WorldWideScience

Sample records for single solute adsorption

  1. Adsorption of Geosmin and MIB on Activated Carbon Fibers-Single and Binary Solute System

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Rangesh; Sorial, George A., E-mail: george.sorial@uc.ed [University of Cincinnati, Department of Civil and Environmental Engineering (United States)

    2009-08-15

    The adsorption of two taste- and odor-causing compounds, namely MIB (2-methyl isoborneol-C{sub 11}H{sub 20}O) and geosmin (C{sub 12}H{sub 22}O) on activated carbon was investigated in this study. The impact of adsorbent pore size distribution on adsorption of MIB and geosmin was evaluated through single solute and multicomponent adsorption of these compounds on three types of activated carbon fibers (ACFs) and one granular activated carbon (GAC). The ACFs (ACC-15, ACC-20, and ACC-25) with different degrees of activation had narrow pore size distributions and specific critical pore diameters whereas the GAC (F-400) had a wider pore size distribution and lesser microporosity. The effect of the presence of natural organic matter (NOM) on MIB and geosmin adsorption was also studied for both the single solute and binary systems. The Myers equation was used to evaluate the single solute isotherms as it converges to Henry's law at low coverage and also serves as an input for predicting multicomponent adsorption. The single solute adsorption isotherms fit the Myers equation well and pore size distribution significantly influenced adsorption on the ACFs and GAC. The ideal adsorbed solute theory (IAST), which is a well-established thermodynamic model for multicomponent adsorption, was used to predict the binary adsorption of MIB and geosmin. The IAST predicted well the binary adsorption on the ACFs and GAC. Binary adsorption isotherms were also conducted in the presence of oxygen (oxic) and absence of oxygen (anoxic). There were no significant differences in the binary isotherm between the oxic and anoxic conditions, indicating that adsorption was purely through physical adsorption and no oligomerization was taking place. Binary adsorptions for the four adsorbents were also conducted in the presence of humic acid to determine the effect of NOM and to compare with IAST predictions. The presence of NOM interestingly resulted in deviation from IAST behavior in case of two

  2. Adsorptive removal of acid blue 113 and tartrazine by fly ash from single and binary dye solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pura, S.; Atun, G. [Istanbul University, Avcilar (Turkey). Dept. of Chemistry

    2009-07-01

    Adsorption of two acid dyestuffs, acid blue 113 (AB) and tartrazine (TA), has been studied from their single and binary solutions by using fly ash (FA) as an adsorbent. The S shaped isotherms observed for dye adsorption from single solutions show that both acid dyes are not preferred at a low concentration region whereas adsorption of the dyes from binary solutions is enhanced via solute-solute interactions. Although the L-shaped isotherm is observed in binary solutions adsorbability of AB decreases in concentrated solutions with respect to single one, time dependency of adsorption is well described with a pseudo-second-order kinetic model as well as the linear relation of Bt vs. t plots (not passing through origin) indicates that film diffusion is effective on dye adsorption. Modeled isotherm curves using isotherm parameters of the Freundlich and Dubinin-Radushkevich (D-R) equations adequately fit to experimental equilibrium data. Equilibrium adsorption of AB in binary solutions has been quite well predicted by the extended Freundlich and the Sheindorf-Rebuhn-Sheintuch (SRS) models. In general, the isotherm curves constructed in the temperature range of 298-328K show that the optimum temperature is 318K for AB removal from both single and binary solutions.

  3. Human serum albumin adsorption on TiO2 from single protein solutions and from plasma.

    Science.gov (United States)

    Sousa, S R; Moradas-Ferreira, P; Saramago, B; Melo, L Viseu; Barbosa, M A

    2004-10-26

    In the present work, the adsorption of human serum albumin (HSA) on commercially pure titanium with a titanium oxide layer formed in a H(2)O(2) solution (TiO(2) cp) and on TiO(2) sputtered on Si (TiO(2) sp) was analyzed. Adsorption isotherms, kinetic studies, and work of adhesion determinations were carried out. HSA exchangeability was also evaluated. Surface characterization was performed by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and wettability studies. The two TiO(2) surfaces have very distinct roughnesses, the TiO(2) sp having a mean R(a) value 14 times smaller than the one of TiO(2) cp. XPS analysis revealed consistent peaks representative of TiO(2) on sputtered samples as well as on Ti cp substrate after 48 h of H(2)O(2) immersion. Nitrogen was observed as soon as protein was present, while sulfur, present in disulfide bonds in HSA, was observed for concentrations of protein higher than 0.30 mg/mL. The work of adhesion was determined from contact angle measurements. As expected from the surface free energy values, the work of adhesion of HSA solution is higher for the TiO(2) cp substrate, the more hydrophilic one, and lower for the TiO(2) sp substrate, the more hydrophobic one. The work of adhesion between plasma and the substrates assumed even higher values for the TiO(2) cp surface, indicating a greater interaction between the surface and the complex protein solutions. Adsorption studies by radiolabeling of albumin ((125)I-HSA) suggest that rapid HSA adsorption takes place on both surfaces, reaching a maximum value after approximately 60 min of incubation. For the higher HSA concentrations in solution, a multilayer coverage was observed on both substrates. After the adsorption step from single HSA solutions, the exchangeability of adsorbed HSA molecules by HSA in solution was evaluated. The HSA molecules adsorbed on TiO(2) sp seem to be more easily exchanged by HSA itself than those adsorbed on TiO(2) cp after 24 h. In

  4. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent.

    Science.gov (United States)

    Wang, Futao; Pan, Yuanfeng; Cai, Pingxiong; Guo, Tianxiang; Xiao, Huining

    2017-10-01

    A high efficient and eco-friendly sugarcane cellulose-based adsorbent was prepared in an attempt to remove Pb 2+ , Cu 2+ and Zn 2+ from aqueous solutions. The effects of initial concentration of heavy metal ions and temperature on the adsorption capacity of the bioadsorbent were investigated. The adsorption isotherms showed that the adsorption of Pb 2+ , Cu 2+ and Zn 2+ followed the Langmuir model and the maximum adsorptions were as high as 558.9, 446.2 and 363.3mg·g -1 , respectively, in single component system. The binary component system was better described with the competitive Langmuir isotherm model. The three dimensional sorption surface of binary component system demonstrated that the presence of Pb 2+ decreased the sorption of Cu 2+ , but the adsorption amount of other metal ions was not affected. The result from SEM-EDAX revealed that the adsorption of metal ions on bioadsorbent was mainly driven by coordination, ion exchange and electrostatic association. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Single and competitive adsorption of Cd(II and Pb(II ions from aqueous solutions onto industrial chili seeds (Capsicum annuum waste

    Directory of Open Access Journals (Sweden)

    Nahum A. Medellin-Castillo

    2017-03-01

    Full Text Available In this work, the single and binary adsorption of Cd(II and Pb(II onto industrial chili seeds (CS (Capsicum annuum from aqueous solutions was investigated as a possible low-cost biosorbent for the removal of toxic heavy metals from aqueous solutions. The dependence of the adsorption capacity of CS on the solution pH and temperature, and the presence of competitive metal were also studied in detail. The adsorption equilibrium experiments of Cd(II and Pb(II on CS were conducted in a batch adsorber. The Freundlich and Langmuir isotherm models were fitted to the single adsorption equilibrium data and the latter provided a better fit. Moreover, it was found that the adsorption capacity of CS towards Cd(II and Pb(II ions was greatly increased by increasing the solution pH. The effect of the pH was attributed to the electrostatic interaction between the negatively charged CS surface and the Cd2+ and Pb2+ cations in the aqueous solution. The adsorption capacity was slightly increased by raising the temperature because the adsorption of Cd(II or Pb(II ions on CS was an endothermic process. The experimental binary adsorption data were satisfactorily interpreted using the modified Langmuir multicomponent isotherm and the competitive adsorption of Cd(II-Pb(II on CS revealed that the affinity of Pb(II for CS was more than 5 times higher than that of Cd(II.

  6. [Effect of Cr (VI) anions on the Cu (II) adsorption behavior of two kinds of clay minerals in single and binary solution].

    Science.gov (United States)

    Liu, Juan-Juan; Liang, Dong-Li; Wu, Xiao-Long; Qu, Guang-Zhou; Qian, Xun

    2014-01-01

    The adsorption of Cu (II) on kaolinite and montmorillonite was investigated through batch adsorption experiment. Several adsorption models were employed to describe the adsorption of Cu (II) on the two clay minerals in single Cu (II) and Cu(II)-Cr (VI) binary solutions, and the impact of solution with various pH values on the adsorption of Cu (II) on the two target mineral clays was investigated in order to explain the environmental chemical behavior of heavy metals in soil and to provide theoretical basis in remediation of multi-element contaminated soil. The results indicated that the adsorption process of Cu (II) on kaolinite and montmorillonite in both single and binary solutions was fast at the beginning and then slowed down. Adsorption equilibrium was observed within 120 min. In both single and binary solutions, pseudo-second-order model (R2 > 0.983) showed the highest agreement with the adsorption of Cu (II) on the two mineral clays, followed by the intra-particle diffusion model and pseudo-first-order model. Both Intra-particle diffusion model and Boyd model illustrated that the film diffusion process was the rate-limiting step, which mainly occurred at the edge and surface of mineral clays. Copper adsorption on kaolinite was well fitted with the Freundlich equation (R2 > 0.971), which could be attributed to the heterogeneity of kaolinite surface with adsorption sites that have different energies of adsorption. Langmuir equation was best fitted with the isotherm for montmorillonite (R2 > 0.983), which indicated that the adsorption was on a single molecular layer or chemisorptions. In both single and binary solutions, the adsorption of Cu (II ) on the two clay minerals first increased and then decreased with the rising of pH values. The maximum adsorption amount was found at pH = 5.0, and was in the order of Qmon. > Qkao. and Q(Single-Cu) > Q(Cu-Cr binary). Cr (VI) in the solution reduced the adsorption of Cu (II), and the minimal influence of Cr (VI) on Cu

  7. Performance of mango seed adsorbents in the adsorption of anthraquinone and azo acid dyes in single and binary aqueous solutions.

    Science.gov (United States)

    Dávila-Jiménez, Martín M; Elizalde-González, María P; Hernández-Montoya, Virginia

    2009-12-01

    In this study the husk of mango seed and two carbonaceous adsorbents prepared from it were used to study the adsorption behavior of eight acid dyes. The adsorbed amount in mmol m(-2) decayed asymptotically as the molecular volume and area increased. The interaction between the studied dyes and the mesoporous carbon was governed by the ionic species in solution and the acidic/basic groups on the surface. Less than 50% of the external surface of the microporous carbon became covered with the dyes molecules, though monolayer formation demonstrating specific interactions only with active sites on the surface and the adsorption magnitudes correlated with the shape parameter of the molecule within a particular dye group. The adsorption behavior in mixtures was determined by the molecular volume of the constituents; the greater the molecular volume difference, the greater the effect on the adsorbed amount. We also demonstrated that the raw husk of the mango seed can be used to remove up to 50% from model 50 mg l(-1) solutions of the studied acid dyes.

  8. The study of adsorption characteristics Cu2+ and Pb2+ ions onto PHEMA and P(MMA-HEMA) surfaces from aqueous single solution.

    Science.gov (United States)

    Moradi, O; Aghaie, M; Zare, K; Monajjemi, M; Aghaie, H

    2009-10-30

    The adsorption characteristics of Cu2+ and Pb2+ ions onto poly2-hydroxyethyl methacrylate (PHEMA) and copolymer 2-hydroxyethyl methacrylate with monomer methyl methacrylate P(MMA-HEMA) adsorbent surfaces from aqueous single solution were investigated with respect to the changes in the pH of solution, adsorbent composition (changes in the weight percentage of MMA copolymerized with HEMA monomer), contact time and the temperature in the individual aqueous solutions. The linear correlation coefficients of Langmuir and Freundlich isotherms were obtained. The results revealed that the Langmuir isotherm fitted the experimental results better than the Freundlich isotherm. Using the Langmuir model equation, the monolayer adsorption capacity of PHEMA surface was found to be 0.840 and 3.037 mg/g for Cu2+ and Pb2+ ions and adsorption capacity of (PMMA-HEMA) was found to be 31.153 and 31.447 mg/g for Cu2+ and Pb2+ ions, respectively. Changes in the standard Gibbs free energy (DeltaG(0)), standard enthalpy (DeltaH(0)) and standard entropy (DeltaS(0)) show that the adsorption of mentioned ions onto PHEMA and P(MMA-HEMA) are spontaneous and exothermic at 293-323 K.

  9. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  10. METHYLENE BLUE ADSORPTION FROM GLYCEROL SOLUTION ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. The mechanism of methylene blue adsorption onto the surface of synthetic acicular habit of α- goethite from glycerol solution has been studied through batch experiment at 25, 30 and 35 0C in a glass cell of minimal dead volume. To describe the adsorption results, an attempt was made to fit the data to the ...

  11. Separation based adsorption of ethanol-water mixture in azeotropic solution by single-walled carbon, boron-nitride and silicon-carbide nanotubes.

    Science.gov (United States)

    Taheri, Siavash; Lakmehsari, Muhammad Shadman; Soltanabadi, Azim

    2017-08-01

    The separation of the azeotropic ethanol-water mixture (95.57wt% ethanol) over a wide range of pressures (100-100000kPa) was studied on armchair SWCNTs, SWSiCNTs and SWBNNTs with different diameters at 351.30K using GCMC simulations. The GCMC results demonstrated that ethanol and water molecules form a monolayer single-file, chain together in the center of (6,6) SWCNT, while a spiral ring of ethanol and water is formed in the center of (8,8), (10,10) and (12,12) SWCNTs. It was found that in SWCNTs, the adsorption of ethanol reduces the function of pressure, while water adsorption increases its function. Water selectivity rises as a function of pressure. Also, in SWBNNTs, the adsorption of water increases as a function of pressure, while ethanol adsorption is almost constant. However, in the case of SWSiCNTs, ethanol and water adsorptions are very similar to those of SWBNNTs, whereas the adsorptivities of SWSiCNTs are more than those of SWBNNTs. Our findings regarding adsorption and slope of adsorption indicate that higher pressures are favorable for separating water and ethanol by SWCNTs, while SWBNNTs and SWSiCNTs are demonstrate higher ethanol adsorptivities in lower pressures. Also, MD simulations have been performed to study the microscopic structure and diffusion of binary mixtures of water and ethanol within SWCNTs, SWSiCNTs and SWBNNTs. The MD simulations imply that the oxygen atoms are highly well-organized around themselves. Also, the MD results illustrate a similar tendency for oxygen of water (OW) and oxygen of ethanol (OE) to the wall of the nanotubes in all the pressures. In addition, from the MD results, self-diffusion of water and ethanol in all nanotubes were calculated and discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Prediction of Pure Component Adsorption Equilibria Using an Adsorption Isotherm Equation Based on Vacancy Solution Theory

    DEFF Research Database (Denmark)

    Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth

    2000-01-01

    An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....

  13. Adsorption of beta-naphthalenesulfonic acid/sulfuric acid from their solution by weakly basic resin: equilibrium.

    Science.gov (United States)

    Li, Chang-Hai; Si, Peng-Fei

    2005-01-01

    Experiments for single and bisolute competitive adsorption were carried out to investigate the adsorption behavior of beta-naphthalenesulfonic acid (NSA) and sulfuric acid (H2SO4) from their solution at 25 degrees C onto weakly basic resin D301R. Adsorption affinity of sulfuric acid on D301R was found to be much higher than that of NSA. The data of single-solute adsorption were fitted to the Langmuir model and the Freundlich adsorption model. The ideal adsorbed solution theory (IAST) coupled with the single-solute adsorption models were used to predict the bisolute competitive adsorption equilibria. The IAST coupled with the Langmuir and the Freundlich model for sulfuric acid and NSA, respectively, yields the favorable representation of the bisolute competitive adsorption behavior.

  14. Adsorption of RE3+from aqueous solutions by bayberry tannin immobilized on chitosan.

    Science.gov (United States)

    Qiu, Xianying; Shen, Yueyue; Yang, Ruilin; Zhang, Hongcheng; Zhao, Shilin

    2017-10-06

    Bayberry tannin immobilized on chitosan (CS-BT) was successfully prepared, and its adsorption performance was studied for aqueous solutions of rare earth ions. The as-prepared absorbents were characterized by Fourier transform infrared spectrometry and scanning electron microscopy. The equilibrium adsorption capacity was achieved in approximately 30 min. The adsorption process of CS-BT for Nd 3+ was well fitted with a Freundlich model and the kinetics followed the pseudo-second-order rate equation. The maximum adsorption capacity for Nd 3+ was 133.72 mg/g and dynamic adsorption characteristics of single ion (La 3+ , Ce 3+ , Nd 3+ ) were investigated. The solution concentration was less than 30 mg/L when effluent volume was approximately 800 mL. Subsequently, the adsorbent column was desorbed by HNO 3 solution. There was no significant loss of adsorption capacity after three cycles of regeneration, showing a satisfactory recyclability. Furthermore, CS-BT exhibited excellent dynamic adsorption performance of two mixed ions (La 3+ /Ce 3+ , La 3+ /Nd 3+ , Ce 3+ /Nd 3+ ) and three mixed ions (La 3+ /Ce 3+ /Nd 3+ ). The competitive adsorption capacity was La 3+ < Ce 3+ < Nd 3+ . The results indicate that the adsorption selectivity of column adsorption could provide a theoretical basis for the adsorption and separation of light rare earth ions. Therefore, this efficient adsorbent shows promising potential for the treatment of industrial wastewater.

  15. ADSORPTION OF Pb(II) IONS FROM AQUEOUS SOLUTION USING ...

    African Journals Online (AJOL)

    ABSTRACT. The adsorption of lead(II) ions from aqueous solution onto alkali lignin extracted from Hagenia abyssinica was investigated by electrochemical methods. The effect of solution pH, lignin dosage and contact time were investigated at room temperature in a batch system. Adsorption equilibrium was approached ...

  16. Removal of Acid Green 25 from Aqueous Solution by Adsorption

    Directory of Open Access Journals (Sweden)

    R. Parimalam

    2012-01-01

    Full Text Available The adsorptive removal of Acid Green 25 by Ananas Comosus (L Activated carbon was investigated in this study. The effects of initial dye concentration, contact time, pH and temperature were studied for the adsorption of Acid Green 25 in batch mode. At 100 mg/L of initial dye concentration the adsorbent removes 182.6 mg/g of dye from solution; it further increases on increasing the temperature. The calculated values of ∆G° indicate that the adsorption process is spontaneous, negative ∆H° indicate that the adsorption process is exothermic and the positive value of ∆S° indicates the increase in randomness. The rate of dye adsorption follows pseudo second order model with an r2 value of 0. 999. Standard adsorption isotherms were used to fit the experimental equilibrium data. The Langmuir, Freundlich, and Tempkin models are appropriate to explain the adsorption phenomenon with good fit.

  17. Adsorption of catechol from aqueous solution by aminated hypercrosslinked polymers.

    Science.gov (United States)

    Sun, Yue; Li, Xiao-Tao; Xu, Chao; Chen, Jin-Long; Li, Ai-Min; Zhang, Quan-Xing

    2005-01-01

    Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1, AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly basic anion exchanger resin D301 was compared. It was found that the aminated hypercrosslinked resins had the highest adsorption capacities among the tested polymers. The empirical Freundlich equation was successfully employed to describe the adsorption process. Specific surface area and micropore structure of the adsorbent, in company with tertiary amino groups on matrix affected the adsorption performance towards catechol. In addition, thermodynamic study was carried out to interpret the adsorption mechanism. Kinetic study testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate and increase the adsorption apparent activation energy.

  18. The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies

    Science.gov (United States)

    Osifo, P.; Ofomaja, A.

    2017-01-01

    In this investigation, an amino functionalized adsorbent was developed by grafting 4-aminobenzoic acid onto the backbone of cross-linked chitosan beads. The 3 sets of beads including chitosan (CX), glutaraldehyde cross-linked chitosan (CCX), and 4-aminobenzoic acid grafted cross-linked chitosan (FGCX) were characterized by FTIR, XRD, SEM, and TGA. The water content and amine concentration of FGCX were determined. The effect of adsorption parameters was studied and the optimum was used for further studies. Equilibrium data was obtained from the adsorption experiment carried out at different initial concentration; the data were applied in isotherm, thermodynamics, and kinetic studies. The Langmuir and Dubinin-Kaganer-Radushkevich (DKR) models were successful in describing the isotherm data for the considered metal ions while the Freundlich and Temkin model fit some of the considered metal ions. Pseudo-second-order and intraparticle model described the kinetic data quite well. Thermodynamic parameters such as Gibb's free energy change (ΔGo), enthalpy change (ΔHo), and entropy change (ΔSo) were calculated and the results showed that the adsorption of Pb, Cu, Ni, Zn, and Cd ions onto FGCX is spontaneous and endothermic in nature. Regeneration of the spent adsorbent was efficient for the considered metal ions. PMID:28607557

  19. The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies

    Directory of Open Access Journals (Sweden)

    E. Igberase

    2017-01-01

    Full Text Available In this investigation, an amino functionalized adsorbent was developed by grafting 4-aminobenzoic acid onto the backbone of cross-linked chitosan beads. The 3 sets of beads including chitosan (CX, glutaraldehyde cross-linked chitosan (CCX, and 4-aminobenzoic acid grafted cross-linked chitosan (FGCX were characterized by FTIR, XRD, SEM, and TGA. The water content and amine concentration of FGCX were determined. The effect of adsorption parameters was studied and the optimum was used for further studies. Equilibrium data was obtained from the adsorption experiment carried out at different initial concentration; the data were applied in isotherm, thermodynamics, and kinetic studies. The Langmuir and Dubinin-Kaganer-Radushkevich (DKR models were successful in describing the isotherm data for the considered metal ions while the Freundlich and Temkin model fit some of the considered metal ions. Pseudo-second-order and intraparticle model described the kinetic data quite well. Thermodynamic parameters such as Gibb’s free energy change (ΔGo, enthalpy change (ΔHo, and entropy change (ΔSo were calculated and the results showed that the adsorption of Pb, Cu, Ni, Zn, and Cd ions onto FGCX is spontaneous and endothermic in nature. Regeneration of the spent adsorbent was efficient for the considered metal ions.

  20. Methylene blue adsorption from glycerol solution onto the acicular ...

    African Journals Online (AJOL)

    The mechanism of methylene blue adsorption onto the surface of synthetic acicular habit of α-goethite from glycerol solution has been studied through batch experiment at 25, 30 and 35 0C in a glass cell of minimal dead volume. To describe the adsorption results, an attempt was made to fit the data to the Langmuir, ...

  1. Adsorption of gold (III) from aqueous solutions on bagasse ash

    International Nuclear Information System (INIS)

    Hussain, G.; Khan, M.A.

    2011-01-01

    To assess the potential of cheap biomass materials for the recovery of gold from industrial, and electroplating waste water effluents, adsorption of gold (III) from dilute solutions of hydrochloric acid on bagasse ash has been studied under various experimental conditions by using batch technique. Percentage extraction of gold (III) on bagasse ash was determined from its distribution coefficients as a function of contact time, pH, adsorbent, adsorbate concentrations, and temperature. The uptake of gold (III) by bagasse ash is time, pH, metal concentration, amount of adsorbate, and temperature dependent. Adsorption data have been interpreted in terms of Langmuir, and the Freundlich equations. Thermodynamic parameters for the adsorption of gold (III) on bagasse ash have been determined at three different temperatures. The positive value of heat of adsorption; delta H 44.52 kJ/mol shows that the adsorption of gold (III) on bagasse ash is endothermic where as the negative value of delta G = -0.5303 kJ/mol at 318 K shows the spontaneity of the process. Delta G becomes more negative with increase in temperature which shows that the adsorption is more favorable at higher temperatures. Under the optimal adsorption conditions the adsorption capacity of gold is 0.70 mg /g of the adsorbent out of which 0.65 mg of gold gets desorbed with 0.1 % thiourea solution. (author)

  2. Adsorption of ammonium dinitramide (ADN) from aqueous solutions. 1. Adsorption on powdered activated charcoal.

    Science.gov (United States)

    Santhosh, G; Venkatachalam, S; Ninan, K N; Sadhana, R; Alwan, S; Abarna, V; Joseph, M A

    2003-03-17

    Investigations on the adsorption of ammonium dinitramide (NH(4)N(NO(2))(2)) (ADN) from aqueous solutions on powdered activated charcoal (PAC) were carried out in order to find out an effective and easier method of separating ADN from aqueous solutions. The effectiveness of PAC in the selective adsorption of ADN from aqueous solutions of ADN (ADN-F) and ADN in presence of sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) ions (ADN-PS) was examined and compared using batch and column methods. The adsorption process follows both Langmuir and Freundlich adsorption isotherms and the isotherm parameters for the models were determined. The observed data favor the formation of monolayer adsorption. The adsorption capacities were found to be 63.3, 119, 105.3 and 82 mg of ADN per g of PAC for ADN-F (batch), ADN-PS (batch), ADN-F (column) and ADN-PS (column), respectively. Break-through curves for ADN-F and ADN-PS were obtained for the optimization of separation of ADN from aqueous solutions. Elution curves were generated for the desorption of ADN from PAC using hot water as eluent. Copyright 2003 Elsevier Science B.V.

  3. Adsorption Characteristics of Polyvinyl Alcohols in Solution on Expanded Graphite

    Directory of Open Access Journals (Sweden)

    Xiu-Yan Pang

    2012-01-01

    Full Text Available Expanded graphite (EG adsorbent was prepared with 50 mesh graphite as raw materials, potassium permanganate as oxidant, and vitriol as intercalation compound. Three kinds of polyvinyl alcohol (PVA with different degree of polymerization (DP in aqueous solution were used as adsorbates. We have studied the influence of initial PVA concentration, temperature and ionic strength on adsorption capacity. Langmuir constants and Gibbs free energy change (⊿G° were calculated according to experimental data respectively. Thermodynamic analysis indicates the equilibrium adsorbance of PVA on EG increase with the rise of SO42– concentration. Adsorption isotherms of PVA with different degree of polymerization are all types and we deduce PVA molecules lie flat on EG surface. Adsorption processes are all spontaneous. Kinetic studies show that the kinetic data can be described by pseudo second-order kinetic model. Second-order rate constants and the initial adsorption rate rise with the increasing of temperature and half-adsorption time decreases with the increasing of temperature. The adsorption activation energy of each PVA is less than 20 kJ•mol−1, physical adsorption is the major mode of the overall adsorption process.

  4. Solution of adsorption problems involving steep moving profiles

    DEFF Research Database (Denmark)

    Kiil, Søren; Bhatia, Suresh K.

    1998-01-01

    The moving finite element collocation method proposed by Kiil et al. (1995) for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structure...... methods fail or require a prohibitive number of collocation points. The technique is general in nature and may also be applied to a large variety of multiphase transient heat or mass transfer problems involving steep gradients....

  5. Mechanism of chitosan adsorption on silica from aqueous solutions.

    Science.gov (United States)

    Tiraferri, Alberto; Maroni, Plinio; Rodríguez, Diana Caro; Borkovec, Michal

    2014-05-06

    We present a study of the adsorption of chitosan on silica. The adsorption behavior and the resulting layer properties are investigated by combining optical reflectometry and the quartz crystal microbalance. Exactly the same surfaces are used to measure the amount of adsorbed chitosan with both techniques, allowing the systematic combination of the respective experimental results. This experimental protocol makes it possible to accurately determine the thickness of the layers and their water content for chitosan adsorbed on silica from aqueous solutions of varying composition. In particular, we study the effect of pH in 10 mM NaCl, and we focus on the influence of electrolyte type and concentration for two representative pH conditions. Adsorbed layers are stable, and their properties are directly dependent on the behavior of chitosan in solution. In mildly acidic solutions, chitosan behaves like a weakly charged polyelectrolyte, whereby electrostatic attraction is the main driving force for adsorption. Under these conditions, chitosan forms rigid and thin adsorption monolayers with an average thickness of approximately 0.5 nm and a water content of roughly 60%. In neutral solutions, on the other hand, chitosan forms large aggregates, and thus adsorption layers are significantly thicker (∼10 nm) as well as dissipative, resulting in a large maximum of adsorbed mass around the pK of chitosan. These films are also characterized by a substantial amount of water, up to 95% of their total mass. Our results imply the possibility to produce adsorption layers with tailored properties simply by adjusting the solution chemistry during adsorption.

  6. Adsorption of nicotine on different zeolite types, from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stošić Dušan K.

    2007-01-01

    Full Text Available The plant alkaloid, nicotine, is a strongly toxic heterocyclic compound: the lethal dose for an adult human being (40-60 mg is importantly lower in comparison with the other known poisons such as arsenic or strychni­ne. Cigarettes represent "the most toxic and addictive form of nicotine". Besides the negative effects of nicotine on public health produced by self-administration, recently another potentially very dangerous effect has been recognized: because of its miscibility with water, nicotine can be found in industrial wastewaters, and consequently, in groundwater. Therefore, the problem of nicotine removal from aqueous solutions has became an interesting topic. In this work, the removal of nicotine has been probed by adsorption on solid materials. Adsorption of nicotine on different zeolites (clinoptilolite, ZSM-5 and β zeolite and on activated carbon was investigated from aqueous solutions, at 298 K. The obtained results are presented as adsorption isotherms: the amount of adsorbed nicotine as a function of equilibrium concentration. These data were obtained from the residual amount of nicotine in the aqueous phase, by the use of UV spectroscopy. The highest amounts of adsorbed nicotine was found for activated carbon and p zeolite (~ mmol·g-1. The attempt to modify the adsorption properties of ZSM-5 zeolite has been also done: ZSM-5 was modified by ion-exchange with VIII group metal (Cu2+ and Fe3+. In addition, the adsorption of nicotine on ZSM-5 zeolite with different Si/Al ratios has been done. It has been noticed that ion-exchange did not improve the adsorption possibilities, while the adsorption was importantly lower in the case of higher silicon content in ZMS-5 structure. 13C NMR spectra were collected for suspensions formed of solid adsorbent and aqueous solution of nicotine; in this way, the part of nicotine molecule which is most probably connected with the adsorbent was recognized.

  7. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  8. The adsorption of methylene blue on montmorillonite from acid solutions

    Czech Academy of Sciences Publication Activity Database

    Klika, Z.; Pustková, P.; Dudová, M.; Čapková, P.; Kliková, Ch.; Matys Grygar, Tomáš

    2011-01-01

    Roč. 46, č. 3 (2011), s. 461-471 ISSN 0009-8558 Institutional research plan: CEZ:AV0Z40320502 Keywords : montmorillonite * dissolution * acid solutions * methylene blue * adsorption Subject RIV: DD - Geochemistry Impact factor: 1.053, year: 2011

  9. Adsorption of methylene blue from aqueous solution on the surface ...

    African Journals Online (AJOL)

    Adsorption of dye methylene blue from aqueous solution on the surface of sheep wool and cotton fibers was accomplished under the optimize conditions of temperature, concentration, pH, stay time duration and quantity of adsorbent. Spectrometric technique was used for the measurements of concentration of dye before ...

  10. Single and competitive adsorption of OMPs by carbon nanotubes - mechanism and fitting models

    Science.gov (United States)

    Kamińska, Gabriela; Dudziak, Mariusz; Bohdziewicz, Jolanta; Kudlek, Edyta

    2017-11-01

    The adsorption of three organic micropollutants (diclofenac - DFN, pentachlorophenol - PCP and octylphenol - OP) on two kinds of carbon nanotubes (single walled carbon nanotubes - SWCNT and single walled carbon nanotubes with amine group - SWCNT-NH2) was investigated, in single and bicomponent solution at pH 5. SWCNT-NH2 had three times lower specific surface area than SWCNT. Significant differences were observed in sorption capacity of SWCNT and SWCNT-NH2 for given chemicals. The sorption uptake changes in the following order: OP > PCP > DFN for SWCNT and DFN > PCP > OP for SWCNT-NH2. A few times higher adsorption of OP on SWCNT came from low OP solubility in water in comparison to PCP and DFN. While, higher adsorption of DFN and PCP on SWCNT-NH2 was a result of electrostatic attraction between dissociated form of these chemicals and positively charged SWCNT-NH2 at pH 5. In adsorption from bicomponent solution, significant competition was observed between PCP and DFN due to similar adsorption mechanism on SWCNT-NH2. Opposite tendency was observed for SWCNT, DFN did not greatly affect adsorption of PCP and OP since they were very easily absorbable by sigma-sigma interaction.

  11. Single and competitive adsorption of OMPs by carbon nanotubes – mechanism and fitting models

    Directory of Open Access Journals (Sweden)

    Kamińska Gabriela

    2017-01-01

    Full Text Available The adsorption of three organic micropollutants (diclofenac – DFN, pentachlorophenol – PCP and octylphenol – OP on two kinds of carbon nanotubes (single walled carbon nanotubes – SWCNT and single walled carbon nanotubes with amine group – SWCNT-NH2 was investigated, in single and bicomponent solution at pH 5. SWCNT-NH2 had three times lower specific surface area than SWCNT. Significant differences were observed in sorption capacity of SWCNT and SWCNT-NH2 for given chemicals. The sorption uptake changes in the following order: OP > PCP > DFN for SWCNT and DFN > PCP > OP for SWCNT-NH2. A few times higher adsorption of OP on SWCNT came from low OP solubility in water in comparison to PCP and DFN. While, higher adsorption of DFN and PCP on SWCNT-NH2 was a result of electrostatic attraction between dissociated form of these chemicals and positively charged SWCNT-NH2 at pH 5. In adsorption from bicomponent solution, significant competition was observed between PCP and DFN due to similar adsorption mechanism on SWCNT-NH2. Opposite tendency was observed for SWCNT, DFN did not greatly affect adsorption of PCP and OP since they were very easily absorbable by sigma-sigma interaction.

  12. Adsorption of a textile dye from aqueous solutions by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Fernando M.; Bergmann, Carlos P., E-mail: fernando.machado@hotmail.com.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Dept. de Materiais; Lima, Eder C.; Adebayo, Matthew A. [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Inst. de Quimica; Fagan, Solange B. [Centro Universitario Franciscano (UNIFRA), Santa Maria, RS (Brazil). Area de Ciencias Tecnologicas

    2014-08-15

    Multi-walled and single-walled carbon nanotubes were used as adsorbents for the removal of Reactive Blue 4 textile dye from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N{sub 2} adsorption/desorption isotherms and scanning and transmission electron microscopy. The effects of pH, agitation time and temperature on adsorption capacity were studied. In the acidic pH region, the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium isotherms at 298-323 K was fixed at 4 hours for both adsorbents. For Reactive Blue 4 dye, Liu isotherm model gave the best fit for the equilibrium data. The maximum sorption capacity for adsorption of the dye occurred at 323 K, attaining values of 502.5 and 567.7 mg g{sup -1} for MWCNT and SWCNT, respectively. (author)

  13. ADSORPTION OF NITRITE FROM AQUEOUS SOLUTION USING SAWDUST

    Directory of Open Access Journals (Sweden)

    Filiz Nuran ACAR

    2002-03-01

    Full Text Available The adsorption of nitrites ions onto sawdust materials have been studied using a batch system. In this study, using adsorbents are beech, pine, poplar and walnut sawdust materials. The maximum adsorption percentage was occured by beech sawdust. In the studies, the effects of adsorbents and the solution of initial pH for beech sawdust were analysed using the first order reversible reaction kinetic model. For the different experimental conditions, the reaction rate constants and equilibrium constant have been determined with this kinetic model.

  14. CERN single sign on solution

    International Nuclear Information System (INIS)

    Ormancey, E

    2008-01-01

    The need for Single Sign On has always been restricted by the absence of cross platform solutions: a single sign on working only on one platform or technology is nearly useless. The recent improvements in Web Services Federation (WS-Federation) standard enabling federation of identity, attribute, authentication and authorization information can now provide real extended Single Sign On solutions. Various solutions have been investigated at CERN and now, a Web SSO solution using some parts of WS-Federation technology is available. Using the Shibboleth Service Provider module for Apache hosted web sites and Microsoft ADFS as the identity provider linked to Active Directory user, users can now authenticate on any web application using a single authentication platform, providing identity, user information (building, phone...) as well as group membership enabling authorization possibilities. A typical scenario: a CERN user can now authenticate on a Linux/Apache website using Windows Integrated credentials, and his Active Directory group membership can be checked before allowing access to a specific web page

  15. Preferential adsorption of uranium ions in aqueous solutions by polymers

    International Nuclear Information System (INIS)

    Sakuragi, Masako; Ichimura, Kunihiro; Fujishige, Shoei; Kato, Masao

    1981-01-01

    Amidoxime fiber and triazine fiber were prepared by chemical modification of commercially available polyacrylonitril fiber. It was found that the Amidoxime fiber is efficient to adsorb uranium ions in the artificial sea water. The efficiency of the preferential adsorption decreases by treatment the material with an acid-or an alkaline-solution. The triazine fiber adsorbs uranium ions only in aqueous solutions of such uranyl acetate, in the absence of other ions. In the artificial sea water, it adsorbs other ions instead of uranium. The preferential adsorption of uranium ions was further investigated with a series of polystyrenesulfonamides. Among the polystyrene derivatives, those having carboxyl groups, derived from imino diacetic acid (PSt-Imi), β-alanine (PSt-Ala), glycine (PSt-Gly), and sarcosine (PSt-Sar) were qualified for further discussion. However, it was found that the amount of adsorption of uranium ions by PSt-Imi decreases with increasing the volume of the artificial sea water and/or the duration of the treatment. Taking into account the facts, the preferential adsorption of uranium ions by PSt-Imi in aqueous solution was discussed in detail. (author)

  16. Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry.

    Science.gov (United States)

    Engel, Maya; Chefetz, Benny

    2016-06-01

    Increasing use of carbon nanotubes (CNTs) has led to their introduction into the environment where they can interact with dissolved organic matter (DOM). This study focuses on solution chemistry effects on DOM adsorption/desorption processes by single-walled CNTs (SWCNTs). Our data show that DOM adsorption is controlled by the attachment of DOM molecules to the SWCNTs, and that the initial adsorption rate is dependent on solution parameters. Adsorbed amount of DOM at high ionic strength was limited, possibly due to alterations in SWCNT bundling. Desorption of DOM performed at low pH resulted in additional DOM adsorption, whereas at high pH, adsorbed DOM amount decreased. The extent of desorption conducted at increased ionic strength was dependent on pre-adsorbed DOM concentration: low DOM loading stimulated additional adsorption of DOM, whereas high DOM loading facilitated release of adsorbed DOM. Elevated ionic strength and increased adsorbed amount of DOM reduced the oxidation temperature of the SWCNTs, suggesting that changes in the assembly of the SWCNTs had occurred. Moreover, DOM-coated SWCNTs at increased ionic strength provided fewer sites for atrazine adsorption. This study enhances our understanding of DOM-SWCNT interactions in aqueous systems influenced by rapid changes in salinity, and facilitates potential use of SWCNTs in water-purification technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon.

    Science.gov (United States)

    Mohamed, E F; Andriantsiferana, C; Wilhelm, A M; Delmas, H

    2011-01-01

    Preparation of activated carbon from sewage sludge is a promising approach to produce cheap and efficient adsorbent for pollutants removal as well as to dispose of sewage sludge. The first objective of this study was to investigate the physical and chemical properties (BET surface area, ash and elemental content, surface functional groups by Boehm titration and weight loss by thermogravimetric analysis) of the sludge-based activated carbon (SBAC) so as to give a basic understanding of its structure and to compare to those of two commercial activated carbons, PICA S23 and F22. The second and main objective was to evaluate the performance of SBAC for single and competitive adsorption of four substituted phenols (p-nitrophenol, p-chlorophenol, p-hydroxy benzoic acid and phenol) from their aqueous solutions. The results indicated that, despite moderate micropore and mesopore surface areas, SBAC had remarkable adsorption capacity for phenols, though less than PICA carbons. Uptake of the phenolic compound was found to be dependent on both the porosity and surface chemistry of the carbons. Furthermore, the electronegativity and the hydrophobicity of the adsorbate have significant influence on the adsorption capacity. The Langmuir and Freundlich models were used for the mathematical description of the adsorption equilibrium for single-solute isotherms. Moreover, the Langmuir-Freundlich model gave satisfactory results for describing multicomponent system isotherms. The capacity of the studied activated carbons to adsorb phenols from a multi-solute system was in the following order: p-nitrophenol > p-chlorophenol > PHBA > phenol.

  18. Adsorption studies of etherdiamine onto modified sugarcane bagasses in aqueous solution.

    Science.gov (United States)

    Gusmão, Karla Aparecida Guimarães; Gurgel, Leandro Vinícius Alves; Melo, Tânia Márcia Sacramento; Carvalho, Cornélio de Freitas; Gil, Laurent Frédéric

    2014-01-15

    In this study sugarcane bagasse was modified with succinic anhydride and EDTA dianhydride to obtain SCB 2 and EB adsorbents, respectively. These adsorbents were used to remove etherdiamine, which is used for iron ore flotation from single aqueous solutions. The removal and recovery of etherdiamine is important for environmental and economic reasons due to its toxicity and high cost. The results demonstrated that adsorption of etherdiamine by SCB 2 and EB was better fitted by a pseudo-second-order kinetic model than pseudo-first-order and Elovich models. Adsorption isotherms were better fitted by the Langmuir model rather than the Freundlich, Sips, and Temkin models. The maximum adsorption capacities (Qmax) of SCB 2 and EB for etherdiamine adsorption were found to be 869.6 and 1203.5 mg/g, respectively. The calculated ΔG° values for adsorption of etherdiamine on SCB 2 (-22.70 kJ/mol) and EB (-19.10 kJ/mol) suggested that chemisorption is the main mechanism by which etherdiamine is removed from the aqueous solution for both adsorbents. The high Qmax values showed that SCB 2 and EB are potential adsorbents for recovering the etherdiamine and treating effluents produced from iron ore flotation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Hydrogen adsorption on N-decorated single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Rangel, Eduardo; Ruiz-Chavarria, Gregorio; Magana, L.F.; Arellano, J.S.

    2009-01-01

    Using density functional theory and molecular dynamics we found that N-decorated single walled (8,0) carbon nanotubes are potential high capacity hydrogen storage media. This system could store up to 6.0 wt% hydrogen at 300 K and ambient pressure, with average adsorption energy of -80 meV/(H 2 ). Nitrogen coverage was C 8 N.

  20. Neon adsorption on oxidized single-walled carbon nanohorns

    Science.gov (United States)

    Krungleviciute, Vaiva; Migone, Aldo; Yudasaka, Masako; Iijima, Sumio

    2012-02-01

    We will present the results of a study of neon adsorption on oxidized single-walled carbon nanohorns. Our adsorption isotherm measurements were conducted at temperatures below 24.5 K, the triple point for Ne. Results for the effective specific surface area and for the effective pore volume of the nanohorn aggregates will be presented. We will also report on the sorbent-loading dependence of the isosteric heat of neon on the nanohorns, and on the binding energy. Our results for this system will be compared with those obtained for Ne on a sample of dahlia-like nanohorns annealed at 520 K.

  1. Adsorption of methylene blue from aqueous solution on zeolitic material for color and toxicity removal

    OpenAIRE

    Denise Alves Fungaro; Lucas Caetano Grosche; Alessandro Pinheiro; Juliana de Carvalho Izidoro; Sueli Ivone Borrely

    2011-01-01

    The adsorption of methylene blue (MB) from aqueous solution was carried out using zeolite. This adsorbent material was synthesized from fly ash as a low-cost adsorbent, allowing fly ash to become a recycled residue. Factors that affected adsorption were evaluated: initial dye concentration, contact time and temperature. The equilibrium of adsorption was modeled by Langmuir, Freundlich and Temkin models. The adsorption obtained data were well described by Temkin, the adsorption isotherm model....

  2. Chromium (Ⅵ) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption.

    Science.gov (United States)

    Wang, Wenqiang

    2018-01-01

    To exploit the adsorption capacity of commercial powdered activated carbon (PAC) and to improve the efficiency of Cr(VI) removal from aqueous solutions, the adsorption of Cr(VI) by commercial PAC and the countercurrent two-stage adsorption (CTA) process was investigated. Different adsorption kinetics models and isotherms were compared, and the pseudo-second-order model and the Langmuir and Freundlich models fit the experimental data well. The Cr(VI) removal efficiency was >80% and was improved by 37% through the CTA process compared with the conventional single-stage adsorption process when the initial Cr(VI) concentration was 50 mg/L with a PAC dose of 1.250 g/L and a pH of 3. A calculation method for calculating the effluent Cr(VI) concentration and the PAC dose was developed for the CTA process, and the validity of the method was confirmed by a deviation of <5%. Copyright © 2017. Published by Elsevier Ltd.

  3. Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models.

    Science.gov (United States)

    Sellaoui, Lotfi; Dotto, Guilherme L; Lamine, Abdelmottaleb Ben; Erto, Alessandro

    2017-08-01

    In this work, a modeling analysis based on experimental tests of cadmium/zinc adsorption, in both single-compound and binary systems, was carried out. All the experimental tests were conducted at constant pH (around neutrality) and temperature (20 °C). The experimental results showed that the zinc adsorption capacity was higher than that of cadmium and it does not depend on cadmium presence in binary system. Conversely, cadmium adsorption is affected by zinc presence. In order to provide good understanding of the adsorption process, two statistical physics models were proposed. A monolayer and exclusive extended monolayer models were applied to interpret the single-compound and binary adsorption isotherms of zinc and cadmium on activated carbon. Based on these models, the modeling analysis demonstrated that zinc is dominant in solution and more favorably adsorbed on activated carbon surface. For instance, in single-compound systems, the number of ions bound per each receptor site was n (Zn 2+ ) = 2.12 > n (Cd 2+ ) = 0.98. Thus, the receptor sites of activated carbon are more selective for Zn 2+ than for Cd 2+ . Moreover, the determination of adsorption energy through the adopted models confirmed that zinc is more favored for adsorption in single-compound system (adsorption energies equal to 12.12 and 7.12 kJ/mol for Zn and Cd, respectively) and its adsorption energy does not depend on the cadmium presence in binary system. Finally, the adsorption energy values suggested that single-compound and binary adsorption of zinc and cadmium is a physisorption.

  4. Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution.

    Science.gov (United States)

    Kumar, Shashi; Zafar, Mohd; Prajapati, Jitendra K; Kumar, Surendra; Kannepalli, Sivaram

    2011-01-15

    The modelling study on simultaneous adsorption of phenol and resorcinol onto granular activated carbon (GAC) in multicomponent solution was carried out at 303K by conducting batch experiments at initial concentration range of 100-1000 mg/l. Three equilibrium isotherm models for multicomponent adsorption studies were considered. In order to determine the parameters of multicomponent adsorption isotherms, individual adsorption studies of phenol and resorcinol on GAC were also carried out. The experimental data of single and multicomponent adsorption were fitted to these models. The parameters of multicomponent models were estimated using error minimization technique on MATLAB R2007a. It has been observed that for low initial concentration of adsorbate (100-200mg/l), modified Langmuir model represents the data very well with the adsorption constant (Q(0)), 216.1, 0.032 and average relative error (ARE) of 8.34, 8.31 for phenol and resorcinol respectively. Whereas, for high initial concentration of adsorbate (400-1000 mg/l), extended Freundlich model represents the data very well with adsorption constant (K(F)) of 25.41, 24.25 and ARE of 7.0, 6.46 for phenol and resorcinol respectively. The effect of pH of solution, adsorbent dose and initial concentrations of phenol and resorcinol on adsorption behaviour was also investigated. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Removal and Adsorption of p-Nitrophenol from Aqueous Solutions Using Carbon Nanotubes and Their Composites

    Directory of Open Access Journals (Sweden)

    Yuan-Xiang Yao

    2014-01-01

    Full Text Available In an attempt to explore the possibility of using carbon nanotubes (CNTs as efficient adsorbents for removal of pollutants from the contaminated water, the adsorption of p-nitrophenol (PNP on raw multiwalled carbon nanotubes (r.MWNTs with different outer diameters, various functionalized multiwalled carbon nanotubes (f-MWNTs, raw single-walled carbon nanotubes (r.SWNTs and oxidized single-walled carbon nanotubes (ox-SWNTs has been investigated. The ox-SWNTs showed better adsorption ability for PNP with different concentrations, while lower uptake capacity was found for all of the r.MWNTs and f-MWNTs. The removal efficiency of PNP by ox-SWNTs was around 98%, indicating that ox-SWNTs possess a great potential application prospect for removing PNP from aqueous solutions.

  6. Adsorption of Chromium from Aqueous Solution Using Polyaniline

    Directory of Open Access Journals (Sweden)

    Majid Riahi Samani

    2011-10-01

    Full Text Available New group of polymers have been synthesized that are conductive of electricity so they are called conducting polymers. One of the most conducting polymers is "polyaniline". In the present study, polyaniline was synthesized by oxidizing aniline monomer under strongly acidic conditions using potassium iodate as an initiator of oxidative polymerization. Synthesized polyaniline as a powder used as an adsorbent to remove chromium from aqueous solution. Experiments were conducted in batch mode with variables such as amount of polyaniline, chromium solution pH and adsorbtion isotherms. Due to presence of Cr (III in solution after using polyaniline, removal mechanism is the combination of surface adsorption and reduction. It seems that polyaniline reduces the Cr(VI to Cr(III and adsorbs the Cr(III and a part of remaining  Cr(VI. It is well known that nitrogen atom in compounds of amine derivative makes co-ordinate bond with positive charge of metals due to the presence of electron in sp3 orbital of nitrogen. The majority of total chromium removal  occurred at 30minute for polyaniline  and the optimum  time for  hexavalent chromium  removal was about 5 min. Polyaniline has the maximum total cheomiume removal at pH, 3-9. The maximum hexavalent chromium removal occurred at acidic pH for polyanilines. The equilibrium adsorption data for polyaniline fitted both Freundlich’s and Langmuir’s isotherms. This research shows that polyaniline can be used as an adsorbent  for removal chromium from aqueous solution.

  7. Lubrication, adsorption, and rheology of aqueous polysaccharide solutions.

    Science.gov (United States)

    Stokes, Jason R; Macakova, Lubica; Chojnicka-Paszun, Agnieszka; de Kruif, Cornelis G; de Jongh, Harmen H J

    2011-04-05

    Aqueous lubrication is currently at the forefront of tribological research due to the desire to learn and potentially mimic how nature lubricates biotribological contacts. We focus here on understanding the lubrication properties of naturally occurring polysaccharides in aqueous solution using a combination of tribology, adsorption, and rheology. The polysaccharides include pectin, xanthan gum, gellan, and locus bean gum that are all widely used in food and nonfood applications. They form rheologically complex fluids in aqueous solution that are both shear thinning and elastic, and their normal stress differences at high shear rates are found to be characteristic of semiflexible/rigid molecules. Lubrication is studied using a ball-on-disk tribometer with hydrophobic elastomer surfaces, mimicking biotribological contacts, and the friction coefficient is measured as a function of speed across the boundary, mixed, and hydrodynamic lubrication regimes. The hydrodynamic regime, where the friction coefficient increases with increasing lubricant entrainment speed, is found to depend on the viscosity of the polysaccharide solutions at shear rates of around 10(4) s(-1). The boundary regime, which occurs at the lowest entrainment speeds, depends on the adsorption of polymer to the substrate. In this regime, the friction coefficient for a rough substrate (400 nm rms roughness) is dependent on the dry mass of polymer adsorbed to the surface (obtained from surface plasmon resonance), while for a smooth substrate (10 nm rms roughness) the friction coefficient is strongly dependent on the hydrated wet mass of adsorbed polymer (obtained from quartz crystal microbalance, QCM-D). The mixed regime is dependent on both the adsorbed film properties and lubricant's viscosity at high shear rates. In addition, the entrainment speed where the friction coefficient is a minimum, which corresponds to the transition between the hydrodynamic and mixed regime, correlates linearly with the ratio

  8. Adsorption of nicotine from aqueous solution onto hydrophobic zeolite type USY

    Science.gov (United States)

    Lazarevic, Natasa; Adnadjevic, Borivoj; Jovanovic, Jelena

    2011-07-01

    The isothermal adsorption of nicotine from an aqueous solution onto zeolite type USY was investigated. The adsorption isotherms of nicotine onto the zeolite at different temperatures ranging from 298 to 322 K were determined. It was found that the adsorption isotherms can be described by the model of Freundlich adsorption isotherm. Based on the adsorption isotherms the changes of adsorption heat, free energy and entropy with adsorption degree were determined. The determined decrease of adsorption heat with adsorption degree can be explained by the presence of the adsorption centers of different energy and concentration on interface of zeolite-nicotine solution. It was found that the probability function of density distribution of the heat of adsorption (DDF) has exponential form. It was concluded that the possibility of fitting the adsorption isotherms of nicotine onto the zeolite by Freundlich adsorption isotherm was a direct consequence of that. The determined increase in entropy with the increase in adsorption degree can be explained with the change of phase state of adsorbed nicotine.

  9. Arsenic (III Adsorption Using Palladium Nanoparticles from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Farzaneh Arsiya

    2017-07-01

    Full Text Available The presence of Arsenic in drinking water is the greatest threat to health effects especially in water. The purpose of this study is application of green palladium nanoparticles for removal of trivalent Arsenic from aqueous solutions and also the impact of some factors such as retention time, pH, concentration of palladium nanoparticles and Arsenic concentrations was studied. The values for Arsenic removal from aqueous solutions were measured by furnace atomic adsorption spectrometry (Conter AA700. In the study, Langmuir and Freundlich isotherm models and pseudo-second order kinetic model were studied. The results of  optimization is shown that 0.5 g of nanoparticles can removed %99.8 of Arsenic with initial concentration of  0.5 g/l, in 5 minutes at pH=4. Langmuir model, Freundlich model (R2=0.94 and pseudo-second order kinetic model (R2=0.99 shown high correlation for removing of Arsenic from aqueous solutions. It was found, palladium nanoparticles can be used as an efficient method to remove Arsenic from aqueous solutions in a short time.

  10. Adsorption of metal adatoms on single-layer phosphorene.

    Science.gov (United States)

    Kulish, Vadym V; Malyi, Oleksandr I; Persson, Clas; Wu, Ping

    2015-01-14

    Single- or few-layer phosphorene is a novel two-dimensional direct-bandgap nanomaterial. Based on first-principles calculations, we present a systematic study on the binding energy, geometry, magnetic moment and electronic structure of 20 different adatoms adsorbed on phosphorene. The adatoms cover a wide range of valences, including s and p valence metals, 3d transition metals, noble metals, semiconductors, hydrogen and oxygen. We find that adsorbed adatoms produce a rich diversity of structural, electronic and magnetic properties. Our work demonstrates that phosphorene forms strong bonds with all studied adatoms while still preserving its structural integrity. The adsorption energies of adatoms on phosphorene are more than twice higher than on graphene, while the largest distortions of phosphorene are only ∼0.1-0.2 Å. The charge carrier type in phosphorene can be widely tuned by adatom adsorption. The unique combination of high reactivity with good structural stability is very promising for potential applications of phosphorene.

  11. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee

    2017-05-01

    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  12. Current state in adsorption from multicomponent solutions of nonelectrolytes on solids

    International Nuclear Information System (INIS)

    Borowko, M.; Jaroniec, M.

    1983-01-01

    This paper surveys the research carried out on the adsorption from multicomponent liquid mixtures of nonelectrolytes on solids with emphasis on the work performed by the authors. The consistent theoretical treatment of adsorption from concentrated and dilute multicomponent solutions and its application to the liquid adsorption chromatography with the mixed mobile phase are presented. This treatment involved nonideality of the bulk and surface phases, energetic heterogeneity of the adsorbent surface and it may be extended to multilayer adsorption from solutions. The multicomponent liquid/solid adsorption systems, studied experimentally, are reviewed. Many of them have been examined by means of the equations derived for liquid adsorption on heterogeneous surfaces. These studies are summarized in this paper. Moreover, the model studies illustrating the influence of solution nonideality and adsorbent heterogeneity on the excess adsorption isotherms and the distribution coefficient are discussed. (orig.)

  13. A review on adsorption heat pump: Problems and solutions

    OpenAIRE

    Demir, Hasan; Mobedi, Moghtada; Ülkü, Semra

    2008-01-01

    Adsorption heat pumps have considerably sparked attentions in recent years. The present paper covers the working principle of adsorption heat pumps, recent studies on advanced cycles, developments in adsorbent-adsorbate pairs and design of adsorbent beds. The adsorbent-adsorbate pair features for in order to be employed in the adsorption heat pumps are described. The adsorption heat pumps are compared with the vapor compression and absorption heat pumps. The problems and troubles of adsorptio...

  14. Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design.

    Science.gov (United States)

    Demirçivi, Pelin; Saygılı, Gülhayat Nasün

    2017-07-01

    In this study, a different method was applied for boron removal by using vermiculite as the adsorbent. Vermiculite, which was used in the experiments, was not modified with adsorption agents before boron adsorption using a separate process. Hexadecyltrimethylammonium bromide (HDTMA) and Gallic acid (GA) were used as adsorption agents for vermiculite by maintaining the solid/liquid ratio at 12.5 g/L. HDTMA/GA concentration, contact time, pH, initial boron concentration, inert electrolyte and temperature effects on boron adsorption were analyzed. A three-factor, three-level Box-Behnken design model combined with response surface method (RSM) was employed to examine and optimize process variables for boron adsorption from aqueous solution by vermiculite using HDTMA and GA. Solution pH (2-12), temperature (25-60 °C) and initial boron concentration (50-8,000 mg/L) were chosen as independent variables and coded x 1 , x 2 and x 3 at three levels (-1, 0 and 1). Analysis of variance was used to test the significance of variables and their interactions with 95% confidence limit (α = 0.05). According to the regression coefficients, a second-order empirical equation was evaluated between the adsorption capacity (q i ) and the coded variables tested (x i ). Optimum values of the variables were also evaluated for maximum boron adsorption by vermiculite-HDTMA (HDTMA-Verm) and vermiculite-GA (GA-Verm).

  15. Competitive Adsorption of Cadmium (II from Aqueous Solutions onto Nanoparticles of Water Treatment Residual

    Directory of Open Access Journals (Sweden)

    Elsayed Elkhatib

    2016-01-01

    Full Text Available There is increasing interest in using water treatment residuals (WTRs for heavy metals removal from wastewater due to their low cost, availability, and high efficiency in removing various pollutants. In this study, novel water treatment residuals nanoparticles (nWTRs were prepared using high energy ball milling and used for efficient removal of Cd(II in single- and multi-ion systems. The WTR nanoparticles demonstrated high removal efficiency for Cd from aqueous solution as the adsorption capacities of nWTR were 17 and 10 times higher than those of bulk WTR in single- and multielement systems, respectively. Noticeably, Cd(II adsorption was clearly suppressed in the multi-ion system as Cu and Pb form the most stable monohydroxo complexes. Fourier transmission infrared (FTIR analyses suggested the participation of OH−, O-Al-O, FeOH, and FeOOH entities in the adsorption process. The stability of Cd-nWTR surface complexes is evident as less than 0. 2% of adsorbed Cd(ll was released at the highest Cd(II concentration load after 4 consecutive desorption cycles. Moreover, the real efficiency of nWTR for Cd(II removal from wastewater samples studied was calculated to be 98.35%. These results highlight the potential of nWTR for heavy metals removal from wastewater.

  16. The adsorption of surfactant at the amorphous polymer solution interface

    International Nuclear Information System (INIS)

    Gilchrist, Valerie A.

    2001-01-01

    Adsorption of surfactants onto amorphous polymers at the solid-solution interface is of direct relevance to many industrial sectors ranging from food, pharmaceuticals, paints, paper and photographic colour films. Although it is widely accepted that surfactants play the underpinning role in these applications, little is currently understood about the interactions between surfactants and polymeric materials at the molecular level. This lack of progress is mainly due to the inability of most existing techniques in probing this type of structural information at the wet interface. Specular neutron reflection (SNR) is a recently developed technique capable of detecting structural information with resolution down to a few angstroms (A). When combined with deuterium labeling, it is possible to distinguish the surfactant from the polymeric species at the interface. The aim of this work is to explore the appropriate experimental approach that utilizes the potential of neutron reflection to unravel molecular information about the actions of surfactants. A major progress that was made in the project was the -development of experimental protocols for the formation of smooth polymeric thin films onto neutron transparent substrates. This experimental process was substantially supported by spectroscopic ellipsometry (SE), a home-based laboratory optical system that was also highly sensitive to film thickness and composition. This exploratory work has mainly used model polymeric samples that are of broader implications to various technological applications. A nonionic alkyl ethoxylate surfactant, such as C 12 E 5 was chosen because its interfacial behaviour has been widely examined. Measurements were made over a wide concentration range around the critical micellar concentration (cmc), using specially designed cells. In the case of PMMA (poly(methylmethacrylate)), adsorption of C 12 E 5 was found to be completely reversible with no observable penetration of the surfactant into the

  17. Adsorption of Pb(II) ions from aqueous solution using lignin from ...

    African Journals Online (AJOL)

    The adsorption of lead(II) ions from aqueous solution onto alkali lignin extracted from Hagenia abyssinica was investigated by electrochemical methods. The effect of solution pH, lignin dosage and contact time were investigated at room temperature in a batch system. Adsorption equilibrium was approached within 80 min.

