case study of Parkhead, a neighbourhood in the East End of Glasgow. Parkhead has historically been subjected to successive waves of redevelopment as a result of deindustrialization in the late twentieth century. More recently redevelopment associated with the 2014 Commonwealth Games involved further changes to neighbourhood recreational spaces, including refurbishing of existing sports facilities and building new ones. This paper reflects on the cumulative impacts of this redevelopment to conclude (a) that recreational sports spaces provoke multi-layered and complex attachments that are inextricably connected to both temporal and spatial narratives and (b) that research on neighbourhood recreational spaces can develop our understanding of the intricate relationship between the social and physical dimensions of place attachment.

  10. Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket

    Science.gov (United States)

    Gover, Avraham; Pan, Yiming

    2018-06-01

    In the foundation of quantum mechanics, the spatial dimensions of electron wavepacket are understood only in terms of an expectation value - the probability distribution of the particle location. One can still inquire how the quantum electron wavepacket size affects a physical process. Here we address the fundamental physics problem of particle-wave duality and the measurability of a free electron quantum wavepacket. Our analysis of stimulated radiative interaction of an electron wavepacket, accompanied by numerical computations, reveals two limits. In the quantum regime of long wavepacket size relative to radiation wavelength, one obtains only quantum-recoil multiphoton sidebands in the electron energy spectrum. In the opposite regime, the wavepacket interaction approaches the limit of classical point-particle acceleration. The wavepacket features can be revealed in experiments carried out in the intermediate regime of wavepacket size commensurate with the radiation wavelength.

  11. Bloch surface waves confined in one dimension with a single polymeric nanofibre

    Science.gov (United States)

    Wang, Ruxue; Xia, Hongyan; Zhang, Douguo; Chen, Junxue; Zhu, Liangfu; Wang, Yong; Yang, Erchan; Zang, Tianyang; Wen, Xiaolei; Zou, Gang; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2017-02-01

    Polymeric fibres with small radii (such as ≤125 nm) are delicate to handle and should be laid down on a solid substrate to obtain practical devices. However, placing these nanofibres on commonly used glass substrates prevents them from guiding light. In this study, we numerically and experimentally demonstrate that when the nanofibre is placed on a suitable dielectric multilayer, it supports a guided mode, a Bloch surface wave (BSW) confined in one dimension. The physical origin of this new mode is discussed in comparison with the typical two-dimensional BSW mode. Polymeric nanofibres are easily fabricated to contain fluorophores, which make the dielectric nanofibre and multilayer configuration suitable for developing a large range of new nanometric scale devices, such as processor-memory interconnections, devices with sensitivity to target analytes, incident polarization and multi-colour BSW modes.

  12. Ob the Froissart-Martin bound in spaces with compact dimensions

    CERN Document Server

    Petrov, V A

    2002-01-01

    It is shown by the example of the 5-dimensional space-time, that by availability of the additional compact (space-time-like) measurements to the general Minkowski space all the conditions for proving the Froissart-Martin bound retain their force. Thus, by the circumference R -> 0 the theory smoothly transfers to the theory of the neutral scalar field in the 4-dimensional Minkowski space-time. It was assumed in this work, that the masses are bound from below by the non-zero value. The bounds for elastic scattering by absence of the mass gap are trivial, however in this case it is obviously possible to obtain also nontrivial bounds for complete inelastic cross sections. It takes place in the Regge-eikonal approach though there exist no strong proof for it

  13. Asymptotic behavior of solutions of the damped Boussinesq equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Vladimir V. Varlamov

    1999-01-01

    classical solution is proved and the solution is constructed in the form of a series. The major term of its long-time asymptotics is calculated explicitly and a uniform in space estimate of the residual term is given.

  14. Dimensions of Family Functioning: Perspectives of Low-Income African American Single Parent Families

    Science.gov (United States)

    Mccreary, Linda L.; Dancy, Barbara L.

    2004-01-01

    Family functioning is influenced by socio-economic status, culture, family structure, and developmental stage, and is assessed primarily using instruments developed for middle-income European American two-parent families. These instruments may not validly assess low-income African American single-parent families. This qualitative study was…

  15. Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension

    KAUST Repository

    Niemi, Antti; Collier, Nathan; Calo, Victor M.

    2013-01-01

    We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.

  16. Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension

    KAUST Repository

    Niemi, Antti

    2013-05-01

    We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.

  17. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain

    Science.gov (United States)

    Godin, Antoine G.; Varela, Juan A.; Gao, Zhenghong; Danné, Noémie; Dupuis, Julien P.; Lounis, Brahim; Groc, Laurent; Cognet, Laurent

    2017-03-01

    The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.

  18. Path integration and separation of variables in spaces of constant curvature in two and three dimensions

    International Nuclear Information System (INIS)

    Grosche, C.

    1993-10-01

    In this paper path integration in two- and three-dimensional spaces of constant curvature is discussed: i.e. the flat spaces R 2 and R 3 , the two- and three-dimensional sphere and the two- and three dimensional pseudosphere. The Laplace operator in these spaces admits separation of variables in various coordinate systems. In all these coordinate systems the path integral formulation will be stated, however in most of them an explicit solution in terms of the spectral expansion can be given only on a formal level. What can be stated in all cases, are the propagator and the corresponding Green function, respectively, depending on the invariant distance which is a coordinate independent quantity. This property gives rise to numerous identities connecting the corresponding path integral representations and propagators in various coordinate systems with each other. (orig.)

  19. Phase space conduits for reaction in multidimensional systems : HCN isomerization in three dimensions

    NARCIS (Netherlands)

    Waalkens, Holger; Burbanks, Andrew; Wiggins, Stephen

    2004-01-01

    The three-dimensional hydrogen cyanide/isocyanide isomerization problem is taken as an example to present a general theory for computing the phase space structures which govern classical reaction dynamics in systems with an arbitrary (finite) number of degrees of freedom. The theory, which is

  20. Dimensions of Learning: Community College Students and Their Perceptions of Learning Spaces

    Science.gov (United States)

    Bowers, Hugh Hawes, III

    2016-01-01

    Classrooms, both by design and by accident, have been used to teach and reinforce certain ethics and ideologies. Examining the actual structures of a classroom one can recognize forces often hidden or considered background revealing how students and instructors together are culturally bound by educational spaces. Considerable research exists that…

  1. An improvement of dimension-free Sobolev imbeddings in r spaces

    Czech Academy of Sciences Publication Activity Database

    Fiorenza, A.; Krbec, Miroslav; Schmeisser, H.-J.

    2014-01-01

    Roč. 267, č. 1 (2014), s. 243-261 ISSN 0022-1236 R&D Projects: GA ČR GAP201/10/1920 Institutional support: RVO:67985840 Keywords : imbedding theorem * small Lebesgue space * rearrangement-invariant Banach Subject RIV: BA - General Mathematics Impact factor: 1.322, year: 2014 http://www.sciencedirect.com/science/article/pii/S0022123614001724

  2. Schwinger functions for the Yukawa model in two dimensions with space-time cutoff

    International Nuclear Information System (INIS)

    Seiler, E.

    1975-01-01

    It is shown that a Euclidean version of the formulae of Matthews and Salam for the Green's functions of a two-dimensional Yukawa model with interaction in a finite space-time volume makes sense, if renormalized correctly. (orig.) [de

  3. Radiation Tests of Single Photon Avalanche Diode for Space Applications

    Science.gov (United States)

    Moscatelli, Francesco; Marisaldi, Martino; MacCagnani, Piera; Labanti, Claudio; Fuschino, Fabio; Prest, Michela; Berra, Alessandro; Bolognini, Davide; Ghioni, Massimo; Rech, Ivan; hide

    2013-01-01

    Single photon avalanche diodes (SPADs) have been recently studied as photodetectors for applications in space missions. In this presentation we report the results of radiation hardness test on large area SPAD (actual results refer to SPADs having 500 micron diameter). Dark counts rate as low as few kHz at -10 degC has been obtained for the 500 micron devices, before irradiation. We performed bulk damage and total dose radiation tests with protons and gamma-rays in order to evaluate their radiation hardness properties and their suitability for application in a Low Earth Orbit (LEO) space mission. With this aim SPAD devices have been irradiated using up to 20 krad total dose with gamma-rays and 5 krad with protons. The test performed show that large area SPADs are very sensitive to proton doses as low as 2×10(exp 8) (1 MeV eq) n/cm2 with a significant increase in dark counts rate (DCR) as well as in the manifestation of the "random telegraph signal" effect. Annealing studies at room temperature (RT) and at 80 degC have been carried out, showing a high decrease of DCR after 24-48 h at RT. Lower protons doses in the range 1-10×10(exp 7) (1 MeV eq) n/cm(exp 2) result in a lower increase of DCR suggesting that the large-area SPADs tested in this study are well suitable for application in low-inclination LEO, particularly useful for gamma-ray astrophysics.

  4. Staff, space, and time as dimensions of organizational slack: a psychometric assessment.

    Science.gov (United States)

    Mallidou, Anastasia A; Cummings, Greta G; Ginsburg, Liane R; Chuang, You-Ta; Kang, Sunghyun; Norton, Peter G; Estabrooks, Carole A

    2011-01-01

    : In the theoretical and research literature, organizational slack has been largely described in terms of financial resources and its impact on organizational outcomes. However, empirical research is limited by unclear definitions and lack of standardized measures. : The aim of this study was to assess the psychometric properties of a new organizational slack measure in health care settings. : A total of 752 nurses and 197 allied health care professionals (AHCPs) employed in seven pediatric Canadian hospitals completed the Alberta Context Tool, an instrument measuring organizational context, which includes the newly developed organizational slack measure. The nine-item, 5-point Likert organizational slack measure includes items assessing staff perceptions of available human resources (staffing), time, and space. We report psychometric assessments, bivariate analyses, and data aggregation indices for the measure. : The findings indicate that the measure has three subscales (staff, space, and time) with acceptable internal consistency reliability (alphas for staff, space, and time, respectively:.83,.63, and.74 for nurses;.81,.52, and.76 for AHCPs), links theory and hypotheses (construct validity), and is related to other relevant variables. Within-group reliability measures indicate stronger agreement among nurses than AHCPs, more reliable aggregation results in all three subscales at the unit versus facility level, and higher explained variance and validity of aggregated scores at the unit level. : The proposed organizational slack measure assesses modifiable organizational factors in hospitals and has the potential to explain variance in important health care system outcomes. Further assessments of the psychometric properties of the organizational slack measure in acute and long-term care facilities are underway.

  5. Infinite-parametric extension of the conformal algebra in D>2 space-time dimension

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Linetsky, V.Ya.

    1990-09-01

    On the basis of the analytic continuations of semisimple Lie algebras discovered recently by us we construct manifestly quasiconformal infinite-dimensional algebras AC(so(4,1)) and PAC(so(3,2)) extending the conformal algebras in three-dimensional Euclidean and Minkowski space-time like the Virasoro algebra extends so(2,1). Their higher spin generalizations are also constructed. A counterpart of the central extension for D>2 and possible applications in exactly solvable conformal quantum field models in D>2 are discussed. (author). 31 refs, 2 figs

  6. Moduli space of self-dual connections in dimension greater than four for abelian Gauge groups

    OpenAIRE

    Cappelle, Natacha

    2018-01-01

    In 1954, C. Yang and R. Mills created a Gauge Theory for strong interaction of Elementary Particles. More generally, they proved that it is possible to define a Gauge Theory with an arbitrary compact Lie group as Gauge group. Within this context, it is interesting to find critical values of a functional defined on the space of connections: the Yang-Mills functional. If the based manifold is four dimensional, there exists a natural notion of (anti-)self-dual 2-form, which gives a natural notio...

  7. Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.

    Science.gov (United States)

    Baker, Matthew A B; Tuckwell, Andrew J; Berengut, Jonathan F; Bath, Jonathan; Benn, Florence; Duff, Anthony P; Whitten, Andrew E; Dunn, Katherine E; Hynson, Robert M; Turberfield, Andrew J; Lee, Lawrence K

    2018-06-04

    The rational design of complementary DNA sequences can be used to create nanostructures that self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides complementary structural information on the ensemble-averaged state of DNA nanostructures in solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA origami tiles that look identical when immobilized on a mica surface and imaged with atomic force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles with different crossover periodicities: these measurements highlight the extreme structural sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA origami tile and use this method to measure the overall dimensions and geometry of the DNA nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used for the interpretation of SAXS data from biomolecules, to measure the distance between DNA helix pairs in a DNA origami nanotube. Together, these results provide important methodological advances in the use of SAXS to analyze DNA nanostructures in solution and insights into the structures of single-layer DNA origami.

  8. Single-Bunch Stability With Direct Space Charge

    CERN Multimedia

    Oeftiger, Adrian

    2017-01-01

    Previous studies have shown the suppressing effect of direct space charge on impedance-driven head-tail instabilities. The present work investigates transverse stability for the HL-LHC scenario based on our macro-particle simulation tool PyHEADTAIL using realistic bunch distributions. The impact of selfconsistent modelling is briefly discussed for non-linear space charge forces. We study how space charge pushes the instability threshold for the transverse mode coupling instability (TMCI) occurring between mode 0 and -1. Next we consider finite chromaticity: in absence of space charge, the impedance model predicts head-tail instabilities. For a selected case below TMCI threshold at Q0 = 5, we demonstrate the stabilising effect of space charge. Finally, we compare simulation results to past LHC measurements.

  9. mode of collapse of square single panel reinforced concrete space

    African Journals Online (AJOL)

    eobe

    The behavior of the structural elements of a space-framed structure depends on their support conditions. These .... storey frame system, the combination of strut action and of a ... provided by concrete can be estimated using equation. (4). = +.

  10. Free-space quantum electrodynamics with a single Rydberg superatom

    DEFF Research Database (Denmark)

    Paris-Mandoki, Asaf; Braun, Christoph; Kumlin, Jan

    2017-01-01

    The interaction of a single photon with an individual two-level system is the textbook example of quantum electrodynamics. Achieving strong coupling in this system has so far required confinement of the light field inside resonators or waveguides. Here, we demonstrate strong coherent coupling...

  11. An Asymmetrical Space Vector Method for Single Phase Induction Motor

    DEFF Research Database (Denmark)

    Cui, Yuanhai; Blaabjerg, Frede; Andersen, Gert Karmisholt

    2002-01-01

    Single phase induction motors are the workhorses in low-power applications in the world, and also the variable speed is necessary. Normally it is achieved either by the mechanical method or by controlling the capacitor connected with the auxiliary winding. Any above method has some drawback which...

  12. Single-mode multicore fiber for dense space division multiplexing

    DEFF Research Database (Denmark)

    Sasaki, Yusuke; Amma, Yoshimichi; Takenaga, Katsuhiro

    2016-01-01

    Single-mode multicore fiber (SM-MCF) is attractive for high-capacity transmission. Our fabricated SM-MCFs achieve high core count and low crosstalk with a cladding diameter of 230 µm. Characteristics of fan-in/fan-out for the SM-MCFs are also investigated....

  13. Physics with large extra dimensions

    CERN Document Server

    Antoniadis, Ignatios

    2004-01-01

    A theory with such a mathematical beauty cannot be wrong: this was one of the main arguments in favor of string theory, which unifies all known physical theories of fundamental interactions in a single coherent description of the universe. But no one has ever observed strings, not even indirectly, neither the space of extra dimensions where they live. However, there is a hope that the “hidden”dimensions of string theory are much larger than what we thought in the past and they become within experimental reach in the near future, together with the strings themselves.

  14. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  15. Search for Large Extra Dimensions via Single Photons Plus Missing Energy Final States at √s = 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, Edgar Fernando [Florida State Univ., Tallahassee, FL (United States)

    2008-12-01

    This dissertation presents a search for large extra dimensions in the single photon plus missing transverse energy final states. We use a data sample of approximately 2.7 fb-1 of p$\\bar{p}$ collisions at √s = 1.96 TeV (recorded with the D- detector) to investigate direct Kaluza Klein graviton production and set limits, at the 95% C.L., on the fundamental mass scale MD from 970 GeV to 816 GeV for two to eight extra dimensions.

  16. Krull dimension in modal logic

    NARCIS (Netherlands)

    Bezhanishvili, G.; Bezhanishvili, N.; Lucero-Bryan, J.; van Mill, J.

    2017-01-01

    We develop the theory of Krull dimension for S4-algebras and Heyting algebras. This leads to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension to other well-known dimension functions, and show that it can detect differences between topological spaces that

  17. Determination of the fundamental scale of gravity and the number of space-time dimensions from high energetic particle interactions

    International Nuclear Information System (INIS)

    Ruppert, J.; Rahmede, C.; Bleicher, M.

    2005-01-01

    Within the ADD-model, we elaborate an idea by Vacavant and Hinchliffe [J. Phys. G 27 (2001) 1839] and show quantitatively how to determine the fundamental scale of TeV-gravity and the number of compactified extra dimensions from data at LHC. We demonstrate that the ADD-model leads to strong correlations between the missing E T in gravitons at different center of mass energies. This correlation puts strong constraints on this model for extra dimensions, if probed at s=5.5 TeV and s=14 TeV at LHC

  18. The Modal Dimension

    Directory of Open Access Journals (Sweden)

    Giluano Torrengo

    2018-05-01

    Full Text Available Space and time are two obvious candidates as dimensions of reality. Yet, are they the only two dimensions of reality? Famously, David Lewis maintained the doctrine of ―modal realism‖, the thesis that possible worlds exist and are entities as concrete as the actual world that we live in. In this paper, I will explore the idea that modality can be construed as a dimension along with space and time. However, although Lewis‘ modal realism is the main source of inspiration for this construal of modality, I will argue that something else is required for having a modal dimension.

  19. TDRS-1 single event upsets and the effect of the space environment

    International Nuclear Information System (INIS)

    Wilkinson, D.C.; Daughtridge, S.C.; Stone, J.L.; Sauer, H.H.; Darling, P.

    1991-01-01

    The systematic recording of Single Event Upsets on TDRS-1 from 1984 to 1990 allows correlations to be drawn between those upsets and the space environment. In this paper, ground based neutron monitor data are used to illustrate the long-term relationship between galactic cosmic rays and TDRS-1 upsets. The short-term effects of energetic solar particles are illustrated with space environment data from GOES-7

  20. Space growth studies of Ce-doped Bi12SiO20 single crystal

    International Nuclear Information System (INIS)

    Zhou, Y.F.; Wang, J.C.; Tang, L.A.; Pan, Z.L.; Chen, N.F.; Chen, W.C.; Huang, Y.Y.; He, W.

    2004-01-01

    Ce-doped Bi 12 SiO 20 (BSO) single crystal was grown on board of the Chinese Spacecraft-Shenzhou No. 3. A cylindrical crystal, 10 mm in diameter and 40 mm in length, was obtained. The morphology of crystals is significantly different for ground- and space-grown portions. The space- and ground-grown crystals have been characterized by Ce concentration distribution, X-ray rocking curve absorption spectrum and micro-Raman spectrum. The results show that the quality of Ce-doped BSO crystal grown in space is more homogeneous and more perfect than that of ground grown one

  1. Empirical formulae for excess noise factor with dead space for single carrier multiplication

    KAUST Repository

    Dehwah, Ahmad H.

    2011-09-01

    In this letter, two empirical equations are presented for the calculation of the excess noise factor of an avalanche photodiode for single carrier multiplication including the dead space effect. The first is an equation for calculating the excess noise factor when the multiplication approaches infinity as a function of parameters that describe the degree of the dead space effect. The second equation can be used to find the minimum value of the excess noise factor for any multiplication when the dead space effect is completely dominant, the so called "deterministic" limit. This agrees with the theoretically known equation for multiplications less than or equal to two. © 2011 World Scientific Publishing Company.

  2. Empirical formulae for excess noise factor with dead space for single carrier multiplication

    KAUST Repository

    Dehwah, Ahmad H.; Ajia, Idris A.; Marsland, John S.

    2011-01-01

    In this letter, two empirical equations are presented for the calculation of the excess noise factor of an avalanche photodiode for single carrier multiplication including the dead space effect. The first is an equation for calculating the excess noise factor when the multiplication approaches infinity as a function of parameters that describe the degree of the dead space effect. The second equation can be used to find the minimum value of the excess noise factor for any multiplication when the dead space effect is completely dominant, the so called "deterministic" limit. This agrees with the theoretically known equation for multiplications less than or equal to two. © 2011 World Scientific Publishing Company.

  3. Relaxing to Three Dimensions

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Extra dimensions of space might be present in our universe. If so, we want to know 'How do dimensions hide?' and 'Why are three dimensions special?' I'll give potential answers to both these questions in the context of localized gravity. Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00. Talk is broadcasted in Council Chamber

  4. Influence of implant position on clinical crown length and peri-implant soft tissue dimensions at implant-supported single crowns replacing maxillary central incisors

    DEFF Research Database (Denmark)

    Peng, Min; Fei, Wei; Hosseini, Mandana

    2013-01-01

    The aims of the present study were to evaluate the influence of implant position on clinical crown length and marginal soft tissue dimensions at implant-supported single crowns of maxillary central incisors, and to validate the papilla index score (PIS). Twenty-five patients, who had lost one of ...... abutments and did not necessarily result in an increased crown length. The distal implant papilla heightwas obviously shorter, althoughthe mesial papilla height was similar to thatof the healthy dentition.The papilla index score was tested to be a valid index for papilla fill....

  5. Path integral approach for quantum motion on spaces of non-constant curvature according to Koenigs - Three dimensions

    International Nuclear Information System (INIS)

    Grosche, C.

    2007-08-01

    In this contribution a path integral approach for the quantum motion on three-dimensional spaces according to Koenigs, for short''Koenigs-Spaces'', is discussed. Their construction is simple: One takes a Hamiltonian from three-dimensional flat space and divides it by a three-dimensional superintegrable potential. Such superintegrable potentials will be the isotropic singular oscillator, the Holt-potential, the Coulomb potential, or two centrifugal potentials, respectively. In all cases a non-trivial space of non-constant curvature is generated. In order to obtain a proper quantum theory a curvature term has to be incorporated into the quantum Hamiltonian. For possible bound-state solutions we find equations up to twelfth order in the energy E. (orig.)

  6. Types and Dynamics of Gendered Space: A Case of Emirati Female Learners in a Single-Gender Context

    Science.gov (United States)

    Alzeer, Gergana

    2018-01-01

    This article is concerned with gendered spaces as they emerge from exploring Emirati female learners' spatiality in a single-gender context. By conducting ethnographic research and utilising Lefebvre's triad of perceived, conceived and lived space for the analysis and categorisation of students' spaces, three types of gendered spaces emerged:…

  7. Singular vectors and invariant equations for the Schroedinger algebra in n ≥ 3 space dimensions. The general case

    International Nuclear Information System (INIS)

    Dobrev, V. K.; Stoimenov, S.

    2010-01-01

    The singular vectors in Verma modules over the Schroedinger algebra s(n) in (n + 1)-dimensional space-time are found for the case of general representations. Using the singular vectors, hierarchies of equations invariant under Schroedinger algebras are constructed.

  8. Digital atom interferometer with single particle control on a discretized space-time geometry.

    Science.gov (United States)

    Steffen, Andreas; Alberti, Andrea; Alt, Wolfgang; Belmechri, Noomen; Hild, Sebastian; Karski, Michał; Widera, Artur; Meschede, Dieter

    2012-06-19

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

  9. State-Space Equations and the First-Phase Algorithm for Signal Control of Single Intersections

    Institute of Scientific and Technical Information of China (English)

    LI Jinyuan; PAN Xin; WANG Xiqin

    2007-01-01

    State-space equations were applied to formulate the queuing and delay of traffic at a single intersection in this paper. The signal control of a single intersection was then modeled as a discrete-time optimal control problem, with consideration of the constraints of stream conflicts, saturation flow rate, minimum green time, and maximum green time. The problem cannot be solved directly due to the nonlinear constraints.However, the results of qualitative analysis were used to develop a first-phase signal control algorithm. Simulation results show that the algorithm substantially reduces the total delay compared to fixed-time control.

  10. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    Science.gov (United States)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  11. A COTS-based single board radiation-hardened computer for space applications

    International Nuclear Information System (INIS)

    Stewart, S.; Hillman, R.; Layton, P.; Krawzsenek, D.

    1999-01-01

    There is great community interest in the ability to use COTS (Commercial-Off-The-Shelf) technology in radiation environments. Space Electronics, Inc. has developed a high performance COTS-based radiation hardened computer. COTS approaches were selected for both hardware and software. Through parts testing, selection and packaging, all requirements have been met without parts or process development. Reliability, total ionizing dose and single event performance are attractive. The characteristics, performance and radiation resistance of the single board computer will be presented. (authors)

  12. Challenging Gender in Single-Sex Spaces: Lessons from a Feminist

    OpenAIRE

    Buzuvis, Erin

    2018-01-01

    Published: Erin E. Buzuvis, Challenging Gender in Single-Sex Spaces: Lessons from a Feminist, 80 L. & CONTEMP. PROBS. 155 (2017). This Article explores transgender inclusion within adult recreational women’s leagues by using the example of the Mary Vazquez Women’s Softball League (MVWSL), in Northampton, Massachusetts. A MVWSL policy addressing transgender inclusion became necessary due to a noticeable increase in gender-identity diversity. The resultant policy respects the league’s core ...

  13. Graviton collider effects in one and more large extra dimensions

    International Nuclear Information System (INIS)

    Giudice, Gian F.; Plehn, Tilman; Strumia, Alessandro

    2005-01-01

    Astrophysical bounds severely limit the possibility of observing collider signals of gravity with less than 3 flat extra dimensions. However, small distortions of the compactified space can lift the masses of the lightest graviton excitations, evading astrophysical bounds without affecting collider signals of quantum gravity. Following this procedure we reconsider theories with one large extra dimension. A slight space warping gives a model which is safe in the infrared against astrophysical and observational bounds, and which has the ultraviolet properties of gravity with a single flat extra dimension. We extend collider studies to the case of one extra dimension, pointing out its peculiarities. Finally, for a generic number of extra dimensions, we compare different channels in LHC searches for quantum gravity, introducing an ultraviolet cutoff as an additional parameter besides the Planck mass

  14. Banded versus Single-sided bonded space maintainers: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Sudhir Mittal

    2018-01-01

    Full Text Available Background: The present study is conducted to evaluate and compare the clinical performance of conventional band and loop space maintainer and fiber reinforced composite resin (FRCR space maintainers. Materials and Methods: A total of 45 extraction sites in the age group of 6–9 years having premature loss of primary molars or indicated for extraction were selected for the study. The patients were randomly divided into three groups as Group I, in which conventional band and loop space maintainer was given, Group II and Group III (FRCR, in which FRCR (everStick CandB and impregnated glass fibers (Interlig space maintainers were given, respectively. Patients were recalled at 3, 6, and 12-month interval for evaluation of all the three types of space maintainer. Results: Overall success rate of Group I was 86.7%, for Group II was 80%, and for Group III was 73.3% at the end of the study. Patient acceptability was significantly higher in Group II and Group III (FRCR as compared to Group I (Conventional band and loop. In Group I, cement loss and fracture of loop, whereas in Group II and Group III, debonding at enamel composite was the most common failure followed by debonding at fiber composite and fiber fracture. FRCR space maintainers were found to be cost-effective as compared to Group I. More linear changes and angular changes were recorded in Group I as compared to Group II and Group III but difference was not significant (P > 0.05. Conclusion: Only single (buccal surface application of FRCR space maintainers showed almost equal clinical efficacy compared to conventional band and loop space maintainer with significantly better patient acceptability, less cost, and time taken.

  15. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    Science.gov (United States)

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  16. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization

    Science.gov (United States)

    Turchin, Peter; Currie, Thomas E.; Whitehouse, Harvey; François, Pieter; Feeney, Kevin; Mullins, Daniel; Hoyer, Daniel; Collins, Christina; Grohmann, Stephanie; Mendel-Gleason, Gavin; Turner, Edward; Dupeyron, Agathe; Cioni, Enrico; Reddish, Jenny; Levine, Jill; Jordan, Greine; Brandl, Eva; Williams, Alice; Cesaretti, Rudolf; Krueger, Marta; Ceccarelli, Alessandro; Figliulo-Rosswurm, Joe; Tuan, Po-Ju; Peregrine, Peter; Marciniak, Arkadiusz; Preiser-Kapeller, Johannes; Kradin, Nikolay; Korotayev, Andrey; Palmisano, Alessio; Baker, David; Bidmead, Julye; Bol, Peter; Christian, David; Cook, Connie; Covey, Alan; Feinman, Gary; Júlíusson, Árni Daníel; Kristinsson, Axel; Miksic, John; Mostern, Ruth; Petrie, Cameron; Rudiak-Gould, Peter; ter Haar, Barend; Wallace, Vesna; Mair, Victor; Xie, Liye; Baines, John; Bridges, Elizabeth; Manning, Joseph; Lockhart, Bruce; Bogaard, Amy; Spencer, Charles

    2018-01-01

    Do human societies from around the world exhibit similarities in the way that they are structured, and show commonalities in the ways that they have evolved? These are long-standing questions that have proven difficult to answer. To test between competing hypotheses, we constructed a massive repository of historical and archaeological information known as “Seshat: Global History Databank.” We systematically coded data on 414 societies from 30 regions around the world spanning the last 10,000 years. We were able to capture information on 51 variables reflecting nine characteristics of human societies, such as social scale, economy, features of governance, and information systems. Our analyses revealed that these different characteristics show strong relationships with each other and that a single principal component captures around three-quarters of the observed variation. Furthermore, we found that different characteristics of social complexity are highly predictable across different world regions. These results suggest that key aspects of social organization are functionally related and do indeed coevolve in predictable ways. Our findings highlight the power of the sciences and humanities working together to rigorously test hypotheses about general rules that may have shaped human history. PMID:29269395

  17. Applicability of single-camera photogrammetry to determine body dimensions of pinnipeds: Galapagos sea lions as an example.

    Science.gov (United States)

    Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz

    2014-01-01

    Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal's body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance.

  18. Applicability of single-camera photogrammetry to determine body dimensions of pinnipeds: Galapagos sea lions as an example.

    Directory of Open Access Journals (Sweden)

    Kristine Meise

    Full Text Available Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal's body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6% and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%. Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%. In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance.

  19. An incomplete assembly with thresholding algorithm for systems of reaction-diffusion equations in three space dimensions IAT for reaction-diffusion systems

    International Nuclear Information System (INIS)

    Moore, Peter K.

    2003-01-01

    Solving systems of reaction-diffusion equations in three space dimensions can be prohibitively expensive both in terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in a finite element method-of-lines code and tested on a set of reaction-diffusion systems. The effect of incomplete assembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES and preconditioner ILUT is studied

  20. Preimage entropy dimension of topological dynamical systems

    OpenAIRE

    Liu, Lei; Zhou, Xiaomin; Zhou, Xiaoyao

    2014-01-01

    We propose a new definition of preimage entropy dimension for continuous maps on compact metric spaces, investigate fundamental properties of the preimage entropy dimension, and compare the preimage entropy dimension with the topological entropy dimension. The defined preimage entropy dimension holds various basic properties of topological entropy dimension, for example, the preimage entropy dimension of a subsystem is bounded by that of the original system and topologically conjugated system...

  1. Dimension and extensions

    CERN Document Server

    Aarts, JM

    1993-01-01

    Two types of seemingly unrelated extension problems are discussed in this book. Their common focus is a long-standing problem of Johannes de Groot, the main conjecture of which was recently resolved. As is true of many important conjectures, a wide range of mathematical investigations had developed, which have been grouped into the two extension problems. The first concerns the extending of spaces, the second concerns extending the theory of dimension by replacing the empty space with other spaces. The problem of de Groot concerned compactifications of spaces by means of an adjunction of a set of minimal dimension. This minimal dimension was called the compactness deficiency of a space. Early success in 1942 lead de Groot to invent a generalization of the dimension function, called the compactness degree of a space, with the hope that this function would internally characterize the compactness deficiency which is a topological invariant of a space that is externally defined by means of compact extensions of a...

  2. An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions

    Science.gov (United States)

    Macías-Díaz, J. E.

    2018-06-01

    In this work, we investigate numerically a model governed by a multidimensional nonlinear wave equation with damping and fractional diffusion. The governing partial differential equation considers the presence of Riesz space-fractional derivatives of orders in (1, 2], and homogeneous Dirichlet boundary data are imposed on a closed and bounded spatial domain. The model under investigation possesses an energy function which is preserved in the undamped regime. In the damped case, we establish the property of energy dissipation of the model using arguments from functional analysis. Motivated by these results, we propose an explicit finite-difference discretization of our fractional model based on the use of fractional centered differences. Associated to our discrete model, we also propose discretizations of the energy quantities. We establish that the discrete energy is conserved in the undamped regime, and that it dissipates in the damped scenario. Among the most important numerical features of our scheme, we show that the method has a consistency of second order, that it is stable and that it has a quadratic order of convergence. Some one- and two-dimensional simulations are shown in this work to illustrate the fact that the technique is capable of preserving the discrete energy in the undamped regime. For the sake of convenience, we provide a Matlab implementation of our method for the one-dimensional scenario.

  3. Comparison of neutron diffusion theory codes in two and three space dimensions using a sodium cooled fast reactor benchmark

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Putney, J.; Sweet, D.W.

    1980-04-01

    This report describes work performed to compare two UK neutron diffusion theory codes, TIGAR and SNAP, with published results for eight other codes available abroad. Both mesh edge and mesh centred finite difference diffusion theory codes as well as one axial synthesis code are included in the comparison and a range of iteration procedures are used by them. Comparison is made of calculations for a model of the sodium cooled fast reactor SNR-300 in both triangular and rectangular geometry and for a range of spatial meshes, enabling extrapolations to infinite mesh to be made. Calculated values of the effective multiplication constant, keff, for all the codes, agree very well when extrapolated to infinite mesh, indicating that no significant errors arising from the finite difference approximation but independent of mesh spacing are present in the calculations. The variation of keff with mesh area is found to be linear for the small meshes considered here, with the gradients for the mesh centred and mesh edged codes being of opposite sign. The results obtained using the mesh centred codes TIGAR, SNAP and CITATION agree closely with one another for all the meshes considered; the mesh edge codes agree less closely. (author)

  4. Higher spin gauge theories in any dimension

    International Nuclear Information System (INIS)

    Vasiliev, M.A.

    2004-01-01

    Some general properties of higher spin (HS) gauge theories are summarized, with the emphasize on the nonlinear theories in any dimension. The main conclusion is that nonlinear HS theories exist in any dimension. Note that HS gauge symmetries in the nonlinear HS theory differ from the Yang-Mills gauging of the global HS symmetry of a free theory one starts with by HS field strength dependent nonlinear corrections resulting from the partial gauge fixing of spontaneously broken HS symmetries in the extended non-commutative space. The HS geometry is that of the fuzzy hyperboloid in the auxiliary (fiber) non-commutative space. Its radius depends on the Weyl 0-forms which take values in the infinitive-dimensional module dual to the space of single-particle states in the system

  5. Extra dimensions round the corner?

    International Nuclear Information System (INIS)

    Abel, S.