  18. Adsorptive removal of Cu(II) from aqueous solutions using collagen-tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xia; Huang Xin [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); Liao Xuepin, E-mail: xpliao@scu.edu.cn [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China); Shi Bi, E-mail: shibi@scu.edu.cn [National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China)

    2011-02-28

    The collagen-tannin resin (CTR), as a novel adsorbent, was prepared via a reaction of collagen with black wattle tannin and aldehyde, and its adsorption properties to Cu(II) were systematically investigated, including pH effect, adsorption equilibrium, adsorption kinetics, and column adsorption. The adsorption capacity of Cu(II) on CTR was pH-dependent, and it increased with the increase of solution pH. The adsorption isotherms were well described by Langmuir isotherm model with correlating constant (R{sup 2}) higher than 0.99. The adsorption capacity determined at 303 K was high up to 0.26 mmol/g, which was close to the value (0.266 mmol/g) estimated from Langmuir equation. The adsorption capacity was increased with the increase of temperature, and thermodynamic calculations suggested that the adsorption of Cu(II) on CTR is an endothermic process. The adsorption kinetics were well fitted by the pseudo-second-order rate model. Further column studies suggested that CTR was effective for the removal of Cu(II) from solutions, and more than 99% of Cu(II) was desorbed from column using 0.1 mol/L HNO{sub 3} solution. The CTR column can be reused to adsorb Cu(II) without any loss of adsorption capacity.

  19. Adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution

    International Nuclear Information System (INIS)

    Tatsuya Suzuki

    2013-01-01

    The adsorption behaviors of trivalent actinides and lanthanides on pyridine resin in lithium chloride aqueous solution were investigated. The adsorbed amounts of lanthanides and the degree of mutual separation of lanthanides increased with an increase in the concentration of lithium chloride in aqueous solution. The group separation of the trivalent actinides and lanthanides was observed. This separation phenomenon is similar in a hydrochloric acid solution. However, the adsorption behavior of lanthanides in lithium chloride is different from their behavior in a hydrochloric acid solution. This fact shows that the adsorption mechanisms of lanthanides in a lithium chloride aqueous solution and in a hydrochloric acid solution are different; the adsorption mechanisms are attributed to the ion exchange in a hydrochloric acid solution, and to the complex formation with pyridine group in a lithium chloride solution. (author)

  20. Thermodynamic Modeling of Surface Tension of Aqueous Electrolyte Solution by Competitive Adsorption Model

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Kamali

    2015-01-01

    Full Text Available Thermodynamic modeling of surface tension of different electrolyte systems in presence of gas phase is studied. Using the solid-liquid equilibrium, Langmuir gas-solid adsorption, and ENRTL activity coefficient model, the surface tension of electrolyte solutions is calculated. The new model has two adjustable parameters which could be determined by fitting the experimental surface tension of binary aqueous electrolyte solution in single temperature. Then the values of surface tension for other temperatures in binary and ternary system of aqueous electrolyte solution are predicted. The average absolute deviations for calculation of surface tension of binary and mixed electrolyte systems by new model are 1.98 and 1.70%, respectively.

  1. Study on the adsorption mechanism of DNA with mesoporous silica nanoparticles in aqueous solution.

    Science.gov (United States)

    Li, Xu; Zhang, Jixi; Gu, Hongchen

    2012-02-07

    Among the numerous adsorption strategies for DNA adsorption into mesopores, the salt-solution-induced adsorption method has a great application potential in nucleic acids science; thus, it is important to understand the adsorption mechanism. This work demonstrates the mechanistic aspects underlying the adsorption behaviors of DNA with mesoporous silica nanoparticles (MSNs) in aqueous solution. The driving forces for the adsorption process can be categorized into three parts: the shielded electrostatic force, the dehydration effect, and the intermolecular hydrogen bonds. Compared to the adsorption behaviors of DNA with a solid silica nanosphere, we find some unique features for DNA adsorption into the mesopores, such as increasing the salt concentration or decreasing the pH value can promote DNA adsorption into the mesoporous silica. Further analysis indicates that the entrance of DNA into mesopores is probably controlled by the Debye length in solution and DNA can generate direct and indirect hydrogen bonds in the pores with different diameters. The following desorption study depicts that such types of hydrogen bonds result in different energy barriers for the desorption process. In summary, our study depicts the mechanism of DNA adsorption within mesopores in aqueous solution and sets the stage for formulating MSNs as carriers of nucleic acids.

  2. Study of algae's adsorption to uranium ion in water solution

    International Nuclear Information System (INIS)

    Du Yang; Qiu Yongmei; Dan Guiping; Zhang Dong; Lei Jiarong

    2007-01-01

    The adsorption efficiencies of the algae to uranium ion were determined at various pH, uranium ion concentrations, adsorption temperatures and the species of coexisted metal ions, and the effect of coexisted metal ion on the adsorption efficiency was researched. The experimental results at pH= 5-8 are as follows. 1) the adsorption capacity is a constant to be about 1.40 μg/g for the Yantai red alga and the sea spinach, and is changeable in the range of 1.03-2.23 μg/g with pH for the sea edible fungus; 2) for the algae the adsorption efficiency and adsorption capacity are related to uranium ion concentration, and the maximum adsorption efficiency and capacity is 95.8% and 65.4 μg/g, respectively; 3) the adsorption process for 24 h is not dependent on the temperature; 4) the effect of the species of coexisted metal ions on the adsorption capacity of uranium ion is various with the time during adsorption process. (authors)

  3. Effect of controlled deactivation on the thermochemical characteristics of hydrogen adsorption on skeletal nickel from sodium hydroxide-water solutions

    Science.gov (United States)

    Prozorov, D. A.; Lukin, M. V.; Ulitin, M. V.

    2013-04-01

    Differential heats of adsorption in a wide range of surface coverage and maximum amounts of adsorbed hydrogen are determined by adsorption calorimetry on partially deactivated skeletal nickel from aqueous solutions of sodium hydroxide. The effect of the composition of solutions on the values of limiting adsorption and adsorption equilibria of individual forms of hydrogen is shown.

  4. [Study of the adsorption behaviors of plasma proteins on the single-walled carbon nanotubes nonwoven].

    Science.gov (United States)

    Meng, Jie; Song, Li; Meng, Jie; Kong, Hua; Wang, Chaoying; Guo, Xiaotian; Xu, Haiyan; Xie, Sishen

    2007-02-01

    Single walled carbon nanotubes (SWNT) have attracted increasing research interests for the purpose of biomedical application because they provide not only nanostructured topography, but also chemical composition of pure carbon atoms, as well as ultra high strength and excellent flexibility. Regarding the interactions of nanomaterials to biological systems, non-specific adsorption of plasma proteins is one of the most important issues to be concerned, which plays a crucial role that would determine how biological systems response to the biomaterials. Motivated by application of SWNT materials in biomedical fields, in this study, the adsorption behaviors of plasma proteins on the surface of SWNT nonwoven, prepared directly by floating chemical vapor observation and energy deposition method were investigated by means of scanning electron microscope (SEM), dispersive X-ray (EDX) analysis and ELISA. Results indicated the SWNT non-woven showed a clear adsorption preference of fibrinogen over albumin. There was no human serum albumin detected using above analysis methods on the SWNT nonwoven even incubated in the albumin solution of 4 mg/ml. While more than 0.15 microg of human fibrinogen was detected by ELISA on the SWNT nonwoven with area of 40 mm x 40 mm incubated in the fibrinogen solution of 5 microg/ml. In addition, IgG of sheep-anti-human serum fibrinogen exhibited strong nonspecific adsorption on the surface of SWNT nonwoven. The adsorption behaviors are different significantly from those of other carbon materials and conventional biomaterials. The unique interaction of SWNT nonwoven to plasma proteins is of significance to further studies of blood cells responses.

  5. Non-equilibrium dynamics of single polymer adsorption to solid surfaces

    NARCIS (Netherlands)

    Panja, D.; Barkema, G.T.; Kolomeisky, A.B.

    2009-01-01

    The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface

  6. Adsorptive recovery of UO2(2+) from aqueous solutions using collagen-tannin resin.

    Science.gov (United States)

    Sun, Xia; Huang, Xin; Liao, Xue-pin; Shi, Bi

    2010-07-15

    Collagen-tannin resin (CTR), as a novel adsorbent, was prepared via reaction of collagen with black wattle tannin and aldehyde, and its adsorption properties to UO(2)(2+) were investigated in detail, including pH effect, adsorption kinetics, adsorption equilibrium and column adsorption kinetics. The adsorption of UO(2)(2+) on CTR was pH-dependent, and the optimal pH range was 5.0-6.0. CTR exhibited excellent adsorption capacity to UO(2)(2+). For instance, the adsorption capacity obtained at 303 K and pH 6.0 was as high as 0.91 mmol UO(2)(2+)/g when the initial concentration of UO(2)(2+) was 1.0 mmol/L. In kinetics studies, the adsorption equilibrium can be reached within 300 min, and the experimental data were well fitted by the pseudo-second-order rate model, and the equilibrium adsorption capacities calculated by the model were almost the same as those determined by experiments. The adsorption isotherms could be well described by the Freundlich equation with the correlation coefficients (R(2)) higher than 0.99, the adsorption behaviors of UO(2)(2+) on CTR column were investigated as well. Present study suggested that the CTR can be used for the adsorptive recovery of UO(2)(2+) from aqueous solutions. 2010 Elsevier B.V. All rights reserved.

  7. Adsorption potential of mercury(II) from aqueous solutions onto Romanian peat moss.

    Science.gov (United States)

    Bulgariu, Laura; Ratoi, Mioara; Bulgariu, Dumitru; Macoveanu, Matei

    2009-06-01

    This study was undertaken to evaluate the adsorption potential of Romanian peat moss for the removal of mercury(II) from aqueous solutions. The batch system experiments carried out showed that this natural material was effective in removing mercury(II). The analysis of FT-IR spectra indicated that the mechanism involved in the adsorption can be mainly attributed to the binding of mercury(II) with the carboxylic groups of Romanian peat moss. Adsorption equilibrium approached within 60 min. The adsorption data fitted well the Langmuir isotherm model. The maximum adsorption capacity (qmax) was 98.94 mg g(-1). Pseudo-second-order kinetic model was applicable to the adsorption data. The thermodynamic parameters indicate that the adsorption process was spontaneous as the Gibbs free energy values were found to be negative (between -17.58 and -27.25 kJ mol(-1)) at the temperature range of 6-54 degrees C.

  8. Adsorption of arsenate from aqueous solution by rice husk-based adsorbent

    International Nuclear Information System (INIS)

    Khan, Taimur; Chaudhuri, Malay

    2013-01-01

    Rice husk-based adsorbent (RHBA) was prepared by burning rice husk in a muffle furnace at 400°C for 4 h and adsorption of arsenate by the RHBA from aqueous solution was examined. Batch adsorption test showed that extent of arsenate adsorption depended on contact time and pH. Equilibrium adsorption was attained in 60 min, with maximum adsorption occurring at pH 7. Equilibrium adsorption data were well described by the Freundlich isotherm model. Freundlich constants K f and 1/n were 3.62 and 2, respectively. The RHBA is effective in the adsorption of arsenate from water and is a potentially suitable filter medium for removing arsenate from groundwater at wells or in households.

  9. Fast Adsorption of Soft Hydrogel Microspheres on Solid Surfaces in Aqueous Solution.

    Science.gov (United States)

    Matsui, Shusuke; Kureha, Takuma; Hiroshige, Seina; Shibata, Mikihiro; Uchihashi, Takayuki; Suzuki, Daisuke

    2017-09-25

    The real-time adsorption behavior of polymeric colloidal microspheres onto solid surfaces in aqueous solution was visualized for the first time using high-speed atomic force microscopy (HS-AFM) to reveal how the softness of the microspheres affects their dynamic adsorption. Studies that focus on the deformability of microspheres upon dynamic adsorption have not yet been reported, most likely on account of a lack of techniques that appropriately depict the dynamic adsorption and deformation behavior of individual microspheres at the nanoscale in real time. In this study, the deformability of microspheres plays a crucial role on the adsorption kinetics, that is, soft hydrogel microspheres adsorb faster than harder elastomeric or rigid microspheres. These results should provide insight towards development of new colloidal nanomaterials that exhibit effective adsorption on specific sites in aqueous solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. ADSORPTION OF FOOD COLORING ALLURA RED DYE (E129 FROM AQUEOUS SOLUTIONS USING ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    Saad A Alkahtani

    2017-09-01

    Full Text Available The adsorption behavior of Allura red (E129 from aqueous solutions onto activated carbon was successfully investigated. All factors affecting the adsorption process were carefully studied and the conditions were optimized. Adsorption of E129 onto activated carbon was found to increase by decreasing the mass of activated carbon, pH and ionic strength of the solution and by increasing temperature. The adsorption capacity of the activated carbon for Allura red was relatively high. Under the optimum conditions, the maximum adsorption capacity for E129 dye was 72.85 mg/g. Three adsorption models; Langmuir, Freundlich and Temkin model were investigated regarding the adsorption of E129. The models’ parameters KL, qm, R2, (n were determined and found to be 0.0222, 72.85 mg/g, 0.9057-0.9984, and 0.992, respectively. Also, pseudo first and second-order kinetic models were tested to determine the best-fit model to the adsorption of E129 dye onto activated carbon. The results showed that the adsorption of E129 onto activated carbon obeyed both the Freundlich isotherm and pseudo second-order kinetic models. Moreover, thermodynamic studies indicated that the adsorption of E129 dye onto the activated carbon was spontaneous. 

  11. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite

    International Nuclear Information System (INIS)

    Wang Li; Wang Aiqin

    2008-01-01

    A series of surfactant-modified montmorillonites (MMT) were prepared using octyltrimethylammonium bromide (OTAB), dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and stearyltrimethylammonium bromide (STAB), and the organification of MMT was proved by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron micrographic (SEM) and transmission electron microscope (TEM). The adsorption of Congo Red (CR) anionic dye from aqueous solution onto surfactant-modified MMT was carried out. Compared with MMT, the adsorption capacity of surfactant-modified MMT for CR was greatly enhanced and MMT modified with CTAB (2.0 CEC) exhibited the higher adsorption capacity. The effects of pH value of the dye solution, adsorption temperature, adsorption time and the initial dye concentration on the adsorption capacity of CR on CTAB-MMT have been investigated. The results showed that the adsorption kinetic of CR on CTAB-MMT could be best described by the pseudo-second-order model and that the adsorption isotherm of CR was in good agreement with the Langmuir equation. The IR spectra and SEM analysis also revealed that the adsorption of CTAB-MMT was a chemical adsorption process between CTAB and the NH 2 , -N=N- and SO 3 groups of CR

  12. Influence of organobentonite structure on toluene adsorption from water solution

    Directory of Open Access Journals (Sweden)

    Nuria Vidal

    2012-12-01

    Full Text Available Due to increase water pollution by organic compound derived from hydrocarbons such as toluene, several alternative technologies for remediation of polluted water have been originated. In this work natural bentonites were modified with cetyltrimethylammonium (CTMA+ for obtaining organophilic bentonites. The obtained CTMA-bentonites would be suitable for use as adsorbents of toluene present in water. The influence of structural characteristics of CTMA-bentonites on their adsorption capacity was studied. It was shown that adsorption of toluene depended on homogeneous interlayer space associated with arrangements of CTMA+ paraffin-monolayer and bilayer models, accompanied by a high degree ordering of the carbon chain of organic cation in both arrangements. However, packing density would not have an evident influence on the retention capacity of these materials. The solids obtained were characterized by chemical analysis, X-ray diffractions and infrared spectroscopy. Toluene adsorption was measured by UV-visible spectrophotometer. Adsorption capacity was studied by determining adsorption isotherms and adsorption coefficient calculation. The adsorption isotherms were straight-line indicating a partition phenomenon of toluene between the aqueous and organic phase present in organophilic bentonites.

  13. Effective adsorption and collection of cesium from aqueous solution using graphene oxide grown on porous alumina

    Science.gov (United States)

    Entani, Shiro; Honda, Mitsunori; Shimoyama, Iwao; Li, Songtian; Naramoto, Hiroshi; Yaita, Tsuyoshi; Sakai, Seiji

    2018-04-01

    Graphene oxide (GO) with a large surface area was synthesized by the direct growth of GO on porous alumina using chemical vapor deposition to study the Cs adsorption mechanism in aqueous solutions. Electronic structure analysis employing in situ near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy measurements clarifies the Cs atoms bond via oxygen functional groups on GO in the aqueous solution. The Cs adsorption capacity was found to be as high as 650-850 mg g-1, which indicates that the GO/porous alumina acts as an effective adsorbent with high adsorption efficiency for radioactive nuclides in aqueous solutions.

  14. Adsorption of anionic surfactants from aqueous solution by high content of primary amino crosslinked chitosan microspheres.

    Science.gov (United States)

    Zhang, Caihong; Wen, Haifeng; Huang, Yingying; Shi, Wenjian

    2017-04-01

    High content of primary amino crosslinked chitosan microspheres (ACCMs) were synthesized and characterized with IR, XRD and SEM technologies. Subsequently, ACCMs were adopted to adsorb three common anionic surfactants from aqueous solution: sodium dodecyl benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS). The adsorption performances were evaluated based on different variables such as the pH, contact time, temperature and initial concentration of the anionic surfactants. Moreover, the adsorption were investigated with kinetic models, equilibrium isotherms and thermodynamic models. The experimental results indicated that the adsorption processes were fitted very well with a pseudo-second-order model. The adsorption isotherms could be better described by Langmuir model rather than Freundlich model. The adsorption of SDBS was a spontaneous, exothermic process. While the adsorption of SLS and SDS were spontaneous, endothermic. The adsorption processes were complex physical-chemistry adsorption models, which are dominated by physisorption. Furthermore, this study found that the material had strong absorption abilities for anionic surfactants, the saturation adsorption capacity of ACCMs were 1220mg/g for SDBS, 888mg/g for SLS, and 825mg/g for SDS at pH 3.0 and 298K, respectively. The adsorption capacity was reduced only 5.7% after 8 cycles of the adsorption-desorption processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Adsorption studies for the removal of Cr(VI) ion from aqueous solution

    African Journals Online (AJOL)

    The adsorption characteristics of Cr(VI) in the form of Cr2O7(-2) ion from aqueous solution onto synthetic exchanger Amberlite IRA 400(Cl) resin was studied from UV – visible spectrphotometric measurement using DPC at 580nm. The efficiency of the adsorbent was judged from the variation of the % adsorption with (i) ...

  16. Adsorption of Mn(II) and Co(II) ions from aqueous solution using ...

    African Journals Online (AJOL)

    The adsorption of Mn(II) and Co(II) ions from aqueous solution was investigated using batch adsorption experiment at room temperature. The effect of pH, contact time, metal ion concentration and temperature were evaluated. The residual concentrations of the metal ions were determined by atomic absorption ...

  17. Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques

    Science.gov (United States)

    Q.Q. Wang; Z. He; Z. Zhu; Y.-H.P. Zhang; Y. Ni; X.L. Luo; J.Y. Zhu

    2012-01-01

    Cellulose accessibilities of a set of hornified lignocellulosic substrates derived by drying the never dried pretreated sample and a set of differently pretreated lodgepople pine substrates, were evaluated using solute exclusion and protein adsorption methods. Direct measurements of cellulase adsorption onto cellulose surface of the set of pretreated substrates were...

  18. The Removal of Phenol and Its Derivatives from Aqueous Solutions by Adsorption on Petroleum Asphaltene

    Directory of Open Access Journals (Sweden)

    Omer El-Amin Ahmed Adam

    2013-01-01

    Full Text Available This research describes the adsorption of phenol and o-substituted phenols and xylenol isomers on petroleum asphaltenes from aqueous solution. The results revealed that the adsorption equilibrium data were best fitted with the generalized and Freundlich isotherms. For o-substituted phenols, it was found that electron-withdrawing groups increase the adsorption capacity. The uptake of these phenols decreases in the order: o-nitrophenol > o-chlorophenol > o-aminophenol > o-cresol > phenol, while the adsorption of xylenol isomers decreases in the order: 2,6-xylenol > 2,5-xylenol > 3,5-xylenol > 3,4-xylenol. Batch equilibrium results at different temperatures suggest that the adsorption of 2,6-xylenol and 3,5-xylenol onto asphaltene is an endothermic process, values obtained were positive indicating a nonspontaneous process with increasing randomness at the solid-solution interface. The influence of solution pH on the adsorption of 3,5-xylenol on asphaltenes was also investigated. The adsorption process was found to be independent on the solution pH. The adsorption capacity of 3,5-xylenol was found to increase with the decrease in particle size of the adsorbent.

  19. The adsorptive removal of a cationic drug from aqueous solution ...

    African Journals Online (AJOL)

    ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. The adsorption equilibrium data, as studied at 3 temperatures, namely, 15, 25 and 37°C, were best interpreted by the Langmuir ...

  20. Adsorptive removal of cationic dye from aqueous solution using ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2017-12-03

    Radushkevich (D–R) models were employed to describe the adsorption of Safranin O to SMABT and also to evaluate the isotherm constants. Langmuir model was the best of the four to excellently fit into the experimental data.

  1. Adsorption of divalent copper, zinc, cadmium and lead ions from aqueous solution by waste tea and coffee adsorbents.

    Science.gov (United States)

    Djati Utomo, H; Hunter, K A

    2006-01-01

    The adsorption of the divalent cations of Cu, Zn, Cd and Pb by tea leaves and coffee grounds from aqueous solutions is described. Both adsorbents exhibited strong affinity for these ions which could be described by a simple single-site equilibrium model. For coffee, the order of increasing adsorption equilibrium constant K was Cu 10, probably because of anion formation in the case of Zn2+ and also increased leaching of metal-binding soluble materials. The effect of metal ion concentration on the adsorptive equilibria indicated a threshold concentration above which overall adsorption became limited by saturation of the adsorption sites. Competition between two metal ions for the same sites was not observed with Cu(II) and Pb(II), however Zn(II) reacted competitively with Cd(II) binding sites on both tea and coffee. If fresh coffee or tea adsorbents were used, the fraction of metal ion taken up by the adsorbent was diminished by the competitive effects of soluble metal-binding ligands released by the tea or coffee. Experiments with coffee showed that roasting temperature controls the formation of metal ion adsorption sites for this adsorbent.

  2. Adsorption of uranium ions by crosslinked polyester resin functionalized with acrylic acid from aqueous solutions

    International Nuclear Information System (INIS)

    Cemal Oezeroglu; Niluefer Metin

    2012-01-01

    In this paper, the crosslinked polyester resin containing acrylic acid functional groups was used for the adsorption of uranium ions from aqueous solutions. For this purpose, the crosslinked polyester resin of unsaturated polyester in styrene monomer (Polipol 353, Poliya) and acrylic acid as weight percentage at 80 and 20%, respectively was synthesized by using methyl ethyl ketone peroxide (MEKp, Butanox M60, Azo Nobel)-cobalt octoate initiator system. The adsorption of uranium ions on the sample (0.05 g copolymer and 5 mL of U(VI) solution were mixed) of the crosslinked polyester resin functionalized with acrylic acid was carried out in a batch reactor. The effects of adsorption parameters of the contact time, temperature, pH of solution and initial uranium(VI) concentration for U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid were investigated. The adsorption data obtained from experimental results depending on the initial U(VI) concentration were analyzed by the Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The adsorption capacity and free energy change were determined by using D-R isotherm. The obtained experimental adsorption data depending on temperature were evaluated to calculate the thermodynamic parameters of enthalpy (ΔH o ), entropy (ΔS o ) and free energy change (ΔG o ) for the U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. The obtained adsorption data depending on contact time were analyzed by using adsorption models such as the modified Freundlich, Elovich, pseudo-first order and pseudo-second-order kinetic models. (author)

  3. Adsorption behavior of multi-walled carbon nanotubes for the removal of olaquindox from aqueous solutions

    International Nuclear Information System (INIS)

    Zhang, Lei; Xu, Tianci; Liu, Xueyan; Zhang, Yunyu; Jin, Hongjing

    2011-01-01

    Highlights: ► Removal of olaquindox—a hazardous pollutant using MWCNT was investigated. ► A comparative analysis showed MWCNT was highly efficient for the removal of olaquindox. ► Adsorption equilibrium was reached in 2.0 min following pseudo-second-order model. ► Physisorption and inner diffusion are the characteristics of the adsorption system. ► Langmuir adsorption isotherms are adequate for modeling the adsorption process. - Abstract: Multi-walled carbon nanotubes (MWCNT) were employed for the sorption of olaquindox (OLA) from aqueous solution. A detailed study of the adsorption process was performed by varying pH, ionic strength, sorbent amount, sorption time and temperature. The adsorption mechanism is probably the non-electrostatic π–π dispersion interaction and hydrophobic interaction between OLA and MWCNT. The adsorption efficiency could reach 99.7%, suggesting that MWCNT is excellent adsorbents for effective OLA removal from water. OLA adsorption kinetics were found to be very fast and equilibrium was reached within 2.0 min following the pseudo-second-order model with observed rate constants (k) of 0.169–1.048 g mg −1 min −1 (at varied temperatures). The overall rate process appeared to be influenced by both external mass transfer and intraparticle diffusion, but mainly governed by intraparticle diffusion. A rapid initial adsorption behavior occurred within a short period of time in this adsorption system. The sorption data could be well interpreted by the Langmuir model with the maximum adsorption capacity of 133.156 mg g −1 (293 K) of OLA on MWCNT. The mean energy of adsorption was calculated to be 0.124 kJ mol −1 (293 K) from the Dubinin–Radushkevich adsorption isotherm. Moreover, the thermodynamic parameters showed the spontaneous, exothermic and physical nature of the adsorption process.

  4. Isotherm, thermodynamic, kinetics, and adsorption mechanism studies of Ethidium bromide by single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube.

    Science.gov (United States)

    Moradi, Omid; Fakhri, Ali; Adami, Saeideh; Adami, Sepideh

    2013-04-01

    The studies of kinetics and thermodynamics of adsorption of Ethidium bromide in aqueous solutions on single-walled carbon nanotube (SWCNT) and carboxylate group functionalized single-walled carbon nanotube (SWCNT-COOH) surfaces were by UV-Vis spectroscopy. The adsorption kinetics for SWCNT-COOH and SWCNTs were well described by a intra-particle diffusion model, while Langmuir, Freundlich, Harkins-Jura, and Halsey isotherms described the adsorption isotherms, and the adsorption thermodynamic parameters of equilibrium constant (K0), standard free energy (ΔG0), standard enthalpy (ΔH0), and standard entropy changes (ΔS0) were measured. The maximum surface coverage for SWCNTs is 36.10% and for SWCNT-COOH is 38.42%. The values of ΔH0 and ΔG0 suggested that the adsorption of EtBr on SWCNT-COOH and SWCNTs was endothermic and spontaneous. The adsorption of EtBr on SWCNT-COOH is more than SWCNTs surfaces. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Equilibrium model for agglomeration phenomena in solid polydispersions subject to adsorption from liquid solution

    Science.gov (United States)

    Mezzasalma, Stefano A.

    1997-06-01

    A general thermodynamic-electrochemical model, supported by an experimental titration procedure, is proposed to determine the number of solid aggregates of a polydispersed (and/or colloidal) system in a liquid medium subject to simultaneous agglomeration phenomena and adsorption of H+ and/or OH- ions from solution and endowed with an interparticle potential which is not strongly attractive. In a previous work [D. Beruto, S. Mezzasalma, and D. Baldovino, J. Chem. Soc. Faraday Trans. 2 91, 323 (1995)] adsorptions of protons and/or oxidryles onto the solid surfaces of monomodal silicon nitride aqueous dispersions were obtained by titration measurements made with a metal-oxide-semiconductor ion-sensitive field-effect transistor pH-meter device and employed to obtain the number of solid aggregates from the thermodynamic equilibrium state of the slurries, derived from the total Gibbs function. More generally, to apply the same titration procedure to liquid dispersions involving many solid phases, it is shown here that a simple partition criterion can be defined to obtain the experimental adsorption data related to each solid phase of the polydispersed system. Theoretically, the equilibrium state is achieved from the total Gibbs free function of the slurries with respect to each single solid aggregate species and to the ``mixed'' aggregates, containing all solid phases. To this end, following the Derjaguin-Landau-Verwey-Overbeek theory, Coulombic charge-charge interactions and dispersion-force effects, other than general multipole contributions among mixed clusters, are considered as not too strong perturbations of the ideal Gibbs free energy. By inserting the titration data in the physico-chemical condition theoretically derived, it is possible to obtain all numbers of solid aggregates as a function of the electrolyte concentration (pH) in the liquid solution.

  6. Selective adsorption and separation of organic dyes from aqueous solution on polydopamine microspheres.

    Science.gov (United States)

    Fu, Jianwei; Xin, Qianqian; Wu, Xuechen; Chen, Zhonghui; Yan, Ya; Liu, Shujun; Wang, Minghuan; Xu, Qun

    2016-01-01

    Polydopamine (PDA) microspheres, synthesized by a facile oxidation polymerization route, were evaluated as a potential adsorbent for selective adsorption and separation of organic dyes. The adsorption processes towards nine water-soluble dyes (anionic dyes: methyl orange (MO), eosin-Y (EY), eosin-B (EB), acid chrome blue K (ACBK), neutral dye: neutral red (NR), and cationic dyes: rhodamine B (RhB), malachite green (MG), methylene blue (MB), safranine T (ST)) were thoroughly investigated. The adsorption selectivity of organic dyes onto PDA microspheres was successfully applied for the separation of dyes mixtures. Various influential factors such as solution pH, temperature, and contact time were employed to ascertain the optimal condition for adsorption of representative organic dyes including MB, MG and NR. The pseudo-first-order and pseudo-second-order kinetics models were used to fit the adsorption kinetics process. Five isothermal adsorption models (Langmuir, Dubnin-Radushkevich, Temkin, Freundlich and Harkins-Jura) were used to investigate the adsorption thermodynamics properties. The results showed that the PDA microspheres owned good selective adsorption ability towards cationic dyes. The adsorption kinetics process conformed to the pseudo-second-order kinetics model and the Langmuir isotherm model was more appropriate for tracing the adsorption behavior than other isotherm models. Thus, we can conclude PDA microspheres may be a high-efficiency selective adsorbent towards some cationic dyes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    Science.gov (United States)

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Uniform Cu2Cl(OH)3 hierarchical microspheres: A novel adsorbent for methylene blue adsorptive removal from aqueous solution

    International Nuclear Information System (INIS)

    Wei, Wei; Gao, Pin; Xie, Jimin; Zong, Sekai; Cui, Henglv; Yue, Xuejie

    2013-01-01

    Using the solution phase method without any surfactants or templates, the hierarchical of Cu 2 Cl(OH) 3 microspheres were synthesized by freeze drying. The size and surface area of the microspheres are ca. 1–2 µm and 76.61 m 2 g −1 , respectively. A possible formation mechanism is presented based on the experimental results. Methylene blue was chosen to investigate the adsorption capacity of the as-prepared adsorbent. The effects of various experimental parameters, such as pH, initial dye concentration, and contact time were investigated. The results showed that the dye removal increased with the increasing in the initial concentration of the dye and also increased in the amount of microspheres used and initial pH. Adsorption data fitted well with the Freundlich adsorption isotherm. The thermodynamic analysis presented the exothermic, spontaneous and more ordered arrangement process. The microspheres could be employed effective for removal of dyes from aqueous solution. - Graphical abstract: The single-crystalline hierarchical Cu 2 Cl(OH) 3 spheres can be prepared for the first time by using a template-free process through freeze-drying. Meanwhile, the hierarchical spheres exhibited high adsorption capacity to methylene blue. Display Omitted - Highlights: • Cu 2 Cl(OH) 3 microspheres were successfully synthesized through a freeze drying process. • A possible formation mechanism of hierarchical microspheres was presented. • The Cu 2 Cl(OH) 3 microspheres have high methylene blue adsorption capacity. • Methylene blue adsorption is a spontaneous and exothermic process. • The adsorption mechanism of microspheres onto dye was proposed in detail

  9. Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant.

    Science.gov (United States)

    Chiban, Mohamed; Soudani, Amina; Sinan, Fouad; Persin, Michel

    2011-02-01

    A low-cost adsorbent and environmentally friendly adsorbent from Carpobrotus edulis plant was used for the removal of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions from single, binary and multi-component systems. The efficiency of the adsorbent was studied using batch adsorption technique under different experimental conditions by varying parameters such as pH, initial concentration and contact time. In single component systems, the dried C. edulis has the highest affinity for Pb(2+), followed by NO(3)(-), Cd(2+) and H(2)PO(4)(-), with adsorption capacities of 175mg/g, 125mg/g, 28mg/g and 26mg/g, respectively. These results showed that the adsorption of NO(3)(-) and H(2)PO(4)(-) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. Freundlich adsorption model, showed the best fit to the single and binary experimental adsorption data. These results also indicated that the adsorption yield of Pb(2+) ion was reduced by the presence of Cd(2+) ion in binary metal mixture. The competitive adsorption of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions on dried C. edulis plant shows that NO(3)(-) and H(2)PO(4)(-) anions are able to adsorb on different free binding sites and Pb(2+) and Cd(2+) cations are able to adsorb on the same active sites of C. edulis particles. The dried C. edulis was found to be efficient in removing nitrate, phosphate, cadmium and lead from aqueous solution as compared to other adsorbents already used for the removal of these ions. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    Science.gov (United States)

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  11. A thermodynamic approach to assess organic solute adsorption onto activated carbon in water

    KAUST Repository

    De Ridder, David J.

    2012-08-01

    In this paper, the hydrophobicity of 13 activated carbons is determined by various methods; water vapour adsorption, immersion calorimetry, and contact angle measurements. The quantity and type of oxygen-containing groups on the activated carbon were measured and related to the methods used to measure hydrophobicity. It was found that the water-activated carbon adsorption strength (based on immersion calorimetry, contact angles) depended on both type and quantity of oxygen-containing groups, while water vapour adsorption depended only on their quantity. Activated carbon hydrophobicity measurements alone could not be related to 1-hexanol and 1,3-dichloropropene adsorption. However, a relationship was found between work of adhesion and adsorption of these solutes. The work of adhesion depends not only on activated carbon-water interaction (carbon hydrophobicity), but also on solute-water (solute hydrophobicity) and activated carbon-solute interactions. Our research shows that the work of adhesion can explain solute adsorption and includes the effect of hydrogen bond formation between solute and activated carbon. © 2012 Elsevier Ltd. All rights reserved.

  12. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon [Dongguk University, Seoul (Korea, Republic of)

    2014-05-15

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution (i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested ( -2 .deg. C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  13. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    International Nuclear Information System (INIS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-01-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution (i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested ( -2 .deg. C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  14. The Adsorption of Short Single-Stranded DNA Oligomers on Mineral Surfaces

    Science.gov (United States)

    Kopstein, M.; Sverjensky, D. A.; Hazen, R. M.; Cleaves, H. J.

    2009-12-01

    Previous studies have described feasible pathways for the synthesis of simple organic building blocks such as formaldehyde and hydrogen cyanide, and their reaction to form more complex biomolecules such as nucleotide bases, amino acids and sugars (Miller and Orgel 1974, Miller and Cleaves 2006). However, the polymerization of monomers into a useful genetic material remains problematic (Orgel 2004). Organic building blocks were unlikely to polymerize from very dilute aqueous solution in the primitive oceans. Mineral surface adsorption has been suggested as a possible mechanism for concentrating the necessary building blocks (Bernal 1951). This study focused on the adsorption behavior of single-stranded DNA homo-oligomers of adenine and thymine (including the monomers, dimers, tetramers, hexamers, octomers, and decamers) with five different mineral surfaces (pyrite, rutile, hematite, olivine and calcite). Adsorption was studied in 0.1 M pH 8.1 KHCO3 with0.05 M NaCl as background electrolyte. Solutions were mixed for 24 hours at room temperature, centrifuged and the supernatants analyzed by UV/visible spectrophotometry. Equilibrium solution concentrations were measured and used to determine the number of moles adsorbed per square meter. Langmuir isotherms were constructed using the experimental data. It was found that adenine-containing molecules tend to bind much more strongly than thymine-containing molecules. It was also found that the number of moles adsorbed at saturation tends to fall with increasing chain length, while adsorption affinity tends to rise. Oligomer length appears to affect adsorption more than the mineral type. These results may have implications for the primordial organization of the first nucleic acid molecules as the persistence of extra-cellular nucleic acids in the environment. References Bernal, J. D. (1951) The Physical Basis of Life (Routledge, London). Miller S.L. and Cleaves, H.J. (2006) Prebiotic chemistry on the primitive Earth. In

  15. Electrocoagulation-Adsorption to Remove Anionic and Cationic Dyes from Aqueous Solution by PV-Energy

    Directory of Open Access Journals (Sweden)

    J. Castañeda-Díaz

    2017-01-01

    Full Text Available The cationic dye malachite green (MG and the anionic dye Remazol yellow (RY were removed from aqueous solutions using electrocoagulation-adsorption processes. Batch and continuous electrocoagulation procedures were performed and compared. Carbonaceous materials obtained from industrial sewage sludge and commercial activated carbons were used to adsorb dyes from aqueous solutions in column systems with a 96–98% removal efficiency. The continuous electrocoagulation-adsorption system was more efficient for removing dyes than electrocoagulation alone. The thermodynamic parameters suggested the feasibility of the process and indicated that the adsorption was spontaneous and endothermic (ΔS=0.037 and −0.009 for MG and RY, resp.. The ΔG value further indicated that the adsorption process was spontaneous (−6.31 and −10.48; T=303 K. The kinetic electrocoagulation results and fixed-bed adsorption results were adequately described using a first-order model and a Bohart-Adams model, respectively. The adsorption capacities of the batch and column studies differed for each dye, and both adsorbent materials showed a high affinity for the cationic dye. Thus, the results presented in this work indicate that a continuous electrocoagulation-adsorption system can effectively remove this type of pollutant from water. The morphology and elements present in the sludge and adsorbents before and after dye adsorption were characterized using SEM-EDS and FT-IR.

  16. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis

    International Nuclear Information System (INIS)

    Annadurai, Gurusamy; Ling, L.Y.; Lee, J.-F.

    2008-01-01

    The adsorption of Remazol black 13 (Reactive) dye onto chitosan in aqueous solutions was investigated. Experiments were carried out as function of contact time, initial dye concentration (100-300 mg/L), particle size (0.177, 0.384, 1.651 mm), pH (6.7-9.0), and temperature (30-60 deg. C). The equilibrium adsorption data of reactive dye on chitosan were analyzed by Langmuir and Freundlich models. The maximum adsorption capacity (q m ) has been found to be 91.47-130.0 mg/g. The amino group nature of the chitosan provided reasonable dye removal capability. The kinetics of reactive dye adsorption nicely followed the pseudo-first and second-order rate expression which demonstrates that intraparticle diffusion plays a significant role in the adsorption mechanism. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (0.212 kJ/mol) indicated that the adsorption is endothermic process. The results indicate that chitosan is suitable as adsorbent material for adsorption of reactive dye form aqueous solutions

  17. Adsorption of phenolic compounds from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent.

    Science.gov (United States)

    Li, Aimin; Zhang, Quanxing; Zhang, Gencheng; Chen, Jinlong; Fei, Zhenghao; Liu, Fuqiang

    2002-06-01

    A water-compatible hypercrosslinked polymeric adsorbent (NJ-8) for adsorbing and removing phenolic compounds from their aqueous solutions was prepared. This product can be used directly without a wetting process. Its adsorption property toward four phenolic compounds, phenol, p-cresol, p-chlorophenol, and p-nitrophenol was tested using the commercial Amberlite XAD-4 as a reference. The capacities of equilibrium adsorption for all four phenolic compounds on the NJ-8 from their aqueous solutions are around two times as high as that of Amberlite XAD4 within the temperature range 283-323 K, which may contribute to their micropore structure and the partial polarity on the network. Freundlich isotherm equations, as well as relative adsorption capacities and isosteric adsorption enthalpies for the four phenolic compounds, indicate that the adsorption of phenolic compounds on the NJ-8 resin is a physical adsorption process. Mini-column adsorption studies for phenol on Amberlite XAD4 and NJ-8 resins show that the breakthrough adsorption capacities are 0.54 and 0.99 mmol/ml, and the total capacities are 0.62 and 1.37 mmol/ml, while no extra acetone was needed to remove the adsorbed phenol from NJ-8 as from Amberlite XAD4.

  18. Adsorption of phenol from aqueous solutions onto natural and ...

    African Journals Online (AJOL)

    MET) have been carried out at 25 °C in batch mode to evaluate the effects of parameters such as pH, initial phenol concentration and adsorbent mass on the extent of adsorption. It was observed that phenol uptake increased with increases in ...

  19. Adsorptive removal of cationic dye from aqueous solution using ...

    African Journals Online (AJOL)

    Freundlich, Langmuir, Temkin and Dubinin–Radushkevich (D–R) models were employed to describe the adsorption of Safranin O to SMABT and also to evaluate the isotherm constants. Langmuir model was the best of the four to excellently fit into the experimental data. The maximum uptake capacity of SMABT for Safranin ...

  20. Study on uranium adsorption ability of tannix resin from solution

    International Nuclear Information System (INIS)

    Le Thi Kim Dung; Le Quang Thai; Nguyen Lanh; Le Ngoc Thuy

    2004-01-01

    During past years, generated liquid waste from uranium ore processing has been treated by co-precipitation method in ITRRE. In this liquid waste treatment process, mixing liquid waste and lime, decantation, filtration of precipitate were implemented. The treated fluid has underlimited toxic concentration and ensures for moving into environment. Residue was dried and packed into drums as low level radioactive waste. Next to the advantages of this method such as simplest technology, cheapest cost, easy operation. Some amount of secondary radioactive waste as noncombustible materials must be stored with complicated technologies a highly cost. We have been researching a new liquid waste treatment system replaceable precipitation system. In the new process, insoluble tannin is utilized as adsorbent of uranium liquid waste. Advantage of insoluble tannin is expected to be possible to reduce its volume incineration as well as its adsorption ability. Those are the reasons why tannix resin is used this research subject. In this subject, we have studied adsorption capacity of uranium in Tannix, relation of adsorption rate and pH, the change of adsorption ability of column system, the pyrolysis curve of dried Tannix (author)

  1. Adsorption of Pb(II) present in aqueous solution on calcium, strontium and barium hydroxy apatites

    International Nuclear Information System (INIS)

    Vilchis G, J.

    2013-01-01

    Calcium, strontium and barium hydroxy apatites were successfully synthesized by chemical precipitation method, the obtained powders were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (Sem), semi-quantitative elemental analysis (EDS), infrared spectroscopy (IR), and N 2 physisorption studies, complementary to these analytical techniques, was determined the surface fractal dimension (Df), and the amount of surface active sites of the materials, in order to know application as ceramic for water remediation. The ability of Pb(II) ion adsorption present in aqueous solution on the hydroxy apatites synthesized by batch type experiments was studied as a function of contact time, concentration of the adsorbate and temperature. The maximum lead adsorption efficiencies obtained were 0.31, 0.32 and 0.26 mg/g for calcium, strontium and barium hydroxy apatites respectively, achieved an equilibrium time of 20 minutes in the three solid-liquid systems studied. Experimental data were adequately adjusted at the adsorption kinetic model pseudo-second order, for the three cases. Moreover, experimental data of the strontium and calcium hydroxy apatites were adjusted to the Langmuir adsorption isotherm, indicating that the adsorption was through a monolayer, whereas barium hydroxyapatite was adjusted to the Freundlich adsorption isotherm, indicating a multilayer adsorption. The thermodynamic parameters obtained during adsorption studies as a function of temperature showed physisorption, exothermic and spontaneous processes respectively. The results showed that the calcium hydroxyapatite, strontium and barium are an alternative for the Pb(II) ion adsorption present in wastewaters. (Author)

  2. Adsorption isotherm, kinetic and mechanism of expanded graphite for sulfadiazine antibiotics removal from aqueous solutions.

    Science.gov (United States)

    Zhang, Ling; Wang, Yong; Jin, SuWan; Lu, QunZan; Ji, Jiang

    2017-10-01

    The adsorption of sulfadiazine from water by expanded graphite (EG), a low cost and environmental-friendly adsorbent, was investigated. Several adsorption parameters (including the initial sulfadiazine concentration, contact time, pH of solution, ionic strength and temperature) were studied. Results of equilibrium experiments indicated that adsorption of sulfadiazine onto EG were better described by the Langmuir and Tempkin models than by the Freundlich model. The maximum adsorption capacity is calculated to be 16.586 mg/g at 298 K. The kinetic data were analyzed by pseudo-first-order, pseudo-second-order and intraparticle models. The results indicated that the adsorption process followed pseudo-second-order kinetics and may be controlled by two steps. Moreover, the pH significantly influenced the adsorption process, with the relatively high adsorption capacity at pH 2-10. The electrostatic and hydrophobic interactions are manifested to be two main mechanisms for sulfadiazine adsorption of EG. Meanwhile, the ionic concentration of Cl - slightly impacted the removal of sulfadiazine. Results of thermodynamics analysis showed spontaneous and exothermic nature of sulfadiazine adsorption on EG. In addition, regeneration experiments imply that the saturated EG could be reused for sulfadiazine removal by immersing sodium hydroxide.

  3. Removal of radionuclides from partitioning waste solutions by adsorption and catalytic oxidation methods

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Isao; Yamaguchi, Isoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kubota, Masumitsu [Research Organization for Information Science and Technology (RIST), Tokai, Ibaraki (Japan)

    2000-09-01

    Adsorption of radionuclides with inorganic ion exchangers and catalytic oxidation of a complexant were studied for the decontamination of waste solutions generated in past partitioning tests with high-level liquid waste. Granulated ferrocyanide and titanic acid were used for adsorption of Cs and Sr, respectively, from an alkaline solution resulting from direct neutralization of an acidic waste solution. Both Na and Ba inhibited adsorption of Sr but Na did not that of Cs. These exchangers adsorbed Cs and Sr at low concentration with distribution coefficients of more than 10{sup 4}ml/g from 2M Na solution of pH11. Overall decontamination factors (DFs) of Cs and total {beta} nuclides exceeded 10{sup 5} and 10{sup 3}, respectively, at the neutralization-adsorption step of actual waste solutions free from a complexant. The DF of total {alpha} nuclides was less than 10{sup 3} for a waste solution containing diethylenetriaminepentaacetic acid (DTPA). DTPA was rapidly oxidized by nitric acid in the presence of a platinum catalyst, and radionuclides were removed as precipitates by neutralization of the resultant solution. The DF of {alpha} nuclides increased to 8x10{sup 4} by addition of the oxidation step. The DFs of Sb and Co were quite low through the adsorption step. A synthesized Ti-base exchanger (PTC) could remove Sb with the DF of more than 4x10{sup 3}. (author)

  4. Adsorption characteristics of Pb(II) from aqueous solutions onto a natural biosorbent, fallen arborvitae leaves.

    Science.gov (United States)

    Shi, Jie; Zhao, Zhiwei; Liang, Zhijie; Sun, Tianyi

    2016-01-01

    In this study, the potential of the oriental arborvitae leaves for the adsorption of Pb(II) from aqueous solutions was evaluated. Brunauer-Emmett-Teller analysis showed that the surface area of arborvitae leaves was 29.52 m(2)/g with pore diameter ranging from 2 to 50 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed C-C or C-H, C-O, and O-C=O were the main groups on the arborvitae leaves, which were the main sites for surface complexation. Finally, effects of adsorbent dose, initial pH, contact time, and coexisting natural organic matters (humic acid (HA)) on the adsorption of Pb(II) were investigated. The results indicated that the pHZPC (adsorbents with zero point charge at this pH) was 5.3 and the adsorption reached equilibrium in 120 min. Isotherm simulations revealed that the natural arborvitae leaves exhibit effective adsorption for Pb(II) in aqueous solution, giving adsorptive affinity and capacity in an order of 'no HA' > 5 mg/L HA > 10 mg/L HA, and according to the Langmuir models, the maximum adsorptions of Pb(II) were 43.67 mg/g, 38.61 mg/g and 35.97 mg/g, respectively. The results demonstrated that the oriental arborvitae leaves showed high potentials for the adsorption of Pb(II) from aqueous solutions.

  5. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite

    International Nuclear Information System (INIS)

    Zhao Yijiang; Chen Yan; Li Meisheng; Zhou Shouyong; Xue Ailian; Xing Weihong

    2009-01-01

    Polyacrylamide/attapulgite (PAM/ATP) was prepared by the solution polymerization of acrylamide (AM) onto γ-methacryloxypropyl trimethoxy silane (KH-570)-modified attapulgite (ATP). PAM/ATP was characterized using Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The effects of contact time, adsorbent dosage, and pH of the initial solution on the adsorption capacities for Hg 2+ were investigated. The adsorption process was rapid; 88% of adsorption occurred within 5 min and equilibrium was achieved at around 40 min. The equilibrium data fitted the Langmuir sorption isotherms well, and the maximum adsorption capacity of Hg 2+ onto PAM/ATP was found to be 192.5 mg g -1 . The adsorption kinetics of PAM/ATP fitted a pseudo-second-order kinetic model. Our results suggest that chemisorption processes could be the rate-limiting steps in the process of Hg 2+ adsorption. Hg 2+ adsorbed onto PAM/ATP could be effectively desorbed in hot acetic acid solution, and the adsorption capacity of the regenerated adsorbents could still be maintained at 95% by the sixth cycle.

  6. Adsorptive Removal of Acid Blue 80 Dye from Aqueous Solutions by Cu-TiO2

    Directory of Open Access Journals (Sweden)

    Ingrid Johanna Puentes-Cárdenas

    2016-01-01

    Full Text Available The adsorption performance of a Cu-TiO2 composite for removing acid blue 80 (AB80 dye from aqueous solutions was investigated in terms of kinetics, equilibrium, and thermodynamics. The effect of operating variables, such as solution pH, initial dye concentration, contact time, and temperature, on AB80 adsorption was studied in batch experiments. AB80 adsorption increased with increasing contact time, initial dye concentration, and temperature and with decreasing solution pH. Modeling of adsorption kinetics showed good agreement of experimental data with the pseudo-second-order kinetics model. The experimental equilibrium data for AB80 adsorption were evaluated for compliance with different two-parameter, three-parameter, and four-parameter isotherm models. The Langmuir isotherm model best described the AB80 adsorption equilibrium data. The thermodynamic data revealed that the AB80 adsorption process was endothermic and nonspontaneous. Kinetics, equilibrium, and thermodynamic results indicate that Cu-TiO2 adsorbs AB80 by a chemical sorption reaction.

  7. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Mehrizad Ali

    2012-09-01

    Full Text Available Abstract The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K.

  8. Elimination of 2-chlorophenol from aqueous solutions by marine algae: Evidences of the mechanism of adsorption

    International Nuclear Information System (INIS)

    Cuizano, N.A.; Llanos, B.P.

    2009-01-01

    The mechanism of the removal of 2-chlorophenol onto the marine algae Lessonia nigrescens Bory and Macrocystis integrifolia Bory from aqueous solutions was investigated in batch experiments. The effect of the presence of metallic ions in the adsorptive process was evaluated. The results show that lead slightly increases the adsorption of 2-chlorophenol. This suggests two different types of adsorption of both types of pollutants by the two marine algae and a possible synergic effect. Scanning electron microscopy and energy dispersive X-ray analyses predominantly indicated a surface adsorption. Finally, the change in Gibbs free energy (ΔG 0 ) of the process was determined. The results show that the adsorption is not spontaneous for none of the algae. This also corroborates the absence of electrostatic interactions and the existence of a polar interaction in an unfavorable environment surrounded by hydroxyl groups. (author)

  9. Mathematical description of adsorption and transport of reactive solutes in soil: a review of selected literature

    International Nuclear Information System (INIS)

    Travis, C.C.

    1978-10-01

    This report reviews selected literature related to the mathematical description of the transport of reactive solutes through soil. The primary areas of the literature reviewed are (1) mathematical models in current use for description of the adsorption-desorption interaction between the soil solution and the soil matrix and (2) analytic solutions of the differential equations describing the convective-dispersive transport of reactive solutes through soil

  10. AUSTRALIAN PINE CONES-BASED ACTIVATED CARBON FOR ADSORPTION OF COPPER IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    MUSLIM A.

    2017-02-01

    Full Text Available The Australian Pine cones (APCs was utilised as adsorbent material by physical and chemical activation for the adsorption Cu(II in aqueous solution. FTIR and SEM analysis were conducted to obtain the active site and to characterise the surface morphology of the APCs activated carbon (APCs AC prepared through pyrolysis at 1073.15 K and alkaline activation of NaOH. The independent variables effect such as contact time, Cu(II initial concentration and the activator ratio in the ranges of 0-150 min, 84.88-370.21 mg/l and 0.2-0.6 (NaOH:APCs AC, respectively on the Cu(II adsorption capacity were investigated in the APCs activated carbon-solution (APCs ACS system with 1 g the APCs AC in 100 mL Cu(II aqueous solution with magnetic stirring at 75 rpm, room temperature of 298.15 K (± 2 K, 1 atm and pH 5 (±0.25. As the results, Cu(II adsorption capacity dramatically increased with increasing contact time and Cu(II initial concentration. The optimal Cu(II adsorption capacity of 26.71 mg/g was obtained in the APCs ACS system with 120-min contact time, 340.81 m/l initial Cu(II and 0.6 activator ratio. The kinetics study showed the Cu(II adsorption kinetics followed the pseudo-second-order kinetics with 27.03 mg/g of adsorption capacity, 0.09 g/mg.min of rate constant and 0.985-R2. In addition, the Cu(II adsorption isotherm followed the Langmuir model with 12.82 mg/g of the mono-layer adsorption capacity, 42.93 l/g of the over-all adsorption capacity and 0.954-R2.

  11. Silver (I-coordinated bis(trimethoxysilylpropylamine Polycondensate for Adsorptive Removal of Iodide from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Zhang Huifang

    2016-01-01

    Full Text Available Silver-coordinated bis(trimethoxysilylpropylamine polycondensate (TSPA-AgNO3 was prepared and used to adsorb iodide ions in aqueous solutions. Batch adsorption studies were performed to investigate the effects of pH, temperature and coexisting NaCl on adsorption behavior. The results show that TSPA-AgNO3 is easy to prepare and remarkably efficient in adsorbing iodide in water, especially in acidic solutions. Furthermore, increased temperature accelerated the adsorption, while coexisting NaCl inhibited the adsorption. TSPA-AgNO3 also proved to be chemically stable in simulated environmental situations, which reveals a promising potential for applying this method to the disposal of radioactive iodide in environment water.

  12. Physico-chemistry of adsorption of copper, nickel and cobalt on lignite from ammoniacal solutions

    International Nuclear Information System (INIS)

    Khattak, M.I.

    2004-01-01

    The present paper deals with a process developed for lignite adsorption that can be used to prevent the hard scale formation during distillation of NH/sub 3/ and CO/sub 2/, recover Cu, Ni and Cr from dilute solutions, Cu and NH/sub 3/ from waste effluent containing SO/sub 4/ radicals, separate Cu (NH/sub 3/)/sub 4//sup +2/ and AsO/sub 4//sup -3/ from ammonial solutions and recover Cu, Ni and Co from ore pulps. In additions to the study of the adsorptions of M, NH/sub 3/ and CO/sub 2/ on lignite with caustic soda) was also investigated. Changes of the functional groups of humic acid its salt, before and after the adsorption, were examined by infrared adsorption analysis. (author)

  13. Adsorption of hexavalent chromium by polyacrylonitrile-based porous carbon from aqueous solution.

    Science.gov (United States)

    Feng, Bin; Shen, Wenzhong; Shi, Liyi; Qu, Shijie

    2018-01-01

    Owing to the unique microporous structure and high specific surface area, porous carbon could act as a good carrier for functional materials. In this paper, polyacrylonitrile (PAN)-based porous carbon materials (PPC-0.6-600, PPC-0.8-600, PPC-0.6-800 and PPC-0.8-800) were prepared by heating KOH at 600°C and 800 o C for the removal of Cr(VI) from aqueous solution. The adsorbent was characterized by the techniques of Fourier transform infrared spectroscopy (FT-IR), elementary analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and N 2 adsorption techniques. The results showed that the adsorption capacity increased with decreasing pH value of the initial solution. The adsorption capacity of Cr(VI) on PPC-0.8-800 was much greater than that on other materials, and maximum adsorption capacity were calculated to be 374.90 mg g -1 . Moreover, PPC-0.8-800 had superior recyclability for the removal of Cr(VI) from wastewater, about 82% of its initial adsorption capacity was retained even after five cycles. The result of kinetic simulation showed that the adsorption of Cr(VI) on the PAN-based porous carbon could be described by pseudo-second-order kinetics. The adsorption process was the ionic interaction between protonated amine groups of PPC and HCrO 4 - ions.

  14. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder

    International Nuclear Information System (INIS)

    Weng, Chih-Huang; Lin, Yao-Tung; Tzeng, Tai-Wei

    2009-01-01

    The ability of an unconventional bio-adsorbent, pineapple leaf powder (PLP) for the adsorption of methylene blue (MB) from aqueous solution was studied. It was observed that intra-particle diffusion was involved in the adsorption process and that the kinetic data fitted well with a pseudo-second-order equation. Fitting parameters revealed that the rate of adsorption increased with decrease in dye concentration and decrease in ionic strength while the mixing speed did not have a significant effect on adsorption. The adsorption was favorable at higher pH and lower temperature, and the equilibrium data were well fitted by the Langmuir isotherm. The maximum adsorption capacity varied from 4.68 x 10 -4 to 9.28 x 10 -4 mol/g when pH increases from 3.5 to 9.5. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. The results revealed that this agricultural waste has potential to be used as an economical adsorbent for the removal of methylene blue from aqueous solution.

  15. Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution

    Science.gov (United States)

    Kamarudin, Sabariah; Mohammad, Masita

    2018-04-01

    A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.

  16. Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC)

    International Nuclear Information System (INIS)

    Kundu, Sanghamitra; Gupta, A.K.

    2007-01-01

    Contamination of potable groundwater with arsenic is a serious health hazard, which calls for proper treatment before its use as drinking water. The objective of the present study is to assess the effectiveness of iron oxide coated cement (IOCC) for As(III) adsorption from aqueous solution. Batch studies were conducted to study As(III) adsorption onto IOCC at ambient temperature as a function of adsorbent dose, pH, contact time, initial arsenic concentration and temperature. Kinetics reveal that the uptake of As(III) ion is very rapid and most of fixation occurs within the first 20 min of contact. The pseudo-second order rate equation successfully described the adsorption kinetics. Langmuir, Freundlich, Redlich-Peterson (R-P), and Dubinin-Radushkevich (D-R) models were used to describe the adsorption isotherms at different initial As(III) concentrations and at 30 g l -1 fixed adsorbent dose. The maximum adsorption capacity of IOCC for As(III) determined from the Langmuir isotherm was 0.69 mg g -1 . The mean free energy of adsorption (E) calculated from the D-R isotherm was found to be 2.86 kJ mol -1 which suggests physisorption. Thermodynamic parameters indicate an exothermic nature of adsorption and a spontaneous and favourable process. The results suggest that IOCC can be suitably used for As(III) removal from aqueous solutions

  17. Efficient adsorptive removal of Congo red from aqueous solution by synthesized zeolitic imidazolate framework-8

    Directory of Open Access Journals (Sweden)

    Canlan Jiang

    2016-10-01

    Full Text Available Dyes exposure in aquatic environment creates risks to human health and biota due to their intrinsic toxic mutagenic and carcinogenic characteristics. In this work, a metal-organic frameworks materials, zeolitic imidazolate framework-8 (ZIF-8, was synthesized through hydrothermal reaction for the adsorptive removal of harmful Congo red (CR from aqueous solution. Results showed that the maximum adsorption capacity of CR onto ZIF-8 was ultrahigh as 1250 mg g−1. Adsorption behaviors can be successfully fitted by the pseudo-second order kinetic model and the Langmuir isotherm equation. Solution conditions (pH condition and the co-exist anions may influent the adsorption behaviors. The adsorption performance at various temperatures indicated the process was a spontaneous and endothermic adsorption reaction. The enhanced adsorption capacity was determined due to large surface area of ZIF-8 and the strong interactions between surface groups of ZIF-8 and CR molecules including the electrostatic interaction between external active sites Zn−OH on ZIF-8 -and −SO3 or –N=N– sites in CR molecule, and the π–π interaction.

  18. A Study on adsorption of Li from aqueous solution using various adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Ryoo, Keon Sang [Dept. of Applied Chemistry, Andong National University, Andon (Korea, Republic of); Kim, Dae Ik [School of Electrical, Electronic Communication, and Computer Engineering, Chonnam National University, Yeosu (Korea, Republic of)

    2015-04-15

    The aim of the present study is to explore the possibility of utilizing fly ash, loess and activated charcoal for the adsorption of Li in aqueous solution. Batch adsorption experiments were performed to evaluate the influences of various factors like initial concentration, contact time, and temperature. The adsorption data showed that fly ash and activated charcoal are not effective for the adsorption of Li. On the contrary, loess showed much higher adsorption capacity for Li. The adsorption of Li on loess was highly concentration dependent. It was found that the adsorption capacity of loess is favored at a lower Li concentration. At equilibrium, approximately 95% of adsorption was achieved by loess. The equilibrium data were fitted well to the Freundlich isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher R 2 compared to the pseudo-first-order kinetic models. The thermodynamic parameters such as free energy ΔG, the enthalpy ΔH, and the entropy ΔS were calculated.

  19. Adsorption of Cu 2+ , As 3+ and Cd 2+ ions from aqueous solution ...

    African Journals Online (AJOL)

    The adsorption of Cu2+, Cd2+ and As3+ ions on eggshell from aqueous solution was studied under batch conditions at 30, 40, 50 and 60oC and concentrations of 10, 20, 30, 60 and 80 mg/l. The partition coefficient for the ions between aqueous solution and chicken eggshell increased with time and with increase in the ...

  20. Adsorption kinetics of diblock copolymers from a micellar solution on silica and titania.

    NARCIS (Netherlands)

    Bijsterbosch, H.D.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The solution and adsorption behavior of a series of diblock copolymers of hydrophobic poly(dimethyl siloxane) and hydrophilic poly(2-ethyl-2-oxazoline) was studied. These block copolymers formed large polydisperse micelles in an aqueous solution. The critical micelle concentration was lower than 2

  1. Removal of nitrite from aqueous solution by Bacillus amyloliquefaciens biofilm adsorption.

    Science.gov (United States)

    Hui, Cai; Guo, Xiaoxiao; Sun, Pengfei; Khan, Rashid Azim; Zhang, Qichun; Liang, Yongchao; Zhao, Yu-Hua

    2018-01-01

    A newly verified adsorbent biofilm produced by Bacillus amyloliquefaciens DT was investigated for nitrite removal from aqueous solutions. The biofilm's characteristics and adsorption mechanism were determined, with results indicating that nitrite ions were adsorbed onto the protonated amine sites of biofilm under acidic conditions. Analysis of various factors showed that higher nitrite adsorption capacities occurred at pH amyloliquefaciens biofilm can be considered as a promising adsorbent for nitrite removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk

    Directory of Open Access Journals (Sweden)

    P. Senthil Kumar

    2010-06-01

    Full Text Available The adsorption behavior of rice husk for cadmium ions from aqueous solutions has been investigated as a function of appropriate equilibrium time, adsorbent dose, temperature, adsorbate concentrations and pH in a batch system. Studies showed that the pH of aqueous solutions affected cadmium removal with the result that removal efficiency increased with increasing solution pH. The maximum adsorption was 98.65% at solution pH 6, contact time 60 min and initial concentration of 25 mg/L. The experimental data were analysed by the Langmuir, Freundlich and Temkin models of adsorption. The characteristic parameters for each isotherm and related correlation coefficients have been determined.  Thermodynamic parameters such as,  and have also been evaluated and it has been found that the sorption process was feasible, spontaneous and exothermic in nature. The kinetics of the sorption were analysed using the pseudo-first order and pseudo-second order kinetic models. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients for each kinetic model were calculated and discussed. It was shown that the adsorption of cadmium could be described by the pseudo-second order equation, suggesting that the adsorption process is presumably a chemisorption. The rice husk investigated in this study showed good potential for the removal of cadmium from aqueous solutions. The goal for this work is to develop inexpensive, highly available, effective metal ion adsorbents from natural waste as alternative to existing commercial adsorbents.

  3. Adsorption removal of boron in aqueous solutions by amine-modified tannin gel.

    Science.gov (United States)

    Morisada, Shintaro; Rin, Tetsuzen; Ogata, Takeshi; Kim, Yoen-Ho; Nakano, Yoshio

    2011-07-01

    A tannin gel (TG) synthesized from condensed tannin molecules has a remarkable ability to adsorb various metal ions in aqueous solutions. In the present study, the adsorption removal of boron in solutions at various pHs and temperatures has been examined using the TG and the amine-modified tannin gel (ATG) prepared with ammonia treatment of the TG. The adsorption amounts of boron for the TG and the ATG were relatively small and almost constant below pH 7, whereas the boron adsorption amounts increased with increasing pH in the range of pH above 7. Considering that in aqueous solutions above pH 7, the mole fraction of boric acid decreases while that of tetrahydroxyborate ion increases with increasing pH, the boron adsorption onto both gels takes place probably through the chelate formation of tetrahydroxyborate ion with the hydroxy and the amino groups in the gels. Besides, the adsorbability of the ATG for boron was higher than that of the TG due to the stable coordination bond between boron and nitrogen of the amino group in the ATG. The adsorption kinetics were adequately described by the pseudo-second order kinetic equation while the adsorption isotherms followed both the Langmuir and the Freundlich equations. The boron adsorbability of both the TG and the ATG at low boron concentration were comparable or fairly good compared with other adsorbents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Removal of humic acid from aqueous solution by magnetically separable polyaniline: adsorption behavior and mechanism.

    Science.gov (United States)

    Wang, Jiahong; Bi, Lijuan; Ji, Yanfen; Ma, Hongrui; Yin, Xiaolong

    2014-09-15

    Magnetically separable polyaniline (Fe3O4@SiO2-PANI) was prepared by in situ chemical polymerization of aniline on the surface of silica-coated Fe3O4 nanoparticles, and characterized by FTIR spectroscopy, powder X-ray diffraction, elemental analysis, transmission electron microscopy, vibrating sample magnetometry and X-ray photoelectron spectroscopy. Characterization results showed that Fe3O4@SiO2-PANI with amino groups of 1.78 mmol/g and the average diameter of 21.6 nm are superparamagnetic. Adsorption behavior of Fe3O4@SiO2-PANI nanoparticles for humic acid (HA) was investigated by batch experiments and adsorption kinetic tests. HA adsorption amount on the adsorbent decreased with increasing solution pH and the presence of Ca(2+) resulted in the enhanced HA adsorption. HA adsorption on Fe3O4@SiO2-PANI could be well described by Langmuir model and the maximum adsorption amount of the adsorbent for HA at 25°C was 36.36 mg/g. HA adsorption process on the adsorbent obey pseudo-second-order kinetics and the adsorption rates decrease with increasing initial HA concentration. The XPS analysis verified that HA adsorption over the adsorbent could be attributed to the surface complexation between the disassociated HA molecules and the protonated nitrogen of polyaniline on the adsorbent. HA loaded adsorbent could be magnetically separated and easily desorbed in 0.01 mol/L NaOH solution. Regeneration tests indicated that Fe3O4@SiO2-PANI could be used repeatedly. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A Review on Adsorption of Fluoride from Aqueous Solution

    Science.gov (United States)

    Habuda-Stanić, Mirna; Ergović Ravančić, Maja; Flanagan, Andrew

    2014-01-01

    Fluoride is one of the anionic contaminants which is found in excess in surface or groundwater because of geochemical reactions or anthropogenic activities such as the disposal of industrial wastewaters. Among various methods used for defluoridation of water such as coagulation, precipitation, membrane processes, electrolytic treatment, ion-exchange, the adsorption process is widely used. It offers satisfactory results and seems to be a more attractive method for the removal of fluoride in terms of cost, simplicity of design and operation. Various conventional and non-conventional adsorbents have been assessed for the removal of fluoride from water. In this review, a list of various adsorbents (oxides and hydroxides, biosorbents, geomaterials, carbonaceous materials and industrial products and by-products) and its modifications from literature are surveyed and their adsorption capacities under various conditions are compared. The effect of other impurities on fluoride removal has also been discussed. This survey showed that various adsorbents, especially binary and trimetal oxides and hydroxides, have good potential for the fluoride removal from aquatic environments. PMID:28788194

  6. Conductometric Studies Of Adsorption Of Sulfide On Charcoal From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Md. Rezwan Miah

    2017-03-01

    Full Text Available Adsorption of sulfide S2- from aqueous solution on commercial charcoal was studied using conductometric technique. A proportionally constant for concentration of S2- and its conductance was obtained by measuring conductance of S2- solution over a concentration range of 0.0005amp614850.02 M. The time-dependent measured conductance of S2- solution was converted to concentration using the obtained constant. The adsorption data were analyzed by both Freundlich and Langmuir isotherms. A surface coverage equal to 2.5 mg per gram of charcoal was obtained. The adsorption was found to follow first-order kinetics having rate constant equal to 2.65 amp61620 10amp614853 s-1.

  7. [Adsorption of phenanthrene from aqueous solution on cetylpyridinium bromide (CPB) -modified zeolite].

    Science.gov (United States)

    Li, Jia; Lin, Jian-Wei; Zhan, Yan-Hui; Chen, Zu-Mei; Wang, Peng-Jun

    2014-02-01

    Surfactant-modified zeolites (SMZs) with different coverage types were prepared by loading of different amounts of cetylpyridinium bromide (CPB) onto natural zeolites and were used as adsorbents to remove phenanthrene from aqueous solution. The adsorption of phenanthrene from aqueous solution on monolayer and bilayer SMZs as a function of adsorbent dosage, initial phenanthrene concentration, contact time, and temperature was investigated using batch experiments. Results showed monolayer and bilayer SMZs were effective for the removal of phenanthrene from aqueous solution. The phenanthrene removal efficiency of SMZs increased with increasing adsorbent dosage, but the amount of phenanthrene adsorbed on SMZs decreased with increasing adsorbent dosage. The adsorption kinetics of phenanthrene on SMZs well followed a pseudo-second-order kinetic model. The equilibrium adsorption data of phenanthrene on SMZs at a low concentration of phenanthrene in solution could be described by the Linear equation and Freundlich equation. The main mechanism for phenanthrene adsorption onto monolayer SMZ is hydrophobic interaction, and the main mechanism for phenanthrene adsorption onto bilayer SMZ is organic partitioning. The calculated thermodynamic parameters such as Gibbs free energy change (deltaG(theta)), enthalpy changes (deltaH(theta)), and entropy change (deltaS(theta)) showed that the adsorption process of phenanthrene on SMZs is spontaneous and exothermic in nature. When the CPB loading amount of bilayer SMZ was twice as much as that of monolayer SMZ, the phenanthrene adsorption capacity for bilayer SMZ was slightly higher than that for monolayer SMZ. In a conclusion, both monolayer and bilayer SMZs are promising adsorbents for the removal of phenanthrene from water and wastewater, and monolayer SMZ is a more cost-effective adsorbent for phenanthrene removal than bilayer SMZ.

  8. Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay

    International Nuclear Information System (INIS)

    Karim, A. Bennani; Mounir, B.; Hachkar, M.; Bakasse, M.; Yaacoubi, A.

    2009-01-01

    In this study, Moroccan crude clay of Safi, which was characterized by X-ray diffraction, is used as adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the Basic Red 46 (BR46) in aqueous solutions at various dye concentrations, adsorbent masses and pH values. The results showed that the adsorption capacity of the dye increased by initial dye concentration and pH values. Two kinetic models (the pseudo-first-order and the pseudo-second-order) were used to calculate the adsorption rate constants. The adsorption kinetics of the basic dye followed pseudo-second-order model. The experimental data isotherms were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevish equations. The monolayer adsorption capacity for BR46 dye is 54 mg/g of crude clay. Nearly 20 min of contact time was found to be sufficient for the dye adsorption to reach equilibrium. Thermodynamical parameters were also evaluated for the dye-adsorbent system and revealed that the adsorption process is exothermic in nature.

  9. Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay

    Energy Technology Data Exchange (ETDEWEB)

    Karim, A. Bennani [The Team of Research Analysis, Checks and Environment, High School of Technology, University Cadi Ayyad, Dar Si Aissa Road, BP 89, Safi (Morocco); The Team Environmental and Experimental Methodology, Laboratory of Organic Applied Chemistry, Faculty of the Sciences Semlalia, BP 2390, Marrakech (Morocco); Mounir, B., E-mail: mounirbadia@yahoo.fr [The Team of Research Analysis, Checks and Environment, High School of Technology, University Cadi Ayyad, Dar Si Aissa Road, BP 89, Safi (Morocco); Hachkar, M. [The Team of Research Analysis, Checks and Environment, High School of Technology, University Cadi Ayyad, Dar Si Aissa Road, BP 89, Safi (Morocco); Bakasse, M. [The Team of Analysis of the Microphones Polluting Organic, Faculty of the Sciences, University Chouaib Doukkali, BP 20, El Jadida (Morocco); Yaacoubi, A. [The Team Environmental and Experimental Methodology, Laboratory of Organic Applied Chemistry, Faculty of the Sciences Semlalia, BP 2390, Marrakech (Morocco)

    2009-08-30

    In this study, Moroccan crude clay of Safi, which was characterized by X-ray diffraction, is used as adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the Basic Red 46 (BR46) in aqueous solutions at various dye concentrations, adsorbent masses and pH values. The results showed that the adsorption capacity of the dye increased by initial dye concentration and pH values. Two kinetic models (the pseudo-first-order and the pseudo-second-order) were used to calculate the adsorption rate constants. The adsorption kinetics of the basic dye followed pseudo-second-order model. The experimental data isotherms were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevish equations. The monolayer adsorption capacity for BR46 dye is 54 mg/g of crude clay. Nearly 20 min of contact time was found to be sufficient for the dye adsorption to reach equilibrium. Thermodynamical parameters were also evaluated for the dye-adsorbent system and revealed that the adsorption process is exothermic in nature.

  10. Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay.

    Science.gov (United States)

    Karim, A Bennani; Mounir, B; Hachkar, M; Bakasse, M; Yaacoubi, A

    2009-08-30

    In this study, Moroccan crude clay of Safi, which was characterized by X-ray diffraction, is used as adsorbent for the investigation of the adsorption kinetics, isotherms and thermodynamic parameters of the Basic Red 46 (BR46) in aqueous solutions at various dye concentrations, adsorbent masses and pH values. The results showed that the adsorption capacity of the dye increased by initial dye concentration and pH values. Two kinetic models (the pseudo-first-order and the pseudo-second-order) were used to calculate the adsorption rate constants. The adsorption kinetics of the basic dye followed pseudo-second-order model. The experimental data isotherms were analyzed using the Langmuir, Freundlich and Dubinin-Radushkevish equations. The monolayer adsorption capacity for BR46 dye is 54 mg/g of crude clay. Nearly 20 min of contact time was found to be sufficient for the dye adsorption to reach equilibrium. Thermodynamical parameters were also evaluated for the dye-adsorbent system and revealed that the adsorption process is exothermic in nature.

  11. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution.

    Science.gov (United States)

    Nam, Seung-Woo; Jung, Chanil; Li, Hang; Yu, Miao; Flora, Joseph R V; Boateng, Linkel K; Her, Namguk; Zoh, Kyung-Duk; Yoon, Yeomin

    2015-10-01

    The adsorptive properties of graphene oxide (GO) were characterized, and the binding energies of diclofenac (DCF) and sulfamethoxazole (SMX) on GO adsorption were predicted using molecular modeling. The adsorption behaviors of DCF and SMX were investigated in terms of GO dosage, contact time, and pH. Additionally, the effects of sonication on GO adsorption were examined. GO adsorption involves "oxygen-containing functional groups" (OCFGs) such as COOH, which exhibit negative charges over a wide range of pH values (pH 3-11). DCF (-18.8 kcal mol(-1)) had a more favorable binding energy on the GO surface than SMX (-15.9 kcal mol(-1)). Both DCF and SMX were removed from solution (adsorbed to GO), up to 35% and 12%, respectively, within 6h, and an increase in GO dosage enhanced the removal of DCF. Electrostatic repulsion occurred between dissociated DCF/SMX and the more negatively charged GO at basic pH (>pKa). The sonication of GO significantly improved the removal of DCF (75%) and SMX (30%) due to dispersion of exfoliated GO particles and the reduction of OCFGs on the GO surface. Both DCF and SMX in the adsorption isotherm were explained well by the Freundlich model. The results of this study can be used to maximize the adsorption capacities of micropollutants using GO in water treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon.

    Science.gov (United States)

    Gil, A; Taoufik, N; García, A M; Korili, S A

    2018-04-19

    Batch sorption experiments were performed to study the adsorption of six emerging pollutants from aqueous solutions using a commercial granular activated carbon as adsorbent. Caffeine, clofibric acid, diclofenac, gallic acid, ibuprofen and salicylic acid were selected as representative contaminants. The activated carbon was characterized by nitrogen adsorption at 77 K, and through the determination of point of zero charge. The effects of several operational parameters, such as pH, initial concentration of organic molecules, mass of adsorbent and contact time, on the sorption behaviour were evaluated. The contact time to attain equilibrium for maximum adsorption was found to be 40 min. The kinetic data were correlated to several adsorption models, and the adsorption mechanism found to follow pseudo-second-order and intraparticle-diffusion models with external mass transfer predominating in the first 15 min of the experiment. The equilibrium adsorption data were analysed using the Freundlich, Langmuir and Toth isotherm equation models. The similar chemical structure and molecular weight of the organic pollutants studied to make the adsorption capacity of the activated carbon used very similar for all the molecules.

  13. Adsorption of Acid Red 57 from aqueous solutions onto polyacrylonitrile/activated carbon composite.

    Science.gov (United States)

    El-Bindary, Ashraf A; Diab, Mostafa A; Hussien, Mostafa A; El-Sonbati, Adel Z; Eessa, Ahmed M

    2014-04-24

    The adsorption of Acid Red 57 (AR57) onto Polyacrylonitrile/activated carbon (PAN/AC) composite was investigated in aqueous solution in a batch system with respect to contact time, pH and temperature. Physical characteristics of (PAN/AC) composite such as fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were obtained. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The dynamic data fitted the pseudo-second-order kinetic model well. The activation energy, change of free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The thermodynamics of the adsorption indicated spontaneous and exothermic nature of the process. The results indicate that (PAN/AC) composite could be employed as low-cost material for the removal of acid dyes from textile effluents. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The Erythrina Variegate Biochar's Adsorption to NH4+-N and P from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    LIU Xiang

    2017-12-01

    Full Text Available The biochar derived from Erythrina Variegate which was pyrolyzed at the temperature of 300℃, 500℃ and 700℃ was employed to investigate its adsorption property to NH4+-N and P by kinetics and isothermal adsorption equation. The results of isothermal adsorption model showed that the Langmuir equation fitted the data very well and the adsorption amount increased with the increase of initial concentration of NH4+-N and P. Besides, the BC500 had the best adsorption effect. The results of kinetics model showed that the adsorption process of biochar pyrolyzed at different temperatures to NH4+-N and P were concentrated in the initial 300 min and 60 min, respectively. They all fitted the pseudo-second order kinetic equation well. Besides, in different initial pH, the adsorption effects of biochar to NH4+-N and P in aqueous solutions were pH7 > pH11 > pH3 and pH11 > pH7 > pH3, respectively.

  15. Adsorption of polynuclear aromatic hydrocarbons from aqueous solution: Agrowaste-modified kaolinite vs surfactant modified bentonite

    Directory of Open Access Journals (Sweden)

    E. I. Unuabonah

    2017-01-01

    Full Text Available The adsorption efficiency of a new hybrid clay adsorbent for polynuclear aromatic hydrocarbons (PAHs is compared with known modified clay adsorbents. The new hybrid clay adsorbent (HYCA showed far higher adsorption capacities for the adsorption of various PAH molecules compared with sodium dodecyl sulfate modified and humic acid modified Bentonite clay adsorbents. With the new hybrid clay adsorbent (HYCA, the adsorption of some of the larger PAH molecules was complete in the first 1 h as compared with ≈ 62% and ≈ 76% observed for both humic acid modified and sodium dodecyl sulfate modified Bentonite clay adsorbents respectively. In 24 h adsorption of the PAHs was complete for all adsorbents with HYCA adsorbent showing better efficiency in the removal of the PAH molecules from aqueous solutions. No significant change was observed with increase in time up to 48 h. The adsorption was observed to be more spontaneous with HYCA adsorbent than with either modified Bentonite adsorbents. The enthalpy of adsorption did not follow any specific order and were not consistent for all PAH molecules considered.

  16. Adsorption of dimethyl trisulfide from aqueous solution on a low-cost adsorbent: thermally activated pinecone

    Science.gov (United States)

    Shang, Jingge; He, Wei; Fan, Chengxin

    2015-01-01

    Thermally activated pinecone (TAP) was used for the adsorption of dimethyl trisulfide (DMTS) from aqueous solutions, which was proved to be the main odorous in algae-caused black bloom. The effects of adsorbent dosage, adsorbate concentration and contact time on DMTS biosorption were studied. The TAP produced at 600°C exhibited a relatively high surface area (519.69 m2/g) and excellent adsorption capacity. The results show that the adsorption of DMTS was initially fast and that the equilibrium time was 6 h. Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity. The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage. The adsorption process conforms well to a pseudo-second-order kinetics model. The adsorption of DMTS is more appropriately described by the Freundlich isotherm ( R 2 =0.996 1) than by the Langmuir isotherm ( R 2 =0.916 9). The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.

  17. Equilibrium adsorption of rhodamine B on used black tea leaves from acidic aqueous solution

    Directory of Open Access Journals (Sweden)

    Mohammad Abul Hossain

    2012-10-01

    Full Text Available The presence of carcinogenic dye like rhodamine B (Rh-B in textile wastewater affects the quality of water to consumers. The adsorption of Rh-B on used black tea leaves (UBTL was studied in batch process to investigate its removal efficiency. The effects of contact time, concentration, temperature, pH etc. on adsorption have been investigated. The UV-visible spectrophotometer was used for analysis of Rh-B at constant pH. The adsorption isotherms were constructed for different temperatures using acidic solution of pH 2.0. Freundlich, Langmuir and Dubinin–Raduskevich (D-R equations were used to analyze the equilibrium adsorption data. The experimental data follows Freundlich equation more precisely compare with the Langmuir one. The maximum amount adsorbed calculated from Langmuir equation is 72.5 mg/g at 30 oC which is increased with increasing temperature. Separation factor and thermodynamic parameters revealed that the process is favorable, spontaneous and endothermic nature. Possible mechanism of the process was elucidated from the effect of solution pH on amount adsorbed. The endothermic nature of the adsorption might be due to the fragmentation of Rh-B molecules during the adsorption process.

  18. Kinetics of diuron and amitrole adsorption from aqueous solution on activated carbons.

    Science.gov (United States)

    Fontecha-Cámara, M A; López-Ramón, M V; Pastrana-Martínez, L M; Moreno-Castilla, C

    2008-08-15

    A study was conducted on the adsorption kinetics of diuron and amitrole from aqueous solutions on activated carbons of different particle sizes and on an activated carbon fiber. Different kinetic models were applied to the experimental results obtained. A pseudo-second-order rate equation fitted the adsorption kinetics data better than a pseudo-first-order rate equation. Amitrole showed faster adsorption kinetics compared with diuron because of the smaller size of the former herbicide, despite its lower driving force for adsorption. Both reaction rate constants increased when the particle size decreased. The activated carbon fiber and the activated carbon of smallest particle size (0.03 mm) showed similar adsorption kinetics. The intraparticle diffusion rate constant increased with higher initial concentration of herbicides in solution and with lower particle size of the adsorbent. This is because the rise in initial concentration increased the amount adsorbed at equilibrium, and the reduction in particle size increased the number of collisions between adsorbate and adsorbent particles. Demineralization of the activated carbon with particle size of 0.5mm had practically no effect on the adsorption kinetics.

  19. Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica coat

    Directory of Open Access Journals (Sweden)

    Manal El-Sadaawy

    2014-06-01

    Full Text Available The present study investigates the possibility of using low cost agriculture waste as doum-palm seed coat for the removal of nickel ions from aqueous solutions. Two activated carbons had been prepared from raw doum-palm seed coat (DACI and DACII; as well, the raw material was used as an adsorbent (RD. Batch adsorption experiments were performed as a function of pH of solution, initial nickel ions concentration, dose of adsorbent and contact time. Adsorption data were modeled using Langmuir, Freundlich, Temkin and D–R Models. Different error analysis conforms that the isotherm data followed Freundlich models for all adsorbents. Adsorption kinetic data were tested using pseudo-first order, pseudo-second order and Elovich model. Adsorption mechanism was investigated using the intra-particle diffusion model. Diffusion coefficients were calculated using the film and intraparticle diffusion models. Kinetic studies showed that the adsorption of Ni2+ ions onto RD, DACI and DACII followed pseudo-second order kinetic model, and indicates that the intra-particle diffusion controls the rate of adsorption but it is not the rate limiting step.

  20. Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder

    International Nuclear Information System (INIS)

    Li Shunxing; Zheng Fengying; Huang Yang; Ni Jiancong

    2011-01-01

    The adsorption ability of duckweed (Lemna minor) powders for removing inorganic and organic mercury (methyl and ethyl mercury) has been studied using cold vapour atomic absorption spectrometry. The optimal adsorption conditions were: (a) the pH value of the solution 7.0 for inorganic and ethyl mercury, 9.0 for methyl mercury, and (b) equilibrium adsorption time 10, 20, and 40 min for inorganic mercury, methyl mercury, and ethyl mercury, respectively. After adsorption by L. minor powder for 40 min, when the initial concentrations of inorganic and organic mercury were under 12.0 μg L -1 and 50.0 μg L -1 , respectively, the residual concentrations of mercury could meet the criterion of drinking water (1.0 μg L -1 ) and the permitted discharge limit of wastewater (10.0 μg L -1 ) set by China and USEPA, respectively. Thorough removal of both inorganic and organic mercury from aqueous solutions was reported for the first time. The significant adsorption sites were C-O-P and phosphate groups by the surface electrostatic interactions with aqueous inorganic and organic mercury cations, and then the selective adsorption was resulted from the strong chelating interaction between amine groups and mercury on the surface of L. minor cells.

  1. Adsorptive removal of congo red dye from aqueous solution using bael shell carbon

    International Nuclear Information System (INIS)

    Ahmad, Rais; Kumar, Rajeev

    2010-01-01

    This study investigates the potential use of bael shell carbon (BSC) as an adsorbent for the removal of congo red (CR) dye from aqueous solution. The effect of various operational parameters such as contact time, temperature, pH, and dye concentration were studied. The adsorption kinetics was modeled by first-order reversible kinetics, pseudo-first-order kinetics, and pseudo-second-order kinetics. The dye uptake process obeyed the pseudo-second-order kinetic expression at pH 5.7, 7 and 8 whereas the pseudo-first-order kinetic model was fitted well at pH 9. Langmuir, Freundlich and Temkin adsorption models were applied to fit adsorption equilibrium data. The best-fitted data was obtained with the Freundlich model. Thermodynamic study showed that adsorption of CR onto BSC was endothermic in nature and favorable with the positive ΔH o value of 13.613 kJ/mol.

  2. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics

    Science.gov (United States)

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz

    2015-01-01

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430

  3. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics.

    Science.gov (United States)

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; Rehman, Aziz Ur

    2015-07-08

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy ( ∆G° ), enthalpy ( ∆H° ) and entropy ( ∆S° ) were calculated for the adsorption of congo red, indicating an exothermic process.

  4. Adsorption of methyl orange from aqueous solution onto PMMA nanofiber: Kinetics study

    Science.gov (United States)

    Zulfikar, Muhammad Ali; Bahri, Afdal; Setiyanto, Henry; Nasir, Muhammad

    2017-07-01

    The potential of polymethyl methacrylate (PMMA) nanofiber prepared by the electrospinning technique for the methyl orange (MO) adsorption from aqueous solution was investigated. In this study, the adsorption experiments were carried out to investigate the effect of temperatures in a batch system. From experiment it can be seen that the MO adsorption using PMMA nanofiber increased with increasing temperature. The kinetic data of MO were analyzed by pseudo-first-order and pseudo-second-order kinetic models. It was found that the amount of MO adsorbed increase with increasing temperature. Kinetics parameters data indicated that the MO adsorption onto PMMA nanofiber was found to follow both pseudo first and second-order rate equations.

  5. A study of the mechanism of fluoride adsorption from aqueous solutions onto Fe-impregnated chitosan.

    Science.gov (United States)

    Zhang, Jing; Chen, Nan; Tang, Zheng; Yu, Yang; Hu, Qili; Feng, Chuanping

    2015-05-14

    The adsorption of fluoride from aqueous solutions onto an Fe-impregnated chitosan (Fe-CTS) granular adsorbent was studied, and the adsorption capacity was determined to be 1.9736 mg g(-1) at an initial fluoride concentration of 10 mg L(-1). The effects of the initial fluoride concentration, dosage, and temperature were investigated using factorial design and analysis. The results indicated that high initial fluoride concentrations, low dosages, and low temperatures could enhance the fluoride adsorption capacity. In addition, Fe-CTS exhibited high selectivity for fluoride removal in the presence of high levels of several coexisting anions (nitrate, chloride, bicarbonate, and phosphate), except carbonate and sulfate. The adsorption process followed the Langmuir model at low fluoride concentrations and the Freundlich model at high initial fluoride concentrations. The data also fit the pseudo-second-order model. Scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and extended X-ray absorption fine-structure (EXAFS) spectroscopy were used to elucidate the adsorption mechanism. The FTIR and EXAFS analyses revealed that Fe was chelated with -NH2 and -OH groups on the CTS, and fluoride adsorption on the Fe-CTS occurred due to ion exchange between chloride and fluoride. a granular Fe-impregnated chitosan (Fe-CTS) adsorbent was synthesized via chelation of Fe ions to -OH and -NH2 groups of CTS. The Fe-CTS granular adsorbent exhibited high performance for the adsorption of fluoride. The mechanism of fluoride adsorption on Fe-CTS was elucidated using EXAFS and FTIR analyses. Fluoride adsorption on Fe-CTS occurred via ion exchange between chloride and fluoride.

  6. Ligand adsorption on an activated carbon for the removal of chromate ions from aqueous solutions.

    Science.gov (United States)

    García-Martín, J; López-Garzón, R; Godino-Salido, M Luz; Gutiérrez-Valero, M Dolores; Arranz-Mascarós, P; Cuesta, R; Carrasco-Marín, F

    2005-07-19

    The results presented in this work are related to the design of a guideline to develop specific properties at the surface of an activated carbon (AC). For this, two model aromatic compounds have been synthesized and their electrolytic behavior in aqueous solutions was studied by a potentiometric method. The textural characteristics of the activated carbon were determined by porosimetry methods. The nature of oxygen-carrying functions and the acid-base behavior of the AC surface were characterized by TPD and potentiometric titration methods, respectively. The adsorption and desorption equilibria of the aromatic compounds on activated carbon were measured in aqueous solutions, and the hysteresis between adsorption and desorption, which reveals irreversible adsorption, was discussed on the basis of the frontier orbital theory. HOMO and LUMO orbitals of the adsorbent and adsorbates were calculated, and irreversible adsorption was attributed to the small energy difference between HOMO and LUMO of the aromatic adsorbates and the adsorbent. Adsorption equilibria of K2CrO4 in aqueous solution on the AC alone and on the AC-aromatic ligand adsorbents, respectively, prove the efficient development of specific chemical functions at the carbon surface provided by the adsorbed aromatic compounds.

  7. Adsorption and removal of bisphenol A from aqueous solution by p-phenylenediamine modified magnetic graphene oxide

    Directory of Open Access Journals (Sweden)

    Tang Xiaosheng

    2017-01-01

    Full Text Available p-Phenylenediamine functionalized magnetic graphene oxide nanocomposites (PPD-MGO were prepared and utilized in the adsorption and removal of bisphenol A in aqueous solution. The novel nanomaterials were characterized by transmission electron microscopy (TEM, Fourier infrared spectrometry (FT-IR and vibrating sample magnetometer (VSM. The factors affected the adsorption of bisphenol A including adsorption time, temperature and pH of solution, adsorption kinetics and isotherms were all investigated. The results showed that PPD-MGO nanomaterial exhibited good adsorption ability for bisphenol A and good resuability. The maximum adsorption capacity reached 155.0 mg g-1 at 45°C and pH 7. The removal rate was 99.2 % after three times of adsorption with new nanomaterials. After five cycles adsorption, the adsorption capacity of PPD-MGO remained at 94.0 %. The adsorption of bisphenol A was found that fitted pseudo second order kinetics equations and the Freundlich adsorption model. The experimental results showed the PPD-MGO nanomaterial had a good adsorption ability to remove organic compounds in aqueous solution.

  8. Applicability of the theory of volume filling of micropores to adsorption of caprolactam from aqueous solutions with active carbons

    Energy Technology Data Exchange (ETDEWEB)

    Khodorov, E.I.; Kazakov, V.A.; Semerikova, V.V.; Surinova, S.I.

    1985-06-10

    The absence of a scientifically based method of selecting adsorbents in the extraction of organic substances from waste water and solution which would allow for their multicycle use in adsorption-desorption stages often prevents the introduction of adsorption technology into industrial practice. This paper demonstrates the possibility of calculating the adsorption equilibrium of highly soluble organic compounds with the theory of volume filling of micropores equations in consideration of the activities of the extracted component in the solution and the change in the partial affinity coefficient with the degree of filling of the adsorption volume on the example of extraction of caprolactam from aqueous solutions.

  9. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    International Nuclear Information System (INIS)

    Yoosefian, Mehdi

    2017-01-01

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N 2 O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N 2 O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N 2 O onto CNT, the horizontal adsorption with E ads = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N 2 O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N 2 O were investigated. Adsorption of N 2 O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N 2 O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N 2 O sensors.

  10. Adsorption of Rhodamine B Dye from Aqueous Solution on Irvingia ...

    African Journals Online (AJOL)

    NICOLAAS

    RawIrvingia gabonenses(dika nut) (DN) and its acid-treated form (ADN) were used for the uptake of rhodamine B (RhB) dye from aqueous solution. The adsorbents were characterized by Fourier transform infrared (FTIR) spectroscopy, Brunauer–Emmett–. Teller (BET) surface area analysis and scanning electron ...

  11. Adsorptive removal of cationic dye from aqueous solution using ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2017-12-03

    Dec 3, 2017 ... Langmuir isotherm also had the highest correlation factor, thus it was the best for describing the equilibrum process. REFERENCES. Ahmad M. A, Ahmad, N and Bello O. S (2015). Removal of Remazol Brilliant Blue Reactive. Dye from Aqueous Solutions Using Watermelon. Rinds as Adsorbent. J. Disp. Sci.

  12. Adsorption of Rhodamine B Dye from Aqueous Solution on Irvingia ...

    African Journals Online (AJOL)

    Raw Irvingia gabonenses (dika nut) (DN) and its acid-treated form(ADN) were used for the uptake of rhodamineB(RhB) dye from aqueous solution. The adsorbents were characterized by Fourier transform infrared (FTIR) spectroscopy, Brunauer–Emmett– Teller (BET) surface area analysis and scanning electron microscopy ...

  13. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons.

    Science.gov (United States)

    Bernal, Valentina; Erto, Alessandro; Giraldo, Liliana; Moreno-Piraján, Juan Carlos

    2017-06-22

    Paracetamol adsorption in acidic, neutral and basic media on three activated carbons with different chemistry surfaces was studied. A granular activated carbon (GAC) was prepared from coconut shell; starting from this sample, an oxidized activated carbon (GACo) was obtained by treating the GAC with a boiling solution of 6 M nitric acid, so to generate a greater number of oxygenated surface groups. In addition, a reduced activated carbon (GACr) was obtained by heating the GAC at 1173 K, to remove the oxygenated surface groups. Paracetamol adsorption was higher for GACr due to the lower presence of oxygenated surface functional groups. Moreover, adsorption was highest at neutral pH. The magnitude of the interactions between paracetamol molecules and activated carbons was studied by measuring the immersion enthalpies of activated carbons in solution of paracetamol at different concentrations and pH values and by calculating the interaction enthalpy. The highest value was obtained for GACr in a paracetamol solution of 1000 mg L -1 at pH 7, confirming that paracetamol adsorption is favoured on basic activated carbons at pH values near to neutrality. Finally, the Gibbs energy changes confirmed the latter result, allowing explaining the different magnitudes of the interactions between paracetamol and activated carbons, as a function of solution pH.

  14. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons

    Directory of Open Access Journals (Sweden)

    Valentina Bernal

    2017-06-01

    Full Text Available Paracetamol adsorption in acidic, neutral and basic media on three activated carbons with different chemistry surfaces was studied. A granular activated carbon (GAC was prepared from coconut shell; starting from this sample, an oxidized activated carbon (GACo was obtained by treating the GAC with a boiling solution of 6 M nitric acid, so to generate a greater number of oxygenated surface groups. In addition, a reduced activated carbon (GACr was obtained by heating the GAC at 1173 K, to remove the oxygenated surface groups. Paracetamol adsorption was higher for GACr due to the lower presence of oxygenated surface functional groups. Moreover, adsorption was highest at neutral pH. The magnitude of the interactions between paracetamol molecules and activated carbons was studied by measuring the immersion enthalpies of activated carbons in solution of paracetamol at different concentrations and pH values and by calculating the interaction enthalpy. The highest value was obtained for GACr in a paracetamol solution of 1000 mg L−1 at pH 7, confirming that paracetamol adsorption is favoured on basic activated carbons at pH values near to neutrality. Finally, the Gibbs energy changes confirmed the latter result, allowing explaining the different magnitudes of the interactions between paracetamol and activated carbons, as a function of solution pH.

  15. ADSORPTION CHARACTERISTIC OF IRON ONTO POLY[EUGENOL-CO-(DIVINYL BENZENE] FROM AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Fitrilia Silvianti

    2017-09-01

    • Zou, X.; Pan, J.; Ou, H.; Wang, X.;Guan, W.; Li, C.; Yan, Y.; Duan, Y. Adsorptive removal of Cr(III and Fe(III from aqueous solution by chitosan/attapulgite composites: Equilibrium, thermodynamics and kinetics. Chem. Eng. J. 2011, 167: 112-121, DOI: 10.1016/j.cej.2010.12.009

  16. Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass.

    Science.gov (United States)

    Ur Rehman, Muhammad Saif; Kim, Ilgook; Han, Jong-In

    2012-10-15

    This study was aimed at using sugar extracted spent rice biomass (SRB) as a potential adsorbent to remove methylene blue (MB) dye from aqueous solution. The SRB was used without any modification. A three factor full factorial experimental design (2(3)) was employed to investigate the effect of factors (adsorbent dose, dye concentration, temperature) and their interaction on the adsorption capacity and color removal. Two levels for each factor were used; adsorbent dose (0.25-0.5g/100mL), dye concentration (25-50mg/L), and temperature (25-45°C). Initial dye concentration and adsorbent dosage were found as significant factors for the adsorption of MB dye. Langmuir isotherm (R(2)>0.998) best explained the equilibrium of MB adsorption on SRB with monolayer adsorption capacity of 8.13mg/g. The pseudo-second order model (R(2)>0.999) was best fitted to explain the adsorption kinetics. Thermodynamic investigation revealed that the adsorption process was spontaneous, endothermic, and was feasible to treat dyeing wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite

    International Nuclear Information System (INIS)

    Huangxin Cheng; Kefeng Zeng; Jitao Yu

    2013-01-01

    Adsorptive behavior of uranium from aqueous solution on graphene oxide supported on sepiolite composites as a function of pH, ionic strength, temperature and initial uranium concentration was carried out by the batch techniques. Sepiolite composites was synthesized and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and potentiometric acid–base titration. According to XRD patterns and SEM images, the graphene oxide nanosheets were grafted on sepiolite surface successfully. The macroscopic results showed that the adsorption of uranium on sepiolite composites was significantly depended on pH, whereas no effect of ionic strength on uranium adsorption at high pH and high ionic strength conditions was observed. The uptake equilibrium is best described by Langmuir adsorption isotherm, and the maximum adsorption capacity (Qe) of sepiolite composites at pH 5.0 and T = 298 K were calculated to be 161.29 mg/g. Thermodynamic results indicated that the adsorption of uranium on sepiolite composites is the spontaneous and exothermic process. (author)

  18. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin: Isotherm, kinetic, and thermodynamic analysis

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan

    2006-01-01

    Removal of 4-chlorophenol (4-CP) from synthetic aqueous solutions through adsorption on Amberlite XAD-4 resin, a non-ionic macroreticular resins, under batch equilibrium experimental conditions at 298, 308 and 318 K was investigated. It is necessary to propose a suitable model to a better understanding on the mechanism of 4-CP adsorption. For this purpose, Langmiur, Freundlich, Toth, and Redlich-Peterson (RP) isotherm models were compared. The two and three parameters in the adopted adsorption isotherm models were determined by the help of MATLAB package program. It was determined that best fitted adsorption isotherm models were obtained to be in the order: Redlich-Peterson > Langmuir > Toth > Freundlich isotherms. The pseudo-second-order kinetic model provided the best correlation to the experimental results. Results of the intra-particle diffusion model show that the pore diffusion is not the only rate limiting step. The lower correlation of the data to the Bangham's equation also represents that the diffusion of the adsorbate into pores of the sorbent is not the only rate-controlling step. The thermodynamic constants of adsorption phenomena; ΔG o , ΔH o , and ΔS o were found as -4.17 (at 298 K) kJ/mol, -42.01 kJ/mol, and -0.127 kJ/(mol K), respectively. The results showed that adsorption of 4-CP on Amberlite XAD-4, a nonionic polymeric resin was exothermic and spontaneous

  19. An experimental design approach for modeling As(V) adsorption from aqueous solution by activated carbon.

    Science.gov (United States)

    Bakkal Gula, C; Bilgin Simsek, E; Duranoglu, D; Beker, U

    2015-01-01

    The present paper discusses response surface methodology as an efficient approach for predictive model building and optimization of As(V) adsorption on activated carbon derived from a food industry waste: peach stones. The objectives of the study are application of a three-factor 2³ full factorial and central composite design technique for maximizing As(V) removal by produced activated carbon, and examination of the interactive effects of three independent variables (i.e., solution pH, temperature, and initial concentration) on As(V) adsorption capacity. Adsorption equilibrium was investigated by using Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. First-order and second-order kinetic equations were used for modeling of adsorption kinetics. Thermodynamic parameters (ΔG °, ΔH °, and ΔS °) were calculated and used to explain the As(V) adsorption mechanism. The negative value of ΔH (-7.778 kJ mol⁻¹) supported the exothermic nature of the sorption process and the Gibbs free energy values (ΔG°) were found to be negative, which indicates that the As(V) adsorption is feasible and spontaneous.

  20. Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by π-π Interactions

    Science.gov (United States)

    Peng, Bingquan; Chen, Liang; Que, Chenjing; Yang, Ke; Deng, Fei; Deng, Xiaoyong; Shi, Guosheng; Xu, Gang; Wu, Minghong

    2016-08-01

    The use of carbon based materials on the removal of antibiotics with high concentrations has been well studied, however the effect of this removal method is not clear on the actual concentration of environments, such as the hospital wastewater, sewage treatment plants and aquaculture wastewater. In this study, experimental studies on the adsorption of 7 antibiotics in environmental concentration of aqueous solutions by carbon based materials have been observed. Three kinds of carbon materials have shown very fast adsorption to antibiotics by liquid chromatography-tandem mass spectrometry (LC-MS-MS) detection, and the highest removal efficiency of antibiotics could reach to 100% within the range of detection limit. Surprisedly, the adsorption rate of graphene with small specific surface area was stronger than other two biochar, and adsorption rate of the two biochar which have approximate specific surface and different carbonization degree, was significantly different. The key point to the present observation were the π-π interactions between aromatic rings on adsorbed substance and carbon based materials by confocal laser scanning microscope observation. Moreover, adsorption energy markedly increased with increasing number of the π rings by using the density functional theory (DFT), showing the particular importance of π-π interactions in the adsorption process.

  1. Adsorption of azo dyes from aqueous solution by the hybrid MOFs/GO.

    Science.gov (United States)

    Li, Ling; Shi, Zhennan; Zhu, Hongyang; Hong, Wei; Xie, Fengwei; Sun, Keke

    2016-01-01

    In this work, a hybrid of chromium(III) terephthalate metal organic framework (MIL-101) and graphene oxide (GO) was synthesized and its performance in the removal of azo dyes (Amaranth, Sunset Yellow, and Carmine) from water was evaluated. The adsorption for azo dyes on MIL-101/GO was compared with that of MIL-101, and it was found that the addition of GO enhanced the stability of MIL-101 in water and increased the adsorption capacity. The maximum adsorption capacities of MIL-101/GO were 111.01 mg g(-1) for Amaranth, 81.28 mg g(-1) for Sunset Yellow, and 77.61 mg g(-1) for Carmine. The adsorption isotherms and kinetics were investigated, showing that the adsorption fits the Freundlich isotherm and the pseudo-second-order kinetic model. The recyclability of MIL-101/GO was shown by the regeneration by acetone. The high adsorption capability and excellent reusability make MIL-101/GO a competent adsorbent for the removal dyes from aqueous solution.

  2. Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene.

    Science.gov (United States)

    Ilaiyaraja, P; Deb, Ashish Kumar Singha; Sivasubramanian, K; Ponraju, D; Venkatraman, B

    2013-04-15

    A new polymeric chelating resin was prepared by growing third generation poly(amido)amine (PAMAMG3) dendron on the surface of styrene divinylbenzene (SDB) and characterized by FTIR, TGA and SEM. The ideal branching of dendron in the chelating resin was determined from potentiometric titration. Adsorption of uranium (VI) from aqueous solution using PAMAMG3-SDB chelating resin was studied in a series of batch experiments. Effect of contact time, pH, ionic strength, adsorbent dose, initial U(VI) concentration, dendron generation and temperature on adsorption of U(VI) were investigated. Kinetic experiments showed that U(VI) adsorption on PAMAMG3-SDB followed pseudo-second-order kinetics model appropriately and equilibrium data agreed well with the Langmuir isotherm model. Thermodynamic parameters (ΔH°, ΔS°, ΔG°) were evaluated from temperature dependent adsorption data and the uranium adsorption on PAMAMG3-SDB was found to be endothermic and spontaneous in nature. The sticking probability value (5.303 × 10(-9)), kinetic and isotherm data reveal the chemisorption of uranium on PAMAMG3-SDB and adsorption capacity of the chelating resin was estimated to be 130.25 mg g(-1) at 298 K. About 99% of adsorbed U(VI) can be desorbed from PAMAMG3-SDB by a simple acid treatment suggesting that the chelating resin is reusable. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. An initial research on solute migration model coupled with adsorption of surface complexation in groundwater

    International Nuclear Information System (INIS)

    Qian Tianwei; Chen Fanrong

    2003-01-01

    The influence of solution chemical action in groundwater on solute migration has attracted increasing public attention, especially adsorption action occurring on surface of solid phase and liquid phase, which has play a great role in solute migration. There are various interpretations on adsorption mechanism, in which surface complexion is one of successful hypothesis. This paper first establishes a geochemical model based on surface complexion and then coupled it with traditional advection-dispersion model to constitute a solute migration model, which can deal with surface complexion action. The simulated results fit very well with those obtained by the precursors, as compared with a published famous example, which indicates that the model set up by this paper is successful. (authors)

  4. Adsorption of mercury (II from liquid solutions using modified activated carbons

    Directory of Open Access Journals (Sweden)

    Hugo Soé Silva

    2010-06-01

    Full Text Available Mercury is one of the most toxic metals present in the environment. Adsorption has been proposed among the technologies for mercury abatement. Activated carbons are universal adsorbents which have been found to be a very effective alternative for mercury removal from water. The effectiveness with which a contaminant is adsorbed by the solid surface depends, among other factors, on the charge of the chemical species in which the contaminant is in solution and on the net charge of the adsorbent surface which depend on the pH of the adsorption system. In this work, activated carbon from carbonized eucalyptus wood was used as adsorbent. Two sulphurization treatments by impregnation with sulphuric acid and with carbon disulphide, have been carried out to improve the adsorption capacity for mercury entrapment. Batch adsorption tests at different temperatures and pH of the solution were carried out. The influence of the textural properties, surface chemistry and operation conditions on the adsorption capacity, is discussed.

  5. Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions.

    Science.gov (United States)

    Miah, Muhammed Yusuf; Volchek, Konstantin; Kuang, Wenxing; Tezel, F Handan

    2010-11-15

    A series of experiments were performed to quantify the adsorption of cesium on ceiling tiles as a representative of urban construction materials. Adsorption was carried out from solutions to mimic wet environmental conditions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. The experiments were performed in the range of initial cesium concentrations of 0.114-23.9 mg L(-1) at room temperature (21°C) around three weeks. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The quantity of adsorbed Cs was calculated by mass balance as a function of time. Two kinetic and three equilibrium models were employed to interpret the test results. Determination of kinetic parameters for adsorption was carried out using the first-order reaction model and the intra-particle diffusion model. Adsorption equilibrium was studied using Langmuir, Freundlich and three-parameter Langmuir-Freundlich adsorption isotherm models. A satisfactory correlation between the experimental and the predicted values was observed. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  6. Kinetic and equilibrium studies of cesium adsorption on ceiling tiles from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Volchek, Konstantin, E-mail: Konstantin.Volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Kuang, Wenxing [SAIC Canada, 335 River Road, Ottawa, Ontario, K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, K1N 6N5 (Canada)

    2010-11-15

    A series of experiments were performed to quantify the adsorption of cesium on ceiling tiles as a representative of urban construction materials. Adsorption was carried out from solutions to mimic wet environmental conditions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. The experiments were performed in the range of initial cesium concentrations of 0.114-23.9 mg L{sup -1} at room temperature (21 deg. C) around three weeks. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The quantity of adsorbed Cs was calculated by mass balance as a function of time. Two kinetic and three equilibrium models were employed to interpret the test results. Determination of kinetic parameters for adsorption was carried out using the first-order reaction model and the intra-particle diffusion model. Adsorption equilibrium was studied using Langmuir, Freundlich and three-parameter Langmuir-Freundlich adsorption isotherm models. A satisfactory correlation between the experimental and the predicted values was observed.

  7. Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces.

    Science.gov (United States)

    Tang, Chuyang Y; Shiang Fu, Q; Gao, Dawen; Criddle, Craig S; Leckie, James O

    2010-04-01

    Perfluorooctane sulfonate (PFOS) is an emergent contaminant of substantial environmental concerns, yet very limited information has been available on PFOS adsorption onto mineral surfaces. PFOS adsorption onto goethite and silica was investigated by batch adsorption experiments under various solution compositions. Adsorption onto silica was only marginally affected by pH, ionic strength, and calcium concentration, likely due to the dominance of non-electrostatic interactions. In contrast, PFOS uptake by goethite increased significantly at high [H+] and [Ca2+], which was likely due to enhanced electrostatic attraction between the negatively charged PFOS molecules and positively charged goethite surface. The effect of pH was less significant at high ionic strength, likely due to electrical double layer compression. PFOS uptake was reduced at higher ionic strength for a strongly positively charged goethite surface (pH 3), while it increased for a weakly charged surface (pH 7 and 9), which could be attributed to the competition between PFOS-surface electrostatic attraction and PFOS-PFOS electrostatic repulsion. A conceptual model that captures PFOS-surface and PFOS-PFOS electrostatic interactions as well as non-electrostatic interaction was also formulated to understand the effect of solution chemistry on PFOS adsorption onto goethite and silica surfaces. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution.

    Science.gov (United States)

    Xin, Ouyang; Yitong, Han; Xi, Cao; Jiawei, Chen

    2017-03-01

    Biochar has been developed in recent years for the removal of contaminants such as Cr (VI) in water. The enhancement of the adsorption capacity of biochar and its recyclable use are still challenges. In this study, magnetic biochar derived from corncobs and peanut hulls was synthesized under different pyrolysis temperatures after pretreating the biomass with a low concentration of 0.5 M FeCl 3 solution. The morphology, specific surface area, saturation magnetization and Fourier transform infrared spectroscopy (FT-IR) spectra were characterized for biochar. The magnetic biochar performed well in combining adsorption and separation recycle for the removal of Cr (VI) in water. The Cr (VI) adsorbance of the biochar was increased with the increase in pyrolysis temperature, and the magnetic biochar derived from corncobs showed better performance for both magnetization and removal of Cr (VI) than that from peanut hulls. The Langmuir model was used for the isothermal adsorption and the maximum Cr (VI) adsorption capacity of corncob magnetic biochar pyrolyzed at 650 °C reached 61.97 mg/g. An alkaline solution (0.1 M NaOH) favored the desorption of Cr (VI) from the magnetic biochar, and the removal of Cr (VI) still remained around 77.6% after four cycles of adsorption-desorption. The results showed that corncob derived magnetic biochar is a potentially efficient and recoverable adsorbent for remediation of heavy metals in water.

  9. Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud

    International Nuclear Information System (INIS)

    Jalil, Aishah A.; Triwahyono, Sugeng; Adam, S. Hazirah; Rahim, N. Diana; Aziz, M. Arif A.; Hairom, N. Hanis H.; Razali, N. Aini M.; Abidin, Mahani A.Z.; Mohamadiah, M. Khairul A.

    2010-01-01

    In this study, calcined Lapindo volcanic mud (LVM) was used as an adsorbent to remove an anionic dye, methyl orange (MO), from an aqueous solution by the batch adsorption technique. Various conditions were evaluated, including initial dye concentration, adsorbent dosage, contact time, solution pH, and temperature. The adsorption kinetics and equilibrium isotherms of the LVM were studied using pseudo-first-order and -second-order kinetic equations, as well as the Freundlich and Langmuir models. The experimental data obtained with LVM fits best to the Langmuir isotherm model and exhibited a maximum adsorption capacity (q max ) of 333.3 mg g -1 ; the data followed the second-order equation. The intraparticle diffusion studies revealed that the adsorption rates were not controlled only by the diffusion step. The thermodynamic parameters, such as the changes in enthalpy, entropy, and Gibbs free energy, showed that the adsorption is endothermic, random and spontaneous at high temperature. The results indicate that LVM adsorbs MO efficiently and could be utilized as a low-cost alternative adsorbent for the removal of anionic dyes in wastewater treatment.

  10. The application of graphitic carbon nitride for the adsorption of Pb2+ ion from aqueous solution

    Science.gov (United States)

    Zhu, Lin; You, Liangjun; Wang, Ya; Shi, Zhaoxin

    2017-07-01

    This study appraised the potential application of graphitic carbon nitride (g-C3N4) as an adsorbent for removal of Pb2+ ion from aqueous solution. The g-C3N4 was prepared by direct calcination of the low-cost melamine, and its morphology and microstructure were analyzed. Moreover, the effects of initial solution pH, initial Pb2+ ion concentration, adsorption time, and adsorbent dosage on the adsorption properties of the g-C3N4 were investigated. Two widely used isotherm models were used to describe the experimental equilibrium data, and the Freundlich isotherm model described well. Two widely used kinetic models were used to the fit of the adsorption experimental data, and the pseudo-second-order kinetic model fitted well. The maximum adsorption percentage and maximum adsorption capacity were 98.5% and 7.4 mg g-1, respectively. In addition, the recycling of g-C3N4 for the removal of Pb2+ was investigated, and the results indicated that g-C3N4 owned a good reusability.

  11. Adsorption of indigo carmine from aqueous solution using coal fly ash and zeolite from fly ash

    International Nuclear Information System (INIS)

    Carvalho de, T.E.M.; Fungaro, D.A.; Magdalena, C.P.; Patricia Cunico

    2011-01-01

    Coal fly ash, a waste generated at the Figueira coal-fired electric power plant located in Brazil, was used to synthesize zeolite by hydrothermal treatment with NaOH solution at 100 deg C for 24 h. The fly ash (FA) and this synthesized zeolite (ZM) that was characterized predominantly as hydroxy-sodalite were used as adsorbents for anionic dye indigo carmine from aqueous solutions. The samples were analyzed by instrumental neutron activation analysis (INAA) for the determination of As, Co, Fe, La, Mo, Na, Sb, Sc, Sm, Th, U and Zn. Effects of contact time and initial dye concentration were evaluated in the adsorption processes. The kinetics studies indicated that the adsorption followed the pseudo-second order kinetics and that surface adsorption and intraparticle diffusion were involved in the adsorption mechanism for both the adsorbents. The Langmuir isotherm model provided the best correlation of the experimental data. The maximum adsorption capacity was found to be 1.48 mg L -1 for FA and 1.23 mg L -1 for ZM. Laboratory leaching and solubilization tests conducted to classify this ZM as if was a waste residue according to the Brazilian regulation classified it as a residue non-hazardous and non-inert. (author)

  12. Application of modified multiwall carbon nanotubes as a sorbent for zirconium (IV) adsorption from aqueous solution

    International Nuclear Information System (INIS)

    Yavari, R.; Davarkhah, R.

    2013-01-01

    Modified multiwall carbon nanotubes (MWCNTs) by nitric acid solution were used to investigate the adsorption behavior of zirconium from aqueous solution. Pristine and oxidized MWCNTs were characterized using nitrogen adsorption/desorption isotherm, Boehm's titration method, thermogravimetry analysis, transmission electron microscopy and Fourier transform infrared spectroscopy. The results showed that the surface properties of MWCNTs such as specific surface area, total pore volume, functional groups and the total number of acidic and basic sites were improved after oxidation. These improvements are responsible for their hydrophobic properties and consequently an easy dispersion in water and suitable active sites for more adsorption of zirconium. The adsorption of Zr(IV) as a function of initial concentration of zirconium, contact time, MWCNTs dosage, HCl and HNO 3 concentration and also ionic strength was investigated using a batch technique under ambient conditions. The experimental results indicated that sorption of Zr(IV) was strongly influenced by zirconium concentrations, oxidized MWCNTs content and acid pH values. The calculated correlation coefficient of the linear regressions values showed that Langmuir model fits the adsorption equilibrium data better than the Freundlich model. Kinetic data of sorption indicated that equilibrium was achieved within 60 min and the adsorption process can be described by the pseudo second-order reaction rate model. Based on the experimental results, surface complexation is the major mechanism for adsorption of Zr(IV) onto MWCNTs. Also, Study on the desorption process of zirconium showed that the complete recovery can be obtained using nitric or hydrochloric acids of 4 M. (author)

  13. Removal of three nitrophenols from aqueous solutions by adsorption onto char ash: equilibrium and kinetic modeling

    Science.gov (United States)

    Magdy, Yehia M.; Altaher, Hossam; ElQada, E.

    2018-03-01

    In this research, the removal of 2,4 dinitrophenol, 2 nitrophenol and 4 nitrophenol from aqueous solution using char ash from animal bones was investigated using batch technique. Three 2-parameter isotherms (Freundlich, Langmuir, and Temkin) were applied to analyze the experimental data. Both linear and nonlinear regression analyses were performed for these models to estimate the isotherm parameters. Three 3-parameter isotherms (Redlich-Peterson, Sips, Toth) were also tested. Moreover, the kinetic data were tested using pseudo-first order, pseudo-second order, Elovich, Intraparticle diffusion and Boyd methods. Langmuir adsorption isotherm provided the best fit for the experimental data indicating monolayer adsorption. The maximum adsorption capacity was 8.624, 7.55, 7.384 mg/g for 2 nitrophenol, 2,4 dinitrophenol, and 4 nitrophenol, respectively. The experimental data fitted well to pseudo-second order model suggested a chemical nature of the adsorption process. The R 2 values for this model were 0.973 up to 0.999. This result with supported by the Temkin model indicating heat of adsorption to be greater than 10 kJ/mol. The rate controlling step was intraparticle diffusion for 2 nitrophenol, and a combination of intraparticle diffusion and film diffusion for the other two phenols. The pH and temperature of solution were found to have a considerable effect, and the temperature indicated the exothermic nature of the adsorption process. The highest adsorption capacity was obtained at pH 9 and 25 °C.

  14. Adsorption Studies of Coconut Shell Carbons Prepared by KOH Activation for Removal of Lead(II From Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Chengwen Song

    2013-12-01

    Full Text Available Removal of Pb2+ from aqueous solutions using coconut shell carbons produced by KOH activation is performed in this paper. Morphology and pore structure characteristic of coconut shell carbons are analyzed by SEM and nitrogen adsorption techniques. Effects of adsorbent concentration, agitation time and initial ion concentration on the adsorption behavior are investigated, and adsorption isotherm and kinetics on coconut shell carbons are also studied. The results show that high weight ratio of KOH/sample is favorable to produce rich porous structure. The resultant coconut shell carbons with a high specific surface area of 1135 m2/g is obtained and demonstrates good adsorption potential on removal of Pb2+ from aqueous solutions. Adsorption data fit well with Freundlich and Halsey isotherms. The kinetic studies indicate that adsorption behavior can be described by pseudo-second-order kinetic model, which also follows external diffusion and intra-particle diffusion in the adsorption process.

  15. Research of Co(II) Adsorption on Silica Gel Grafted with Dithiocarbamate (DTC-SiO2) in Aqueous Solution

    Science.gov (United States)

    Yao, Qingxu; Xu, Peng; Huo, Yonggang; Shang, Aiguo; Yu, Fengmei

    2018-01-01

    Dithiocarbamate grafted silica gel (DTC-SiO2) was prepared following two simple reaction steps. The properties of the composite were characterized by FTIR, SEM and element analysis. Its ability to remove Co2+ ions in aqueous solution with low concentration was also studied by static adsorption experiments. The effects of pH value in solution, contact time and temperature were investigated. The results show that the DTC-SiO2 exhibits excellent adsorption property for Co2+. The adsorption kinetics could be well described by pseudo-second-order model and the adsorption isotherms could be depicted by both Freundlich and Dubinin-Radushkevich models. The adsorption process belongs to chemisorption. The slightly influence of common interfering metal ions (Na+, K+, Ca2+ and Mg2+) on the adsorption capacity revealing the synthesized DTC-SiO2 performs excellent selective adsorption to Co2+.

  16. Thiol-functionalized polysilsesquioxane as efficient adsorbent for adsorption of Hg(II) and Mn(II) from aqueous solution

    International Nuclear Information System (INIS)

    Niu, Yuzhong; Qu, Rongjun; Liu, Xiguang; Mu, Lei; Bu, Baihui; Sun, Yuting; Chen, Hou; Meng, Yangfeng; Meng, Lina; Cheng, Lin

    2014-01-01

    Highlights: • PMPSQ was promising adsorbent for the removal of Hg(II) and Mn(II). • The adsorption kinetics followed the pseudo-second-order model. • The adsorption isotherms can be described by the monolayer Langmuir model. • The adsorption was controlled by film diffusion and chemical ion-exchange mechanism. - Abstract: Thiol-functionalized polysilsesquioxane was synthesized and used for the adsorption of Hg(II) and Mn(II) from aqueous solution. Results showed that the optimal pH was about 6 and 5 for Hg(II) and Mn(II), respectively. Adsorption kinetics showed that the adsorption equilibriums were established within 100 min and followed pseudo-second-order model. Adsorption isotherms revealed that the adsorption capacities increased with the increasing of temperature. The adsorption was found to be well described by the monolayer Langmuir isotherm model and took place by chemical ion-exchange mechanism. The thermodynamic properties indicated the adsorption processes were spontaneous and endothermic nature. Selectively adsorption showed that PMPSQ can selectively adsorb Hg(II) from binary ion systems in the presence of the coexistent ions Mn(II), Cu(II), Pb(II), Co(II), and Ni(II). Based on the results, it is concluded that PMPSQ had comparable high adsorption efficiency and could be potentially used for the removal of Hg(II) and Mn(II) from aqueous solution

  17. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers

    Science.gov (United States)

    He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-12-01

    Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.