    1999-01-01

    How many dimensions are we living in? This question is fundamental and yet, astonishingly, it remains unresolved. Of course, on the everyday level it appears that we are living in four dimensions three space plus one time dimension. But in recent months theoretical physicists have discovered that collisions between high-energy particles at accelerators may reveal the presence of extra space-time dimensions. On scales where we can measure the acceleration of falling objects due to gravity or study the orbital motion of planets or satellites, the gravitational force seems to be described by a 1/r 2 law. The most sensitive direct tests of the gravitational law are based on torsion-balance experiments that were first performed by Henry Cavendish in 1798. However, the smallest scales on which this type of experiment can be performed are roughly 1 mm (see J C Long, H W Chan and J C Price 1999 Nucl. Phys. B 539 23). At smaller distances, objects could be gravitating in five or more dimensions that are rolled up or ''compactified'' - an idea that is bread-and-butter to string theorists. Most string theorists however believe that the gravitational effects of compact extra dimensions are too small to be observed. Now Nima Arkani-Hamed from the Stanford Linear Accelerator Center (SLAC) in the US, Savas Dimopoulos at Stanford University and Gia Dvali, who is now at New York University, suggest differently (Phys. Lett. B 1998 429 263). They advanced earlier ideas from string theory in which the strong, weak and electromagnetic forces are confined to membranes, like dirt particles trapped in soap bubbles, while the gravitational force operates in the entire higher-dimensional volume. In their theory extra dimensions should have observable effects inside particle colliders such as the Tevatron accelerator at Fermilab in the US or at the future Large Hadron Collider at CERN. The effect will show up as an excess of events in which a single jet of particles is produced with no

  6. The fourth dimension

    CERN Document Server

    Rucker, Rudy

    2014-01-01

    ""This is an invigorating book, a short but spirited slalom for the mind."" - Timothy Ferris, The New York Times Book Review ""Highly readable. One is reminded of the breadth and depth of Hofstadter's Gödel, Escher, Bach."" - Science""Anyone with even a minimal interest in mathematics and fantasy will find The Fourth Dimension informative and mind-dazzling... [Rucker] plunges into spaces above three with a zest and energy that is breathtaking."" - Martin Gardner ""Those who think the fourth dimension is nothing but time should be encouraged to read The Fourth Dimension, along with anyone else

  7. Femtosecond single electron bunch generation by rotating longitudinal bunch phase space in magnetic field

    International Nuclear Information System (INIS)

    Yang, J.; Kondoh, T.; Kan, K.; Kozawa, T.; Yoshida, Y.; Tagawa, S.

    2006-01-01

    A femtosecond (fs) electron bunching was observed in a photoinjector with a magnetic compressor by rotating the bunch in longitudinal phase space. The bunch length was obtained by measuring Cherenkov radiation of the electron beam with a femtosecond streak camera technique. A single electron bunch with rms bunch length of 98 fs was observed for a 32 MeV electron beam at a charge of 0.17 nC. The relative energy spread and the normalized transverse emittance of the electron beam were 0.2% and 3.8 mm-mrad, respectively. The effect of space charge on the bunch compression was investigated experimentally for charges from 0.17 to 1.25 nC. The dependences of the relative energy spread and the normalized beam transverse emittance on the bunch charge were measured

  8. Addressing challenges in single species assessments via a simple state-space assessment model

    DEFF Research Database (Denmark)

    Nielsen, Anders

    Single-species and age-structured fish stock assessments still remains the main tool for managing fish stocks. A simple state-space assessment model is presented as an alternative to (semi) deterministic procedures and the full parametric statistical catch at age models. It offers a solution...... to some of the key challenges of these models. Compared to the deterministic procedures it solves a list of problems originating from falsely assuming that age classified catches are known without errors and allows quantification of uncertainties of estimated quantities of interest. Compared to full...

  9. Probing quantum entanglement in the Schwarzschild space-time beyond the single-mode approximation

    Science.gov (United States)

    He, Juan; Ding, Zhi-Yong; Ye, Liu

    2018-05-01

    In this paper, we deduce the vacuum structure for Dirac fields in the background of Schwarzschild space-time beyond the single-mode approximation and discuss the performance of quantum entanglement between particle and antiparticle modes of a Dirac field with Hawking effect. It is shown that Hawking radiation does not always destroy the physically accessible entanglement, and entanglement amplification may happen in some cases. This striking result is different from that of the single-mode approximation, which holds that the Hawking radiation can only destroy entanglement. Lastly, we analyze the physically accessible entanglement relation outside the event horizon and demonstrate that the monogamy inequality is constantly established regardless of the choice of given parameters.

  10. Accessible solitons of fractional dimension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Zhang, Yiqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2016-05-15

    We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential. •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.

  11. Interference of Single Photons Emitted by Entangled Atoms in Free Space

    Science.gov (United States)

    Araneda, G.; Higginbottom, D. B.; Slodička, L.; Colombe, Y.; Blatt, R.

    2018-05-01

    The generation and manipulation of entanglement between isolated particles has precipitated rapid progress in quantum information processing. Entanglement is also known to play an essential role in the optical properties of atomic ensembles, but fundamental effects in the controlled emission and absorption from small, well-defined numbers of entangled emitters in free space have remained unobserved. Here we present the control of the emission rate of a single photon from a pair of distant, entangled atoms into a free-space optical mode. Changing the length of the optical path connecting the atoms modulates the single-photon emission rate in the selected mode with a visibility V =0.27 ±0.03 determined by the degree of entanglement shared between the atoms, corresponding directly to the concurrence Cρ=0.31 ±0.10 of the prepared state. This scheme, together with population measurements, provides a fully optical determination of the amount of entanglement. Furthermore, large sensitivity of the interference phase evolution points to applications of the presented scheme in high-precision gradient sensing.

  12. Characterization of System Level Single Event Upset (SEU) Responses using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  13. Brane-world motion in compact dimensions

    Science.gov (United States)

    Greene, Brian; Levin, Janna; Parikh, Maulik

    2011-08-01

    The topology of extra dimensions can break global Lorentz invariance, singling out a globally preferred frame even in flat spacetime. Through experiments that probe global topology, an observer can determine her state of motion with respect to the preferred frame. This scenario is realized if we live on a brane universe moving through a flat space with compact extra dimensions. We identify three experimental effects due to the motion of our universe that one could potentially detect using gravitational probes. One of these relates to the peculiar properties of the twin paradox in multiply-connected spacetimes. Another relies on the fact that the Kaluza-Klein modes of any bulk field are sensitive to boundary conditions. A third concerns the modification to the Newtonian potential on a moving brane. Remarkably, we find that even small extra dimensions are detectable by brane observers if the brane is moving sufficiently fast. Communicated by P R L V Moniz

  14. On the estimation of the current density in space plasmas: Multi- versus single-point techniques

    Science.gov (United States)

    Perri, Silvia; Valentini, Francesco; Sorriso-Valvo, Luca; Reda, Antonio; Malara, Francesco

    2017-06-01

    Thanks to multi-spacecraft mission, it has recently been possible to directly estimate the current density in space plasmas, by using magnetic field time series from four satellites flying in a quasi perfect tetrahedron configuration. The technique developed, commonly called ;curlometer; permits a good estimation of the current density when the magnetic field time series vary linearly in space. This approximation is generally valid for small spacecraft separation. The recent space missions Cluster and Magnetospheric Multiscale (MMS) have provided high resolution measurements with inter-spacecraft separation up to 100 km and 10 km, respectively. The former scale corresponds to the proton gyroradius/ion skin depth in ;typical; solar wind conditions, while the latter to sub-proton scale. However, some works have highlighted an underestimation of the current density via the curlometer technique with respect to the current computed directly from the velocity distribution functions, measured at sub-proton scales resolution with MMS. In this paper we explore the limit of the curlometer technique studying synthetic data sets associated to a cluster of four artificial satellites allowed to fly in a static turbulent field, spanning a wide range of relative separation. This study tries to address the relative importance of measuring plasma moments at very high resolution from a single spacecraft with respect to the multi-spacecraft missions in the current density evaluation.

  15. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  16. Inhomogeneous compact extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.

  17. Deconstructing dimensions

    International Nuclear Information System (INIS)

    Cohen, A.G.

    2003-01-01

    Extra-dimensional physics is realized as the low-energy limit of lower-dimensional gauge theories. This 'deconstruction' of dimensions provides a UV completion of higher-dimensional theories, and has been used to investigate the physics of extra-dimensions. This technique has also led to a variety of interesting phenomenological applications, especially a new class of models of electroweak superconductivity, called the 'little Higgs'. (author)

  18. Can single molecule localization microscopy be used to map closely spaced RGD nanodomains?

    Directory of Open Access Journals (Sweden)

    Mahdie Mollazade

    Full Text Available Cells sense and respond to nanoscale variations in the distribution of ligands to adhesion receptors. This makes single molecule localization microscopy (SMLM an attractive tool to map the distribution of ligands on nanopatterned surfaces. We explore the use of SMLM spatial cluster analysis to detect nanodomains of the cell adhesion-stimulating tripeptide arginine-glycine-aspartic acid (RGD. These domains were formed by the phase separation of block copolymers with controllable spacing on the scale of tens of nanometers. We first determined the topology of the block copolymer with atomic force microscopy (AFM and then imaged the localization of individual RGD peptides with direct stochastic optical reconstruction microscopy (dSTORM. To compare the data, we analyzed the dSTORM data with DBSCAN (density-based spatial clustering application with noise. The ligand distribution and polymer topology are not necessary identical since peptides may attach to the polymer outside the nanodomains and/or coupling and detection of peptides within the nanodomains is incomplete. We therefore performed simulations to explore the extent to which nanodomains could be mapped with dSTORM. We found that successful detection of nanodomains by dSTORM was influenced by the inter-domain spacing and the localization precision of individual fluorophores, and less by non-specific absorption of ligands to the substratum. For example, under our imaging conditions, DBSCAN identification of nanodomains spaced further than 50 nm apart was largely independent of background localisations, while nanodomains spaced closer than 50 nm required a localization precision of ~11 nm to correctly estimate the modal nearest neighbor distance (NDD between nanodomains. We therefore conclude that SMLM is a promising technique to directly map the distribution and nanoscale organization of ligands and would benefit from an improved localization precision.

  19. Standard(-like) Model from an SO(12) Grand Unified Theory in six-dimensions with S2 extra-space

    International Nuclear Information System (INIS)

    Nomura, Takaaki; Sato, Joe

    2009-01-01

    We analyze a gauge-Higgs unification model which is based on a gauge theory defined on a six-dimensional spacetime with an S 2 extra-space. We impose a symmetry condition for a gauge field and non-trivial boundary conditions of the S 2 . We provide the scheme for constructing a four-dimensional theory from the six-dimensional gauge theory under these conditions. We then construct a concrete model based on an SO(12) gauge theory with fermions which lie in a 32 representation of SO(12), under the scheme. This model leads to a Standard Model(-like) gauge theory which has gauge symmetry SU(3)xSU(2) L xU(1) Y (xU(1) 2 ) and one generation of SM fermions, in four-dimensions. The Higgs sector of the model is also analyzed, and it is shown that the electroweak symmetry breaking and the prediction of W-boson and Higgs-boson masses are obtained

  20. Quantum sensing of the phase-space-displacement parameters using a single trapped ion

    Science.gov (United States)

    Ivanov, Peter A.; Vitanov, Nikolay V.

    2018-03-01

    We introduce a quantum sensing protocol for detecting the parameters characterizing the phase-space displacement by using a single trapped ion as a quantum probe. We show that, thanks to the laser-induced coupling between the ion's internal states and the motion mode, the estimation of the two conjugated parameters describing the displacement can be efficiently performed by a set of measurements of the atomic state populations. Furthermore, we introduce a three-parameter protocol capable of detecting the magnitude, the transverse direction, and the phase of the displacement. We characterize the uncertainty of the two- and three-parameter problems in terms of the Fisher information and show that state projective measurement saturates the fundamental quantum Cramér-Rao bound.

  1. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

    Science.gov (United States)

    Gross, I.; Akhtar, W.; Garcia, V.; Martínez, L. J.; Chouaieb, S.; Garcia, K.; Carrétéro, C.; Barthélémy, A.; Appel, P.; Maletinsky, P.; Kim, J.-V.; Chauleau, J. Y.; Jaouen, N.; Viret, M.; Bibes, M.; Fusil, S.; Jacques, V.

    2017-09-01

    Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

  2. The structure of single-phase turbulent flows through closely spaced rod arrays

    International Nuclear Information System (INIS)

    Hooper, J.D.; Rehme, K.

    1983-02-01

    The axial and azimuthal turbulence intensity in the rod gap region has been shown, for developed single-phase turbulent flow through parallel rod arrays, to strongly increase with decreasing rod spacing. Two array geometries are reported, one constructed from a rectangular cross-section duct containing four rods and spaced at five p/d or w/d ratios. The second test section, constructed from six rods set in a regular square-pitch array, represented the interior flow region of a large array. The mean axial velocity, wall shear stress variation and axial pressure distribution were measured, together with hot-wire anemometer measurements of the Reynolds stresses. No significant non-zero secondary flow components were detected, using techniques capable of resolving secondary flow velocities to 1% of the local axial velocity. For the lowest p/d ratio of 1.036, cross-correlation measurements showed the presence of an energetic periodic azimuthal turbulent velocity component, correlated over a significant part of the flow area. The negligible contribution of secondary flows to the axial momentum balance, and the large azimuthal turbulent velocity component in the rod gap area, suggest a different mechanism than Reynolds stress gradient driven secondary flows for the turbulent transport process in the rod gap. (orig.) [de

  3. Supersymmetric gauged scale covariance in ten and lower dimensions

    International Nuclear Information System (INIS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2004-01-01

    We present globally supersymmetric models of gauged scale covariance in ten, six, and four dimensions. This is an application of a recent similar gauging in three dimensions for a massive self-dual vector multiplet. In ten dimensions, we couple a single vector multiplet to another vector multiplet, where the latter gauges the scale covariance of the former. Due to scale covariance, the system does not have a Lagrangian formulation, but has only a set of field equations, like Type IIB supergravity in ten dimensions. As by-products, we construct similar models in six dimensions with N=(2,0) supersymmetry, and four dimensions with N=1 supersymmetry. We finally get a similar model with N=4 supersymmetry in four dimensions with consistent interactions that have never been known before. We expect a series of descendant theories in dimensions lower than ten by dimensional reductions. This result also indicates that similar mechanisms will work for other vector and scalar multiplets in space-time lower than ten dimensions

  4. Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

    Science.gov (United States)

    Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad

    2015-01-01

    This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.

  5. Balance failure in single limb stance due to ankle sprain injury: an analysis of center of pressure using the fractal dimension method.

    Science.gov (United States)

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2014-01-01

    Instrumented postural control analysis plays an important role in evaluating the effects of injury on dynamic stability during balance tasks, and is often conveyed with measures based on the displacement of the center-of-pressure (COP) assessed with a force platform. However, the desired outcome of the task is frequently characterized by a loss of dynamic stability, secondary to injury. Typically, these failed trials are discarded during research investigations, with the potential loss of informative data pertaining to task success. The novelty of the present study is that COP characteristics of failed trials in injured participants are compared to successful trial data in another injured group, and a control group of participants, using the fractal dimension (FD) method. Three groups of participants attempted a task of eyes closed single limb stance (SLS): twenty-nine participants with acute ankle sprain successfully completed the task on their non-injured limb (successful injury group); twenty eight participants with acute ankle sprain failed their attempt on their injured limb (failed injury group); sixteen participants with no current injury successfully completed the task on their non-dominant limb (successful non-injured group). Between trial analyses of these groups revealed significant differences in COP trajectory FD (successful injury group: 1.58±0.06; failed injury group: 1.54±0.07; successful non-injured group: 1.64±0.06) with a large effect size (0.27). These findings demonstrate that successful eyes-closed SLS is characterized by a larger FD of the COP path when compared to failed trials, and that injury causes a decrease in COP path FD. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Space Situational Awareness of Large Numbers of Payloads From a Single Deployment

    Science.gov (United States)

    Segerman, A.; Byers, J.; Emmert, J.; Nicholas, A.

    2014-09-01

    The nearly simultaneous deployment of a large number of payloads from a single vehicle presents a new challenge for space object catalog maintenance and space situational awareness (SSA). Following two cubesat deployments last November, it took five weeks to catalog the resulting 64 orbits. The upcoming Kicksat mission will present an even greater SSA challenge, with its deployment of 128 chip-sized picosats. Although all of these deployments are in short-lived orbits, future deployments will inevitably occur at higher altitudes, with a longer term threat of collision with active spacecraft. With such deployments, individual scientific payload operators require rapid precise knowledge of their satellites' locations. Following the first November launch, the cataloguing did not initially associate a payload with each orbit, leaving this to the satellite operators. For short duration missions, the time required to identify an experiment's specific orbit may easily be a large fraction of the spacecraft's lifetime. For a Kicksat-type deployment, present tracking cannot collect enough observations to catalog each small object. The current approach is to treat the chip cloud as a single catalog object. However, the cloud dissipates into multiple subclouds and, ultimately, tiny groups of untrackable chips. One response to this challenge may be to mandate installation of a transponder on each spacecraft. Directional transponder transmission detections could be used as angle observations for orbit cataloguing. Of course, such an approach would only be employable with cooperative spacecraft. In other cases, a probabilistic association approach may be useful, with the goal being to establish the probability of an element being at a given point in space. This would permit more reliable assessment of the probability of collision of active spacecraft with any cloud element. This paper surveys the cataloguing challenges presented by large scale deployments of small spacecraft

  7. Extra dimensions and color confinement

    Energy Technology Data Exchange (ETDEWEB)

    Pleitez, V

    1995-04-01

    An extension of the ordinary four dimensional Minkowski space by introducing additional dimensions which have their own Lorentz transformation is considered. Particles can transform in a different way under each Lorentz group. It is shown that only quark interactions are slightly modified and that color confinement automatic since these degrees of freedom run only in the extra dimensions. No compactification of the extra dimensions is needed. (author). 4 refs.

  8. Superconducting Nanowire Single Photon Detectors for High-Data-Rate Deep-Space Optical Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — High data rate deep space optical communication (DSOC) links for manned and unmanned space exploration have been identified by NASA as a critical future capability,...

  9. Computer program to fit a hyperellipse to a set of phase-space points in as many as six dimensions. [HELIPS, and COFAC to determine derivatives of determinants, in FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Wadlinger, E.A.

    1980-03-01

    A computer program that will fit a hyperellipse to a set of phase-space points in as many as 6 dimensions was written and tested. The weight assigned to the phase-space points can be varied as a function of their distance from the centroid of the distribution. Varying the weight enables determination of whether there is a difference in ellipse orientation between inner and outer particles. This program should be useful in studying the effects of longitudinal and transverse phase-space couplings.

  10. Comparative Performance in Single-Port Versus Multiport Minimally Invasive Surgery, and Small Versus Large Operative Working Spaces: A Preclinical Randomized Crossover Trial.

    Science.gov (United States)

    Marcus, Hani J; Seneci, Carlo A; Hughes-Hallett, Archie; Cundy, Thomas P; Nandi, Dipankar; Yang, Guang-Zhong; Darzi, Ara

    2016-04-01

    Surgical approaches such as transanal endoscopic microsurgery, which utilize small operative working spaces, and are necessarily single-port, are particularly demanding with standard instruments and have not been widely adopted. The aim of this study was to compare simultaneously surgical performance in single-port versus multiport approaches, and small versus large working spaces. Ten novice, 4 intermediate, and 1 expert surgeons were recruited from a university hospital. A preclinical randomized crossover study design was implemented, comparing performance under the following conditions: (1) multiport approach and large working space, (2) multiport approach and intermediate working space, (3) single-port approach and large working space, (4) single-port approach and intermediate working space, and (5) single-port approach and small working space. In each case, participants performed a peg transfer and pattern cutting tasks, and each task repetition was scored. Intermediate and expert surgeons performed significantly better than novices in all conditions (P Performance in single-port surgery was significantly worse than multiport surgery (P performance in the intermediate versus large working space. In single-port surgery, there was a converse trend; performances in the intermediate and small working spaces were significantly better than in the large working space. Single-port approaches were significantly more technically challenging than multiport approaches, possibly reflecting loss of instrument triangulation. Surprisingly, in single-port approaches, in which triangulation was no longer a factor, performance in large working spaces was worse than in intermediate and small working spaces. © The Author(s) 2015.

  11. Femtosecond laser irradiation of olivine single crystals: Experimental simulation of space weathering

    Science.gov (United States)

    Fazio, A.; Harries, D.; Matthäus, G.; Mutschke, H.; Nolte, S.; Langenhorst, F.

    2018-01-01

    Space weathering is one of the most common surface process occurring on atmosphere-free bodies such as asteroids and the Moon. It is caused mainly by solar wind irradiation and the impact of micrometeoroids. In order to simulate space weathering effects, in particular those produced by hypervelocity impacts, we produced microcraters via ultra-short (∼100 fs) laser irradiation of crystallographically oriented slices of forsterite-rich (Fo94.7) olivine. The main advantages of the application of a femtosecond laser radiation to reproduce the space weathering effects are (1) the high peak irradiance (1015 W cm-2), which generates the propagation of the shock wave at the nanosecond timescale (i.e., timescale of the micrometeoroid impacts); (2) the rapid transfer of energy to the target material, which avoids the interaction of laser light with the developing vapor plume; (3) a small laser beam, which allows the effects of a single impact to be simulated. The results of our spectroscopic and electron microscopic investigation validate this approach: the samples show strong darkening and reddening of the reflectance spectra and structural damages similar to the natural microcraters found on regolith grains of the Moon and asteroid 25143 Itokawa. Detailed investigations of several microcrater cross-sections by transmission electron microscopy allowed the detection of shock-induced defect microstructures. From the top to the bottom of the grain, the shock wave causes evaporation, melting, solid-state recrystallization, misorientation, fracturing, and the propagation of dislocations with Burgers vectors parallel to [001]. The formation of a short-lived vapor plume causes the kinetic fractionation of the gas and the preferential loss of lighter elements, mostly magnesium and oxygen. The high temperatures within the melt layer and the kinetic loss of oxygen promote the thermal reduction of iron and nickel, which leads to the formation of metallic nanoparticles (npFe0). The

  12. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico

    2017-11-01

    This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.

  13. Single-Mode, High Repetition Rate, Compact Ho:YLF Laser for Space-Borne Lidar Applications

    Science.gov (United States)

    Bai, Yingxin; Yu, Jirong; Wong, Teh-Hwa; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.

    2014-01-01

    A single transverse/longitudinal mode, compact Q-switched Ho:YLF laser has been designed and demonstrated for space-borne lidar applications. The pulse energy is between 34-40 mJ for 100-200 Hz operation. The corresponding peak power is >1 MW.

  14. Control strategy for Single-phase Transformerless Three-leg Unified Power Quality Conditioner Based on Space Vector Modulation

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei

    2016-01-01

    The unified power quality conditioner (UPQC) is known as an effective compensation device to improve PQ for sensitive end-users. This paper investigates the operation and control of a single-phase three-leg UPQC (TL-UPQC), where a novel space vector modulation method is proposed for naturally...

  15. Conformal dimension theory and application

    CERN Document Server

    Mackay, John M

    2010-01-01

    Conformal dimension measures the extent to which the Hausdorff dimension of a metric space can be lowered by quasisymmetric deformations. Introduced by Pansu in 1989, this concept has proved extremely fruitful in a diverse range of areas, including geometric function theory, conformal dynamics, and geometric group theory. This survey leads the reader from the definitions and basic theory through to active research applications in geometric function theory, Gromov hyperbolic geometry, and the dynamics of rational maps, amongst other areas. It reviews the theory of dimension in metric spaces and of deformations of metric spaces. It summarizes the basic tools for estimating conformal dimension and illustrates their application to concrete problems of independent interest. Numerous examples and proofs are provided. Working from basic definitions through to current research areas, this book can be used as a guide for graduate students interested in this field, or as a helpful survey for experts. Background needed ...

  16. Axial p-n junction and space charge limited current in single GaN nanowire

    Science.gov (United States)

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-01

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 1017 at cm-3 assuming a donor level N d of 2-3 × 1018 at cm-3. The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  17. Space nuclear reactor concepts for avoidance of a single point failure

    International Nuclear Information System (INIS)

    El-Genk, M. S.

    2007-01-01

    This paper presents three space nuclear reactor concepts for future exploration missions requiring electrical power of 10's to 100's kW, for 7-10 years. These concepts avoid a single point failure in reactor cooling; and they could be used with a host of energy conversion technologies. The first is lithium or sodium heat pipes cooled reactor. The heat pipes operate at a fraction of their prevailing capillary or sonic limit. Thus, when a number of heat pipes fail, those in the adjacent modules remove their heat load, maintaining reactor core adequately cooled. The second is a reactor with a circulating liquid metal coolant. The reactor core is divided into six identical sectors, each with a separate energy conversion loop. The sectors in the reactor core are neurotically coupled, but hydraulically decoupled. Thus, when a sector experiences a loss of coolant, the fission power generated in it will be removed by the circulating coolant in the adjacent sectors. In this case, however, the reactor fission power would have to decrease to avoid exceeding the design temperature limits in the sector with a failed loop. These two reactor concepts are used with energy conversion technologies, such as advanced Thermoelectric (TE), Free Piston Stirling Engines (FPSE), and Alkali Metal Thermal-to- Electric Conversion (AMTEC). Gas cooled reactors are a better choice to use with Closed Brayton Cycle engines, such as the third reactor concept to be presented in the paper. It has a sectored core that is cooled with a binary mixture of He-Xe (40 gm/mole). Each of the three sectors in the reactor has its own CBC and neutronically, but not hydraulically, coupled to the other sectors

  18. Axial p-n junction and space charge limited current in single GaN nanowire.

    Science.gov (United States)

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-05

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 10 17 at cm -3 assuming a donor level N d of 2-3 × 10 18 at cm -3 . The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  19. Why do we live in 3+1 dimensions?

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Rugh, S.E.

    1993-01-01

    Noticing that really the fermions of the Standard Model are best thought of a Weyl - rather than Dirac - particles (relative to fundamental scales located at some presumably very high energies) it becomes interesting that the experimental space-time dimension is singled out by the Weyl equation: It is observed that precisely in the experimentally true space-time dimensionality 4=3+1 the number of linearly independent matrices n 2 Weyl dimensionized as the matrices in the Weyl equation equals the dimension d. So just in this dimension (in fact, also in a trivial case d = 1) do the sigma-matrices of the Weyl-equation form a basis. It is also characteristic for this dimension that there is no degeneracy of helicity states of the Weyl spinor for all nonzero momenta. We would like to interpret these features to signal a special 'form stability' of the Weyl equation in the phenomenologically true dimension of space-time. In an attempt of making this stability to occur in an as large as possible basin of allowed modifications we discuss whether it is possible to define what we could possibly mean by 'stability of Natural laws'. (orig.)

  20. Compactified vacuum in ten dimensions

    International Nuclear Information System (INIS)

    Wurmser, D.

    1987-01-01

    Since the 1920's, theories which unify gravity with the other fundamental forces have called for more than the four observed dimensions of space-time. According to such a theory, the vacuum consists of flat four-dimensional space-time described by the Minkowski metric M 4 and a compactified space B. The dimensions of B are small, and the space can only be observed at distance scales smaller than the present experimental limit. These theories have had serious difficulties. The equations of gravity severely restrict the possible choices for the space B. The allowed spaces are complicated and difficult to study. The vacuum is furthermore unstable in the sense that a small perturbation causes the compactified dimensions to expand indefinitely. There is an addition a semi-classical argument which implies that the compactified vacuum by annihilated by virtual black holes. It follows that a universe with compactified extra dimensions could not have survived to the present. These results were derived by applying the equations of general relativity to spaces of more than four dimensions. The form of these equations was assumed to be unchanged by an increase in the number of dimensions. The authors illustrate the effect of such terms by considering the example B = S 6 where S 6 is the six-dimensional sphere. Only when the extra terms are included is this choice of the compactified space allowed. He explore the effect of a small perturbation on such a vacuum. The ten-dimensional spherically symmetric potential is examined, and I determine conditions under which the formation of virtual black holes is forbidden. The examples M 4 x S 6 is still plagued by the semi-classical instability, but this result does not hold in general. The requirement that virtual black holes be forbidden provides a test for any theory which predicts a compactified vacuum

  1. Divergence, spacetime dimension and fractal structure

    International Nuclear Information System (INIS)

    Nakamura, Hiroshi

    2000-01-01

    With a Cantor spacetime in mind, we assume the dimension of spacetime to be slightly smaller than four. Within the framework of QED, this dimension can be determined by calculating Feynman diagrams. We infer that the dimension of spacetime may be influenced by holes in space. (author)

  2. High core count single-mode multicore fiber for dense space division multiplexing

    DEFF Research Database (Denmark)

    Aikawa, K.; Sasaki, Y.; Amma, Y.

    2016-01-01

    Multicore fibers and few-mode fibers have the potential to realize dense-space-division multiplexing systems. Several dense-space-division multiplexing system transmission experiments over multicore fibers and few-mode fibers have been demonstrated so far. Multicore fibers, including recent resul...

  3. Multiplying dimensions

    CERN Multimedia

    2013-01-01

    A few weeks ago, I had a vague notion of what TED was, and how it worked, but now I’m a confirmed fan. It was my privilege to host CERN’s first TEDx event last Friday, and I can honestly say that I can’t remember a time when I was exposed to so much brilliance in such a short time.   TEDxCERN was designed to give a platform to science. That’s why we called it Multiplying Dimensions – a nod towards the work we do here, while pointing to the broader importance of science in society. We had talks ranging from the most subtle pondering on the nature of consciousness to an eighteen year old researcher urging us to be patient, and to learn from our mistakes. We had musical interludes that included encounters between the choirs of local schools and will.i.am, between an Israeli pianist and an Iranian percussionist, and between Grand Opera and high humour. And although I opened the event by announcing it as a day off from physics, we had a quite brill...

  4. The search for extra dimensions

    International Nuclear Information System (INIS)

    Abel, Steven; March-Russell, John

    2000-01-01

    The possibility of extra dimensions, beyond the three dimensions of space of our everyday experience, sometimes crops up as a convenient, if rather vague, plot in science fiction. In science, however, the idea of extra dimensions has a rich history, dating back at least as far as the 1920s. Recently there has been a remarkable renaissance in this area due to the work of a number of theoretical physicists. It now seems possible that we, the Earth and, indeed, the entire visible universe are stuck on a membrane in a higher-dimensional space, like dust particles that are trapped on a soap bubble. In this article the authors look at the major issues behind this new development. Why, for example, don't we see these extra dimensions? If they exist, how can we detect them? And perhaps the trickiest question of all: how did this fanciful idea come to be considered in the first place? (U.K.)

  5. Space Vector Pulse Width Modulation Strategy for Single-Phase Three-Level CIC T-source Inverter

    DEFF Research Database (Denmark)

    Shults, Tatiana E.; Husev, Oleksandr O.; Blaabjerg, Frede

    2016-01-01

    This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance of the inver......This paper presents a novel space vector pulse-width modulation strategy for a single-phase three-level buck-boost inverter based on an impedance-source network. The case study system is based on T-source inverter with continuous input current. To demonstrate the improved performance...... of the inverter, the strategy was compared the traditional pulse-width modulation. It is shown that the approach proposed has fewer switching states and does not suffer from neutral point misbalance....

  6. Origin of Everything and the 21 Dimensions of the Universe

    Science.gov (United States)

    Loev, Mark

    2009-03-01

    The Dimensions of the Universe correspond with the Dimensions of the human body. The emotion that is a positive for every dimension is Love. The negative emotion that effects each dimension are listed. All seven negative emotions effect Peace, Love and Happiness. 21st Dimension: Happiness Groin & Heart 20th Dimension: Love Groin & Heart 19th Dimension: Peace Groin & heart 18th Dimension: Imagination Wave Eyes Anger 17th Dimension: Z Wave / Closed Birth 16th Dimension: Electromagnetic Wave Ears Anger 15th Dimension: Universal Wave Skin Worry 14th Dimension: Lover Wave Blood Hate 13th Dimension: Disposal Wave Buttocks Fear 12th Dimension: Builder Wave Hands Hate 11th Dimension: Energy Wave Arms Fear 10th Dimension: Time Wave Brain Pessimism 9th Dimension: Gravity Wave Legs Fear 8th Dimension: Sweet Wave Pancreas Fear 7th Dimension: File Wave Left Lung Fear 6th Dimension: Breathing Wave Right Lung Fear 5th Dimension: Digestive Wave Stomach Fear 4th Dimension: Swab Wave Liver Guilt 3rd Dimension: Space Wave Face Sadness 2nd Dimension: Line Wave Mouth Revenge 1st Dimension: Dot Wave Nose Sadness The seven deadly sins correspond: Anger Hate Sadness Fear Worry Pessimism Revenge Note: Guilt is fear

  7. Pseudospectral operational matrix for numerical solution of single and multiterm time fractional diffusion equation

    OpenAIRE

    GHOLAMI, SAEID; BABOLIAN, ESMAIL; JAVIDI, MOHAMMAD

    2016-01-01

    This paper presents a new numerical approach to solve single and multiterm time fractional diffusion equations. In this work, the space dimension is discretized to the Gauss$-$Lobatto points. We use the normalized Grunwald approximation for the time dimension and a pseudospectral successive integration matrix for the space dimension. This approach shows that with fewer numbers of points, we can approximate the solution with more accuracy. Some examples with numerical results in tables and fig...

  8. Single Shot Measurements of the 4-Dimensional Transverse Phase Space Distribution of Intense Ion Beams at the UNILAC at GSI

    CERN Document Server

    Groening, L

    2003-01-01

    The UNILAC is used as an injector for the synchrotron SIS. It is designed to fill the synchrotron up to its space charge limit. The upper limit for the useful beam emittance of the UNILAC is given by the finite acceptance of the SIS during the injection process. In order to remain within this acceptance the emittance growth during beam acceleration and transportation due to space charge effects must be minimized by applying an appropriate beam focusing. Therefore, the influence of the magnetic focusing strength on the beam emittance growth was investigated experimentally for different beam currents. Measurements of transverse phase space distributions were performed before and after the Alvarez accelerator with a periodic focusing channel, respectively. In order to perform such a wide parameter scan within a reasonable time with respect to machine stability, the pepper pot technique was applied. The pepper pot method allows for single-pulse measurements. For comparison several measurements using the slit-grid...

  9. General Space-Confined On-Substrate Fabrication of Thickness-Adjustable Hybrid Perovskite Single-Crystalline Thin Films.

    Science.gov (United States)

    Chen, Yao-Xuan; Ge, Qian-Qing; Shi, Yang; Liu, Jie; Xue, Ding-Jiang; Ma, Jing-Yuan; Ding, Jie; Yan, Hui-Juan; Hu, Jin-Song; Wan, Li-Jun

    2016-12-21

    Organic-inorganic hybrid perovskite single-crystalline thin films (SCTFs) are promising for enhancing photoelectric device performance due to high carrier mobility, long diffusion length, and carrier lifetime. However, bulk perovskite single crystals available today are not suitable for practical device application due to the unfavorable thickness. Herein, we report a facile space-confined solution-processed strategy to on-substrate grow various hybrid perovskite SCTFs in a size of submillimeter with adjustable thicknesses from nano- to micrometers. These SCTFs exhibit photoelectric properties comparable to bulk single crystals with low defect density and good air stability. The clear thickness-dependent colors allow fast visual selection of SCTFs with a suitable thickness for specific device application. The present substrate-independent growth of perovskite SCTFs opens up opportunities for on-chip fabrication of diverse high-performance devices.

  10. System modeling for the advanced thermionic initiative single cell thermionic space nuclear reactor

    International Nuclear Information System (INIS)

    Lee, H.H.; Lewis, B.R.; Klein, A.C.; Pawlowski, R.A.