  18. Modeling of Bisphenol A (BPA) Removal from Aqueous Solutions by Adsorption Using Response Surface Methodology (RSM)

    OpenAIRE

    Mohammad Ali Zazouli; Farzaneh Veisi; Amir Veisi

    2016-01-01

    Bisphenol A (BPA) is an organic synthetic compound that has many applications in various industries and is known as persistent pollutant. The aim of this research was to evaluate the efficiency of bone ash and banana peel as adsorbents for BPA adsorption from aqueous solution by using Response Surface Methodology. The effects of some variables such as sorbent dose, detention time, solution pH, and BPA concentration on the sorption efficiency was examined. All analyses were carried out accordi...

  19. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.

    Science.gov (United States)

    Lee, Seo-Yun; Choi, Hee-Jeong

    2018-03-01

    The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Phosphate adsorption from aqueous solution by lanthanum-iron hydroxide loaded with expanded graphite.

    Science.gov (United States)

    Zhang, Ling; Jin, SuWan; Wang, Yong; Ji, Jiang

    2018-04-01

    In this study, a novel adsorbent of expanded graphite loaded with lanthanum (III)-iron (III) hydroxide (EG-LaFe) was prepared for phosphate removal. The single factor of oscillating time, La/Fe molar ratio and total concentration of EG-LaFe were studied for optimization of preparation conditions. Effects of contact time, initial phosphate concentration, adsorption temperature and coexisting ions on the phosphate removal performance of EG-LaFe were investigated in detail. Adsorption kinetics and isothermal adsorption studies showed that the pseudo-second-order and the Langmuir model fitted the experimental data quite well. Thermodynamic analysis showed that the phosphate adsorption of EG-LaFe was spontaneous and endothermic. In addition, EG-LaFe exhibit high sorption selectivity toward phosphate over other coexisting ions. The phosphate adsorption mechanism was investigated by means of pH study, scanning electron microscopy and Fourier transform infrared spectroscopy. The results demonstrated that the probable mechanisms of phosphate adsorption on EG-LaFe were the replacement of surface hydroxyl groups (M-OH), electrostatic interaction and Lewis acid-base interaction.

  1. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    Energy Technology Data Exchange (ETDEWEB)

    Calderón, J.A., E-mail: andres.calderon@udea.edu.co [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Vásquez, F.A. [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Carreño, J.A. [Laboratório de H2S, CO2 e Corrosividade, Instituto Nacional De Tecnologia (INT), Av. Venezuela, 82 – Térreo, Anexo 01, Sala 101A, Saúde, Rio de Janeiro, RJ (Brazil)

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm{sup −2}. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  2. Methylene blue adsorption of GMZ bentonite and the effect of hyper-alkaline solution erosion

    International Nuclear Information System (INIS)

    Chen Bao; Zhang Huixin; Zhu Chunming; Chen Ping

    2012-01-01

    The method of combining the halo method with the spectrometer method, was used to study on the Methylene blue (MB) adsorption of Gaomiaozi (GMZ) bentonite, which had been eroded by hyper-alkaline solution, to investigate the mechanism of the effect of hyper-alkaline pore water on the buffer/backfill properties of GMZ bentonite. Results present, method employed in this article is brief and feasible, and high accuracy; The total specific surface area calculated by the test of MB adsorption is more accurate than the method of ethylene glycol monomethyl ether (EGIVIE). The MB adsorption of samples, which had been eroded by hyper-alkaline solution, decreases with the increase of the concentration of hyper-alkaline solution, and the change law agrees with the variation of the mass percentage of montmorillonite in bentonite tested by X- Ray diffraction (XRD). Therefore, the erosion of hyper-alkaline pore water might dissolve montmorillonite, which is the effective composition of bentonite, and destroy the tetrahedron- octahedron-tetrahedron (T-O-T) structure of montmorillonite, then lead to the decrease of cation exchange capability and the specific surface area of montmorillonite, and the the macroscopic expressions are the decrease of MB adsorption, the swelling potential and the increase of permeability. (authors)

  3. EQUILIBRIUM AND KINETIC STUDY OF ADSORPTION OF NICKEL FROM AQUEOUS SOLUTION ONTO BAEL TREE LEAF POWDER

    Directory of Open Access Journals (Sweden)

    P. SENTHIL KUMAR

    2009-12-01

    Full Text Available The ability of bael tree (BT leaf powder to adsorb nickel, Ni2+, from aqueous solutions has been investigated through batch experiments. The Ni2+ adsorption was found to be dependent on adsorbent dosage, initial concentration and contact time. All batch experiments were carried out at natural solution pH and at a constant temperature of 30°C using wrist-action shaker that operated at 120 rpm. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. The monolayer adsorption capacity is 1.527 mg Ni per g BT leaf powder. The experiments showed that highest removal rate was 60.21% for Ni2+ under optimal conditions. The kinetic processes of Ni2+ adsorption on BT leaf powder were described by applying pseudo-first-order and pseudo-second-order rate equations. The kinetic data for the adsorption process obeyed pseudo-second-order rate equations. The BT leaf powder investigated in this study exhibited a high potential for the removal of Ni2+ from aqueous solution.

  4. Adsorption of pertechnetate ion on various active carbons from mineral acid solutions

    International Nuclear Information System (INIS)

    Ito, K.

    1991-01-01

    The adsorption behavior of pertechnetate ion (TcO 4 - ) on active carbon has been studied for various acid solutions, taking as indicative value the distribution coefficient K d of Tc between active carbon surface and solution. In a system where the total anion concentration of the acid and its sodium salt was maintained constant, modifying the pH of the solution proved distinctly to influence the Tc adsorption behavior of active carbon: taking the case of active carbon derived from coconut shell, increasing the acidity raised K d ; around neutrality there occurred a level stage; in the alkali region, K d declined. The rise of K d in the acid region, however, was observed only with active carbon derived from coconut shell, from oil pitch or from saw dust; it failed to occur when the active carbon was derived from coal or from bone. With a hydrochloric acid system, the rise of K d started around 1 M (mol dm -1 ) HCl. Beyond 3 M, on the other hand, a breakthrough occurred, and K d declined with increasing acidity. With a nitric acid system, K d rose from 1 M, and the breakthrough occurred at 2 M. When the adsorption was left to equilibrate beyond 4 h, desorption displacement of TcO 4 - by a coexisting other anion was observed in the case of perchloric acid solutions of concentration above 0.1 M and with sulfuric acid solutions above 0.5 M. (author)

  5. Adsorption and inhibitive properties of sildenafil (Viagra) for zinc in hydrochloric acid solution

    Science.gov (United States)

    Fouda, A. S.; Ibrahim, H.; Atef, M.

    Sildenafil (Viagra) was investigated as corrosion inhibitor for Zn in 1 M HCl solution using chemical and electrochemical methods at 25 °C. Electrochemical results showed that this drug is efficient inhibitor for Zn in HCl and the inhibition efficiency (IE) reached to 91% at 300 ppm. The IE increases with the drug concentration and decreases with increasing temperature. The adsorption of this drug on Zn surface follows Langmuir adsorption isotherm. The polarization plots revealed that Sildenafil acts as a mixed-type inhibitor. The thermodynamic parameters of activation and adsorption were calculated and discussed. The surface morphology of the Zn specimens was evaluated using scanning electron microscope (SEM), energy dispersive X-ray (EDX), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) techniques.

  6. Adsorption and inhibitive properties of sildenafil (Viagra for zinc in hydrochloric acid solution

    Directory of Open Access Journals (Sweden)

    A.S. Fouda

    Full Text Available Sildenafil (Viagra was investigated as corrosion inhibitor for Zn in 1 M HCl solution using chemical and electrochemical methods at 25 °C. Electrochemical results showed that this drug is efficient inhibitor for Zn in HCl and the inhibition efficiency (IE reached to 91% at 300 ppm. The IE increases with the drug concentration and decreases with increasing temperature. The adsorption of this drug on Zn surface follows Langmuir adsorption isotherm. The polarization plots revealed that Sildenafil acts as a mixed-type inhibitor. The thermodynamic parameters of activation and adsorption were calculated and discussed. The surface morphology of the Zn specimens was evaluated using scanning electron microscope (SEM, energy dispersive X-ray (EDX, atomic force microscopy (AFM and Fourier transform infrared spectroscopy (FTIR techniques. Keywords: Zn, Corrosion inhibition, HCl, SEM, EDX, AFM, FTIR, Sildenafil drug

  7. Synthetic Textile Red Dye Removal From Aqueous Solution by Adsorption onto Pomegranate Peel

    Directory of Open Access Journals (Sweden)

    Sundus Saleh Nehaba

    2017-07-01

    Full Text Available This study is conducted to evaluate the ability of using pomegranate peel as low cost material for adsorption one of synthetic textile dye (C.I.Direct Red 89 dye. The removal of dye from aqueous solution is done by using pomegranate peel with two forms, as raw pomegranate peel (RPP and activated carbon prepared from pomegranate peel(ACPP. Some operational factors like contact time, pH, adsorbent dosage , and temperature were investigated in experimental work. Also the thermodynamic parameters ΔH, ΔG, and ΔS were calculated, the result shows that the adsorption process of dye onto two forms of adsorbents was spontaneous and endothermic in nature. Finally, the adsorption isotherm of experimental data we refitted for the Langmuir, and Freundlich equations

  8. Adsorption of silver nanoparticles from aqueous solution on copper-based metal organic frameworks (HKUST-1).

    Science.gov (United States)

    Conde-González, J E; Peña-Méndez, E M; Rybáková, S; Pasán, J; Ruiz-Pérez, C; Havel, J

    2016-05-01

    Silver nanoparticles (AgNP) are emerging pollutants. The use of novel materials such as Cu-(benzene 1,3,5-tricarboxylate, BTC) Metal-Organic Framework (MOFs), for AgNP adsorption and their removal from aqueous solutions has been studied. The effect of different parameters was followed and isotherm model was suggested. MOFs adsorbed fast and efficiently AgNP in the range C0 < 10 mg L(-1), being Freundlich isotherm (R = 0.993) these data fitted to. Among studied parameters a remarkable effect of chloride on sorption was found, thus their possible interactions were considered. The high adsorption efficiency of AgNP was achieved and it was found to be very fast. The feasibility of adsorption on Cu-(BTC) was proved in spiked waters. The results showed the potential interest of new material as adsorbent for removing AgNP from environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Malachite green "a cationic dye" and its removal from aqueous solution by adsorption

    Science.gov (United States)

    Raval, Nirav P.; Shah, Prapti U.; Shah, Nisha K.

    2017-11-01

    Adsorption can be efficiently employed for the removal of various toxic dyes from water and wastewater. In this article, the authors reviewed variety of adsorbents used by various researchers for the removal of malachite green (MG) dye from an aqueous environment. The main motto of this review article was to assemble the scattered available information of adsorbents used for the removal of MG to enlighten their wide potential. In addition to this, various optimal experimental conditions (solution pH, equilibrium contact time, amount of adsorbent and temperature) as well as adsorption isotherms, kinetics and thermodynamics data of different adsorbents towards MG were also analyzed and tabulated. Finally, it was concluded that the agricultural solid wastes and biosorbents such as biopolymers and biomass adsorbents have demonstrated outstanding adsorption capabilities for removal of MG dye.

  10. Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth.

    Science.gov (United States)

    Tsai, W T; Hsien, K J; Chang, Y M; Lo, C C

    2005-04-01

    A spent diatomaceous earth from the beer brewery has been tentatively activated by sodium hydroxide at about 100 degrees C. The resulting product was used as a novel adsorbent for the adsorption of herbicide paraquat from an aqueous solution in a continuously stirred adsorber and batch flasks, respectively. The results showed that the adsorption process could be well described by the pseudo-second-order reaction model. From the view of the negatively charged surface of diatomaceous earth and cationic property of paraquat, the results were also reasonable to be explained by physical adsorption in the ion-exchange process under the effects of pH and temperature. Further, it was found that the Freundlich model appeared to fit the isotherm data better than the Langmuir model.

  11. Adsorption of N-decanoyl-N-methylglucamine at the Interface Electrode−NaClO4 Solution. Comparison of Adsorption Properties of Different Surfactants

    Directory of Open Access Journals (Sweden)

    Dorota Gugała-Fekner

    2016-06-01

    Full Text Available The electrosorption behaviour of non-ionic surfactant: N-decanoyl-N-methylglucamine on mercury electrode in 1 mol dm−3 NaClO4 solution was determined. The values of the relative surface excess were determined on the basis of double layer differential capacity. A set of parameters of maximal adsorption and the constants of Frumkin, modified Flory-Huggins and virial adsorption isotherms were obtained. It was stated that the adsorption of this surfactant is determined by the adsorption energy, however here is no simple relation between a surface excess and the values of repulsive interactions parameter A. Adsorption properties of three surfactants: cationic, anionic and non-ionic were compared. This work is licensed under a Creative Commons Attribution 4.0 International License.

  12. Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Ilaiyaraja, P., E-mail: chemila07@gmail.com [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Singha Deb, Ashish Kumar; Sivasubramanian, K. [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Ponraju, D. [Safety Engineering Division, Reactor Design Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Venkatraman, B. [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India)

    2013-04-15

    Highlights: ► A new chelating resin PAMAMG{sub 3} -SDB has been synthesized for uranium adsorption. ► The maximum adsorption capacity was determined to be 130.25 mg g{sup −1} at pH 5.5. ► Adsorption capacity increases linearly with increasing dendron generation. ► The adsorbed uranium shall be easily desorbed by simply adjusting the pH < 3. ► Quantitative adsorption of uranium was observed even at high ionic strength. -- Abstract: A new polymeric chelating resin was prepared by growing third generation poly(amido)amine (PAMAMG{sub 3}) dendron on the surface of styrene divinylbenzene (SDB) and characterized by FTIR, TGA and SEM. The ideal branching of dendron in the chelating resin was determined from potentiometric titration. Adsorption of uranium (VI) from aqueous solution using PAMAMG{sub 3}-SDB chelating resin was studied in a series of batch experiments. Effect of contact time, pH, ionic strength, adsorbent dose, initial U(VI) concentration, dendron generation and temperature on adsorption of U(VI) were investigated. Kinetic experiments showed that U(VI) adsorption on PAMAMG{sub 3}-SDB followed pseudo-second-order kinetics model appropriately and equilibrium data agreed well with the Langmuir isotherm model. Thermodynamic parameters (ΔH°, ΔS°, ΔG°) were evaluated from temperature dependent adsorption data and the uranium adsorption on PAMAMG{sub 3}-SDB was found to be endothermic and spontaneous in nature. The sticking probability value (5.303 × 10{sup −9}), kinetic and isotherm data reveal the chemisorption of uranium on PAMAMG{sub 3}-SDB and adsorption capacity of the chelating resin was estimated to be 130.25 mg g{sup −1} at 298 K. About 99% of adsorbed U(VI) can be desorbed from PAMAMG{sub 3}-SDB by a simple acid treatment suggesting that the chelating resin is reusable.

  13. Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths

    Directory of Open Access Journals (Sweden)

    Hanen Guedidi

    2017-05-01

    Full Text Available This study aims to investigate the performance of an activated carbon cloth for adsorption of ibuprofen. The cloth was oxidized by a NaOCl solution (0.13 mol L−1 or thermally treated under N2 (700 °C for 1 hour. The raw and modified cloths were characterized by N2 adsorption–desorption measurement at 77 K, CO2 adsorption at 273 K, Boehm titrations, pHPZC measurements, X-ray Photoelectron Spectroscopy analysis, and by infrared spectroscopy. The NaOCl treatment increases the acidic sites, mostly creating phenolic and carboxylic groups and decreases both the specific surface area and slightly the micropore volume. However, the thermal treatment at 700 °C under N2 induced a slight increase in the BET specific surface area and yielded to the only increase in the carbonyl group content. Ibuprofen adsorption studies of kinetics and isotherms were carried out at pH = 3 and 7. The adsorption properties were correlated to the cloth porous textures, surface chemistry and pH conditions. The isotherms of adsorption were better reproduced by Langmuir–Freundlich models at 298, 313 and 328 K. The adsorption of ibuprofen on the studied activated carbon cloths at pH 3 was an endothermic process. The pore size distributions of all studied ibuprofen-loaded fabrics were determined by DFT method to investigate the accessible porosity of the adsorbate. Both treatments do not influence the kind of micropores where the adsorption of ibuprofen occurred.

  14. Effect of Solution Properties on Arsenic Adsorption by Drinking Water Treatment Residuals

    Science.gov (United States)

    Nagar, R.; Sarkar, D.; Datta, R.; Sharma, S.

    2005-05-01

    Arsenic (As) is a ubiquitous element in the environment. Higher levels of As in soils may result from various anthropogenic sources such as use of arsenical pesticides, fertilizers, wood preservatives, smelter wastes, and coal combustion. This is of great environmental and human health concern due to the high toxicity and proven carcinogenicity of several arsenical species. Thus there is a need for developing cost effective technologies capable of lowering bioavailable As concentrations in soils to environmentally acceptable levels. In-situ immobilization of metals using inexpensive amendments such as minerals (apatite, zeolite, or clay minerals) or waste by-products (steel shot, beringite, and iron-rich biosolids) to reduce bioavailability is an inexpensive alternative to the more expensive ex-situ remediation methods. One such emerging in-situ technique is the application of drinking water treatment residuals (WTRs). WTRs can be classified as a byproduct of drinking water treatment plants and are generally composed of amorphous Fe/Al oxides, activated C and cationic polymers. WTRs possess amorphous structure and generally have high positive charge. Because As is chemically similar to phosphorus, the oxyanions As (V) and As (III) may have the potential of being retained by the WTRs. Thus, it is hypothesized that WTRs retain As irreversibly, thereby reducing As biavailability. As mobility of arsenic is controlled by adsorption reactions, knowledge of adsorption of As by WTRs is of primary relevance. Although the overall rate of adsorption is dependent on numerous factors, review of the literature indicates that competing ions in solution play an important role in the overall retention of As; however, little work has been conducted to identify which ions provide the most competition. As arsenic adsorption appears to be influenced by the variable pH-dependent charges developed on the soil particle surfaces, the effect of pH is also of critical importance. Hence, the

  15. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    Science.gov (United States)

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place.

  16. Adsorption of Ni2+ from aqueous solution by magnetic Fe@graphite nano-composite

    Directory of Open Access Journals (Sweden)

    Konicki Wojciech

    2016-12-01

    Full Text Available The removal of Ni2+ from aqueous solution by iron nanoparticles encapsulated by graphitic layers (Fe@G was investigated. Nanoparticles Fe@G were prepared by chemical vapor deposition CVD process using methane as a carbon source and nanocrystalline iron. The properties of Fe@G were characterized by X-ray Diffraction method (XRD, High-Resolution Transmission Electron Microscopy (HRTEM, Fourier Transform-Infrared Spectroscopy (FTIR, BET surface area and zeta potential measurements. The effects of initial Ni2+ concentration (1–20 mg L−1, pH (4–11 and temperature (20–60°C on adsorption capacity were studied. The adsorption capacity at equilibrium increased from 2.96 to 8.78 mg g−1, with the increase in the initial concentration of Ni2+ from 1 to 20 mg L−1 at pH 7.0 and 20oC. The experimental results indicated that the maximum Ni2+ removal could be attained at a solution pH of 8.2 and the adsorption capacity obtained was 9.33 mg g−1. The experimental data fitted well with the Langmuir model with a monolayer adsorption capacity of 9.20 mg g−1. The adsorption kinetics was found to follow pseudo-second-order kinetic model. Thermodynamics parameters, ΔHO, ΔGO and ΔSO, were calculated, indicating that the adsorption of Ni2+ onto Fe@G was spontaneous and endothermic in nature.

  17. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution.

    Science.gov (United States)

    Mao, Ping; Liu, Ying; Liu, Xiaodong; Wang, Yuechan; Liang, Jie; Zhou, Qihang; Dai, Yuexuan; Jiao, Yan; Chen, Shouwen; Yang, Yi

    2017-08-01

    To further improve the capacity of Cu 2 O to absorb I - anions from solution, and to understand the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents, bimetallic AgCu was doped into Cu 2 O through a facile solvothermal route. Samples were characterized and employed to adsorb I - anions under different experimental conditions. The results show that the Cu content can be tuned by adding different volumes of Ag sols. After doping bimetallic AgCu, the adsorption capacity of the samples can be increased from 0.02 mmol g -1 to 0.52 mmol g -1 . Moreover, the optimal adsorption is reached within only 240 min. Meanwhile, the difference between the adsorption mechanisms of Ag/Cu 2 O and Cu/Cu 2 O adsorbents was verified, and the cooperative adsorption mechanism of the AgCu/Cu 2 O hybrid was proposed and verified. In addition, the AgCu/Cu 2 O hybrid showed excellent selectivity, e.g., its adsorption efficiencies are 85.1%, 81.9%, 85.9% and 85.7% in the presence of the Cl - , CO 3 2- , SO 4 2- and NO 3 - competitive anions, respectively. Furthermore, the AgCu/Cu 2 O hybrid can worked well in other harsh environments (e.g., acidic, alkaline and seawater environments). Therefore, this study is expected to promote the development of Cu 2 O into a highly efficient adsorbent for the removal of iodide from solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Adsorption Acid Red18 Dye Using Sargassum Glaucescens Biomass from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Zazouli

    2015-05-01

    Full Text Available Background and purpose: Dyes are one of the main pollutants in the various industrial wastewaters. Therefore, the aim of this study was to assess the biosorption of acid red 18 dyes from aqueous solutions by brown macroalgae biomass “Sargassum glaucescens.” Materials and Methods: This research was a lab study. S. glaucescens was used as an adsorbent to remove acid red 18. The effect of various parameters such as pH, initial dyes concentration, adsorbent dose and equilibrium contact time were evaluated in batch adsorption. The dye concentration was measured in the wavelength of 506 nm by spectrophotometer. Results: The results showed that the equilibrium time of biosorption was 120 min. Increasing of contact time and adsorbent dose and initial dye concentration can lead to increasing of the removal efficiency. The maximum adsorption capacity of the dye was at pH: 6 respectively. It was found that the data fitted to Freundlich better than Langmuir isotherms of adsorption model. Conclusion: The S. glaucescens biomass had a satisfactory quality in dye adsorption. It can be used as an effective, inexpensive adsorbents for the dye adsorption from textile wastewater or similar industries.

  19. Adsorption of Cr(III) from Aqueous Solution using Borax Sludge.

    Science.gov (United States)

    Senberber, Fatma Tugce; Yildirim, Meral; Mermer, Nevin Karamahmut; Derun, Emek Moroydor

    2017-09-01

    Borax sludge is the waste produced by a trommel sieve in the borax production process and is used as an adsorbent for Cr(III) removal. The effects of various parameters, including pH, initial Cr(III) concentration and contact time were investigated for batch adsorption of Cr(III). The experimental results obtained were applied to different adsorption isotherms and kinetic models. The results indicated that the Temkin isotherm (R2 = 0.9749) was most suitable to explain the adsorption characteristics of borax sludge, and the removal of Cr(III) was achieved by a physisorption process. The overall kinetic data fitted the pseudo-second order rate model (R2 = 0.9990). According to thermodynamic studies, which were carried out at different temperatures, changes in enthalpy (ΔH) and entropy (ΔS) values for Cr(III) adsorption by borax sludge were determined to be 69.395 kJ/mol and 0.276 kJ/mol K, respectively. The study implied that borax sludge could be used as an alternative adsorbent in the adsorption of Cr(III) from aqueous solutions.

  20. Adsorption of Anionic Dyes from Aqueous Solutions by Calcined and Uncalcined Mg/ Al Layered Double Hydroxide

    International Nuclear Information System (INIS)

    Siti Mariam Sumari; Zaini Hamzah; Kantasamy, N.

    2016-01-01

    The uptake of Acid Blue 29 (AB29), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) from aqueous solutions by calcined (CLDH) and uncalcined Mg/Al layered double hydroxide (LDH) has been investigated. The adsorption process was conducted in a batch mode at 25 degree Celcius. Anionic dye removal was more efficient using the CLDH rather than LDH. The adsorption process by CLDH involved reconstruction and hydration of the calcined LDH and intercalation of AB29, RO16 and RR120. Physical characterization using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) were used to ascertain the memory effect phenomenon that is structural reconstruction to regain its original LDH after rehydration. To gain insight into the mechanism of adsorption by CLDH, the pseudo-first order (PFO) and pseudo-second order (PSO) and intraparticle diffusion (IPD) kinetic models were used to analyse experimental data. Based on the correlation coefficient (R 2 ), the PSO has better fitting (R 2 =0.987-1.00) compared to PFO (R 2 =0.867-0.990). Furthermore the values of maximum adsorption capacity, (q e ) calculated from PSO model are consistent with the experimental q e indicating that the experimental kinetic data for AB29, RO16 and RR120 adsorption by CLDH are suitable for this model. Recycling of the adsorbent, in cycles of calcination-reconstruction process promised a possibility of regeneration of CLDH. (author)

  1. Adsorption of UO22+ from aqueous solution onto copolymers of styrene and maleic anhydride

    International Nuclear Information System (INIS)

    Duan Guojian; Yang Ying; Liu Tonghuan; Lanzhou University, Lanzhou; Wu Wangsuo

    2013-01-01

    The copolymers of styrene and maleic anhydride resin (PSt/MA) was synthesized by free radical polymerization and characterized by means of FTIR. It is shown that the PSt/MA copolymer has rather strong coordination ability to UO 2 2+ ions by chelation with the carboxylate group, and the microstructures of the U(VI)-PSt/MA complexes can be well controlled. The influence factors on UO 2 2+ ions were also investigated and described in detail, such as contact time, solid/liquid ratio, pH value, ethanol content, and initial concentration. It was found that the maximum adsorption quantity of UO 2 2+ was 831 mg/g. Experiments show that PSt/MA can recover UO 2 2+ ions with high adsorption selectively from a simulated industry solution containing Ca 2+ and Mg 2+ as impurities. The adsorption kinetic data were best described by the pseudo-second-order equation, indicating that the chemical adsorption was the rate-limiting step. And there are very good correlation coefficients of linearized equations for Langmuir model, which indicated that the sorption isotherm of the PSt/MA for UO 2 2+ can be fitted to the Langmuir model. After five times of repeated tests for the hydrogel it still remained its excellent adsorption. (author)

  2. Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash.

    Science.gov (United States)

    Tavlieva, Mariana P; Genieva, Svetlana D; Georgieva, Velyana G; Vlaev, Lyubomir T

    2013-11-01

    The present research was focused on the study of adsorption kinetics of brilliant green (BG) onto white rice husk ash from aqueous solutions. The research was performed in the temperature interval 290-320 K in 10° steps and in the concentration range of 3-100 mg L(-1). Batch studies were conducted in order to determine the optimal adsorbent dose, and the time required to reach the adsorption equilibrium at each temperature. The effect of the initial concentration of brilliant green was studied (pH not adjusted), as well as the effect of temperature. The maximum adsorption capacity of the WRHA for BG at 320 K was determined to be 85.56 mg g(-1). The adsorption kinetic data were analyzed employing several kinetic models: pseudo-first-order equation, pseudo-second-order equation, Elovichequation, Banghman's equation, Diffusion-chemisorption model, and Boyd kinetic expression. It was established that the adsorption process obeyed the pseudo-second-order kinetic model. Based on the rate constants obtained by this kinetic model using Arrhenius and Eyring equations, the activation parameters were determined, namely the activation energy (50.04 kJ mol(-1)), the change of entropy (-318.31 J mol(-1) K(-1)), enthalpy (-47.50 kJ mol(-1)), and Gibbs free energy (range 44.81-54.36 kJ mol(-1)) for the formation of activated complex from the reagents. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide.

    Science.gov (United States)

    Gao, Yuan; Li, Yan; Zhang, Liang; Huang, Hui; Hu, Junjie; Shah, Syed Mazhar; Su, Xingguang

    2012-02-15

    Significant concerns have been raised over pollution of antibiotics including tetracyclines in aquatic environments in recent years. Graphene oxide (GO) is a potential effective absorbent for tetracycline antibiotics and can be used to remove them from aqueous solution. Tetracycline strongly deposited on the GO surface via π-π interaction and cation-π bonding. The adsorption isotherm fits Langmuir and Temkin models well, and the theoretical maximum of adsorption capacity calculated by Langmuir model is 313 mg g(-1), which is approximately in a close agreement with the measured data. The kinetics of adsorption fits pseudo-second-order model perfectly, and it has a better rate constant of sorption (k), 0.065 g mg(-1) h(-1), than other adsorbents. The adsorption capacities of tetracycline on GO decreased with the increase in pH or Na(+) concentration. The adsorption isotherms of oxytetracycline and doxycycline on GO were discussed and compared. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  4. Removal of Crystal Violet Dye from Aqueous Solutions onto Date Palm Fiber by Adsorption Technique

    Directory of Open Access Journals (Sweden)

    Mashael Alshabanat

    2013-01-01

    Full Text Available The adsorption of crystal violet (CV onto date palm fibers (DPFs was examined in aqueous solution at 25°C. The experimental maximum adsorption capacity value was 0.66×10−6. Langmuir, Freundlich, Elovich and Temkin models were applied to describe the equilibrium isotherms. The influence of pH and temperature on dye removal was evaluated. The percentage removal of CV dye by adsorption onto DPF at different pH and temperatures showed that these factors play a role in the adsorption process. Thermodynamic analysis was performed, and the Gibbs free energy ΔGο, enthalpy change ΔHο, and entropy ΔSο were calculated. The negative values of ΔGο indicate spontaneous adsorption. The negative value of ΔHο indicates that the interaction between CV and DPF is exothermic, and the positive value of ΔSο indicates good affinity between DPF and CV. The kinetic data were fitted to a pseudo-second-order model.

  5. Adsorption of HMF from water/DMSO solutions onto hydrophobic zeolites: experiment and simulation.

    Science.gov (United States)

    Xiong, Ruichang; León, Marta; Nikolakis, Vladimiros; Sandler, Stanley I; Vlachos, Dionisios G

    2014-01-01

    The adsorption of 5-hydroxymethylfurfural (HMF), DMSO, and water from binary and ternary mixtures in hydrophobic silicalite-1 and dealuminated Y (DAY) zeolites at ambient conditions was studied by experiments and molecular modeling. HMF and DMSO adsorption isotherms were measured and compared to those calculated using a combination of grand canonical Monte Carlo and expanded ensemble (GCMC-EE) simulations. A method based on GCMC-EE simulations for dilute solutions combined with the Redlich-Kister (RK) expansion (GCMC-EE-RK) is introduced to calculate the isotherms over a wide range of concentrations. The simulations, using literature force fields, are in reasonable agreement with experimental data. In HMF/water binary mixtures, large-pore hydrophobic zeolites are much more effective for HMF adsorption but less selective because large pores allow water adsorption because of H2 O-HMF attraction. In ternary HMF/DMSO/water mixtures, HMF loading decreases with increasing DMSO fraction, rendering the separation of HMF from water/DMSO mixtures by adsorption difficult. The ratio of the energetic interaction in the zeolite to the solvation free energy is a key factor in controlling separation from liquid mixtures. Overall, our findings could have an impact on the separation and catalytic conversion of HMF and the rational design of nanoporous adsorbents for liquid-phase separations in biomass processing. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The classification of the single travelling wave solutions to the ...

    Indian Academy of Sciences (India)

    The discrimination system for the polynomial method is applied to variant Boussinesq equations to classify single travelling wave solutions. In particular, we construct corresponding solutions to the concrete parameters to show that each solution in the classification can be realized.

  7. Evaluation of adsorption of uranium from aqueous solution using biochar materials

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Wagner Clayton; Guilhen, Sabine Neusatz; Ortiz, Nilce; Fungaro, Denise Alves, E-mail: wcorrea@ipen.br, E-mail: snguilhen@ipen.br, E-mail: notriz@ipen.br, E-mail: dfungaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Uranium is present in the environment as a result of leaching from natural deposits and activities associated with nuclear fuel, copper mining, uranium mining, milling industry, etc. For the purpose of protecting ecosystem stability and public health, it is crucial to eliminate uranium from aqueous solutions before they are discharged into the environment. Various technologies have been used for removing U(VI) ions from aqueous systems. Among these methods, adsorption has been applied in wastewater because of simple operation procedure and high removal efficiency. Brazil is the largest producer of charcoal in the world, with nearly half of the woody biomass harvested for energy in Brazil being transformed into charcoal. Biochar exhibits a great potential as an adsorbent because of favorable physical/chemical surface characteristics. The objective of this work was to evaluate the adsorption potential of biochar materials prepared from pyrolysis of Bamboo (CBM), Eucalyptus (CEM) and Macauba (CMA) nuts for the removal of uranium from solutions. Adsorption experiments were carried out by a batch technique. Equilibrium adsorption experiments were performed by shaking a known amount of biochar material with 100 mL of U(VI) solution in Erlenmeyer flasks in a shaker at 120 rpm and room temperature (25 deg C) for 24 h. The adsorbent was separated by centrifugation from the solution. The U(VI) concentration remaining in the supernatant solution was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The influences of different experimental parameters such as solution pH and bioadsorbent dose on adsorption were investigated. The highest uranium adsorption capacity were obtained at pH 3.0 and 16 g/L biomass dosage for CMA, pH 3.0 and 12 g/L biomass dosage for CBM and pH 2.0 and 10 g/L biomass dosage for CEM. The results demonstrated that the biomass derived char can be used as a low-cost adsorbent for removal of uranium from wastewater. (author)

  8. Evaluation of adsorption of uranium from aqueous solution using biochar materials

    International Nuclear Information System (INIS)

    Correa, Wagner Clayton; Guilhen, Sabine Neusatz; Ortiz, Nilce; Fungaro, Denise Alves

    2015-01-01

    Uranium is present in the environment as a result of leaching from natural deposits and activities associated with nuclear fuel, copper mining, uranium mining, milling industry, etc. For the purpose of protecting ecosystem stability and public health, it is crucial to eliminate uranium from aqueous solutions before they are discharged into the environment. Various technologies have been used for removing U(VI) ions from aqueous systems. Among these methods, adsorption has been applied in wastewater because of simple operation procedure and high removal efficiency. Brazil is the largest producer of charcoal in the world, with nearly half of the woody biomass harvested for energy in Brazil being transformed into charcoal. Biochar exhibits a great potential as an adsorbent because of favorable physical/chemical surface characteristics. The objective of this work was to evaluate the adsorption potential of biochar materials prepared from pyrolysis of Bamboo (CBM), Eucalyptus (CEM) and Macauba (CMA) nuts for the removal of uranium from solutions. Adsorption experiments were carried out by a batch technique. Equilibrium adsorption experiments were performed by shaking a known amount of biochar material with 100 mL of U(VI) solution in Erlenmeyer flasks in a shaker at 120 rpm and room temperature (25 deg C) for 24 h. The adsorbent was separated by centrifugation from the solution. The U(VI) concentration remaining in the supernatant solution was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The influences of different experimental parameters such as solution pH and bioadsorbent dose on adsorption were investigated. The highest uranium adsorption capacity were obtained at pH 3.0 and 16 g/L biomass dosage for CMA, pH 3.0 and 12 g/L biomass dosage for CBM and pH 2.0 and 10 g/L biomass dosage for CEM. The results demonstrated that the biomass derived char can be used as a low-cost adsorbent for removal of uranium from wastewater. (author)

  9. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    Science.gov (United States)

    Yoosefian, Mehdi

    2017-01-01

    Density functional studies on the adsorption behavior of nitrous oxide (N2O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N2O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N2O onto CNT, the horizontal adsorption with Eads = -0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N2O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N2O were investigated. Adsorption of N2O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N2O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N2O sensors.

  10. Surface Adsorption and Replacement of Acid-Oxidized Single-Walled Carbon Nanotubes and Poly(vinyl pyrrolidone Chains

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2007-01-01

    Full Text Available Quartz crystal microbalance (QCM was used to investigate the adsorption of acid-oxidized single-walled carbon nanotubes (Ox-SWNTs and poly(vinyl pyrrolidone, PVP. It was found for the first time that Ox-SWNTs adsorbed onto the QCM electrode can be effectively replaced by PVP chains in an aqueous solution. This replacement process was also investigated by atomic force miscroscopic (AFM imaging, which shows good agreement with the QCM measurements. This study provides powerful tools for fundamental investigation of polymer-nanotube interactions and for controlled design/fabrication of functional polymer-nanotube surfaces for potential applications.

  11. Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash

    International Nuclear Information System (INIS)

    Visa, Maria; Bogatu, Cristina; Duta, Anca

    2010-01-01

    In wastewaters originating from dye industry there are amounts of dyes (very common methyl orange, methylene blue-MB) and heavy metals (cadmium, copper, nickel mainly from the organo-metallic dyes). They tend to adsorb in a competitive process and modify the substrate. Advanced removal is usually proposed via adsorption and the use of modified fly ash as a substrate is sustainable solution. The main constituents of fly ash (silica, alumina, iron oxide and un-burned carbon), are the priority compounds which favour the heavy metal adsorption and are active sites in dyes' adsorption processes. The paper studies the effect of MB adsorbed on the fly ash surface on the removal efficiency of cadmium, copper and nickel ionic species from complex, multi-cationic dye solutions. The adsorption efficiency and kinetics are evaluated from the complex, multicomponent systems and possible influences are discussed. High efficiencies are obtained at low heavy metal concentrations (as it is the real case for the dyes industry) whereas at medium values, competitive processes lower the individual efficiencies of copper, nickel or cadmium from mixtures.

  12. Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents.

    Science.gov (United States)

    Essandoh, Matthew; Wolgemuth, Daniel; Pittman, Charles U; Mohan, Dinesh; Mlsna, Todd

    2017-02-01

    Switchgrass biochar (SGB) was made by fast pyrolysis in an auger-fed reactor at 425 °C with a solid residence time of 60 s in the pyrolysis zone during bio-oil production. Magnetic switchgrass biochar (MSGB) was prepared by iron oxide precipitation onto the biochar surface using an aqueous Fe 3+ /Fe 2+ solution followed by NaOH treatment. Both the SGB and the MSGB were characterized by FTIR, SEM, SEM-EDX, TGA, pH pzc , elemental analysis, and surface area measurements. Batch sorption studies of metribuzin from aqueous solutions were carried out at different pH values, adsorbate concentrations, and temperatures. The adsorption of metribuzin onto both biochars was highest at a pH of 2. Adsorption isotherms were evaluated from 25 to 45 °C using the Freundlich, Langmuir, Redlich-Peterson, Toth, Sips, Koble-Corrigan, and Radke-Prausnitz adsorption models. Langmuir adsorption capacities at pH 2 were Q 0 SGB  ~ 151, 223, and 205 mg/g and Q 0 MSGB  ~ 155, 205, and 155 mg/g at 25, 35, and 45 °C, respectively. Low-cost magnetization of the biochar occurred without significant loss of absorption capacity, enabling facile separation of slurried biochar from liquids following contaminate absorption. Graphical abstract ᅟ.

  13. Adsorption of model perfumes at the air-solution interface by coadsorption with an anionic surfactant.

    Science.gov (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2013-03-12

    The adsorption of the model perfumes phenyl ethanol, PE, and linalool, LL, at the air-solution interface by coadsorption with the anionic surfactant sodium dodecyl 6-benezene sulfonate, LAS-6, has been studied primarily by neutron reflectivity, NR. The variation in the mixed surface adsorption with solution composition is highly nonideal, and the more hydrophobic LL is more surface active. At a LAS-6 concentration of 0.5 mM the adsorption of PE and LL is broadly similar but with the LL systematically more surface active, and at 2 mM the LL completes more effectively for the surface than the PE. The variation in surface composition with solution composition and concentration reflect the greater hydrophobicity and hence surface activity of LL, and the greater solubility of PE in aqueous solution. Changing the geometry of the LAS isomer, from the symmetrical LAS-6 geometry to the more asymmetrical LAS-4, results in the LL competing more effectively for the surface due to changes in the packing constraints associated with the hydrophobic region. The results provide insights into the factors that affect coadsorption that can be more broadly applied to the surface delivery of a wide range of molecules other than perfumes.

  14. Adsorption Efficiency of Iron Modified Carbons for Removal of Pb(II Ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Salmani

    2016-06-01

    Full Text Available Abstract Introduction: The Lead causes severe damage to several systems of the body, especially to bony tissues. Until now, several low-cost biosorbents have been studied for removal of heavy metal ions from aqueous solutions. In the present study, carbonized pomegranate peels modified with Fe2+ and Fe3+ ions and then it was investigated for removal of Pb(II ions from aqueous solution. Materials and methods: the washed granola of pomegranate peel was separately socked with FeCl3 and FeCl2 solutions for 24 h. Then, the granules were carbonized at 400 ºC for 3 h in a programmable furnace in the atmosphere of nitrogen. The adsorption experiments were carried out for two types of iron-modified carbons by batch adsorption using one variable at a time procedures. Results: The optimum conditions were found as contact time 90 min, initial concentration 50 mg/l, and adsorbent dose, 1.00 g/100 ml solution. Maximum removal efficiency was calculated as 84% and 89% for Fe3+ and Fe2+ impregnated pomegranate peel carbons respectively. Conclusion: The iron treatment pomegranate peel carbons modified their surfaces for adsorption of heavy metals. The results showed that chemical modification of the low-cost adsorbents originating from agricultural waste has stood out for metal removal capabilities.

  15. Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process.

    Science.gov (United States)

    Guo, Ziyan; Li, Jiuhai; Guo, Zhaobing; Guo, Qingjun; Zhu, Bin

    2017-06-01

    Parent and aluminum-modified eggshells were prepared and characterized with X-ray diffraction, specific surface area measurements, infrared spectroscopy, zeta potential, and scanning electron microscope, respectively. Besides, phosphorus adsorptions in these two eggshells at different temperatures and solution pH were carried out to study adsorption thermodynamics and kinetics as well as the mechanisms of phosphorus adsorption and diffusion. The results indicated that high temperature was favorable for phosphorus adsorption in parent and aluminum-modified eggshells. Alkaline solution prompted phosphorus adsorption in parent eggshell, while the maximum adsorption amount was achievable at pH 4 in aluminum-modified eggshell. Adsorption isotherms of phosphorus in these eggshells could be well described by Langmuir and Freundlich models. Phosphorus adsorption amounts in aluminum-modified eggshell were markedly higher compared to those in parent eggshell. Adsorption heat indicated that phosphorus adsorption in parent eggshell was a typically physical adsorption process, while chemical adsorption mechanism of ion exchange between phosphorus and hydroxyl groups on the surface of eggshells was dominated in aluminum-modified eggshell. The time-resolved uptake curves showed phosphorus adsorption in aluminum-modified eggshell was significantly faster than that in parent eggshell. Moreover, there existed two clear steps in time-resolved uptake curves of phosphorus in parent eggshell. Based on pseudo-second order kinetic model and intraparticle diffusion model, we inferred more than one process affected phosphorus adsorption. The first process was the diffusion of phosphorus through water to external surface and the opening of pore channel in the eggshells, and the second process was mainly related to intraparticle diffusion.

  16. Recovery of glycols, sugars, and Related Multiple -OH Compounds from Dilute-Aqueous Solution by Regenerable Adsorption onto Activated Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, Daniel [Univ. of California, Berkeley, CA (United States)

    1999-06-01

    The present research explores the use of adsorption onto activated carbons as a means of recover glycerol, glycols, and sugars from dilute-aqueous solution. Our work is focused on understanding the mechanisms of adsorption onto carbons, assessing the degree of adsorption reversibility with precision, and implementing a bench-scale recovery process that results in a higher product concentration and reduction of the energy load for final purification.

  17. Surface and adsorptive properties of Moringa oleifera bark for removal of V(V) from aqueous solutions.

    Science.gov (United States)

    Mnisi, Robert Londi; Ndibewu, Peter Papoh

    2017-11-04

    The bark of Moringa oleifera, a cheap and readily available natural biopolymeric resource material, found to significantly reduce coliform load and turbidity in contaminated water is investigated in this paper. Its surface and adsorptive properties are investigated to explore its adsorptive potential in removing V(V) from aqueous solutions. Surface properties were investigated using FTIR, HRSEM/EDS, IC, and BET-N 2 adsorption techniques. Adsorptive properties were investigated by optimizing adsorption parameters such as pH, temperature, initial metal concentration, and adsorbent dosage, using V(V) as an adsorbate. The adsorption-desorption isotherms are typical of type II with a H3 hysteresis loop and is characteristic of a largely macroporous material. Bottle ink pores are observed, which can provide good accessibility of the active sites, even though the internal BET surface area is typically low (1.79 g/m 2 ). Solution pH significantly influences the adsorptive potential of the material. The low surface area negatively impacts on the adsorption capacity, but is compensated for by the exchangeable anions (Cl - , F - , PO 4 3- , NO 3 - , and SO 4 2- ) and cations (Ca 2+ , K + , Mg 2+ , and Al 3+ ) at the surface and the accessibility of the active sites. Adsorption isotherm modeling show that the surface is largely heterogeneous with complex multiple sites and adsorption is not limited to monolayer.

  18. Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: Equilibrium, kinetics and thermodynamics study

    International Nuclear Information System (INIS)

    Solgy, Mostafa; Taghizadeh, Majid; Ghoddocynejad, Davood

    2015-01-01

    Highlights: • Adsorption of uranium from sulphate solutions by an anion exchange resin. • The effects of pH, contact time and adsorbent dosage were investigated. • The adsorption equilibrium is well described by the Freundlich isotherm model. • The adsorption kinetics can be predicted by the pseudo second-order model. • The adsorption is a physical, spontaneous and endothermic process. - Abstract: In the present study, adsorption of uranium from sulphate solutions was evaluated using Amberlite IRA-402 resin. The variation of adsorption process was investigated in batch sorption mode. The parameters studied were pH, contact time and adsorbent dosage. Langmuir and Freundlich isotherm models were used in order to present a mathematical description of the equilibrium data at three different temperatures (25 °C, 35 °C and 45 °C). The final results confirmed that the equilibrium data tend to follow Freundlich isotherm model. The maximum adsorption capacity of Amberlite IRA-402 for uranium(VI) was evaluated to be 213 mg/g for the Langmuir model at 25 °C. The adsorption of uranium on the mentioned anion exchange resin was found to follow the pseudo-second order kinetic model, indicating that chemical adsorption was the rate limiting-step. The values of thermodynamic parameters proved that adsorption process of uranium onto Amberlite IRA-402 resin could be considered endothermic (ΔH > 0) and spontaneous (ΔG < 0)

  19. Removal of catechol from aqueous solutions by adsorption onto organophilic-bentonite.

    Science.gov (United States)

    Shakir, K; Ghoneimy, H F; Elkafrawy, A F; Beheir, Sh G; Refaat, M

    2008-02-11

    Organophilic-bentonite, produced by exchange of cetyltrimethylammonium cation for metal cations on the bentonite, was exploited as adsorbent for removal of catechol from aqueous solutions using batch technique. The dependence of removal on various physico-chemical parameters, such as contact time (1-250 min), concentration (0.8-15.3 mmol L(-1)), temperature (30, 40, 50+/-1 degrees C) and pH (5-12) of the adsorptive solution were investigated. Obtained results show that catechol could be removed efficiently ( approximately 100%) at pH values > or =9.9. The uptake process follows first-order rate kinetics and the equilibrium data fit well into the Langmuir and Freundlich adsorption isotherms over a wide range of concentration (1-10 mmol L(-1)). The magnitude of change of free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) were determined.

  20. CO2 adsorption on single-walled dahlia-like carbon nanohorns

    Science.gov (United States)

    Bohorquez, Jaime; Krungleviciute, Vaiva; Migone, Aldo; Yudasaka, Masako; Iijima, Sumio

    2010-03-01

    The adsorption of CO2 on spherical aggregates of as-produced (i.e., closed) dahlia-like single-walled carbon nanohorns was investigated. We conducted volumetric adsorption measurements at five temperatures between 147 and 180 K. The shape of the isotherms for CO2 is very different from those measured with neon and CF4. For CO2 there is a single, smeared step in the adsorption data between the lowest coverages and saturation. By contrast, Ne and CF4 show two distinct substeps on the same substrate. The isosteric heat was also obtained and its dependence on coverage also showed an usual behavior: it increased with increasing coverage. The isosteric heat decreases with coverage both for Ne and CF4. The stronger intermolecular interactions present for CO2 probably are responsible for this adsorbate's unusual behavior. Comparisons with the behavior reported in the literature for CO2 on SWNTs, which shows similar unusual characteristics, will also be made.

  1. Adsorption of and acidic dye from aqueous solution by surfactant modified bentonite

    International Nuclear Information System (INIS)

    Bouberka, Z.; Khenifi, A.; Belkaid, N.; Ait Mahamed, H.; Haddou, B.; Derriche, Z.

    2009-01-01

    The aim of this paper is to study the adsorption of an acidic dye S. Y. 4 GL (i.e: Supranol yellow 4GL) from aqueous solution on inorgano-organo clay. Bentonite is a kind of natural clay with good exchanging ability. By exchanging its inter lamellar cations with Cetyltrimethylammonium bromide (CTAB) and hydroxy aluminic or chromium poly cations, the properties of natural bentonite can be greatly improved. (Author)

  2. Kinetics Modeling and Isotherms for Adsorption of Phosphate from Aqueous Solution by Modified Clinoptilolit

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2012-01-01

    Full Text Available The Phosphorous discharge into the surface water led to excessive growth of algae and eutrophication in lakes and rivers. Therefore the phosphorus removal is important due to negative effect on water resources. The aim of this study was to investigat the modification of clinoptilolite and application of modified clinoptilolite for phosphorous adsorption from aqueous solution and isotherms and kinetics modeling. Hexadecyl Trimethyl Ammonium bromide (HDTMA-Br, Hexadecyl trimethyl Ammonium Chloride (HDTMA-Cl, Sodium Decyl Sulphate (SDS and Cetrimide-C were used for modification of clinoptilolite. Experiments were conducted using jar apparatus and batch system. The effect of pH, adsorbent doses, contact time, phosphate initial concentration and particle size were studied surveyed on phosphate adsorption by modified clinoptilolite. The most common isotherms and the kinetics adsorption equations were used for determination of adsorption rate and dynamic reaction. The results showed that maximum phosphate adsorption was obtained in the pH of 7 and contact time 90min. Also it was found with the increasing of phosphate initial concentration, phosphate removal efficiency decreased significantly. Langmuir No 2 showed a good correlation compared to other isotherms (R2=0.997. Maximum adsorption capacity was obtained in 20g/L adsorbent dose (22.73mg/g. Also Interaparticle diffusion kinetics well fits with experimental data (R2=0.999 with constant rate of 3.84mg/g min0.5. The result showed that modified clinoptilolite can be used successfully as low cost and effective absorbent for phosphate removal.

  3. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study

    Science.gov (United States)

    Romero-Hermida, M. I.; Romero-Enrique, J. M.; Morales-Flórez, V.; Esquivias, L.

    2016-08-01

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N2, CO2, and O2, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO2 concentrations and low temperatures, the CO2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  4. Flue gas adsorption by single-wall carbon nanotubes: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Hermida, M. I. [Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro s/n, 11510 Puerto Real (Spain); Departamento de Física Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Romero-Enrique, J. M. [Departamento de Física Atómica, Molecular y Nuclear, Área de Física Teórica, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Morales-Flórez, V.; Esquivias, L. [Departamento de Física Condensada, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla (Spain); Instituto de Ciencia de Materiales de Sevilla (CSIC/US), Av. Américo Vespucio 49, 41092 Sevilla (Spain)

    2016-08-21

    Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N{sub 2}, CO{sub 2}, and O{sub 2}, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO{sub 2} adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO{sub 2} adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO{sub 2} adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO{sub 2} adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO{sub 2} concentrations and low temperatures, the CO{sub 2} adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

  5. Equilibrium and kinetics of phosphorous adsorption onto bone charcoal from aqueous solution.

    Science.gov (United States)

    Ghaneian, Mohammad Taghi; Ghanizadeh, Ghader; Alizadeh, Mohammad Tahghighi Haji; Ehrampoush, Mohammad Hasan; Said, Farhan Mohd

    2014-01-01

    Pyrolysis of fresh sheep bone led to the formation of bone charcoal (BC). The structural characteristics of BC and surface area were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). N2 gas adsorption-desorption was analysed by Brunauer-Emmett-Teller isotherm model. The prepared BC was used as an effective sorbent for the removal of phosphate from aqueous solutions. The effect of major parameters, including initial phosphorous concentration, sorbent dosage, pH and temperature, was investigated in this study. Furthermore, adsorption isotherms and kinetics were evaluated. BC was an effective sorbent in phosphate removal from aqueous solution especially in phosphate concentration between 2 and 100 mg/L. The maximum amount of sorption capacity was 30.21 mg/g, which was obtained with 100 mg/L as the initial phosphate concentration and 0.2 g as the sorbent dosage. Best reported pH in this study is 4; in higher pH, adsorption rate decreased dramatically. By increasing the temperature from 20 to 40 degrees C sorption capacity increased; this phenomenon described that adsorption is endothermic. Equilibrium data were analysed by Langmuir, Freundlich and Temkin isotherms. Pseudo first- and second-order and Elovich models were used to determine the kinetics of adsorption in this study. Collected data highly fitted with Freundlich isotherms and pseudo second-order kinetics. Achieved results have shown well the potentiality for the BC to be utilized as a natural sorbent to remove phosphorous from water and wastewater.

  6. Hexavalent chromium adsorption from aqueous solution using carbon nano-onions (CNOs).

    Science.gov (United States)

    Sakulthaew, Chainarong; Chokejaroenrat, Chanat; Poapolathep, Amnart; Satapanajaru, Tunlawit; Poapolathep, Saranya

    2017-10-01

    The capacity of carbon nano-onions (CNOs) to remove hexavalent chromium (Cr(VI)) from aqueous solution was investigated. Batch experiments were performed to quantify the effects of the dosage rate, pH, counter ions, and temperature. The adsorption of Cr(VI) onto CNOs was best described by a pseudo-second order rate expression. The adsorption efficiency increased with increasing adsorbent dosage and contact time and reached equilibrium in 24 h. The equilibrium data showed better compliance with a Langmuir isotherm than a Freundlich isotherm. Effective removal of Cr(VI) was demonstrated at pH values ranging from 2 to 10. The adsorption capacity of Cr(VI) was found to be highest (82%) at pH 3.4 and greatly depended on the solution pH. We found that Cr(VI) adsorption decreased with increasing pH over the pH range of 3.4-10. The adsorption capacity increased dramatically when the temperature increased from 10 °C to 50 °C regardless of the amount of CNOs used. Cr(VI) removal decreased by ∼13% when Zn(II), Cu(II), and Pb(II) were present, while there were no significant changes observed when NO 3 - or SO 4 2- was present. The overall results support that CNOs can be used as an alternative adsorbent material to remove Cr(VI) in the water treatment industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Adsorption of Ni(II and Cd(II from Aqueous Solutions Using Modified Rice Husk

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2015-03-01

    Full Text Available Background and purpose: Recently, release of pollutants such as heavy metal ions to the environment becomes one of the most important problems for soil and water. The present study was conducted to introduce modified rice husk (RH as a new low-cost adsorbent. Materials and Methods: In this study, tartaric acid modified RH (TARH, was used as an adsorbent for removal of Ni(II and Cd(II from water samples. This study was conducted in laboratory scale. Employing batch method, solution pH, adsorbent dose, contact time, and initial metals concentration were optimized. Results: The optimum pH for removing of both the investigated metal ions from water solutions was found to be 4.0. The process of Ni(II and Cd(II adsorption on TARH reached equilibrium within 45 min. The isotherm evaluations revealed that the Langmuir model attained better fits of the experimental equilibrium data than the Freundlich model. In addition, adsorption kinetics data were well-fitted by the pseudo-second-order rate model with high regression coefficients. Conclusion: It was found that TARH is a highly efficient adsorbent for Ni and Cd from aqueous solution, and the maximum predicted adsorption capacities for Ni(II and Cd(II were obtained as 55.5 and 45.5 mg/g, respectively.

  8. Adsorption of NI (II on activated Carbon of Coconut shell Chemicaly Modifieded with Acid Nitric Solutions

    Directory of Open Access Journals (Sweden)

    Mónica Hernández-Rodríguez

    2017-01-01

    Full Text Available In the research the effect of modification of coconut shell activated carbon with diluted solutions of nitric acid, in its chemical characteristics and removal capacity of the nickel (II ions present in modeling solutions of sulfates with similar characteristics to the acid liquor waste of the nickel industry, was studied. The characterization of the adsorbent material evidenced that the modification process increases the superficial acids groups according with the increase of acid nitric concentration employee in the treatment. The adsorption equilibrium tests, carried out with metallic species solutions at concentrations between 0,5 and 3,5 g/L evidenced that the process is described by Freundlich model. The effect of chemical modification of the adsorbent material in adsorption capacity of nickel (II ions was evaluated using a traditional experimental design at pH of 1,2 and 6,9 units, obtaining that the increase of acid groups in the carbon surface causes an increase of adsorption capacity and removal percentages of nickel (II, due to specific interactions of these groups with the metal cations.

  9. Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization

    International Nuclear Information System (INIS)

    Zhi-bin Zhang; East China Institute of Technology, Fuzhou; China University of Geosciences, Wuhan; China University of Geosciences, Wuhan; Xiao-hong Cao; Yun-hai Liu; East China Institute of Technology, Fuzhou; Ping Liang; East China Institute of Technology, Fuzhou; China University of Geosciences, Wuhan

    2013-01-01

    The ability of biochar produced by hydrothermal carbonization (HTC) has been explored for the removal and recovery of uranium from aqueous solutions. The micro-morphology and structure of HTC were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The influences of different experimental parameters such as solution pH, initial concentration, contact time, ionic strength and temperature on adsorption were investigated. The HTC showed the highest uranium sorption capacity at initial pH of 6.0 and contact time of 50 min. Adsorption kinetics was better described by the pseudo-second-order model and adsorption process could be well defined by the Langmuir isotherm. The thermodynamic parameters, ΔGdeg(298 K), ΔHdeg and ΔSdeg were determined to be -14.4, 36.1 kJ mol -1 and 169.7 J mol -1 K -1 , respectively, which demonstrated the sorption process of HTC towards U(VI) was feasible, spontaneous and endothermic in nature. The adsorbed HTC could be effectively regenerated by 0.05 mol/L HCl solution for the removal and recovery of U(VI). Complete removal (99.9 %) of U(VI) from 1.0 L industry wastewater containing 15.0 mg U(VI) ions was possible with 2.0 g HTC. (author)

  10. Adsorption of Cu2+ from aqueous solution onto modified glass beads with 3-aminopropyltriethoxysilane

    Directory of Open Access Journals (Sweden)

    Z Torkshavand

    2014-08-01

    Full Text Available The discharge of heavy metals into the aquatic ecosystem is a main concern over the last few decades. These pollutants are introduced into aquatic systems as a result of various industrial operations. This study investigates the efficiency of the modified glass beads with APTES ligand for removal of Cu2+ from the aqueous solution. Response surface methodology based on Box-Behnken was used to assess the effect of independent variables, including flow rate, solution pH, initial concentration and glass beads size on the response function and prediction of the best response value. Atomic absorption spectroscopic analysis of eluents of a column of the modified glass beads showed that Cu2+ ion was more than 90% entrapped on a column of glass beads. The isotherm evaluations indicate that the equilibrium data for Cu2+ adsorption could be fitted with the Langmuir model. Experimental data were also evaluated in terms of adsorption kinetics using the pseudo-first-order and pseudo-second-order kinetic models. The results also showed that the adsorption process of the Cu2+ well suited with the pseudo-second-order kinetics model. All the results demonstrated that modified glass beads successfully absorbed heavy metals from aqueous solution.

  11. Modeling the effect of structural details of nonionic surfactant on micellization in solution and adsorption onto hydrophobic surfaces

    NARCIS (Netherlands)

    Jodar-Reyes, A.B.; Ortega-Vinuesa, J.L.; Martin-Rodriguez, A.; Leermakers, F.A.M.

    2002-01-01

    Applying the classical one-gradient self-consistent-field (SCF) theory for adsorption and/or association, we can show that the molecular architecture of nonionic surfactants influences strongly the micellization in solution and the adsorption on solid-liquid interfaces. This is illustrated by using

  12. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Yoosefian, Mehdi, E-mail: m.yoosefian@kgut.ac.ir

    2017-01-15

    Highlights: • Investigation of the adsorption of Nitrous oxide on SWCNT and Pd/SWCNT. • Nitrous oxide adsorbed on Pd/SWCNT system demonstrates a strong adsorption. • The Pd/SWCNT is potential sensor for the Nitrous oxide gaseous molecule detection. - Abstract: Density functional studies on the adsorption behavior of nitrous oxide (N{sub 2}O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N{sub 2}O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N{sub 2}O onto CNT, the horizontal adsorption with E{sub ads} = −0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N{sub 2}O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N{sub 2}O were investigated. Adsorption of N{sub 2}O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N{sub 2}O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N{sub 2}O sensors.

  13. Parametric and kinetic study of adsorptive removal of dyes from aqueous solutions using an agriculture waste

    Science.gov (United States)

    Bencheikh, imane; el hajjaji, souad; abourouh, imane; Kitane, Said; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    -first- order kinetic model the pseudo-second-order kinetic model , and the Intraparticule diffusion model . It was observed that the pseudo -second -order model was the best model describing the adsorption behavior of MB and MO onto holocellulose. This suggested that the adsorption mechanism might be a chemisorptions process. In general, the results indicated that holocellulose is suitable as sorbent material for adsorption of MO and MB from aqueous solutions for its high effectiveness and low cost.

  14. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass

    International Nuclear Information System (INIS)

    Romero-Gonzalez, J.; Peralta-Videa, J.R.; Rodriguez, E.; Ramirez, S.L.; Gardea-Torresdey, J.L.

    2005-01-01

    The temperature dependence of the Cr(VI) bioadsorption and its possible reduction to Cr(III) by Agave lechuguilla biomass were studied. The experimental data obtained in batch experiments at different temperatures were fitted to the Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model. The adsorption equilibrium data fitted well with the Freundlich model. The average model parameters calculated from Freundlich's isotherms (adsorption capacity K F = 4 . 10 -2 mol . g -1 and an average adsorption intensity value n = 13.07) showed that A. lechuguilla can be considered as an effective biomaterial for Cr(VI) removal from aqueous solution. Thermodynamic parameters (ΔG . , ΔH . , and ΔS . ) for Cr(VI) adsorption determined in the temperature range from (283 to 313) K suggest that a portion of Cr(VI) may be bound to functional groups on the surface of the adsorbent and then reduced to Cr(III). Additionally, the parameters of the Dubinin-Radushkevick equation indicated that the sorption of chromium species onto lechuguilla biomass mainly proceeds through binding surface functional groups

  15. Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot

    International Nuclear Information System (INIS)

    Onal, Yunus

    2006-01-01

    Adsorbent (WA11Zn5) has been prepared from waste apricot by chemical activation with ZnCl 2 . Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N 2 adsorption and DFT plus software. Adsorption of three dyes, namely, Methylene Blue (MB), Malachite Green (MG), Crystal Violet (CV), onto activated carbon in aqueous solution was studied in a batch system with respect to contact time, temperature. The kinetics of adsorption of MB, MG and CV have been discussed using six kinetic models, i.e., the pseudo-first-order model, the pseudo-second-order model, the Elovich equation, the intraparticle diffusion model, the Bangham equation, the modified Freundlich equation. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the adsorption kinetics for three dyes. The dyes uptake process was found to be controlled by external mass transfer at earlier stages (before 5 min) and by intraparticle diffusion at later stages (after 5 min). Thermodynamic parameters, such as ΔG, ΔH and ΔS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures and concentrations. The thermodynamics of dyes-WA11Zn5 system indicates endothermic process

  16. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Gonzalez, J. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Peralta-Videa, J.R. [Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States); Rodriguez, E. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States); Ramirez, S.L. [Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States); Gardea-Torresdey, J.L. [Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968 (United States) and Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968 (United States)]. E-mail: jgardea@utep.edu

    2005-04-15

    The temperature dependence of the Cr(VI) bioadsorption and its possible reduction to Cr(III) by Agave lechuguilla biomass were studied. The experimental data obtained in batch experiments at different temperatures were fitted to the Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model. The adsorption equilibrium data fitted well with the Freundlich model. The average model parameters calculated from Freundlich's isotherms (adsorption capacity K{sub F} = 4 . 10{sup -2} mol . g{sup -1} and an average adsorption intensity value n = 13.07) showed that A. lechuguilla can be considered as an effective biomaterial for Cr(VI) removal from aqueous solution. Thermodynamic parameters ({delta}G{sup .}, {delta}H{sup .}, and {delta}S{sup .}) for Cr(VI) adsorption determined in the temperature range from (283 to 313) K suggest that a portion of Cr(VI) may be bound to functional groups on the surface of the adsorbent and then reduced to Cr(III). Additionally, the parameters of the Dubinin-Radushkevick equation indicated that the sorption of chromium species onto lechuguilla biomass mainly proceeds through binding surface functional groups.

  17. AMINO AND MERCAPTO-SILICA HYBRID FOR Cd(II ADSORPTION IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2010-06-01

    Full Text Available Modification of silica gel with 3-aminopropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane through sol-gel technique producing amino-silica hybrid (HAS and mercapto-silica hybrid (HMS, respectively, has been carried out using tetraethylorthosilicate (TEOS as silica source. The adsorbents were characterized using infrared spectroscopy (IR, and X-ray energy dispersion spectroscopy (EDX. Adsorption of Cd(II individually as well as its binary mixture with Ni(II, Cu(II, and Zn(II in solution was performed in a batch system. Adsorption capacities of Cd(II ion on adsorbent of silica gel (SG, HAS, and HMS are 86.7, 256.4 and 319.5 μmol/g with the adsorption energies are 24.60, 22.61 and 23.15 kJ/mol, respectively. Selectivity coefficient (α of Cd(II ion toward combination of Cd(II/Ni(II, Cd(II/Cu(II, and Cd(II/Zn(II ions on HAS adsorbent is relatively smaller than those on HMS adsorbent which has α > 1.   Keywords: adsorption, amino-silica hybrid, mercapto-silica

  18. Removal of Phosphate from Synthetic Aqueous Solution by Adsorption with Dolomite from Padalarang

    Directory of Open Access Journals (Sweden)

    Fadjari Lucia Nugroho

    2014-12-01

    Full Text Available The presence of phosphate in wastewaters can cause eutrophication of surface water bodies leading to algal-blooming in the aquatic environment and degradation of water quality. Phosphate removal from wastewaters by conventional biological treatment removes only 10-30% of the phosphate, whilst chemical treatment using precipitants such as calcium or iron salts, although effective, is expensive and produces water-rich sludge which must be further treated. Hence, phosphate removal by adsorption in the form of Ca -phosphate has been proposed as an alternative to the more traditional methods. This study investigated the feasibility of using dolomite–a common sedimentary rock–from Padalarang, West Java, Indonesia as the adsorbent for the removal of phosphate from synthetic aqueous solution. Chemical analysis revealed that the Padalarang dolomite contains 33.6-36.2% CaO. Batch experiments at room temperature indicated that optimum removal of phosphate was achieved at pH 9. At 25°C , where increasing concentrations of phosphate (10–100 mg/L increased phosphate adsorption (2.15-31.3 mg/g by the dolomite. The adsorption of phosphate could be described by the Langmuir isotherm model, with constants Qm= 476.19 mg/g, K L= 0,00106 L/mg and equilibrium parameter (R L: 0.904 – 0.989. Phosphate adsorption by dolomite not only permits its removal but also its potential recovery for reuse.

  19. Adsorption Rate of 198 Reactive Red Dye from Aqueous Solutions by using Activated Red Mud

    Directory of Open Access Journals (Sweden)

    MA Zazouli

    2013-06-01

    Full Text Available Backgroud and purpose: Dye is one of the problems of industrial effluent such as textile industries. The dyes can be removed by various methods. Therefore, the aim of this study was the evaluation of adsorption rate of reactive red 198 from aqueous solution by activated red mud. Materials and methods: This research was a lab study. Activated red mud was used as an adsorbent to remove reactive red 198 dye. The effect of various parameters on performance of adsorbent was investigated and the isotherm of adsorption was determined. The dye concentration was measured in wavelength of 518 nm by spectrophotometer. Results: The results indicated that the adsorption efficiency reduced by increasing of initial dye concentration. Increasing of contact time and adsorbent dose can lead to increasing of the removal efficiency. The maximum removal efficiency was occurred pH between 2 to 3. The data was best fitted on Frandlich and Temkin isotherms. Conclusion: The red mud had a satisfactory quality in dye adsorption. It can be used as effective and inexpensive adsorbents for treatment of textile effluent.

  20. A study on the adsorption and subsurface transport of radioactive solutes in the presence of chelating agents

    International Nuclear Information System (INIS)

    Baik, Min Hoon

    1994-02-01

    In this study, adsorption and transport models were developed to analyze the effect of chelating agents on the adsorption and subsurface transport of radioactive solutes. The effect of chelating agents on the adsorption of radioactive solutes was analyzed by developing an adsorption model based upon the extended concept of distribution coefficient reflecting the presence of chelating agents. Also, a batch adsorption experiment was conducted in order to validate the developed adsorption model and to investigate the effect of chelating agent on the adsorption of radioactive metal solutes. In this experiment, a Cobalt(II)/EDTA/Bentonite system was considered as a representative chelation/adsorption system. It was found from the results that the presence of chelating agents significantly reduced the adsorbing capacity of geologic media such as clay minerals and soils. Thus it was concluded that the presence of chelating agents even in a small amount could contribute to the mobilization of radioactive solutes from radioactive waste burial sites by reducing the adsorbing capacity of geologic media. The effect of chelating agents on the transport of radioactive solutes in subsurface porous media was analyzed by formulating an advective-dispersive transport model which incorporated chelate formation, adsorption, decay, and degradations and by introducing the concept of a tenad. Particularly the governing equation for the tenad of radioactive solutes, M, was presented as a linear partial differential form by introducing the extended distribution coefficient, K D . The calculated results from the model showed that the transport rate of the chelated radionuclides was much greater than that of the free ionic radionuclides. This much faster transport of the chelated radionuclides was found to be due to the lower retardation factor of the chelated radionuclides than the free ionic radionuclides. The effect of parameters on the transport of radioactive solutes was also analyzed

  1. Decolorisation of Reactive Red 120 Dye by Using Single-Walled Carbon Nanotubes in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2013-01-01

    Full Text Available Dyes are one of the most hazardous chemical compound classes found in industrial effluents and need to be treated since their presence in water bodies reduces light penetration, precluding the photosynthesis of aqueous flora. In the present study, single-walled carbon nanotubes (SWCNTs was used as an adsorbent for the successful removal of Reactive Red 120 (RR-120 textile dye from aqueous solutions. The effect of various operating parameters such as initial concentration of dye, contact time, adsorbent dosage and initial pH was investigated in order to find the optimum adsorption conditions. Equilibrium isotherms were used to identify the possible mechanism of the adsorption process. The optimum pH for removing of RR-120 dye from aqueous solutions was found to be 5 and for this condition maximum predicted adsorption capacity for RR-120 dye was obtained as 426.49 mg/g. Also, the equilibrium data were also fitted to the Langmuir, Freundlich and BET equilibrium isotherm models. It was found that the data fitted to BET (R2=0.9897 better than Langmuir (R2=0.9190 and Freundlich (R2=0.8819 model. Finally it was concluded that the single-walled carbon nanotubes can be used for dye removal from aqueous solutions.

  2. Adsorption of anionic dyes from aqueous solutions onto coal fly ash and zeolite synthesized from coal fly ash

    International Nuclear Information System (INIS)

    Carvalho, Terezinha Elizabeth Mendes de

    2010-01-01

    Coal fly ash, a waste generated in coal-fired electric power plant, was used to synthesize zeolite by hydrothermal treatment with NaOH solution. The fly ash (CL-2) and this synthesized zeolite (ZM-2) that was characterized as hydroxy-sodalite were used as adsorbents for anionic dyes indigo carmine (IC), and reactive orange 16 (RO16) from aqueous solutions. Effects of contact time, initial dye concentration, pH, adsorbent mass, and temperature were evaluated in the adsorption processes. The kinetics studies indicated that the adsorption followed the pseudo-second order kinetics and that surface adsorption and intraparticle diffusion were involved in the adsorption mechanism. The thermodynamics parameters demonstrated that the adsorption was spontaneous for all adsorption processes. The enthalpy data confirmed the endothermic nature for all adsorption processes except for IC/ZM-2 system which was exothermic. The entropy data showed an increased disorder at the solid/solution interface during the adsorption for all systems except for IC/ZM-2 whose negative entropy value indicated a decreased disorder at the interface. The adsorption isotherms were closely fitted to the Langmuir linear equation. The maximum adsorption capacities were 1.48 mg/g for the IC/CL-2 system; 1.13 mg/g for IC/ZM-2; 0.96 mg/g for RO16/CL-2, and 1.14 mg/g for RO16/ZM-2 at room temperature. The desorption study carried out with water, with acid aqueous solutions, and with an alkali aqueous solution showed to be inefficient both for recovering the dyes and regenerating the adsorbents. (author)

  3. Separation of hydrogen isotopes via single column pressure swing adsorption

    International Nuclear Information System (INIS)

    Wong, Y.W.; Hill, F.B.

    1981-01-01

    Separation of hydrogen isotopes based on kinetic isotope effects was studied. The mixture separated was hydrogen containing a trace of tritium as HT and the hydride was vanadium monohydride. The separation was achieved using the single-column pressure swing process. Stage separation factors are larger and product cuts smaller than for a two-column pressure swing process operated in the same monohydride phase

  4. Adsorption and Desorption of Na+ and NO3− Ions on Thermosensitive NIPAM-co-DMAAPS Gel in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Eva Oktavia Ningrum

    2017-11-01

    Full Text Available Adsorbent gel with the ability to absorb and to desorb Na+ and NO3− ions simultaneously with temperature swing was synthesized by free radical copolymerization reaction of N-isopropylacrylamide (NIPAM and N,N-dimethyl-(acrylamidopropylammonium propane sulfonate (DMAAPS. In this study, NIPAM acts as a thermosensitive agent and DMAAPS as an adsorbent agent. The purpose of this research is to investigate the effect of temperature and solution concentration on the swelling, adsorption, and desorption behaviors of NIPAM-co-DMAAPS gel. The relationship between adsorption and desorption behaviors of the gel was also elucidated. NaNO3 solution was selected as the target solution in swelling, adsorption, and desorption test. It was observed that the swelling degree of the gel increased as temperature and solution concentration raised. The adsorption amount of ions decreased with the increase of temperature. In contrast, the amount of ions desorbed from the gel increased linearly with temperature.

  5. Adsorptive removal of Congo red from aqueous solutions using crosslinked chitosan and crosslinked chitosan immobilized bentonite.

    Science.gov (United States)

    Huang, Ruihua; Zhang, Lujie; Hu, Pan; Wang, Jing

    2016-05-01

    Batch experiments were executed to investigate the removal of Congo red (CR) from aqueous solutions using the crosslinked chitosan (CCS) and crosslinked chitosan immobilized bentonite (CCS/BT composite). The CCS and CCS/BT composite were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. The removal of CR was examined as a function of pH value of CR solution, contact time, and inorganic sodium salt and ionic strength. The equilibrium data of CCS and CCS/BT composite agreed well with the Langmuir model. The adsorption capacities of CCS and CCS/BT composite at 298K and natural pH value were 405 and 500 mg/g, respectively. The kinetic data correlated well with the pseudo-second-order model. The adsorption of CR onto the CCS was mainly controlled by chemisorption while the adsorption of CR onto the CCS/BT composite was controlled by chemisorption and the electrostatic attraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Molecular studies of Cs adsorption sites in inorganic layered materials: the influence of solution concentration.

    Science.gov (United States)

    Sato, Kiminori; Hunger, Michael

    2017-07-19

    Radioactive Cs released into a soil environment migrates along with groundwater in a manner dependent on Cs concentration. Data on the variation of Cs adsorption as a function of solution concentration are an essential prerequisite to successful decontamination work in Fukushima. To aid the ongoing decontamination work, the adsorption of Cs in aqueous solution across a wide Cs + molarity range is studied for the case of saponite clay as adsorbent, an inorganic layered material that is an abundant mineral in the soil environment. The local molecular structures, i.e. nanosheet surfaces, nanosheet edges, and oncoming hexagonal cavities, participating in Cs adsorption are qualitatively highlighted by means of a recently developed analytical method using data from a conventional elution test, 133 Cs magic-angle-spinning nuclear magnetic resonance (MAS NMR), and the radiocesium interception potential (RIP) [K. Sato, et al., J. Phys. Chem. C, 2016, 120, 1270]. The concentrations of nanosheet edges amount to between 100 and 400 mmol kg -1 , which are not substantially different from those of the nanosheet surfaces, generally regarded as the main decontamination sites. This unambiguously implies that the nanosheet edges should be targeted as the molecular sites for decontaminating radioactive Cs, in addition to the nanosheet surfaces.

  7. Removal of Reactive Anionic Dyes from Binary Solutions by Adsorption onto Quaternized Kenaf Core Fiber

    Directory of Open Access Journals (Sweden)

    Intidhar Jabir Idan

    2017-01-01

    Full Text Available The most challenging mission in wastewater treatment plants is the removal of anionic dyes, because they are water-soluble and produce very shining colours in the water. In this regard, kenaf core fiber (KCF was chemically modified by the quaternized agent (3-chloro-2-hydroxypropyltrimethylammonium chloride to increase surface area and change the surface properties in order to improve the removing reactive anionic dyes from binary aqueous solution. The influencing operating factors like dye concentration, pH, adsorbent dosage, and contact time were examined in a batch mode. The results indicate that the percentage of removal of Reactive Red-RB (RR-RB and Reactive Black-5 (RB-5 dyes from binary solution was increased with increasing dyes concentrations and the maximum percentage of removal reached up to 98.4% and 99.9% for RR-RB and RB-5, respectively. Studies on effect of pH showed that the adsorption was not significantly influenced by pH. The equilibrium analyses explain that, in spite of the extended Langmuir model failure to describe the data in the binary system, it is better than the Jain and Snoeyink model in describing the adsorption behavior of binary dyes onto QKCF. Also, the pseudo-second-order model was better to represent the adsorption kinetics for RR-RB and RB-5 dyes on QKCF.

  8. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp using response surface methodology

    Directory of Open Access Journals (Sweden)

    M. Mourabet

    2015-11-01

    Full Text Available A study on the adsorption of fluoride onto hydroxyapatite was conducted and the process parameters were optimized using Response Surface Methodology (RSM. Hydroxyapatite has been characterized by using different physicochemical methods. In order to determine the effects of process parameters namely temperature (20–40 °C, initial solution pH (4–11, adsorbent dose (0.1–0.3 g and initial fluoride concentration (10–20 mg L−1 on fluoride uptake from aqueous solution, a three-level, four-factor, Box–Behnken design has been employed. The second order mathematical model was developed by regression analysis of the experimental data obtained from 29 batch runs. The optimum pH, temperature, adsorbent dose and initial concentration were found by desirability function to be 4.16, 39.02 °C, 0.28 g and 20 mg L−1, respectively. Fluoride removal was 86.34% at the optimum combination of process parameters. Dynamic adsorption data were applied to pseudo-first-order and pseudo-second-order rate equations. The time data fitted well to pseudo second order kinetic model. According to the correlation coefficients, the adsorption of fluoride on the hydroxyapatite was correlated well with the Langmuir and Freundlich models.

  9. SeO{sub 2} adsorption on CaO surface: DFT study on the adsorption of a single SeO{sub 2} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yaming; Zhuo, Yuqun; Lou, Yu; Zhu, Zhenwu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Li, Liangliang [Key Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Adsorption mechanisms of SeO{sub 2} on CaO surface under O{sub 2} were firstly studied by DFT. • The adsorption energies, bond length and electron density maps were calculated. • The electronic structure changes upon adsorption were studied. - Abstract: Selenium is a hazardous element in coal. During coal combustion, most of the selenium will convert to SeO{sub 2} in the flue gas. Ca-based adsorbents, especially CaO, have been considered as a potential sorbent to adsorb SeO{sub 2} due to its low cost. In this paper, the adsorption mechanisms of single SeO{sub 2} on CaO surface were investigated by density functional theory (DFT) calculation. Both the physisorption and chemisorption structures were determined. It has been identified that the adsorption of SeO{sub 2} on CaO surface is primarily chemisorption, while physisorption takes effects at the initial stage of the process. Under O{sub 2} atmosphere, selenate is hard to form. Most of the adsorption products are selenite. Additionally, the electron density maps were obtained to reveal the surface active sites. The partial density of states (PDOS) was calculated for analyzing the electronic structural change of SeO{sub 2} and CaO surface during adsorption. The results provide fundamental information of the adsorption process, which could be meaningful for the development of new absorbents.

  10. Ag{sup II} doped MIL-101 and its adsorption of iodine with high speed in solution

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Ping; Qi, Bingbing; Liu, Ying [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zhao, Lei [Lianyungang Institute of Nanjing University of Science and Technology, Lianyungang 222006 (China); Jiao, Yan [Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials (CEM), School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology (China); Zhang, Yi; Jiang, Zheng; Li, Qiang [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Jinfeng [Nanjing Chemical Industries Co., Ltd., SINOPEC, Nanjing 210048 (China); Chen, Shouwen [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Yi, E-mail: yyi301@163.com [School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2016-05-15

    In order to improve the adsorption speed of iodine from water, MIL-101 with extra-large specific surface area (3054 m{sup 2}/g) was chosen as a base material, and then, Ag was doped into MIL-101 to enhance its adsorption capacity through an incipient-wetness impregnation method. With the characterization of SEM-EDS, TEM, XRD, XPS, TGA, IR, and BET techniques, the resulting Ag was identified to be stay in the framework of MIL-101 stably in the form of Ag{sup II} (generally, Ag{sup II} cation is not stable). However, after the adsorption of I{sup −} anions, Ag{sup II} stay in the cages of MIL-101 in the form of AgI/AgI{sub 3}. It is important to note that, all adsorbents show high adsorption speed of iodine in solution. The equilibrium adsorption time of the adsorbents were acquired by only a few minutes, which can be attributed to its large BET surface area. An interesting note is that, when the doping amount of Ag is less than 9%, the iodine anions adsorption capacity of Ag@MIL-101 is greater than its theoretical adsorption capacity. It shows that both physical adsorption and chemical adsorption are existed in the adsorption process. This study hopefully leads to a new and highly efficient Ag-based adsorbent for iodide adsorb from solutions. - Graphical abstract: Ag{sup II} stay in the framework of MIL-101 stably because of F{sup -}, after the adsorption of I{sup -} anions, Ag{sup I}I /Ag{sup I}I{sub 3} stay in the cages of MIL-101. The equilibrium adsorption time of Ag@MIL-101 were acquired by only a few minutes. - Highlights: • Ag{sup II} was doped into MIL-101 by an incipient-wetness impregnation method. • Both physical adsorption and chemical adsorption are verified in the adsorption process. • Ag@MIL-101 exhibits high adsorption speed and adsorption capacity. • Ag@MIL-101 can be effectively applied to the removal of radioactive iodide anions from water in acidic and neutral medium.

  11. The classification of the single travelling wave solutions to the ...

    Indian Academy of Sciences (India)

    2016-09-21

    Sep 21, 2016 ... The discrimination system for the polynomial method is applied to variant Boussinesq equations to classify single travelling wave solutions. In particular, we construct corresponding solutions to the concrete parameters to show that each solution in the classification can be realized. Keywords. Exact solution ...

  12. Effects of topology on the adsorption of singly tethered ring polymers to attractive surfaces.

    Science.gov (United States)

    Li, Bing; Sun, Zhao-Yan; An, Li-Jia

    2015-07-14

    We investigate the effect of topology on the equilibrium behavior of singly tethered ring polymers adsorbed on an attractive surface. We focus on the change of square radius of gyration Rg(2), the perpendicular component Rg⊥(2) and the parallel component Rg‖(2) to the adsorbing surface, the mean contacting number of monomers with the surface , and the monomer distribution along z-direction during transition from desorption to adsorption. We find that both of the critical point of adsorption εc and the crossover exponent ϕ depend on the knot type when the chain length of ring ranges from 48 to 400. The behaviors of Rg(2), Rg⊥(2), and Rg‖(2) are found to be dependent on the topology and the monomer-surface attractive strength. At weak adsorption, the polymer chains with more complex topology are more adsorbable than those with simple topology. However, at strong adsorption, the polymer chains with complex topology are less adsorbable. By analyzing the distribution of monomer along z-direction, we give a possible mechanism for the effect of topology on the adsorption behavior.

  13. Temporal changes in nitrogen adsorption properties of single-walled carbon nanotubes

    Science.gov (United States)

    Agnihotri, S.; Rostam-Abadi, M.; Rood, M.J.

    2004-01-01

    Temporal evolution of N2 adsorption (77 K) properties of as-produced and purified single-walled nanotubes (SWNTs) samples is described here. The N2 adsorption isotherms are used to characterize the samples' surface areas and porosities. The as-produced samples demonstrate a temporal increase in surface area and pore volumes for up to 16 months. The purified samples, however, reached their stable values of surface area and pore volumes within four to seven months. N2 adsorption capacity of the purified SWNTs also increased when the fresh samples were subjected to thermal pre-processing, with diminishing changes in adsorption capacity with increased age. These observations indicate that the freshly prepared SWNTs, both as-produced and purified, were in an unstable state with their porosity changing with increasing sample age and thermal treatments. It is hypothesized that SWNTs undergo slow but progressive changes in their surface chemistry which causes their N2 adsorption properties to change over several months. ?? 2004 Elsevier Ltd. All rights reserved.

  14. Adsorptive removal of aniline by granular activated carbon from aqueous solutions with catechol and resorcinol.

    Science.gov (United States)

    Suresh, S; Srivastava, V C; Mishrab, I M

    2012-01-01

    In the present paper, the removal of aniline by adsorption process onto granular activated carbon (GAC) is reported from aqueous solutions containing catechol and resorcinol separately. The Taguchi experimental design was applied to study the effect of such parameters as the initial component concentrations (C(0,i)) of two solutes (aniline and catechol or aniline and resorcinol) in the solution, temperature (T), adsorbent dosage (m) and contact time (t). The L27 orthogonal array consisting of five parameters each with three levels was used to determine the total amount of solutes adsorbed on GAC (q(tot), mmol/g) and the signal-to-noise ratio. The analysis of variance (ANOVA) was used to determine the optimum conditions. Under these conditions, the ANOVA shows that m is the most important parameter in the adsorption process. The most favourable levels of process parameters were T = 303 K, m = 10 g/l and t = 660 min for both the systems, qtot values in the confirmation experiments carried out at optimum conditions were 0.73 and 0.95 mmol/g for aniline-catechol and aniline-resorcinol systems, respectively.

  15. Adsorption of diazinon from aqueous solutions onto an activated carbon sample produced in Iran

    Directory of Open Access Journals (Sweden)

    Zeynab Akbarlou

    2017-05-01

    Full Text Available Background: Considering the severe health and environmental hazards caused by the entry of diazinon toxin into water resources, its removal is very important. Given the high costs of imported adsorbents, this research attempted to evaluate, for the first time, the efficiency of Iranian activated carbon in removing diazinon from aqueous solutions. Methods: In this batch experimental study, the effects of contact time (5-90 minutes, adsorbent concentration (0.5-30 g/L, initial concentration of diazinon (5-50 mg/L, and pH (3-10 on the adsorption of diazinon onto the activated carbon were evaluated. Concentrations of diazinon were measured using a high pressure liquid chromatography (HPLC instrument. The specific surface area of the adsorbent was determined by BET and BJH methods. The experimental adsorption data was analyzed using Langmuir and Freundlich isotherm models. Pseudo first-order and pseudo second-order kinetics models were employed to determine kinetics. Moreover, data was analyzed using SPSS version 19, and Pearson correlation and analysis of variance (ANOVA tests were performed at a significance level of 0.05. Results: The optimum contact time, sorbent dose, and pH were 30 minutes, 10 g/L, and 5, respectively. The adsorbent could adsorb diazinon with a removal efficiency of 92.5% under optimum conditions (initial concentration: 20 mg/L. The experimental data was better described by the pseudo-second order kinetic and Langmuir isotherm. A maximum adsorption capacity of 71.4 mg/g was calculated by the Langmuir isotherm model. Conclusion: With respect to the high adsorption capacity of Iranian activated carbon, this sorbent can be considered an efficient adsorbent for the removal of diazinon from aqueous solutions.

  16. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.

    Science.gov (United States)

    Yagi, Shintaro; Fukushi, Keisuke

    2012-10-15

    The sorption behavior and mechanism of phosphate on monohydrocalcite (CaCO(3)·H(2)O: MHC) were examined using batch sorption experiments as a function of phosphate concentrations, ionic strengths, temperatures, and reaction times. The mode of PO(4) sorption is divisible into three processes depending on the phosphate loading. At low phosphate concentrations, phosphate is removed by coprecipitation of phosphate during the transformation of MHC to calcite. The sorption mode at the low-to-moderate phosphate concentrations is most likely an adsorption process because the sorption isotherm at the conditions can be fitted reasonably with the Langmuir equation. The rapid sorption kinetics at the conditions is also consistent with the adsorption reaction. The adsorption of phosphate on MHC depends strongly on ionic strength, but slightly on temperature. The maximum adsorption capacities of MHC obtained from the regression of the experimental data to the Langmuir equation are higher than those reported for stable calcium carbonate (calcite or aragonite) in any conditions. At high phosphate concentrations, the amount of sorption deviates from the Langmuir isotherm, which can fit the low-to-moderate phosphate concentrations. Speciation-saturation analyses of the reacted solutions at the conditions indicated that the solution compositions which deviate from the Langmuir equation are supersaturated with respect to a certain calcium phosphate. The obtained calcium phosphate is most likely amorphous calcium phosphate (Ca(3)(PO(4))(2)·xH(2)O). The formation of the calcium phosphate depends strongly on ionic strength, temperature, and reaction times. The solubility of MHC is higher than calcite and aragonite because of its metastability. Therefore, the higher solubility of MHC facilitates the formation of the calcium phosphates more than with calcite and aragonite. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates.

    Science.gov (United States)

    Gao, Zheng-Yang; Yang, Wei-Jie; Ding, Xun-Lei; Lv, Gang; Yan, Wei-Ping

    2018-03-07

    The adsorption and catalytic activation of O 2 on single atom iron catalysts with graphene-based substrates were investigated systematically by density functional theory calculation. It is found that the support effects of graphene-based substrates have a significant influence on the stability of the single atom catalysts, the adsorption configuration, the electron transfer mechanism, the adsorption energy and the energy barrier. The differences in the stable adsorption configuration of O 2 on single atom iron catalysts with different graphene-based substrates can be well understood by the symmetrical matching principle based on frontier molecular orbital analysis. There are two different mechanisms of electron transfer, in which the Fe atom acts as the electron donor in single vacancy graphene-based substrates while the Fe atom mainly acts as the bridge for electron transfer in double vacancy graphene-based substrates. The Fermi softness and work function are good descriptors of the adsorption energy and they can well reveal the relationship between electronic structure and adsorption energy. This single atom iron catalyst with single vacancy graphene modified by three nitrogen atoms is a promising non-noble metal single atom catalyst in the adsorption and catalytic oxidation of O 2 . Furthermore, the findings can lay the foundation for the further study of graphene-based support effects and provide a guideline for the development and design of new non-noble-metal single atom catalysts.

  18. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue.

    Science.gov (United States)

    Marrakchi, F; Ahmed, M J; Khanday, W A; Asif, M; Hameed, B H

    2017-05-01

    In this work, mesoporous-activated carbon (CSAC) was prepared from chitosan flakes (CS) via single-step sodium hydroxide activation for the adsorption of methylene blue (MB). CSAC was prepared using different impregnation ratios of NaOH:CS (1:1, 2:1, 3:1, and 4:1) at 800°C for 90min. The adsorption performance of CSAC was evaluated for MB at different adsorption variables, such MB initial concentrations (25-400mg/L), solution pH (3-11), and temperature (30-50°C). The adsorption isotherm data of CSAC-MB were well fitted to Langmuir model with a maximum adsorption capacity 143.53mg/g at 50°C. Best representation of kinetic data was obtained by the pseudo-second order model. CSAC exhibited excellent adsorption uptake for MB and can potentially be used for other cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Adsorptive Removal of Cadmium (II) from Aqueous Solution by Multi-Carboxylic-Functionalized Silica Gel: Equilibrium, Kinetics and Thermodynamics

    Science.gov (United States)

    Li, Min; Meng, Xiaojing; Yuan, Jinhai; Deng, Wenwen; Liang, Xiuke

    2018-01-01

    In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of various experimental parameters such as pH value, contact time and initial concentration on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. Equilibrium isotherms for the adsorption of cadmium (II) ion were analyzed by Freundlich and Langmuir isotherm models, the results indicate that Langmuir isotherm model was found to be credible to express the data for cadmium (II) ion from aqueous solution onto the SG-MCF. Various thermodynamics parameters of the adsorption process, including free energy of adsorption (ΔG0 ), the enthalpy of adsorption (ΔH0 ) and standard entropy changes (ΔS0 ), were calculated to predict the nature of adsorption. The positive value of the enthalpy change and the negative value of free energy change indicate that the process is endothermic and spontaneous process.

  20. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process.

    Science.gov (United States)

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze

    2017-07-01

    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Adsorption of Nitrite and Nitrate Ions from an Aqueous Solution by Fe-Mg-Type Hydrotalcites at Different Molar Ratios.

    Science.gov (United States)

    Ogata, Fumihiko; Nagai, Noriaki; Kariya, Yukine; Nagahashi, Eri; Kobayashi, Yuhei; Nakamura, Takehiro; Kawasaki, Naohito

    2018-01-01

    In this study, we prepared Fe-Mg-type hydrotalcites (Fe-HT3.0 and Fe-HT5.0) with different molar ratios and evaluated their adsorption capability for nitrite and nitrate ions from aqueous solution. Fe-HT is a typical hydrotalcite-like layered double hydroxide. Adsorption isotherms, as well as the effects of contact time and pH were investigated, and it was found that Fe-HT can adsorb larger amounts of nitrite and nitrate ions than Al-HT (normal-type hydrotalcite). Adsorption isotherm data were fitted to both Freundlich (correlation coefficient: 0.970-1.000) and Langmuir (correlation coefficient: 0.974-0.999) equations. Elemental analysis and binding energy of Fe-HT surface before and after adsorption indicated that the adsorption mechanism was related to the interaction between the adsorbent surface and anions. In addition, the ion exchange process is related to the adsorption mechanism. The adsorption amount increased with increasing temperature (7-25°C). The experimental data fit the pseudo-second-order model better than the pseudo-first-order model. The effect of pH on adsorption was not significant, which suggested that Fe-HT could be used over a wide pH range (4-12). These results indicate that Fe-HT is a good adsorbent for the removal of nitrite and nitrate ions from aqueous solution.

  2. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent--bamboo charcoal.

    Science.gov (United States)

    Wang, Fa Yuan; Wang, Hui; Ma, Jian Wei

    2010-05-15

    Batch adsorption experiments were conducted for the adsorption of Cd (II) ions from aqueous solution by bamboo charcoal. The results showed that the adsorption of Cd (II) ions was very fast initially and the equilibrium time was 6h. High pH (>or=8.0) was favorable for the adsorption and removal of Cd (II) ions. Higher initial Cd concentrations led to lower removal percentages but higher adsorption capacity. As the adsorbent dose increased, the removal of Cd increased, while the adsorption capacity decreased. Adsorption kinetics of Cd (II) ions onto bamboo charcoal could be best described by the pseudo-second-order model. The adsorption behavior of Cd (II) ions fitted Langmuir, Temkin and Freundlich isotherms well, but followed Langmuir isotherm most precisely, with a maximum adsorption capacity of 12.08 mg/g. EDS analysis confirmed that Cd (II) was adsorbed onto bamboo charcoal. This study demonstrated that bamboo charcoal could be used for the removal of Cd (II) ions in water treatment. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Efficient adsorption of congo red dye from aqueous solution using green synthesized coinage nanoparticles coated activated carbon beads

    Science.gov (United States)

    Pal, Jolly; Deb, Manas Kanti

    2013-11-01

    In this paper, the removal of congo red (CR) dye by adsorption on coinage nanoparticles [silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs)] coated activated carbon (AC) has been discussed. The effect of various process parameters has been investigated by following the adsorption technique. Equilibrium adsorption data of CR were carried out at room temperature. The equilibrium time is independent of the initial CR concentration and the percentage removal of CR increased with increase in contact time. The adsorption data were analyzed by using adsorption isotherm studies. The characteristic parameters for isotherm and related correlation coefficients were determined from graphs of their linear equations. Kinetic studies showed that the adsorption of CR followed pseudo-first-order kinetics. AgNPs- and AuNPs-coated AC is found to be suitable adsorbent for the adsorption of CR. CR was effectively removed 88.0 ± 0.8 % from aqueous solution using AuNPs beads as the adsorption process. Desorption studies were made to elucidate recovery of the adsorbate and adsorbent for the economic competitiveness of the removal system. The PVP-supported AgNPs and AuNPs-coated AC were successfully recycled for ten successive adsorption-desorption cycles indicating its high reusability.

  4. Adsorption of Cu2+ Ions From Aqueous Solutions Using Oxidized Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2015-06-01

    Full Text Available Copper ion (Cu2+ is one of the heavy metal ions that cause environmental pollution specifically in water. Copper ion cations are not biodegradable and tend to cumulate in living organisms. Consequently, the removal of Cu2+ in environmental samples plays an important role in environmental pollution monitoring. The purpose of the present work was to prepare oxidized Multi-Walled Carbon Nano Tubes (MWCNTs for removal of Cu2+ ions from aqueous solutions. This study was conducted under laboratory conditions. Multi-Walled Carbon Nano Tubes were oxidized and characterized by Fourier Transform Infrared Spectroscopy (FTIR, Scanning Electron Microscope (SEM and the Brunauer, Emmett, and Teller (BET methods. The effects of various factors, such as solution pH (3 - 9, adsorbent dose (0.006 - 0.06 g and contact time (10 - 120 minutes were investigated. Results showed that the suitable pH for Cu2+ ions removal was about 6.0, and the optimal dose was 0.03 g. Isotherm studies indicated that the Langmuir model fits the experimental data better than the Freundlich model. Maximum Cu2+ adsorption capacity was calculated as 200 mg g-1. The kinetics of the adsorption process was tested for the pseudo-first-order and pseudo-second-order models. The comparison among the models showed that the pseudo-second order model best described the adsorption kinetics. The results showed that oxidized MWCNTs can be used as a low cost adsorbent for the removal of Cu2+ ions from aqueous solutions.

  5. Adsorption of heavy metal ions from aqueous solution by fly ash

    Energy Technology Data Exchange (ETDEWEB)

    I.J. Alinnora [Federal University of Technology, Owerri (Nigeria). Department of Pure and Industrial Chemistry

    2007-03-15

    The removal characteristics of lead and copper ions from aqueous solution by fly ash were investigated under various conditions of contact time, pH and temperature. The influence of pH of the metal ion solutions on the uptake levels of the metal ions by fly ash were carried out between pH 4 and 12. The level of uptake of Pb{sup 2+} and Cu{sup 2+} ions by the fly ash generally increased, but not in a progressive manner, at higher pH values. The effect of temperature on the uptake of Pb{sup 2+} and Cu{sup 2+} ions was investigated between 30{sup o}C and 60{sup o}C, the adsorption of being enhanced at the lowest temperature. Rate constants were evaluated in terms of a first-order kinetics. The rate constant, k for uptake of Pb{sup 2+} and Cu{sup 2+} ions were 1.77 10{sup -2}s{sup -1} and 2.11 10{sup -2}s{sup -1}, respectively. The experimental results underline the potential of coal fly ash for the recovery of metal ions from waste water. The main mechanisms involved in the removal of heavy metal ions from solution were adsorption at the surface of the fly ash and precipitation. 43 refs., 4 figs., 1 tab.

  6. Adsorption of Lead Ions from Aqueous Solutions Using Gamma Irradiated Minerals

    Directory of Open Access Journals (Sweden)

    Julián Cruz-Olivares

    2016-01-01

    Full Text Available For the first time, an irradiated mineral was used as a novel modified adsorbent for lead removal of aqueous solutions. The effects of gamma radiation doses and temperature on the lead adsorption capacity of an unknown mineral were evaluated. The results show that, in the chemisorption process, the highest adsorption capacity (9.91 mg/g and the maximum percentage of lead removal (99.1% were reached at 40°C when using an irradiated mineral at 150 kGy. The improvement on the lead adsorption speed was the most important feature of the irradiated mineral. The experimental results were successfully correlated with the pseudo second-order kinetic model. For all results, the average absolute relative deviations (AARD were less than 13.20%, and the correlation factor (r2 was higher than 0.998. Moreover, the average values of the thermodynamic parameters (ΔG0=-10612 J/mol, ΔH0=-12360 J/mol, and ΔS0=171 J/mol K suggest the feasibility of the proposed process, in terms of the endothermic and irreversible chemisorption results; moreover, ion exchange was evaluated through the EDS results. The X-ray diffraction analysis showed that the unknown irradiated mineral is mainly composed of quartz (SiO2, calcite (CaCO3, and calcium magnesium silicate (Ca0.15Mg0.85 Mg (SiO6.

  7. Adsorption of malachite green dye from aqueous solution on the bamboo leaf ash

    Science.gov (United States)

    Kuntari, Priwidyanjati, Dessyntha Anggiani

    2017-12-01

    Bamboo leaf ash has been developed as an adsorbent material for removal malachite green from aqueous solution. Adsorption parameters have studied are contact time and initial pH. The effect of contact time and pH were examined in the batch adsorption processes. The physicochemical characters of bamboo leaf ash were investigated by using X-Ray Diffraction (XRD) and FT-IR spectroscopy. Malachite green concentration was determined by UV-Vis spectrophotometer. FT-IR spectrogram of bamboo leaf ash shows that typical fingerprint of adsorbent material with Si-O-Si or Al-O-Al group. The X-ray diffractograms of bamboo leaf ash show that adsorbent material has a highly amorphous nature. The percentage of adsorption was showed raised with increasing contact time. The optimum removal of malachite green when the initial dye concentration, initial pH, weight of adsorbent and contact time was 20 mg/L, 7, 0.25 g and 75 minutes respectively.

  8. Adsorption of cationic dye from aqueous solution by clay as an adsorbent: thermodynamic and kinetic studies

    International Nuclear Information System (INIS)

    Fil, B.A.; Ozmetn, C.

    2012-01-01

    In the study, montmorillonite was used as an adsorbent for the removal of methylene blue (MB) from aqueous solutions. Batch studies were performed to address various experimental parameters like contact time, pH, temperature, stirring speed, ionic strength, adsorbent dosage and initial concentration for the removal of this dye. Adsorption rate increased with the increase in initial dye concentration, ionic strength, stirring speed, pH and temperature. Kinetic study showed that the adsorption of dye on montmorillonite was a gradual process. Quasi-equilibrium reached in 3 h. Pseudo-first-order, pseudo-second-order, Elovich, Bangham, mass transfer and intra-particle particle diffusion models were used to fit the experimental data. Pseudo-second-order rate equation was able to provide realistic description of adsorption kinetics. Intra-particle diffusion process was identified as the main mechanism controlling the rate of the dye sorption. The diffusion coefficient, D, was found to increase when the stirring speed, ionic strength and temperature were raised. Thermodynamic activation parameters such as delt G, delt S and del H were also calculated. (author)

  9. Adsorption of Phenol from Aqueous Solution Using Lantana camara, Forest Waste: Kinetics, Isotherm, and Thermodynamic Studies

    Science.gov (United States)

    Girish, C. R.; Ramachandra Murty, V.

    2014-01-01

    The present work investigates the potential of Lantana camara, a forest waste, as an adsorbent for the phenol reduction in wastewater. Batch studies were conducted with adsorbent treated with HCl and KOH to determine the influence of various experimental parameters such as pH, contact time, adsorbent dosage, and phenol concentration. The experimental conditions were optimized for the removal of phenol from wastewater. Equilibrium isotherms for the adsorption of phenol were analyzed by Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich isotherm models. Thermodynamic parameters like the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were also determined and they showed that the adsorption process was feasible, spontaneous, and exothermic in the temperature range of 298–328 K. The kinetic data were fitted with pseudo-second-order model. The equilibrium data that followed Langmuir model with the monolayer adsorption capacity was found to be 112.5 mg/g and 91.07 mg/g for adsorbent treated with HCl and KOH, respectively, for the concentration of phenol ranging from 25 to 250 mg/L. This indicates that the Lantana camara was a promising adsorbent for the removal of phenol from aqueous solutions. PMID:27350997

  10. Adsorption of triazine herbicides from aqueous solution by functionalized multiwall carbon nanotubes grown on silicon substrate

    Science.gov (United States)

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Odoardi, Antonella; Santucci, Sandro; Passacantando, Maurizio

    2018-02-01

    Multi-walled carbon nanotubes (MWCNTs), because of their small size and large available surface area, are potentially efficient sorbents for the extraction of water solutes. Dispersion of MWCNTs in aqueous medium is suitable to adsorb organic contaminants from small sample volumes, but, the recovery of the suspended sorbent for successive re-use represents a critical step, which makes this method inapplicable in large-scale water-treatment technologies. To overcome this problem, we proposed here MWCNTs grown on silicon supports and investigated on a small-volume scale their adsorption properties towards triazine herbicides dissolved in water. The adsorption efficiency of the supported MWCNTs has been tested on seven triazine herbicides, which are emerging water contaminants in Europe and USA, because of their massive use, persistence in soils and potential risks for the aquatic organisms and human health. The investigated compounds, in spite of their common molecular skeleton, cover a relatively large property range in terms of both solubility in water and hydrophilicity/hydrophobicity. The functionalisation of MWCNTs carried out by acidic oxidation, apart from increasing wettability of the material, results in a better adsorption performance. Increasing of functionalisation time between 17 and 60 h progressively increases the extraction of all seven pesticides and produces a moderate increment of selectivity.

  11. Application of annealed red mud to Mn(2+) ion adsorption from aqueous solution.

    Science.gov (United States)

    Chen, Hongliang; Zheng, Juan; Zhang, Zhongqiong; Long, Qian; Zhang, Qiuyun

    2016-01-01

    Physicochemical characteristics and Mn(2+) adsorption of annealed red mud were investigated in this study. The annealing temperature (105-900 °C) changed the mineralogical components and the point of zero charge of red mud. By comparison, annealed red mud at 700 °C (ARM700) had a better adsorption effect than other annealed samples, associated with the activated components of available Fe2O3, Al2O3, SiO2 and Na5Al3(SiO4)3CO3 (natrodavyne). The removal efficiency of Mn(2+) by ARM700 was dependent on initial pH, contact time, and initial Mn(2+) concentration of aqueous solution and was ∼56.5% with initial Mn(2+) concentration 385 mg/L at initial pH > 5. The kinetics process was predicted better by the pseudo-second-order model. The Langmuir isotherm displayed a better fitting model than the Freundlich isotherm and the Mn(2+) maximum adsorption capacity of ARM700 was 88.3 mg/g. The competing effects of Cu(2+) and Zn(2+) on Mn(2+) removal were most obvious. There was efficient Mn(2+) removal at the application of ARM700 to the leachate of electrolytic manganese residue.

  12. Application of AzollaFiliculoides Biomass in Acid Black 1 Dye Adsorption from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Zazouli

    2014-09-01

    Full Text Available Background and purpose: The textile dyes are considered as important pollutants due to the toxicity on human and environment. Therefore, the dye removal from industrial effluents is necessary. This study evaluates the ability of Azolla for the adsorption of acid black 1 (AB1 dye from aqueous solution. Materials and Methods: This was an experimental-laboratory study. The Azolla biomass was sun dried, crushed and sieved to particle sizes in the range of 1-2 mm. Then, it treated with 0.1 M HCl for 5 h, followed by washing with distilled water, and it used as an adsorbent. The effect of study parameter was investigated, and the residues AB1 concentration was measured by DR2800 spectrophotometer at in λmax = 622 nm. Results: The results indicated that the efficiency of AB1 adsorption decreased with increased initial dye concentration. It increased with increased contact time and adsorbent. The highest adsorption efficiency was occurred at pH = 2. The equilibrium data were the best fitted on Langmuir isotherm and pseudo-second-order kinetic model. Conclusion: The Azolla could present high ability in dye removal. Therefore, it can be used as inexpensive and effective adsorbent in textile effluent treatment.

  13. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    Science.gov (United States)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Concheso, A.; Montes-Morán, Miguel A.

    2016-11-01

    A new procedure of elimination of Pb2+ from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N2 at -196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb2+ was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb2+ removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO3 on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb2+. Accordingly, retention capacities as high as 63 mg of Pb2+ per gram of adsorbent have been attained.

  14. Humic Acid Adsorption Onto Iron Oxide Magnetic Nano Particles in Aquious Solution

    Directory of Open Access Journals (Sweden)

    Maryam Foroghi

    2013-12-01

    Full Text Available Background & Objectives: Humic Acid (HA compounds affects water quality, such as color, taste and odor. The compounds not only react with disinfectants to produce disinfection by-products (DBPs harmful to human health. Iron oxide magnetic nanoparticles (MNPs have a high adsorption capacity to adsorb to organic matter. In this study HA removal by IOMNPs was surveyed in aqueous solutions. Methods:  The effects of pH value, agitation rate, adsorbent dose, contact time and the adsorbate concentration on the adsorption efficiency were studied as critical parameters. In addition, effect of ionic strength on the adsorption process and effluent turbidity was surveyed. The MNPs was characterized by X-ray diffraction. Results: Results revealed that at HA concentration of 10 mg/L, pH 4.5, adsorbent dose of 2.7 g/l, agitation rate of 250 rpm and contact time of 90 min at presence of 0.1 M NaCl as an ionic strength agent, the HA removal reached to about 98%. Also, the turbidity of treated samples was increased with increasing of HA loading. On the other hand, increases of ionic strength resulting in increase of removal efficiency and decrees of effluent turbidity. Conclusion: With increasing HA concentration, adsorption capacity of MNPs was increased and HA removal efficiency was decreased. Increasing of ionic strength leads to increase of removal efficiency and decrease of nano particles release. MNPs are easily attracted to the magnetic field application leads to easy separation from aquatic environment.

  15. Single-peak solitary wave solutions for the variant Boussinesq ...

    Indian Academy of Sciences (India)

    ∈ H1 loc(R). (iii) Similar to the proof of the above (ii),we omit it here. This completes the proof. 3. Smooth and cusped single-peak solitary wave solutions. Theorem 2.4 gives a classification for all single-peak solitary wave solutions for eq. (2.4).

  16. Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies

    International Nuclear Information System (INIS)

    Dizge, N.; Aydiner, C.; Demirbas, E.; Kobya, M.; Kara, S.

    2008-01-01

    Adsorption kinetic and equilibrium studies of three reactive dyes namely, Remazol Brillant Blue (RB), Remazol Red 133 (RR) and Rifacion Yellow HED (RY) from aqueous solutions at various initial dye concentration (100-500 mg/l), pH (2-8), particle size (45-112.5 μm) and temperature (293-323 K) on fly ash (FA) were studied in a batch mode operation. The adsorbent was characterized with using several methods such as SEM, XRD and FTIR. Adsorption of RB reactive dye was found to be pH dependent but both RR and RY reactive dyes were not. The result showed that the amount adsorbed of the reactive dyes increased with increasing initial dye concentration and contact time. Batch kinetic data from experimental investigations on the removal of reactive dyes from aqueous solutions using FA have been well described by external mass transfer and intraparticle diffusion models. It was found that external mass transfer and intraparticle diffusion had rate limiting affects on the removal process. This was attributed to the relatively simple macropore structure of FA particles. The adsorption data fitted well with Langmuir and Freundlich isotherm models. The optimum conditions for removal of the reactive dyes were 100 mg/l initial dye concentration, 0.6 g/100 ml adsorbent dose, temperature of 293 K, 45 μm particle size, pH 6 and agitation speed of 250 rpm, respectively. The values of Langmuir and Freundlich constants were found to increase with increasing temperature in the range 135-180 and 15-34 mg/g for RB, 47-86 and 1.9-3.7 mg/g for RR and 37-61 and 3.0-3.6 mg/g for RY reactive dyes, respectively. Different thermodynamic parameters viz., changes in standard free energy, enthalpy and entropy were evaluated and it was found that the reaction was spontaneous and endothermic in nature

  17. Adsorption of Ni(II, Cu(II and Fe(III from Aqueous Solutions Using Activated Carbon

    Directory of Open Access Journals (Sweden)

    A. Edwin Vasu

    2008-01-01

    Full Text Available An activated carbon was tested for its ability to remove transition metal ions from aqueous solutions. Physical, Chemical and liquid-phase adsorption characterizations of the carbon were done following standard procedures. Studies on the removal of Ni(II, Cu(II and Fe(III ions were attempted by varying adsorbate dose, pH of the metal ion solution and time in batch mode. The equilibrium adsorption data were fitted with Freundlich, Langmuir and Redlich-Peterson isotherms and the isotherm constants were evaluated. Time variation studies indicate that adsorptions follow pseudo-second order kinetics. pH was found to have a significant role to play in the adsorption. The processes were endothermic and the thermodynamic parameters were evaluated. Desorption studies indicate that ion-exchange mechanism is operating.

  18. Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide-magnetic nanoparticles: adsorption and desorption.

    Science.gov (United States)

    Zhang, Yixuan; Cheng, Yuxiao; Chen, Ningning; Zhou, Yuyan; Li, Bingyu; Gu, Wei; Shi, Xinhao; Xian, Yuezhong

    2014-05-01

    Reduced graphene oxide (rGO) nanosheets decorated with tunable magnetic nanoparticles (MNPs) were synthesized by a simple co-precipitation method and employed for recyclable removal of bisphenol A (BPA) from aqueous solution. The morphological characterization shows that Fe3O4 nanoparticles are uniformly deposited on rGO sheets. The magnetic characterization demonstrates that composites with various amounts of Fe3O4 nanoparticles are superparamagnetic. Due to the superparamagnetism, rGO-MNPs were used as recyclable adsorbents for BPA removal in aqueous solution. The kinetics of the adsorption process and the adsorption isotherm were investigated. The results indicate that the adsorption process is fitted to Langmuir model and the composites with lower density of MNPs represent better adsorption ability. In addition, its kinetics follows pseudo-second-order rate equation. Moreover, the adsorbents could be recovered conveniently by magnetic separation and recyclable used because of the easy desorption of BPA. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose.

    Science.gov (United States)

    Hokkanen, Sanna; Repo, Eveliina; Bhatnagar, Amit; Tang, Walter Zhonghong; Sillanpää, Mika

    2014-01-01

    In the present study, microfibrillated cellulose (MFC) was modified by aminopropyltriethoxysilane (APS), hydroxy-carbonated apatite (HAP), or epoxy in order to produce novel nanostructured adsorbents for the removal of hydrogen sulphide (H2S) from the aqueous solutions. Structural properties of the modified MFC materials were examined using a scanning electron microscope, Fourier transform infrared spectroscopy and acid/base titration. These methods were used to verify the presence of nanostructures on the adsorbents surfaces as well as functionalities suitable for H2S adsorption. Adsorption of H2S by prepared adsorbents was investigated in batch mode under different experimental conditions, i.e., varying pH and H2S concentrations. H2S uptake was found to be 103.95, 13.38 and 12.73 mg/g by APS/MFC, HAP/MFC and epoxy/MFC, respectively from 80 mg/L H2S solution. The equilibrium data were best described by the Langmuir isotherm for HAP/MFC and APS/MFC and the Sips isotherm for epoxy/MFC.

  20. Adsorption of Reactive Blue 171 from Aqueous Solution using Low Cost Activated Carbon Prepared from Agricultural Solid Waste: Albizia amara

    Directory of Open Access Journals (Sweden)

    K. Anitha

    2015-07-01

    Full Text Available The adsorption of Reactive Blue 171 (Reactive Dye from aqueous solution using activated carbon prepared from Albizia amara pod shell waste as an adsorbent have been carried out. The experimental adsorption data fitted reasonably well to Langmuir and Freundlich adsorption isotherms. Kinetic parameters as a function of Initial dye concentration have been calculated and the kinetic data were substituted in Pseudo First Order, Elovich and Pseudo Second order equations. A probable explanation is offered to account for the results of kinetic study. The thermodynamic parameter enthalpy change (∆H suggests the exothermic nature of absorption of Reactive Blue 171 onto activated Albizia amara pod shell waste carbon.

  1. Optimization of Preparation of Activated Carbon from Ricinus communis Leaves by Microwave-Assisted Zinc Chloride Chemical Activation: Competitive Adsorption of Ni2+ Ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    M. Makeswari

    2013-01-01

    Full Text Available The preparation of activated carbon (AC from Ricinus communis leaves was investigated in this paper. Orthogonal array experimental design method was used to optimize the preparation of AC using microwave assisted zinc chloride. Optimized parameters were radiation power of 100 W, radiation time of 8 min, concentration of zinc chloride of 30% by volume, and impregnation time of 24 h, respectively. The surface characteristics of the AC prepared under optimized conditions were examined by pHZPC, SEM-EDAX, XRD, and FTIR. Competitive adsorption of Ni2+ ions on Ricinus communis leaves by microwave assisted zinc chloride chemical activation (ZLRC present in binary and ternary mixture was compared with the single metal solution. The effects of the presence of one metal ion on the adsorption of the other metal ion were investigated. The experimental results indicated that the uptake capacity of one metal ion was reduced by the presence of the other metal ion. The extent of adsorption capacity of the binary and ternary metal ions tested on ZLRC was low (48–69% as compared to single metal ions. Comparisons with the biosorption of Ni2+ ions by the biomass of ZLRC in the binary (48.98–68.41%-~Ni-Cu and 69.76–66.29%-~Ni-Cr and ternary solution (67.32–57.07%-~Ni–Cu and Cr could lead to the conclusion that biosorption of Ni2+ ions was reduced by the influence of Cu2+ and Cr3+ ions. The equilibrium data of the adsorption was well fitted to the Langmuir isotherm. The adsorption process follows the pseudo-second-order kinetic model.

  2. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yishan; Zuo, Yu, E-mail: zuoy@mail.buct.edu.cn; Zhao, Xuhui; Zha, Shanshan

    2016-08-30

    Graphical abstract: CLS adsorbs preferentially around active sites on steel surface. - Highlights: • Calcium lignosulfonate is effective inhibitor for steel in simulated pore solution. • Both general corrosion and pitting can be inhibited by CLS. • The preferential adsorption of CLS around pits was detected by M-IR. • At beginning CLS adsorbs on surface unevenly and preferentially at active sites. • After pre-filming time an intact adsorption CLS film forms on steel surface. - Abstract: The corrosion inhibition of calcium lignosulfonate (CLS) for Q235 carbon steel in saturated Ca(OH){sub 2} + 0.1 mol/L NaCl solution was studied by means of weight loss, polarization, fluorescence microscopy (FM), scanning electron microscopy/energy dispersive spectrometry (SEM/EDS), microscopic infrared spectral imaging (M-IR) and X-ray photoelectron spectroscopy (XPS). For the steel in simulated concrete pore solution (pH 12.6), an increase of E{sub b} value and a decrease of i{sub corr} value occurred with different concentrations of CLS. The optimal content of CLS was 0.001 mol/L at which the inhibition rate was 98.86% and the E{sub b} value increased to 719 mV after 10 h of immersion. In mortar solution and in reinforced concrete environment, CLS also showed good inhibition for steel. The preferential adsorption of CLS around pits was detected by M-IR. The result illustrates that at the early stage the adsorption of CLS was heterogeneous and CLS may have a competitive adsorption with chloride ions at the active sites, which would be beneficial for decreasing the susceptibility of pitting corrosion. After the pre-filming time, an intact adsorption CLS film formed on carbon steel surface. The adsorption between CLS and calcium presented as Ca−O−S bonds. The adsorption of CLS on carbon steel surface occurred probably by both physisorption and chemisorption.

  3. Effects of solution chemistry and aging time on prion protein adsorption and replication of soil-bound prions.

    Directory of Open Access Journals (Sweden)

    Samuel E Saunders

    2011-04-01

    Full Text Available Prion interactions with soil may play an important role in the transmission of chronic wasting disease (CWD and scrapie. Prions are known to bind to a wide range of soil surfaces, but the effects of adsorption solution chemistry and long-term soil binding on prion fate and transmission risk are unknown. We investigated HY TME prion protein (PrP(Sc adsorption to soil minerals in aqueous solutions of phosphate buffered saline (PBS, sodium chloride, calcium chloride, and deionized water using western blotting. The replication efficiency of bound prions following adsorption in these solutions was also evaluated by protein misfolding cyclic amplification (PMCA. Aging studies investigated PrP(Sc desorption and replication efficiency up to one year following adsorption in PBS or DI water. Results indicate that adsorption solution chemistry can affect subsequent prion replication or desorption ability, especially after incubation periods of 30 d or longer. Observed effects were minor over the short-term (7 d or less. Results of long-term aging experiments demonstrate that unbound prions or prions bound to a diverse range of soil surfaces can readily replicate after one year. Our results suggest that while prion-soil interactions can vary with solution chemistry, prions bound to soil could remain a risk for transmitting prion diseases after months in the environment.

  4. Selective Adsorption of Ag+ on a New Cyanuric-Thiosemicarbazide Chelating Resin with High Capacity from Acid Solutions

    Directory of Open Access Journals (Sweden)

    Guo Lin

    2017-11-01

    Full Text Available A new cyanuric-thiosemicarbazid (TSC-CC chelating resin was synthesized and employed to selectively adsorb Ag+ from acid solutions. The effects of acid concentration, initial concentration of Ag+, contact time and coexisting ions were investigated. The optimal acid concentration was 0.5 mol/L. The adsorption capacity of Ag+ reached 872.63 mg/g at acid concentration of 0.5 mol/L. The adsorption isotherm was fitted well with the Langmuir isotherm model and the kinetic data preferably followed the pseudo-second order model. The chelating resin showed a good selectivity for the Ag+ adsorption from acid solutions. Fourier transform infrared (FT-IR, X-ray diffraction (XRD, Scanning electron microscopy/energy dispersive spectrometer (SEM-EDS and X-ray photoelectron spectroscopy (XPS were used to study the adsorption mechanism. The chelating and ionic interaction was mainly adsorption mechanism. The adsorbent presents a great potential in selective recovery Ag+ from acid solutions due to the advantage of high adsorption capacity and adapting strongly acidic condition. The recyclability indicated that the (TSC-CC resin had a good stability and can be recycled as a promising agent for removal of Ag+.