    1993-01-01

    Incore thermionic space reactor design concepts which operate in a nominal power output range of 20 to 40 kWe are described. Details of the neutronics, thermionic, shielding, and heat rejection performance are presented. Two different designs, ATI-Driven and ATI-Driverless, are considered. Comparison of the core overall performance of these two configurations are described. The comparison of these two cores includes the overall conversion efficiency, reactor mass, shield mass, and heat rejection mass. An overall system design has been developed to model the advanced incore thermionic energy conversion based nuclear reactor systems for space applications in this power range

  11. Label Space Reduction in MPLS Networks: How Much Can A Single Stacked Label Do?

    DEFF Research Database (Denmark)

    Solano, Fernando; Stidsen, Thomas K.; Fabregat, Ramon

    2008-01-01

    Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS-allowing the config......Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS...

  12. Generalized Born-Oppenheimer treatment of Jahn-Teller systems in Hilbert spaces of arbitrary dimension: theory and application to a three-state model potential.

    Science.gov (United States)

    Varandas, A J C; Sarkar, B

    2011-05-14

    Generalized Born-Oppenheimer equations including the geometrical phase effect are derived for three- and four-fold electronic manifolds in Jahn-Teller systems near the degeneracy seam. The method is readily extendable to N-fold systems of arbitrary dimension. An application is reported for a model threefold system, and the results are compared with Born-Oppenheimer (geometrical phase ignored), extended Born-Oppenheimer, and coupled three-state calculations. The theory shows unprecedented simplicity while depicting all features of more elaborated ones.

  13. T2 image contrast evaluation using three dimension sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE)

    International Nuclear Information System (INIS)

    Yamazaki, Ryo; Hiura, Yukikazu; Tsuji, Akio; Nishiki, Shigeo; Uchikoshi, Masato

    2011-01-01

    Sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE) sequence enables one to decrease specific absorption rate (SAR) by using variable flip angle refocusing pulse. Therefore, it is expected that the contrast obtained with 3D-SPACE sequences is different from that of spin echo (SE) images and turbo spin echo (TSE) images. The purpose of this study was to evaluate the characteristics of the signal intensity and central nervous system (CNS) image contrast in T 2 weighted 3D-SPACE. Using 3 different sequences (SE, 3D-TSE and 3D-SPACE) with repetition time (TR)/ echo time (TE)=3500/70, 90 and 115 ms, we obtained T 2 weighted magnetic resonance (MR) images of inhouse phantom and five healthy volunteers' brain. Signal intensity of the phantom which contains various T 1 and T 2 value was evaluated. Tissue contrasts of white/gray matter, cerebrospinal fluid (CSF)/subcutaneous fat and gray matter/subcutaneous fat were evaluated for a clinical image study. The phantom study showed that signal intensity in 3D-SPACE significantly decreased under a T 1 value of 250 ms. It was markedly decreased in comparison to other sequences, as effective echo time (TE) was extended. White/gray matter contrast of 3D-SPACE was the highest in all sequences. On the other hand, CSF/fat and gray matter/fat contrast of 3D-SPACE was higher than TSE but lower than SE. CNS image contrasts of 3D-SPACE were comparable to that of SE. Signal intensity had decreased in the range where T 1 and T 2 values were extremely short. (author)

  14. Pleural space infections after image-guided percutaneous drainage of infected intraabdominal fluid collections: a retrospective single institution analysis.

    Science.gov (United States)

    Avella, Diego M; Toth, Jennifer W; Reed, Michael F; Gusani, Niraj J; Kimchi, Eric T; Mahraj, Rickeshvar P; Staveley-O'Carroll, Kevin F; Kaifi, Jussuf T

    2015-04-11

    Percutaneous drainage of infected intraabdominal fluid collections is preferred over surgical drainage due to lower morbidity and costs. However, it can be a challenging procedure and catheter insertion carries the potential to contaminate the pleural space from the abdomen. This retrospective analysis demonstrates the clinical and radiographic correlation between percutaneous drainage of infected intraabdominal collections and the development of iatrogenic pleural space infections. A retrospective single institution analysis of 550 consecutive percutaneous drainage procedures for intraabdominal fluid collections was performed over 24 months. Patient charts and imaging were reviewed with regard to pleural space infections that were attributed to percutaneous drain placements. Institutional review board approval was obtained for conduct of the study. 6/550 (1.1%) patients developed iatrogenic pleural space infections after percutaneous drainage of intraabdominal fluid collections. All 6 patients presented with respiratory symptoms and required pleural space drainage (either by needle aspiration or chest tube placement), 2 received intrapleural fibrinolytic therapy and 1 patient had to undergo surgical drainage. Pleural effusion cultures revealed same bacteria in both intraabdominal and pleural fluid in 3 (50%) cases. A video with a dynamic radiographic sequence demonstrating the contamination of the pleural space from percutaneous drainage of an infected intraabdominal collection is included. Iatrogenic pleural space infections after percutaneous drainage of intraabdominal fluid collections occur at a low incidence, but the pleural empyema can be progressive requiring prompt chest tube drainage, intrapleural fibrinolytic therapy or even surgery. Expertise in intraabdominal drain placements, awareness and early recognition of this complication is critical to minimize incidence, morbidity and mortality in these patients.

  15. Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.

    Science.gov (United States)

    Liu, Jingfeng; Zhou, Ming; Yu, Zongfu

    2016-09-15

    A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.

  16. Inflation from extra dimensions

    International Nuclear Information System (INIS)

    Barr, S.M.

    1984-01-01

    Recently there has been growing interest (1) in the possibility that the universe could have more than four dimensions. Aside from any light this may shed on problems in particle physics, if true it would undoubtedly have important implications for early cosmology. A rather speculative but very appealing possibility suggested by D. Sahdev and by E. Alvarez and B. Gavela is that the gravitational collapse of extra spatial dimensions could drive an inflation of ordinary space. This kind of inflationary cosmology would be quite different from the inflationary cosmologies now so intensively studied which are supposed to result from changes in vacuum energy during phase transitions in the early universe. In our work we examine the physics of these Kaluza-Klein inflationary cosmologies and come to three main conclusions. (1) It is desirable to have many extra dimensions, many being of order forty or fifty. (2) For models which give a realistically large inflation almost all of this inflation occurs in a period when quantum gravity is certainly important. This means that Einstein's equations cannot be used to calculate the details of this inflationary period. (3) Under plausible assumptions one may argue from the second law of thermodynamics that given appropriate initial conditions a large inflation will occur even when details of the inflationary phase cannot be calculated classically

  17. Single event effects and performance predictions for space applications of RISC processors

    International Nuclear Information System (INIS)

    Kimbrough, J.R.; Colella, N.J.; Denton, S.M.; Shaeffer, D.L.; Shih, D.; Wilburn, J.W.; Coakley, P.G.; Casteneda, C.; Koga, R.; Clark, D.A.; Ullmann, J.L.

    1994-01-01

    Proton and ion Single Event Phenomena (SEP) tests were performed on 32-b processors including R3000A's from all commercial manufacturers along with the Performance PR3400 family, Integrated Device Technology Inc. 79R3081, LSI Logic Corporation LR33000HC, and Intel i80960MX parts. The microprocessors had acceptable upset rates for operation in a low earth orbit or a lunar mission such as CLEMENTINE with a wide range in proton total dose failure. Even though R3000A devices are 60% smaller in physical area than R3000 devices, there was a 340% increase in device Single Event Upset (SEU) cross section. Software tests of varying complexity demonstrate that registers and other functional blocks using register architecture dominate the cross section. The current approach of giving a single upset cross section can lead to erroneous upset rates depending on the application software

  18. Variation of the fractal dimension anisotropy of two major Cenozoic normal fault systems over space and time around the Snake River Plain, Idaho and SW Montana

    Science.gov (United States)

    Davarpanah, A.; Babaie, H. A.

    2012-12-01

    The interaction of the thermally induced stress field of the Yellowstone hotspot (YHS) with existing Basin and Range (BR) fault blocks, over the past 17 m.y., has produced a new, spatially and temporally variable system of normal faults around the Snake River Plain (SRP) in Idaho and Wyoming-Montana area. Data about the trace of these new cross faults (CF) and older BR normal faults were acquired from a combination of satellite imageries, DEM, and USGS geological maps and databases at scales of 1:24,000, 1:100,000, 1:250,000, 1:1000, 000, and 1:2,500, 000, and classified based on their azimuth in ArcGIS 10. The box-counting fractal dimension (Db) of the BR fault traces, determined applying the Benoit software, and the anisotropy intensity (ellipticity) of the fractal dimensions, measured with the modified Cantor dust method applying the AMOCADO software, were measured in two large spatial domains (I and II). The Db and anisotropy of the cross faults were studied in five temporal domains (T1-T5) classified based on the geologic age of successive eruptive centers (12 Ma to recent) of the YHS along the eastern SRP. The fractal anisotropy of the CF system in each temporal domain was also spatially determined in the southern part (domain S1), central part (domain S2), and northern part (domain S3) of the SRP. Line (fault trace) density maps for the BR and CF polylines reveal a higher linear density (trace length per unit area) for the BR traces in the spatial domain I, and a higher linear density of the CF traces around the present Yellowstone National Park (S1T5) where most of the seismically active faults are located. Our spatio-temporal analysis reveals that the fractal dimension of the BR system in domain I (Db=1.423) is greater than that in domain II (Db=1.307). It also shows that the anisotropy of the fractal dimension in domain I is less eccentric (axial ratio: 1.242) than that in domain II (1.355), probably reflecting the greater variation in the trend of the BR

  19. Thermal dimensioning of the deep repository. Influence of canister spacing, canister power, rock thermal properties and nearfield design on the maximum canister surface temperature

    International Nuclear Information System (INIS)

    Hoekmark, Harald; Faelth, Billy

    2003-12-01

    The report addresses the problem of the minimum spacing required between neighbouring canisters in the deep repository. That spacing is calculated for a number of assumptions regarding the conditions that govern the temperature in the nearfield and at the surfaces of the canisters. The spacing criterion is that the temperature at the canister surfaces must not exceed 100 deg C .The results are given in the form of nomographic charts, such that it is in principle possible to determine the spacing as soon as site data, i.e. the initial undisturbed rock temperature and the host rock heat transport properties, are available. Results of canister spacing calculations are given for the KBS-3V concept as well as for the KBS-3H concept. A combination of numerical and analytical methods is used for the KBS-3H calculations, while the KBS-3V calculations are purely analytical. Both methods are described in detail. Open gaps are assigned equivalent heat conductivities, calculated such that the conduction across the gaps will include also the heat transferred by radiation. The equivalent heat conductivities are based on the emissivities of the different gap surfaces. For the canister copper surface, the emissivity is determined by back-calculation of temperatures measured in the Prototype experiment at Aespoe HRL. The size of the different gaps and the emissivity values are of great importance for the results and will be investigated further in the future

  20. The Transition from Single-Sex to Coeducational High Schools: Effects on Multiple Dimensions of Self-Concept and on Academic Achievement.

    Science.gov (United States)

    Marsh, Herbert W.; And Others

    1988-01-01

    Self-concept measures and state certificate program achievement grades were used to determine the effects on 7th through 11th graders in Sydney (Australia) of converting two single-sex high schools to coeducational institutions. Pre- to post-transition data were collected from 1982 to 1985. Coeducational organizations benefit self-concept, while…

  1. Single Step to Orbit; a First Step in a Cooperative Space Exploration Initiative

    Science.gov (United States)

    Lusignan, Bruce; Sivalingam, Shivan

    1999-01-01

    At the end of the Cold War, disarmament planners included a recommendation to ease reduction of the U.S. and Russian aerospace industries by creating cooperative scientific pursuits. The idea was not new, having earlier been suggested by Eisenhower and Khrushchev to reduce the pressure of the "Military Industrial Complex" by undertaking joint space exploration. The Space Exploration Initiative (SEI) proposed at the end of the Cold War by President Bush and Premier Gorbachev was another attempt to ease the disarmament process by giving the bloated war industries something better to do. The engineering talent and the space rockets could be used for peaceful pursuits, notably for going back to the Moon and then on to Mars with human exploration and settlement. At the beginning of this process in 1992 staff of the Stanford Center for International Cooperation in Space attended the International Space University in Canada, met with Russian participants and invited a Russian team to work with us on a joint Stanford-Russian Mars Exploration Study. A CIA student and Airforce and Navy students just happened to join the Stanford course the next year and all students were aware that the leader of the four Russian engineers was well versed in Russian security. But, as long as they did their homework, they were welcome to participate with other students in defining the Mars mission and the three engineers they sent were excellent. At the end of this study we were invited to give a briefing to Dr. Edward Teller at Stanford's Hoover Institution of War and Peace. We were also encouraged to hold a press conference on Capitol Hill to introduce the study to the world. At a pre-conference briefing at the Space Council, we were asked to please remind the press that President Bush had asked for a cooperative exploration proposal not a U.S. alone initiative. The Stanford-Russian study used Russia's Energia launchers, priced at $300 Million each. The mission totaled out to $71.5 Billion

  2. An improved single sensor parity space algorithm for sequential probability ratio test

    Energy Technology Data Exchange (ETDEWEB)

    Racz, A. [Hungarian Academy of Sciences, Budapest (Hungary). Atomic Energy Research Inst.

    1995-12-01

    In our paper we propose a modification of the single sensor parity algorithm in order to make the statistical properties of the generated residual determinable in advance. The algorithm is tested via computer simulated ramp failure at the temperature readings of the pressurizer. (author).

  3. A New and Different Space in the Primary School: Single-Gendered Classes in Coeducational Schools

    Science.gov (United States)

    Wills, Robin C.

    2007-01-01

    This paper derives from a two-year ethnographic study conducted in single-gendered classes in two Tasmanian government coeducational schools in socio-economically disadvantaged areas. These schools specifically adopted proactive strategies to address the educational disengagement of boys whose social behaviour affected their own education and that…

  4. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    International Nuclear Information System (INIS)

    Tang, Grace; Earl, Matthew A; Yu, Cedric X

    2009-01-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc(TM) deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to ≤± 5 deg. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was

  5. Enhanced power generation in annular single-chamber microbial fuel cell via optimization of electrode spacing using chocolate industry wastewater.

    Science.gov (United States)

    Noori, Parisa; Najafpour Darzi, Ghasem

    2016-05-01

    Development and practical application of microbial fuel cell (MFC) is restricted because of the limitations such as low power output. To overcome low power limitation, the optimization of specific parameters including electrode materials and surface area, electrode spacing, and MFC's cell shape was investigated. To the best of our knowledge, no investigation has been reported in the literature to implement an annular single-chamber microbial fuel cell (ASCMFC) using chocolate industry wastewater. ASCMFC was fabricated via optimization of the stated parameters. The aspects of ASCMFC were comprehensively examined. In this study, the optimization of electrode spacing and its impact on performance of the ASCMFC were conducted. Reduction of electrode spacing by 46.15% (1.3-0.7 cm) resulted in a decrease in internal resistance from 100 to 50 Ω, which enhanced the power density and current output to 22.898 W/m(3) and 6.42 mA, respectively. An optimum electrode spacing of 0.7 cm was determined. Through this paper, the effects of these parameters and the performance of ASCMFC are also evaluated. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  6. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  7. Optical design and studies of a tiled single grating pulse compressor for enhanced parametric space and compensation of tiling errors

    Science.gov (United States)

    Daiya, D.; Patidar, R. K.; Sharma, J.; Joshi, A. S.; Naik, P. A.; Gupta, P. D.

    2017-04-01

    A new optical design of tiled single grating pulse compressor has been proposed, set-up and studied. The parametric space, i.e. the laser beam diameters that can be accommodated in the pulse compressor for the given range of compression lengths, has been calculated and shown to have up to two fold enhancement in comparison to our earlier proposed optical designs. The new optical design of the tiled single grating pulse compressor has an additional advantage of self compensation of various tiling errors like longitudinal and lateral piston, tip and groove density mismatch, compared to the earlier designs. Experiments have been carried out for temporal compression of 650 ps positively chirped laser pulses, at central wavelength 1054 nm, down to 235 fs in the tiled grating pulse compressor set up with the proposed design. Further, far field studies have been performed to show the desired compensation of the tiling errors takes place in the new compressor.

  8. supersymmetry breaking with extra dimensions

    Indian Academy of Sciences (India)

    large number of parameters, there is no explanation for the origin and the stability of two different mass .... Theories formulated in more than four space-time dimensions have been discussed for several decades, starting from the historical papers by Kaluza and Klein on. 500 .... For the consistency of the orbifold construction,.

  9. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    Science.gov (United States)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  10. Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space

    Science.gov (United States)

    Xue, Peng; Qin, Hao; Tang, Bao; Sanders, Barry C.

    2014-05-01

    We realize the quasi-periodic dynamics of a quantum walker over 2.5 quasi-periods by realizing the walker as a single photon passing through a quantum-walk optical-interferometer network. We introduce fully controllable polarization-independent phase shifters in each optical path to realize arbitrary site-dependent phase shifts, and employ large clear-aperture beam displacers, while maintaining high-visibility interference, to enable 10 quantum-walk steps to be reached. By varying the half-wave-plate setting, we control the quantum-coin bias thereby observing a transition from quasi-periodic dynamics to ballistic diffusion.

  11. A proof that Witten's open string theory gives a single cover of moduli space

    International Nuclear Information System (INIS)

    Zwiebach, B.; Massachusetts Inst. of Tech., Cambridge

    1991-01-01

    We show that Witten's open string diagrams are surfaces with metrics of minimal area under the condition that all nontrivial open Jordan curves be longer or equal to π. The minimal area property is used together with a mini-max problem to establish a new existence and uniqueness theorem for quadratic differentials in open Riemann surfaces with or without punctures on the boundaries. This theorem implies that the Feynman rules of open string theory give a single cover of the moduli of open Riemann surfaces. (orig.)

  12. Effect of bracket slot and archwire dimensions on anterior tooth movement during space closure in sliding mechanics: a 3-dimensional finite element study.

    Science.gov (United States)

    Tominaga, Jun-ya; Ozaki, Hiroya; Chiang, Pao-Chang; Sumi, Mayumi; Tanaka, Motohiro; Koga, Yoshiyuki; Bourauel, Christoph; Yoshida, Noriaki

    2014-08-01

    It has been found that controlled movement of the anterior teeth can be obtained by attaching a certain length of power arm onto an archwire in sliding mechanics. However, the impact of the archwire/bracket play on anterior tooth movement has not been clarified. The purpose of this study was to compare the effect of the power arm on anterior tooth movements with different dimensions of bracket slots and archwires. A 3-dimensional finite element method was used to simulate en-masse anterior tooth retraction in sliding mechanics. Displacements of the maxillary central incisor and the archwire deformation were calculated when applying retraction forces from different lengths of power arms. When a 0.017 × 0.022-in archwire was engaged into the 0.018-in slot bracket, bodily movement of the incisor was obtained with 9.1-mm length of the power arm. When a 0.022-in slot system was coupled with a 0.019 × 0.025-in archwire, bodily movement was observed with a power arm length of 11.6 mm. Archwire/bracket play has a remarkable impact on anterior tooth movement. An effective torque application to the anterior teeth becomes clinically difficult in sliding mechanics combined with power arms when the archwire/bracket play is large. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  13. Lavakujunduse nähtamatust olekust. Mängu esteetika lavaruumi loomisel / The Invisible Dimension of Scenography. Aesthetics of Play in Creating Stage Space

    Directory of Open Access Journals (Sweden)

    Liina Unt

    2014-12-01

    Full Text Available The comparison between theatre and playing has spread on many levels, from metaphors to sayings, aesthetic concepts to deterministic models. This paper examines scenography as an active play environment. Play, in the context of theatre space, is defined according to the classical characteristic features of playing: spatial and temporal limits, fictionality that runs in parallel with everyday reality, and direct involvement.  The paper focuses on the specific aspects of play environment as it appears in the Tartu New Theatre’s performances of „The Death of the Author“ and „The Beatles of Vanemuine“. Both productions are set in fictional locations with a visually static set design. Both are unique in that different locations are created without changing the physical space on stage – places appear and disappear through the performances, created by an odd textual allusion or two, or the audience’s imagination. The changes can be understood through the audience’s corporal perception, which this paper interprets using Merleau-Ponty’s phenomenological concept of corporeity.  Using Tartu New Theatre’s stage practice and Hans-Georg Gadamer’s hermeneutic aesthetics, the paper aims to answer the question: what is the aesthetic structure of such stage environments and how can an environmental experience be created, if the direct interference in space is minimal. Gadamer’s aesthetic concept revolves around play, interpreting works of art as a structure, a meaningful whole that can be presented and comprehended repeatedly. However, he qualifies that the structure, itself, is also a play as, despite a theoretic unity, it only exists when it is played. In this case, the scenography becomes an environment with open meanings, where attributing meaning and function happens through the agreements made during the act of playing, which don’t necessarily also imply physical changes to the environment. The environment is an agreed-upon space

  14. Evolution Of The Concept Of Dimension

    International Nuclear Information System (INIS)

    Journeau, Philippe F.

    2007-01-01

    Concepts of time elapsing 'in' a space measuring the real emerge over the centuries. But Kant refutes absolute time and defines it, with space, as forms reacting to Newtonian mechanics. Einstein and Minkowski open a 20th century where time is a dimension, a substratum of reality 'with' space rather than 'in' it. Kaluza-Klein and String theories then develop a trend of additional spatial dimensions while de Broglie and Bohm open the possiblity that form, to begin with wave, be a reality together 'with' a space-time particle. Other recent theories, such as spin networks, causal sets and twistor theory, even head to the idea of other 'systems of dimensions'. On the basis of such progresses and recent experiments the paper then considers a background independent fourfold time-form-action-space system of dimensions

  15. Single, Complete, Probability Spaces Consistent With EPR-Bohm-Bell Experimental Data

    Science.gov (United States)

    Avis, David; Fischer, Paul; Hilbert, Astrid; Khrennikov, Andrei

    2009-03-01

    We show that paradoxical consequences of violations of Bell's inequality are induced by the use of an unsuitable probabilistic description for the EPR-Bohm-Bell experiment. The conventional description (due to Bell) is based on a combination of statistical data collected for different settings of polarization beam splitters (PBSs). In fact, such data consists of some conditional probabilities which only partially define a probability space. Ignoring this conditioning leads to apparent contradictions in the classical probabilistic model (due to Kolmogorov). We show how to make a completely consistent probabilistic model by taking into account the probabilities of selecting the settings of the PBSs. Our model matches both the experimental data and is consistent with classical probability theory.

  16. Analyzing Test-As-You-Fly Single Event Upset (SEU) Responses using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  17. Compendium of Single Event Effects Test Results for Commercial Off-The-Shelf and Standard Electronics for Low Earth Orbit and Deep Space Applications

    Science.gov (United States)

    Reddell, Brandon D.; Bailey, Charles R.; Nguyen, Kyson V.; O'Neill, Patrick M.; Wheeler, Scott; Gaza, Razvan; Cooper, Jaime; Kalb, Theodore; Patel, Chirag; Beach, Elden R.; hide

    2017-01-01

    We present the results of Single Event Effects (SEE) testing with high energy protons and with low and high energy heavy ions for electrical components considered for Low Earth Orbit (LEO) and for deep space applications.

  18. Characterization of System on a Chip (SoC) Single Event Upset (SEU) Responses Using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  19. The externalisation of migration control in the European Union: first steps towards the external dimension of the space of freedom, security and justice

    Directory of Open Access Journals (Sweden)

    Ryabov Yuri

    2012-03-01

    Full Text Available The creation of an area of freedom, security and justice is one of the most rapidly developing aspects of European integration. It this paper, we take a look at the foreign policies involved in this process — aside from the internal development of the European Union, they concern a significant number of third countries, including Russia. In our view, the efforts to manage the flow of migrants and asylum seekers constitute a viable part of the external dimension within the AFSJ policies. Much of this article is based on the theoretical postulates introduced by the scholars of the Paris School, a school within the discipline of security studies that conceptualized the connection between migration, terrorism, asylum, crime and ethnic clashes, and its role as a major threat facing the European Union. Externalization of this complex threat (that is, externalization in relation to the European Union is thus seen as one of the key prerequisites to advancement of migration management activities beyond the EU (i. e. externalization of migration management. In this article, we analyze the role the EU plays at the international scene and categorize the actions it took to manage the influx of migrants and asylum seekers from the 1980s until the time when supranational administrative bodies were granted mandates in the spheres of Justice and Home Affairs (JHA of the EU Member States. We conclude that it was as early as the 1990-s that the EU launched the policy which later allowed to transfer part of its security concerns to third countries.

  20. Application of dimensional regularization to single chain polymer static properties: Conformational space renormalization of polymers. III

    International Nuclear Information System (INIS)

    Oono, Y.; Ohta, T.; Freed, K.F.

    1981-01-01

    A dimensional regularization approach to the renormalization group treatment of polymer excluded volume is formulated in chain conformation space where monomers are specified by their spatial positions and their positions along the chain and the polymers may be taken to be monodisperse. The method utilizes basic scale invariance considerations. First, it is recognized that long wavelength macroscopic descriptions must be well defined in the limit that the minimum atomic or molecular scale L is set to zero. Secondly, the microscopic theory is independent of the conveniently chosen macroscopic scale of length k. The freedom of choice of k is exploited along with the assumed renormalizability of the theory to provide the renormalization group equations which directly imply the universal scaling laws for macroscopic properties. The renormalizability of the model implies the existence of the general relations between the basic macroparameters, such as chain length, excluded volume, etc., and their microscopic counterparts in the microscopic model for the system. These macro--micro relations are defined through the condition that macroscopic quantities be well defined for polymer chains for any spatial dimensionality. The method is illustrated by calculating the end vector distribution function for all values of end vectors R. The evaluation of this distribution function currently requires the use of expansions in e = 4-d. In this case our distribution reduces to known limits for R→0 or infinity. Subsequent papers will present calculations of the polymer coherent scattering function, the monomer spatial distribution function, and concentration dependent properties

  1. A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space

    Directory of Open Access Journals (Sweden)

    Lothar Eysn

    2015-05-01

    Full Text Available In this study, eight airborne laser scanning (ALS-based single tree detection methods are benchmarked and investigated. The methods were applied to a unique dataset originating from different regions of the Alpine Space covering different study areas, forest types, and structures. This is the first benchmark ever performed for different forests within the Alps. The evaluation of the detection results was carried out in a reproducible way by automatically matching them to precise in situ forest inventory data using a restricted nearest neighbor detection approach. Quantitative statistical parameters such as percentages of correctly matched trees and omission and commission errors are presented. The proposed automated matching procedure presented herein shows an overall accuracy of 97%. Method based analysis, investigations per forest type, and an overall benchmark performance are presented. The best matching rate was obtained for single-layered coniferous forests. Dominated trees were challenging for all methods. The overall performance shows a matching rate of 47%, which is comparable to results of other benchmarks performed in the past. The study provides new insight regarding the potential and limits of tree detection with ALS and underlines some key aspects regarding the choice of method when performing single tree detection for the various forest types encountered in alpine regions.

  2. RNAi High-Throughput Screening of Single- and Multi-Cell-Type Tumor Spheroids: A Comprehensive Analysis in Two and Three Dimensions.

    Science.gov (United States)

    Fu, Jiaqi; Fernandez, Daniel; Ferrer, Marc; Titus, Steven A; Buehler, Eugen; Lal-Nag, Madhu A

    2017-06-01

    The widespread use of two-dimensional (2D) monolayer cultures for high-throughput screening (HTS) to identify targets in drug discovery has led to attrition in the number of drug targets being validated. Solid tumors are complex, aberrantly growing microenvironments that harness structural components from stroma, nutrients fed through vasculature, and immunosuppressive factors. Increasing evidence of stromally-derived signaling broadens the complexity of our understanding of the tumor microenvironment while stressing the importance of developing better models that reflect these interactions. Three-dimensional (3D) models may be more sensitive to certain gene-silencing events than 2D models because of their components of hypoxia, nutrient gradients, and increased dependence on cell-cell interactions and therefore are more representative of in vivo interactions. Colorectal cancer (CRC) and breast cancer (BC) models composed of epithelial cells only, deemed single-cell-type tumor spheroids (SCTS) and multi-cell-type tumor spheroids (MCTS), containing fibroblasts were developed for RNAi HTS in 384-well microplates with flat-bottom wells for 2D screening and round-bottom, ultra-low-attachment wells for 3D screening. We describe the development of a high-throughput assay platform that can assess physiologically relevant phenotypic differences between screening 2D versus 3D SCTS, 3D SCTS, and MCTS in the context of different cancer subtypes. This assay platform represents a paradigm shift in how we approach drug discovery that can reduce the attrition rate of drugs that enter the clinic.

  3. Seeking Emancipation from Gender Regulation: Reflections on Home space for a Black Woman Academic/ Single Mother

    Directory of Open Access Journals (Sweden)

    Lisa William-­White

    2012-06-01

    Full Text Available Using the work of Judith Butler on gender regulation, Black Feminist Thought (BFT, and autobiographic storytelling, this piece illustrates how essentialist notions of gender, and discourses related to gender create conflict in shaping identity construction for a Black woman academic and single mother (BWA/SM in the United States. This piece reveals complex gendered and racialized tropes related to notions of motherhood and womanhood, particularly within the author’s own family. Included here is how the author attempts to transcend these complexities in her quest for self­definition and self­actualization, unbridled by gender norms. Yet, race, gender and parental status are significant intersecting categories in identity construction, andinherent in the constructions are hegemonic discourses with which the author continues to grapple. Consequently, the struggle to transcend these forces is further complicated by the limited representation of Black women in the US academy, and by the types of academic work where they find themselves typically situated.

  4. Flowing to four dimensions

    International Nuclear Information System (INIS)

    Dudas, Emilian; Papineau, Chloe; Rubakov, Valery

    2006-01-01

    We analyze the properties of a model with four-dimensional brane-localized Higgs type potential of a six dimensional scalar field satisfying the Dirichlet boundary condition on the boundary of a transverse two-dimensional compact space. The regularization of the localized couplings generates classical renormalization group running. A tachyonic mass parameter grows in the infrared, in analogy with the QCD gauge coupling in four dimensions. We find a phase transition at a critical value of the bare mass parameter such that the running mass parameter becomes large in the infrared precisely at the compactification scale. Below the critical coupling, the theory is in symmetric phase, whereas above it spontaneous symmetry breaking occurs. Close to the phase transition point there is a very light mode in the spectrum. The massive Kaluza-Klein spectrum at the critical coupling becomes independent of the UV cutoff

  5. Method card design dimensions

    DEFF Research Database (Denmark)

    Wölfel, Christiane; Merritt, T.

    2013-01-01

    There are many examples of cards used to assist or provide structure to the design process, yet there has not been a thorough articulation of the strengths and weaknesses of the various examples. We review eighteen card-based design tools in order to understand how they might benefit designers....... The card-based tools are explained in terms of five design dimensions including the intended purpose and scope of use, duration of use, methodology, customization, and formal/material qualities. Our analysis suggests three design patterns or archetypes for existing card-based design method tools...... and highlights unexplored areas in the design space. The paper concludes with recommendations for the future development of card-based methods for the field of interaction design....

  6. Calcul de trajectoires d'ions dans un faisceau a trois dimensions soumis a la charge d'space. Application aux sources d'ions

    International Nuclear Information System (INIS)

    Tauth, T.

    1990-01-01

    This paper deals with the space charge effects suffered by an ionic beam of homogeneous density, composed with ions of various charges and submitted to crossed electric and magnetic fields. We consider the physical and geometric conditions in the region between an ion source and the extraction electrode. We propose two different methods that allow to reach a numerical solution of the problem. The first one is founded on the idea that the large number of particles of the beam can be replaced in the calculations by a reduced number of highly charged particles. The second one consists in considering the widening of the beam through the evolution of the beam envelope. We apply these two methods to physical situations found in published experimental data. (Author)

  7. Information as the Fifth Dimension of the Universe which Fundamental Particles (strings), Dark Matter/Energy and Space-time are Floating in it While they are Listening to its Whispering for Getting Order

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Ghasem; Amirshahkarami, Azim; Gholibeigian, Kazem

    2017-01-01

    Four animated sub-particles (sub-strings) as origin of the life and generator of momentum (vibration) of elementary particles (strings) are communicated for transferring information for processing and preparing fundamental particles for the next step. It means that information may be a ``dimension'' of the nature which fundamental particles, dark matter/energy and space-time are floating in it and listening to its whispering and getting quantum information packages about their conditions and laws. So, communication of information which began before the spark to B.B. (Convection Bang), may be a ``Fundamental symmetry'' in the nature because leads other symmetries and supersymmetry as well as other phenomena. The processed information are always carried by fundamental particles as the preserved history and entropy of Universe. So, information wouldn't be destroyed, lost or released by black hole. But the involved fundamental particles of thermal radiation, electromagnetic and gravitational fields carry processed information during emitting from black hole, while they are communicated from fifth dimension for their new movement. AmirKabir University of Technology, Tehran, Iran.

  8. A unified theory in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1990-10-11

    We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space (Su(3)/U(1)xU(1))/Z{sub 2} giving in four dimensions the standard model. (orig.).

  9. A unified theory in higher dimensions

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space [Su(3)/U(1)xU(1)]/Z 2 giving in four dimensions the standard model. (orig.)

  10. Four Essential Dimensions of Workplace Learning

    Science.gov (United States)

    Hopwood, Nick

    2014-01-01

    Purpose: This conceptual paper aims to argue that times, spaces, bodies and things constitute four essential dimensions of workplace learning. It examines how practices relate or hang together, taking Gherardi's texture of practices or connectedness in action as the foundation for making visible essential but often overlooked dimensions of…

  11. Null structure groups in eleven dimensions

    International Nuclear Information System (INIS)

    Cariglia, Marco; Mac Conamhna, Oisin A. P.

    2006-01-01

    We classify all the structure groups which arise as subgroups of the isotropy group (Spin(7)xR 8 )xR, of a single null Killing spinor in 11 dimensions. We construct the spaces of spinors fixed by these groups. We determine the conditions under which structure subgroups of the maximal null structure group (Spin(7)xR 8 )xR may also be embedded in SU(5), and hence the conditions under which a supersymmetric spacetime admits only null, or both timelike and null, Killing spinors. We discuss how this purely algebraic material will facilitate the direct analysis of the Killing spinor equation of 11 dimensional supergravity, and the classification of supersymmetric spacetimes therein

  12. Performance and Characterization of a Modular Superconducting Nanowire Single Photon Detector System for Space-to-Earth Optical Communications Links

    Science.gov (United States)

    Vyhnalek, Brian E.; Tedder, Sarah A.; Nappier, Jennifer M.

    2018-01-01

    Space-to-ground photon-counting optical communication links supporting high data rates over large distances require enhanced ground receiver sensitivity in order to reduce the mass and power burden on the spacecraft transmitter. Superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated to offer superior performance in detection efficiency, timing resolution, and count rates over semiconductor photodetectors, and are a suitable technology for high photon efficiency links. Recently photon detectors based on superconducting nanowires have become commercially available, and we have assessed the characteristics and performance of one such commercial system as a candidate for potential utilization in ground receiver designs. The SNSPD system features independent channels which can be added modularly, and we analyze the scalability of the system to support different data rates, as well as consider coupling concepts and issues as the number of channels increases.

  13. Harmonic Instability Analysis of Single-Phase Grid Connected Converter using Harmonic State Space (HSS) modeling method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    The increasing number of renewable energy sources at the distribution grid is becoming a major issue for utility companies, since the grid connected converters are operating at different operating points due to the probabilistic characteristics of renewable energy. Besides, typically, the harmonics...... proposes a new model of a single phase grid connected renewable energy source using the Harmonic State Space modeling approach, which is able to identify such problems and the model can be extended to be applied in the multiple connected converter analysis. The modeling results show the different harmonic...... and impedance from other renewable energy sources are not taken carefully into account in the installation and design. However, this may bring an unknown harmonic instability into the multiple power sourced system and also make the analysis difficult due to the complexity of the grid network. This paper...