  5. ADSORPTION OF CHROMIUM (VI FROM AQUEOUS SOLUTIONS BY DIFFERENT ADMIXTURES – A BATCH EQUILIBRIUM TEST STUDY

    Directory of Open Access Journals (Sweden)

    K. SHIVA PRASHANTH KUMAR

    2014-08-01

    Full Text Available Wide variety of inorganic compounds such as nutrients and trace metals, organic chemicals, radioactive contaminants and pathogens are commonly present as contaminants in the groundwater. Migration of contaminants in soil involves important mechanisms such as molecular diffusion, dispersion under physical processes, adsorption, precipitation and oxidation - reduction under chemical processes and biodegradation under biological process. Cr (VI is a major and dangerous contaminant as per the ground water is concerned. There are numerous research work carried out with concentrated efforts by the researchers towards removal of Cr (VI contaminant from aqueous solutions. There are few studies relevant to Cr (VI removal with respect to utilization of low cost admixtures and also soil type. In the present study, different low cost admixtures like rice husk (RH, shredded tyre (ST and fly ash (FA are used to understand the performance in removal of Cr (VI from aqueous solution and also two different soil types are used along with the admixture. The results are discussed in terms of sorption capacity and performance of individual admixture and combination of admixture with soil in removal of contaminant. The fly ash, rice husk and shredded tyre admixtures are used and the results revealed that the shredded tyre showed higher performance in removal of contaminant concentration. Also, the soil which has more fine particle content (size<0.075 mm IS sieve showed reasonable reduction in concentration of contaminant at the lower levels of contaminant initial concentration. The sorption capacity results of Cr (VI contaminant, treated with various admixtures are further validated with the published work of other investigators. The shredded tyre (ST showed more adsorption capacity, i.e., 3.283 mg/g at pH of 4.8. For other admixtures, adsorption capacity value is varying in the range of 0.07 mg/g to 1.7 mg/g. Only in case of activated alumina and modified saw dust

  6. Theoretical Insight of Physical Adsorption for a Single Component Adsorbent + Adsorbate System: II. The Henry Region

    KAUST Repository

    Chakraborty, Anutosh

    2009-07-07

    The Henry coefficients of a single component adsorbent + adsorbate system are calculated from experimentally measured adsorption isotherm data, from which the heat of adsorption at zero coverage is evaluated. The first part of the papers relates to the development of thermodynamic property surfaces for a single-component adsorbent + adsorbate system1 (Chakraborty, A.; Saha, B. B.; Ng, K. C.; Koyama, S.; Srinivasan, K. Langmuir 2009, 25, 2204). A thermodynamic framework is presented to capture the relationship between the specific surface area (Ai) and the energy factor, and the surface structural and the surface energy heterogeneity distribution factors are analyzed. Using the outlined approach, the maximum possible amount of adsorbate uptake has been evaluated and compared with experimental data. It is found that the adsorbents with higher specific surface areas tend to possess lower heat of adsorption (ΔH°) at the Henry regime. In this paper, we have established the definitive relation between Ai and ΔH° for (i) carbonaceous materials, metal organic frameworks (MOFs), carbon nanotubes, zeolites + hydrogen, and (ii) activated carbons + methane systems. The proposed theoretical framework of At and AH0 provides valuable guides for researchers in developing advanced porous adsorbents for methane and hydrogen uptake. © 2009 American Chemical Society.

  7. Carbon dioxide adsorption on H2 O 2 treated single-walled carbon nanohorns

    Science.gov (United States)

    Migone, Aldo; Krungleviciute, Vaiva; Banjara, Shree; Yudasaka, Masako; Iijima, Sumio

    2011-03-01

    Carbon nanohorns are closed single-wall structures with a hollow interior. Unlike SWNTs, which assemble into cylindrical bundles, nanohorns form spherical aggregates. In our experiments we used dahlia-like carbon nanohorn aggregates. Our sample underwent treatment with H2 O2 which opened access to the interior spaces of the individual nanohorns. We measured carbon dioxide adsorption at several temperatures between 167 and 195 K. We calculated the isosteric heat as a function of loading, and the binding energy values for CO2 on the nanohorn aggregates from the isotherm data. Results on the H2 O2 -treated nanohorns will be compared with those obtained on other carbon substrates. We have also determined detailed equilibration profiles for CO2 adsorption on the nanohorn aggregates; these results will also be presented. This work was supported by the NSF through grants DMR-1006428 and DMR-0705077.

  8. Adsorption of triclosan on single wall carbon nanotubes: A first principle approach

    Science.gov (United States)

    Castro, S. M.; Araújo, A. B.; Nogueira, R. F. P.; Guerini, S.

    2017-05-01

    The interaction of triclosan on (8,0) and (5,5) single wall carbon nanotube (SWCNT) was investigated using density functional calculations. The results show that the adsorption of triclosan modifies the electronic properties of pristine (8,0) and (5,5) SWCNT and induced changes in the electronic properties are dependent on the triclosan adsorption site. It was observed through binding energy that triclosan molecule interacts mainly via chemical process in parallel configuration to (8,0) SWCNT, while interaction via physical process was observed with both (8,0) and (5,5) SWCNT. It is proposed that these SWCNTs are a potential filter device due to reasonable physical interaction with triclosan molecule. Furthermore, this type of filter could be reusable, therefore after the filtering, the SWCNTs could be separated from triclosan molecule.

  9. Theoretical study on the photocatalytic properties of graphene oxide with single Au atom adsorption

    Science.gov (United States)

    Ju, Lin; Dai, Ying; Wei, Wei; Li, Mengmeng; Jin, Cui; Huang, Baibiao

    2018-03-01

    The photocatalytic properties of graphene oxide (GO) with single Au atom adsorption are studied via the first-principles calculations based on the density functional theory. The present study addresses the origin of enhancement in photocatalytic efficiency of GO derived from single Au atom depositing. Compared with the clean one, the work function of the single Au atom adsorbed GO is lowered due to the charge transfer from Au to GO, indicating enhanced surface activity. The Au atom plays as an electron trapping center and a mediating role in charge transfer from photon excited GO to target species. The photogenerated electron-hole pairs can be separated effectively. For the GO configuration with atomic Au dispersion, there are some states introduced in the band gap, which are predominantly composed of Au 6s states. Through the in-gap state, the photo-generated electron transfer from the valence band of clean GO to the conductive band more easily. In addition, the reduction of the gap in the system is also presented in the current work, which indicates that the single Au atom adsorption improves light absorption for the GO based photocatalyst. These theoretical results are valuable for the future applications of GO materials as photocatalyst for water splitting.

  10. Adsorption of Cu(2+) and methyl orange from aqueous solutions by activated carbons of corncob-derived char wastes.

    Science.gov (United States)

    Hou, Xiao-Xu; Deng, Qing-Fang; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2013-12-01

    Corncob-derived char wastes (CCW) obtained from biomass conversion to syngas production through corncob steam gasification, which were often discarded, were utilized for preparation of activated carbon by calcination, and KOH and HNO3 activation treatments, on the view of environment protection and waste recycling. Their adsorption performance in the removal of heavy metal ions and dye molecules from wastewater was evaluated by using Cu(2+) and methyl orange (MO) as the model pollutant. The surface and structure characteristics of the CCW-based activated carbons (CACs) were investigated by N2 adsorption, CO2 adsorption, FT-IR, and He-TPD. The adsorption capacity varied with the activation methods of CACs and different initial solution concentrations, indicating that the adsorption behavior was influenced by not only the surface area and porosity but also the oxygen functional groups on the surface of the CACs. The equilibrium adsorption data were analyzed with the Langmuir, Freundlich, and Temkin isotherm models, and the adsorption kinetics was evaluated by the pseudo-first-order and pseudo-second-order models.

  11. Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies.

    Science.gov (United States)

    Konicki, Wojciech; Aleksandrzak, Małgorzata; Moszyński, Dariusz; Mijowska, Ewa

    2017-06-15

    In the present study, graphene oxide (GO) was used for the adsorption of anionic azo-dyes such as Acid Orange 8 (AO8) and Direct Red 23 (DR23) from aqueous solutions. GO was characterized by Fourier Transform-Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HRTEM) and zeta potential measurements. The influence of dye initial concentration, temperature and pH on AO8 and DR23 adsorption onto GO was investigated. Equilibrium data were analyzed by model equations such as Langmuir Freundlich, Temkin, Dubinin-Radushkevich and Redlich-Peterson isotherms and were best represented by Langmuir and Redlich-Peterson isotherm model. Kinetic adsorption data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. The adsorption kinetics well fitted using a pseudo-second-order kinetic model. Thermodynamics parameters, ΔG°, ΔH° and ΔS°, were calculated, indicating that the adsorption of AO8 and DR23 onto GO was spontaneous process. The adsorption process of AO8 onto GO was exothermic, while the adsorption of DR23 onto GO was endothermic in nature. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Synthesis of pillar and microsphere-like magnesium oxide particles and their fluoride adsorption performance in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Gool; Ha, Jong-Wook; Sohn, Eun-Ho; Park, In Jun; Lee, Soo-Bok [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2017-10-15

    We synthesized pillar and microsphere-like MgO particles and their fluoride removal performance. Samples of MgO were synthesized by calcination of precursors derived from MgCO{sub 3}·3H{sub 2}O and characterized using field emission scanning electron microscopy, X-ray diffraction, and N{sub 2} adsorption-desorption isotherms. The fluoride removal performance of the MgO samples was investigated in terms of adsorption kinetics and adsorption equilibrium. The effects of pH and the presence of other anions on the fluoride adsorption were also considered. The adsorption capacities of pillar and microsphere-like MgO particles were 151.51 and 166.66mg/g, respectively. The pH of the aqueous solutions did not significantly affect the fluoride adsorption at pH 9 or lower. Except for phosphate, the effect of co-existing anions on fluoride adsorption was not considerable. Fluoride removal occurred through the substitution of hydroxyl groups on the surface of MgO with fluorides.

  13. Adsorption of proteins from artificial tear solutions to contact lens materials

    International Nuclear Information System (INIS)

    Bohnert, J.L.; Horbett, T.A.; Ratner, B.D.; Royce, F.H.

    1988-01-01

    A series of polymers and copolymers of 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) were synthesized in order to find surfaces that would adsorb minimal amounts of protein. The adsorption of albumin, lysozyme and immunoglobulin G from a three-way mixture of these proteins in isotonic buffered saline to the polymers was measured using 125 I-labeled proteins. Apparently high protein uptake on copolymers rich in HEMA was found to be due to sorption of unbound 125 I by the polymers. 125 I sorption by the polymers was minimized by dialysis of the protein solution to remove unbound 125 I iodide and inclusion of 0.01 M sodium iodide to block uptake of residual 125 I iodide. Using these improved protocols, minimal total protein uptake was observed on copolymers containing 50% or more HEMA. The majority of adsorbed protein on all p(MMA-HEMA) polymers was albumin. Total protein uptake was greatest on pMMA. Commercial contact lenses composed of copolymers of HEMA and N-vinyl pyrrolidone (NVP) or acrylamide (AAm) adsorbed small amounts of all proteins whereas copolymers of methacrylic acid (MAAc) and HEMA adsorbed much larger quantities of lysozyme. These results indicate that protein uptake by contact lens materials varies greatly with polymer composition. Artifactually high adsorption can occur if precautions are not taken to prevent uptake of unbound 125 I

  14. Removal of health hazards causing acidic dyes from aqueous solutions by the process of adsorption

    Directory of Open Access Journals (Sweden)

    Sumanjit

    2008-01-01

    Full Text Available The association of dyes, particularly acidic dyes with health related problems is not a new phenomenon. A lot of well established literature is already available on the role of dyes as a major cause in skin and respiratory diseases. The adsorbents which are of low cost, locally available and are relatively new for their acidic dyes removal capacity from aqueous solutions were investigated. Bagasse, cow dung, groundnut shells, pea shells, used tea leaves, wheat straw were used in their charcoal form whereas brick kiln ash and cement kiln ash adsorbents were used as such for the removal of acid violet 17, acid violet 49, acid violet 54, acid blue 15 and acid red 119. The effects of various experimental parameters, initial pH, dye concentration, sorbent dosage, ion strength, contact time were examined and optimal experimental conditions were decided. At initial basic pH more than 8.0, all the five dyes studied could be removed effectively. The isothermal data for adsorption followed the Freundlich and Langmuir models. The adsorption results in this study indicated that all the adsorbents were attractive candidates for removing acidic dyes from dye wastewater.

  15. Adsorption of U(VI) ions from aqueous solutions by activated carbon prepared from Antep pistachio (Pistacia vera L.) shells

    Energy Technology Data Exchange (ETDEWEB)

    Donat, Ramazan [Pamukkale Univ., Denizli (Turkey). Dept. of Chemistry; Erden, Kadriye Esen [Pamukkale Univ., Kinikli-Denizli (Turkey). Denizli Vocational School of Technical Sciences

    2017-08-01

    Antep pistachio (Pistacia vera L.) shells an abundant and low cost natural resource in Turkey was used to prepare activated carbon by physiochemical activation and carbon dioxide (CO{sub 2}) atmosphere as the activating agents at 700 C for 2 h. The adsorption equilibrium of U(VI) from aqueous solutions on such carbon has been studied using a batch system. The parameters that affect the U(VI) adsorption, such as particle size of adsorbent, contact time, of pH of the solution, and temperature, have been investigated and conditions have also been optimized. The equilibrium data for U(VI) ions' adsorption onto activated carbon well fitted to the Langmuir equation, with a maximum monolayer adsorption capacity of 8.68 mg/g, The Freundlich and Dubinin-Radushkevich (D-R) isotherms have been applied and the data correlated well with Freundlich model and that the adsorption is physical in nature (E{sub a}=15.46 kJ/mol). Thermodynamic parameters [ΔH{sub s}=11.33 kJ/mol, ΔS=0.084 kJ/molK, ΔG (293.15 K)=-13.29 kJ/mol] showed the endothermic heat of adsorption and the feasibility of the process.

  16. Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust.

    Science.gov (United States)

    Mahmood-Ul-Hassan, Muhammad; Yasin, Muhammad; Yousra, Munazza; Ahmad, Rizwan; Sarwar, Sair

    2018-02-21

    Lead (Pb), chromium (Cr), and cadmium (Cd) removal capacity of sawdust (Picea smithiana) from aqueous solution was investigated by conducting batch experiments. Thermodynamic parameters, like change in standard free energy (ΔG Θ ), enthalpy (ΔH Θ ) and entropy (ΔS Θ ) during bio-adsorption process were estimated using the Van't Hoff equation. The maximum metals adsorption was observed at pH 8, 20 g L -1 bio-adsorbent and at 60 min of contact time. The metal adsorption kinetics was examined by fitting the pseudo-first-order as well as four forms of pseudo-second-order kinetic models. Type 1 pseudo-second-order equation described adsorption kinetics better than others. Langmuir model and Freundlich equations were used for calculation of sorption parameters. The Langmuir maximum adsorption capacity of Pb, Cr, and Cd was 6.35, 3.37, and 2.87 mg g -1 at room temperature, respectively. The values of the separation factor (RL) were in between 0 and 1, indicating that bio-adsorption was favorable. Thermodynamics study revealed that the Pb, Cr, and Cd uptake reactions were endothermic and spontaneous. Results of the study asserted that the removal of heavy metal ions from aqueous solution is viable and the sawdust could be used in the treatment of effluents from industries, thereby reducing the level of water pollution.

  17. Equilibrium and kinetics studies for the adsorption of Ni2+ and Fe3+ ions from aqueous solution by graphene oxide

    Directory of Open Access Journals (Sweden)

    Konicki Wojciech

    2017-09-01

    Full Text Available In this study, the adsorption of Ni2+ and Fe3+ metal ions from aqueous solutions onto graphene oxide (GO have been explored. The effects of various experimental factors such as pH of the solution, initial metal ion concentration and temperature were evaluated. The kinetic, equilibrium and thermodynamic studies were also investigated. The adsorption rate data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. Kinetic studies indicate that the adsorption of both ions follows the pseudo-second-order kinetics. The isotherms of adsorption data were analyzed by adsorption isotherm models such as Langmuir and Freundlich. Equilibrium data fitted well with the Langmuir model. The maximum adsorption capacities of Ni2+ and Fe3+ onto GO were 35.6 and 27.3 mg g−1, respectively. In addition, various thermodynamic parameters, such as enthalpy (ΔHO, entropy (ΔSO and Gibbs free energy (ΔGO, were calculated.

  18. Adsorption of thorium from aqueous solution by poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)

    International Nuclear Information System (INIS)

    Juan Tan; Yanfei Wang; Mouwu Liu; Chuhua He

    2017-01-01

    The specialized poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (PZS) microspheres were prepared via a reliable and simple precipitation polymerization method and used adsorbent for the removal of thorium (Th) from aqueous solution. The PZS microspheres were characterized by FT-IR, XPS and SEM. The variables influencing the adsorption capacity were investigated. Adsorption experimental data showed thorium adsorption was equilibrium at time 60 min, pH 3.5, adsorbent dosage 1.0 g L -1 and initial concentration 25 mg L -1 , and the adsorption capacity reached to 17.30 mg g -1 . The experimental data followed the pseudo-second-order kinetic model and equilibrium data fit the Langmuir isotherm model very well. (author)

  19. Potential adsorption of methylene blue from aqueous solution using green macroalgaePosidonia oceanica.

    Science.gov (United States)

    Allouche, F.-N.; Yassaa, N.

    2018-03-01

    The use of inexpensive biological materials, such as marine algae for removing dyes from contaminated industrial effluents appears as a potential alternative method. The aim of this study is to investigate the aptitude of marine macroalgae Posidonia Oceanica local biomass abundant on the coasts of Algeria for selective sorption of methylene blue (MB) from an aqueous solution in batch experiments at 20 °C. A maximum percentage removal of Posidonia oceanica occurs at pH 5. Equilibrium isotherm data were analyzed using the Langmuir and the Freundlich isotherms. The adsorption equilibrium of methylene blue was best describe by Langmuir model than the Freundlich model. The maximum sorption capacity was 357 mgg-1at pH 5. The sorption data were very well described by the pseudo-second-order model. Keywords: Posidonia oceanica, Methylene blue (MB), Biosorption, Isotherm Equilibrium, Kinetics; Modelling.

  20. The classification of the single travelling wave solutions to the ...

    Indian Academy of Sciences (India)

    Exact solution; single travelling wave solution; complete discrimination system for the polynomial; the generalized PC ... Recently, a method named as the complete discrimination system for polynomial method has been proposed by Liu [11–16]. ...... to the generalized PC equation. By integrating and taking some trans-.

  1. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters.

    Science.gov (United States)

    Kuo, Chao-Yin; Wu, Chung-Hsin; Wu, Jane-Yii

    2008-11-15

    This study examined the feasibility of removing direct dyes C.I. Direct Yellow 86 (DY86) and C.I. Direct Red 224 (DR224) from aqueous solutions using carbon nanotubes (CNTs). The effects of dye concentration, CNT dosage, ionic strength and temperature on adsorption of direct dyes by CNTs were also evaluated. Pseudo second-order, intraparticle diffusion and Bangham models were adopted to evaluate experimental data and thereby elucidate the kinetic adsorption process. Additionally, this study used the Langmuir, Freundlich, Dubinin and Radushkevich (D-R) and Temkin isotherms to describe equilibrium adsorption. The adsorption percentage of direct dyes increased as CNTs dosage, NaCl addition and temperature increased. Conversely, the adsorption percentage of direct dyes decreased as dye concentration increased. The pseudo second-order model best represented adsorption kinetics. Based on the regressions of intraparticle diffusion and Bangham models, experimental data suggest that the adsorption of direct dyes onto CNTs involved intraparticle diffusion, but that was not the only rate-controlling step. The equilibrium adsorption of DR86 is best fitted in the Freundlich isotherm and that of DR224 was best fitted in the D-R isotherm. The capacity of CNTs to adsorb DY86 and DR224 was 56.2 and 61.3 mg/g, respectively. For DY86, enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were 13.69 kJ/mol and 139.51 J/mol K, respectively, and those for DR224 were 24.29 kJ/mol and 172.06 J/mol K, respectively. The values of DeltaH(0), DeltaG(0) and E all indicate that the adsorption of direct dyes onto CNTs was a physisorption process.

  2. Application of Modified Red Mud for Adsorption of Acid Orange 7 (AO7 Dye from Aqueous Solution: Isotherms, Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Zazouli

    2015-09-01

    Full Text Available Application of modified red mud for adsorption of Acid Orang 7 (AO7 dye from aqueous solution: Isotherms, Kinetics studies Abstract: Backgroud: Existence of color is one of the problems of industrial effluent such as textile industries. The dyes can be removed by various methods. Therefore, the aim of this study is evaluation of adsorption rate of acid orange (AO7 from aqueous solution by activated red mud. Material and method: This is an empirical lab study. Red mud was used as an absorbent to remove of acid orange 7 dye. The effect of various parameters on performance of absorbent was investigated and the isotherms and kinetics of adsorption was determined. The dye concentration was measured in wavelength of 452 nm by spectrophotometer. Results: The results showed that red mud surface area is 30 m2/g. The results showed that dye removal was highest at a solution pH 3 and a powder dose of 12 g/L. The AO7 removal percentage decreased from %98 to %55 at 60 min contact time when the concentration of dye was increased from 10 mg/L to 100 mg/L. The equilibrium data is best fitted on Langmuir isotherm and the adsorption kinetic model follows pseudo-second model. conclusion: The results of this study showed that red mud is able to adsorption of dye and can be used as effective and inexpensive absorbent to treat of textile effluent.

  3. Electrochemical studies of adsorption and inhibitive performance of basic yellow 28 dye on mild steel corrosion in Acid solutions.

    Science.gov (United States)

    Ashassi-Sorkhabi, Habib; Asghari, Elnaz; Ejbari, Parisa

    2011-06-01

    Organic corrosion inhibitors are widely used to control the corrosion of different metals in various corrosive solutions. The inhibition performance of Basic yellow 28 (BY28) dye for mild steel corrosion was investigated in 0.1 M HCl solution and in a solution of 0.1 M HCl and 1% NaCl. Two electrochemical methods including Tafel polarization and electrochemical impedance spectroscopy (EIS) measurements were used. The corrosion parameters as well as inhibition efficiencies were obtained for different concentrations of inhibitor. The inhibition efficiencies showed that the BY28 dye acts as a good corrosion inhibitor for mild steel in both solutions. The studies on adsorption isotherm of the dye on mild steel proved that the adsorption of BY28 obeys the Langmuir adsorption isotherm. The average value of -ΔGads in both solutions was more than 20 and a little less than 40 kJ mol-1. Therefore, both chemisorption and physisorption phenomena were involved in the adsorption of the studied dye on mild steel surface.

  4. Adsorption of 2,4-Dichlorophenoxyacetic Acid from an Aqueous Solution on Fly Ash.

    Science.gov (United States)

    Kuśmierek, Krzysztof; Świątkowski, Andrzej

    2016-03-01

    The adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on fly ash was studied. The effects of adsorbent dose, contact time, pH, ionic strength, and temperature on the adsorption were investigated. Adsorption kinetic data were analyzed using pseudo-first and pseudo-second order models, and results showed that adsorption kinetics were better represented by the pseudo-second order model. Adsorption isotherms of 2,4-D on fly ash were analyzed using the Freundlich and Langmuir models. Thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated that the adsorption process was spontaneous and endothermic. The negative values of ΔG° and the positive value of ΔH° indicate the spontaneous nature of 2,4-D adsorption on fly ash, and that the adsorption process was endothermic. Results showed that fly ash is an efficient, low-cost adsorbent for removal of 2,4-D from water.

  5. Synthesis, characterization and application of Lagerstroemia speciosa embedded magnetic nanoparticle for Cr(VI) adsorption from aqueous solution.

    Science.gov (United States)

    Srivastava, Shalini; Agrawal, Shashi Bhushan; Mondal, Monoj Kumar

    2017-05-01

    Lagerstroemia speciosa bark (LB) embedded magnetic nanoparticles were prepared by co-precipitation of Fe 2+ and Fe 3+ salt solution with ammonia and LB for Cr(VI) removal from aqueous solution. The native LB, magnetic nanoparticle (MNP), L. speciosa embedded magnetic nanoparticle (MNPLB) and Cr(VI) adsorbed MNPLB particles were characterized by SEM-EDX, TEM, BET-surface area, FT-IR, XRD and TGA methods. TEM analysis confirmed nearly spherical shape of MNP with an average diameter of 8.76nm and the surface modification did not result in the phase change of MNP as established by XRD analysis, while led to the formation of secondary particles of MNPLB with diameter of 18.54nm. Characterization results revealed covalent binding between the hydroxyl group of MNP and carboxyl group of LB particles and further confirmed its physico-chemical nature favorable for Cr(VI) adsorption. The Cr(VI) adsorption on to MNPLB particle as an adsorbent was tested under different contact time, initial Cr(VI) concentration, adsorbent dose, initial pH, temperature and agitation speed. The results of the equilibrium and kinetics of adsorption were well described by Langmuir isotherm and pseudo-second-order model, respectively. The thermodynamic parameters suggest spontaneous and endothermic nature of Cr(VI) adsorption onto MNPLB. The maximum adsorption capacity for MNPLB was calculated to be 434.78mg/g and these particles even after Cr(VI) adsorption were collected effortlessly from the aqueous solution by a magnet. The desorption of Cr(VI)-adsorbed MNPLB was found to be more than 93.72% with spent MNPLB depicting eleven successive adsorption-desorption cycles. Copyright © 2016. Published by Elsevier B.V.

  6. Adsorption and nanowear properties of bovine submaxillary mucin films on solid surfaces: Influence of solution pH and substrate hydrophobicity

    DEFF Research Database (Denmark)

    Sotres, Javier; Madsen, Jan Busk; Arnebrant, Thomas

    2014-01-01

    The adsorption and mechanical stability of bovine submaxillary mucins (BSM) films at solid-liquid interfaces were studied with respect to both substrate hydrophobicity and solution pH. Dynamic light scattering revealed a single peak distribution in neutral aqueous solution (pH 7.4) and a small...... fraction with enhanced aggregation was observed in acidic solution (pH 3.8). Both substrate hydrophobicity and solution pH were found to affect the spontaneous adsorption of BSM onto solid surfaces; BSM adsorbed more onto hydrophobic surfaces than hydrophilic ones, and adsorbed more at pH 3.8 than at pH 7.......4. Thus, the highest "dry" adsorbed mass was observed for hydrophobic surfaces in pH 3.8 solution. However, a highest "wet" adsorbed mass, i.e. which includes the solvent coupled to the film, was observed for hydrophobic surfaces at pH 7.4. The mechanical stability of the films was studied...

  7. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule

    Science.gov (United States)

    Fan, Yaming; Zhuo, Yuqun; Lou, Yu; Zhu, Zhenwu; Li, Liangliang

    2017-08-01

    Selenium is a hazardous element in coal. During coal combustion, most of the selenium will convert to SeO2 in the flue gas. Ca-based adsorbents, especially CaO, have been considered as a potential sorbent to adsorb SeO2 due to its low cost. In this paper, the adsorption mechanisms of single SeO2 on CaO surface were investigated by density functional theory (DFT) calculation. Both the physisorption and chemisorption structures were determined. It has been identified that the adsorption of SeO2 on CaO surface is primarily chemisorption, while physisorption takes effects at the initial stage of the process. Under O2 atmosphere, selenate is hard to form. Most of the adsorption products are selenite. Additionally, the electron density maps were obtained to reveal the surface active sites. The partial density of states (PDOS) was calculated for analyzing the electronic structural change of SeO2 and CaO surface during adsorption. The results provide fundamental information of the adsorption process, which could be meaningful for the development of new absorbents.

  8. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    De Velasco Maldonado, Paola S. [Instituto Tecnologico de Aguascalientes, Av. Adolfo López Mateos No. 1801 Ote. C.P, Aguascalientes, Ags, 20256 (Mexico); Hernández-Montoya, Virginia, E-mail: virginia.hernandez@yahoo.com.mx [Instituto Tecnologico de Aguascalientes, Av. Adolfo López Mateos No. 1801 Ote. C.P, Aguascalientes, Ags, 20256 (Mexico); Concheso, A.; Montes-Morán, Miguel A. [Instituto Nacional del Carbon, INCAR-CSIC, Apartado 73, E-33080, Oviedo (Spain)

    2016-11-15

    Highlights: • The formation of cerussite and hydrocerussite was observed on the carbon surface. • Occurrence of CaCO{sub 3} on the carbons surface plays a crucial role in the formation. • The carbons were prepared by carbonization and oxidation with cold oxygen plasma. • Oxidation with cold oxygen plasma increases the formation of these compounds. - Abstract: A new procedure of elimination of Pb{sup 2+} from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N{sub 2} at −196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb{sup 2+} was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb{sup 2+} removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO{sub 3} on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb{sup 2+}. Accordingly, retention capacities as high as 63 mg of Pb{sup 2+} per gram of adsorbent have been attained.

  9. Swift adsorptive removal of Congo red from aqueous solution by K1.33Mn8O16 nanowires.

    Science.gov (United States)

    Wu, Junshu; Li, Hongyi; Wang, Jinshu; Li, Zhifei

    2013-08-01

    A swift and efficient approach to converting organic dye effluents into fresh water could be of substantial benefit. In this study, we presented facile hydrothermal synthesis of K1.33Mn8O16 nanowires in ammonium fluoride (NH4F) aqueous solution. The crystallization process of K1.33Mn8O16 nanowires was investigated. The as-obtained K1.33Mn8O16 nanowires were used for swift adsorptive removal of Congo red from aqueous solution without adjusting pH value at room temperature. Adsorption kinetic experimental data are well described by pseudo-second-order rate kinetic model, and the adsorption isotherm fits Langmuir isotherm model. The present investigation provides an efficient approach to designing and fabricating manganese-based nanomaterials for environmental remediation.

  10. ADSORPTION OF Pb2+ IONS FROM AQUEOUS SOLUTIONS ONTO BAEL TREE LEAF POWDER: ISOTHERMS, KINETICS AND THERMODYNAMICS STUDY

    Directory of Open Access Journals (Sweden)

    P. SENTHIL KUMAR

    2009-12-01

    Full Text Available In this study, bael tree (BT leaf powder was used as an adsorbent for removal of Pb2+ ions from aqueous solutions through batch equilibrium technique. The influence of pH, equilibrium time, temperature, adsorbent dosage and initial concentration of metal ions on adsorbed amount of metals ions were investigated. Studies showed that the pH of aqueous solutions affected Pb2+ ions removal as a result of removal efficiency increased with increasing solution pH. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich equations. The monolayer adsorption capacity is 4.065 mg/g with the correlation coefficient of 0.993. The experiments showed that highest removal rate was 84.93% at solution pH 5, contact time 60 min and initial concentration of 50 mg/L. Thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy have also been evaluated and it has been found that the sorption process was feasible, spontaneous and exothermic in nature. Three simplified kinetic models including a pseudo-first-order equation, pseudo-second-order equation and intraparticle diffusion equation were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of Pb2+ ions could be described by the pseudo-second order equation, suggesting that the adsorption process is presumable a chemisorption.

  11. Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel

    CSIR Research Space (South Africa)

    Mittal, H

    2016-08-01

    Full Text Available This research paper reports the utilization of gum xanthan-grafted-polyacrylic acid and Fe(sub3)O(sub4) magnetic nanoparticles based nanocomposite hydrogel (NCH) for the highly effective adsorption of methyl violet (MV) from aqueous solution...

  12. Green Synthesis of Zinc Oxide Nanoparticles for Enhanced Adsorption of Lead Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies.

    Science.gov (United States)

    Azizi, Susan; Mahdavi Shahri, Mahnaz; Mohamad, Rosfarizan

    2017-06-08

    In the present study, ZnO nanoparticles (NPs) were synthesized in zerumbone solution by a green approach and appraised for their ability to absorb Pb(II) ions from aqueous solution. The formation of as-synthesized NPs was established by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and UV-visible studies. The XRD and TEM analyses revealed high purity and wurtzite hexagonal structure of ZnO NPs with a mean size of 10.01 ± 2.6 nm. Batch experiments were performed to investigate the impact of process parameters viz. Pb(II) concentration, pH of solution, adsorbent mass, solution temperature, and contact time variations on the removal efficiency of Pb(II). The adsorption isotherm data provided that the adsorption process was mainly monolayer on ZnO NPs. The adsorption process follows pseudo-second-order reaction kinetic. The maximum removal efficiencies were 93% at pH 5. Thermodynamic parameters such as enthalpy change (ΔH⁰), free energy change (ΔG⁰), and entropy change (ΔS⁰) were calculated; the adsorption process was spontaneous and endothermic. The good efficiency of the as-synthesized NPs makes them attractive for applications in water treatment, for removal of heavy metals from aqueous system.

  13. Green Synthesis of Zinc Oxide Nanoparticles for Enhanced Adsorption of Lead Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Susan Azizi

    2017-06-01

    Full Text Available In the present study, ZnO nanoparticles (NPs were synthesized in zerumbone solution by a green approach and appraised for their ability to absorb Pb(II ions from aqueous solution. The formation of as-synthesized NPs was established by X-ray diffraction (XRD, Transmission Electron Microscopy (TEM, and UV–visible studies. The XRD and TEM analyses revealed high purity and wurtzite hexagonal structure of ZnO NPs with a mean size of 10.01 ± 2.6 nm. Batch experiments were performed to investigate the impact of process parameters viz. Pb(II concentration, pH of solution, adsorbent mass, solution temperature, and contact time variations on the removal efficiency of Pb(II. The adsorption isotherm data provided that the adsorption process was mainly monolayer on ZnO NPs. The adsorption process follows pseudo-second-order reaction kinetic. The maximum removal efficiencies were 93% at pH 5. Thermodynamic parameters such as enthalpy change (ΔH0, free energy change (ΔG0, and entropy change (ΔS0 were calculated; the adsorption process was spontaneous and endothermic. The good efficiency of the as-synthesized NPs makes them attractive for applications in water treatment, for removal of heavy metals from aqueous system.

  14. Removal of copper (II from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions

    Directory of Open Access Journals (Sweden)

    Saeed Almohammadi

    2016-04-01

    Full Text Available In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as pH, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum pH required for maximum adsorption was found to be 4.5 for copper. Equilibrium was evaluated at 144 h at room temperature. The removal efficiency of Cu(II was 71.12% at this time. The kinetics of copper adsorption on activated carbon followed the pseudo second-order model. The experimental equilibrium sorption data were tested using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R equations and the Langmuir model was found to be well fitted for copper adsorption onto GAC. The maximum adsorption capacity of the adsorbent for Cu(II was calculated from the Langmuir isotherm and found to be 7.03 mg/g. Subsequently, the removal of copper by granular activated carbon in the presence of Ag1+ and Mn2+ as competitor ions was investigated. The removal efficiency of Cu(II ions without the presence of the competitor ions was 46% at 6 h, while the removal efficiency of Cu(II ions in the presence of competitor ions, Ag1+ and Mn2+ , was 34.76% and 31.73%, respectively.

  15. Selective adsorption and recycle of Cu2+from aqueous solution by modified sugarcane bagasse under dynamic condition.

    Science.gov (United States)

    Chen, Jia-Dong; Yu, Jun-Xia; Wang, Fen; Tang, Jia-Qi; Zhang, Yue-Fei; Xu, Yuan-Lai; Chi, Ru-An

    2017-04-01

    Tetraethylenepentamine modified sugarcane bagasse was prepared and applied to test its feasibility in removing and recovering Cu 2+ from wastewater under dynamic condition. Results showed that the Cu 2+ could be selectively absorbed from wastewater by the modified SCB fixed bed column. To understand the adsorption mechanism, Cd 2+ had been selected as the model interfering ion to investigate how co-ions influence the adsorption of Cu 2+ on the sorbent. It was observed that the adsorption capacity of the sorbent for Cu 2+ (0.26 mmol g -1 ) was significantly higher than that of Cd 2+ (0.03 mmol g -1 ), even when the Cd 2+ initial concentration was 100 times higher than that of Cu 2+ in the binary system. This finding indicated that the presence of Cd 2+ in the solution exerted negligible influence on the adsorption of Cu 2+ on the modified SCB. The selectivity of the modified sorbent was further confirmed in the Cu/Cd/Mg/Pb/K quinary system. Further analysis to dynamic adsorption experiment illustrated that, due to the presence of amine groups, the modified SCB showed strong coordination ability to Cu 2+ , which allowed the other adsorbed ions (e.g., Cd 2+ ) desorbed. This high adsorption selectivity toward Cu 2+ suggested that this prepared sorbent would be a promising candidate for removing and recovering Cu 2+ from wastewater.

  16. Anionic and Cationic Dyes Removal from Aqueous Solutions by Adsorption onto Synthetic Mg/Al Hydrotalcite-Like Compound

    Directory of Open Access Journals (Sweden)

    Eddy Heraldy

    2015-11-01

    Full Text Available The current investigation reports an effective adsorption of both anionic species and cationic dyes on Mg/Al hydrotalcite-like compounds (Mg/Al HTlc synthetic from brine water, as novel, inexpensive available alternative to the commercial hydrotalcite. The feasibility of the Mg/Al HTlc, for the adsorptive removal of both anionic (Eosin Yellow-EY and Methyl Orange-MO and cationic (Methylene blue-MB dyes from aqueous solution was evaluated in a batch process. Dyes adsorption process was thoroughly studied from both kinetic and equilibrium points of view for all adsorbents. The adsorption kinetics was tested for the pseudo-first order and pseudo-second order kinetic models at different experimental conditions. The dyes adsorption follows the pseudo-second order kinetics model, with correlation coefficients close to unity when experimental data were fitted in the model. The experimental isotherm data were analyzed using Langmuir and Freundlich isotherms. The results from Langmuir isotherm indicated that the capacity of Mg/Al HTlc for the adsorption of anionic dyes was higher than that for cationic dyes.

  17. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism.

    Science.gov (United States)

    Xiong, Weiping; Tong, Jing; Yang, Zhaohui; Zeng, Guangming; Zhou, Yaoyu; Wang, Dongbo; Song, Peipei; Xu, Rui; Zhang, Chen; Cheng, Min

    2017-05-01

    Phosphate (P) removal is significant for the prevention of eutrophication in natural waters. In this paper, a novel adsorbent for the removal of P from aqueous solution was synthesized by loading zirconium oxide and iron oxide onto activated carbon nanofiber (ACF-ZrFe) simultaneously. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that P adsorption was highly pH dependent and the optimum pH was found to be 4.0. The isotherm of adsorption could be well described by the Langmuir model and the maximum P adsorption capacity was estimated to be 26.3mgP/g at 25°C. The kinetic data were well fitted to the pseudo-second-order equation, indicating that chemical sorption was the rate-limiting step. Moreover, co-existing ions including sulfate (SO 4 2- ), chloride (Cl - ), nitrate (NO 3 - ) and fluoride (F - ) exhibited a distinct effect on P adsorption with the order of F - >NO 3 - >Cl - >SO 4 2- . Further investigations by FT-IR spectroscopy and pH variations associated with the adsorption process revealed that ligands exchange and electrostatic interactions were the dominant mechanisms for P adsorption. The findings reported in this work highlight the potential of using ACF-ZrFe as an effective adsorbent for the removal of P in natural waters. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes.

    Science.gov (United States)

    Li, Bing; Yang, Lan; Wang, Chang-Quan; Zhang, Qing-Pei; Liu, Qing-Cheng; Li, Yi-Ding; Xiao, Rui

    2017-05-01

    In order to deal with cadmium (Cd(II)) pollution, three modified biochar materials: alkaline treatment of biochar (BC-NaOH), KMnO 4 impregnation of biochar (BC-MnO x ) and FeCl 3 magnetic treatment of biochar (BC-FeO x ), were investigated. Nitrogen adsorption-desorption isotherms, Fourier transform infrared spectroscopy (FTIR), Boehm titration, and scanning electron microscopy (SEM) were used to determine the characteristics of adsorbents and explore the main adsorption mechanism. The results show that manganese oxide particles are carried successfully within the biochar, contributing to micropore creation, boosting specific surface area and forming innersphere complexes with oxygen-containing groups, while also increasing the number of oxygen-containing groups. The adsorption sites created by the loaded manganese oxide, rather than specific surface areas, play the most important roles in cadmium adsorption. Batch adsorption experiments demonstrate a Langmuir model fit for Cd(II), and BC-MnO x provided the highest sorption capacity (81.10 mg g -1 ). The sorption kinetics of Cd(II) on adsorbents follows pseudo-second-order kinetics and the adsorption rate of the BC-MnO x material was the highest (14.46 g (mg·h) -1 ). Therefore, biochar modification methods involving KMnO 4 impregnation may provide effective ways of enhancing Cd(II) removal from aqueous solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay

    International Nuclear Information System (INIS)

    Sari, Ahmet; Tuzen, Mustafa; Citak, Demirhan; Soylak, Mustafa

    2007-01-01

    The adsorption of Pb(II) onto Turkish (Bandirma region) kaolinite clay was examined in aqueous solution with respect to the pH, adsorbent dosage, contact time, and temperature. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms and both models fitted well. The monolayer adsorption capacity was found as 31.75 mg/g at pH 5 and 20 deg. C. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (13.78 kJ/mol) indicated that the adsorption of Pb(II) onto kaolinite clay may be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) of adsorption were also calculated. These parameters showed that the adsorption of Pb(II) onto kaolinite clay was feasible, spontaneous and exothermic process in nature. Furthermore, the Lagergren-first-order, pseudo-second-order and the intraparticle diffusion models were used to describe the kinetic data. The experimental data fitted well the pseudo-second-order kinetics

  20. Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials.

    Science.gov (United States)

    Kim, Seong-Oh; Jackman, Joshua A; Mochizuki, Masahito; Yoon, Bo Kyeong; Hayashi, Tomohiro; Cho, Nam-Joon

    2016-06-07

    The coating of solid-binding peptides (SBPs) on inorganic material surfaces holds significant potential for improved surface functionalization at nano-bio interfaces. In most related studies, the goal has been to engineer peptides with selective and high binding affinity for a target material. The role of the material substrate itself in modulating the adsorption behavior of a peptide molecule remains less explored and there are few studies that compare the interaction of one peptide with different inorganic substrates. Herein, using a combination of two experimental techniques, we investigated the adsorption of a 16 amino acid-long random coil peptide to various inorganic substrates - gold, silicon oxide, titanium oxide and aluminum oxide. Quartz crystal microbalance-dissipation (QCM-D) experiments were performed in order to measure the peptide binding affinity for inorganic solid supports at the ensemble average level, and atomic force microscopy (AFM) experiments were conducted in order to determine the adhesion force of a single peptide molecule. A positive trend was observed between the total mass uptake of attached peptide and the single-molecule adhesion force on each substrate. Peptide affinity for gold was appreciably greater than for the oxide substrates. Collectively, the results obtained in this study offer insight into the ways in which inorganic materials can differentially influence and modulate the adhesion of SBPs.

  1. Adsorption of phenolic compounds from aqueous solutions by aminated hypercrosslinked polymers.

    Science.gov (United States)

    Jiang, Zhen-mao; Li, Ai-min; Cai, Jian-guo; Wang, Chun; Zhang, Quan-xin

    2007-01-01

    Two novel polymers (NJ-1 and NJ-2) were synthesized by chemically modified a hypercrosslinked polymer NJ-0 with dimethylamine and trimethylamine, respectively. The comparison of the adsorption properties of the three polymers toward phenol, resorcin and phloroglucin was made. The study focused on the static equilibrium adsorption behaviors and the adsorption thermodynamics. Freundlich equation was found to fit the adsorption results well. The effect of amino groups introduced onto the surface of the resin and the structure of phenolic compounds on the adsorption were also studied. The hydrogen-bonding interaction and electrostatic interaction could happen between the amino groups and the adsorbates. The adsorption impetus increased as quantity of hydroxyl groups increased, but the adsorption capacity decreased due to the drop of the matching degree of the aperture of resins and the diameter of adsorbate molecules.

  2. Adsorption of chromium(VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups

    Science.gov (United States)

    Anirudhan, T. S.; Nima, J.; Divya, P. L.

    2013-08-01

    This study successfully synthesized a new adsorbent by ethylation of glycidylmethacrylate grafted aminated titanium dioxide densified cellulose (Et-AMPGDC), to remove chromium(VI) from aqueous solutions. The adsorbent was characterized by the FTIR, XRD, SEM and TG-DTG measurements. Batch adsorption technique using Et-AMPGDC was applied for the removal of Cr(VI) from aqueous solution and waste water. The contact time necessary to attain equilibrium and the optimum pH were found to be 1 h and 4.5, respectively. The kinetics of sorption of Cr(VI) ions was described by a pseudo-second-order kinetic model. The equilibrium isotherm data were analyzed using the Langmuir and Freundlich isotherm equations and the adsorption process was reflected by Langmuir isotherm. The maximum adsorption capacity was evaluated to be 123.60 mg/g. The electroplating industrial wastewater samples were treated with Et-AMPGDC to demonstrate its efficiency in removing Cr(VI) from wastewater. Almost complete removal was possible with 100 mg of the adsorbent from 50 mL of wastewater sample. Desorption efficiency was achieved by treatment with 0.1 M NaOH and five adsorption-desorption cycles were performed without significant decrease in adsorption capacity.

  3. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T.A.H. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Ngo, H.H., E-mail: ngohuuhao121@gmail.com [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Guo, W.S. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Pham, T.Q. [Faculty of Geography, University of Science, Vietnam National University, Hanoi (Viet Nam); Li, F.M. [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Nguyen, T.V. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Bui, X.T. [Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology-Vietnam National University, Ho Chi Minh City (Viet Nam)

    2015-08-01

    This study explores the potential of removing phosphorus from aqueous solutions and sewage by Zr(IV)-loaded okara (ZLO) in the fixed-bed column. Soybean residue (okara) was impregnated with 0.25 M Zr(IV) solution to prepare active binding sites for phosphate. The effect of several factors, including flow rate, bed height, initial phosphorus concentration, pH and adsorbent particle size on the performance of ZLO was examined. The maximum dynamic adsorption capacity of ZLO for phosphorus was estimated to be 16.43 mg/g. Breakthrough curve modeling indicated that Adams–Bohart model and Thomas model fitted the experimental data better than Yoon–Nelson model. After treatment with ZLO packed bed column, the effluent could meet the discharge standard for phosphorus in Australia. Successful desorption and regeneration were achieved with 0.2 NaOH and 0.1 HCl, respectively. The results prove that ZLO can be used as a promising phosphorus adsorbent in the dynamic adsorption system. - Highlights: • Dynamic adsorption of P from water and wastewater by Zr(IV)-loaded okara was tested. • Effects of column design parameters on the adsorption performance were investigated. • The dynamic adsorption capacity of Zr(IV)-loaded okara for P was reasonably high. • The spent column was effectively regenerated with 0.2 M NaOH followed by 0.1 M HCl. • Zr(IV)-loaded okara column was efficient in eliminating P from municipal sewage.

  4. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study

    International Nuclear Information System (INIS)

    Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Pham, T.Q.; Li, F.M.; Nguyen, T.V.; Bui, X.T.

    2015-01-01

    This study explores the potential of removing phosphorus from aqueous solutions and sewage by Zr(IV)-loaded okara (ZLO) in the fixed-bed column. Soybean residue (okara) was impregnated with 0.25 M Zr(IV) solution to prepare active binding sites for phosphate. The effect of several factors, including flow rate, bed height, initial phosphorus concentration, pH and adsorbent particle size on the performance of ZLO was examined. The maximum dynamic adsorption capacity of ZLO for phosphorus was estimated to be 16.43 mg/g. Breakthrough curve modeling indicated that Adams–Bohart model and Thomas model fitted the experimental data better than Yoon–Nelson model. After treatment with ZLO packed bed column, the effluent could meet the discharge standard for phosphorus in Australia. Successful desorption and regeneration were achieved with 0.2 NaOH and 0.1 HCl, respectively. The results prove that ZLO can be used as a promising phosphorus adsorbent in the dynamic adsorption system. - Highlights: • Dynamic adsorption of P from water and wastewater by Zr(IV)-loaded okara was tested. • Effects of column design parameters on the adsorption performance were investigated. • The dynamic adsorption capacity of Zr(IV)-loaded okara for P was reasonably high. • The spent column was effectively regenerated with 0.2 M NaOH followed by 0.1 M HCl. • Zr(IV)-loaded okara column was efficient in eliminating P from municipal sewage

  5. Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite

    Directory of Open Access Journals (Sweden)

    M. Mourabet

    2017-05-01

    Full Text Available In the present study, Response surface methodology (RSM was employed for the removal of fluoride on Brushite and the process parameters were optimized. Four important process parameters including initial fluoride concentration (40–50 mg/L, pH (4–11, temperature (10–40 °C and B dose (0.05–0.15 g were optimized to obtain the best response of fluoride removal using the statistical Box–Behnken design. The experimental data obtained were analyzed by analysis of variance (ANOVA and fitted to a second-order polynomial equation using multiple regression analysis. Numerical optimization applying desirability function was used to identify the optimum conditions for maximum removal of fluoride. The optimum conditions were found to be initial concentration = 49.06 mg/L, initial solution pH = 5.36, adsorbent dose = 0.15 g and temperature = 31.96 °C. A confirmatory experiment was performed to evaluate the accuracy of the optimization procedure and maximum fluoride removal of 88.78% was achieved under the optimized conditions. Several error analysis equations were used to measure the goodness-of-fit. Kinetic studies showed that the adsorption followed a pseudo-second order reaction. The equilibrium data were analyzed using Langmuir, Freundlich, and Sips isotherm models at different temperatures. The Langmuir model was found to be describing the data. The adsorption capacity from the Langmuir isotherm (QL was found to be 29.212, 35.952 and 36.260 mg/g at 298, 303, and 313 K respectively.

  6. Adsorption of flexible polyelectrolytes : a theoretical and experimental study of polystyrene sulfonate adsorption on polyoxymethylene single crystals

    NARCIS (Netherlands)

    Papenhuijzen, J.

    1985-01-01

    The objective of the present work was to collect systematic adsorption data for a well-defined polyelectrolyte on an uncharged, homogeneous surface, and to compare these with the new theory that was recently developed by Van der Schee.

    In chapter 1 we shortly describe which

  7. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite

    Science.gov (United States)

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni

  8. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiang, E-mail: huxiang@mail.buct.edu.cn [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029 (China); Zhang, Hua [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Research Centre for Environmental Pollution Control and Resource Reuse Engineering of Beijing City, Beijing 100029 (China); Sun, Zhirong, E-mail: zrsun@bjut.edu.cn [College of Environmental & Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2017-01-15

    Graphical abstract: The graphic abstract describes the research that we used modified activated carbons impregnated with iron nitrate, copper nitrate and aluminium nitrate to adsorb ceftazidime from aqueous solution. The surface functional groups of the modified activated carbons were different, and thus resulted in the big difference in the adsorption performance of the modified activated carbons. The theory and the experiments both showed the preferable adsorption of ceftazidime could be achieved on modified activated carbons. - Highlights: • Three modified activated carbons were prepared by impregnating metal nitrate. • Characteristics of the modified activated carbons were analyzed. • Adsorption capacity of ceftazidime on modified activated carbons was improved. • The adsorption behavior of ceftazidime on modified activated carbons were revealed. • The nature of ceftazidime adsorption on modified activated carbons was elucidated. - Abstract: In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g{sup −1} (298 K), 196.1 mg g{sup −1} (303 K) and 185.2 mg g

  9. Adsorption of cationic and anionic organic dyes from aqueous solution using silica.

    Science.gov (United States)

    Buvaneswari, N; Kannan, C

    2010-10-01

    The adsorption of cationic crystal violet (CV) and anionic indigo carmine (IC) has been studied on silica to identify the soil polluting nature of organic dyes. The adsorption parameters like contact time, concentration, temperature and adsorbent dosage were optimized for maximum adsorption. The adsorptions of CV and IC on silica followed Freundlich and Langmuir adsorption isotherm and pseudo second order kinetics. The deltaS degrees, deltaH degrees and deltaG degrees of adsorption on silica are calculated by using Vant Hoff's plot. The adsorption isotherms and thermodynamic studies proved that the CV was adsorbed more than IC on silica. The dyes recovery has been studied from dyes adsorbed silica in water. Very poor recovery of CV and high recovery of IC were observed. The adsorption mechanism, high adsorption and very poor recovery of CV on silica proved that the CV is polluting the soil more than IC. The poor adsorption and high recovery of IC on silica is a supportive evidence for very less soil polluting nature of the IC.

  10. Adsorption of Volatile Organic Compounds from Aqueous Solution by Granular Activated Carbon in Batch System

    International Nuclear Information System (INIS)

    Zeinali, F.; Ghoreyshi, A. A.; Najafpour, G.

    2011-01-01

    Chlorinated hydrocarbons and aromatics are the major volatile organic compounds that contaminate the ground water and industrial waste waters. The best way to overcome this problem is to recover the dissolved compounds in water. In order to evaluate the potential ability of granular activated carbon for recovery of volatile organic compounds from water, the equilibrium adsorption was investigated. This study deals with the adsorption of dichloromethane as a typical chlorinated volatile organic compound and toluene as the representative of aromatic volatile organic compounds on a commercial granular activated carbon. The adsorption isotherms of these two volatile organic compounds on granular activated carbon were measured at three different temperatures, toluene at 293, 303 and 313 K and dichloromethane at 298, 303 and 313 K within their solubility concentration range in water. The maximum adsorption capacity of dichloromethane and toluene adsorption by granular activated carbon was 4 and 0.2 mol/Kg-1, respectively. The experimental data obtained were correlated with different adsorption isotherm models. The Langmuir model was well adapted to the description of dichloromethane adsorption on granular activated carbon at all three temperatures, while the adsorption of toluene on granular activated carbon was found to be well described by the Langmuir-BET hybrid model at all three temperatures. The heat of adsorption was also calculated based on the thermodynamic equation of Clausius Clapeyron, which indicates the adsorption process is endothermic for both compounds.

  11. Adsorption of lead ion from aqueous solution by modified walnut shell: kinetics and thermodynamics.

    Science.gov (United States)

    Li, Shenmaishang; Zeng, Zuoxiang; Xue, Weilan

    2018-02-02

    The novel modified walnut shell (WNS-MAH) with higher adsorption capacity for lead ion was prepared by reacting walnut shell (WNS) with maleic anhydride. Both WNS and WNS-MAH were analyzed by SEM and FTIR. The adsorption capacity of WNS-MAH for lead ion was evaluated at different adsorbent doses, pHs, time and temperatures. The adsorption kinetics and adsorption isotherms were investigated from (298 to 318) K. The adsorption kinetics of lead ion onto WNS-MAH were fitted using pseudo-first-order, pseudo-second-order and Elovich models. It was found that pseudo-second-order model gives the best correlation results. The diffusion mechanism was determined according to the intraparticle diffusion equation and Boyd equation. Results suggested the adsorption process was governed by film diffusion. The equilibrium adsorption data were fitted with the Freundlich model and the Langmuir model. The maximum adsorption capacity of WNS-MAH for lead ion removal was 221.24 mg/g at 318 K. The equilibrium adsorption data were analyzed using the D-R model, and the feature concentration ([Formula: see text]) was determined to distinguish chemisorption and physisorption. The thermodynamic parameters (ΔG, ΔH and ΔS) were calculated. Additionally, the regeneration property was studied and the adsorption process was confirmed by energy disperse spectroscopy.

  12. Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2004-01-01

    Adsorptions of toxic metal ions (Pb(II) and Cd(II)) onto modified lignin from beech and poplar woods by alkali glycerol delignification are presented in this paper. The material exhibits good adsorption capacity and the adsorption data follow the Langmuir model. The maximum adsorption capacities are 8.2-9.0 and 6.7-7.5 mg/g of the modified lignin for Pb(II) and Cd(II), respectively. The maximum adsorption percentage is 95.8 for Pb(II) for 4 h at 330 K and is 95.0 for Cd(II) for 10 h at 290 K. The adsorption of both the metal ions increased with increasing temperature indicating endothermic nature of the adsorption process. The maximum adsorption percentages of Pb(II) and Cd(II) ions decrease with time till 48 and 42 h and then again increase slightly with time. The adsorption of both heavy metal ions increases with pH. The adsorption of Pb(II) ions reached a maximum at a 5.0 value of pH

  13. Investigation on Adsorption and the Corrosion Inhibition Effect of Some Novel Hydrazide Derivatives for Mild Steel in HCl Solution

    Science.gov (United States)

    Singh, Dharmendra Kumar; Behera, Debasis; Singh, Mantu Kumar; Udayabhanu, G.; John, Rohith P.

    2017-10-01

    Two hydrazide derivatives, namely, N'-(thiophene-2-ylmethylene)nicotinic hydrazone (TNH) and N'-(pyrrol-2-ylmethylene)nicotinic hydrazone (PNH), have been synthesized and investigated as corrosion inhibitors for mild steel in 1 M HCl solution by electrochemical, weight loss, field emission-scanning electron microscope (FE-SEM), atomic force microscope (AFM), and quantum chemical calculation methods. The experimental results show that both the compounds are good inhibitors for mild steel in 1 M HCl. They act as mixed type inhibitors with predominating cathodic character. The adsorption of inhibitors obeys the Langmuir adsorption isotherm. Correlation between quantum chemical parameters and experimental results is discussed.

  14. High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); University of Science and Technology of China, Hefei, 230026 (China); Li, Jiaxing, E-mail: lijx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Wang, Xiangxue; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Wang, Xiangke [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-11-15

    In this study, phosphate-functionalized graphene oxide (PGO) was prepared by grafting triethyl phosphite onto the surface of GO using Arbuzov reaction. The as-prepared PGO was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Zeta potential. The application of the PGO to remove U(VI) from aqueous solution was investigated with a maximum adsorption capacity of 251.7 mg/g at pH = 4.0 ± 0.1 and T = 303 K. The adsorption mechanism was also investigated by X-ray photoelectron spectroscopy analysis, indicating a chemical adsorption of U(VI) on PGO surface. Moreover, experimental results gave a better removal efficiency toward U(VI) on PGO surface than other heavy metal ions at acidic solution, indicating the selective extraction of U(VI) from environmental pollutants. - Highlights: • The successful grafting phosphonate to graphene oxide by the Arbuzov reaction. • Selective adsorption of U(VI) on PGO surface over other heavy metal ions from acidic solution. • Electrostatic interactions of U(VI) with phosphonate and oxygen-containing functional groups on PGO surface. • Higher sorption capacity on PGO surface than GO surface for the U(VI) removal.

  15. Adsorption of lanthanides in aqueous solution aiming to study of nuclear wastes

    International Nuclear Information System (INIS)

    Belline, Jean de Brito

    2009-01-01

    The problem of radioactive wastes is a concern of world-wide scope, a time that does not still have a defined local for the construction of a repository for radioactive wastes of high level. One of the preliminary stages for the choice of the place more appropriate is the geologic study associated to the experimental studies of adsorption of the involved chemical species in the process. In this work, a sample of basaltic rock was used, of the South Region of the Formation Serra Geral, collected in Frederico Westphalen Town (RS), that it will be probably a candidate to the rock hostess for location of radioactive wastes. Two experiments have been carried out through, namely: 'Test Batch' and Percolating, both under atmospheric pressure, at the ambient temperature of 25 deg C, with the purpose to study the capacity of sorption of the rare earth elements - REE. The REE are used in this work in function of its analogy with the actinides, aiming at to investigate the chemistry behavior and the speciation of the same in natural waters, searching the possibility of geologic storage of radioactive wastes, a time that the adsorption of the REE depends on variables of the environment as pH, ionic strength, temperature and presence of ligands, as carbonates and constituent of surfaces of minerals. Experiment of percolating of the REE was carried through, 100ppb, in the basalt (with 80 mesh) in solutions with ionic strength 1= 0,025 M and 1=0,5 M of NaCl. pH was controlled in a range of 5,6 the 7,6 with HNO 3 addition. The concentrations were analyzed by ICP-MS. The 'Batch Test' is an efficient form of studying sorption/desorption isotherms, beyond values of the reason between the distributions solid/solution and estimation of the solubility. The percolating experiment, was carried through under pH controlled around 6, and allowed to verify the behaviour of heavy REE in comparison with the light REE. (author)

  16. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis.

    Science.gov (United States)

    Elhafez, S E Abd; Hamad, H A; Zaatout, A A; Malash, G F

    2017-01-01

    In the last decades, Egypt has been suffering from the phenomenon of black cloud resulting from burning rice husk and increasing the demand for water leading to the water crisis. An alternative, low-value and surplus agricultural byproduct (rice husk, RH) has an enormous potential for the removal of Cu(II) ions from water. The present study focuses on the chance of the use of rice husk as a bio-adsorbent without any chemical treatment instead of burning it and soiling the environment. The elemental, structural, morphological, surface functional, thermal, and textural characteristics of RH are determined by XRF, XRD, SEM, FT-IR, TGA, and BET surface area, respectively, and contributed to the understanding of the adsorption mechanism of Cu(II) ions in aqueous solution. Also, the performance analysis, adsorption mechanism, influencing factors, favorable conditions, etc. are discussed in this article. The results obtained from optimization by batch mode are achieved under the following conditions: initial concentration, 150 ppm; amount of rice husk, 1 g; average particle size, 0.25 mm; temperature, 25 °C; pH, 4; agitation rate, 180 rpm; and contact time, 60 min. RH exhibits a high degree of selectivity for Cu(II) adsorption. The adsorption isotherm is fitted well with Langmuir and Freundlich models with R 2 0.998 and 0.997, respectively. The adsorption is well governed by the pseudo-second-order kinetics. It is observed that the rate of adsorption improves with decreasing temperature, and the process is exothermic and non-spontaneous. Particular attention has being paid to factors as production processes, fixed/operational cost, production cost, and profit. The techno-economical analysis is presented in this study that provides precise demands on capital for a fixed investment, provisions for operational capital, and finally provisions for revenue. The social, economical, and environmental benefits by industrial point of view using low-cost adsorbent are also

  17. 8-Hydroxyqunoline adsorption from aqueous solution using powdered orange peel: kinetic and isotherm study

    Directory of Open Access Journals (Sweden)

    Siraj Khalid

    2015-12-01

    Full Text Available Adsorption of 8-hydroxyquinoline (8HQ on powdered orange peel (POP, a locally available adsorbent, has been studied. Experiment was performed on different 8HQ concentration, particle size, and adsorbent dosage. The Langmuir and Freundlich adsorption isotherm model has been tested. The obtained results best fitted the Langmuir model, suggesting monolayer adsorption of 8HQ on POP. The kinetic studies for the adsorption process were also carried out using pseudo-first- and pseudo-second-order models, and the data obtained is best fitted to the pseudo-second-order kinetic model. Thermodynamic parameters were calculated for the adsorption process and the result showed that the values of ΔGads, ΔHads, and ΔSads are −1171.4J/mol, −140J/mol and −40.5 J/K at 303 K. Thus, it can be summarized that the adsorption of 8HQ is spontaneous, chemisorbed, monolayer, and exothermic

  18. The removal of heavy metals from aqueous solution by adsorption on weathered coal

    Energy Technology Data Exchange (ETDEWEB)

    Meena, A.K.; Gupta, M.D.; Mishra, G.K.; Rajagopal, C.; Nagar, P.N. [Central Research Institute (Ayurveda), Gwalior (India)

    2009-07-01

    The adsorption followed first-order kinetics. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed. On the basis of experimental results, it can be inferred that the adsorbent weathered coal may be useful in developing an adsorptive technology for the removal of heavy metals. 25 refs., 8 figs., 4 tabs.