  14. Local box-counting dimensions of discrete quantum eigenvalue spectra: Analytical connection to quantum spectral statistics

    Science.gov (United States)

    Sakhr, Jamal; Nieminen, John M.

    2018-03-01

    Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.

  15. Performance demonstration of a single-frequency optically-pumped cesium beam frequency standard for space applications

    Science.gov (United States)

    Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.

    2017-11-01

    Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.

  16. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  17. Compacted dimensions and singular plasmonic surfaces

    Science.gov (United States)

    Pendry, J. B.; Huidobro, Paloma Arroyo; Luo, Yu; Galiffi, Emanuele

    2017-11-01

    In advanced field theories, there can be more than four dimensions to space, the excess dimensions described as compacted and unobservable on everyday length scales. We report a simple model, unconnected to field theory, for a compacted dimension realized in a metallic metasurface periodically structured in the form of a grating comprising a series of singularities. An extra dimension of the grating is hidden, and the surface plasmon excitations, though localized at the surface, are characterized by three wave vectors rather than the two of typical two-dimensional metal grating. We propose an experimental realization in a doped graphene layer.

  18. Bone-marrow densitometry: Assessment of marrow space of human vertebrae by single energy high resolution-quantitative computed tomography

    International Nuclear Information System (INIS)

    Peña, Jaime A.; Damm, Timo; Bastgen, Jan; Barkmann, Reinhard; Glüer, Claus C.; Thomsen, Felix; Campbell, Graeme M.

    2016-01-01

    Purpose: Accurate noninvasive assessment of vertebral bone marrow fat fraction is important for diagnostic assessment of a variety of disorders and therapies known to affect marrow composition. Moreover, it provides a means to correct fat-induced bias of single energy quantitative computed tomography (QCT) based bone mineral density (BMD) measurements. The authors developed new segmentation and calibration methods to obtain quantitative surrogate measures of marrow-fat density in the axial skeleton. Methods: The authors developed and tested two high resolution-QCT (HR-QCT) based methods which permit segmentation of bone voids in between trabeculae hypothesizing that they are representative of bone marrow space. The methods permit calculation of marrow content in units of mineral equivalent marrow density (MeMD). The first method is based on global thresholding and peeling (GTP) to define a volume of interest away from the transition between trabecular bone and marrow. The second method, morphological filtering (MF), uses spherical elements of different radii (0.1–1.2 mm) and automatically places them in between trabeculae to identify regions with large trabecular interspace, the bone-void space. To determine their performance, data were compared ex vivo to high-resolution peripheral CT (HR-pQCT) images as the gold-standard. The performance of the methods was tested on a set of excised human vertebrae with intact bone marrow tissue representative of an elderly population with low BMD. Results: 86% (GTP) and 87% (MF) of the voxels identified as true marrow space on HR-pQCT images were correctly identified on HR-QCT images and thus these volumes of interest can be considered to be representative of true marrow space. Within this volume, MeMD was estimated with residual errors of 4.8 mg/cm 3 corresponding to accuracy errors in fat fraction on the order of 5% both for GTP and MF methods. Conclusions: The GTP and MF methods on HR-QCT images permit noninvasive

  19. Bone-marrow densitometry: Assessment of marrow space of human vertebrae by single energy high resolution-quantitative computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Peña, Jaime A.; Damm, Timo; Bastgen, Jan; Barkmann, Reinhard; Glüer, Claus C., E-mail: glueer@rad.uni-kiel.de [Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Campus Kiel, Kiel 24118 (Germany); Thomsen, Felix [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur, Bahía Blanca 8000 (Argentina); Campbell, Graeme M. [Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Christian-Albrechts-Universität zu Kiel, Campus Kiel, Kiel 24118, Germany and Institut für Biomechanik, Technische Universität Hamburg-Harburg (TUHH), Hamburg 21073 (Germany)

    2016-07-15

    Purpose: Accurate noninvasive assessment of vertebral bone marrow fat fraction is important for diagnostic assessment of a variety of disorders and therapies known to affect marrow composition. Moreover, it provides a means to correct fat-induced bias of single energy quantitative computed tomography (QCT) based bone mineral density (BMD) measurements. The authors developed new segmentation and calibration methods to obtain quantitative surrogate measures of marrow-fat density in the axial skeleton. Methods: The authors developed and tested two high resolution-QCT (HR-QCT) based methods which permit segmentation of bone voids in between trabeculae hypothesizing that they are representative of bone marrow space. The methods permit calculation of marrow content in units of mineral equivalent marrow density (MeMD). The first method is based on global thresholding and peeling (GTP) to define a volume of interest away from the transition between trabecular bone and marrow. The second method, morphological filtering (MF), uses spherical elements of different radii (0.1–1.2 mm) and automatically places them in between trabeculae to identify regions with large trabecular interspace, the bone-void space. To determine their performance, data were compared ex vivo to high-resolution peripheral CT (HR-pQCT) images as the gold-standard. The performance of the methods was tested on a set of excised human vertebrae with intact bone marrow tissue representative of an elderly population with low BMD. Results: 86% (GTP) and 87% (MF) of the voxels identified as true marrow space on HR-pQCT images were correctly identified on HR-QCT images and thus these volumes of interest can be considered to be representative of true marrow space. Within this volume, MeMD was estimated with residual errors of 4.8 mg/cm{sup 3} corresponding to accuracy errors in fat fraction on the order of 5% both for GTP and MF methods. Conclusions: The GTP and MF methods on HR-QCT images permit noninvasive

  20. New black holes in five dimensions

    International Nuclear Information System (INIS)

    Lue, H.; Mei Jianwei; Pope, C.N.

    2009-01-01

    We construct new stationary Ricci-flat metrics of cohomogeneity 2 in five dimensions, which generalise the Myers-Perry rotating black hole metrics by adding a further non-trivial parameter. We obtain them via a construction that is analogous to the construction by Plebanski and Demianski in four dimensions of the most general type D metrics. Limiting cases of the new metrics contain not only the general Myers-Perry black hole with independent angular momenta, but also the single rotation black ring of Emparan and Reall. In another limit, we obtain new static metrics that describe black holes whose horizons are distorted lens spaces L(n;m)=S 3 /Γ(n;m), where m≥n+2≥3. They are asymptotic to Minkowski spacetime factored by Γ(m;n). In the general stationary case, by contrast, the new metrics describe spacetimes with a horizon and with a periodicity condition on the time coordinate; these examples can be thought of as five-dimensional analogues of the four-dimensional Taub-NUT metrics

  1. Quantum matrices in two dimensions

    International Nuclear Information System (INIS)

    Ewen, H.; Ogievetsky, O.; Wess, J.

    1991-01-01

    Quantum matrices in two-dimensions, admitting left and right quantum spaces, are classified: they fall into two families, the 2-parametric family GL p,q (2) and a 1-parametric family GL α J (2). Phenomena previously found for GL p,q (2) hold in this general situation: (a) powers of quantum matrices are again quantum and (b) entries of the logarithm of a two-dimensional quantum matrix form a Lie algebra. (orig.)

  2. Analyzing System on A Chip Single Event Upset Responses using Single Event Upset Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We are investigating the application of classical reliability performance metrics combined with standard single event upset (SEU) analysis data. We expect to relate SEU behavior to system performance requirements. Our proposed methodology will provide better prediction of SEU responses in harsh radiation environments with confidence metrics. single event upset (SEU), single event effect (SEE), field programmable gate array devises (FPGAs)

  3. DIFFERENT DIMENSIONS OF TEAMS

    OpenAIRE

    Goparaju Purna SUDHAKAR

    2013-01-01

    Popularity of teams is growing in 21st Century. Organizations are getting their work done through different types of teams. Teams have proved that the collective performance is more than the sum of the individual performances. Thus, the teams have got different dimensions such as quantitative dimensions and qualitative dimensions. The Quantitative dimensions of teams such as team performance, team productivity, team innovation, team effectiveness, team efficiency, team decision making and tea...

  4. Dimension of chaotic attractors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.D.; Ott, E.; Yorke, J.A.

    1982-09-01

    Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensions take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.

  5. Prototype readout system for a multi Mpixels UV single-photon imaging detector capable of space flight operation

    Science.gov (United States)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2018-02-01

    Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.

  6. Dimensions of Creative Evaluation

    DEFF Research Database (Denmark)

    Christensen, Bo; Ball, Linden J.

    2016-01-01

    We examined evaluative reasoning taking place during expert ‘design critiques’. We focused on key dimensions of creative evaluation (originality, functionality and aesthetics) and ways in which these dimensions impact reasoning strategies and suggestions offered by experts for how the student could...... continue. Each dimension was associated with a specific underpinning ‘logic’ determining how these dimensions were evaluated in practice. Our analysis clarified how these dimensions triggered reasoning strategies such as running mental simulations or making design suggestions, ranging from ‘go...

  7. More dimensions: Less entropy

    International Nuclear Information System (INIS)

    Kolb, E.W.; Lindley, D.; Seckel, D.

    1984-01-01

    For a cosmological model with d noncompact and D compact spatial dimensions and symmetry R 1 x S/sup d/ x S/sup D/, we calculate the entropy produced in d dimensions due to the compactification of D dimensions and show it too small to be of cosmological interest. Although insufficient entropy is produced in the model we study, the contraction of extra dimensions does lead to entropy production. We discuss modifications of our assumptions, including changing our condition for decoupling of the extra dimensions, which may lead to a large entropy production and change our conclusions

  8. Improving the thermal integrity of new single-family detached residential buildings: Documentation for a regional database of capital costs and space conditioning load savings

    International Nuclear Information System (INIS)

    Koomey, J.G.; McMahon, J.E.; Wodley, C.

    1991-07-01

    This report summarizes the costs and space-conditioning load savings from improving new single-family building shells. It relies on survey data from the National Association of Home-builders (NAHB) to assess current insulation practices for these new buildings, and NAHB cost data (aggregated to the Federal region level) to estimate the costs of improving new single-family buildings beyond current practice. Space-conditioning load savings are estimated using a database of loads for prototype buildings developed at Lawrence Berkeley Laboratory, adjusted to reflect population-weighted average weather in each of the ten federal regions and for the nation as a whole

  9. City project and public space

    CERN Document Server

    2013-01-01

    The book aims at nurturing theoretic reflection on the city and the territory and working out and applying methods and techniques for improving our physical and social landscapes. The main issue is developed around the projectual dimension, with the objective of visualising both the city and the territory from a particular viewpoint, which singles out the territorial dimension as the city’s space of communication and negotiation. Issues that characterise the dynamics of city development will be faced, such as the new, fresh relations between urban societies and physical space, the right to the city, urban equity, the project for the physical city as a means to reveal civitas, signs of new social cohesiveness, the sense of contemporary public space and the sustainability of urban development. Authors have been invited to explore topics that feature a pluralism of disciplinary contributions studying formal and informal practices on the project for the city and seeking conceptual and operative categories capab...

  10. Thermal dimensioning of spent fuel repository

    International Nuclear Information System (INIS)

    Ikonen, K.

    2009-09-01

    This report contains the temperature dimensioning of the KBS-3V type nuclear fuel repository in Olkiluoto for the BWR, VVER and EPR fuel canisters, which are disposed at vertical position in the horizontal tunnels in a rectangular geometry according to the preliminary Posiva plan. This report concerns only the temperature dimensioning of the repository and does not take into account the possible restrictions caused by the stresses induced in the rock. The maximum temperature on the canister-bentonite interface is limited to the design temperature of +100 deg C. However, due to uncertainties in thermal analysis parameters (like scattering in rock conductivity or in predicted decay power) the allowable calculated maximum canister temperature is set to 90 deg C causing a safety margin of 10 deg C. The allowable temperature is controlled by adjusting the space between adjacent canisters, adjacent tunnels and the pre-cooling time affecting on power of the canisters. The temperature of canister surfaces can be determined by superposing analytic line heat source models much more efficiently than by numerical analysis, if the analytic model is first calibrated by numerical analysis (by control volume method). This was done by comparing the surface temperatures of a single canister calculated numerically and analytically. For the Olkiluoto repository of one panel having 900 canisters of BWR, VVER and EPR spent fuel was analyzed. The analyses were performed with an initial canister power of 1 700 W, 1 370 W and 1 830 W, respectively. These decay heats are obtained when the pre-cooling times of the fuels are 32.9, 29.6 and 50.3 years (the burn-up values 40, 40 and 50 MWd/kgU, respectively). The analyses gave as a result the canister spacing (6.0-10.8 m), when the tunnel spacing was 25 m, 30 m or 40 m. On the edge areas of the panel with constant canister spacing the temperatures of the canisters are lower than in the middle area of the repository. Thus it is possible to pack

  11. Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 tesla

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Satake, Hiroko; Kawamura, Minako; Fukatsu, Hiroshi; Sone, Michihiko; Nakashima, Tsutomu

    2008-01-01

    Twenty-four hours after intratympanic administration of gadolinium contrast material (Gd), the Gd was distributed mainly in the perilymphatic space. Three-dimensional FLAIR can differentiate endolymphatic space from perilymphatic space, but not from surrounding bone. The purpose of this study was to evaluate whether 3D inversion-recovery turbo spin echo (3D-IR TSE) with real reconstruction could separate the signals of perilymphatic space (positive value), endolymphatic space (negative value) and bone (near zero) by setting the inversion time between the null point of Gd-containing perilymph fluid and that of the endolymph fluid without Gd. Thirteen patients with clinically suspected endolymphatic hydrops underwent intratympanic Gd injection and were scanned at 3 T. A 3D FLAIR and 3D-IR TSE with real reconstruction were obtained. In all patients, low signal of endolymphatic space in the labyrinth on 3D FLAIR was observed in the anatomically appropriate position, and it showed negative signal on 3D-IR TSE. The low signal area of surrounding bone on 3D FLAIR showed near zero signal on 3D-IR TSE. Gd-containing perilymphatic space showed high signal on 3D-IR TSE. In conclusion, by optimizing the inversion time, endolymphatic space, perilymphatic space and surrounding bone can be separately visualized on a single image using a 3D-IR TSE with real reconstruction. (orig.)

  12. Projective Dimension in Filtrated K-Theory

    DEFF Research Database (Denmark)

    Bentmann, Rasmus Moritz

    2013-01-01

    Under mild assumptions, we characterise modules with projective resolutions of length n∈N in the target category of filtrated K-theory over a finite topological space in terms of two conditions involving certain Tor -groups. We show that the filtrated K-theory of any separable C∗dash-algebra over...... any topological space with at most four points has projective dimension 2 or less. We observe that this implies a universal coefficient theorem for rational equivariant KK-theory over these spaces. As a contrasting example, we find a separable C∗dash-algebra in the bootstrap class over a certain five......-point space, the filtrated K-theory of which has projective dimension 3. Finally, as an application of our investigations, we exhibit Cuntz-Krieger algebras which have projective dimension 2 in filtrated K-theory over their respective primitive spectrum....

  13. A Low-Order Harmonic Elimination Scheme for Induction Motor Drives Using a Multilevel Octadecagonal Space Vector Structure With a Single DC Source

    DEFF Research Database (Denmark)

    Boby, Mathews; Rahul, Arun; Gopakumar, K.

    2018-01-01

    Conventional voltage-source inverters used for induction motor drives generate a hexagonal space vector structure. In the overmodulation range, the hexagonal space vector structure generates low-order harmonics in the phase voltage resulting in low-order torque ripple in the motor. Inverter...... topologies with an octadecagonal (18 sided) space vector structure eliminate fifth-, seventh-, eleventh-, and thirteenth-order harmonics from the phase voltage, and hence, the dominant sixth- and twelfth-order torque ripple generation is eliminated. Octadecagonal space vector structures proposed in the past...... require multiple dc sources, which makes four-quadrant operation of the drive system difficult and costly. In this paper, the formation of a multilevel nine-concentric octadecagonal space vector structure using a single dc source is proposed. Detailed experimental results, using open-loop V/f control...

  14. Natural generalization of Slater determinants to more than one dimension

    Science.gov (United States)

    Sunko, Denis

    The calculation of realistic N-body wave functions for identical fermions is still an open problem in physics, chemistry, and materials science, even for N as small as two. Here a fundamental algebraic structure of many-body Hilbert space is described, enabling theoretically well-founded systematic investigation of wave-function space. The structure allows an arbitrary many-fermion wave function to be written in terms of a finite number of antisymmetric functions called shapes, which cannot be constructed by combining one-dimensional wave functions. Shapes naturally generalize the single-Slater-determinant form for the ground state to more than one dimension. Their number is exactly N! d - 1 in d dimensions. A general algorithm is given to list them all in terms of standard Slater determinants. Conversely, excitations which can be induced from the one-dimensional case are bosonised into a system of distinguishable bosons, called Euler bosons, much like the electromagnetic field is quantized in terms of photons distinguishable by their wave numbers. Their wave functions are given explicitly in terms of elementary symmetric functions, reflecting the fact that the fermion sign problem is trivial in one dimension. The shapes are all possible vacua for the Euler bosons.

  15. Complex numbers in n dimensions

    CERN Document Server

    Olariu, Silviu

    2002-01-01

    Two distinct systems of hypercomplex numbers in n dimensions are introduced in this book, for which the multiplication is associative and commutative, and which are rich enough in properties such that exponential and trigonometric forms exist and the concepts of analytic n-complex function, contour integration and residue can be defined. The first type of hypercomplex numbers, called polar hypercomplex numbers, is characterized by the presence in an even number of dimensions greater or equal to 4 of two polar axes, and by the presence in an odd number of dimensions of one polar axis. The other type of hypercomplex numbers exists as a distinct entity only when the number of dimensions n of the space is even, and since the position of a point is specified with the aid of n/2-1 planar angles, these numbers have been called planar hypercomplex numbers. The development of the concept of analytic functions of hypercomplex variables was rendered possible by the existence of an exponential form of the n-complex numbe...

  16. Projected interaction picture of field operators and memory superoperators. A master equation for the single-particle Green's function in a Liouville space

    International Nuclear Information System (INIS)

    Grinberg, H.

    1983-11-01

    The projection operator method of Zwanzig and Feshbach is used to construct the time-dependent field operators in the interaction picture. The formula developed to describe the time dependence involves time-ordered cosine and sine projected evolution (memory) superoperators, from which a master equation for the interaction-picture single-particle Green's function in a Liouville space is derived. (author)

  17. E-Government Dimension

    OpenAIRE

    Rosiyadi, Didi; Suryana, Nana; Cahyana, Ade; Nuryani, Nuryani

    2007-01-01

    Makalah ini mengemukakan E-Government Dimension yang merupakan salah satu hasil TahapanPengumpulan Data, dimana tahapan ini adalah bagian dari penelitian kompetitif di Lembaga Ilmu PengetahuanIndonesia 2007 yang sekarang sedang dilakukan. Data E-Government Dimension ini didapatkan dari berbagaisumber yang meliputi E-Government beberapa Negara di dunia, E-Government yang dibangun oleh beberapapenyedia aplikasi E-Government. E-Government Dimension terdiri dari tiga dimensi yaitu DemocraticDimen...

  18. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Science.gov (United States)

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  19. Dimensions of Adolescent Employment.

    Science.gov (United States)

    Mael, Fred A.; Morath, Ray A.; McLellan, Jeffrey A.

    1997-01-01

    Examines positive and negative correlates of adolescent work as a function of work dimensions. Results indicate that concurrent costs and benefits of adolescent employment may depend on dimensions of work as well as adolescent characteristics. Adolescent employment was generally related to subsequent work motivation and nonacademic performance.…

  20. User Experience Dimensions

    DEFF Research Database (Denmark)

    Lykke, Marianne; Jantzen, Christian

    2016-01-01

    The present study develops a set of 10 dimensions based on a systematic understanding of the concept of experience as a holistic psychological. Seven of these are derived from a psychological conception of what experiencing and experiences are. Three supplementary dimensions spring from the obser...

  1. Dimensions des stabulations 2018

    OpenAIRE

    Früh, Barbara; Maurer, Veronika; Schneider, Claudia; Schürmann, Stefan; Spengler Neff, Anet; Werne, Steffen

    2018-01-01

    Les «Dimensions des stabulations» contiennent toutes les dimensions pour les stabulations et les parcours pour la production animale en agriculture biologique. Cette liste sert d’instrument de planification pour les éleveurs, d’outil de travail pour la vulgarisation et d’ouvrage de référence pour le contrôle bio.

  2. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....

  3. The fourth dimension simply explained

    CERN Document Server

    Manning, Henry P

    2005-01-01

    To remove the contents of an egg without puncturing its shell or to drink the liquor in a bottle without removing the cork is clearly unthinkable - or is it? Understanding the world of Einstein and curved space requires a logical conception of the fourth dimension.This readable, informative volume provides an excellent introduction to that world, with 22 essays that employ a minimum of mathematics. Originally written for a contest sponsored by Scientific American, these essays are so well reasoned and lucidly written that they were judged to merit publication in book form. Their easily unders

  4. Quantum simulation of an extra dimension.

    Science.gov (United States)

    Boada, O; Celi, A; Latorre, J I; Lewenstein, M

    2012-03-30

    We present a general strategy to simulate a D+1-dimensional quantum system using a D-dimensional one. We analyze in detail a feasible implementation of our scheme using optical lattice technology. The simplest nontrivial realization of a fourth dimension corresponds to the creation of a bi-volume geometry. We also propose single- and many-particle experimental signatures to detect the effects of the extra dimension.

  5. Mixed quantization dimensions of self-similar measures

    International Nuclear Information System (INIS)

    Dai Meifeng; Wang Xiaoli; Chen Dandan

    2012-01-01

    Highlights: ► We define the mixed quantization dimension of finitely many measures. ► Formula of mixed quantization dimensions of self-similar measures is given. ► Illustrate the behavior of mixed quantization dimension as a function of order. - Abstract: Classical multifractal analysis studies the local scaling behaviors of a single measure. However recently mixed multifractal has generated interest. The purpose of this paper is some results about the mixed quantization dimensions of self-similar measures.

  6. Sequence polymorphism in an insect RNA virus field population: A snapshot from a single point in space and time reveals stochastic differences among and within individual hosts

    Energy Technology Data Exchange (ETDEWEB)

    Stenger, Drake C., E-mail: drake.stenger@ars.usda.gov [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States); Krugner, Rodrigo [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States); Nouri, Shahideh; Ferriol, Inmaculada; Falk, Bryce W. [Department of Plant Pathology, University of California, Davis, CA 95616 (United States); Sisterson, Mark S. [USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757 (United States)

    2016-11-15

    Population structure of Homalodisca coagulata Virus-1 (HoCV-1) among and within field-collected insects sampled from a single point in space and time was examined. Polymorphism in complete consensus sequences among single-insect isolates was dominated by synonymous substitutions. The mutant spectrum of the C2 helicase region within each single-insect isolate was unique and dominated by nonsynonymous singletons. Bootstrapping was used to correct the within-isolate nonsynonymous:synonymous arithmetic ratio (N:S) for RT-PCR error, yielding an N:S value ~one log-unit greater than that of consensus sequences. Probability of all possible single-base substitutions for the C2 region predicted N:S values within 95% confidence limits of the corrected within-isolate N:S when the only constraint imposed was viral polymerase error bias for transitions over transversions. These results indicate that bottlenecks coupled with strong negative/purifying selection drive consensus sequences toward neutral sequence space, and that most polymorphism within single-insect isolates is composed of newly-minted mutations sampled prior to selection. -- Highlights: •Sampling protocol minimized differential selection/history among isolates. •Polymorphism among consensus sequences dominated by negative/purifying selection. •Within-isolate N:S ratio corrected for RT-PCR error by bootstrapping. •Within-isolate mutant spectrum dominated by new mutations yet to undergo selection.

  7. Dimension from covariance matrices.

    Science.gov (United States)

    Carroll, T L; Byers, J M

    2017-02-01

    We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.

  8. Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yiwen; Miao, Hsin-Yuan; Zhang Mei; Liang, Richard; Zhang, Chuck; Wang, Ben [High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310 (United States); Lin, Ryan Jiyao, E-mail: kenymiao@thu.edu.tw, E-mail: mzhang@eng.fsu.edu [Department of Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States)

    2010-12-10

    Carbon nanotube (CNT) emitters on buckypaper were activated by laser treatment and their field emission properties were investigated. The pristine buckypapers and CNT emitters' height, diameter, and spacing were characterized through optical analysis. The emitter spacing directly impacted the emission results when the laser power and treatment times were fixed. The increasing emitter density increased the enhanced field emission current and luminance. However, a continuous and excessive increase of emitter density with spacing reduction generated the screening effect. As a result, the extended screening effect from the smaller spacing eventually crippled the field emission effectiveness. Luminance intensity and uniformity of field emission suggest that the highly effective buckypaper will have a density of 2500 emission spots cm{sup -2}, which presents an effective field enhancement factor of 3721 and a moderated screening effect of 0.005. Proper laser treatment is an effective post-treatment process for optimizing field emission, luminance, and durability performance for buckypaper cold cathodes.

  9. Escaping in extra dimensions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Recent progress in the formulation of fundamental theories for a Universe with more than 4 dimensions will be reviewed. Particular emphasis will be given to theories predicting the existence of extra dimensions at distance scales within the reach of current or forthcoming experiments. The phenomenological implications of these theories, ranging from detectable deviations from Newton's law at sub-millimeter scales, to phenomena of cosmological and astrophysical interest, as well as to high-energy laboratory experiments, will be discussed.

  10. Gender Dimensions Framework Application

    OpenAIRE

    Rubin, D.

    2011-01-01

    This is a presentation of the The Gender Dimensions Framework (GDF). The GDF was developed to provide guidance to USAID staff and partner organizations for working with USAID projects looking at promoting equitable opportunities in agricultural value chains. The GDF contemplates four dimensions: access to and control over key productive assets (tangible and intangible); beliefs and perceptions; practices and participation, and legal frameworks. CCRA-7 (Gendered Knowledge)

  11. Single Molecule 3D Orientation in Time and Space: A 6D Dynamic Study on Fluorescently Labeled Lipid Membranes

    DEFF Research Database (Denmark)

    Börner, Richard; Ehrlich, Nicky; Hohlbein, Johannes

    2016-01-01

    Interactions between single molecules profoundly depend on their mutual three-dimensional orientation. Recently, we demonstrated a technique that allows for orientation determination of single dipole emitters using a polarization-resolved distribution of fluorescence into several detection channels...... interesting in non-isotropic environments such as lipid membranes, which are of great importance in biology. We used giant unilamellar vesicles (GUVs) labeled with fluorescent dyes down to a single molecule concentration as a model system for both, assessing the robustness of the orientation determination...

  12. Intersection democracy for winding branes and stabilization of extra dimensions

    International Nuclear Information System (INIS)

    Rador, Tonguc

    2005-01-01

    We show that, in the context of pure Einstein gravity, a democratic principle for intersection possibilities of branes winding around extra dimensions in a given partitioning yield stabilization, while what the observed space follows is matter-like dust evolution. Here democracy is used in the sense that, in a given decimation of extra dimensions, all possible wrappings and hence all possible intersections are allowed. Generally, the necessary and sufficient condition for this is that the dimensionality m of the observed space dimensions obey 3= =3, where N is the decimation order of the extra dimensions

  13. Incommensurate crystallography without additional dimensions.

    Science.gov (United States)

    Kocian, Philippe

    2013-07-01

    It is shown that the Euclidean group of translations, when treated as a Lie group, generates translations not only in Euclidean space but on any space, curved or not. Translations are then not necessarily vectors (straight lines); they can be any curve compatible with the parameterization of the considered space. In particular, attention is drawn to the fact that one and only one finite and free module of the Lie algebra of the group of translations can generate both modulated and non-modulated lattices, the modulated character being given only by the parameterization of the space in which the lattice is generated. Moreover, it is shown that the diffraction pattern of a structure is directly linked to the action of that free and finite module. In the Fourier transform of a whole structure, the Fourier transform of the electron density of one unit cell (i.e. the structure factor) appears concretely, whether the structure is modulated or not. Thus, there exists a neat separation: the geometrical aspect on the one hand and the action of the group on the other, without requiring additional dimensions.

  14. A variational principle for the Hausdorff dimension of fractal sets

    DEFF Research Database (Denmark)

    Olsen, Lars; Cutler, Colleen D.

    1994-01-01

    Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)......Matematik, fraktal (fractal), Hausdorff dimension, Renyi dimension, pakke dimension (packing dimension)...

  15. Thermodynamic stability of asymptotically anti-de Sitter rotating black holes in higher dimensions

    International Nuclear Information System (INIS)

    Dolan, Brian P

    2014-01-01

    Conditions for thermodynamic stability of asymptotically anti-de Sitter (AdS) rotating black holes in D-dimensions are determined. Local thermodynamic stability requires not only positivity conditions on the specific heat and the moment of inertia tensor but it is also necessary that the adiabatic compressibility be positive. It is shown that, in the absence of a cosmological constant, neither rotation nor charge is sufficient to ensure full local thermodynamic stability of a black hole. Thermodynamic stability properties of AdS Myers–Perry black holes are investigated for both singly spinning and multi-spinning black holes. Simple expressions are obtained for the specific heat and moment of inertia tensor in any dimension. An analytic expression is obtained for the boundary of the region of parameter space in which such space-times are thermodynamically stable. (paper)

  16. Laplacian eigenmodes for spherical spaces

    International Nuclear Information System (INIS)

    Lachieze-Rey, M; Caillerie, S

    2005-01-01

    The possibility that our space is multi-rather than singly-connected has gained renewed interest after the discovery of the low power for the first multipoles of the CMB by WMAP. To test the possibility that our space is a multi-connected spherical space, it is necessary to know the eigenmodes of such spaces. Except for lens and prism space, and to some extent for dodecahedral space, this remains an open problem. Here we derive the eigenmodes of all spherical spaces. For dodecahedral space, the demonstration is much shorter, and the calculation method much simpler than before. We also apply our method to tetrahedric, octahedric and icosahedric spaces. This completes the knowledge of eigenmodes for spherical spaces, and opens the door to new observational tests of the cosmic topology. The vector space V k of the eigenfunctions of the Laplacian on the 3-sphere S 3 , corresponding to the same eigenvalue λ k = -k(k + 2), has dimension (k + 1) 2 . We show that the Wigner functions provide a basis for such a space. Using the properties of the latter, we express the behaviour of a general function of V k under an arbitrary rotation G of SO(4). This offers the possibility of selecting those functions of V k which remain invariant under G. Specifying G to be a generator of the holonomy group of a spherical space X, we give the expression of the vector space V x k of the eigenfunctions of X. We provide a method to calculate the eigenmodes up to an arbitrary order. As an illustration, we give the first modes for the spherical spaces mentioned

  17. Perceptual dimensions differentiate emotions.

    Science.gov (United States)

    Cavanaugh, Lisa A; MacInnis, Deborah J; Weiss, Allen M

    2015-08-26

    Individuals often describe objects in their world in terms of perceptual dimensions that span a variety of modalities; the visual (e.g., brightness: dark-bright), the auditory (e.g., loudness: quiet-loud), the gustatory (e.g., taste: sour-sweet), the tactile (e.g., hardness: soft vs. hard) and the kinaesthetic (e.g., speed: slow-fast). We ask whether individuals use perceptual dimensions to differentiate emotions from one another. Participants in two studies (one where respondents reported on abstract emotion concepts and a second where they reported on specific emotion episodes) rated the extent to which features anchoring 29 perceptual dimensions (e.g., temperature, texture and taste) are associated with 8 emotions (anger, fear, sadness, guilt, contentment, gratitude, pride and excitement). Results revealed that in both studies perceptual dimensions differentiate positive from negative emotions and high arousal from low arousal emotions. They also differentiate among emotions that are similar in arousal and valence (e.g., high arousal negative emotions such as anger and fear). Specific features that anchor particular perceptual dimensions (e.g., hot vs. cold) are also differentially associated with emotions.

  18. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  19. New dimensions new hopes

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    2001-05-01

    We live in a four dimensional world. But the idea of unification of fundamental interactions lead us to higher dimensional theories. Recently a new theory with extra dimensions has emerged where only gravity propagates in the extra dimension and all other interactions are confined to only four dimensions. This theory gives us many new hopes. In earlier theories unification of strong, weak and the electromagnetic forces was possible at around 10 16 GeV in a grand unified theory (GUT) and it could get unified with gravity at around the Planck scale of 10 19 GeV. With this new idea it is possible to bring down all unification scales within the reach of the new generation accelerators, i.e., around 10 4 GeV. (author)

  20. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....... of these criteria are widely used ones, while the remaining four are ones derived from the H-principle of mathematical modeling. Many examples from practice show that the criteria derived from the H-principle function better than the known and popular criteria for the number of components. We shall briefly review...

  1. Pellet dimension checker

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1980-01-01

    A pellet dimension checker was developed for use in making nuclear-fuel pellets. This checker eliminates operator handling of the pellet but permits remote-monitoring of the operation, and is thus suitable for mass production of green fuel pellets particularly in reprocessing plants handling irradiated uranium or plutonium. It comprises a rotatable arm for transferring a pellet from a conveyor to several dimensional measuring stations and back to the conveyor if the dimensions of the pellet are within predetermined limits. If the pellet is not within the limits, the arm removes the pellet from the process stream. (DN)

  2. Physics of extra dimensions

    International Nuclear Information System (INIS)

    Antoniadis, I

    2006-01-01

    Lowering the string scale in the TeV region provides a theoretical framework for solving the mass hierarchy problem and unifying all interactions. The apparent weakness of gravity can then be accounted by the existence of large internal dimensions, in the submillimeter region, and transverse to a braneworld where our universe must be confined. I review the main properties of this scenario and its implications for observations at both particle colliders, and in non-accelerator gravity experiments. Such effects are for instance the production of Kaluza-Klein resonances, graviton emission in the bulk of extra dimensions, and a radical change of gravitational forces in the submillimeter range

  3. Fractal dimension of cantori

    International Nuclear Information System (INIS)

    Li, W.; Bak, P.

    1986-01-01

    At a critical point the golden-mean Kolmogorov-Arnol'd-Moser trajectory of Chirikov's standard map breaks up into a fractal orbit called a cantorus. The transition describes a pinning of the incommensurate phase of the Frenkel-Kontorowa model. We find that the fractal dimension of the cantorus is D = 0 and that the transition from the Kolmogorov-Arnol'd-Moser trajectory with dimension D = 1 to the cantorus is governed by an exponent ν = 0.98. . . and a universal scaling function. It is argued that the exponent is equal to that of the Lyapunov exponent

  4. Advances in single- and multi-stage Stirling-type pulse tube cryocoolers for space applications in NLIP/SITP/CAS

    Science.gov (United States)

    Dang, Haizheng; Tan, Jun; Zha, Rui; Li, Jiaqi; Zhang, Lei; Zhao, Yibo; Gao, Zhiqian; Bao, Dingli; Li, Ning; Zhang, Tao; Zhao, Yongjiang; Zhao, Bangjian

    2017-12-01

    This paper presents a review of recent advances in single- and multi-stage Stirling-type pulse tube cryocoolers (SPTCs) for space applications developed at the National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (NLIP/SITP/CAS). A variety of single-stage SPTCs operating at 25-150 K have been developed, including several mid-sized ones operating at 80-110 K. Significant progress has been achieved in coolers operating at 30-40 K which use common stainless steel meshes as regenerator matrices. Another important advance is the micro SPTCs with an overall mass of 300-800 g operating at high frequencies varying from 100 Hz to 400 Hz. The main purpose of developing two-stage SPTCs is to simultaneously acquire cooling capacities at both stages, obviating the need for auxiliary precooling in various applications. The three-stage SPTCs are developed mainly for applications at around 10 K, which are also used for precooling the J-T coolers to achieve further lower temperatures. The four-stage SPTCs are developed to directly achieve the liquid helium temperature for cooling space low-Tc superconducting devices and for the deep space exploration as well. Several typical development programs are described and an overview of the cooler performances is presented.

  5. Selective Attention to Perceptual Dimensions and Switching between Dimensions

    Science.gov (United States)

    Meiran, Nachshon; Dimov, Eduard; Ganel, Tzvi

    2013-01-01

    In the present experiments, the question being addressed was whether switching attention between perceptual dimensions and selective attention to dimensions are processes that compete over a common resource? Attention to perceptual dimensions is usually studied by requiring participants to ignore a never-relevant dimension. Selection failure…

  6. Seeking Emancipation from Gender Regulation: Reflections on Home Space for a Black Woman Academic/Single Mother

    Science.gov (United States)

    William-­White, Lisa

    2012-01-01

    Using the work of Judith Butler on gender regulation, Black Feminist Thought (BFT), and autobiographic storytelling, this piece illustrates how essentialist notions of gender, and discourses related to gender create conflict in shaping identity construction for a Black woman academic and single mother (BWA/SM) in the United States. This piece…

  7. Scalar field cosmology in three-dimensions

    International Nuclear Information System (INIS)

    Oliveira Neto, G.

    2001-01-01

    We study an analytical solution to the Einstein's equations in 2 + 1-dimensions. The space-time is dynamical and has a line symmetry. The matter content is a minimally coupled, massless, scalar field. Depending on the value of certain parameters, this solution represents three distinct space-times. The first one is at space-time. Then, we have a big bang model with a negative curvature scalar and a real scalar field. The last case is a big bang model with event horizons where the curvature scalar vanishes and the scalar field changes from real to purely imaginary. (author)

  8. Dimension theory and forcing

    Czech Academy of Sciences Publication Activity Database

    Zapletal, Jindřich

    2014-01-01

    Roč. 167, April 15 (2014), s. 31-35 ISSN 0166-8641 R&D Projects: GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : Cohen real * infinite dimension * calibrated ideal Subject RIV: BA - General Mathematics Impact factor: 0.551, year: 2014 http://www.sciencedirect.com/science/article/pii/S0166864114001151

  9. BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions

    Science.gov (United States)

    Frolov, Valeri P.

    2013-10-01

    flatness of the Universe, the horizon problem and isotropy of cosmological microwave background. All this material is covered in chapter seven. Chapter eight contains brief discussion of several popular inflation models. Chapter nine is devoted to the problem of the large-scale structure formation from initial quantum vacuum fluctuation during the inflation and the spectrum of the density fluctuations. It also contains remarks on the baryonic asymmetry of the Universe, baryogenesis and primordial black holes. Part III covers the material on extra dimensions. It describes how Einstein gravity is modified in the presence of one or more additional spatial dimensions and how these extra dimensions are compactified in the Kaluza-Klein scheme. The authors also discuss how extra dimensions may affect low energy physics. They present examples of higher-dimensional generalizations of the gravity with higher-in-curvature corrections and discuss a possible mechanism of self-stabilization of an extra space. A considerable part of the chapter 10 is devoted to cosmological models with extra dimensions. In particular, the authors discuss how extra dimensions can modify 'standard' inflation models. At the end of this chapter they make several remarks on a possible relation of the value of fundamental constants in our universe with the existence of extra dimensions. Finally, in chapter 11 they demonstrate that several observable properties of the Universe are closely related with the special value of the fundamental physical constants and their fine tuning. They give interesting examples of such fine tuning and summarize many other cases. The book ends with discussion of a so-called 'cascade birth of universes in multidimensional spaces' model, proposed by one of the authors. As is evident from this brief summary of topics presented in the book, many interesting areas of modern gravity and cosmology are covered. However, since the subject is so wide, this inevitably implies that the

  10. Measure and dimension functions: measurability and densities

    Science.gov (United States)

    Mattila, Pertti; Mauldin, R. Daniel

    1997-01-01

    During the past several years, new types of geometric measure and dimension have been introduced; the packing measure and dimension, see [Su], [Tr] and [TT1]. These notions are playing an increasingly prevalent role in various aspects of dynamics and measure theory. Packing measure is a sort of dual of Hausdorff measure in that it is defined in terms of packings rather than coverings. However, in contrast to Hausdorff measure, the usual definition of packing measure requires two limiting procedures, first the construction of a premeasure and then a second standard limiting process to obtain the measure. This makes packing measure somewhat delicate to deal with. The question arises as to whether there is some simpler method for defining packing measure and dimension. In this paper, we find a basic limitation on this possibility. We do this by determining the descriptive set-theoretic complexity of the packing functions. Whereas the Hausdorff dimension function on the space of compact sets is Borel measurable, the packing dimension function is not. On the other hand, we show that the packing dimension functions are measurable with respect to the [sigma]-algebra generated by the analytic sets. Thus, the usual sorts of measurability properties used in connection with Hausdorff measure, for example measures of sections and projections, remain true for packing measure.

  11. Chromatic Dimensions Earthy, Watery, Airy, and Fiery.

    Science.gov (United States)

    Albertazzi, Liliana; Koenderink, Jan J; van Doorn, Andrea

    2015-01-01

    In our study, for a small number of antonyms, we investigate whether they are cross-modally or ideaesthetically related to the space of colors. We analyze the affinities of seven antonyms (cold-hot, dull-radiant, dead-vivid, soft-hard, transparent-chalky, dry-wet, and acid-treacly) and their intermediate connotations (cool-warm, matt-shiny, numb-lively, mellow-firm, semi-transparent-opaque, semi-dry-moist, and sour-sweet) as a function of color. We find that some antonyms relate to chromatic dimensions, others to achromatic ones. The cold-hot antonym proves to be the most salient dimension. The dry-wet dimension coincides with the cold-hot dimension, with dry corresponding to hot and wet to cold. The acid-treacly dimension proves to be transversal to the cold-hot dimension; hence, the pairs mutually span the chromatic domain. The cold-hot and acid-treacly antonyms perhaps recall Hering's opponent color system. The dull-radiant, transparent-chalky, and dead-vivid pairs depend little upon chromaticity. Of all seven antonyms, only the soft-hard one turns out to be independent of the chromatic structure. © The Author(s) 2015.

  12. Gravitational lensing and extra dimensions

    International Nuclear Information System (INIS)

    He, X-G.; University of Melbourne, Parkville, VIC; Joshi, G.C.; McKellar, B.H.J.

    1999-08-01

    We study gravitational tensing and the bending of light in low energy scale (M s ) gravity theories with extra space-time dimensions 'n'. We find that due to the presence of spin-2 Kaluza-Klein states from compactification, a correction to the deflection angle with a strong quadratic dependence on the photon energy is introduced. No deviation from the Einstein General Relativity prediction for the deflection angle for photons grazing the Sun in the visible band with 15% accuracy (90% c.l.) implies that the scale M s has to be larger than 1.4(2/(n-2)) 1/4 TeV and approximately 4 TeV for n=2. This lower bound is comparable with that from collider physics constraints. Gravitational tensing experiments with higher energy photons can provide stronger constraints. (authors)

  13. THE POLISH SEJM ELECTIONS OF 2015: SPACE VARIABILITY OF THE RESULTS BASED ON SINGLE-MEMBER CONSTITUENCIES SIMULATION

    Directory of Open Access Journals (Sweden)

    Oskar SKOMSKI

    2017-11-01

    Full Text Available The main assumption of this paper is to analyse the Sejm elections of 2015 results. The authors conducted a simulation study regarding the single-member constituencies in the election to the Polish Parliament, basing the research on the election results facilitated by National Electoral Commission as well as the specific data provided by Central Statistical Office. The division of Poland into 460 single-member constituencies was mapped by the authors (those maps do not include the district divisions in the cities, as the agglomerations’ division is problematic. Obtained results indicate to the marginalization of the Polish political scene – plural voting would preclude the election victories of the secondary political parties and civil rights movements.

  14. A first course in topology continuity and dimension

    CERN Document Server

    McCleary, John

    2006-01-01

    How many dimensions does our universe require for a comprehensive physical description? In 1905, Poincar� argued philosophically about the necessity of the three familiar dimensions, while recent research is based on 11 dimensions or even 23 dimensions. The notion of dimension itself presented a basic problem to the pioneers of topology. Cantor asked if dimension was a topological feature of Euclidean space. To answer this question, some important topological ideas were introduced by Brouwer, giving shape to a subject whose development dominated the twentieth century. The basic notions in topology are varied and a comprehensive grounding in point-set topology, the definition and use of the fundamental group, and the beginnings of homology theory requires considerable time. The goal of this book is a focused introduction through these classical topics, aiming throughout at the classical result of the Invariance of Dimension. This text is based on the author's course given at Vassar College and is intended fo...

  15. Ultrafast Single-Shot Optical Oscilloscope based on Time-to-Space Conversion due to Temporal and Spatial Walk-Off Effects in Nonlinear Mixing Crystal

    Science.gov (United States)

    Takagi, Yoshihiro; Yamada, Yoshifumi; Ishikawa, Kiyoshi; Shimizu, Seiji; Sakabe, Shuji

    2005-09-01

    A simple method for single-shot sub-picosecond optical pulse diagnostics has been demonstrated by imaging the time evolution of the optical mixing onto the beam cross section of the sum-frequency wave when the interrogating pulse passes over the tested pulse in the mixing crystal as a result of the combined effect of group-velocity difference and walk-off beam propagation. A high linearity of the time-to-space projection is deduced from the process solely dependent upon the spatial uniformity of the refractive indices. A snap profile of the accidental coincidence between asynchronous pulses from separate mode-locked lasers has been detected, which demonstrates the single-shot ability.

  16. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.

    2015-06-22

    We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.

  17. A four-dimensional virtual hand brain-machine interface using active dimension selection.

    Science.gov (United States)

    Rouse, Adam G

    2016-06-01

    Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s(-1) for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  18. Search for Extra Dimensions With ATLAS at LHC

    CERN Document Server

    Benslama, Kamal

    2004-01-01

    Theories with extra space time dimensions aiming at resolving the hierarchy problem have recently been developed. These scenarios have provided exciting new grounds for experimental probes. A review of the studies done by the ATLAS collaboration on the sensitivity of the detector to various extra dimension models is reported in this document

  19. A simpler and elegant algorithm for computing fractal dimension in ...

    Indian Academy of Sciences (India)

    Chaotic systems are now frequently encountered in almost all branches of sciences. Dimension of such systems provides an important measure for easy characterization of dynamics of the systems. Conventional algorithms for computing dimension of such systems in higher dimensional state space face an unavoidable ...

  20. Spatially multiplexed orbital-angular-momentum-encoded single photon and classical channels in a free-space optical communication link.

    Science.gov (United States)

    Ren, Yongxiong; Liu, Cong; Pang, Kai; Zhao, Jiapeng; Cao, Yinwen; Xie, Guodong; Li, Long; Liao, Peicheng; Zhao, Zhe; Tur, Moshe; Boyd, Robert W; Willner, Alan E

    2017-12-01

    We experimentally demonstrate spatial multiplexing of an orbital angular momentum (OAM)-encoded quantum channel and a classical Gaussian beam with a different wavelength and orthogonal polarization. Data rates as large as 100 MHz are achieved by encoding on two different OAM states by employing a combination of independently modulated laser diodes and helical phase holograms. The influence of OAM mode spacing, encoding bandwidth, and interference from the co-propagating Gaussian beam on registered photon count rates and quantum bit error rates is investigated. Our results show that the deleterious effects of intermodal crosstalk effects on system performance become less important for OAM mode spacing Δ≥2 (corresponding to a crosstalk value of less than -18.5  dB). The use of OAM domain can additionally offer at least 10.4 dB isolation besides that provided by wavelength and polarization, leading to a further suppression of interference from the classical channel.

  1. Cultural dimensions of learning

    Science.gov (United States)

    Eyford, Glen A.

    1990-06-01

    How, what, when and where we learn is frequently discussed, as are content versus process, or right brain versus left brain learning. What is usually missing is the cultural dimension. This is not an easy concept to define, but various aspects can be identified. The World Decade for Cultural Development emphasizes the need for a counterbalance to a quantitative, economic approach. In the last century poets also warned against brutalizing materialism, and Sorokin and others have described culture more recently in terms of cohesive basic values expressed through aesthetics and institutions. Bloom's taxonomy incorporates the category of affective learning, which internalizes values. If cultural learning goes beyond knowledge acquisition, perhaps the surest way of understanding the cultural dimension of learning is to examine the aesthetic experience. This can use myths, metaphors and symbols, and to teach and learn by using these can help to unlock the human potential for vision and creativity.

  2. Dimensions of Openness

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Thestrup, Klaus

    2015-01-01

    The objective of the paper is to present a pedagogical approach to openness. The paper develops a framework for understanding the pedagogical opportunities of openness in education. Based on the pragmatism of John Dewey and sociocultural learning theory, the paper defines openness in education...... as a matter of engaging educational activities in sociocultural practices of a surrounding society. Openness is not only a matter of opening up the existing, but of developing new educational practices that interact with society. The paper outlines three pedagogical dimensions of openness: transparency...... practices. Openness as joint engagement in the world aims at establishing interdependent collaborative relationships between educational institutions and external practices. To achieve these dimensions of openness, educational activities need to change and move beyond the course as the main format...

  3. Introduction to Extra Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Thomas G.; /SLAC

    2010-04-29

    Extra dimensions provide a very useful tool in addressing a number of the fundamental problems faced by the Standard Model. The following provides a very basic introduction to this very broad subject area as given at the VIII School of the Gravitational and Mathematical Physics Division of the Mexican Physical Society in December 2009. Some prospects for extra dimensional searches at the 7 TeV LHC with {approx}1 fb{sup -1} of integrated luminosity are provided.

  4. Physics in few dimensions

    International Nuclear Information System (INIS)

    Emery, V.J.

    1981-03-01

    This article is a qualitative account of some aspects of physics in few dimensions, and its relationship to nonlinear field theories. After a survey of materials and some of the models that have been used to describe them, the various methods of solution are compared and contrasted. The roles of exact results, operator representations and the renormalization group transformation are described, and a uniform picture of the behavior of low-dimensional systems is presented

  5. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    Science.gov (United States)

    Roy, Robert J.; Wilson, Mark E.; Diderich, Greg S.; Steele, John W.

    2011-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell concentration overpotential resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid-cathode feed water electrolysis cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  6. Simulation and optimization study on a solar space heating system combined with a low temperature ASHP for single family rural residential houses in Beijing

    DEFF Research Database (Denmark)

    Deng, Jie; Tian, Zhiyong; Fan, Jianhua

    2016-01-01

    A pilot project of the solar water heating system combined with a low temperature air source heat pump (ASHP) unit was established in 2014 in a detached residential house in the rural region of Beijing, in order to investigate the system application prospect for single family houses via system...... optimization design and economic analysis. The established system was comprised of the glass heat-pipe based evacuated tube solar collectors with a gross area of 18.8 m2 and an ASHP with a stated heating power of 8 kW for the space heating of a single family rural house of 81.4 m2. The dynamic thermal...... with good building insulation were undertaken to figure out the system economical efficiency in the rural regions of Beijing. The results show that the payback periods of the solar space heating system combined with the ASHP with the collector areas 15.04-22.56 m2 are 17.3-22.4 years for the established...

  7. The "fourth dimension" of gene transcription.

    Science.gov (United States)

    O'Malley, Bert W

    2009-05-01

    The three dimensions of space provide our relationship to position on the earth, but the fourth dimension of time has an equally profound influence on our lives. Everything from light and sound to weather and biology operate on the principle of measurable temporal periodicity. Consequently, a wide variety of time clocks affect all aspects of our existence. The annual (and biannual) cycles of activity, metabolism, and mating, the monthly physiological clocks of women and men, and the 24-h diurnal rhythms of humans are prime examples. Should it be surprising to us that the fourth dimension also impinges upon gene expression and that the genome itself is regulated by the fastest running of all biological clocks? Recent evidence substantiates the existence of such a ubiquitin-dependent transcriptional clock that is based upon the activation and destruction of transcriptional coactivators.

  8. Space and phase resolved ion energy and angular distributions in single- and dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States); Moore, Nathaniel; Pribyl, Patrick; Gekelman, Walter [Department of Physics, University of California, Los Angeles, California 90095 (United States)

    2013-11-15

    The control of ion energy and angular distributions (IEADs) is critically important for anisotropic etching or deposition in microelectronic fabrication processes. With single frequency capacitively coupled plasmas (CCPs), the narrowing in angle and spread in energy of ions as they cross the sheath are definable functions of frequency, sheath width, and mean free path. With increases in wafer size, single frequency CCPs are finding difficulty in meeting the requirement of simultaneously controlling plasma densities, ion fluxes, and ion energies. Dual-frequency CCPs are being investigated to provide this flexible control. The high frequency (HF) is intended to control the plasma density and ion fluxes, while the ion energies are intended to be controlled by the low frequency (LF). However, recent research has shown that the LF can also influence the magnitude of ion fluxes and that IEADs are determined by both frequencies. Hence, separate control of fluxes and IEADs is complex. In this paper, results from a two-dimensional computational investigation of Ar/O{sub 2} plasma properties in an industrial reactor are discussed. The IEADs are tracked as a function of height above the substrate and phase within the rf cycles from the bulk plasma to the presheath and through the sheath with the goal of providing insights to this complexity. Comparison is made to laser-induced fluorescence experiments. The authors found that the ratios of HF/LF voltage and driving frequency are critical parameters in determining the shape of the IEADs, both during the transit of the ion through the sheath and when ions are incident onto the substrate. To the degree that contributions from the HF can modify plasma density, sheath potential, and sheath thickness, this may provide additional control for the IEADs.

  9. Tensionless branes and the null string critical dimension

    International Nuclear Information System (INIS)

    Bozhilov, P.

    1998-01-01

    BRST quantization is carried out for a model of p-branes with second class constraints. After extension of the phase space the constraint algebra coincides with the one of null string when p=1. It is shown that in this case one can or cannot obtain critical dimension for the null string, depending on the choice of the operator ordering and corresponding vacuum states. When p>1, operator orderings leading to critical dimension in the p=1 case are not allowed. Admissible orderings give no restrictions on the dimension of the embedding space-time. Finally, a generalization to supersymmetric null branes is proposed

  10. Accelerated Dimension-Independent Adaptive Metropolis

    KAUST Repository

    Chen, Yuxin

    2016-10-27

    This work describes improvements by algorithmic and architectural means to black-box Bayesian inference over high-dimensional parameter spaces. The well-known adaptive Metropolis (AM) algorithm [H. Haario, E. Saksman, and J. Tamminen, Bernoulli, (2001), pp. 223--242] is extended herein to scale asymptotically uniformly with respect to the underlying parameter dimension for Gaussian targets, by respecting the variance of the target. The resulting algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional (with dimension $d \\\\geq 1000$) targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justified a posteriori). Asymptotically in dimension, this GPU implementation exhibits a factor of four improvement versus a competitive CPU-based Intel MKL (math kernel library) parallel version alone. Strong scaling to concurrent chains is exhibited, through a combination of longer time per sample batch (weak scaling) with fewer necessary samples to convergence. The algorithm performance is illustrated on several Gaussian and non-Gaussian target examples, in which the dimension may be in excess of one thousand.

  11. Massively Parallel Dimension Independent Adaptive Metropolis

    KAUST Repository

    Chen, Yuxin

    2015-05-14

    This work considers black-box Bayesian inference over high-dimensional parameter spaces. The well-known and widely respected adaptive Metropolis (AM) algorithm is extended herein to asymptotically scale uniformly with respect to the underlying parameter dimension, by respecting the variance, for Gaussian targets. The result- ing algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justified a posteriori). Asymptoti- cally in dimension, this massively parallel dimension-independent adaptive Metropolis (MPDIAM) GPU implementation exhibits a factor of four improvement versus the CPU-based Intel MKL version alone, which is itself already a factor of three improve- ment versus the serial version. The scaling to multiple CPUs and GPUs exhibits a form of strong scaling in terms of the time necessary to reach a certain convergence criterion, through a combination of longer time per sample batch (weak scaling) and yet fewer necessary samples to convergence. This is illustrated by e ciently sampling from several Gaussian and non-Gaussian targets for dimension d 1000.

  12. [Christian dimension of suffering].

    Science.gov (United States)

    Kubik, K

    1999-01-01

    Human existence is marked by imperfection, whose expression--among other things--is suffering. The problem of answering the question about the meaning of suffering for human life in its entirety is of great significance in philosophy and theology. In the Old Testament it meant God's punishment for the evil done by man. In Christianity this bleak notion of suffering has found a new dimension--suffering is creative, redemptive in character; it enables a man to surpass his limits. The understanding of suffering and its sense has a profound meaning in building a suitable attitude of a sick person towards his own weakness.

  13. Public Value Dimensions

    DEFF Research Database (Denmark)

    Andersen, lotte bøgh; Beck Jørgensen, Torben; Kjeldsen, Anne-Mette

    2012-01-01

    Further integration of the public value literature with other strands of literature within Public Administration necessitates a more specific classification of public values. This paper applies a typology linked to organizational design principles, because this is useful for empirical public...... administration studies. Based on an existing typology of modes of governance, we develop a classification and test it empirically, using survey data from a study of the values of 501 public managers. We distinguish between seven value dimensions (the public at large, rule abidance, societal interests, budget...... the integration between the public value literature and other parts of the Public Administration discipline....

  14. Dimensions of energy efficiency

    International Nuclear Information System (INIS)

    Ramani, K.V.

    1992-01-01

    In this address the author describes three dimensions of energy efficiency in order of increasing costs: conservation, resource and technology substitution, and changes in economic structure. He emphasizes the importance of economic rather than environmental rationales for energy efficiency improvements in developing countries. These countries do not place high priority on the problems of global climate change. Opportunities for new technologies may exist in resource transfer, new fuels and, possibly, small reactors. More research on economic and social impacts of technologies with greater sensitivity to user preferences is needed

  15. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  16. Towards a fourth spatial dimension of brain activity.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F

    2016-06-01

    Current advances in neurosciences deal with the functional architecture of the central nervous system, paving the way for general theories that improve our understanding of brain activity. From topology, a strong concept comes into play in understanding brain functions, namely, the 4D space of a "hypersphere's torus", undetectable by observers living in a 3D world. The torus may be compared with a video game with biplanes in aerial combat: when a biplane flies off one edge of gaming display, it does not crash but rather it comes back from the opposite edge of the screen. Our thoughts exhibit similar behaviour, i.e. the unique ability to connect past, present and future events in a single, coherent picture as if we were allowed to watch the three screens of past-present-future "glued" together in a mental kaleidoscope. Here we hypothesize that brain functions are embedded in a imperceptible fourth spatial dimension and propose a method to empirically assess its presence. Neuroimaging fMRI series can be evaluated, looking for the topological hallmark of the presence of a fourth dimension. Indeed, there is a typical feature which reveal the existence of a functional hypersphere: the simultaneous activation of areas opposite each other on the 3D cortical surface. Our suggestion-substantiated by recent findings-that brain activity takes place on a closed, donut-like trajectory helps to solve long-standing mysteries concerning our psychological activities, such as mind-wandering, memory retrieval, consciousness and dreaming state.

  17. Quantum vortex fluid in two dimensions

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.

    1995-01-01

    It is argued that in two dimensions the high-field zero-temperature phase of a type-II superconductor can be quantum vortex fluid. The average intervortex spacing in this phase takes discrete values, leading to macroscopic steps in the total flux through the superconductor on the applied magnetic field. In the absence of dissipation, the Hall conductivity is quantized in units of 4e 2 /πℎ

  18. Van Allen Probes Science Gateway: Single-Point Access to Long-Term Radiation Belt Measurements and Space Weather Nowcasting

    Science.gov (United States)

    Romeo, G.; Barnes, R. J.; Ukhorskiy, A. Y.; Sotirelis, T.; Stephens, G.

    2017-12-01

    The Science Gateway gives single-point access to over 4.5 years of comprehensive wave and particle measurements from the Van Allen Probes NASA twin-spacecraft mission. The Gateway provides a set of visualization and data analysis tools including: HTML5-based interactive visualization of high-level data products from all instrument teams in the form of: line plots, orbital content plots, dynamical energy spectra, L-shell context plots (including two-spacecraft plotting), FFT spectra of wave data, solar wind and geomagnetic indices data, etc.; download custom multi-instrument CDF data files of selected data products; publication quality plots of digital data; combined orbit predicts for mission planning and coordination including: Van Allen Probes, MMS, THEMIS, Arase (ERG), Cluster, GOES, Geotail, FIREBIRD; magnetic footpoint calculator for coordination with LEO and ground-based assets; real-time computation and processing of empirical magnetic field models - computation of magnetic ephemeris, computation of adiabatic invariants. Van Allen Probes is the first spacecraft mission to provide a nowcast of the radiation environment in the heart of the radiation belts, where the radiation levels are the highest and most dangerous for spacecraft operations. For this purpose, all instruments continuously broadcast a subset of their science data in real time. Van Allen Probes partners with four foreign institutions who operate ground stations that receive the broadcast: Korea (KASI), the Czech republic (CAS), Argentina (CONAE), and Brazil (INPE). The SpWx broadcast is then collected at APL and delivered to the community via the Science Gateway.

  19. Fundamental processes in the expansion, energization, and coupling of single- and multi-Ion plasmas in space: Laboratory simulation experiments

    Science.gov (United States)

    Szuszczewicz, E. P.; Bateman, T. T.

    1996-01-01

    We have conducted a laboratory investigation into the physics of plasma expansions and their associated energization processes. We studied single- and multi-ion plasma processes in self-expansions, and included light and heavy ions and heavy/light mixtures to encompass the phenomenological regimes of the solar and polar winds and the AMPTE and CRRES chemical release programs. The laboratory experiments provided spatially-distributed time-dependent measurements of total plasma density, temperature, and density fluctuation power spectra with the data confirming the long-theorized electron energization process in an expanding cloud - a result that was impossible to determine in spaceborne experiments (as e.g., in the CRRES program). These results provided the missing link in previous laboratory and spaceborne programs. confirming important elements in our understanding of such solar-terrestrial processes as manifested in expanding plasmas in the solar wind (e.g., CMES) and in ionospheric outflow in plasmaspheric fluctuate refilling after a storm. The energization signatures were seen in an entire series of runs that varied the ion species (Ar', Xe', Kr' and Ne'), and correlative studies included spectral analyses of electrostatic waves collocated with the energized electron distributions. In all cases wave energies were most intense during the times in which the suprathermal populations were present, with wave intensity increasing with the intensity of the suprathermal electron population. This is consistent with theoretical expectations wherein the energization process is directly attributable to wave particle interactions. No resonance conditions were observed, in an overall framework in which the general wave characteristics were broadband with power decreasing with increasing frequency.

  20. 1. Dimensions of sustainable development

    International Nuclear Information System (INIS)

    Repetto, R.

    1992-01-01

    This chapter discusses the following topics: the concept of sustainable development; envisioning sustainable development (economic dimensions, human dimensions, environmental dimensions, technological dimensions); policy implications (economic policies, people-oriented policies, environmental policies, creating sustainable systems); and global issues (effect of war on development and the environment and the debt burden). This chapter also introduces the case studies by discussing the levels of economic development and comparing key trends (economic growth, human development, population growth, and energy use)

  1. Chern-Simons gravity in four dimensions

    International Nuclear Information System (INIS)

    Morales, Ivan; Neves, Bruno; Piguet, Olivier; Oporto, Zui

    2017-01-01

    Five-dimensional Chern-Simons theory with (anti-)de Sitter SO(1,5) or SO(2,4) gauge invariance presents an alternative to general relativity with cosmological constant. We consider the zero modes of its Kaluza-Klein compactification to four dimensions. Solutions with vanishing torsion are obtained in the cases of a spherically symmetric 3-space and of a homogeneous and isotropic 3-space, which reproduce the Schwarzshild-de Sitter and ΛCDM cosmological solutions of general relativity. We also check that vanishing torsion is a stable feature of the solutions. (orig.)

  2. Chern-Simons gravity in four dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Ivan; Neves, Bruno; Piguet, Olivier [Universidade Federal de Vicosa (UFV), Departamento de Fisica, Vicosa, MG (Brazil); Oporto, Zui [Universidade Federal de Vicosa (UFV), Departamento de Fisica, Vicosa, MG (Brazil); Universidad Mayor de San Andres, Carrera de Fisica, La Paz (Bolivia, Plurinational State of)

    2017-02-15

    Five-dimensional Chern-Simons theory with (anti-)de Sitter SO(1,5) or SO(2,4) gauge invariance presents an alternative to general relativity with cosmological constant. We consider the zero modes of its Kaluza-Klein compactification to four dimensions. Solutions with vanishing torsion are obtained in the cases of a spherically symmetric 3-space and of a homogeneous and isotropic 3-space, which reproduce the Schwarzshild-de Sitter and ΛCDM cosmological solutions of general relativity. We also check that vanishing torsion is a stable feature of the solutions. (orig.)

  3. No Hawking-Page phase transition in three dimensions

    International Nuclear Information System (INIS)

    Myung, Y.S.

    2005-01-01

    We investigate whether or not the Hawking-Page phase transition is possible to occur in three dimensions. Starting with the simplest class of Lanczos-Lovelock action, thermodynamic behavior of all AdS-type black holes without charge falls into two classes: Schwarzschild-AdS black holes in even dimensions and Chern-Simons black holes in odd dimensions. The former class can provide the Hawking-Page transition between Schwarzschild-AdS black holes and thermal AdS space. On the other hand, the latter class is exceptional and thus the Hawking-Page transition is hard to occur. In three dimensions, a second-order phase transition might occur between the non-rotating BTZ black hole and the massless BTZ black hole (thermal AdS space), instead of the first-order Hawking-Page transition between the non-rotating BTZ black hole and thermal AdS space

  4. Relativistic phase space: dimensional recurrences

    International Nuclear Information System (INIS)

    Delbourgo, R; Roberts, M L

    2003-01-01

    We derive recurrence relations between phase space expressions in different dimensions by confining some of the coordinates to tori or spheres of radius R and taking the limit as R→∞. These relations take the form of mass integrals, associated with extraneous momenta (relative to the lower dimension), and produce the result in the higher dimension

  5. Biomedical engineering - A means to add new dimension to medicine and research

    Science.gov (United States)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  6. Multifractal Scaling of Grayscale Patterns: Lacunarity and Correlation Dimension

    Science.gov (United States)

    Roy, A.; Perfect, E.

    2012-12-01

    While fractal models can characterize self-similarity in binary fields, comprised solely of 0's and 1's, the concept of multifractals is needed to quantify scaling behavior in non-binary grayscale fields made up of fractional values. Multifractals are characterized by a spectrum of non-integer dimensions, Dq (-∞ < q < +∞) instead of a single fractal dimension. The gliding-box algorithm is sometimes employed to estimate these different dimensions. This algorithm is also commonly used for computing another parameter, lacunarity, L, which characterizes the distribution of gaps or spaces in patterns, fractals, multifractals or otherwise, as a function of scale (or box-size, x). In the case of 2-dimensional multifractal fields, L has been shown to be theoretically related to the correlation dimension, D2, by dlog(L)/dlog(x) = D2 - 2. Therefore, it is hypothesized that lacunarity analysis can help in delineating multifractal behavior in grayscale patterns. In testing this hypothesis, a set of 2-dimensional multifractal grayscale patterns was generated with known D2 values, and then analyzed for lacunarity by employing the gliding-box algorithm. The D2 values computed using this analysis gave a 1:1 relationship with the known D2 values, thus empirically validating the theoretical relationship between L and D2. Lacunarity analysis was further used to evaluate the multifractal nature of natural grayscale images in the form of soil thin sections that had been previously classified as multifractals based on the standard box counting method. The results indicated that lacunarity analysis is a more sensitive indicator of multifractal behavior in natural grayscale patterns than the box counting approach. A weighted mean of the log-transformed lacunarity values at different scales was employed for differentiating between grayscale patterns with various degrees of scale dependent clustering attributes. This new measure, which expresses lacunarity as a single number, should

  7. Quantum tunneling in real space: Tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au

    Science.gov (United States)

    Kumagai, Takashi; Ladenthin, Janina N.; Litman, Yair; Rossi, Mariana; Grill, Leonhard; Gawinkowski, Sylwester; Waluk, Jacek; Persson, Mats

    2018-03-01

    Tautomerization in single porphycene molecules is investigated on Cu(111), Ag(111), and Au(111) surfaces by a combination of low-temperature scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations. It is revealed that the trans configuration is the thermodynamically stable form of porphycene on Cu(111) and Ag(111), whereas the cis configuration occurs as a meta-stable form. The trans → cis or cis → trans conversion on Cu(111) can be induced in an unidirectional fashion by injecting tunneling electrons from the STM tip or heating the surface, respectively. We find that the cis ↔ cis tautomerization on Cu(111) occurs spontaneously via tunneling, verified by the negligible temperature dependence of the tautomerization rate below ˜23 K. Van der Waals corrected DFT calculations are used to characterize the adsorption structures of porphycene and to map the potential energy surface of the tautomerization on Cu(111). The calculated barriers are too high to be thermally overcome at cryogenic temperatures used in the experiment and zero-point energy corrections do not change this picture, leaving tunneling as the most likely mechanism. On Ag(111), the reversible trans ↔ cis conversion occurs spontaneously at 5 K and the cis ↔ cis tautomerization rate is much higher than on Cu(111), indicating a significantly smaller tautomerization barrier on Ag(111) due to the weaker interaction between porphycene and the surface compared to Cu(111). Additionally, the STM experiments and DFT calculations reveal that tautomerization on Cu(111) and Ag(111) occurs with migration of porphycene along the surface; thus, the translational motion couples with the tautomerization coordinate. On the other hand, the trans and cis configurations are not discernible in the STM image and no tautomerization is observed for porphycene on Au(111). The weak interaction of porphycene with Au(111) is closest to the gas-phase limit and therefore the absence

  8. A global single-sensor analysis of 2002-2011 tropospheric nitrogen dioxide trends observed from space

    Science.gov (United States)

    Schneider, P.; van der A, R. J.