  19. Enhanced Congo red dye removal from aqueous solutions using iron nanoparticles: adsorption, kinetics, and equilibrium studies.

    Science.gov (United States)

    Kim, Se-Ho; Choi, Pyuck-Pa

    2017-11-14

    We report on the Congo red dye removal properties of body centred cubic and amorphous iron nanoparticles, synthesized by a facile borohydride reduction method under ambient conditions. We have analyzed the adsorption of Congo red as a function of dye concentration, time, and temperature and measured a Congo red adsorption capacity of 1735 mg g -1 for the amorphous iron nanoparticles. To our knowledge, this is the highest value reported so far for Congo red adsorption. The acquired data have been evaluated applying various models for adsorption kinetics and thermodynamic studies. The isotherm models as well as acquired Fourier transform infrared spectra suggest that both chemi- and physisorption occur for Congo red adsorption on iron nanoparticles, where chemisorption appears to be dominant. The kinetics of adsorption of Congo red on both bcc-structured and amorphous iron follow a pseudo-second order equation and are characterized by high initial adsorption rates. Diffusion studies indicate that adsorption occurs in two stages, namely film diffusion followed by intraparticle diffusion. Our studies show that amorphous iron nanoparticles are highly promising for dye adsorption and wastewater treatment applications.

  20. Characteristic Evaluation of Graphene Oxide for Bisphenol A Adsorption in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Thatchaphong Phatthanakittiphong

    2016-07-01

    Full Text Available This paper investigates the characteristics of graphene oxide (GO for Bisphenol A (BPA adsorption in water. Batch experiments on the influence of significant parameters were performed. While an improvement of the adsorption capacity of BPA was obtained by the increment of contact time and the initial BPA concentration, the increment of pH above 8, GO dosage, and temperature showed the reverse results. The thermodynamic study suggested that BPA adsorption on GO was an exothermic and spontaneous process. The kinetics was explained by the pseudo-second-order model which covers all steps of adsorption. The fit of the results with the Langmuir isotherm indicated the monolayer adsorption. At 298 K, the adsorption reached equilibrium within 30 min with the maximum adsorption capacity of 49.26 mg/g. The low BPA adsorption capacity of GO can be interpreted by the occurrence of oxygen-containing functional groups (OCFGs that are able to form hydrogen bonds with the surrounding OCFGs and water molecules. This effect inhibited the role of π–π interactions that are mainly responsible for the adsorption of BPA.

  1. Mechanism of adsorption of anionic dye from aqueous solutions onto organobentonite.

    Science.gov (United States)

    Ma, Jianfeng; Cui, Bingying; Dai, Juan; Li, Dinglong

    2011-02-28

    Organobentonite is suggested as potential super-sorbents for the removal of dyes from wastewater. All kinds of organobentonites are synthesized to adsorb dyes; however, the mechanism of the adsorption is still unclear. In this paper, organobentonites were first modified with hexadecyltrimethylammonium bromide at various amounts to reveal the adsorption mechanism. Subsequently, four kinds of organobentonites were utilized to adsorb acid dyes. Results show that the main mechanism of the adsorption of acid dye is an anionic exchange. The counter-ion bromide in the organobentonite was replaced by the dye anion. The study reveals that the adsorption capacity of organobentonite is affected by the surfactant alkyl chain length. When the longer alkyl chain surfactant was modified, bentonite showed higher adsorption capacity. Specific surface areas had no effect on the adsorption. However, the XRD patterns show that interlamellar distance and lamellar distribution have some effects on the adsorption. High adsorption capacity and low residual concentration were obtained by the organobentonite adsorbents. The revelation of the adsorption mechanism makes it possible to obtain more novel and suitable organobentonite adsorbents for anionic dye removal from wastewater. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Adsorption of cefixime from aqueous solutions using modified hardened paste of Portland cement by perlite; optimization by Taguchi method.

    Science.gov (United States)

    Rasoulifard, Mohammad Hossein; Khanmohammadi, Soghra; Heidari, Azam

    In the present study, we have used a simple and cost-effective removal technique by a commercially available Fe-Al-SiO2 containing complex material (hardened paste of Portland cement (HPPC)). The adsorbing performance of HPPC and modified HPPC with perlite for removal of cefixime from aqueous solutions was investigated comparatively by using batch adsorption studies. HPPC has been selected because of the main advantages such as high efficiency, simple separation of sludge, low-cost and abundant availability. A Taguchi orthogonal array experimental design with an OA16 (4(5)) matrix was employed to optimize the affecting factors of adsorbate concentration, adsorbent dosage, type of adsorbent, contact time and pH. On the basis of equilibrium adsorption data, Langmuir, Freundlich and Temkin adsorption isotherm models were also confirmed. The results showed that HPPC and modified HPPC were both efficient adsorbents for cefixime removal.

  3. Adsorption of triclosan on single wall carbon nanotubes: A first principle approach

    Energy Technology Data Exchange (ETDEWEB)

    Castro, S.M. [Departamento de Física, Universidade Federal do Maranhão, 65080-805 SãoLuís, MA (Brazil); Araújo, A.B. [Instituto Federal do Maranhão, Campus São Luis-Centro Histórico, 65010-500 SãoLuís, MA (Brazil); Nogueira, R.F.P. [Departamento de Química Analítica, Instituto de Química de Araraquara, UNESP e Univ Estadual Paulista, Araraquara, SP 14801-970 (Brazil); Guerini, S., E-mail: silvete@gmail.com [Departamento de Física, Universidade Federal do Maranhão, 65080-805 SãoLuís, MA (Brazil)

    2017-05-01

    Highlights: • The interaction between the (8,0) SWCNT and triclosan molecule occurs via chemical process in parallel configuration. • The semiconductor SWCNT present predominantly binding energies larger than that of metallic SWCNT. • Triclosan behaves as an electron donor or acceptor depending on configuration. - Abstract: The interaction of triclosan on (8,0) and (5,5) single wall carbon nanotube (SWCNT) was investigated using density functional calculations. The results show that the adsorption of triclosan modifies the electronic properties of pristine (8,0) and (5,5) SWCNT and induced changes in the electronic properties are dependent on the triclosan adsorption site. It was observed through binding energy that triclosan molecule interacts mainly via chemical process in parallel configuration to (8,0) SWCNT, while interaction via physical process was observed with both (8,0) and (5,5) SWCNT. It is proposed that these SWCNTs are a potential filter device due to reasonable physical interaction with triclosan molecule. Furthermore, this type of filter could be reusable, therefore after the filtering, the SWCNTs could be separated from triclosan molecule.

  4. Adsorption of triclosan on single wall carbon nanotubes: A first principle approach

    International Nuclear Information System (INIS)

    Castro, S.M.; Araújo, A.B.; Nogueira, R.F.P.; Guerini, S.

    2017-01-01

    Highlights: • The interaction between the (8,0) SWCNT and triclosan molecule occurs via chemical process in parallel configuration. • The semiconductor SWCNT present predominantly binding energies larger than that of metallic SWCNT. • Triclosan behaves as an electron donor or acceptor depending on configuration. - Abstract: The interaction of triclosan on (8,0) and (5,5) single wall carbon nanotube (SWCNT) was investigated using density functional calculations. The results show that the adsorption of triclosan modifies the electronic properties of pristine (8,0) and (5,5) SWCNT and induced changes in the electronic properties are dependent on the triclosan adsorption site. It was observed through binding energy that triclosan molecule interacts mainly via chemical process in parallel configuration to (8,0) SWCNT, while interaction via physical process was observed with both (8,0) and (5,5) SWCNT. It is proposed that these SWCNTs are a potential filter device due to reasonable physical interaction with triclosan molecule. Furthermore, this type of filter could be reusable, therefore after the filtering, the SWCNTs could be separated from triclosan molecule.

  5. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J

    International Nuclear Information System (INIS)

    Shen Shaobo; Pan Tonglin; Liu Xinqiang; Yuan Lei; Wang Jinchao; Zhang Yongjian; Guo Zhanchen

    2010-01-01

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K d ) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q max based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 deg. C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process.

  6. Losses of the cyanobacterial toxin microcystin-LR from aqueous solution by adsorption during laboratory manipulations.

    Science.gov (United States)

    Hyenstrand, P; Metcalf, J S; Beattie, K A; Codd, G A

    2001-04-01

    The effect of plastic and methanol on the loss of microcystin-LR from solution was analysed by HPLC with photodiode array detection (HPLC-PDA). With plastic disposable pipette tips, the loss from an aqueous microcystin-LR (MC-LR) solution was 4.2% per tip operation. Using the same pipette tip, four operations were required to completely saturate a single tip with toxin. MC-LR attached to plastic pipette tips could subsequently be eluted by methanol and detected by HPLC-PDA. At methanol concentrations below 25% (v/v), recovered concentrations of MC-LR decreased significantly. Differences in MC-LR concentration were also noted by performing 50% dilution with Milli-Q water or methanol. The results are discussed in relation to the hydrophobicity of MC-LR, analytical procedures and the avoidance of toxin losses from solution during laboratory manipulations.

  7. Adsorption of BTX (benzene, toluene, o-xylene, and p-xylene) from aqueous solutions by modified periodic mesoporous organosilica.

    Science.gov (United States)

    Moura, Cícero P; Vidal, Carla B; Barros, Allen L; Costa, Luelc S; Vasconcellos, Luiz C G; Dias, Francisco S; Nascimento, Ronaldo F

    2011-11-15

    The capacity of a periodic mesoporous organosilica (PMO) to adsorb the aromatic compounds benzene, toluene, o-, and p-xylenes (BTX), which are usually present in produced waters, was investigated under both column and batch processes. The PMO was synthesized by condensation of 1,4 bis(triethoxisilyl)benzene (BTEB) under acidic conditions by using structure-directing agent (SDA) Pluronic P123 in the presence of KCl. Thermogravimetric analysis showed that the presence of the surfactant decreases the thermal stability of the PMO. The small-angle X-ray diffraction pattern, as well as the nitrogen adsorption/desorption isotherm measurements, revealed that the synthesized material has a crystalline structure, with hexagonally-ordered cylindrical mesopores. The adsorption kinetics study indicated an adsorption equilibrium time of 50 min and also showed that the data best fitted the pseudo-first order kinetic model. The intraparticle diffusion model was also tested and pointed to the occurrence of such process in all cases. Both Langmuir and Temkin models best represented the adsorption isotherms of toluene; Langmuir and Redlich-Peterson models best represented the data obtained for the other compounds. Adsorption capacity decreases in the order benzene>o-xylene>p-xylene>toluene. Satisfactory results were observed in the application of the synthesized PMO for the removal of BTX from aqueous solution. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/Chitosan composite beads.

    Science.gov (United States)

    Çınar, Seda; Kaynar, Ümit H; Aydemir, Tülin; Çam Kaynar, Sermin; Ayvacıklı, Mehmet

    2017-03-01

    In this study, the removal of Reactive Black 5 (RB-5) by nano-ZnO/Chitosan composite beads (nano-ZnO/CT-CB) from aqueous solution was investigated. ZnO nanoparticles were prepared by the via the microwave-assisted combustion technique. And then nano-ZnO/Chitosan composite beads were prepared by polymerization in the presence of nano-ZnO and chitosan. Characterization of composite beads were conducted using SEM, TEM, FTIR, TGA and XRD. Several important parameters influencing the removal of RB 5 such as contact time, pH and temperature were investigated systematically by batch experiments. At optimum conditions of pH 4 and adsorbent concentration of 0.2g, dye removal efficiency was found 76%. Langmuir, Freundlich and Temkin adsorption models were used to describe adsorption isotherms and constants. The maximum adsorption capacity (q m ) by Langmuir isotherm has been found to be 189.44mg/g. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (32.7kJ/mol) indicated that the adsorption is an endothermic process. The obtained results showed that the tested adsorbents are efficient and alternate low-cost adsorbent for removal of dyes from aqueous media. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose.

    Science.gov (United States)

    Xu, Qinghua; Wang, Yulu; Jin, Liqiang; Wang, Yu; Qin, Menghua

    2017-10-05

    A novel nanocomposite based on black wattle (BW) tannin and nanocellulose was prepared and applied in heavy metal ions adsorptive removal from aqueous solutions. Firstly, nanocrystalline cellulose was oxidized by sodium periodate to get dialdehyde nanocellulose (DANC). BW tannin was then covalently immobilized onto DANC, which was used as both the matrix and crosslinker, to obtain tannin-nanocellulose (TNCC) composite. The resulting nanocomposite was characterized using FTIR, AFM, and TG. The successful immobilization was confirmed by the chromogenic reaction between FeCl 3 and TNCC and FT-IR analysis. AFM images revealed that TNCC was ellipsoidal particles with lengths ranging from 100-400nm. Zeta potential measurement showed that TNCC was negative charged at a pH range from 1-12. Compared to the original tannin, the thermal stability of TNCC was slightly increased by the addition of nanocellulose. TNCC demonstrated the maximum adsorption efficiency at pH2 for Cr(VI) and pH 6 for Cu(II) and Pb(II), respectively. The adsorption for these three metal ions followed pseudo second-order kinetics, indicating the chemisorption nature. The adsorption isotherms all fitted well with the Sips model, and the calculated maximum adsorption capacities were 51.846mgg -1 , 53.371mgg -1 and 104.592mgg -1 for Cu(II), Pb(II) and Cr (VI), respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers

    International Nuclear Information System (INIS)

    Mittal, Alok; Kurup, Lisha; Mittal, Jyoti

    2007-01-01

    Tartrazine, a yellow menace, is widely being used in cosmetics, foodstuffs, medicines and textile. It is carcinogenic and also catalyzes allergic problems. In the present work the ability to remove Tartrazine from aqueous solutions has been studied using waste material-hen feathers, as adsorbent. Effects of pH, concentration of the dye, temperature and adsorbent dosage have been studied. Equilibrium isotherms for the adsorption of the dye were measured experimentally. Results were analyzed by the Freundlich and Langmuir equation at different temperatures and determined the characteristic parameters for each adsorption isotherm. The adsorption process has been found endothermic in nature and thermodynamic parameters, Gibb's free energy (ΔG o ), change in enthalpy (ΔH o ) and change in entropy (ΔS o ) have been calculated. The paper also includes results on the kinetic measurements of adsorption of the dye on hen feathers at different temperatures. By rate expression and treatment of data it has been established that the adsorption of Tartrazine over hen feathers follows a first-order kinetics and a film diffusion mechanism operates at all the temperatures

  11. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 007 MP (India)]. E-mail: aljymittal@yahoo.co.in; Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 007 MP (India); Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 007 MP (India)

    2007-07-19

    Tartrazine, a yellow menace, is widely being used in cosmetics, foodstuffs, medicines and textile. It is carcinogenic and also catalyzes allergic problems. In the present work the ability to remove Tartrazine from aqueous solutions has been studied using waste material-hen feathers, as adsorbent. Effects of pH, concentration of the dye, temperature and adsorbent dosage have been studied. Equilibrium isotherms for the adsorption of the dye were measured experimentally. Results were analyzed by the Freundlich and Langmuir equation at different temperatures and determined the characteristic parameters for each adsorption isotherm. The adsorption process has been found endothermic in nature and thermodynamic parameters, Gibb's free energy ({delta}G{sup o}), change in enthalpy ({delta}H{sup o}) and change in entropy ({delta}S{sup o}) have been calculated. The paper also includes results on the kinetic measurements of adsorption of the dye on hen feathers at different temperatures. By rate expression and treatment of data it has been established that the adsorption of Tartrazine over hen feathers follows a first-order kinetics and a film diffusion mechanism operates at all the temperatures.

  12. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers.

    Science.gov (United States)

    Mittal, Alok; Kurup, Lisha; Mittal, Jyoti

    2007-07-19

    Tartrazine, a yellow menace, is widely being used in cosmetics, foodstuffs, medicines and textile. It is carcinogenic and also catalyzes allergic problems. In the present work the ability to remove Tartrazine from aqueous solutions has been studied using waste material-hen feathers, as adsorbent. Effects of pH, concentration of the dye, temperature and adsorbent dosage have been studied. Equilibrium isotherms for the adsorption of the dye were measured experimentally. Results were analyzed by the Freundlich and Langmuir equation at different temperatures and determined the characteristic parameters for each adsorption isotherm. The adsorption process has been found endothermic in nature and thermodynamic parameters, Gibb's free energy (DeltaG degrees), change in enthalpy (DeltaH degrees) and change in entropy (DeltaS degrees) have been calculated. The paper also includes results on the kinetic measurements of adsorption of the dye on hen feathers at different temperatures. By rate expression and treatment of data it has been established that the adsorption of Tartrazine over hen feathers follows a first-order kinetics and a film diffusion mechanism operates at all the temperatures.

  13. Boron Adsorption on Muscovite Mineral as a Function of pH, Ionic strength of Solution and Kinds of Cation

    Directory of Open Access Journals (Sweden)

    F. Zareapour Rafsanjani

    2016-02-01

    Full Text Available Introduction: Boron is one of the eight essential micronutrients required for plant growth and development. The optimal concentration range (between deficiency and phytotoxicity for boron is narrower than for other plant essential nutrients. Generally, irrigating water containing concentrations of B greater than 1 mg L-1 would be detrimental for most plants. Although, there are a large number of different studies on the removal of B ions from aqueous solutions using different adsorbents, every special adsorbent material requires individual research. Information about the chemical behavior of muscovite for boron is very limited. Therefore, the objective of this study was to investigate boron adsorption on muscovite as a function of solution pH, ionic strength of the background electrolyte, kinds of cation, and initial boron concentration. Materials and Methods: The muscovite sample was obtained from a mine near Hamadan city in western Iran. It was powdered in a mortar and sieved before sorption experiment. Boron adsorption experiments were performed in batch systems using 15 mL polyethylene (PE bottles in 0.01 M Ca(NO32 electrolyte solution at a adsorbent concentrations of 10 g L-1, and at room temperature (23±2 ◦C. All samples were prepared in duplicate. Blank samples (without adsorbent were prepared for all experiments. For pH dependent B adsorption, aliquots of B stock solution (1000 mg L−1 were added to obtain initial B concentrations of 5 and 15 mg L-1. The pH of the solutions were adjusted to values of 6.8, 7.7 and 8.8 by adding negligible predetermined volumes of 0.03M NaOH or 0.03M HNO3 solution. To study the effects of kinds of cation on boron adsorption, samples of adsorbent (0.1 g were mixed with 10 mL background electrolyte solutions (0.01M Ca(NO32, Mg(NO32 and NaNO3 in 15 mL centrifuge tubes. Then, predetermined amount of B were added to the centrifuge tubes to obtain final concentrations of 5 mg L-1 B. For determination of

  14. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution.

    Science.gov (United States)

    Niknam Shahrak, Mahdi; Ghahramaninezhad, Mahboube; Eydifarash, Mohsen

    2017-04-01

    Heavy metals are emerging toxic pollutants in which the development of advanced materials for their efficient adsorption and separation is thus of great significance in environmental sciences point of view. In this study, one of the zinc-based zeolitic imidazolate framework materials, known as ZIF-8, has been synthesized and used for chromium(VI) contaminant removal from water for the first time. The as-synthesized ZIF-8 adsorbent was characterized with different methodologies such as powder X-ray diffraction (XRD), thermo-gravimetric analysis, FT-IR, nuclear magnetic resonance spectroscopy, and UV-Vis spectra of solid state. Various factors affecting removal percentage (efficiency) are experimentally investigated including pH of solution, adsorbent dosage, contact time and initial concentration of Cr(VI) to achieve the optimal condition. The obtained results indicate that the ZIF-8 shows good performance for the Cr(VI) removal from aqueous solution so that 60 min mixing of 2 g of ZIF-8 adsorbent with the 2.5 ppm of Cr(VI) solution in a neutral environment will result in the highest separation efficiency around 70%. The time needed to reach the equilibrium (maximum separation efficiency) is only 60 min for a concentration of 5 mg L -1 . Structure stability in the presence of water is also carefully examined by XRD determination of ZIF-8 under different contact times in aqueous solution, which suggests that the structure is going to be destructed after 60 min immersed in solution. Electrostatic interaction of Cr(VI) anions by positively charged ZIF-8 is responsible for Cr(VI) adsorption and separation. Moreover, equilibrium adsorption study reveals that the Cr(VI) removal process using ZIF-8 nicely fits the Langmuir and Toth isotherm models which mean the adsorbent has low heterogeneous surface with different distributions of adsorption energies during Cr(VI) adsorption. Equilibrium adsorption capacity is observed around 0.25 for 20 mg L -1 of initial Cr

  15. 2H nuclear magnetic resonance spectroscopy of deuterium adsorption on single-walled carbon nanotubes

    Science.gov (United States)

    Shen, Kai; Pietraß, Tanja

    2004-03-01

    2H nuclear magnetic resonance (NMR) spectroscopy was employed to study the interaction between deuterated hydrogen gas and single walled carbon nanotubes before and after purification. Transmission electron micrographs revealed strong bundling of the tubes. After purification, very little amorphous carbon and no graphitic particles were present, implying that the interactions observed are truly due to the nanotubes. In the parent material, the NMR signal is dominated by interaction of hydrogen with residual metal catalyst particles. For purified material, hydrogen in the gas phase is discernible from adsorbed hydrogen. The two phases do not exchange with each other on a ms time scale. The hydrogen molecules move among different adsorption sites, presumably outer tube surfaces and interstitial channels. This process is diffusion limited in the pressure range investigated.

  16. Dependence of single-walled carbon nanotube adsorption kinetics on temperature and binding energy.

    Science.gov (United States)

    Rawat, D S; Krungleviciute, V; Heroux, L; Bulut, M; Calbi, M M; Migone, A D

    2008-12-02

    We present results for the isothermal adsorption kinetics of methane, hydrogen, and tetrafluoromethane on closed-ended single-walled carbon nanotubes. In these experiments, we monitor the pressure decrease as a function of time as equilibrium is approached, after a dose of gas is added to the cell containing the nanotubes. The measurements were performed at different fractional coverages limited to the first layer. The results indicate that, for a given coverage and temperature, the equilibration time is an increasing function of E/(k(B)T), where E is the binding energy of the adsorbate and k(B)T is the thermal energy. These findings are consistent with recent theoretical predictions and computer simulations results that we use to interpret the experimental measurements.

  17. Classification of single travelling wave solutions to the generalized ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Vol. 80, No. 5. — journal of. May 2013 physics pp. 771–783. Classification of single travelling wave solutions to the generalized Zakharov–Kuznetsov equation ... linear ion-acoustic waves in a strongly magnetized lossless plasma composed of cold ions and hot isothermal electrons [10].

  18. The classification of the single travelling wave solutions to the ...

    Indian Academy of Sciences (India)

    The classification of the single travelling wave solutions to the generalized Pochhammer–Chree equation. HUI-LING FAN. ∗ and XIN LI. School of Science, Heilongjiang Bayi Agriculture University, Daqing 163319, China. ∗. Corresponding author. E-mail: huilingnepu@126.com. MS received 11 June 2013; revised 2 ...

  19. The classification of single travelling wave solutions to the Camassa ...

    Indian Academy of Sciences (India)

    Introduction. Classifications of single travelling wave solutions to some nonlinear differential equations have been obtained extensively by the complete discrimination system for polynomial method proposed by Liu [1–7]. Furthermore, Wang and Li [8] used Liu's method and factorization method proposed by Cornejo-Pérez ...

  20. Interpolation solution of the single-impurity Anderson model

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1990-10-01

    The dynamical properties of the single-impurity Anderson model (SIAM) is studied using a novel Irreducible Green's Function method (IGF). The new solution for one-particle GF interpolating between the strong and weak correlation limits is obtained. The unified concept of relevant mean-field renormalizations is indispensable for strong correlation limit. (author). 21 refs

  1. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics.

    Science.gov (United States)

    Azouaou, N; Sadaoui, Z; Djaafri, A; Mokaddem, H

    2010-12-15

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd(2+) adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g(-1). Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd(2+) removal. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics

    International Nuclear Information System (INIS)

    Azouaou, N.; Sadaoui, Z.; Djaafri, A.; Mokaddem, H.

    2010-01-01

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd 2+ adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g -1 . Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd 2+ removal.

  3. N2 adsorption on the inside and outside the single-walled carbon nanotubes by density functional theory study

    Science.gov (United States)

    Shojaie, Fahimeh

    2018-01-01

    The adsorption energies, bond order, atomic charge, optical properties, and electrostatic potential of nitrogen molecules of armchair single-walled carbon nanotubes (SWCNTs) and nitrogen-doped single-walled carbon nanotubes (N-SWCNTs) were investigated using density functional theory (DFT). Our results show that adsorption of the N2 molecules on the external wall of a nanotube is more effective than on the internal wall in SWCNTs. The results show that N2 molecule(s) are weakly bonded to SWCNTs and N-SWCNTs through van der Waals-type interactions. The interaction of N2 molecules with SWCNTs and N-SWCNTs is physisorption as the adsorption energy and charge transfer are small, and adsorption distance is large. The electronic transitions from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) (H→ L) have the maximum wavelength and the lowest oscillator strength. The potential sensor on the surface of pristine SWCNTs and N-SWCNTs for the adsorption of N2 molecule(s) is investigated. The N-loaded single-walled carbon nanotube is introduced as a better N2 molecule(s) detector when compared with SWCNTs.

  4. Real-time monitoring and manipulation of single bio-molecules in free solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hung-Wing [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The observation and manipulation of single biomolecules allow their dynamic behaviors to be studied to provide insight into molecular genetics, biochip assembly, biosensor design, DNA biophysics. In a PDMS/glass microchannel, a nonuniform electroosmotic flow (EOF) was created. By using a scanning confocal fluorescence microscope and total internal-reflection fluorescence microscope (TIRFM), we demonstrated that negatively charged DNA molecules were focused by the nonuniform EOF into a thin layer at the glass surface. This phenomenon was applied to selectively detect target DNA molecules without requiring the separation of excessive probes and can be applied continuously to achieve high throughput. A variable-angle-TIRFM was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. Implications we have are that the measured intensities cannot be used directly to determine the distances of molecules from the surface and the experimental counting results depict the distance-dependent dynamics of molecules near the surface; Molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer. {delta}-DNA was employed as a nanoprobe for different functionalized surfaces to elucidate adsorption in chromatography. The 12-base unpaired ends of this DNA provide exposed purine and pyrimidine groups for adsorption. Patterns of self-assembled monolayers (SAMs) and patterns of metal oxides are generated. By recording the real-time dynamic motion of DNA molecules at the SAMs/aqueous interface, the various parameters governing the retention of an analyte during chromatographic separation can be studied. Even subtle differences among adsorptive forces can be revealed. Dynamic conformational changes of the prosthetic group, flavin adenine dinucleotide (FAD), in flavoprotein NADH peroxidase, in thioredoxin reductase, and in free solution were monitored

  5. Adsorption of TX-100 and SDBS on the surface of alumina and maghemite nanoparticles from aqueous solutions

    Directory of Open Access Journals (Sweden)

    R. R. Mansurov

    2014-11-01

    Full Text Available Adsorption equilibriums in aqueous aluminum and iron oxides nanosuspensions stabilized by SDBS and TX-100 were investigated using UV spectrophotometry. It was established that the non-ionic surfactant TritonX-100 is not adsorbed from aqueous solution on a hydrophilic surface of both aluminum and iron oxide nanoparticles. At the same time adsorption of the anionic surfactant SDBS was observed in both oxides nanoparticles. In the investigated range of concentrations adsorption isotherms SDBS from aqueous solution on the surfaces of nanoparticles Al2O3 and γ-Fe2O3 not reach saturation. The share of the particles surface occupied by surfactant molecules were estimated based on the value of an area of molecules SDBS in the adsorption layer, which was derived from the isotherm of surface tension (0.10 nm2. The calculations showed that at the investigated concentrations SDBS Al2O3 employed approximately 30 % of surface of nanoparticles, and for γ-Fe2O3 – up to 10%.

  6. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis

    Science.gov (United States)

    Kılıç, Murat; Kırbıyık, Çisem; Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-10-01

    Bio-char, a by-product of almond shell pyrolysis, was used as an alternative adsorbent precursor for the removal of heavy metal ions from aqueous solutions. The adsorption potential of almond shell bio-char for Ni(II) and Co(II) removal was investigated. Adsorption experiments were carried out by varying pH, adsorbent dosage, initial metal ion concentrations, contact time and temperature to determine the optimum conditions. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models. Pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The results showed that bio-char derived from pyrolysis of biomass can be used as a low-cost and effective adsorbent for removal of heavy metal ions from aqueous solutions.

  7. Adsorption of Zn(II) in aqueous solution by activated carbons prepared from evergreen oak (Quercus rotundifolia L.).

    Science.gov (United States)

    Gómez-Tamayo, M del Mar; Macías-García, Antonio; Díaz Díez, M Angeles; Cuerda-Correa, Eduardo M

    2008-05-01

    In the present work activated carbons have been prepared from evergreen oak wood. Different samples have been prepared varying the concentration of the activating agent (H(3)PO(4)) and the treatment temperature. The yield of the process decreases with increasing phosphoric acid concentrations. Furthermore, high concentrations of activating agent lead to mainly mesoporous activated carbons to the detriment of the microporous texture. Treatment temperatures up to 450 degrees C lead to a progressive increase of the micro- and mesopore volumes. Values of specific surface area (S(BET)) as high as 1723 m(2) g(-1)have been obtained using appropriate phosphoric acid concentrations and treatment temperatures. The samples prepared have been successfully used in the removal of Zn(II) from aqueous solutions. From the adsorption kinetic data it may be stated that the equilibrium time is, in all cases, below 170 h. The adsorption process as a rule becomes faster as the mesopore volume and specific surface area of the samples increase. The adsorption isotherms in liquid phase point out that the adsorption capacity (n(0)(s)) and the affinity towards the solute (K(ci)) are higher for the sample showing the most developed mesoporous texture and surface area as well.

  8. Trace elements and nutrients adsorption onto nano-maghemite in a contaminated-soil solution: A geochemical/statistical approach.

    Science.gov (United States)

    Martínez-Fernández, Domingo; Bingöl, Deniz; Komárek, Michael

    2014-07-15

    Two experiments were carried out to study the competition for adsorption between trace elements (TEs) and nutrients following the application of nano-maghemite (NM) (iron nano-oxide; Fe2O3) to a soil solution (the 0.01molL(-1) CaCl2 extract of a TEs-contaminated soil). In the first, the nutrients K, N, and P were added to create a set of combinations: potential availability of TEs during their interaction with NM and nutrients were studied. In the second, response surface methodology was used to develop predictive models by central composite design (CCD) for competition between TEs and the nutrients K and N for adsorption onto NM. The addition of NM to the soil solution reduced specifically the concentrations of available As and Cd, but the TE-adsorption capacity of NM decreased as the P concentration increased. The CCD provided more concise and valuable information, appropriate to estimate the behavior of NM sequestering TEs: according to the suggested models, K(+) and NH4(+) were important factors for Ca, Fe, Mg, Mn, Na, and Zn adsorption (Radj(2)=95%, except for Zn with Radj(2)=87%). The obtained information and models can be used to predict the effectiveness of NM for the stabilization of TEs, crucial during the phytoremediation of contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis

    International Nuclear Information System (INIS)

    Kılıç, Murat; Kırbıyık, Çisem; Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-01-01

    Bio-char, a by-product of almond shell pyrolysis, was used as an alternative adsorbent precursor for the removal of heavy metal ions from aqueous solutions. The adsorption potential of almond shell bio-char for Ni(II) and Co(II) removal was investigated. Adsorption experiments were carried out by varying pH, adsorbent dosage, initial metal ion concentrations, contact time and temperature to determine the optimum conditions. To describe the equilibrium isotherms the experimental data were analyzed by the Langmuir, Freundlich, Dubinin–Radushkevich (D–R) and Temkin isotherm models. Pseudo-first order, pseudo-second order, and intraparticle diffusion kinetic models were used to find out the kinetic parameters and mechanism of adsorption process. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated for predicting the nature of adsorption. The results showed that bio-char derived from pyrolysis of biomass can be used as a low-cost and effective adsorbent for removal of heavy metal ions from aqueous solutions.

  10. Adsorptive micro-extraction techniques--novel analytical tools for trace levels of polar solutes in aqueous media.

    Science.gov (United States)

    Neng, N R; Silva, A R M; Nogueira, J M F

    2010-11-19

    A novel enrichment technique, adsorptive μ-extraction (AμE), is proposed for trace analysis of polar solutes in aqueous media. The preparation, stability tests and development of the analytical devices using two geometrical configurations, i.e. bar adsorptive μ-extraction (BAμE) and multi-spheres adsorptive μ-extraction (MSAμE) is fully discussed. From the several sorbent materials tested, activated carbons and polystyrene divinylbenzene phases demonstrated the best stability, robustness and to be the most suitable for analytical purposes. The application of both BAμE and MSAμE devices proved remarkable performance for the determination of trace levels of polar solutes and metabolites (e.g. pesticides, disinfection by-products, drugs of abuse and pharmaceuticals) in water matrices and biological fluids. By comparing AμE techniques with stir bar sorptive extraction based on polydimethylsiloxane phase, great effectiveness is attained overcoming the limitations of the latter enrichment approach regarding the more polar solutes. Furthermore, convenient sensitivity and selectivity is reached through AμE techniques, since the great advantage of this new analytical technology is the possibility to choose the most suitable sorbent to each particular type of application. The enrichment techniques proposed are cost-effective, easy to prepare and work-up, demonstrating robustness and to be a remarkable analytical tool for trace analysis of priority solutes in areas of recognized importance such as environment, forensic and other related life sciences. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Surface Film Adsorption and Lubricity of Soybean Oil In-Water Emulsion and Triblock Copolymer Aqueous Solution: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Reza Taheri

    2016-12-01

    Full Text Available This paper investigates the surface film adsorption and lubricity of two different types of potential environmentally friendly cold metal forming lubricants: soybean vegetable oil in water VO/W emulsions and triblock copolymer aqueous solutions. The lubricants have different visual appearance, surface film adsorption characteristic, lubricity and surface cleaning behaviour. The effects of concentration, temperature and emulsification ultrasonic energy (for VO/W emulsion are studied. The result shows that the soybean VO/W emulsions have stronger adsorption, superior lubricity and anti-wear property compared to the copolymer solutions. The effect of temperature is investigated at 30 °C and 65 °C which are below and above cloud point of the aqueous copolymer solutions. Both lubricants show improved friction and anti-wear property at 65 °C. However, tenacious residual film remained on the discs surface after surface cleaning indicates lower cleanability of the soybean VO/W emulsions compared to the copolymer solutions, postulating the need for extra post-processing cleaning operations after cold forming process with VO/W emulsion lubricant.

  12. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.

    Science.gov (United States)

    Ghaedi, M; Zeinali, N; Ghaedi, A M; Teimuori, M; Tashkhourian, J

    2014-05-05

    In this study, graphite oxide (GO) nano according to Hummers method was synthesized and subsequently was used for the removal of methylene blue (MB) and brilliant green (BG). The detail information about the structure and physicochemical properties of GO are investigated by different techniques such as XRD and FTIR analysis. The influence of solution pH, initial dye concentration, contact time and adsorbent dosage was examined in batch mode and optimum conditions was set as pH=7.0, 2 mg of GO and 10 min contact time. Employment of equilibrium isotherm models for description of adsorption capacities of GO explore the good efficiency of Langmuir model for the best presentation of experimental data with maximum adsorption capacity of 476.19 and 416.67 for MB and BG dyes in single solution. The analysis of adsorption rate at various stirring times shows that both dyes adsorption followed a pseudo second-order kinetic model with cooperation with interparticle diffusion model. Subsequently, the adsorption data as new combination of artificial neural network was modeled to evaluate and obtain the real conditions for fast and efficient removal of dyes. A three-layer artificial neural network (ANN) model is applicable for accurate prediction of dyes removal percentage from aqueous solution by GO following conduction of 336 experimental data. The network was trained using the obtained experimental data at optimum pH with different GO amount (0.002-0.008 g) and 5-40 mg/L of both dyes over contact time of 0.5-30 min. The ANN model was able to predict the removal efficiency with Levenberg-Marquardt algorithm (LMA), a linear transfer function (purelin) at output layer and a tangent sigmoid transfer function (tansig) at hidden layer with 10 and 11 neurons for MB and BG dyes, respectively. The minimum mean squared error (MSE) of 0.0012 and coefficient of determination (R(2)) of 0.982 were found for prediction and modeling of MB removal, while the respective value for BG was the

  13. Adsorption of halogenated hydrocarbons from gaseous streams by amberlite XAD-4 resin and activated carbon: equilibria

    NARCIS (Netherlands)

    Rexwinkel, Glenn; Rexwinkel, G.; Heesink, Albertus B.M.; van Swaaij, Willibrordus Petrus Maria

    1999-01-01

    Single-solute adsorption equilibria have been measured for the adsorption of the gaseous solutes chloroform, chlorobenzene, and 1,1,1-trichloroethane onto Amberlite XAD-4 resin. For 1,1,1-trichloroethane the adsorption equilibrium has also been measured with activated carbon Norit ROW 0.8 SUPRA as a

  14. Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution.

    Science.gov (United States)

    Udoetok, Inimfon A; Dimmick, Raquel M; Wilson, Lee D; Headley, John V

    2016-01-20

    Cellulose was cross-linked with epichlorohydrin (EP) at variable levels (CLE-0.5, CLE-2 and CLE-4), where CLE-i denotes the cellulose to EP mole ratios. The cross-linked products were characterized by TGA and FT-IR spectroscopy, pH at the point of zero charge (pHpzc), water swelling, and dye-adsorption methods employing two types of dyes [phenolphthalein (phth) and p-nitrophenol (PNP)]. The characterization methods provide evidence of cross-linking of cellulose in accordance with variations in surface area, PZC, available surface hydroxyl groups, and thermal stability when compared against pristine cellulose. The pHpzc of the sorbent materials was ∼ 6.5 indicating a negative surface charge occurs above pHpzc. The cross-linked polymers possess greater swelling properties relative to pristine cellulose. Detailed adsorption studies were carried out at pH 9 for cellulose and CLE-i with five types single component carboxylate anions [2-hexyldecanoic acid (S1), trans-4-pentylcyclohexanecarboxylic acid (S2), 2-dicyclohexylacetic acid (S3), adamantane carboxylic acid (S4), and cyclohexane carboxylic acid (S5)] at 295 K. The uptake properties of PNP with cellulose and CLE-i were also compared at pH 5 and 9, respectively. CLE-2 had the highest uptake of PNP (Qm=1.22 × 10(-1)mmol/g, pH 9) and S1 (Qm=4.27 mg/g) while cellulose and CLE-4 had the strongest binding affinity (1.43 L/mmol and 5.90 × 10(-2)L/mg), respectively. Uptake of PNP by CLE-0.5 at pH 5 (Q m=5.30 × 10(-2)mmol/g) was higher than uptake at pH 9 (Qm=3.11 × 10(-2)mmol/g). Sorption of CLE-4 with S1, S2 and S3 showed that relative uptake of the surrogates had the following order: S3>S2>S1, where S2 had the strongest binding affinity to CLE-i. CLE-2 had the highest sorption capacity towards Si in an equimolar mixture with evidence of molecular selective uptake. At pH 9, low uptake was mainly related to electrostatic repulsion between the negatively charged sorbent surface and the carboxylate head groups of Si

  15. Adsorption behavior of samarium(III) from aqueous solutions onto PAN rate at SDS core-shell polymeric adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Mamdoh R.; Allan, Karam F. [Atomic Energy Authority, Cairo (Egypt). Hot Labs. Center; Soliman, Mohamed A. [Atomic Energy Authority, Cairo (Egypt). Egypt Second Research Reactor

    2015-09-01

    Adsorption behavior of samarium(III) radionuclides from aqueous solutions onto a novel polyacrylonitrile coated with sodium dodecyl sulfate (PAN rate at SDS), prepared by gamma radiation-induced polymerization, was studied in this work. The developed polymeric adsorbent was characterized by FT-IR, X-ray diffraction and N{sub 2} adsorption-desorption. The influence of some experimental parameters such as pH, initial samarium(III) concentration, SDS concentration, temperature, ionic strength and contact time on the adsorption efficiency of samarium(III) was evaluated. Results showed that adsorption efficiency of about 97% was attained for samarium(III) in the pH range 3.8-7.5. The kinetic study showed that samarium(III) was efficiently removed within 10 min and equilibrium was attained at around 30 min. Six isotherm models; Freundlich, Langmuir, Generalized, Redlich-Peterson, Toth and Sips, were used to fit the adsorption equilibrium data, and the best-fit three-parameter isotherms suggest that adsorption capacity of PAN rate at SDS for samarium(III) to be 97.73 mg g{sup -1}, which is a markedly high value compared to most of the other adsorbents reported for other metal ions. Using the Dubinin-Kaganer-Radushkevich (DKR) model, the mean free energy E was calculated as 1.569 kJ mol-1, which suggested that adsorption of samarium(III) was dominated by physisorption. Results of the thermodynamic parameters, ΔG {sup circle}, ΔS {sup circle} and ΔH {sup circle}, showed that adsorption of samarium(III) onto PAN rate at SDS was feasible, spontaneous and exothermic in nature. Of the various studied kinetic models, the experimental kinetic data were best fitted to the modified multiplex model, and the adsorption process was mainly controlled by particle diffusion. Desorption studies showed that 95% of samarium(III) loaded on PAN rate at SDS were recovered using 2 mol L{sup -1} HCl.

  16. ELIMINATION DU CUIVRE EN SOLUTION PAR ADSORPTION SUR ARGILE DE LA VILLE DE MAGHNIA DE L’OUEST ALGERIEN

    Directory of Open Access Journals (Sweden)

    Nadia Badra BRACHEMI-MEFTAH

    2017-12-01

    Full Text Available In this study, removal of copper Cu (II from aqueous solutions is investigated using Maghnia bentonite, natural clay. During à removal process, batch technique is used, and the effects of pH, clay amount, heavy metal concentration, agitation time and the mode of agitation on adsorption efficiency are studied. Langmuir, Freundlich and Dubinin-Radushkevich (D-R isotherms are applied in order to determine the efficiency of natural clay used as an adsorbent. Results show that all isotherms are linear. It is determined that adsorption of Cu (II is well-fitted by the second order reaction kinetic. It is concluded that natural clay can be used as an effective adsorbent for removing Cu (II from aqueous solutions.

  17. Contaminant transport in fractured porous media: analytical solution for a two-member decay chain in a single fracture

    International Nuclear Information System (INIS)

    Sudicky, E.A.; Frind, E.O.

    1984-01-01

    An analytical solution is presented for the problem of radionuclide chain decay during transport through a discrete fracture situated in a porous rock matrix. The solution takes into account advection along the fracture, molecular diffusion from the fracture to the porous matrix, adsorption on the fracture face, adsorption in the rock matrix, and radioactive decay. The solution for the daughter product is in the form of a double integral which is evaluated by Gauss-Legendre quadrature. Results show that the daughter product tends to advance ahead of the parent nuclide even when the half-life of the parent is larger. This is attributed to the effect of chain decay in the matrix, which tends to reduce the diffusive loss of the daughter along the fracture. The examples also demonstrate that neglecting the parent nuclide and modeling its daughter as a single species can result in significant overestimation of arrival times at some point along the fracture. Although the analytical solution is restricted to a two-member chain for practical reasons, it represents a more realistic description of nuclide transport along a fracture than available single-species models. The solution may be of use for application to other contaminants undergoing different types of first-order transformation reactions

  18. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution

    International Nuclear Information System (INIS)

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Huang, Huajun; Zeng, Guangming; Liu, Yan; Wang, Xueli; Lin, Ningbo; Qi, Yu

    2013-01-01

    In this study, graphene oxide (GO) was synthesized via modified Hummers’ method, and characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS). The adsorption of Zn(II) on GO as a function of pH, adsorbent dosage, foreign ions, contact time, and temperature was investigated using batch technique. Results showed that the suitable pH for Zn(II) removal was about 7.0, and the optimal dosage was 2 mg. The adsorption of Zn(II) onto GO increased sharply within 20 min and obtained equilibrium gradually. Meanwhile, foreign ion and temperature also affected the adsorption performance of GO. The adsorption process was found to be well described by the pseudo-second-order rate model. Equilibrium studies indicated that the data of Zn(II) adsorption followed the Langmuir model. The maximum adsorption capacity for Zn(II) was up to 246 mg/g with a Langmuir adsorption equilibrium constant of 5.7 L/g at 20 °C. The thermodynamic parameters calculated from temperature-dependent sorption isotherms suggested that Zn(II) sorption on GO was an exothermic and spontaneous process in nature. The possibility of Zn(II) recovery was investigated and the result revealed that the maximum Zn(II) recovery yield was achieved with hydrochloric acid.

  19. Chromium(VI) adsorption from aqueous solution onto Moroccan Al-pillared and cationic surfactant stevensite.

    Science.gov (United States)

    Benhammou, Abdelaziz; Yaacoubi, Abdelrani; Nibou, Lahbib; Tanouti, Boumediane

    2007-02-09

    Batch adsorption of the chromium(VI) onto Moroccan stevensite pillared by Keggin aluminium hydroxypolycation (Al-stevensite) and cationic surfactant cetyltrimethylammoniumbromide (CTA-stevensite) was investigated. The results showed that the CTA-stevensite has a higher affinity than that of Al-stevensite for chromium(VI) adsorption. The adsorption capacities for natural stevensite, Al-stevensite and CTA-stevensite calculated according to the Dubinin-Kaganer-Radushkevich isotherm (DKR) are 13.7, 75.4 and 195.6mmolkg(-1), respectively. The study of the pH effect showed that the optimal range corresponding to the Cr(VI) maximum adsorption on Al-stevensite is pH 3.5-6 and that on CTA-stevensite is pH 2-6. The adsorption rates evaluated according to the pseudo-second-order model are 7.2, 207.2 and 178.5mmolkg(-1)min(-1) for the natural stevensite, Al-stevensite and CTA-stevensite, respectively. The low values of the adsorption energy calculated by (DKR) suggest that anion exchange is the main mechanism that governs the chromate adsorption.

  20. Adsorption of acids and bases from aqueous solutions onto silicon dioxide particles.

    Science.gov (United States)

    Zengin, Huseyin; Erkan, Belgin

    2009-12-30

    The adsorption of acids and bases onto the surface of silicon dioxide (SiO(2)) particles was systematically studied as a function of several variables, including activation conditions, contact time, specific surface area, particle size, concentration and temperature. The physical properties of SiO(2) particles were investigated, where characterizations were carried out by FT-IR spectroscopy, and morphology was examined by scanning electron microscopy (SEM). The SEM of samples showed good dispersion and uniform SiO(2) particles with an average diameter of about 1-1.5 microm. The adsorption results revealed that SiO(2) surfaces possessed effective interactions with acids and bases, and greatest adsorption capacity was achieved with NaOH, where the best fit isotherm model was the Freundlich adsorption model. The adsorption properties of raw SiO(2) particles were further improved by ultrasonication. Langmuir monolayer adsorption capacity of NaOH adsorbate at 25 degrees C on sonicated SiO(2) (182.6 mg/g) was found to be greater than that of the unsonicated SiO(2) (154.3mg/g). The spontaneity of the adsorption process was established by decreases in DeltaG(ads)(0), which varied from -10.5 to -13.6 kJ mol(-1), in the temperature range 283-338K.

  1. Adsorption of Zn(2+) and Ni(2+) in a binary aqueous solution by biosorbents derived from sawdust and water hyacinth (Eichhornia crassipes).

    Science.gov (United States)

    Gwenzi, Willis; Musarurwa, Tinashe; Nyamugafata, Phillip; Chaukura, Nhamo; Chaparadza, Allen; Mbera, Sharron

    2014-01-01

    The Zn(2+) and Ni(2+) adsorption capacities of six biosorbents derived from water hyacinth (Eichhornia crassipes) (WH) and sawdust (SD) were investigated, with activated carbon as the control. The biosorbents were raw biomass (WH, SD), charred WH (BWH) and SD and sulphonated bio-chars of WH and SD. The effect of the initial solution pH and Zn(2+) and Ni(2+) concentrations on adsorption capacity was studied, and adsorption isotherms for Zn(2+) and Ni(2+) evaluated. The initial solution pH significantly influenced adsorption (p adsorption on all biosorbents. The adsorption capacities of the biosorbents were statistically (p ≤ 0.05) similar to or higher than that of activated carbon. The effects of pyrolysis and bio-char sulphonation on adsorption were inconsistent and dependent on biomass type; in most cases bio-char was a better biosorbent than the original biomass, while sulphonation resulted in less or comparable adsorption. Adsorption data obeyed at least one of three isotherms (linear, Langmuir and Freundlich) (r(2) = 0.90-0.995, p < 0.05). The study revealed that low-cost biosorbents may be used as alternatives to activated carbon in applications including selective separation of Zn(2+) from multi-metal ion solutions containing Ni(2+), and water and wastewater treatment.

  2. Studies on the adsorption of plutonium(IV) on alumina from aqueous nitric acid-oxalic acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Subba Rao, M.; Gaikwad, A.M.; Rao, V.K.; Natarajan, P.R. (Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.)

    1983-05-11

    Results of experiments on the adsorption of plutonium(IV) on alumina from solutions containing oxalic acid-nitric acid are reported. Distribution coefficients for Pu adsortion at various oxalic acid and nitric acid concentrations have been determined and optimum conditions for loading and elution of plutonium from columns packed with alumina have been established. Plutonium recoveries better than 99.5% were obtained. The effect of ions like U(VI) and Fe(III) on plutonium loading has also been studied.

  3. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Jiang, Xinyu [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization (China)

    2015-09-15

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions. - Graphical abstract: MWCNTs@carbon nanocables has been successfully fabricated by a hydrothermal carbonization method. The as-synthesized novel samples were used as adsorbents and exhibited high adsorption capacity on MB and CV. - Highlights: • A simple, cost-effective and “green” method for the synthesis of the material. • The diameter and length of the material are relatively easy to control. • The surface has large oxygen-containing groups and preferable chemical reactivity. • Compared with raw MWCNTs and some other adsorbents, the adsorption capacity is much high.

  4. Single and multi-component adsorption of salicylic acid, clofibric acid, carbamazepine and caffeine from water onto transition metal modified and partially calcined inorganic-organic pillared clay fixed beds.

    Science.gov (United States)

    Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J

    2015-01-23

    Fixed-beds of transition metal (Co(2+), Ni(2+) or Cu(2+)) inorganic-organic pillared clays (IOCs) were prepared to study single- and multi-component non-equilibrium adsorption of a set of pharmaceutical and personal care products (PPCPs: salicylic acid, clofibric acid, carbamazepine and caffeine) from water. Adsorption capacities for single components revealed that the copper(II) IOCs have better affinity toward salicylic and clofibric acid. However, multi-component adsorption tests showed a considerable decrease in adsorption capacity for the acids and an unusual selectivity toward carbamazepine depending on the transition metal. This was attributed to a combination of competition between PPCPs for adsorption sites, adsorbate-adsorbate interactions, and plausible pore blocking caused by carbamazepine. The cobalt(II) IOC bed that was partially calcined to fractionate the surfactant moiety showcased the best selectivity toward caffeine, even during multi-component adsorption. This was due to a combination of a mildly hydrophobic surface and interaction between the PPCP and cobalt(II). In general, the tests suggest that these IOCs may be a potential solution for the removal of PPCPs if employed in a layered-bed configuration, to take care of families of adsorbates in a sequence that would produce sharpened concentration wavefronts. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of Silica Alumina Ratio and Thermal Treatment of Beta Zeolites on the Adsorption of Toluene from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Elena Sarti

    2017-02-01

    Full Text Available The adsorption of toluene from aqueous solutions onto hydrophobic zeolites was studied by combining chromatographic, thermal and structural techniques. Three beta zeolites (notated BEAs, since they belong to BEA framework type, with different SiO2/Al2O3 ratios (i.e., 25, 38 and 360, before and after calcination, were tested as adsorbents of toluene from aqueous media. This was performed by measuring the adsorbed quantities of toluene onto zeolites in a wide concentration range of solute. The adsorption data were fitted with isotherms whose models are based on surface heterogeneity of the adsorbent, according to the defective structure of beta zeolites. The thermal treatment considerably increases the adsorption of toluene, in the low concentration range, on all BEAs, probably due to surface and structural modifications induced by calcination. Among the calcined BEAs, the most hydrophobic zeolite (i.e., that with SiO2/Al2O3 ratio of 360 showed the highest binding constant, probably due to its high affinity for an organophilic solute such as toluene. The high sorption capacity was confirmed by thermogravimetric analyses on BEAs, before and after saturation with toluene.

  6. Adsorption of chromium (Vi) on radiation grafted N,N-dimethylaminoethylmethacrylate onto polypropylene, from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, G. [UNAM, Instituto de Ciencias Nucleares, Departamento de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Serrano G, J.; Bonifacio M, J., E-mail: juan.serrano@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-08-01

    Polypropylene (Pp) grafted with dimethylaminoethylmethacrylate (DMAEMA), was prepared by irradiation with a {sup 60}Co {gamma} source. The obtained Pp-g-DMAEMA was used to study the Cr(Vi) ion adsorption as a function of contact time, initial ph, initial concentration of metal ion and temperature. Chromium adsorption data on Pp-g-DMAEMA at various initial concentration fit well the Freundlich and Langmuir isotherms. The maximum adsorption capacity (a{sub max}) was found to be 0.3103 x 0{sup -4} mol g{sup -1}. The thermodynamic parameters {Delta}H{sup 0}, {Delta}G{sup 0} and {Delta}S{sup 0} were estimated showing the adsorption process to be exothermic and spontaneous. (Author)

  7. Enhanced adsorptive degradation of Congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers

    CSIR Research Space (South Africa)

    Bhaumik, M

    2015-01-01

    Full Text Available -ray Photoelectron Spectroscopy (XPS) and Vibrating Sample Magnetometry (VSM). These CNFs exhibited enhanced performance relevant to the adsorptive degradation/decolourization of CR, compared to PANI NFs and Fe0 nanoparticle counterparts. Batch experiments with a...

  8. Kinetic and isotherm studies of humic acid adsorption onto iron oxide magnetic nanoparticles in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Hamzeh Esmaeili

    2012-01-01

    Conclusions: With increasing HA concentrations, adsorption capacity of IOMNPs was increased and HA removal efficiency was decreased. By adding ionic strength, HA removal was improved and turbidity of treated samples was reduced.

  9. Lattice diffusion of a single molecule in solution

    Science.gov (United States)

    Ruggeri, Francesca; Krishnan, Madhavi

    2017-12-01

    The ability to trap a single molecule in an electrostatic potential well in solution has opened up new possibilities for the use of molecular electrical charge to study macromolecular conformation and dynamics at the level of the single entity. Here we study the diffusion of a single macromolecule in a two-dimensional lattice of electrostatic traps in solution. We report the ability to measure both the size and effective electrical charge of a macromolecule by observing single-molecule transport trajectories, typically a few seconds in length, using fluorescence microscopy. While, as shown previously, the time spent by the molecule in a trap is a strong function of its effective charge, we demonstrate here that the average travel time between traps in the landscape yields its hydrodynamic radius. Tailoring the pitch of the lattice thus yields two different experimentally measurable time scales that together uniquely determine both the size and charge of the molecule. Since no information is required on the location of the molecule between consecutive departure and arrival events at lattice sites, the technique is ideally suited to measurements on weakly emitting entities such as single molecules.

  10. Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal–organic framework composite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoxia; Gong, Wenpeng; Luo, Jing; Zou, Chentao; Yang, Yun; Yang, Shuijin, E-mail: yangshuijin@163.com

    2016-01-30

    Graphical abstract: Selective adsorption ability of H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 toward MO (a), Rhb (b) and the removal rate of Rhb, MO and MB (c). - Highlights: • Using metal–organic framework (MOF) composite as an adsorbent was investigated. • Selective adsorption ability of the composite towards cationic dyes was proposed. • The removal rate of MOF was raised greatly by the modification of polyoxometalate. • The adsorption kinetic and isotherm were used to describe the adsorption process. • The thermodynamic parameters of the composite were investigated in detail. - Abstract: A novel environmental friendly adsorbent H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 was synthesized by a simple one-step reaction under solvothermal conditions and characterized by XRD, FTIR, thermogravimetric analyses (TGA) and N{sub 2} adsorption–desorption isotherms. The removal rate of H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 was quite greater (85%) than that of MOF-5 (almost zero), showing that the adsorption performance of porous MOF-5 can be improved through the modification of H{sub 6}P{sub 2}W{sub 18}O{sub 62}. Further study revealed that H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 exhibited a fast adsorption rate and selective adsorption ability towards the cationic dyes in aqueous solution. The removal rate was up to 97% for cationic dyes methylene blue (MB) and 68% for rhodamine B(Rhb) within 10 min. However, anionicdye methyl orange(MO) can only reach to 10%. The influences including initial concentration, contact time, initial solution pH and temperature of MB adsorption onto H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 were investigated in detail. The kinetic study indicated that the adsorption of MB onto H{sub 6}P{sub 2}W{sub 18}O{sub 62}/MOF-5 followed the pseudo second-order model well. The isotherm obtained from experimental data fitted the Langmuir model, yielding maximum adsorption capacity of 51.81 mg/g. The thermodynamic parameters analysis

  11. Removal of Boron from aqueous solutions by adsorption using fly ash, zeolite and demineralized lignite

    OpenAIRE

    Yüksel, Seren; Yuksel, Seren; Yürüm, Yuda; Yurum, Yuda

    2009-01-01

    In the present study for the purpose of removal of boron from water by adsorption using adsorbents like fly ash, natural zeolite and demineralized lignite was investigated. Boron in water was removed with fly ash, zeolite and demineralized lignite with different capacities. 94% boron was removed using fly ash. Batch experiments were conducted to test removal capacity, to obtain adsorption isotherms, thermodynamic and kinetic parameters. Boron removal by all adsorbents was affected by pH of...

  12. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review.

    Science.gov (United States)

    Tran, Hai Nguyen; You, Sheng-Jie; Hosseini-Bandegharaei, Ahmad; Chao, Huan-Ping

    2017-09-01

    In recent years, adsorption science and technology for water and wastewater treatment has attracted substantial attention from the scientific community. However, the number of publications containing inconsistent concepts is increasing. Many publications either reiterate previously discussed mistakes or create new mistakes. The inconsistencies are reflected by the increasing publication of certain types of article in this field, including "short communications", "discussions", "critical reviews", "comments", "letters to the editor", and "correspondence (comment/rebuttal)". This article aims to discuss (1) the inaccurate use of technical terms, (2) the problem associated with quantities for measuring adsorption performance, (3) the important roles of the adsorbate and adsorbent pK a , (4) mistakes related to the study of adsorption kinetics, isotherms, and thermodynamics, (5) several problems related to adsorption mechanisms, (6) inconsistent data points in experimental data and model fitting, (7) mistakes in measuring the specific surface area of an adsorbent, and (8) other mistakes found in the literature. Furthermore, correct expressions and original citations of the relevant models (i.e., adsorption kinetics and isotherms) are provided. The authors hope that this work will be helpful for readers, researchers, reviewers, and editors who are interested in the field of adsorption studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Removal of Phenol and Aniline from Aqueous Solutions by Using Adsorption on to Pistacia terebinthus: Study of Adsorption Isotherm and Kinetics

    Directory of Open Access Journals (Sweden)

    shahin ahmadi

    2017-03-01

    Full Text Available Introduction and purpose: Aniline and phenol are used in a wide range of industries, namely dye material, rubber, pesticide, plastic, and paint industries. These chemicals are released to the environment via effluent. This study aimed to investigate the efficiency of modified Pistacia terebinthus in removal of phenol and aniline from aqueous solutions. Methods: In this experimental-laboratory study, effects of initial aniline and phenol concentrations, Pistacia terebinthus dosage, time, pH, and interference compounds on efficiency of aniline and phenol removal were investigated. Data evaluated for compliance with the isotherm (Langmuir, Freundlich, and Temkin and kinetic (Pseudo second-order, Pseudo First-order and Intraparticcle diffusion models Results: Our data showed that removal efficiency decreased with raising pH. The optimum condition for removal of aniline was pH=6, initial concentration= 50 mg/L, and contact time= 45 min, while for phenol it was pH=4, concentration= 50 mg/L, and contact time= 30 min. Adsorption isotherm data show that the fluoride sorption followed the freundlich isotherm. Aniline and phenol adsorption kinetics onto modified Pistacia terebinthus follows pseudo-second-order model. Conclusion: Pistacia terebinthus is an effective factor in removal of aniline and phenol from water and effluent.