    2012-08-01

    A global nine-year archive of monthly tropospheric NO2 data acquired by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument was analyzed with respect to trends between August 2002 and August 2011. In the past, similar studies relied on combining data from multiple sensors; however, the length of the SCIAMACHY data set now for the first time allows utilization of a consistent time series from just a single sensor for mapping NO2 trends at comparatively high horizontal resolution (0.25°). This study provides an updated analysis of global patterns in NO2 trends and finds that previously reported decreases in tropospheric NO2 over Europe and the United States as well as strong increases over China and several megacities in Asia have continued in recent years. Positive trends of up to 4.05 (±0.41) × 1015 molecules cm-2 yr-1 and up to 19.7 (±1.9) % yr-1 were found over China, with the regional mean trend being 7.3 (±3.1) % yr-1. The megacity with the most rapid relative increase was found to be Dhaka in Bangladesh. Subsequently focusing on Europe, the study further analyzes trends by country and finds significantly decreasing trends for seven countries ranging from -3.0 (±1.6) % yr-1 to -4.5 (±2.3) % yr-1. A comparison of the satellite data with station data indicates that the trends derived from both sources show substantial differences on the station scale, i.e., when comparing a station trend directly with the equivalent satellite-derived trend at the same location, but provide quite similar large-scale spatial patterns. Finally, the SCIAMACHY-derived NO2 trends are compared with equivalent trends in NO2concentration computed using the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP) model. The results show that the spatial patterns in trends computed from both data sources mostly agree in Central and Western Europe, whereas substantial differences

  9. Anderson localization and momentum-space entanglement

    International Nuclear Information System (INIS)

    Andrade, Eric C; Steudtner, Mark; Vojta, Matthias

    2014-01-01

    We consider Anderson localization and the associated metal–insulator transition for non-interacting fermions in D = 1, 2 space dimensions in the presence of spatially correlated on-site random potentials. To assess the nature of the wave function, we follow a recent proposal to study momentum-space entanglement. For a D = 1 model with long-range disorder correlations, both the entanglement spectrum and the entanglement entropy allow us to clearly distinguish between extended and localized states based upon a single realization of disorder. However, for other models, including the D = 2 case with long-range correlated disorder, we find that the method is not similarly successful. We analyze the reasons for its failure, concluding that the much desired generalization to higher dimensions may be problematic. (paper)

  10. dSPACE real time implementation of fuzzy PID position controller for vertical rotating single link arm robot using four-quadrant BLDC drive

    Directory of Open Access Journals (Sweden)

    Manikandan Ramasamy

    2017-07-01

    Full Text Available Automation has been growing in recent years for the manufacturing industries to increase productivity. Multiple robotic arms are used to handle materials for lifting in flexible directions. The vertical rotation of a 360 degree single arm is considered in this research on a position servo drive with brushless DC motor. The load torque of an arm varies depending upon the angular displacement due to gravity, so it requires four-quadrant operation of the drive with a robust feedback controller. This paper deals with the design and performance comparison of a conventional PID feedback controller with a fuzzy-based PID controller and suggests the most suitable controller. The design was implemented in real time through the dSPACE DS1104 controller environment to verify the dynamic behaviors of the arm.

  11. Single Event Upset Analysis: On-orbit performance of the Alpha Magnetic Spectrometer Digital Signal Processor Memory aboard the International Space Station

    Science.gov (United States)

    Li, Jiaqiang; Choutko, Vitaly; Xiao, Liyi

    2018-03-01

    Based on the collection of error data from the Alpha Magnetic Spectrometer (AMS) Digital Signal Processors (DSP), on-orbit Single Event Upsets (SEUs) of the DSP program memory are analyzed. The daily error distribution and time intervals between errors are calculated to evaluate the reliability of the system. The particle density distribution of International Space Station (ISS) orbit is presented and the effects from the South Atlantic Anomaly (SAA) and the geomagnetic poles are analyzed. The impact of solar events on the DSP program memory is carried out combining data analysis and Monte Carlo simulation (MC). From the analysis and simulation results, it is concluded that the area corresponding to the SAA is the main source of errors on the ISS orbit. Solar events can also cause errors on DSP program memory, but the effect depends on the on-orbit particle density.

  12. A novel single-phase phase space-based voltage mode controller for distributed static compensator to improve voltage profile of distribution systems

    International Nuclear Information System (INIS)

    Shokri, Abdollah; Shareef, Hussain; Mohamed, Azah; Farhoodnea, Masoud; Zayandehroodi, Hadi

    2014-01-01

    Highlights: • A new phase space based voltage mode controller for D-STATCOM was proposed. • The proposed compensator was tested to mitigate voltage disturbances in distribution systems. • Voltage fluctuation, voltage sag and voltage swell are considered to evaluate the performance of the proposed compensator. - Abstract: Distribution static synchronous compensator (D-STATCOM) has been developed and attained a great interest to compensate the power quality disturbances of distribution systems. In this paper, a novel single-phase control scheme for D-STATCOM is proposed to improve voltage profile at the Point of Common Coupling (PCC). The proposed voltage mode (VM) controller is based on the phase space algorithm, which is able to rapidly detect and mitigate any voltage deviations from reference voltage including voltage sags and voltage swells. To investigate the efficiency and accuracy of the proposed compensator, a system is modeled using Matlab/Simulink. The simulation results approve the capability of the proposed VM controller to provide a regulated and disturbance-free voltage for the connected loads at the PCC

  13. Dimensions of trust

    DEFF Research Database (Denmark)

    Frederiksen, Morten

    2012-01-01

    Georg Simmel is the seminal author on trust within sociology, but though inspired by Simmel, subsequent studies of intersubjective trust have failed to address Simmel’s suggestion that trust is as differentiated as the social relations of which it is part. Rather, trust has been studied within...... limited sets of exchange or work relations. This article revisits Simmel’s concept of trust as social form in order to investigate this differentiation. From an interview study, the differentiation and limits of trust are analysed within different types of social relations. Trust is found to vary greatly...... in scope and mode influenced by the intersecting dimensions of relations, objects and situations. Furthermore, trust exists between an outer threshold of expected deceit and an inner threshold of confident reliance. The findings from the qualitative study contribute new knowledge on the diversity of trust...

  14. The Regional Dimension

    DEFF Research Database (Denmark)

    Eskjær, Mikkel Fugl

    2013-01-01

    is largely dependent on regional media systems, yet the role this regional dimension plays has been largely overlooked. This article presents a comparative study of climate-change coverage in three geo-cultural regions, The Middle East, Scandinavia, and North America, and explores the link between global......Global perspectives and national approaches have dominated studies of climate-change communication, reflecting the global nature of climate change as well as the traditional research focus on national media systems. In the absence of a global public sphere, however, transnational issue attention...... climate-change communication and regional media systems. It finds that regional variations in climate-change communication carry important communicative implications concerning perceptions of climate change's relevance and urgency...

  15. Correlation dimension of financial market

    Science.gov (United States)

    Nie, Chun-Xiao

    2017-05-01

    In this paper, correlation dimension is applied to financial data analysis. We calculate the correlation dimensions of some real market data and find that the dimensions are significantly smaller than those of the simulation data based on geometric Brownian motion. Based on the analysis of the Chinese and US stock market data, the main results are as follows. First, by calculating three data sets for the Chinese and US market, we find that large market volatility leads to a significant decrease in the dimensions. Second, based on 5-min stock price data, we find that the Chinese market dimension is significantly larger than the US market; this shows a significant difference between the two markets for high frequency data. Third, we randomly extract stocks from a stock set and calculate the correlation dimensions, and find that the average value of these dimensions is close to the dimension of the original set. In addition, we analyse the intuitional meaning of the relevant dimensions used in this paper, which are directly related to the average degree of the financial threshold network. The dimension measures the speed of the average degree that varies with the threshold value. A smaller dimension means that the rate of change is slower.

  16. A statistically harmonized alignment-classification in image space enables accurate and robust alignment of noisy images in single particle analysis.

    Science.gov (United States)

    Kawata, Masaaki; Sato, Chikara

    2007-06-01

    In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.

  17. Single-charge craters excavated during subsurface high-explosive experiments at Big Black Test Site, Mississippi

    International Nuclear Information System (INIS)

    Woodruff, W.R.; Bryan, J.B.

    1978-01-01

    Single-charge and row-charge subsurface cratering experiments were performed to learn how close-spacing enhances single-crater dimensions. Our first experimental phase established cratering curves for 60-lb charges of the chemical explosive. For the second phase, to be described in a subsequent report, the Row-cratering experiments were designed and executed. This data report contains excavated dimensions and auxiliary data for the single-charge cratering experiments. The dimensions for the row-charge experiments will be in the other report. Significant changes in the soil's water content appeared to cause a variability in the excavated dimensions. This variability clouded the interpretation and application of the cratering curves obtained

  18. Avoided crossings, conical intersections, and low-lying excited states with a single reference method: the restricted active space spin-flip configuration interaction approach.

    Science.gov (United States)

    Casanova, David

    2012-08-28

    The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S(0)) and excited (S(1)) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S(0)/S(1) conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2(1)A(g)(-), 1(1)B(u)(+), 1(1)B(u)(-), and 1(3)B(u)(-) states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to

  19. Quantum Physics in One Dimension

    International Nuclear Information System (INIS)

    Logan, David

    2004-01-01

    , chapters 6--11, a range of different physical realizations of one-dimensional quantum physics ar e discussed. According to taste and interest, these chapters can be read in essentially any order. Spin systems are considered in chapter 6, beginning with spin chains - Jordan-Wigner, the bosonization solution - before moving to frustration, the spin-Peierls transition, and spin ladders; and including experimental examples of both spin chain and ladder materials. Chapters 7 and 8 deal with interacting lattice fermions, the former with single chain problems, notably the Hubbard, t-J and related models; and the latter with coupled fermionic chains, from finite to infinite, including a fulsome discussion of Bechgaard salts (organic conductors) as exemplars of Luttinger liquid behaviour. The effect of disorder in fermionic systems is taken up in chapter 9, and here the reader may react: interacting systems are tough enough, why make life harder? But disorder is always present to some degree in real systems - quantum wires, for example, discussed briefly in the chapter - and its effects particularly acute in one dimension. It simply cannot be avoided, even if the problem of interacting, disordered one-dimensional systems is still a long way off being solved. The penultimate chapter deals with the topical issues of boundaries, isolated impurities and constrictions, with a primary focus on mesoscopic examples of Luttinger liquids, notably carbon nanotubes and edge states in the quantum Hall effect. Finally 'significant other' examples of Luttinger liquids, namely interacting one-dimensional bosons, are considered in chapter 11; which concludes with a discussion of bosonization techniques in the context of quantum impurities in Fermi liquids - the x-ray, Kondo and multichannel Kondo problems. The quality of the product attests to the fact that writing this impressive tome was a labour of love for the author. (book review)

  20. Dimensions of a Planet.

    Science.gov (United States)

    Hayward, O. T.; And Others

    This publication is one of a series of single-topic problem modules designed for use in undergraduate geology and earth science courses. The first section, "Ain't It Flat? A Series of Experiments in Geodesy," presents various experiments for determining the earth's circumference (historically) and describes the use of satellites in determining the…

  1. Flatland a romance of many dimensions

    CERN Document Server

    Abbott, Edwin Abbott

    2015-01-01

    In 1884, Edwin Abbott Abbott wrote a mathematical adventure set in a two-dimensional plane world, populated by a hierarchical society of regular geometrical figures-who think and speak and have all too human emotions. Since then Flatland has fascinated generations of readers, becoming a perennial science-fiction favorite. By imagining the contact of beings from different dimensions, the author fully exploited the power of the analogy between the limitations of humans and those of his two-dimensional characters. A first-rate fictional guide to the concept of multiple dimensions of space, the book will also appeal to those who are interested in computer graphics. This field, which literally makes higher dimensions seeable, has aroused a new interest in visualization. We can now manipulate objects in four dimensions and observe their three-dimensional slices tumbling on the computer screen. But how do we interpret these images? In his introduction, Thomas Banchoff points out that there is no better way to begin ...

  2. Dimensions of ecosystem theory

    International Nuclear Information System (INIS)

    O'Neill, R.V.; Reichle, D.E.

    1979-01-01

    Various dimensions of ecosystem structure and behavior that seem to develop from the ubiquitous phenomena of system growth and persistence were studied. While growth and persistence attributes of ecosystems may appear to be simplistic phenomena upon which to base a comprehensive ecosystem theory, these same attributes have been fundamental to the theoretical development of other biological disciplines. These attributes were explored at a hierarchical level in a self-organizing system, and adaptive system strategies that result were analyzed. Previously developed causative relations (Reichle et al., 1975c) were examined, their theoretical implications expounded upon, and the assumptions tested with data from a variety of forest types. The conclusions are not a theory in themselves, but a state of organization of concepts contributing towards a unifying theory, along the lines promulgated by Bray (1958). The inferences drawn rely heavily upon data from forested ecosystems of the world, and have yet to be validated against data from a much more diverse range of ecosystem types. Not all of the interpretations are logically tight - there is room for other explanations, which it is hoped will provide fruitful grounds for further speculation

  3. Preheating with extra dimensions

    International Nuclear Information System (INIS)

    Tsujikawa, S.

    2000-01-01

    We investigate preheating in a higher-dimensional generalized Kaluza-Klein theory with a quadratic inflaton potential V(/φ) = /frac12 m 2 /φ 2 including metric perturbations explicitly. The system we consider is the multi-field model where there exists a dilaton field /σ which corresponds to the scale of compactifications and another scalar field /χ coupled to inflaton with the interaction frac12 g 2 /φ 2 /χ 2 +/g-tilde 2 /φ 3 /χ. In the case of g-tilde=0, we find that the perturbation of dilaton does not undergo parametric amplification while the χ field fluctuation can be enhanced in the usual manner by parametric resonance. In the presence of the /g-tilde 2 /φ 3 /χ coupling, the dilaton fluctuation in sub-Hubble scales is modestly amplified by the growth of metric perturbations for the large coupling g-tilde. In super-Hubble scales, the enhancement of the dilaton fluctuation as well as metric perturbations is weak, taking into account the backreaction effect of created /χ particles. We argue that not only is it possible to predict the ordinary inflationary spectrum in large scales but extra dimensions can be held static during preheating in our scenario. (author)

  4. Bargmann representation for Landau levels in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Rohringer, Nina [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Burgdoerfer, Joachim [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Macris, Nicolas [Institut de Physique Theorique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2003-04-11

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field.

  5. Bargmann representation for Landau levels in two dimensions

    International Nuclear Information System (INIS)

    Rohringer, Nina; Burgdoerfer, Joachim; Macris, Nicolas

    2003-01-01

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field

  6. Bargmann representation for Landau levels in two dimensions

    CERN Document Server

    Rohringer, N; Macris, N

    2003-01-01

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field...

  7. Jeksternalizacija migracionnogo kontrolja v Evropejskom sojuze: pervye shagi po formirovaniju vneshnepoliticheskogo izmerenija prostranstva svobody, bezopasnosti i pravosudija [The externalisation of migration control in the European Union: first steps towards the external dimension of the space of freedom, security and justice

    Directory of Open Access Journals (Sweden)

    Ryabov Yury

    2012-01-01

    Full Text Available The creation of an area of freedom, security and justice is one of the most rapidly developing aspects of European integration. It this paper, we take a look at the foreign policies involved in this process — aside from the internal development of the European Union, they concern a significant number of third countries, including Russia. In our view, the efforts to manage the flow of migrants and asylum seekers constitute a viable part of the external dimension within the AFSJ policies. Much of this article is based on the theoretical postulates introduced by the scholars of the Paris School, a school within the discipline of security studies that conceptualized the connection between migration, terrorism, asylum, crime and ethnic clashes, and its role as a major threat facing the European Union. Externalization of this complex threat (that is, externalization in relation to the European Union is thus seen as one of the key prerequisites to advancement of migration management activities beyond the EU (i. e. externalization of migration management. In this article, we analyze the role the EU plays at the international scene and categorize the actions it took to manage the influx of migrants and asylum seekers from the 1980s until the time when supranational administrative bodies were granted mandates in the spheres of Justice and Home Affairs (JHA of the EU Member States. We conclude that it was as early as the 1990-s that th

  8. Constructive Dimension and Turing Degrees

    OpenAIRE

    Bienvenu, Laurent; Doty, David; Stephan, Frank

    2007-01-01

    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of...

  9. A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons.

    Directory of Open Access Journals (Sweden)

    Dimitrios V Vavoulis

    Full Text Available Traditional approaches to the problem of parameter estimation in biophysical models of neurons and neural networks usually adopt a global search algorithm (for example, an evolutionary algorithm, often in combination with a local search method (such as gradient descent in order to minimize the value of a cost function, which measures the discrepancy between various features of the available experimental data and model output. In this study, we approach the problem of parameter estimation in conductance-based models of single neurons from a different perspective. By adopting a hidden-dynamical-systems formalism, we expressed parameter estimation as an inference problem in these systems, which can then be tackled using a range of well-established statistical inference methods. The particular method we used was Kitagawa's self-organizing state-space model, which was applied on a number of Hodgkin-Huxley-type models using simulated or actual electrophysiological data. We showed that the algorithm can be used to estimate a large number of parameters, including maximal conductances, reversal potentials, kinetics of ionic currents, measurement and intrinsic noise, based on low-dimensional experimental data and sufficiently informative priors in the form of pre-defined constraints imposed on model parameters. The algorithm remained operational even when very noisy experimental data were used. Importantly, by combining the self-organizing state-space model with an adaptive sampling algorithm akin to the Covariance Matrix Adaptation Evolution Strategy, we achieved a significant reduction in the variance of parameter estimates. The algorithm did not require the explicit formulation of a cost function and it was straightforward to apply on compartmental models and multiple data sets. Overall, the proposed methodology is particularly suitable for resolving high-dimensional inference problems based on noisy electrophysiological data and, therefore, a

  10. Compressing the hidden variable space of a qubit

    OpenAIRE

    Montina, Alberto

    2010-01-01

    In previously exhibited hidden variable models of quantum state preparation and measurement, the number of continuous hidden variables describing the actual state of a single realization is never smaller than the quantum state manifold dimension. We introduce a simple model for a qubit whose hidden variable space is one-dimensional, i.e., smaller than the two-dimensional Bloch sphere. The hidden variable probability distributions associated with the quantum states satisfy reasonable criteria ...

  11. Grandes nouvelles dimensions et gravité quantique au coin

    Science.gov (United States)

    Arkani-Hamed, Nima; Dimopoulos, Savas; Dvali, Gia

    2003-04-01

    The electroweak unification mass may be the only fundamental scale in nature. If so, the visible universe may lie on a membrane floating within a higher dimensional space; new dimensions, black holes, quantum gravity, and string theory may become experimentally accessible in this decade. The dark matter could reside on parallel universes inside the extra dimensions. To cite this article: N. Arkani-Hamed et al., C. R. Physique 4 (2003).

  12. Discrete quantum geometries and their effective dimension

    International Nuclear Information System (INIS)

    Thuerigen, Johannes

    2015-01-01

    In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.

  13. Space synthesis: an application of synthesis method to two and three dimensional multigroup neutron diffusion equations; Synthese spatiale: une application de la methode de synthese aux equations de diffusion neutronique multigroupe a deux et trois dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Ngoc, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    In order to reduce computing time, two and three-dimensional multigroup neutron diffusion equations in cylindrical, rectangular (X, Y), (X, Y, Z) and hexagonal geometries are solved by the method of synthesis using an appropriate variational principle (stationary principle). The basic idea is to reduce the number of independent variables by constructing two or three-dimensional solutions from solutions of fewer variables, hence the name 'synthesis method'. Whatever the geometry, we are led to solve a system of ordinary differential equations with matrix coefficients to which one can apply well-known numerical methods: CHEBYSHEV's polynomial method, Gaussian elimination. Numerical results furnished by synthesis programs written for the IBM 7094, the IBM 360-75 and the CDC 6600 computers, are confronted with those which are given by programs employing the classical finite difference method. [French] En vue de reduire le-temps de calcul, les equations de diffusion neutronique, multigroupe, a deux et trois dimensions d'espace dans les geometries cylindrique, rectangulaire (X, Y), (X, Y, Z) et hexagonale sont resolues par la methode de synthese utilisant un principe variationnel approprie (principe stationnaire). L'idee consiste a reduire le nombre de variables independantes par construction d'une solution bi ou tridimensionnelle au moyen de solutions dependant d'un nombre inferieur de variables, d'ou le nom de la methode. Dans tous les cas de geometrie, nous sommes conduits a resoudre un systeme d'equations differentielles a coefficients matriciels auquel peuvent s'appliquer les methodes numeriques courantes; methode polynomiale de TCHEBYCHEFF et methode d'elimination de GAUSS. Les resultats numeriques obtenus par nos codes de synthese programmes sur IBM 7094, IBM 360-75 et CDC 6600, sont confrontes avec ceux que fournissent les programmes adoptant la methode classique des differences finies. (auteur)

  14. Gravitating multidefects from higher dimensions

    CERN Document Server

    Giovannini, Massimo

    2007-01-01

    Warped configurations admitting pairs of gravitating defects are analyzed. After devising a general method for the construction of multidefects, specific examples are presented in the case of higher-dimensional Einstein-Hilbert gravity. The obtained profiles describe diverse physical situations such as (topological) kink-antikink systems, pairs of non-topological solitons and bound configurations of a kink and of a non-topological soliton. In all the mentioned cases the geometry is always well behaved (all relevant curvature invariants are regular) and tends to five-dimensional anti-de Sitter space-time for large asymptotic values of the bulk coordinate. Particular classes of solutions can be generalized to the framework where the gravity part of the action includes, as a correction, the Euler-Gauss-Bonnet combination. After scrutinizing the structure of the zero modes, the obtained results are compared with conventional gravitating configurations containing a single topological defect.

  15. Plateau onset for correlation dimension: When does it occur?

    International Nuclear Information System (INIS)

    Ding, M.; Grebogi, C.; Ott, E.; Sauer, T.; Yorke, J.A.

    1993-01-01

    Chaotic experimental systems are often investigated using delay coordinates. Estimated values of the correlation dimension in delay coordinate space typically increase with the number of delays and eventually reach a plateau (on which the dimension estimate is relatively constant) whose value is commonly taken as an estimate of the correlation dimension D 2 of the underlying chaotic attractor. We report a rigorous result which implies that, for long enough data sets, the plateau begins when the number of delay coordinates first exceeds D 2 . Numerical experiments are presented. We also discuss how lack of sufficient data can produce results that seem to be inconsistent with the theoretical prediction

  16. Saliency of social comparison dimensions

    NARCIS (Netherlands)

    Kuyper, H.

    2007-01-01

    The present article discusses a theory of the saliency of social comparison dimensions and presents the results of an experiment about the effects of two different experimental situations on the saliency of exterior, task-related and socio-emotional dimensions. Saliency was operationalized with a

  17. Physics with large extra dimensions

    Indian Academy of Sciences (India)

    can then be accounted by the existence of large internal dimensions, in the sub- ... strongly coupled heterotic theory with one large dimension is described by a weakly ..... one additional U(1) factor corresponding to an extra 'U(1)' D-brane is ...

  18. The Hidden Dimensions of Art.

    Science.gov (United States)

    Klein, Bruce

    1982-01-01

    Describes an art program for preschool children that includes four social dimensions of art in order to heighten aesthetic perception, improve artistic creativity, and nurture self-esteem. The social dimensions are children having power, children acting on norms legitimate in their own eyes, children functioning "nonestrangedly," and children…

  19. Anomalous Dimensions of Conformal Baryons

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2016-01-01

    We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...

  20. Geography From Another Dimension

    Science.gov (United States)

    2002-01-01

    The GEODESY software program is intended to promote geographical awareness among students with its remote sensing capabilities to observe the Earth's surface from distant vantage points. Students and teachers using GEODESY learn to interpret and analyze geographical data pertaining to the physical attributes of their community. For example, the program provides a digital environment of physical features, such as mountains and bodies of water, as well as man-made features, such as roads and parks, using aerial photography, satellite imagery, and geographic information systems data in accordance with National Geography Standards. The main goal is to have the students and teachers gain a better understanding of the unique forces that drive their coexistence. GEODESY was developed with technical assistance and financial support from Stennis Space Center's Commercial Remote Sensing Program Office, now known as the Earth Science Applications Directorate.

  1. A distinguishing gravitational property for gravitational equation in higher dimensions

    International Nuclear Information System (INIS)

    Dadhich, Naresh

    2016-01-01

    It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d = 2N + 1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions. (orig.)

  2. A distinguishing gravitational property for gravitational equation in higher dimensions

    Science.gov (United States)

    Dadhich, Naresh

    2016-03-01

    It is well known that Einstein gravity is kinematic (meaning that there is no non-trivial vacuum solution; i.e. the Riemann tensor vanishes whenever the Ricci tensor does so) in 3 dimension because the Riemann tensor is entirely given in terms of the Ricci tensor. Could this property be universalized for all odd dimensions in a generalized theory? The answer is yes, and this property uniquely singles out pure Lovelock (it has only one Nth order term in the action) gravity for which the Nth order Lovelock-Riemann tensor is indeed given in terms of the corresponding Ricci tensor for all odd, d=2N+1, dimensions. This feature of gravity is realized only in higher dimensions and it uniquely picks out pure Lovelock gravity from all other generalizations of Einstein gravity. It serves as a good distinguishing and guiding criterion for the gravitational equation in higher dimensions.

  3. Elements of linear space

    CERN Document Server

    Amir-Moez, A R; Sneddon, I N

    1962-01-01

    Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a

  4. An introduction to extra dimensions

    International Nuclear Information System (INIS)

    Perez-Lorenzana, Abdel

    2005-01-01

    Models that involve extra dimensions have introduced completely new ways of looking up on old problems in theoretical physics. The aim of the present notes is to provide a brief introduction to the many uses that extra dimensions have found over the last few years, mainly following an effective field theory point of view. Most parts of the discussion are devoted to models with flat extra dimensions, covering both theoretical and phenomenological aspects. We also discuss some of the new ideas for model building where extra dimensions may play a role, including symmetry breaking by diverse new and old mechanisms. Some interesting applications of these ideas are discussed over the notes, including models for neutrino masses and proton stability. The last part of this review addresses some aspects of warped extra dimensions, and graviton localization

  5. Quantum gravity in more than four dimensions

    International Nuclear Information System (INIS)

    Vaz, C.

    1987-01-01

    Ever since its inception, Einstein's general relativity has been considered a most remarkable theory. It is generally believed today, that the classical theory is well understood. Nevertheless, in the pursuit of a deeper understanding of physics in terms of a grand unification of forces, one would like to quantize the theory, thus bringing it under the known forces of nature. The author will address the possibility that space-time is of dimension greater that four. In the pursuit of Einstein's dream of a unification of physical interactions, many interesting ideas have been developed. Beginning with Weyl and Kaluza, we have progressed to strings and superstrings. The thing that is common to all these theories is the requirement of a space-time of more than four dimensions. While Kaluza's theory implicitly assumes that Einstein's gravity is classically correct in any number of dimensions, superstring phenomenology may suggest otherwise. Generalizations to Einstein's gravity are indicated, and the gravitational Casimir energy is explicitly approximate on a background configuration M 4 x S 6 , on a ten dimensional space-time. Weyl invariance is particularly interesting to the quantum gravitationalist. One finds that energy momentum tensor of the Weyl invariant quantum field picks up an anomalous trace, which is related to particle production by the curved background. He therefore computes the conformal anomaly for a conformally coupled scalar field and considers some of its consequences. He then suggest that the conformal anomaly, when combined with the perfect fluid hypothesis, can be used to determine the complete energy momentum tensor of the quantum field in certain backgrounds

  6. Supersymmetry in singular spaces

    NARCIS (Netherlands)

    Bergshoeff, Eric

    2002-01-01

    We discuss supersymmetry in spaces with a boundary, i.e. singular spaces. In particular, we discuss the situation in ten and five dimensions. In both these cases we review the construction of supersymmetric domain wall actions situated at the boundary. These domain walls act as sources inducing a

  7. Dimension-Independent Likelihood-Informed MCMC

    KAUST Repository

    Cui, Tiangang; Law, Kody; Marzouk, Youssef

    2015-01-01

    Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters, which in principle can be described as functions. By exploiting low-dimensional structure in the change from prior to posterior [distributions], we introduce a suite of MCMC samplers that can adapt to the complex structure of the posterior distribution, yet are well-defined on function space. Posterior sampling in nonlinear inverse problems arising from various partial di erential equations and also a stochastic differential equation are used to demonstrate the e ciency of these dimension-independent likelihood-informed samplers.

  8. Geometry, relativity and the fourth dimension

    CERN Document Server

    Rucker, Rudolf

    1977-01-01

    This is a highly readable, popular exposition of the fourth dimension and the structure of the universe. A remarkable pictorial discussion of the curved space-time we call home, it achieves even greater impact through the use of 141 excellent illustrations. This is the first sustained visual account of many important topics in relativity theory that up till now have only been treated separately.Finding a perfect analogy in the situation of the geometrical characters in Flatland, Professor Rucker continues the adventures of the two-dimensional world visited by a three-dimensional being to expl

  9. Signatures of extra dimensions in gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Andriot, David; Gómez, Gustavo Lucena, E-mail: andriotphysics@gmail.com, E-mail: glucenag@aei.mpg.de [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14467 Potsdam-Golm (Germany)

    2017-06-01

    Considering gravitational waves propagating on the most general 4+ N -dimensional space-time, we investigate the effects due to the N extra dimensions on the four-dimensional waves. All wave equations are derived in general and discussed. On Minkowski{sub 4} times an arbitrary Ricci-flat compact manifold, we find: a massless wave with an additional polarization, the breathing mode, and extra waves with high frequencies fixed by Kaluza-Klein masses. We discuss whether these two effects could be observed.

  10. Dimension-Independent Likelihood-Informed MCMC

    KAUST Repository

    Cui, Tiangang

    2015-01-07

    Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters, which in principle can be described as functions. By exploiting low-dimensional structure in the change from prior to posterior [distributions], we introduce a suite of MCMC samplers that can adapt to the complex structure of the posterior distribution, yet are well-defined on function space. Posterior sampling in nonlinear inverse problems arising from various partial di erential equations and also a stochastic differential equation are used to demonstrate the e ciency of these dimension-independent likelihood-informed samplers.

  11. Static solitons in more than one dimension

    International Nuclear Information System (INIS)

    O'Raifeartaigh, L.

    1978-01-01

    The most important development of the last decade in particle physics and field theory has undoubtedly been the advent of hidden-symmetric gauge theories. One of the more interesting by-products of this development has been the discovery that hidden-symmetric gauge theories admit static solutions to the field equations which are regular everywhere and for which the energy is finite. Such solutions will be called solitons. The hidden-symmetric gauge solutions exist for n space dimensions, where 1 [de

  12. Quantum mechanics in Grassmann space

    International Nuclear Information System (INIS)

    Mankoc Borstnik, N.

    1991-10-01

    The representations of the infinitesimal operators of Lorentz rotations and translation and the corresponding carriers for a scalar, spinor and vector case in the Grassmann space as well as the eigenfunctions of the Hamilton function for a free particle, are presented. Functions are orthogonalized. The mass appears after compactification from 5 to 4 dimensions in the ordinary space-time, while in the Grassmann space the particle lives in five dimensions, so that a boost can be performed. (author). 5 refs

  13. Anion-exchange and anthracene-encapsulation within copper(II) and manganese(II)-triazole metal-organic confined space in a single crystal-to-single crystal transformation fashion.

    Science.gov (United States)

    Liu, Ju-Yan; Wang, Qian; Zhang, Li-Jun; Yuan, Bin; Xu, Yao-Yao; Zhang, Xin; Zhao, Cong-Ying; Wang, Dan; Yuan, Yue; Wang, Ying; Ding, Bin; Zhao, Xiao-Jun; Yue, Min Min

    2014-06-16

    A new multidentate ligand 1-(9-(1H-1,2,4-triazol-1-yl)anthracen-10-yl)-1H-1,2,4-triazole (tatrz) was designed and synthesized. Using tatrz as a building block, three novel coordination frameworks, namely, {[Cu(tatrz)2(NO3)2]·(CH3OH)·4H2O}n (1), {[Cu(tatrz)2(H2O)2](BF4)2}n (2), and [Mn(tatrz)2(SCN)2(CH3OH)]·2H2O (3) can be isolated. Anion-exchange experiment indicates that NO3(-) anions in the two-dimensional (2D) copper framework of 1 can be completely exchanged by ClO4(-) in an irreversible single crystal-to-single crystal (SC-SC) transformation fashion, as evidenced by the anion-exchange products of {[Cu(tatrz)2(H2O)2](ClO4)2·4CH3OH} (1a). Further, if 1a was employed as a precursor in N,N-dimethylformamide (DMF), an isomorphic solvate of {[Cu(tatrz)2(DMF)2](ClO4)2·2H2O}n (1b) can be generated during the reversible dynamic transformation process. When 1 was immersed in CH3OH, a distinct 2D layer {[Cu(tatrz)2(NO3)2]·4.4CH3OH·0.6H2O}n (1c) was isolated. Interestingly, the solvent-exchange conversion is also invertible between 1 and 1c, which exhibits spongelike dynamic behavior with retention of crystalline integrity. If the 2-fold interpenetrating three-dimensional (3D) framework 2 is selected, it can be transformed into another 2-fold interpenetrating 3D framework {[Cu(tatrz)2(H2O)2](ClO4)2·5.56H2O}n (2a) in a reversible SC-SC transformation fashion. However, when the light yellow crystals of mononuclear complex 3 were exposed to trichloromethane containing aromatic organic anthracene (atan), through our careful observation, the crystals of 3 were dissolved and reassembled into dark brown crystals of 2D crystalline coordination framework {[Mn(tatrz)2(SCN)2]·(atan)}n (3a). X-ray diffraction revealed that in 3a, atan acting as an organic template was encapsulated in the confined space of the 2D grid. Luminescent measurements illustrate that 3a is the first report of multidimensional polymers based on triazole derivatives as luminescent probes of Mg(2+).

  14. Thermal dimension of quantum spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Amelino-Camelia, Giovanni, E-mail: amelino@roma1.infn.it [Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy); Brighenti, Francesco [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Dipartimento di Fisica e Astronomia dell' Università di Bologna and Sez. Bologna INFN, Via Irnerio 46, 40126 Bologna (Italy); Gubitosi, Giulia [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Santos, Grasiele [Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy)

    2017-04-10

    Recent results suggest that a crucial crossroad for quantum gravity is the characterization of the effective dimension of spacetime at short distances, where quantum properties of spacetime become significant. This is relevant in particular for various scenarios of “dynamical dimensional reduction” which have been discussed in the literature. We are here concerned with the fact that the related research effort has been based mostly on analyses of the “spectral dimension”, which involves an unphysical Euclideanization of spacetime and is highly sensitive to the off-shell properties of a theory. As here shown, different formulations of the same physical theory can have wildly different spectral dimension. We propose that dynamical dimensional reduction should be described in terms of the “thermal dimension” which we here introduce, a notion that only depends on the physical content of the theory. We analyze a few models with dynamical reduction both of the spectral dimension and of our thermal dimension, finding in particular some cases where thermal and spectral dimension agree, but also some cases where the spectral dimension has puzzling properties while the thermal dimension gives a different and meaningful picture.

  15. Single Source 5-dimensional (Space-, Wavelength-, Time-, Polarization-, Quadrature-) 43 Tbit/s Data Transmission of 6 SDM × 6 WDM × 1.2 Tbit/s Nyquist-OTDM-PDM-QPSK

    DEFF Research Database (Denmark)

    Hu, Hao; Ye, Feihong; Medhin, Ashenafi Kiros

    2014-01-01

    We demonstrate 43-Tbit/s transmission over 67.4-km seven-core fiber using a single source. Each of the 6 outer cores carries 6 Nyquist-WDM channels using 320-Gbaud Nyquist- OTDM-PDM-QPSK 330-GHz spaced, and the center core carries 10-GHz clock pulses....

  16. Mass generation and related issues from exotic higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Colatto, Luiz Paulo [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET), Petropolis, RJ (Brazil); Andrade, Marco Antonio de [Universidade do Estado do Rio de Janeiro (UERJ), Resende, RJ (Brazil); Assis, Leonardo Paulo Guimaraes de; Helayel-Neto, Jose Abdalla [Centro Brasileiro de Pesquisas Fisicas(LAFEX/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Experimental de Altas Energias; Matheus-Valle, Jose Luiz [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil); Rojas, Moises [Universidade Federal de Lavras, MG (Brazil)

    2011-07-01

    Full text: he main purpose of this work is to show that massless Dirac equation formulated for non-interacting Majorana-Weyl spinors in higher dimensions, particularly in D = 1 + 9 and D = 5 + 5, may yield to an interpretation of massive Majorana and Dirac spinors in D = 1 + 3 dimensions. The particular case of a dimensional reduction from D = 4 + 4 to D = 1 + 3 has already been fairly-well discussed in the literature. By adopting suitable representations of the Dirac matrices in higher dimensions, we pursue the investigation of which higher dimensional space-times and which metric signatures concerning massless Dirac equations in highermay induce massive spinors in D = 1+3 dimensions. The mixing of the chiral fermions in higher dimensions may induce a mechanism such that four massive Majorana fermions may show up and, at an appropriate limit an almost zero and a huge mass show up with corresponding left-handed and right-handed eigenstates. This mechanism could reassess a peculiar connection with the See-Saw scheme associated to neutrino with Majorana-type masses. The masses of the particle are fixed by the dimensional reduction scheme, which the decoupled dimensions contribute coordinates and depend on the mass invariants in lower dimensions. This proposal should allow us to understand the generation of hierarchies for the fermionic masses in D = 1 + 3, or in lower dimensions in general, starting from the constraints between the energy and the momentum in (n; n) dimensions. For the initial D = 5 + 5 Majorana-Weyl spinors framework using the Weyl representation to the Dirac matrices we observe an intriguing decomposition of space-time that result in two equivalent D = 1 + 4 massive spinors which mass term, in D = 1 + 3 included, is originated from the remained component and that could induce a Brane-World mechanism. (author)

  17. Nonlinear self-duality in even dimensions

    International Nuclear Information System (INIS)

    Aschieri, Paolo; Brace, Daniel; Morariu, Bogdan; Zumino, Bruno

    2000-01-01

    We show that the Born-Infeld theory with n complex abelian gauge fields written in an auxiliary field formulation has a U(n, n) duality group. We conjecture the form of the Lagrangian obtained by eliminating the auxiliary fields and then introduce a new reality structure leading to a Born-Infeld theory with n real gauge fields and an Sp(2n, IR) duality symmetry. The real and complex constructions are extended to arbitrary even dimensions. The maximal noncompact duality group is U(n, n) for complex fields. For real fields the duality group is Sp(2n, IR) if half of the dimension of space-time is even and O(n, n) if it is odd. We also discuss duality under the maximal compact subgroup, which is the self-duality group of the theory obtained by fixing the expectation value of a scalar field. Supersymmetric versions of self-dual theories in four dimensions are also discussed

  18. FONT DISCRIMINATIO USING FRACTAL DIMENSIONS

    Directory of Open Access Journals (Sweden)

    S. Mozaffari

    2014-09-01

    Full Text Available One of the related problems of OCR systems is discrimination of fonts in machine printed document images. This task improves performance of general OCR systems. Proposed methods in this paper are based on various fractal dimensions for font discrimination. First, some predefined fractal dimensions were combined with directional methods to enhance font differentiation. Then, a novel fractal dimension was introduced in this paper for the first time. Our feature extraction methods which consider font recognition as texture identification are independent of document content. Experimental results on different pages written by several font types show that fractal geometry can overcome the complexities of font recognition problem.

  19. Supersymmetry breaking with extra dimensions

    International Nuclear Information System (INIS)

    Zwirner, Fabio

    2004-01-01

    This talk reviews some aspects of supersymmetry breaking in the presence of extra dimensions. The first part is a general introduction, recalling the motivations for supersymmetry and extra dimensions, as well as some unsolved problems of four-dimensional models of supersymmetry breaking. The central part is a more focused introduction to a mechanism for (super)symmetry breaking, proposed first by Scherk and Schwarz, where extra dimensions play a crucial role. The last part is devoted to the description of some recent results and of some open problems. (author)

  20. Flipped SU(6) from ten dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotakopoulos, C. (Bartol Research Inst., Univ. of Delaware, Newark, DE (US))

    1990-06-20

    The authors study the compactification of the heterotic supersting on the only known three generation Calabi-Yau space with flux breakings leading to SU(6) {times} U(1) as the gauge group in four dimensions. We compute the massless spectrum and identify the discrete symmetries of the internal space that survive flux breaking. The possible four-dimensional models are classified according to their honest discrete symmetries. The allowed breaking chains of SU(6) {times} U(1) are listed. Model building with SU(6) {times} U(1) is discussed in general and a concrete realistic model is constructed which does not suffer from the gauge hierarchy problem, fast proton decay or any other obvious phenomenological disaster. A distinct experimental signature of this class of models is the presence in the low energy spectrum of vector-like quarks and antiquarks, outside the three known families, with masses of the order of the supersymmetry breaking scale.

  1. ANTHROPOLOGY DIMENSIONS AS INDEPENDENT AEROBIC ENDURANCE

    Directory of Open Access Journals (Sweden)

    Ratko Pavlović

    2009-11-01

    Full Text Available Endurance as human capability is treated in two ways. Some authors define it as mobility capability, while others deny this theory. The denying of this theory lies in attitude that endurance is saturated with psychological factors (motivation and cardio- vascular factors as well and is often identified with aero power, typical dimension of fun- ctional diagnostics. Having that in mind this research enabled the obtaining of necessary informations which could contribute to the clearing up of these uncoordinated opinions. The research included 110 student of the III year Phisical Education in East Sarajevo, male gender. Nine (9 predictors has been applied (4 variables for mobility space estima- te, 5 variables for morphology and functional space estimate and variable used for the estimate of endurance race 1500m. Obtained results confirmed statistical significance of two functional capability variable of Harvard step test, Margarija test and mobility variable race 4x15 meters with the race results.

  2. On discourse space modeling

    OpenAIRE

    Казыдуб, Надежда

    2013-01-01

    Discourse space is a complex structure that incorporates different levels and dimensions. The paper focuses on developing a multidisciplinary approach that is congruent to the complex character of the modern discourse. Two models of discourse space are proposed here. The Integrated Model reveals the interaction of different categorical mechanisms in the construction of the discourse space. The Evolutionary Model describes the historical roots of the modern discourse. It also reveals historica...

  3. Inflation from periodic extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [Department of Physics, Keio University, Kanagawa 223-8522 (Japan); Tatsuta, Yoshiyuki, E-mail: thigaki@rk.phys.keio.ac.jp, E-mail: y_tatsuta@akane.waseda.jp [Department of Physics, Waseda University, Tokyo 169-8555 (Japan)

    2017-07-01

    We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, and then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.

  4. Physics with large extra dimensions

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 2 ... The recent understanding of string theory opens the possibility that the string scale can be as ... by the existence of large internal dimensions, in the sub-millimeter region.

  5. Temporal dimension in cognitive models

    International Nuclear Information System (INIS)

    Decortis, F.; Cacciabue, P.C.

    1988-01-01

    Increased attention has been given to the role of humans in nuclear power plant safety, but one aspect seldom considered is the temporal dimension of human reasoning. Time is recognized as crucial in human reasoning and has been the subject of empirical studies where cognitive mechanisms and strategies to face the temporal dimension have been studied. The present study shows why temporal reasoning is essential in Human Reliability Analysis and how it could be introduced in a human model. Accounting for the time dimension in human behaviour is discussed first, with reference to proven field studies. Then, theoretical modelling of the temporal dimension in human reasoning and its relevance in simulation of cognitive activities of plant operator is discussed. Finally a Time Experience Model is presented

  6. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.; Wonka, Peter; Mueller, P.

    2015-01-01

    that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify

  7. Learning to Change: New Dimensions.

    Science.gov (United States)

    Loughlin, Kathleen

    1996-01-01

    Change involves thoughts, emotions, values, and actions but thought gets the most attention. Learning to change necessitates an integration of rational and nonrational ways of knowing. Nonrational ways and human care are important dimensions of the learning process. (SK)

  8. Multiple single-centered attractors

    International Nuclear Information System (INIS)

    Dominic, Pramod; Mandal, Taniya; Tripathy, Prasanta K.

    2014-01-01

    In this paper we study spherically symmetric single-centered attractors in N=2 supergravity in four dimensions. The attractor points are obtained by extremising the effective black hole potential in the moduli space. Both supersymmetric as well as non-supersymmetric attractors exist in mutually exclusive domains of the charge lattice. We construct axion free supersymmetric as well as non-supersymmetric multiple attractors in a simple two parameter model. We further obtain explicit examples of two distinct non-supersymmetric attractors in type IIA string theory compactified on K3×T"2 carrying D0−D4−D6 charges. We compute the entropy of these attractors and analyse their stability in detail.

  9. On the UV Dimensions of Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Michele Ronco

    2016-01-01

    Full Text Available Planck-scale dynamical dimensional reduction is attracting more and more interest in the quantum-gravity literature since it seems to be a model independent effect. However, different studies base their results on different concepts of space-time dimensionality. Most of them rely on the spectral dimension; others refer to the Hausdorff dimension; and, very recently, the thermal dimension has also been introduced. We here show that all these distinct definitions of dimension give the same outcome in the case of the effective regime of Loop Quantum Gravity (LQG. This is achieved by deriving a modified dispersion relation from the hypersurface-deformation algebra with quantum corrections. Moreover, we also observe that the number of UV dimensions can be used to constrain the ambiguities in the choice of these LQG-based modifications of the Dirac space-time algebra. In this regard, introducing the polymerization of connections, that is, K→sin⁡δK/δ, we find that the leading quantum correction gives dUV=2.5. This result may indicate that the running to the expected value of two dimensions is ongoing, but it has not been completed yet. Finding dUV at ultrashort distances would require going beyond the effective approach we here present.

  10. Topological magnetoelectric pump in three dimensions

    Science.gov (United States)

    Fukui, Takahiro; Fujiwara, Takanori

    2017-11-01

    We study the topological pump for a lattice fermion model mainly in three spatial dimensions. We first calculate the U(1) current density for the Dirac model defined in continuous space-time to review the known results as well as to introduce some technical details convenient for the calculations of the lattice model. We next investigate the U(1) current density for a lattice fermion model, a variant of the Wilson-Dirac model. The model we introduce is defined on a lattice in space but in continuous time, which is suited for the study of the topological pump. For such a model, we derive the conserved U(1) current density and calculate it directly for the (1 +1 )-dimensional system as well as (3 +1 )-dimensional system in the limit of the small lattice constant. We find that the current includes a nontrivial lattice effect characterized by the Chern number, and therefore the pumped particle number is quantized by the topological reason. Finally, we study the topological temporal pump in 3 +1 dimensions by numerical calculations. We discuss the relationship between the second Chern number and the first Chern number, the bulk-edge correspondence, and the generalized Streda formula which enables us to compute the second Chern number using the spectral asymmetry.

  11. Compressing the hidden variable space of a qubit

    International Nuclear Information System (INIS)

    Montina, Alberto

    2011-01-01

    In previously exhibited hidden variable models of quantum state preparation and measurement, the number of continuous hidden variables describing the actual state of single realizations is never smaller than the quantum state manifold dimension. We introduce a simple model for a qubit whose hidden variable space is one-dimensional, i.e., smaller than the two-dimensional Bloch sphere. The hidden variable probability distributions associated with quantum states satisfy reasonable criteria of regularity. Possible generalizations of this shrinking to an N-dimensional Hilbert space are discussed.

  12. Perceptual dimensions of style in paintings

    Directory of Open Access Journals (Sweden)

    Marković Slobodan

    2007-01-01

    Full Text Available The main purpose of this study is to specify the basic perceptual dimensions underlying the judgments of the physical features which define the style in paintings (e.g. salient form, colorful surface, oval contours etc.. The other aim of the study is to correlate these dimensions with the subjective (affective dimensions of the experience of paintings. In the preliminary study a set of 25 pairs of elementary perceptual descriptors were empirically specified, and a set of 25 bipolar scales were made (e.g. uncolored-multicolored. In the experiment 30 subjects judged 24 paintings (paintings were taken from the study of Radonjić and Marković, 2004 on 25 scales. Factor analysis revealed the four factors: form (scales: precise, neat, salient form etc., color (color contrast, lightness contrast, vivid colors, space (voluminosity, depth and oval contours and complexity (multicolored, ornate, detailed. Obtained factors reflected the nature of the phenomenological and neural segregation of form, color, depth processing, and partially of complexity processing (e.g. spatial frequency processing within both the form and color subsystem. The aim of the next step of analysis was to specify the correlations between two groups of judgments: (a mean judgments of 24 paintings on perceptual factors and (b mean judgments of the same set of 24 paintings on subjective (affective experience factors, i.e. regularity, attraction, arousal and relaxation (judgments taken from Radonjić and Marković, 2005. The following significant correlations were obtained: regularity-form, regularity-space, attraction-form and arousal-complexity (negative correlation. The reasons for the unexpected negative correlation between arousal and complexity should be specified in further studies.

  13. Floating of Black Holes in Dimension of Information

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Ghasem; Gholibeigian, Kazem

    2016-10-01

    In our vision, there is dimension of information in addition of space-time's dimensions as the fifth dimension of the universe. All of the space-time, mater, and dark mater/energy are always floating in this dimension and whispering to its communication as well as black holes. Communication of information (CI) is done with each fundamental particle (string) from fifth dimension via its four animated sub-particles (sub-strings) for transferring a package of complete information of its quantum state in a Planck time. Fundamental particle after process of information by its sub-particles goes to its next stage while carries the stored processed information. CI as the ``fundamental symmetry'' leads all processes of the black holes as well as other phenomena. Every point of space-time needs on time to its new package, because duration of each processing is a Planck time. So, stored soft super-translation hairs in terms of soft gravitons or photons on black hole's horizon, or stored information on a holographic plate at the future boundary of the horizon [Hawking et al.] can be only accessible for particles which are in those positions (horizon and its boundary), not for other locations of black hole for their fast processing. AmirKabir University of Technology, Tehran, Iran.

  14. Deformed Spacetime Geometrizing Interactions in Four and Five Dimensions

    CERN Document Server

    Cardone, Fabio

    2007-01-01

    This volume provides a detailed discussion of the mathematical aspects and the physical applications of a new geometrical structure of space-time, based on a generalization ("deformation") of the usual Minkowski space, as supposed to be endowed with a metric whose coefficients depend on the energy. Such a formalism (Deformed Special Relativity, DSR) allows one to account for breakdown of local Lorentz invariance in the usual, special-relativistic meaning (however, Lorentz invariance is recovered in a generalized sense) to provide an effective geometrical description of the four fundamental interactions (electromagnetic, weak, strong and gravitational) Moreover, the four-dimensional energy-dependent space-time is just a manifestation of a larger, five-dimensional space in which energy plays the role of a fifth (non-compactified) dimension. This new five-dimensional scheme (Deformed Relativity in Five Dimensions, DR5) represents a true generalization of the usual Kaluza-Klein (KK) formalism. The mathematical pr...

  15. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L; Nickson, R; Harboe-Sorensen, R [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W; Berger, G

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  16. a New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution

    Science.gov (United States)

    Xia, Yuxuan; Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Wang, Xin; Ge, Xinmin

    Fractal theory has been widely used in petrophysical properties of porous rocks over several decades and determination of fractal dimensions is always the focus of researches and applications by means of fractal-based methods. In this work, a new method for calculating pore space fractal dimension and tortuosity fractal dimension of porous media is derived based on fractal capillary model assumption. The presented work establishes relationship between fractal dimensions and pore size distribution, which can be directly used to calculate the fractal dimensions. The published pore size distribution data for eight sandstone samples are used to calculate the fractal dimensions and simultaneously compared with prediction results from analytical expression. In addition, the proposed fractal dimension method is also tested through Micro-CT images of three sandstone cores, and are compared with fractal dimensions by box-counting algorithm. The test results also prove a self-similar fractal range in sandstone when excluding smaller pores.

  17. Supersymmetry, p-brane duality, and hidden spacetime dimensions

    International Nuclear Information System (INIS)

    Bars, I.

    1996-01-01

    A global superalgebra with 32 supercharges and all possible central extensions is studied in order to extract some general properties of duality and hidden dimensions in a theory that treats p-branes democratically. The maximal number of dimensions is 12, with signature (10,2), containing one space and one time dimension that are hidden from the point of view of perturbative ten-dimensional string theory or its compactifications. When the theory is compactified on R d-1,1 circle-times T c+1,1 with d+c+2=12, there are isometry groups that relate to the hidden dimensions as well as to duality. Their combined intersecting classification schemes provide some properties of nonperturbative states and their couplings. copyright 1996 The American Physical Society

  18. Distance Learning in Einstein’s Fourth Dimension

    Directory of Open Access Journals (Sweden)

    Robin Throne

    2007-01-01

    Full Text Available This article blends the concepts of space-time from theoretical physics and Einstein’s Relativity Theory to discuss the spatio-temporal nature of distance education. By comparing and contrasting speed-of-light space travel with the speed of computer processing, the leap is made to consider the fourth dimension and its phenomena for the Web traveler. Learning events are compared with events in time to depict the theory presented.

  19. Fractal dimension evolution and spatial replacement dynamics of urban growth

    International Nuclear Information System (INIS)

    Chen Yanguang

    2012-01-01

    Highlights: ► The fractal dimension growth can be modeled by Boltzmann’s equation. ► Boltzmann’s model suggests urban spatial replacement dynamics. ► If the rate of urban growth is too high, periodic oscillations or chaos will arise. ► Chaos is associated with fractals by the fractal dimension evolution model. ► The fractal dimension of urban form implies the space-filling ratio of a city. - Abstract: This paper presents a new perspective of looking at the relation between fractals and chaos by means of cities. Especially, a principle of space filling and spatial replacement is proposed to interpret the fractal dimension of urban form. The fractal dimension evolution of urban growth can be empirically modeled with Boltzmann’s equation. For the normalized data, Boltzmann’s equation is just equivalent to the logistic function. The logistic equation can be transformed into the well-known 1-dimensional logistic map, which is based on a 2-dimensional map suggesting spatial replacement dynamics of city development. The 2-dimensional recurrence relations can be employed to generate the nonlinear dynamical behaviors such as bifurcation and chaos. A discovery is thus made in this article that, for the fractal dimension growth following the logistic curve, the normalized dimension value is the ratio of space filling. If the rate of spatial replacement (urban growth) is too high, the periodic oscillations and chaos will arise. The spatial replacement dynamics can be extended to general replacement dynamics, and bifurcation and chaos mirror a process of complex replacement.

  20. Design of 5G Full Dimension Massive MIMO Systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2017-10-13

    This work discusses full-dimension multiple-inputmultiple- output (FD-MIMO) technology, which is currently an active area of research and standardization in wireless communications for evolution towards Fifth Generation (5G) cellular systems. FD-MIMO utilizes an active antenna system (AAS) with a two-dimensional (2D) planar array structure, that not only allows a large number of antenna elements to be packed within feasible base station form factors but also provides the ability of adaptive electronic beamforming in the threedimensional (3D) space. However, the compact structure of largescale planar arrays drastically increases the spatial correlation in FD-MIMO systems. In order to account for its effects, the generalized spatial correlation functions for channels constituted by individual elements and overall antenna ports in the AAS are derived. Exploiting the quasi-static channel covariance matrices of users, the problem of determining the optimal downtilt weight vector for antenna ports, which maximizes the minimum signalto- interference ratio of a multi-user multiple-input-single-output system, is formulated as a fractional optimization problem. A quasi-optimal solution is obtained through the application of semi-definite relaxation and Dinkelbach’s method. Finally, the user-group specific elevation beamforming scenario is devised, which offers significant performance gains as confirmed through simulations. These results have direct application in the analysis of 5G FD-MIMO systems.

  1. Design of 5G Full Dimension Massive MIMO Systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2017-01-01

    This work discusses full-dimension multiple-inputmultiple- output (FD-MIMO) technology, which is currently an active area of research and standardization in wireless communications for evolution towards Fifth Generation (5G) cellular systems. FD-MIMO utilizes an active antenna system (AAS) with a two-dimensional (2D) planar array structure, that not only allows a large number of antenna elements to be packed within feasible base station form factors but also provides the ability of adaptive electronic beamforming in the threedimensional (3D) space. However, the compact structure of largescale planar arrays drastically increases the spatial correlation in FD-MIMO systems. In order to account for its effects, the generalized spatial correlation functions for channels constituted by individual elements and overall antenna ports in the AAS are derived. Exploiting the quasi-static channel covariance matrices of users, the problem of determining the optimal downtilt weight vector for antenna ports, which maximizes the minimum signalto- interference ratio of a multi-user multiple-input-single-output system, is formulated as a fractional optimization problem. A quasi-optimal solution is obtained through the application of semi-definite relaxation and Dinkelbach’s method. Finally, the user-group specific elevation beamforming scenario is devised, which offers significant performance gains as confirmed through simulations. These results have direct application in the analysis of 5G FD-MIMO systems.

  2. Weakly infinite-dimensional spaces

    International Nuclear Information System (INIS)

    Fedorchuk, Vitalii V

    2007-01-01

    In this survey article two new classes of spaces are considered: m-C-spaces and w-m-C-spaces, m=2,3,...,∞. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of C-spaces. The classes of 2-C-spaces and w-2-C-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact ∞-C-spaces are exactly the C-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin-Sierpinsky indices, extend to these new classes of spaces. Weak m-C-spaces are characterised by means of essential maps to Henderson's m-compacta. The existence of hereditarily m-strongly infinite-dimensional spaces is proved.

  3. Unified SU(4) color models in ten dimensions

    International Nuclear Information System (INIS)

    Hanlon, B.E.; Joshi, G.C.

    1992-01-01

    Some aspects of constructing unified models with SU(4) as the color group via a unifying group defined in ten dimensions are examined. Four dimensional theories are recovered using the Coset Space Dimensional Reduction scheme. Candidate models are considered in order to highlight some of the difficulties in constructing realistic four dimensional theories. 30 refs

  4. The cosmological ‘constant’ and quantization in five dimensions

    International Nuclear Information System (INIS)

    Wesson, Paul S.

    2011-01-01

    Campbell's theorem ensures that all vacuum space-times in general relativity can be embedded in five dimensions, with the 4D scalar curvature expressed as an effective cosmological ‘constant’ Λ which depends on the extra coordinate. This Λ-landscape can be used to give insight to certain physical phenomena, such as the big bang and quantized particles.

  5. Sphaleron rate at high temperature in 1+1 dimensions

    International Nuclear Information System (INIS)

    Smit, Jan; Tang, W.H.

    1999-01-01

    We resolve the controversy in the high temperature behavior of the sphaleron rate in the abelian Higgs model in 1+1 dimensions. The T 2 behavior at intermediate lattice spacings is found to change into T ((2)/(3)) behavior in the continuum limit. The results are supported by analytic arguments that the classical approximation is good for this model

  6. Higuchi dimension of digital images.

    Directory of Open Access Journals (Sweden)

    Helmut Ahammer

    Full Text Available There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example, Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi dimension of these 1D signals is calculated using Higuchi's algorithm, and it is shown that both regions of interests and directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital images, are given. The main result is that Higuchi's algorithm allows a direction dependent as well as direction independent analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible. Moreover, the proposed method is not restricted to Higuchi's algorithm, as any 1D method of analysis, can be applied.

  7. Single-particle colloid tracking in four dimensions.

    Science.gov (United States)

    Anthony, Stephen M; Hong, Liang; Kim, Minsu; Granick, Steve

    2006-11-21

    Coating a close-packed fluorescent colloid monolayer with a nanometer-thick metal film followed by sonication in liquid produces modulated optical nanoprobes. The metal coating modulates the fluorescence as these structures rotate in suspension, enabling the use of these particles as probes to monitor both rotational and center-of-mass (translational) dynamics in complex environments. Here, we demonstrate methods to simultaneously measure two translational and two rotational degrees of freedom, with excellent agreement to theory. The capability to determine two angles of rotation opens several new avenues of future research.

  8. Lack of conformity between Indian classroom furniture and student dimensions: proposed future seat/table dimensions.

    Science.gov (United States)

    Savanur, C S; Altekar, C R; De, A

    2007-10-01

    Children spend one-quarter of a day in school. Of this, 60-80% of time is spent in the classroom. Classroom features, such as workspace and personal space play an important role in children's growth and performance as this age marks the period of anatomical, physiological and psychological developments. Since the classroom is an influential part of a student's life the present study focused on classroom furniture in relation to students' workspace and personal space requirements and standards and was conducted in five schools at Mumbai, India. Dimensions of 104 items of furniture (chairs and desks) were measured as were 42 anthropometric dimensions of 225 students from grade six to grade nine (age: 10-14 years). Questionnaire responses of 292 students regarding the perceived adequacy of their classroom furniture were collected. Results indicated that the seat and desk heights (450 mm, 757 mm respectively) were higher than the comparable students' anthropometric dimensions and that of the recommendations of Bureau of Indian Standards (BIS) (340 + 3 mm, 380 + 3 mm seat-heights, 580 + 3 mm 640 + 3 mm desk-heights) as well as Time-Saver Standards (TSS) (381.0 mm seat-height and 660.4 mm desk-height). The depth of the seats and the desks (299 mm, 319 mm, respectively) were less than comparable students' anthropometric dimensions and the recommendations of BIS (IS 4837: 1990). Students reported discomfort in shoulder, wrist, knee and ankle regions. Based on the students' anthropometric data, proposed future designs with fixed table-heights and adjustable seat-heights along with footrests were identified.

  9. Bianchi identities in higher dimensions

    International Nuclear Information System (INIS)

    Pravda, V; Pravdova, A; Coley, A; Milson, R

    2004-01-01

    A higher dimensional frame formalism is developed in order to study implications of the Bianchi identities for the Weyl tensor in vacuum spacetimes of the algebraic types III and N in arbitrary dimension n. It follows that the principal null congruence is geodesic and expands isotropically in two dimensions and does not expand in n - 4 spacelike dimensions or does not expand at all. It is shown that the existence of such principal geodesic null congruence in vacuum (together with an additional condition on twist) implies an algebraically special spacetime. We also use the Myers-Perry metric as an explicit example of a vacuum type D spacetime to show that principal geodesic null congruences in vacuum type D spacetimes do not share this property

  10. Physics with large extra dimensions

    CERN Document Server

    Antoniadis, Ignatios

    2004-01-01

    The recent understanding of string theory opens the possibility that the string scale can be as low as a few TeV. The apparent weakness of gravitational interactions can then be accounted by the existence of large internal dimensions, in the submillimeter region. Furthermore, our world must be confined to live on a brane transverse to these large dimensions, with which it interacts only gravitationally. In my lecture, I describe briefly this scenario which gives a new theoretical framework for solving the gauge hierarchy problem and the unification of all interactions. I also discuss its main properties and implications for observations at both future particle colliders, and in non-accelerator gravity experiments. Such effects are for instance the production of Kaluza-Klein resonances, graviton emission in the bulk of extra dimensions, and a radical change of gravitational forces in the submillimeter range.

  11. The Existential Dimension of Right

    DEFF Research Database (Denmark)

    Hartz, Emily

    2017-01-01

    for discussing the existential dimension of right by bringing central parts of Fichte’s and Arendt’s work into dialogue. By facilitating this – admittedly unusual – dialogue between Fichte and Arendt the author explicates how, for both Fichte and Arendt, the concept of right can only be adequately understood......The following article paves out the theoretical ground for a phenomenological discussion of the existential dimension of right. This refers to a dimension of right that is not captured in standard treatments of right, namely the question of whether – or how the concept of rights relates...... as referring to the existential condition of plurality and uses this insight to draw up a theoretical ground for further phenomenological analysis of right....

  12. Collapse of large extra dimensions

    International Nuclear Information System (INIS)

    Geddes, James

    2002-01-01

    In models of spacetime that are the product of a four-dimensional spacetime with an 'extra' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided

  13. Correlated Electrons in Reduced Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bonesteel, Nicholas E [Florida State Univ., Tallahassee, FL (United States)

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitations of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.

  14. On bosonization in 3 dimensions

    International Nuclear Information System (INIS)

    Barci, D.G.; Fosco, C.D.; Oxman, L.E.

    1995-08-01

    A recently proposed path-integral bosonization scheme for massive fermions in 3 dimensions is extended by keeping the full momentum-dependence of the one-loop vacuum polarization tensor. This makes it possible to discuss both the massive and massless fermion cases on an equal footing, and moreover the results it yields for massless fermions are consistent with the ones of another, seemingly different, canonical quantization approach to the problem of bosonization for a massless fermionic field in 3 dimensions. (author). 10 refs

  15. The Ethical Dimension of Innovation

    DEFF Research Database (Denmark)

    Nogueira, Leticia Antunes; Nogueira, Tadeu Fernando

    2014-01-01

    The view of innovation as a positive concept has been deeply rooted in business and academic cultures ever since Schumpeter coined the concept of creative destruction. Even though there is a large body of literature on innovation studies, limited attention has been given to its ethical dimension....... In this chapter, the ethical implications of innovations are illustrated with a case study of “destructive creation” in the food industry, and upon which an argumentative analysis is conducted. The main message of this chapter is that innovations have inherent ethical dimensions and that quality innovations...

  16. Quantum control in infinite dimensions

    International Nuclear Information System (INIS)

    Karwowski, Witold; Vilela Mendes, R.

    2004-01-01

    Accurate control of quantum evolution is an essential requirement for quantum state engineering, laser chemistry, quantum information and quantum computing. Conditions of controllability for systems with a finite number of energy levels have been extensively studied. By contrast, results for controllability in infinite dimensions have been mostly negative, stating that full control cannot be achieved with a finite-dimensional control Lie algebra. Here we show that by adding a discrete operation to a Lie algebra it is possible to obtain full control in infinite dimensions with a small number of control operators

  17. Quantum physics in one dimension

    CERN Document Server

    Giamarchi, Thierry

    2004-01-01

    This book presents in a pedagogical yet complete way correlated systems in one dimension. Recent progress in nanotechnology and material research have made one dimensional systems a crucial part of today's physics. After an introduction to the basic concepts of correlated systems, the book gives a step by step description of the techniques needed to treat one dimension, and discusses the resulting physics. Then specific experimental realizations of one dimensional systems such asspin chains, quantum wires, nanotubes, organic superconductors etc. are examined. Given its progressive and pedagogi

  18. Space polypropulsion

    Science.gov (United States)

    Kellett, B. J.; Griffin, D. K.; Bingham, R.; Campbell, R. N.; Forbes, A.; Michaelis, M. M.

    2008-05-01

    Hybrid space propulsion has been a feature of most space missions. Only the very early rocket propulsion experiments like the V2, employed a single form of propulsion. By the late fifties multi-staging was routine and the Space Shuttle employs three different kinds of fuel and rocket engines. During the development of chemical rockets, other forms of propulsion were being slowly tested, both theoretically and, relatively slowly, in practice. Rail and gas guns, ion engines, "slingshot" gravity assist, nuclear and solar power, tethers, solar sails have all seen some real applications. Yet the earliest type of non-chemical space propulsion to be thought of has never been attempted in space: laser and photon propulsion. The ideas of Eugen Saenger, Georgii Marx, Arthur Kantrowitz, Leik Myrabo, Claude Phipps and Robert Forward remain Earth-bound. In this paper we summarize the various forms of nonchemical propulsion and their results. We point out that missions beyond Saturn would benefit from a change of attitude to laser-propulsion as well as consideration of hybrid "polypropulsion" - which is to say using all the rocket "tools" available rather than possibly not the most appropriate. We conclude with three practical examples, two for the next decades and one for the next century; disposal of nuclear waste in space; a grand tour of the Jovian and Saturnian moons - with Huygens or Lunoxod type, landers; and eventually mankind's greatest space dream: robotic exploration of neighbouring planetary systems.

  19. Compendium of Single Event Effects (SEE) Test Results for COTS and Standard Electronics for Low Earth Orbit and Deep Space Applications

    Science.gov (United States)

    Reddell, Brandon; Bailey, Chuck; Nguyen, Kyson; O'Neill, Patrick; Gaza, Razvan; Patel, Chirag; Cooper, Jaime; Kalb, Theodore

    2017-01-01

    We present the results of SEE testing with high energy protons and with low and high energy heavy ions. This paper summarizes test results for components considered for Low Earth Orbit and Deep Space applications.

  20. Effects of future space vehicle operations on a single day in the National Airspace System : a fast-time computer simulation.

    Science.gov (United States)

    2015-04-01

    This document describes the objectives, methods, analyses, and results of a study used to quantify the effects of future space operations : on the National Airspace System (NAS), and to demonstrate the possible benefits of one proposed strategy to mi...

  1. Determining the minimum embedding dimension for state space ...

    Indian Academy of Sciences (India)

    The analysis of observed time series from nonlinear systems is usually done by making a time-delay ... for real-world data where such information is not known ... operating. Two methods are commonly adopted at present to get information ...

  2. Correlated-Spaces Regression for Learning Continuous Emotion Dimensions

    NARCIS (Netherlands)

    Nicolaou, M.; Zafeiriou, S.; Pantic, Maja

    2013-01-01

    Adopting continuous dimensional annotations for affective analysis has been gaining rising attention by researchers over the past years. Due to the idiosyncratic nature of this problem, many subproblems have been identified, spanning from the fusion of multiple continuous annotations to exploiting

  3. Non-relativistic supergravity in three space-time dimensions

    NARCIS (Netherlands)

    Zojer, Thomas

    2016-01-01

    This year Einstein's theory of general relativity celebrates its one hundredth birthday. It supersedes the non-relativistic Newtonian theory of gravity in two aspects: i) there is a limiting velocity, nothing can move quicker than the speed of light and ii) the theory is valid in arbitrary

  4. The Quantum Hydrodynamics System in Two Space Dimensions

    KAUST Repository

    Antonelli, Paolo; Marcati, Pierangelo

    2011-01-01

    the WKB formalism with a polar decomposition theory which is not limited by the presence of vacuum regions. In this way we set up a self consistent theory, based only on particle density and current density, which does not need to define velocity fields

  5. Continuous dimensions and evanescent couplings

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1975-01-01

    Analytical solutions for the wave equation in many dimensional calculation, are given. The difference for even or odd number of dimensions is shown. The simplest cases of the lowest order divergent diagrams (self-energy, vacuum polarization) are discussed. Causal solution of Klein-Gordon equation is used [pt

  6. Quantum Gravity in Two Dimensions

    DEFF Research Database (Denmark)

    Ipsen, Asger Cronberg

    The topic of this thesis is quantum gravity in 1 + 1 dimensions. We will focus on two formalisms, namely Causal Dynamical Triangulations (CDT) and Dy- namical Triangulations (DT). Both theories regularize the gravity path integral as a sum over triangulations. The difference lies in the class...

  7. Massive particles in five dimensions

    International Nuclear Information System (INIS)

    Copeland, E.J.

    1985-01-01

    We consider a five-dimensional model of the universe with a dynamical extra dimension. Calculations of the ratio of the number density of Kolb and Slansky type pyrgons to that of photons show the model to be unacceptable. However by inserting N matter fields into the original action, it becomes possible to reduce the ratio below the observational bound. (orig.)

  8. Teachers' Careers: The Objective Dimension.

    Science.gov (United States)

    Evetts, Julia

    1986-01-01

    Analyzes the objective dimension of teachers' careers showing how 530 British male/female teachers are distributed throughout the pay scale and promotions making up the formal structure of teaching. Indicates length of experience is the rewarding but not the sole factor in bureaucratic structure and differential male/female career achievements.…

  9. THE DIMENSIONS OF COMPOSITION ANNOTATION.

    Science.gov (United States)

    MCCOLLY, WILLIAM

    ENGLISH TEACHER ANNOTATIONS WERE STUDIED TO DETERMINE THE DIMENSIONS AND PROPERTIES OF THE ENTIRE SYSTEM FOR WRITING CORRECTIONS AND CRITICISMS ON COMPOSITIONS. FOUR SETS OF COMPOSITIONS WERE WRITTEN BY STUDENTS IN GRADES 9 THROUGH 13. TYPESCRIPTS OF THE COMPOSITIONS WERE ANNOTATED BY CLASSROOM ENGLISH TEACHERS. THEN, 32 ENGLISH TEACHERS JUDGED…

  10. Unexploited Dimensions of Virtual Humans

    NARCIS (Netherlands)

    Ruttkay, Z.M.; Reidsma, Dennis; Huang, Thomas; Nijholt, Antinus; Pantic, Maja; Pentlant, Alex

    Virtual Humans are on the border of fiction and realism: while it is obvious that they do not exist in reality and function on different principles than real people, they have been endowed with human features such as being emotionally sensitive. In this article we argue that many dimensions, both

  11. String theory in four dimensions

    CERN Document Server

    1988-01-01

    ``String Theory in Four Dimensions'' contains a representative collection of papers dealing with various aspects of string phenomenology, including compactifications on smooth manifolds and more general conformal field theories. Together with the lucid introduction by M. Dine, this material gives the reader a good working knowledge of our present ideas for connecting string theory to nature.

  12. The inner dimension of sustainability

    NARCIS (Netherlands)

    Horlings, L.G.

    2015-01-01

    Transformation to sustainability has been defined as the fundamental alteration of the nature of a system, once the current conditions become untenable or undesirable. Transformation requires a shift in people's values, referred to as the inner dimension of sustainability, or change from the

  13. Effective dimension in flocking mechanisms

    International Nuclear Information System (INIS)

    Baglietto, Gabriel; Albano, Ezequiel V.

    2011-01-01

    Even in its minimal representation (Vicsek Model, VM [T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet. Phys. Rev. Lett. 75, 1226 (1995).]), the widespread phenomenon of flocking raises intriguing questions to the statistical physicists. While the VM is very close to the better understood XY Model because they share many symmetry properties, a major difference arises by the fact that the former can sustain long-range order in two dimensions, while the latter can not. Aiming to contribute to the understanding of this feature, by means of extensive numerical simulations of the VM, we study the network structure of clusters showing that they can also sustain purely orientational, mean-field-like, long-range order. We identify the reason of this capability with the key concept of ''effective dimension.'' In fact, by analyzing the behavior of the average path length and the mean degree, we show that this dimension is very close to four, which coincides with the upper critical dimension of the XY Model, where orientational order is also of a mean-field nature. We expect that this methodology could be generalized to other types of dynamical systems.

  14. The Hidden Dimensions of Databases.

    Science.gov (United States)

    Jacso, Peter

    1994-01-01

    Discusses methods of evaluating commercial online databases and provides examples that illustrate their hidden dimensions. Topics addressed include size, including the number of records or the number of titles; the number of years covered; and the frequency of updates. Comparisons of Readers' Guide Abstracts and Magazine Article Summaries are…

  15. Dimensions of the Composing Process.

    Science.gov (United States)

    Freedman, Aviva

    As a by-product of a study concerning how university level writers develop new genres of discourse, a study was undertaken to examine what factors or dimensions affect the composing process of university writers. Six undergraduate students at Carleton University in Ottawa participated, making available to researchers information about how they…

  16. Correlation Dimension-Based Classifier

    Czech Academy of Sciences Publication Activity Database

    Jiřina, Marcel; Jiřina jr., M.

    2014-01-01

    Roč. 44, č. 12 (2014), s. 2253-2263 ISSN 2168-2267 R&D Projects: GA MŠk(CZ) LG12020 Institutional support: RVO:67985807 Keywords : classifier * multidimensional data * correlation dimension * scaling exponent * polynomial expansion Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.469, year: 2014

  17. Interpretation and the Aesthetic Dimension

    Science.gov (United States)

    Mortensen, Charles O.

    1976-01-01

    The author, utilizing a synthesis of philosophic comments on aesthetics, provides a discourse on the aesthetic dimension and offers examples of how interpreters can nurture the innate sense of beauty in man. Poetic forms, such as haiku, are used to relate the aesthetic relationship between man and the environment. (BT)

  18. Correlation Dimension Estimation for Classification

    Czech Academy of Sciences Publication Activity Database

    Jiřina, Marcel; Jiřina jr., M.

    2006-01-01

    Roč. 1, č. 3 (2006), s. 547-557 ISSN 1895-8648 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : correlation dimension * probability density estimation * classification * UCI MLR Subject RIV: BA - General Mathematics

  19. Gauging hidden symmetries in two dimensions

    International Nuclear Information System (INIS)

    Samtleben, Henning; Weidner, Martin

    2007-01-01

    We initiate the systematic construction of gauged matter-coupled supergravity theories in two dimensions. Subgroups of the affine global symmetry group of toroidally compactified supergravity can be gauged by coupling vector fields with minimal couplings and a particular topological term. The gauge groups typically include hidden symmetries that are not among the target-space isometries of the ungauged theory. The gaugings constructed in this paper are described group-theoretically in terms of a constant embedding tensor subject to a number of constraints which parametrizes the different theories and entirely encodes the gauged Lagrangian. The prime example is the bosonic sector of the maximally supersymmetric theory whose ungauged version admits an affine e 9 global symmetry algebra. The various parameters (related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.) which characterize the possible gaugings, combine into an embedding tensor transforming in the basic representation of e 9 . This yields an infinite-dimensional class of maximally supersymmetric theories in two dimensions. We work out and discuss several examples of higher-dimensional origin which can be systematically analyzed using the different gradings of e 9

  20. The structure of visual spaces

    NARCIS (Netherlands)

    Koenderink, J.J.; van Doorn, A.J.

    2008-01-01

    The “visual space” of an optical observer situated at a single, fixed viewpoint is necessarily very ambiguous. Although the structure of the “visual field” (the lateral dimensions, i.e., the “image”) is well defined, the “depth” dimension has to be inferred from the image on the basis of “monocular

  1. Interacting fermions in one spatial dimensions

    International Nuclear Information System (INIS)

    Wolf, D.

    1982-01-01

    This thesis contains in its first part a critical survey about the method of the bosonization of fermi fields in one spatial dimension and its application to the Luttinger and the massive Thirring model. The first chapter served for the explanation of the term of the unitary inequivalence. Thereby two generally valid facts could be demonstrated very illustratively by the example of a fermion algebra and its representations, namely first that infinite, direct product space are not separable, and second that weak equivalence of the vacua is equivalent to the unitary equivalence of the corresponding representations of the field algebra. In the second part the statement first studied by Luther (1976) and since then often cited, that the continuum limit of the Heisenberg model is the massive Thirring model. It is concluded that it can up to today not be considered as proved although indications for its validity can be found. (orig./HSI) [de

  2. Higgs Phenomenology of Minimal Universal Extra Dimensions

    Directory of Open Access Journals (Sweden)

    Kakizaki Mitsuru

    2012-06-01

    Full Text Available The minimal model of Universal Extra Dimensions (MUED is briefly reviewed. We explain how the cross-sections for Higgs production via gluon fusion and decay into photons are modified, relative the the Standard Model (SM values, by KK particles running in loops, leading to an enhancement of the gg → h → γγ and gg → h → W+W− cross-sections. ATLAS and CMS searches for the SM Higgs in these channels are reinterpreted in the context of MUED and used to place new limits on the MUED parameter space. Only a small region of between 1 and 3 GeV around mh = 125 GeV for 500 GeV < R−1 < 1600 GeV remains open at the 95 % confidence level.

  3. Phenomenology of symmetry breaking from extra dimensions

    International Nuclear Information System (INIS)

    Alfaro, Jorge; Broncano, Alicia; Belen Gavela, Maria; Rigolin, Stefano; Salvatori, Matteo

    2007-01-01

    Motivated by the electroweak hierarchy problem, we consider theories with two extra dimensions in which the four-dimensional scalar fields are components of gauge boson in full space. We explore the Nielsen-Olesen instability for SU(N) on a torus, in the presence of a magnetic background. A field theory approach is developed, computing explicitly the minimum of the complete effective potential, including tri-linear and quartic couplings and determining the symmetries of the stable vacua. We also develop appropriate gauge-fixing terms when both Kaluza-Klein and Landau levels are present and interacting, discussing the interplay between the possible six and four dimensional choices. The equivalence between coordinate dependent and constant Scherk-Schwarz boundary conditions - associated to either continuous or discrete Wilson lines - is analyzed

  4. Determination of Gravitational Counterterms Near Four Dimensions from RG Equations

    OpenAIRE

    Hamada, Ken-ji

    2014-01-01

    The finiteness condition of renormalization gives a restriction on the form of the gravitational action. By reconsidering the Hathrell's RG equations for massless QED in curved space, we determine the gravitational counterterms and the conformal anomalies as well near four dimensions. As conjectured for conformal couplings in 1970s, we show that at all orders of the perturbation they can be combined into two forms only: the square of the Weyl tensor in $D$ dimensions and $E_D=G_4 +(D-4)\\chi(D...

  5. High and low dimensions in the black hole negative mode

    International Nuclear Information System (INIS)

    Asnin, Vadim; Gorbonos, Dan; Hadar, Shahar; Kol, Barak; Levi, Michele; Miyamoto, Umpei

    2007-01-01

    The negative mode of the Schwarzschild black hole is central to Euclidean quantum gravity around hot flat space and for the Gregory-Laflamme black string instability. We analyze the eigenvalue as a function of spacetime dimension λ = λ(d) by constructing two perturbative expansions: one for large d and the other for small d - 3, and determining as many coefficients as we are able to compute analytically. By joining the two expansions, we obtain an interpolating rational function accurate to better than 2% through the whole range of dimensions including d = 4

  6. Novel correlations in two dimensions: Some exact solutions

    International Nuclear Information System (INIS)

    Murthy, M.V.; Bhaduri, R.K.; Sen, D.

    1996-01-01

    We construct a new many-body Hamiltonian with two- and three-body interactions in two space dimensions and obtain its exact many-body ground state for an arbitrary number of particles. This ground state has a novel pairwise correlation. A class of exact solutions for the excited states is also found. These excited states display an energy spectrum similar to the Calogero-Sutherland model in one dimension. The model reduces to an analog of the well-known trigonometric Sutherland model when projected on to a circular ring. copyright 1996 The American Physical Society

  7. An LCMV Filter for Single-Channel Noise Cancellation and Reduction in the Time Domain

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2013-01-01

    In this paper, we consider a recent class of optimal rectangular fil- tering matrices for single-channel speech enhancement. This class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. Then, extra degrees of freedom in the filters...... signal-to-interference ratio. This is showed for both synthetic and real speech signals....

  8. Perancangan Small Private Space Pada Interior Public Space Di Perpustakaan Universitas Kristen Petra Surabaya

    OpenAIRE

    Lucky Basuki, Holiman Chandra Yusita Kusumarini

    2013-01-01

    Lifestyle of modern people use some time to move out of residence (public space) makes the most of the private activities can not be fulfilled. It is an idea and the idea of creating a space that can meet the needs of the private in public spaces with small dimensions. Private space in the design of the library is housed in Petra Christian University Surabaya as space scope of small private space (minimal private space dimension). The creation of small private space in the interior of the lib...

  9. The anomalous scaling exponents of turbulence in general dimension from random geometry

    Energy Technology Data Exchange (ETDEWEB)

    Eling, Christopher [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Oz, Yaron [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2015-09-22

    We propose an analytical formula for the anomalous scaling exponents of inertial range structure functions in incompressible fluid turbulence. The formula is a Knizhnik-Polyakov-Zamolodchikov (KPZ)-type relation and is valid in any number of space dimensions. It incorporates intermittency in a novel way by dressing the Kolmogorov linear scaling via a coupling to a lognormal random geometry. The formula has one real parameter γ that depends on the number of space dimensions. The scaling exponents satisfy the convexity inequality, and the supersonic bound constraint. They agree with the experimental and numerical data in two and three space dimensions, and with numerical data in four space dimensions. Intermittency increases with γ, and in the infinite γ limit the scaling exponents approach the value one, as in Burgers turbulence. At large n the nth order exponent scales as √n. We discuss the relation between fluid flows and black hole geometry that inspired our proposal.

  10. Magnetic and low-dissipation applications of WTe2 at limited dimensions

    Data.gov (United States)

    National Aeronautics and Space Administration — My research on WTe2 at limited dimensions seeks to lay the groundwork for the next generation of magnetic sensors and low-dissipation circuitry. These applications...

  11. INTERDEPENDENCE BETWEEN RELATIONSHIP QUALITY DIMENSIONS

    Directory of Open Access Journals (Sweden)

    Mario Pepur

    2011-02-01

    Full Text Available Tourism-dependent economy, unfavourable structure of accommodation and hotel capacity, seasonality of business and liquidity problems indicate importance of the relationships between hotels and banks in Croatia. Since the capital investments in new and modern capacities are necessity, the quality of their relationship would determine the future of Croatian economy as a whole in the long run. Regarding the capital investments, it is crucially important that cooperation between the employees in both business entities is based on the satisfaction, trust and commitment. In this way, every potential uncertainty as a consequence of the entity’s actions could be minimized. In this paper, 356 tourist objects are hierarchically clustered according to the relationship quality dimensions for the purpose of testing the characteristics according to which the clusters significantly differentiate. Consequently, the interdependence between the observed relationship quality dimensions is examined.

  12. The Creative Dimension of Visuality

    DEFF Research Database (Denmark)

    Michelsen, Anders Ib

    2013-01-01

    This essay reflects critically on the notion of visuality, a centrepiece of current theory on visual culture and its underlying idea of a structural ‘discursive determination’ of visual phenomena. Is the visual really to be addressed through the post-war heritage of discourse and representation...... analysis relying on language/linguistics as a model for explaining culture? More specifically, how can the – creative – novelty of visual culture be addressed by a notion of discourse? This essay will argue that the debate on visual culture is lacking with regard to discerning the creative dimension of its...... and the invisible’ to the notion of collective creativity and ‘the imaginary institution of society’ of Cornelius Castoriadis. In the theoretical relationship between Merleau-Ponty and Castoriadis it is possible to indicate a notion of visuality as a creative dimension....

  13. Flavour physics from extra dimensions

    CERN Document Server

    Martinelli, G; Scrucca, C A; Silvestrini, L

    2004-01-01

    We discuss the possibility of introducing an SU(2) global flavour symmetry in the context of flat extra dimensions. In particular we concentrate on the 5-dimensional case and we study how to obtain the flavour structure of the Standard Model quark sector compacti(ying the fifth dimension on the orbifold St/Z2 a la Scberk-Scbwarz (SS). We show that in this case it is possible to justify the five orders of magnitude among the values of the quark masses with only one parameter: the SS flavour parameter. The non-local nature of the SS symmetry breaking mechanism allows to realize this without introducing new instabilities in the theory.

  14. String theory in four dimensions

    International Nuclear Information System (INIS)

    Dine, M.

    1988-01-01

    A representative sample of current ideas about how one might develop a string phenomenology is presented. Some of the obstacles which lie in between string theory and contact with experiment are described. It is hoped that this volume will provide the reader with ways of thinking about string theory in four dimensions and provide tools for asking questions about string theory and ordinary physics. 102 refs

  15. The social dimensions of entrepreneurship

    DEFF Research Database (Denmark)

    Ulhøi, John Parm

    2005-01-01

    This paper proposes an integrative framework to conceptualize important social dimensions of entrepreneurship. The paper reviews and evaluates the current status of research dealing with entrepreneurship, social capital and trust. The proposed framework rests on the recognition that entrepreneurial...... activities are results of social interactions and mechanisms. In consequence, entrepreneurship cannot merely be understood in terms of "personality characteristics" or in sterile economic terms. In closing, the paper addresses implications for practitioners and for research. Udgivelsesdato: AUG...

  16. The social dimension of entrepreneurship

    DEFF Research Database (Denmark)

    Ulhøi, John Parm

    2005-01-01

    This paper proposes an integrative framework to conceptualize important social dimensions of entrepreneurship. The paper reviews and evaluates the current status of research dealing with entrepreneurship, social capital and trust. The proposed framework rests on the recognition that entrepreneurial...... activities are results of social interactions and mechanisms. In consequence, entrepreneurship cannot merely be understood in terms of 'personality characteristics' or in sterile economic terms. The paper addresses by concluding implications for practitioners and for research....

  17. RELIGIOUS DIMENSION OF COMPUTER GAMES

    OpenAIRE

    Sukhov, Anton

    2017-01-01

    Modern computer games are huge virtual worlds that raisesophisticated social and even religious issues. The “external” aspect of thereligious dimension of computer games focuses on the problem of the polysemanticrelation of world religions (Judaism,Christianity, Islam, Buddhism) to computer games. The“inner” aspect represents transformation of monotheistic and polytheisticreligions within the virtual worlds in the view of heterogeneity and genredifferentiation of computer games (arcades, acti...

  18. Cultural Dimensions of Military Training

    Science.gov (United States)

    2014-06-13

    to military, and to make them able to operate effectively in multicultural dimensions. This cultural impact forced the military doctrine to adapt...degree the research findings and conclusions. The bibliography reviewed for this thesis is available at the Combined Arms Research Library . Unfortunately...in terms of increased ability of understanding and operating in a different cultural or multicultural setting, led the military decision makers to

  19. Schwinger Model Mass Anomalous Dimension

    CERN Document Server

    Keegan, Liam

    2016-06-20

    The mass anomalous dimension for several gauge theories with an infrared fixed point has recently been determined using the mode number of the Dirac operator. In order to better understand the sources of systematic error in this method, we apply it to a simpler model, the massive Schwinger model with two flavours of fermions, where analytical results are available for comparison with the lattice data.

  20. Cosmic censorship in higher dimensions

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S.

    2004-01-01

    We show that the naked singularities arising in dust collapse from smooth initial data (which include those discovered by Eardley and Smarr, Christodoulou, and Newman) are removed when we make a transition to higher dimensional spacetimes. Cosmic censorship is then restored for dust collapse, which will always produce a black hole as the collapse end state for dimensions D≥6, under conditions to be motivated physically such as the smoothness of initial data from which the collapse develops

  1. De-Orbiting of Space Debris by Means of a Towering Cable and a Single Thruster Spaceship: Whiplash and Tail Wagging Effects

    Science.gov (United States)

    da Cruz Pacheco, Gabriel Felippe; Carpentier, Benjamin; Petit, Nicolas

    2013-08-01

    This papers exposes two difficulties that are likely to take place during the towing of a space debris. These effects, which could trouble de-orbitation strategies, are visible on simple simulations based on a model of coupled rigid-bodies dynamics. We name them tail wagging and whiplash effects, respectively.

  2. Logical-rules and the classification of integral dimensions: Individual differences in the processing of arbitrary dimensions

    Directory of Open Access Journals (Sweden)

    Anthea G. Blunden

    2015-01-01

    Full Text Available A variety of converging operations demonstrate key differences between separable dimensions, which can be analyzed independently, and integral dimensions, which are processed in a non-analytic fashion. A recent investigation of response time distributions, applying a set of logical rule-based models, demonstrated that integral dimensions are pooled into a single coactive processing channel, in contrast to separable dimensions, which are processed in multiple, independent processing channels. This paper examines the claim that arbitrary dimensions created by factorially morphing four faces are processed in an integral manner (i.e., coactively. In two experiments, sixteen participants completed a categorization task in which either upright or inverted morph stimuli were classified in a speeded fashion. Analyses focused on contrasting different assumptions about the psychological representation of the stimuli, perceptual and decisional separability, and the processing architecture. We report consistent individual differences which demonstrate a mixture of some observers who demonstrate coactive processing with other observers who process the dimensions in a parallel self-terminating manner.

  3. Approximation by Chebyshevian Bernstein Operators versus Convergence of Dimension Elevation

    KAUST Repository

    Ait-Haddou, Rachid; Mazure, Marie-Laurence

    2016-01-01

    On a closed bounded interval, consider a nested sequence of Extended Chebyshev spaces possessing Bernstein bases. This situation automatically generates an infinite dimension elevation algorithm transforming control polygons of any given level into control polygons of the next level. The convergence of these infinite sequences of polygons towards the corresponding curves is a classical issue in computer-aided geometric design. Moreover, according to recent work proving the existence of Bernstein-type operators in such Extended Chebyshev spaces, this nested sequence is automatically associated with an infinite sequence of Bernstein operators which all reproduce the same two-dimensional space. Whether or not this sequence of operators converges towards the identity on the space of all continuous functions is a natural issue in approximation theory. In the present article, we prove that the two issues are actually equivalent. Not only is this result interesting on the theoretical side, but it also has practical implications. For instance, it provides us with a Korovkin-type theorem of convergence of any infinite dimension elevation algorithm. It also enables us to tackle the question of convergence of the dimension elevation algorithm for any nested sequence obtained by repeated integration of the kernel of a given linear differential operator with constant coefficients. © 2016 Springer Science+Business Media New York

  4. Approximation by Chebyshevian Bernstein Operators versus Convergence of Dimension Elevation

    KAUST Repository

    Ait-Haddou, Rachid

    2016-03-18

    On a closed bounded interval, consider a nested sequence of Extended Chebyshev spaces possessing Bernstein bases. This situation automatically generates an infinite dimension elevation algorithm transforming control polygons of any given level into control polygons of the next level. The convergence of these infinite sequences of polygons towards the corresponding curves is a classical issue in computer-aided geometric design. Moreover, according to recent work proving the existence of Bernstein-type operators in such Extended Chebyshev spaces, this nested sequence is automatically associated with an infinite sequence of Bernstein operators which all reproduce the same two-dimensional space. Whether or not this sequence of operators converges towards the identity on the space of all continuous functions is a natural issue in approximation theory. In the present article, we prove that the two issues are actually equivalent. Not only is this result interesting on the theoretical side, but it also has practical implications. For instance, it provides us with a Korovkin-type theorem of convergence of any infinite dimension elevation algorithm. It also enables us to tackle the question of convergence of the dimension elevation algorithm for any nested sequence obtained by repeated integration of the kernel of a given linear differential operator with constant coefficients. © 2016 Springer Science+Business Media New York

  5. A story about distributions of dimensions and locations of boulders

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2006-01-01

    for making a bored tunnel through the till deposit. Geographical universality was discovered through the statistical analysis of observations of boulder coordinates and dimension measures from wide spread cliff beach locations. One conclusion is that the joint size distribution up to some degree of modeling...... distribution. Moreover, these ratios are independent of the maximal dimension. The random point field structure of the boulder coordinates as isolated points or as clusters of points makes Poisson fields reasonable modeling candidates for the fields of both single points and cluster points. The cluster size...

  6. Anomalous dimension in three-dimensional semiclassical gravity

    International Nuclear Information System (INIS)

    Alesci, Emanuele; Arzano, Michele

    2012-01-01

    The description of the phase space of relativistic particles coupled to three-dimensional Einstein gravity requires momenta which are coordinates on a group manifold rather than on ordinary Minkowski space. The corresponding field theory turns out to be a non-commutative field theory on configuration space and a group field theory on momentum space. Using basic non-commutative Fourier transform tools we introduce the notion of non-commutative heat-kernel associated with the Laplacian on the non-commutative configuration space. We show that the spectral dimension associated to the non-commutative heat kernel varies with the scale reaching a non-integer value smaller than three for Planckian diffusion scales.

  7. Wave equations in higher dimensions

    CERN Document Server

    Dong, Shi-Hai

    2011-01-01

    Higher dimensional theories have attracted much attention because they make it possible to reduce much of physics in a concise, elegant fashion that unifies the two great theories of the 20th century: Quantum Theory and Relativity. This book provides an elementary description of quantum wave equations in higher dimensions at an advanced level so as to put all current mathematical and physical concepts and techniques at the reader’s disposal. A comprehensive description of quantum wave equations in higher dimensions and their broad range of applications in quantum mechanics is provided, which complements the traditional coverage found in the existing quantum mechanics textbooks and gives scientists a fresh outlook on quantum systems in all branches of physics. In Parts I and II the basic properties of the SO(n) group are reviewed and basic theories and techniques related to wave equations in higher dimensions are introduced. Parts III and IV cover important quantum systems in the framework of non-relativisti...

  8. N=4 supersymmetry on a space-time lattice

    DEFF Research Database (Denmark)

    Catterall, Simon; Schaich, David; Damgaard, Poul H.

    2014-01-01

    Maximally supersymmetric Yang–Mills theory in four dimensions can be formulated on a space-time lattice while exactly preserving a single supersymmetry. Here we explore in detail this lattice theory, paying particular attention to its strongly coupled regime. Targeting a theory with gauge group SU...... behind a lattice formulation based on the SU(N) gauge group with the expected apparently conformal behavior at both weak and strong coupling....

  9. CKM pattern from localized generations in extra dimension

    International Nuclear Information System (INIS)

    Matti, C.

    2006-01-01

    We revisit the issue of the quark masses and mixing angles in the framework of large extra dimension. We consider three identical standard model families resulting from higher-dimensional fields localized on different branes embedded in a large extra dimension. Furthermore we use a decaying profile in the bulk different form previous works. With the Higgs field also localized on a different brane, the hierarchy of masses between the families results from their different positions in the extra space. When the left-handed doublet and the right-handed singlets are localized with different couplings on the branes, we found a set of brane locations in one extra dimension which leads to the correct quark masses and mixing angles with the sufficient strength of CP-violation. We see that the decaying profile of the Higgs field plays a crucial role for producing the hierarchies in a rather natural way. (orig.)

  10. Generalized coherent states for the Coulomb problem in one dimension

    International Nuclear Information System (INIS)

    Nouri, S.

    2002-01-01

    A set of generalized coherent states for the one-dimensional Coulomb problem in coordinate representation is constructed. At first, we obtain a mapping for proper transformation of the one-dimensional Coulomb problem into a nonrotating four-dimensional isotropic harmonic oscillator in the hyperspherical space, and the generalized coherent states for the one-dimensional Coulomb problem is then obtained in exact closed form. This exactly soluble model can provide an adequate means for a quantum coherency description of the Coulomb problem in one dimension, sample for coherent aspects of the exciton model in one-dimension example in high-temperature superconductivity, semiconductors, and polymers. Also, it can be useful for investigating the coherent scattering of the Coulomb particles in one dimension

  11. Dual projection and self duality in three dimensions

    International Nuclear Information System (INIS)

    Banerjee, Rabin; Wotzasek, Clovis

    2000-01-01

    Full text follows: We discuss the notion of duality and self duality in the context of the dual projection operation that creates an internal space of potentials. This technique is applicable to both even and odd dimensions. We derive the appropriate invariant actions, discuss the symmetry groups and their proper generators. In particular, the novel concept of duality symmetry and self duality in Maxwell theory in (2+1) dimensions is analysed in details. The corresponding action is a 3D version of the familiar duality symmetric electromagnetic theory in 4D. Finally, the duality symmetric actions in the different dimensions constructed here manifest both the SO(2) and Z 2 symmetries, contrary to conventional results. (author)

  12. Memory effect for particle scattering in odd spacetime dimensions

    Science.gov (United States)

    Satishchandran, Gautam; Wald, Robert M.

    2018-01-01

    We investigate the gravitational memory effect for linearized perturbations off of Minkowski space in odd spacetime dimensions d by examining the effects of gravitational radiation from classical point particle scattering. We also investigate analogous memory effects for electromagnetic and scalar radiation. We find that there is no gravitational memory effect in all odd dimensions. For scalar and electromagnetic fields, there is no memory effect for d ≥7 ; for d =3 there is an infinite momentum memory effect, whereas for d =5 there is no momentum memory effect but the displacement of a test particle will grow unboundedly with time. Our results are further elucidated by analyzing the memory effect for any slowly moving source of compact spatial support in odd dimensions.

  13. Influence of space size of abutment screw access channel on the amount of extruded excess cement and marginal accuracy of cement-retained single implant restorations.

    Science.gov (United States)

    Al Amri, Mohammad D; Al-Johany, Sulieman S; Al-Qarni, Mohammed N; Al-Bakri, Ahmed S; Al-Maflehi, Nassr S; Abualsaud, Haythem S

    2018-02-01

    The detrimental effect of extruded excess cement on peri-implant tissue has been well documented. Although several techniques have been proposed to reduce this effect by decreasing the amount of extruded cement, how the space size of the abutment screw access channel (SAC) affects the amount of extruded cement and marginal accuracy is unclear. The purpose of this in vitro study was to evaluate the effect of the size of the unfilled space of the abutment SAC on the amount of extruded excess cement and the marginal accuracy of zirconia copings. Twelve implant replicas and corresponding standard abutments were attached and embedded in acrylic resin blocks. Computer-aided design and computer-aided manufacturing (CAD-CAM) zirconia copings with a uniform 30-μm cement space were fabricated by 1 dental technician using the standard method. The copings were temporarily cemented 3 times at different sizes of the left space of the SAC as follows: the nonspaced group (NS), in which the entire SAC was completely filled, the 1-mm-spaced group (1MMS), and the 2-mm-spaced group (2MMS). Abutments and crowns were ultrasonically cleaned, steam cleaned, and air-dried. The excess cement was collected and weighed. To measure the marginal accuracy, 20 measurements were made every 18 degrees along the coping margin at ×300 magnification and compared with the pre-cementation readings. One-way ANOVA was calculated to determine whether the amount of extruded excess cement differed among the 3 groups, and the Tukey test was applied for multiple comparisons (α=.05). The mean weights (mg) of extruded excess cement were NS (33.53 ±1.5), 1MMS (22.97 ±5.4), and 2MMS (15.17 ±5.9). Multiple comparisons showed significant differences in the amount of extruded excess cement among the 3 test groups (Pcemented group (29.5 ±8.2) was significantly different (Pcement by 55% in comparison with the nonspaced abutments. However, no effect was found on the marginal accuracy of zirconia copings

  14. The necessity for a time local dimension in systems with time-varying attractors

    DEFF Research Database (Denmark)

    Særmark, Knud H; Ashkenazy, Y; Levitan, J

    1997-01-01

    We show that a simple non-linear system for ordinary differential equations may possess a time-varying attractor dimension. This indicates that it is infeasible to characterize EEG and MEG time series with a single time global dimension. We suggest another measure for the description of non...

  15. Phase transitions in 3D gravity and fractal dimension

    Science.gov (United States)

    Dong, Xi; Maguire, Shaun; Maloney, Alexander; Maxfield, Henry

    2018-05-01

    We show that for three dimensional gravity with higher genus boundary conditions, if the theory possesses a sufficiently light scalar, there is a second order phase transition where the scalar field condenses. This three dimensional version of the holographic superconducting phase transition occurs even though the pure gravity solutions are locally AdS3. This is in addition to the first order Hawking-Page-like phase transitions between different locally AdS3 handlebodies. This implies that the Rényi entropies of holographic CFTs will undergo phase transitions as the Rényi parameter is varied, as long as the theory possesses a scalar operator which is lighter than a certain critical dimension. We show that this critical dimension has an elegant mathematical interpretation as the Hausdorff dimension of the limit set of a quotient group of AdS3, and use this to compute it, analytically near the boundary of moduli space and numerically in the interior of moduli space. We compare this to a CFT computation generalizing recent work of Belin, Keller and Zadeh, bounding the critical dimension using higher genus conformal blocks, and find a surprisingly good match.

  16. Dimensional discontinuity in quantum communication complexity at dimension seven

    Science.gov (United States)

    Tavakoli, Armin; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed

    2017-02-01

    Entanglement-assisted classical communication and transmission of a quantum system are the two quantum resources for information processing. Many information tasks can be performed using either quantum resource. However, this equivalence is not always present since entanglement-assisted classical communication is sometimes known to be the better performing resource. Here, we show not only the opposite phenomenon, that there exist tasks for which transmission of a quantum system is a more powerful resource than entanglement-assisted classical communication, but also that such phenomena can have a surprisingly strong dependence on the dimension of Hilbert space. We introduce a family of communication complexity problems parametrized by the dimension of Hilbert space and study the performance of each quantum resource. Under an additional assumption of a linear strategy for the receiving party, we find that for low dimensions the two resources perform equally well, whereas for dimension seven and above the equivalence is suddenly broken and transmission of a quantum system becomes more powerful than entanglement-assisted classical communication. Moreover, we find that transmission of a quantum system may even outperform classical communication assisted by the stronger-than-quantum correlations obtained from the principle of macroscopic locality.

  17. Spontaneous compactification to homogeneous spaces

    International Nuclear Information System (INIS)

    Mourao, J.M.

    1988-01-01

    The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations

  18. Comparative assessment of alignment efficiency and space closure of active and passive self-ligating vs conventional appliances in adolescents: a single-center randomized controlled trial.

    Science.gov (United States)

    Songra, Goldie; Clover, Matthew; Atack, Nikki E; Ewings, Paul; Sherriff, Martyn; Sandy, Jonathan R; Ireland, Anthony J

    2014-05-01

    The aim of this study was to compare the time to initial alignment and extraction space closure using conventional brackets and active and passive self-ligating brackets. One hundred adolescent patients 11 to 18 years of age undergoing maxillary and mandibular fixed appliance therapy after the extraction of 4 premolars were randomized with stratification of 2 age ranges (11-14 and 15-18 years) and 3 maxillomandibular plane angles (high, medium, and low) with an allocation ratio of 1:2:2. Restrictions were applied using a block size of 10. Allocation was to 1 of 3 treatment groups: conventional brackets, active self-ligating, or passive self-ligating brackets. All subjects were treated with the same archwire sequence and space-closing mechanics in a district general hospital setting. The trial was a 3-arm parallel design. Labial-segment alignment and space closure were measured on study models taken every 12 weeks throughout treatment. All measurements were made by 1 operator who was blinded to bracket type. The patients and other operators were not blinded to bracket type during treatment. Ninety-eight patients were followed to completion of treatment (conventional, n = 20; active self-ligating brackets, n = 37; passive self-ligating brackets, n = 41). The data were analyzed using linear mixed models and demonstrated a significant effect of bracket type on the time to initial alignment (P = 0.001), which was shorter with the conventional brackets than either of the self-ligating brackets. Sidak's adjustment showed no significant difference in effect size (the difference in average response in millimeters) between the active and passive self-ligating brackets (the results are presented as effect size, 95% confidence intervals, probabilities, and intraclass correlation coefficients) (-0.42 [-1.32, 0.48], 0.600, 0.15), but the conventional bracket was significantly different from both of these (-1.98 [-3.19, -0.76], 0.001, 0.15; and -1.56 [-2.79, -0.32], 0.001, 0

  19. Space heating with ultra-low-temperature district heating - A case study of four single-family houses from the 1980s

    DEFF Research Database (Denmark)

    Østergaard, Dorte Skaarup; Svendsen, Svend

    . These benefits can be maximized if district heating temperatures are lowered as much as possible. In this paper we report on a project where 18 Danish single-family houses from the 1980s were supplied by ultra-low-temperature district heating with a supply temperature as low as 45 °C for the main part...... the four houses were modelled in the building simulation tool IDA ICE. The simulation models included the actual radiator sizes and the models were used to simulate the expected thermal comfort in the houses and resulting district heating return temperatures. Secondly measurements of the actual district...... heating return temperatures in the houses were analysed for different times of the year. The study found that existing Danish single-family houses from the 1980s can be heated with supply temperatures as low as 45 °C for the main part of the year. Both simulation models and test measurements showed...

  20. Dimensions of problem based learning

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Lerche; Andreasen, Lars Birch

    2013-01-01

    The article contributes to the literature on problem based learning and problem-oriented project work, building on and reflecting the experiences of the authors through decades of work with problem-oriented project pedagogy. The article explores different dimensions of problem based learning such...... and Learning (MIL). We discuss changes in the roles of the teachers as supervisors within this learning environment, and we explore the involvement of students as active participants and co-designers of how course and project activities unfold....