  14. Adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on photocatalytically modified diatomaceous ceramic adsorbents

    Science.gov (United States)

    Ajenifuja, E.; Ajao, J. A.; Ajayi, E. O. B.

    2017-11-01

    Photocatalytically modified ceramic adsorbents were synthesized for the removal of high concentration Cu (II) and Co (II) ions from their aqueous solutions. The raw material, diatomaceous aluminosilicate mineral was modified using silver and anatase titanium oxide nanoparticles. Batch adsorption experiment was carried out on the targeted metal ions and the results were analyzed by the Langmuir and Freundlich equation at different concentrations (100-1000 mg/l) and the characteristic parameters for each adsorption isotherm were determined. As-received raw materials do not exhibit any sorption capacity for high concentration Cu2+ and Co2+ adsorbates. However, the adsorption isotherms for modified diatomaceous ceramic adsorbents could be fitted well by the Langmuir model for both Cu2+ and Co2+ with correlation coefficient ( R) of up to 0.99953. The highest and lowest monolayer coverage ( q max) were 121.803 and 31.289 mg/g for Cu2+ and Co2+, respectively. The separation factor ( R L) in the experiment was less than one (metal ions on the Ag-TiO2-modified ceramic adsorbent is favorable. The highest adsorption capacity ( K f) and intensity ( n) constants obtained from Freundlich model are 38.832 (Cu2+ on ZEO-T) and 5.801 (Co2+ on STOX-Z).

  15. Investigation of Acorn fruit Ash Efficiency in Cadmium Removal from Aqueous Solutions: Adsorption Isotherm and Kinetic Studies

    Directory of Open Access Journals (Sweden)

    Salman Zarei

    2014-12-01

    Full Text Available Background: Heavy metals are known as significant pollutants because of toxicity and nonbiodegradable characteristics. Cadmium is one of the heavy metals that have carcinogen potential. So, this study carried out in order to investigate the acorn fruit ash efficiency in cadmium removal from aqueous solutions. Methods: This study was done in the batch laboratory conditions. In this study, the effect of different parameters including pH, contact time, adsorbent dose, and initial cadmium concentration were evaluated. The Langmuir, Freundlich and Temkin isotherm models were used for analysis of the equilibrium isotherm. Adsorption kinetics of cadmium by different models were also investigated. The measurement of residual cadmium in the samples was determined by atomic absorption spectrophotometry at 228.8 nm. The SPSS-16 software was used for analysis of data. Results: According to the results, the maximum adsorption capacity of cadmium was 9.29 mg/g at pH=7 and 8 g/L adsorbent dose. The removal efficiency was increased with increasing contact time and decreased with increasing of cadmium initial concentration. Investigation of achieving data showed that the adsorption process followed better by Freundlich isotherm and the pseudo-second order kinetic. Conclusions: According to the results of this study, it could be concluded that the acorn fruit ash had high ability in cadmium adsorption and could be used as a cheap adsorbent in the removal of cadmium.

  16. Green synthesis of graphene from recycled PET bottle wastes for use in the adsorption of dyes in aqueous solution.

    Science.gov (United States)

    El Essawy, Noha A; Ali, Safa M; Farag, Hassan A; Konsowa, Abdelaziz H; Elnouby, Mohamed; Hamad, Hesham A

    2017-11-01

    Polyethyleneterephthalate (PET) is an important component of post-consumer plastic waste. This study focuses on the potential of utilizing "waste-treats-waste" by synthesis of graphene using PET bottle waste as a source material. The synthesized graphene is characterized by SEM, TEM, BET, Raman, TGA, and FT-IR. The adsorption of methylene blue (MB) and acid blue 25 (AB25) by graphene is studied and parameters such as contact time, adsorbent dosage were optimized. The Response Surface Methodology (RSM) is applied to investigate the effect of three variables (dye concentration, time and temperature) and their interaction on the removal efficiency. Adsorption kinetics and isotherm are followed a pseudo-second-order model and Langmuir and Freundlich isotherm models, respectively. Thermodynamic parameters demonstrated that adsorption of dye is spontaneous and endothermic in nature. The plastic waste can be used after transformation into valuable carbon-based nanomaterials for use in the adsorption of organic contaminants from aqueous solution. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Adsorption of gentian violet dyes in aqueous solution on microporous AlPOs molecular sieves synthesized by ionothermal method

    Science.gov (United States)

    Fortas, W.; Djelad, A.; Hasnaoui, M. A.; Sassi, M.; Bengueddach, A.

    2018-02-01

    In this work, AlPO-34, like-chabazite (CHA) zeolite, was ionothermally prepared using the ionic liquid (IL), 1-ethyl-3-methylimidazolium chloride [EMIMCl], as solvent. The solids obtained were characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FTIR), thermal analysis (TG) and nitrogen adsorption/desorption at 77.3 K. The results show that the ionic liquid is occluded in the AlPO-34 framework and consequently it acts also as a structure-directing agent. The variation of chemical composition led to AlPO-34 materials with different crystal sizes and morphologies. The well crystallized AlPO-34 material was used as adsorbent for Crystal Violet (CV) dye removal from aqueous solutions. The effect of adsorption parameters such as pH and initial concentration were investigated. It was found that adsorption dyes is favorable at pH = 6. The adsorption isotherm data follow the Langmuir equation in which parameters are calculated. The selected AlPO-34 sample exhibited a high crystal violet dye removal of 46.08 mg g-1 at pH = 6.

  18. Periodic protein adsorption at the gold/biotin aqueous solution interface: evidence of kinetics with time delay

    Science.gov (United States)

    Neff, H.; Laborde, H. M.; Lima, A. M. N.

    2016-11-01

    An oscillatory molecular adsorption pattern of the protein neutravidin from aqueous solution onto gold, in presence of a pre-deposited self assembled mono-molecular biotin film, is reported. Real time surface Plasmon resonance sensing was utilized for evaluation of the adsorption kinetics. Two different fractions were identified: in the initial phase, protein molecules attach irreversibly onto the Biotin ligands beneath towards the jamming limit, forming a neutravidin-biotin fraction. Afterwards, the growth rate exhibits distinct, albeit damped adsorption-desorption oscillations over an extended time span, assigned to a quasi reversibly bound fraction. These findings agree with, and firstly confirm a previously published model, proposing macro-molecular adsorption with time delay. The non-linear dynamic model is applicable to and also resembles non-damped oscillatory binding features of the hetero-catalytic oxidation of carbon monoxide molecules on platinum in the gas phase. An associated surface residence time can be linked to the dynamics and time scale required for self-organization.

  19. Characteristic Features of Stone-Wales Defects in Single-Walled Carbon Nanotube; Adsorption, Dispersion, and Field Emission

    Directory of Open Access Journals (Sweden)

    Seungkwang Roh

    2010-01-01

    Full Text Available Adsorption behaviors of dodecanethiol (C12H25SH molecules are investigated on the surface of single-walled carbon nanotubes (SWCNTs with vibrational and X-ray photoelectron spectrometers. The active adsorption sites are proved as Stone-Wales (SW defects (5–7 ring defects. The SW defect-removed SWCNTs formed by reacting nanotubes with allyl acrylate molecules are compared with pristine SWCNTs in dispersion and field emission. The former shows higher dispersion and field emission than the latter.

  20. Adsorption characteristics of sulfur solution by acticarbon against drinking-water toxicosis

    Directory of Open Access Journals (Sweden)

    Shengbo Ge

    2017-09-01

    Full Text Available Sulfur and ammonia nitrogen are rich nutrient pollutants, after entering water can cause algal blooms, cause eutrophication of water body, the spread of them will not only pollute the environment, destroy the ecological balance, but also harm human health through food chain channels, especially drinking-water toxicosis. Acticarbon can adsorb harmful substances, it was beneficial for people’s health. In order to figure out the optimal adsorption condition and the intrinsic change of acticarbon, five chemicals were adsorbed by acticarbon and analyzed by FT-IR. The optimal adsorption condition of Fe2(SO43, Na2SO4, Na2S2O8, S and Na2SO3 was 9 g/1000 g at 80 min, 21 g/1000 g at 20 min, 15g/1000 g at 20 min, 21 g/1000 g at 60 min and 21 g/1000 g at 100 min, respectively. FT-IR spectra showed that acticarbon had eight characteristic peaks, such as S-S stretch, H2O stretch, OH stretch, CH stretch, CO or CC stretch, CH2 bend, CH were at 3850 cm−1, 3740 cm−1, 3435 cm−1, 2925 cm−1, 1630 cm−1, 1390 cm−1, 1115 cm−1, 600 cm−1, respectively. For FT-IR spectra of Fe2(SO43, the peaks at 3850 cm−1, 3740 cm−1, 2925 cm−1 achieved the maximum with 9 g/1000 g at 20 min. For Na2SO4, the peaks at 2925 cm−1, 1630 cm−1, 1390 cm−1, 1115 cm−1, 600 cm−1 achieved the maximum with 21 g/1000 g at 120 min. For ones of Na2S2O8, the peaks at 3850 cm−1, 3740 cm−1, 1390 cm−1, 1115 cm−1, 600 cm−1, achieved the maximum with 2 g/1000 g at 80 min. For ones of S, the peaks at 3850 cm−1, 3740 cm−1, 2925 cm−1 achieved the maximum with 19 g/1000 g at 100 min, the peaks at 1390 cm−1, 1115 cm−1, 600 cm−1 achieved the maximum with 19 g/1000 g at 20 min. For FT-IR spectra of Na2SO3, the peaks at 1630 cm−1, 1390 cm−1, 1115 cm−1, 600 cm−1 achieved the maximum with 2 g/1000 g at 100 min. It provided that acticarbon could adsorb and desulphurize

  1. Adsorption characteristics of sulfur solution by acticarbon against drinking-water toxicosis.

    Science.gov (United States)

    Ge, Shengbo; Liu, Zhenling; Furuta, Yuzo; Peng, Wanxi

    2017-09-01

    Sulfur and ammonia nitrogen are rich nutrient pollutants, after entering water can cause algal blooms, cause eutrophication of water body, the spread of them will not only pollute the environment, destroy the ecological balance, but also harm human health through food chain channels, especially drinking-water toxicosis. Acticarbon can adsorb harmful substances, it was beneficial for people's health. In order to figure out the optimal adsorption condition and the intrinsic change of acticarbon, five chemicals were adsorbed by acticarbon and analyzed by FT-IR. The optimal adsorption condition of Fe 2 (SO 4 ) 3 , Na 2 SO 4 , Na 2 S 2 O 8 , S and Na 2 SO 3 was 9 g/1000 g at 80 min, 21 g/1000 g at 20 min, 15g/1000 g at 20 min, 21 g/1000 g at 60 min and 21 g/1000 g at 100 min, respectively. FT-IR spectra showed that acticarbon had eight characteristic peaks, such as S-S stretch, H 2 O stretch, O-H stretch, -C-H stretch, C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 O or CC stretch, CH 2 bend, C-H were at 3850 cm -1 , 3740 cm -1 , 3435 cm -1 , 2925 cm -1 , 1630 cm -1 , 1390 cm -1 , 1115 cm -1 , 600 cm -1 , respectively. For FT-IR spectra of Fe 2 (SO 4 ) 3 , the peaks at 3850 cm -1 , 3740 cm -1 , 2925 cm -1 achieved the maximum with 9 g/1000 g at 20 min. For Na 2 SO 4 , the peaks at 2925 cm -1 , 1630 cm -1 , 1390 cm -1 , 1115 cm -1 , 600 cm -1 achieved the maximum with 21 g/1000 g at 120 min. For ones of Na 2 S 2 O 8 , the peaks at 3850 cm -1 , 3740 cm -1 , 1390 cm -1 , 1115 cm -1 , 600 cm -1 , achieved the maximum with 2 g/1000 g at 80 min. For ones of S, the peaks at 3850 cm -1 , 3740 cm -1 , 2925 cm -1 achieved the maximum with 19 g/1000 g at 100 min, the peaks at 1390 cm -1 , 1115 cm -1 , 600 cm -1 achieved the maximum with 19 g/1000 g at 20 min. For FT-IR spectra of Na 2 SO 3 , the peaks at 1630 cm -1 , 1390 cm -1 , 1115 cm -1

  2. Application of Agricultural Waste for Adsorption Bisphenol A from Aqueous Solution: Kinetic and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    Davoud Balarak

    2015-12-01

    Full Text Available Bisphenol A is classified as a toxic and priority hazardous compound; it is required to be degraded prior to discharging the contaminated streams to the environment. Therefore, the purpose of this study is investigation of Bisphenol A adsorption by biomass agricultural waste Rice straw. Material and methods: This study was performed in laboratory at batch scale. The effects of different parameters including contact time, pH, Bisphenol A initial concentration and biomass dosage were studied for removal of Bisphenol A. All experiments were repeated triplicate and then adsorption isotherms and kinetics of different models were analyzed by comparing the coefficient of determination. The concentration of Bisphenol A was measured by HPLC. Results: The results indicated that by increasing of contact time and dose of adsorbent the amount of bisphenol adsorption increases, so that by increasing contact time from 10 to 75 min, the adsorption increased from 38.3% to 96.9% and by increasing adsorbent dosage from 1 to 5 gr/L adsorption increased from 35.5% to 94.9%. The adsorption was increased by decreasing of initial concentration of bisphenol A and the pH of 3 was the best for bisphenol A removal. The adsorption data was best fitted to the Freundlich isotherm and pseudo-second order kinetic model.  The Langmuir equation and pseudo- second order model showed the best fit for the experimental data Conclusion:  The results showed that the agricultural waste Rice straw can be used as a high efficiency and inexpensive adsorbent for  treatment of industrial effluent. 

  3. Electron Density Modification of Single Wall Carbon Nanotubes (SWCNT by Liquid-Phase Molecular Adsorption of Hexaiodobenzene

    Directory of Open Access Journals (Sweden)

    Hirofumi Kanoh

    2013-02-01

    Full Text Available Electron density of single wall carbon nanotubes (SWCNT is effectively modified by hexaiodobenzene (HIB molecules using liquid-phase adsorption. UV-Vis-NIR absorption spectra of the HIB-adsorbed SWCNT, especially in the NIR region, showed a disappearance of S11 transitions between the V1 valance band and the C1 conduction band of van Hove singularities which can be attributed to the effective charge transfer between HIB and the SWCNT. The adsorption of HIB also caused significant peak-shifts (lower frequency shift around 170 cm−1 and higher shift around 186 cm‑1 and an intensity change (around 100–150 cm−1 and 270–290 cm−1 in the radial breathing mode of Raman spectra. The charge transfer from SWCNT to HIB was further confirmed by the change in the C1s peak of X-ray photoelectron spectrum, revealing the oxidation of carbon in SWCNT upon HIB adsorption.

  4. High-throughput investigation of single and binary protein adsorption isotherms in anion exchange chromatography employing multivariate analysis.

    Science.gov (United States)

    Field, Nicholas; Konstantinidis, Spyridon; Velayudhan, Ajoy

    2017-08-11

    The combination of multi-well plates and automated liquid handling is well suited to the rapid measurement of the adsorption isotherms of proteins. Here, single and binary adsorption isotherms are reported for BSA, ovalbumin and conalbumin on a strong anion exchanger over a range of pH and salt levels. The impact of the main experimental factors at play on the accuracy and precision of the adsorbed protein concentrations is quantified theoretically and experimentally. In addition to the standard measurement of liquid concentrations before and after adsorption, the amounts eluted from the wells are measured directly. This additional measurement corroborates the calculation based on liquid concentration data, and improves precision especially under conditions of weak or moderate interaction strength. The traditional measurement of multicomponent isotherms is limited by the speed of HPLC analysis; this analytical bottleneck is alleviated by careful multivariate analysis of UV spectra. Copyright © 2017. Published by Elsevier B.V.

  5. Adsorption of reactive Remazol Red RB dye of aqueous solution using zeolite of the coal ash and evaluation of acute toxicity with Daphnia similis

    International Nuclear Information System (INIS)

    Magdalena, Carina Pitwak

    2010-01-01

    In this study, the capacity of zeolite synthesized from coal ash in the removal of Remazol Red dye aqueous solution was investigated by batch mode operation. The equilibrium was attained after 360 min of contact time. The adsorption rate followed the kinetic model of pseudo-second-order. The equilibrium data obtained fitted to Langmuir adsorption isotherm showing the adsorption capacity of up to 1.20mg g-1. The efficiency of adsorption was between 75 to 91% in the equilibrium time. In order to obtain the best conditions for removal of this dye, the influence of the following parameters was: initial concentration of the dye, pH of the aqueous solution, dose of adsorbent and temperature. The thermodynamic parameters were evaluated showing that the adsorption of Remazol red on the zeolite is of a spontaneous nature. Experiments by adding NaCl and Na 2 SO 4 were carried out to simulate the real conditions of the effluents from the dyeing bath and to evaluate the influence of these chemical compounds in the phenomenon of adsorption. The equilibrium data of adsorption of Remazol red on the zeolite was achieved in a shorter time in the presence of increasing concentrations of salts in solution and an increase in adsorption capacity. The efficiency of the study was evaluated as a treatment for acute toxicity using Daphnia similis microcrustacean. (author)

  6. Use of analcime zeolite from mineral coal fly ash in adsorption of Cu+2 and Cd+2 in aqueous solutions

    International Nuclear Information System (INIS)

    Rocha Junior, C.A.F.; Santos, S.C.A.; Angelica, R.S.; Neves, R.F.; Souza, C.A.G.

    2011-01-01

    The use of zeolite for removing heavy metals from contaminated effluents over the years has been widespread due to its high cation exchange capacity in aqueous solutions. Thus this study aims to use analcime zeolite for removal of Cu +2 and Cd +2 from aqueous solutions at different concentrations, and the zeolitic material synthesized from coal fly ash generated in an alumina plant in northern Brazil . The use of zeolite analcime proved quite satisfactory, since this product has removed almost entirely Cu +2 and Cd +2 solutions with concentrations up to 200ppm, and demonstrated an average capacity for solutions of 400ppm, which shows good applicability of this material for the treatment of effluent contamination in the ranges studied. The adsorption models of Langmuir and Freundlich showed a good fit to experimental data generated in this work. (author)

  7. Magnetite nanoparticles supported on organically modified montmorillonite for adsorptive removal of iodide from aqueous solution: Optimization using response surface methodology.

    Science.gov (United States)

    Jang, Jiseon; Lee, Dae Sung

    2018-02-15

    Magnetite nanoparticles supported on organically modified montmorillonite (MNP-OMMTs) were successfully synthesized by a facile coprecipitation method. The surface of natural clay was modified using a cationic surfactant, hexadecyltrimethylammonium. The synthesized MNP-OMMTs were used as an adsorbent to remove iodide from aqueous solutions. The maximum adsorption capacity of the adsorbent was 322.42mg/g, which is much higher than other previously reported adsorbents for removing iodide in aqueous solution. The experimental data were well fitted to a pseudo-second-order kinetic model, and the adsorption behavior followed the Langmuir isotherm. A thermodynamic study indicated that iodide adsorption was spontaneous and endothermic. The individual and combined effects of key process parameters (pH, temperature, and initial iodide concentration) were studied using a response surface methodology. The maximum iodide removal efficiency of 93.81% was obtained under the optimal conditions of pH3.9, a temperature of 41.3°C, and an initial iodide concentration of 113.8mg/L. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. FACTORS AFFECTING THE REMOVAL OF A BASIC AND AN AZO DYE FROM ARTIFICIAL SOLUTIONS BY ADSORPTION USING ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    H Albroomi

    2014-10-01

    Full Text Available Decolourisation of wastewater, particularly from textile industries, is one of the major environmental concerns these days. Current methods for removing dyes from wastewater are costly and cannot effectively be used to treat wide range of such wastewater. This work describes the use of commercial available granular activated carbon (GAC as an efficient adsorbent material for dyes removal. Aqueous solutions of various basic dye Methylene Blue (MB and azo-dye Tartrazine with concentrations 5-20 mg l–1 and 10-100 mg l–1, respectively, were shaken with certain amount of GAC to determine the adsorption capacity and removal efficiencies. The effects of adsorbent dose, initial pH, initial dye concentration, agitation speed and contact time on dyes removal efficiencies have been studied. Maximum dye concentration was removed from the solution within 60-90 min after the beginning of every experiment. Adsorption parameters were found to fit well into Langmuir and Freundlich adsorption isotherms models with correlation coefficient (R2 > 0.99 in the concentration range of MB and TZ studied.

  9. Atomic hydrogen and oxygen adsorptions in single-walled zigzag silicon nanotubes

    International Nuclear Information System (INIS)

    Chen, Haoliang; Ray, Asok K.

    2013-01-01

    Ab initio calculations have been performed to study the electronic and geometric structure properties of zigzag silicon nanotubes. Full geometry and spin optimizations have been performed without any symmetry constraints with an all electron 3-21G* basis set and the B3LYP hybrid functional. The largest zigzag SiNT studied here, (12, 0), has a binding energy per atom of 3.584 eV. Atomic hydrogen and oxygen adsorptions on (9, 0) and (10, 0) nanotubes have also been studied by optimizing the distances of the adatoms from both inside and outside the tube. The adatom is initially placed in four adsorption sites-parallel bridge (PB), zigzag bridge (ZB), hollow, and on-top site. The on-top site is the most preferred site for hydrogen atom adsorbed on (9, 0), with an adsorption energy of 3.0 eV and an optimized distance of 1.49 Å from the adatom to the nearest silicon atom. For oxygen adsorption on (9, 0), the most preferred site is the ZB site, with an adsorption energy of 5.987 eV and an optimized distance of 1.72 Å. For atomic hydrogen adsorption on (10, 0), the most preferred site is also the on-top site with an adsorption energy of 3.174 eV and an optimized distance of 1.49 Å. For adsorption of atomic oxygen on (10, 0), the most preferred site is PB site, with an adsorption energy of 6.306 eV and an optimized distance of 1.71 Å. The HOMO–LUMO gaps of (9, 0) after adsorptions of hydrogen and oxygen atoms decrease while the HOMO–LUMO gaps of (10, 0) increase after adsorption of hydrogen and oxygen

  10. Perchlorate adsorption onto orange peel modified by cross-linking amine groups from aqueous solutions.

    Science.gov (United States)

    Zhang, Lixiang; Yang, Zhiquan; Li, Ting; Zhou, Shaoqi; Wu, Zhenyi

    2015-01-01

    Orange peel was made into a highly efficient bio-sorbent by modification with cross-linking amine groups for perchlorate removal. Bench-scale experiments were performed to explore the factors affecting the perchlorate adsorption onto the modified orange peel (MOP). Perchlorate could be removed effectively at a wide range of pH (from 1.5 to 11). The maximum adsorption capacity of MOP for perchlorate was calculated as 154.1 mg/g within 15 min. The Redlich-Peterson model was fitted to the adsorption isotherm very well (R2>0.99). The adsorption process was spontaneous and exothermic, which was proved by thermodynamic parameters (Gibbs energy and enthalpy). The pseudo-second-order kinetic model could provide satisfactory fitting of the experimental data (R2>0.99). The scanning electron microscopy and energy-dispersive X-ray analysis indicated that the surface of MOP became smooth and the contents of N and Cl in MOP were increased during the modification process. Elemental analysis results showed that the nitrogen content in MOP was increased to 5.5%, while it was 1.06% in orange peel. The adsorption mechanism was also explored using zeta potential and Fourier transform infrared spectroscopy analysis. Ion exchange was the primary mechanism responsible for uptake of perchlorate onto MOP.

  11. Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: A comparative study.

    Science.gov (United States)

    Sun, Yue; Lv, Dan; Zhou, Jiasheng; Zhou, Xiaoxin; Lou, Zimo; Baig, Shams Ali; Xu, Xinhua

    2017-10-01

    In this study, a comparative evaluation of synthetic FeS and natural pyrite was performed to investigate their adsorptive potentials toward Hg(II) in aqueous system. Characterization analyses such as BET, SEM and TEM suggested that FeS had porous structures with abundant active sites, while pyrite with a hard and smooth surface relied mainly on surface adsorption to immobilize Hg(II). Results of batch tests revealed that FeS offered much greater Hg(II) maximum adsorption capacity (769.2 mg/g) as compared to pyrite (9.9 mg/g). Both iron sulfides showed high removal efficiency (>96%) with the initial Hg(II) concentration (1 mg/L) at pH = 7.0 ± 0.1, and the effluent could meet the permissible effluent concentration (reaction mechanisms involved in the adsorption process. In addition, it was also revealed that the structural changes of FeS before and after adsorption was much larger than pyrite. Findings from this study suggest FeS is a promising candidate for treatment of high-concentration Hg(II)-containing wastewater (<20 mg/L), while pyrite can be applied as a long-term adsorbing material in the immobilization of wastewater containing low Hg(II) concentration (<1 mg/L) due to its cost-effective property and local availability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lasheen, M.R., E-mail: ragaei24@link.net [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Sherif, Iman Y., E-mail: iman57us@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); Tawfik, Magda E., E-mail: magdaemileta@yahoo.com [Polymers and Pigments Department, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Wakeel, S.T., E-mail: shaimaa_tw@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Shahat, M.F., E-mail: elshahatmf@hotmail.com [Faculty of Science, Ain Shams University, Khalifa El-Maamon St., Abbasiya Sq., 11566, Cairo (Egypt)

    2016-08-15

    Highlights: • Nano magnetite–chitosan films were prepared by casting method. • The efficiency of the prepared films for removing heavy metals was investigated. • The adsorption mechanism was studied using different isotherm and kinetic models. • Films reuse and metals recovery were studied. - Abstract: Nano magnetite chitosan (NMag–CS) film was prepared and characterized with different analytical methods. X-ray diffraction (XRD) patterns confirmed the formation of a pure magnetite structure and NMag–CS nanocomposite. TEM image of the film, revealed the uniform dispersion of magnetite nanoparticles inside chitosan matrix. The adsorption properties of the prepared film for copper, lead, cadmium, chromium and nickel metal ions were evaluated. Different factors affecting the uptake behavior by the composite films such as time, initial pH and film dose were investigated. The adsorption equilibrium attained using 2 g/L of the film after 120 min of reaction. The equilibrium data were analyzed using Langmuir and Freundlich models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all metals. The metals regenerated from films with an efficiency greater than 95% using 0.1 M ethylene diamine tetra acetic acid (EDTA) and films were successfully reused for adsorption.

  13. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  14. adsorption on the inside and outside the single-walled carbon ...

    Indian Academy of Sciences (India)

    FAHIMEH SHOJAIE

    2017-12-11

    Dec 11, 2017 ... The adsorption energies, bond order, atomic charge, optical properties, and electrostatic potential of nitrogen molecules of armchair .... the bond length between two carbons in sp2 hybridiza- tion, the diameter of the .... adsorption of N2 molecule(s) on the SWCNT are metallic type (band gap between the.

  15. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S)

    Science.gov (United States)

    Gao, Zhengyang; Yang, Weijie; Ding, Xunlei; Lv, Gang; Yan, Weiping

    2018-04-01

    The effects of support on gas adsorption is crucial for single atom catalysts design and optimization. To gain insight into support effects on gas adsorption characteristics, a comprehensive theoretical study was performed to investigate the adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S) by utilizing single atom iron catalysts with three graphene-based supports. The adsorption geometry, adsorption energy, electronic and magnetic properties of the adsorption system have been explored. Additionally, the support effects have been analyzed through d-band center and Fermi softness, and thermodynamic analysis has been performed to consider the effect of temperature on gas adsorption. The support effects have a remarkable influence on the adsorption characteristics of four types of toxic gases which is determined by the electronic structure of graphene-based support, and the electronic structure can be characterized by Fermi softness of catalysts. Fermi softness and uplift height of Fe atom could be good descriptors for the adsorption activity of single atom iron catalysts with graphene-based supports. The findings can lay a foundation for the further study of graphene-based support effects in single atom catalysts and provide a guideline for development and design of new graphene-based support materials utilizing the idea of Fermi softness.

  16. Unidirectional seeded single crystal growth from solution of benzophenone

    Science.gov (United States)

    Sankaranarayanan, K.; Ramasamy, P.

    2005-07-01

    A novel crystal growth method has been established for the growth of single crystal with selective orientation at room temperature. Using volatile solvent, the saturated solution containing the material to be crystallized was taken in an ampoule and allowed to crystallize by slow solvent evaporation assisted with a ring heater. The orientation of the growing crystal was imposed by means of a seed fixed at the bottom of the ampoule. By selecting a suitable ring heater voltage and by controlling the ring heater voltage, nucleation and the growth rate of the crystal were controlled more effectively. By employing this novel method, benzophenone single crystal ingots of diameters 10 and 20 mm and length more than 50 mm were successfully grown using xylene as solvent. The ease in scaling up of diameter from 10 to 20 mm shows the vital advantage of this technique. It was possible to achieve solute-crystal conversion efficiency of 100 percent. The grown benzophenone crystal was characterized by FTIR, TG and DTA, powder X-ray diffraction, X-ray rocking curve, optical transmission study and powder SHG measurement. The results show that the crystal quality is at least as good as the quality of the crystal grown by other known methods. Also, microbial growth was naturally avoided in this method, as the fresh solution is constantly made available for the growing crystal.

  17. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    Science.gov (United States)

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.

  18. Adsorption of a single polymer chain on a surface: effects of the potential range.

    Science.gov (United States)

    Klushin, Leonid I; Polotsky, Alexey A; Hsu, Hsiao-Ping; Markelov, Denis A; Binder, Kurt; Skvortsov, Alexander M

    2013-02-01

    We investigate the effects of the range of adsorption potential on the equilibrium behavior of a single polymer chain end-attached to a solid surface. The exact analytical theory for ideal lattice chains interacting with a planar surface via a box potential of depth U and width W is presented and compared to continuum model results and to Monte Carlo (MC) simulations using the pruned-enriched Rosenbluth method for self-avoiding chains on a simple cubic lattice. We show that the critical value U(c) corresponding to the adsorption transition scales as W(-1/ν), where the exponent ν=1/2 for ideal chains and ν≈3/5 for self-avoiding walks. Lattice corrections for finite W are incorporated in the analytical prediction of the ideal chain theory U(c)≈(π(2)/24)(W+1/2)(-2) and in the best-fit equation for the MC simulation data U(c)=0.585(W+1/2)(-5/3). Tail, loop, and train distributions at the critical point are evaluated by MC simulations for 1≤W≤10 and compared to analytical results for ideal chains and with scaling theory predictions. The behavior of a self-avoiding chain is remarkably close to that of an ideal chain in several aspects. We demonstrate that the bound fraction θ and the related properties of finite ideal and self-avoiding chains can be presented in a universal reduced form: θ(N,U,W)=θ(NU(c),U/U(c)). By utilizing precise estimations of the critical points we investigate the chain length dependence of the ratio of the normal and lateral components of the gyration radius. Contrary to common expectations this ratio attains a limiting universal value /=0.320±0.003 only at N~5000. Finite-N corrections for this ratio turn out to be of the opposite sign for W=1 and for W≥2. We also study the N dependence of the apparent crossover exponent φ(eff)(N). Strong corrections to scaling of order N(-0.5) are observed, and the extrapolated value φ=0.483±0.003 is found for all values of W. The strong correction to scaling effects found here explain why

  19. Adsorption of human insulin on single-crystal gold surfaces investigated by in situ scanning tunnelling microscopy and electrochemistry

    DEFF Research Database (Denmark)

    Welinder, Anna Christina; Zhang, Jingdong; Steensgaard, D.B.

    2010-01-01

    We have explored the adsorption of zinc-free human insulin on the three low-index single-crystalline Au(111)-, Au(100)- and Au(110)-surfaces in aqueous buffer (KH2PO4, pH 5) by a combination of electrochemical scanning tunnelling microscopy (in situ STM) at single-molecule resolution and linear...... sweep, LSV, cyclic, CV, and square wave (SQWV) voltammetry. Multifarious electrochemical patterns were observed. Most attention was given to reductive desorption caused by insulin binding to the Au-surfaces via up to three disulfide groups per insulin monomer, presumably converted to single Au-S links...

  20. Hydrogen solid solutions in niobium - molybdenum single crystal alloys

    International Nuclear Information System (INIS)

    Silva, J.R.G. da; Ishikawa, T.T.

    1981-01-01

    The temperature variation of the hydrogen solubility in a series of single crystal Nb-Mo alloys ('binary solvents') in equilibrium with the gaseous phase at atmospheric pressure is presented. The partial thermodynamic properties of the intersticially dissolved hydrogen atoms were calculated from of solubility versus temperature curves. The hydrogen solution obeys the quasi-regular model at all the compositions of the investigated alloys. The variation of the partial entalphy Hu sup(-) with the solvent alloys composition (Mo/Nb + Mo ratio) is compared with the variation of the electronic structure of the solvent. The non-random solute distribution in the binary solvent lattice is shown, with the H atoms prefering interstitial sites next to Nb atoms. (Author) [pt

  1. Water Adsorption and Dissociation on Ceria-Supported Single-Atom Catalysts: A First-Principles DFT+U Investigation.

    Science.gov (United States)

    Han, Zhong-Kang; Gao, Yi

    2016-02-01

    Single-atom catalysts have attracted wide attention owing to their extremely high atom efficiency and activities. In this paper, we applied density functional theory with the inclusion of the on-site Coulomb interaction (DFT+U) to investigate water adsorption and dissociation on clean CeO 2 (111) surfaces and single transition metal atoms (STMAs) adsorbed on the CeO 2 (111) surface. It is found that the most stable water configuration is molecular adsorption on the clean CeO 2 (111) surface and dissociative adsorption on STMA/CeO 2 (111) surfaces, respectively. In addition, our results indicate that the more the electrons that transfer from STMA to the ceria substrate, the stronger the binding energies between the STMA and ceria surfaces. A linear relationship is identified between the water dissociation barriers and the d band centers of STMA, known as the generalized Brønsted-Evans-Polanyi principle. By combining the oxygen spillovers, single-atom dispersion stabilities, and water dissociation barriers, Zn, Cr, and V are identified as potential candidates for the future design of ceria-supported single-atom catalysts for reactions in which the dissociation of water plays an important role, such as the water-gas shift reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selective Adsorption of Pb(II) from Aqueous Solution by Triethylenetetramine-Grafted Polyacrylamide/Vermiculite.

    Science.gov (United States)

    Gu, Shiqing; Wang, Lan; Mao, Xinyou; Yang, Liping; Wang, Chuanyi

    2018-03-28

    Amine groups play significant roles in polymeric composites for heavy metals removal. However, generating a composite with a large number of functional and stable amine groups based on clay is still a challenge. In this work, a new amine-functionalized adsorbent based on acid-activated vermiculite (a-Verm) was prepared by organic modification of silane coupling agent as bridge, followed by in situ polymerization of acrylamide (AM) and further grafting of triethylene tetramine (TETA). The obtained polymeric composite g-PAM/OVerm was characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared (FTIR), thermal analysis (TG/DTG), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analyses, confirming that amine groups were successfully grafted onto the surface of Verm. The efficacy g-PAM/OVerm for removing Pb(II) was tested. The adsorption equilibrium data on g-PAM/OVerm was in good accordance with the Langmuir adsorption isotherms, and the adsorption maximal value of Pb(II) was 219.4 mg·g -1 . The adsorption kinetic data fit the pseudo-second-order kinetic model well. Additionally, g-PAM/OVerm has better selectivity for Pb(II) ion in comparison with Zn(II), Cd(II) and Cu(II) ions. The present work shows that g-PAM/OVerm holds great potential for removing Pb(II) from wastewater, and provides a new and efficient method for the removal of heavy metal ions from industrial wastewater.

  3. Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review.

    Science.gov (United States)

    Ahmed, Muthanna J

    2017-04-01

    Pharmaceutical pollutants are of significant effect on the environment, so that their treatments have been addressed in many studies. Activated carbon (AC) adsorbent shows best attraction for these compounds due to its unique characteristics represented by high capacity and porosity. In this article, the adsorption performance of AC towards non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, ketoprofen, naproxen, and diclofenac were reviewed. According to collected data, maximum adsorption capacities of 417, 25, 290, and 372 mg/g were obtained from Langmuir isotherm for these drugs, respectively. The values of 1/n for Freundlich isotherm were lower than unity for all studied drugs, confirming the nonlinear and favorable adsorption. In addition, kinetics data were well represented by the pseudo-second-order model and mechanism was not controlled by the pore diffusion step alone. AC adsorption demonstrated superior performance for all selected NSAIDs, thus being efficient technology for treatment of these pharmaceutical pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The characterization of the adsorption of cadmium from aqueous solution using natural fibers treated with nanoparticles

    Science.gov (United States)

    Rediske, Nicole M.

    The objective of this research was to characterize natural carbon fibers from coconut husks, both bare and impregnated with metallic nanoparticles, in removing cadmium from aqueous media. The adsorbent load, kinetics, isotherm parameters, removal efficiencies, desorption capacity and possible contaminant removal mechanisms were evaluated. It was found that the fibers treated with metallic nanoparticles performed better than the bare fibers in removing cadmium from water. The ideal conditions were found to be neutral pH with low initial cadmium concentrations. Through the kinetic analyses, the adsorption process was first thought to be pseudo first order with two separate adsorption mechanisms apparent. Upon further analysis, it was seen that the first mechanism does not follow the pseudo first order kinetics model. An increase in calcium and magnesium concentrations was observed as the cadmium concentrations decreases. This increase corresponds with first mechanism. This suggests the cadmium removal in the first mechanism is due to ion exchange. The second mechanism's rate constant was consistently lower than the first mechanisms rate constant by an order of magnitude. This led to the hypothesis that the second mechanism is controlled by van de Waals forces, specifically ion-induced dipole interactions, and physical adsorption. It was also found that the cadmium does not effectively desorb from the wasted fibers in DI water. Keywords: Adsorption; kinetics; pseudo first order; cadmium; metallic nanoparticles; natural fibers; removal efficiencies; ion exchange.

  5. Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon.

    Science.gov (United States)

    Behnamfard, Ali; Salarirad, Mohammad Mehdi

    2009-10-15

    Adsorption equilibrium and kinetics of free cyanide onto activated carbon were investigated in the batch tests, and the effects of contact time (1-72 h) and initial cyanide concentrations in the range of 102-532 mg/L were studied. Linear regression was used to determine the best fit of equilibrium and kinetics expressions. The two-parameter models including Freundlich, Dubinin-Radushkevich, Temkin and four different linearized forms of Langmuir and three-parameter models including Redlich-Peterson and Koble-Corrigan were employed for fitting the equilibrium data and it was found that, three-parameter models fitted the data better than the two-parameter models and among the three-parameter models the equilibrium data are best represented by Koble-Corrigan model. A number of kinetic models including fractional power, zero order, first order, pseudo-first order, Elovich, second order, intraparticle diffusion and four different linearized forms of pseudo-second order models were tested to fit the kinetic data. The latter was found to be consistent with the data. Intraparticle diffusion plots show that the adsorption process of free cyanide is a two steps process. In the first step, the adsorption of cyanide is fast while in the second step, cyanide adsorption slows down.

  6. Adsorption characteristics of malic acid from aqueous solutions by weakly basic ion-exchange chromatography.

    Science.gov (United States)

    Gao, Qiang; Pan, Chaoqiang; Liu, Fabao; Lu, Fuping; Wang, Depei; Zhang, Jian; Zhu, Yan

    2012-08-17

    In this study, we reported the effects of temperature, malic acid loading concentration, and resin dose on malic acid adsorption by IRA-67 in batch experiments. The kinetic data well fitted the pseudo-second-order kinetic model. Both the equilibrium and ultimate adsorption slightly decreased with increased temperature from 303 to 323 K at 74.7 g/L malic acid loading concentration. The malic acid adsorption was revealed as a homogeneous adsorbent process by the Langmuir model and film diffusion process at loading concentrations of 18.2-94.5 g/L malic acid by the Boyd plot. The values of effective diffusion coefficient D(i) also increased with the temperature. Based on Eq. (15), the negative values of ΔG° and ΔH° revealed that the adsorption process was spontaneous and exothermic. The negative value of ΔS° also indicated the decrease in the solid-liquid interface randomness at this interface when malic acid is adsorbed by IRA-67. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Aminopyridine modified Spirulina platensis biomass for chromium(VI) adsorption in aqueous solution.

    Science.gov (United States)

    Bayramoglu, Gulay; Akbulut, Aydin; Arica, M Yakup

    Chemical modification of Spirulina platensis biomass was realized by sequential treatment of algal surface with epichlorohydrin and aminopyridine. Adsorptive properties of Cr(VI) ions on native and aminopyridine modified algal biomass were investigated by varying pH, contact time, ionic strength, initial Cr(VI) concentration, and temperature. FTIR and analytical analysis indicated that carboxyl and amino groups were the major functional groups for Cr(VI) ions adsorption. The optimum adsorption was observed at pH 3.0 for native and modified algal biomasses. The adsorption capacity was found to be 79.6 and 158.7 mg g(-1), for native and modified algal biomasses, respectively. For continuous system studies, the experiments were conducted to study the effect of important design parameters such as flow rate and initial concentration of metal ions, and the maximum sorption capacity was observed at a flow rate of 50 mL h(-1), and Cr(VI) ions concentration 200 mg L(-1) with modified biomass. Experimental data fitted a pseudo-second-order equation. The regeneration performance was observed to be 89.6% and 94.3% for native and modified algal biomass, respectively.

  8. Adsorption of Cu 2+ and Ni 2+ ions from their aqueous solutions ...

    African Journals Online (AJOL)

    The adsorption of Cu2+ and Ni2+ions at room temperature (27°C) onto two types of biomass produced from orange mesocarp namely: untreated orange mesocarp (Me) of 250 μm particle size and xanthated orange mesocarp (XMe) produced from Me of 250 μm particle size were studied. The results obtained showed that ...

  9. The Preparation of Modified Industrial Waste Polyacrylonitrile for the Adsorptive Recovery of Pt(IV from Acidic Solutions

    Directory of Open Access Journals (Sweden)

    Sung Il Yoon

    2016-12-01

    Full Text Available Sorption technique is one of the most effective methods for recovering precious metals from wastewater solutions; however, its main drawbacks of the traditional sorbents are the slow kinetics and relatively low sorption capacities. As a solution, thin sorbent fibers have been highlighted because they can lead to fast adsorption kinetics due to their high surface areas and numerous binding sites. In this sense, the applicability of an industrial waste polyacrylonitrile (PAN textile was examined to recover Pt(IV from acid solutions. In order to enrich cationic functional groups on the surface of a PAN textile, the textile was chemically modified via polyethylenmine (PEI coating. Afterwards, using PEI-coated PAN fiber, batch sorption experiments (isotherms and kinetics and column experiments were conducted to evaluate its sorption performance toward Pt(IV. It was clearly revealed in column experiments that the PEI-coated waste PAN textile (WPAN has fast kinetics and good performance for Pt(IV recovery.

  10. Colloidal stability of gold nanorod solution upon exposure to excised human skin: Effect of surface chemistry and protein adsorption.

    Science.gov (United States)

    Mahmoud, Nouf N; Al-Qaoud, Khaled M; Al-Bakri, Amal G; Alkilany, Alaaldin M; Khalil, Enam A

    2016-06-01

    In this study, we evaluated the colloidal stability of gold nanorods (with positive, negative and neutral surface charge) in solution upon contact with excised human skin. UV-vis absorption, plasmon peak broadening index (PPBI%) and transmission electron microscope analysis were used to follow nanoparticles aggregation in solution. Our results show that positively charged gold nanorods aggregate extensively upon exposure to excised human skin compared to negatively and neutrally charged gold nanorods. Skin-induced aggregation of cationic gold nanorods was linked to the adsorption of proteins released from the dermis layer to the surface of gold nanorods. Protein adsorption significantly screen nanorod's effective surface charge and induce their aggregation. Moreover, we demonstrate that the presence of polyethylene glycol polymer on the surface of cationic gold nanorods minimize this aggregation significantly by providing steric repulsion (non-electrostatic stabilization mechanism). This work highlights the importance of evaluating the colloidal stability of nanoparticles in solution upon contact with skin, which is a "usually overlooked" parameter when studying the nanoparticle-skin interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101: a molecular simulation study

    Science.gov (United States)

    Gupta, Krishna M.; Zhang, Kang; Jiang, Jianwen

    2015-08-01

    A molecular simulation study is reported on glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101. The F atom of MIL-101 is identified to be the most favorable adsorption site. Among three MIL-101-X (X = H, NH2 or CH3), the parent MIL-101 exhibits the highest adsorption capacity and recovery efficacy. Upon functionalization by -NH2 or -CH3 group, the steric hindrance in MIL-101 increases; consequently, the interactions between glucose and framework become less attractive, thus reducing the capacity and mobility of glucose. The presence of ionic liquid, 1-ethyl-3-methyl-imidazolium acetate, as an impurity reduces the strength of hydrogen-bonding between glucose and MIL-101, and leads to lower capacity and mobility. Upon adding anti-solvent (ethanol or acetone), a similar adverse effect is observed. The simulation study provides useful structural and dynamic properties of glucose in MIL-101, and it suggests that MIL-101 might be a potential candidate for glucose recovery.

  12. Synthesis of Activated Carbon Mesoporous from Coffee Waste and Its Application in Adsorption Zinc and Mercury Ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2012-01-01

    Full Text Available We obtain activated carbons with high portion of meso pores using coffee residues as precursor for the application of adsorption of large adsorbates. Because of its natural properties, the coffee residue exhibited a large pore size. In this work, the coffee residue were impregnated with ZnCl2 and KOH, and then carbonized under the nitrogen conditions and activated with CO2 respectively. Obtained activated carbons are used in the adsorption of ions Hg(II and Zn(II. These adsorbents are efficacious to remove these ions from aqueous solution, with monocomponent equilibrium adsorption capacities ranging from from 0.002 to 0.380 mmol∙g-1 for Hg on ACK3 and from 0.002 to 0.330 mmol∙g-1 for ACZ3. For Zn(II on ACK2 from 0.002 to 0.300 mmol∙g-1, and from 0.001 to 0.274 mmol∙g-1 for ACZ2.

  13. Comparison of adsorption equilibrium models for the study of CL-, NO3- and SO4(2-) removal from aqueous solutions by an anion exchange resin.

    Science.gov (United States)

    Dron, Julien; Dodi, Alain

    2011-06-15

    The removal of chloride, nitrate and sulfate ions from aqueous solutions by a macroporous resin is studied through the ion exchange systems OH(-)/Cl(-), OH(-)/NO(3)(-), OH(-)/SO(4)(2-), and HCO(3)(-)/Cl(-), Cl(-)/NO(3)(-), Cl(-)/SO(4)(2-). They are investigated by means of Langmuir, Freundlich, Dubinin-Radushkevitch (D-R) and Dubinin-Astakhov (D-A) single-component adsorption isotherms. The sorption parameters and the fitting of the models are determined by nonlinear regression and discussed. The Langmuir model provides a fair estimation of the sorption capacity whatever the system under study, on the contrary to Freundlich and D-R models. The adsorption energies deduced from Dubinin and Langmuir isotherms are in good agreement, and the surface parameter of the D-A isotherm appears consistent. All models agree on the order of affinity OH(-)adsorption isotherms. The nonlinear regression results are also compared with linear regressions. While the parameter values are not affected, the evaluation of the best fitting model is biased by linearization. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Adsorption of Cr(VI) on cerium immobilized cross-linked chitosan composite in single system and coexisted with Orange II in binary system.

    Science.gov (United States)

    Zhu, Tianyi; Huang, Wei; Zhang, Lingfan; Gao, Jie; Zhang, Wenqing

    2017-10-01

    In this work, cerium immobilized cross-linked chitosan (CTS-Ce) composite, employed as an efficient adsorbent for Cr(VI) in single system and coexisted with Orange II (OII) in binary system, was prepared by co-precipitation method. The as-obtained adsorbent was characterized by FTIR, SEM, EDS and XPS before and after adsorption. The adsorption behaviors of Cr(VI) in single and binary system were systematically studied. The maximum adsorption capacity of Cr(VI) on CTS-Ce (202.8mg/g) was calculated by Langmuir equation in single metal system, but it decreased to 112.9mg/g with initial concentration of 100mg/L OII in binary system at pH 2 and 293K. The adsorption data for Cr(VI) followed the Langmuir model in single system, while fitted Temkin model well in binary system. In both single and binary system, the kinetics of adsorption exhibited pseudo-second order behavior and adsorption capacity increased with increasing temperature. Moreover, the data of thermodynamic parameters (ΔG°0) indicated that the adsorption was a spontaneous and endothermic process. Besides, |ΔG Cr |>|ΔG Cr-OII | at the same temperature further suggested that Cr(VI) was adsorbed on the CTS-Ce composite faster in binary system than in single system. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese

    Energy Technology Data Exchange (ETDEWEB)

    Adebayo, Matthew A. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Department of Chemical Sciences, Ajayi Crowther University, PMB 1066 Oyo, Oyo State (Nigeria); Prola, Lizie D.T. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Lima, Eder C., E-mail: eder.lima@ufrgs.br [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Puchana-Rosero, M.J.; Cataluña, Renato; Saucier, Caroline; Umpierres, Cibele S.; Vaghetti, Julio C.P. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Postal Box 15003, 91501-970 Porto Alegre, RS (Brazil); Silva, Leandro G. da; Ruggiero, Reinaldo [Institute of Chemistry, Federal University of Uberlândia (UFU), AV. João Naves de Ávila 2121 block 1D—Campus Santa Mônica, 38400-902 Uberlândia, MG (Brazil)

    2014-03-01

    Graphical abstract: - Highlights: • Complexes of carboxy-methylated lignin with Al and Mn were used as adsorbents. • The optimum adsorption conditions were achieved at pH 2 and 298 K. • Maximum adsorption capacities are 73.52 mg g{sup −1} (CML-Al) and 55.16 mg g{sup −1} (CML-Mn). • CML-Al could remove ca. 95.83% of dye-contaminated industrial effluents. • CML-Al and CML-Mn are effective for treatment of simulated dye-house effluents. - Abstract: A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al{sup 3+} (CML-Al) and Mn{sup 2+} (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pH{sub PZC}. The established optimum pH and contact time were 2.0 and 5 h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16 mg g{sup −1} at 298 K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone + 50% of 0.05 mol L{sup −1} NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents.

  16. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property.

    Science.gov (United States)

    Song, Wen; Gao, Baoyu; Xu, Xing; Wang, Fang; Xue, Nan; Sun, Shenglei; Song, Wuchang; Jia, Ruibao

    2016-03-05

    A novel adsorbent of magnetic amine-crosslinked biopolymer based corn stalk (MAB-CS) was synthesized and used for nitrate removal from aqueous solution. The characters and adsorption mechanisms of this bio-adsorbent were determined by using VSM, TGA, XRD, SEM, TEM, FT-IR and XPS, respectively. The results revealed that the saturated magnetization of MAB-CS reached 6.25 emu/g. Meanwhile, the studies of various factors indicated that this novel magnetic bio-adsorbent performed well over a considerable wide pH range of 6.0 ∼ 9.0, and the presence of PO4(3-) and SO4(2-) would markedly decrease the nitrate removal efficiency. Furthermore, the nitrate adsorption by MAB-CS perfectly fitted the Langmuir isotherm model (R(2)=0.997-0.999) and pseudo second order kinetic model (R(2)=0.953-0.995). The calculated nitrate adsorption capacity of MAB-CS was 102.04 mg/g at 318 K by Langmuir model, and thermodynamic study showed that nitrate adsorption is an spontaneous endothermic process. The regeneration experiments indicated its merit of regeneration and stability with the recovery efficient of 118 ∼ 147%. By integrating the experimental results, it was found that the removal of nitrate was mainly via electrostatic attraction and ion exchange. And this novel bio-adsorbent prepared in this work could achieve effective removal of nitrate and rapid separation from effluents simultaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Adsorption of nucleic acid bases and amino acids on single-walled carbon and boron nitride nanotubes: a first-principles study.

    Science.gov (United States)

    Zheng, Jiaxin; Song, Wei; Wang, Lu; Lu, Jing; Luo, Guangfu; Zhou, Jing; Qin, Rui; Li, Hong; Gao, Zhengxiang; Lai, Lin; Li, Guangping; Mei, Wai Ning

    2009-11-01

    We study the adsorptions of nucleic acid bases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) and four amino acids phenylalanine, tyrosine, tryptophan, alanine on the single-walled carbon nanotubes (SWCNTs) and boron nitride nanotubes (SWBNNTs) by using density functional theory. We find that the aromatic content plays a critical role in the adsorption. The adsorptions of nucleic acid bases and amino acids on the (7, 7) SWBNNT are stronger than those on the (7, 7) SWCNT. Oxidative treatment of SWCNTs favors the adsorption of biomolecules on nanotubes.

  18. Enhancement of adsorption and diffusion of lithium in single-walled carbon nanotubes by external electric field

    International Nuclear Information System (INIS)

    Shi, Wenwu; Wang, Zhiguo; Fu, Y.Q.

    2016-01-01

    Effects of an external transverse electric field on the adsorption and diffusion of Li atoms on the single-walled carbon nanotubes (CNTs) were investigated using density functional theory. Results showed that the adsorption energy was significantly enhanced by applying the electric field. As the external electric field was increased from 0.0 to 0.6 V/Å, the adsorption energies were decreased from −1.37 to −2.31, −1.32 to −2.46, and −1.33 to −2.63 eV for the Li atoms adsorbed on (6,6), (8,8), and (10,10) CNTs, respectively. Meanwhile, the diffusion barriers of the Li atoms on the CNTs were also decreased as the external electric field was applied. When the external electric field was increased from 0.0 to 0.6 V/Å, the energy barriers were decreased from 0.42, 0.40, and 0.39 eV to 0.20, 0.17, and 0.15 eV for Li diffusion in the (6,6), (8,8), and (10,10) CNTs, respectively. The results proved that an external electric field can be applied to enhance the adsorption and diffusion of Li atoms on the CNTs (used as the anode) for lithium ion batteries.

  19. Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review.

    Science.gov (United States)

    Muya, Francis Ntumba; Sunday, Christopher Edoze; Baker, Priscilla; Iwuoha, Emmanuel

    2016-01-01

    Heavy metal ions such as Cd(2+), Pb(2+), Cu(2+), Mg(2+), and Hg(2+) from industrial waste water constitute a major cause of pollution for ground water sources. These ions are toxic to man and aquatic life as well, and should be removed from wastewater before disposal. Various treatment technologies have been reported to remediate the potential toxic elements from aqueous media, such as adsorption, precipitation and coagulation. Most of these technologies are associated with some shortcomings, and challenges in terms of applicability, effectiveness and cost. However, adsorption techniques have the capability of effectively removing heavy metals at very low concentration (1-100 mg/L). Various adsorbents have been reported in the literature for this purpose, including, to a lesser extent, the use of hydrogel adsorbents for heavy metal removal in aqueous phase. Here, we provide an in-depth perspective on the design, application and efficiency of hydrogel systems as adsorbents.

  20. In-situ STM study of sulfide adsorption on Au(100) in alkaline solution

    DEFF Research Database (Denmark)

    Schlaup, Christian Georg; Wandelt, Klaus

    2015-01-01

    The adsorption of sulfide on a Au(100) electrode from a 0.01 M NaOH + 0.5 mM Na2S electrolyte was studied by in situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV). Starting with a sulfur free electrode surface at low potentials the subsequent formation of a p(2 × 2)-S, a c(2 × 6...

  1. Selective Adsorption of Pb(II from Aqueous Solution by Triethylenetetramine-Grafted Polyacrylamide/Vermiculite

    Directory of Open Access Journals (Sweden)

    Shiqing Gu

    2018-03-01

    Full Text Available Amine groups play significant roles in polymeric composites for heavy metals removal. However, generating a composite with a large number of functional and stable amine groups based on clay is still a challenge. In this work, a new amine-functionalized adsorbent based on acid-activated vermiculite (a-Verm was prepared by organic modification of silane coupling agent as bridge, followed by in situ polymerization of acrylamide (AM and further grafting of triethylene tetramine (TETA. The obtained polymeric composite g-PAM/OVerm was characterized by scanning electron microscope (SEM, energy dispersive spectrometer (EDS, Fourier transform infrared (FTIR, thermal analysis (TG/DTG, X-ray photoelectron spectroscopy (XPS and Brunauer–Emmett–Teller (BET analyses, confirming that amine groups were successfully grafted onto the surface of Verm. The efficacy g-PAM/OVerm for removing Pb(II was tested. The adsorption equilibrium data on g-PAM/OVerm was in good accordance with the Langmuir adsorption isotherms, and the adsorption maximal value of Pb(II was 219.4 mg·g−1. The adsorption kinetic data fit the pseudo-second-order kinetic model well. Additionally, g-PAM/OVerm has better selectivity for Pb(II ion in comparison with Zn(II, Cd(II and Cu(II ions. The present work shows that g-PAM/OVerm holds great potential for removing Pb(II from wastewater, and provides a new and efficient method for the removal of heavy metal ions from industrial wastewater.

  2. Novel PVA/MOF Nanofibres: Fabrication, Evaluation and Adsorption of Lead Ions from Aqueous Solution.

    Science.gov (United States)

    Shooto, Ntaote David; Dikio, Charity Wokwu; Wankasi, Donbebe; Sikhwivhilu, Lucky Mashudu; Mtunzi, Fanyana Moses; Dikio, Ezekiel Dixon

    2016-12-01

    Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively, where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (ΔH°) and entropy (ΔS°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption test was also investigated and studied.

  3. Fluoride adsorption from aqueous solution by magnetic core-shell Fe{sub 3}O{sub 4}@alginate-La particles fabricated via electro-coextrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yahui [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China); Lin, Xiaoyan, E-mail: lxy20100205@163.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China); Zhou, Quisheng [A State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Xuegang [Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China)

    2016-12-15

    Graphical abstract: The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. - Highlights: • Magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were prepared by electro-coextrusion. • The maximum adsorption capacity for fluoride at 298.15 K was 45.230 mg/g. • The adsorbent has a good saturation magnetization value. • The adsorbent has a great potential in removing the fluoride. - Abstract: The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. Main factors affecting the removal of fluoride, including pH, adsorbent dosage, initial concentration, temperature and contact time were investigated. The adsorption isotherm and adsorption kinetics were studied to understand the adsorption process in detail. The experimental data were fitted well by the non-linear Freundlich isotherm and linear pseudo-second-order model, the maximum fluoride adsorption capacity was 45.230 mg/g at pH 4, 298.15 K. Thermodynamic parameters indicated that the fluoride adsorption process was feasible and spontaneous. The presence of other anions like Cl{sup −}, SO{sub 4}{sup 2−}, HCO{sub 3}{sup −} and PO{sub 4}{sup 3−} had almost no effect on the fluoride adsorption. The adsorbent can be easily separated from the solution by a magnet. The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles before and after fluoride adsorption were studied by SEM, FTIR, EDX and XPS, which indicated that the adsorption mechanism may be related to electrostatic attraction and Lewis acid-base interaction.

  4. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    International Nuclear Information System (INIS)

    Wang, Shengsen; Gao, Bin; Li, Yuncong; Creamer, Anne Elise; He, Feng

    2017-01-01

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg −1 . As(V) (100 mg L −1 ) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L −1 and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  5. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengsen [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Gao, Bin, E-mail: bg55@ufl.edu [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Li, Yuncong [Tropical Research and Education Center, University of Florida, Homestead, FL 33031 (United States); Creamer, Anne Elise [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); He, Feng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014 (China)

    2017-01-15

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg{sup −1}. As(V) (100 mg L{sup −1}) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L{sup −1} and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  6. Synthesis of Collagen-Based Hydrogel Nanocomposites Using Montmorillonite and Study of Adsorption Behavior of Cd from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Gholam Bagheri Marandi

    2013-04-01

    Full Text Available Novel collagen-based hydrogel nanocomposites were synthesized by graft copolymerization of acrylamide and maleic anhydrid in the presence of different amounts of montmorillonite, using methylenebisacrylamide (MBAand ammonium persulfate (APS as crosslinker and initiator, respectively. The optimum amount of clay on the swelling properties of the samples was studied. It was found that the hydrogel nanocomposites exhibited improved swelling capacity compared with the clay-free hydrogel. Gel content was also studied and the resultsindicated that the inclusion of montmorillonite causes an increase in gel content. The sorption behavior of heavy metal ion from aqueous solutions was investigated by its relationship with pH, contact time, initial concentration of metal ion and also, montmorillonite content of the nanocomposites. The experimental data showed thatCd2+ ion adsorption increases with increasing initial concentration of Cd2+ ion in solution and the clay content. Also, the results indicated that more than 88% of the maximum adsorption capacities toward Cd2+ ion were achieved within the initial 10 minute. Functional groups of the prepared hydrogels have shown complexation abilitywith metal ions and improving hydrogels' adsorption properties. It was concluded that the nanocomposites could be used as fast-responsive, and high capacity sorbent materials in Cd2+ ion removing processes. The prepared hydrogel nanocomposites were characerized by means of XRD patterns, TGA thermal methods and FTIRspectroscopy. The XRD patterns of nanocomposites showed that the interlayer distance of montmorillonite was changed and the clay sheets were exfoliated. Furthermore, the results showed that by increasing the montmorillonite content, thermal stability of the nanocomposites was clearly improved.

  7. Adsorption of nitroxide-alcohol solutions on X zeolite. 1. Electron spin resonance study of deuteriated ethanol solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoleni, F.; Ottaviani, M.F.; Romanelli, M.; Martini, G.

    1988-04-07

    Electron spin resonance spectroscopy was used to investigate the localization and the motion of neutral, negative, and positive nitroxides (Tempol, Tempydo/sup -/, and TempTMA/sup +/, respectively) solvated by partially and completely deuteriated ethanol in X-type zeolite. At room temperature, Tempol and Tempydo/sup -/ were almost free to move inside the intracrystalline liquid, whereas a fraction of TempTMA/sup +/ was adsorbed on specific adsorption sites of the faujasite cavity. The analysis of the correlation times for the motion indicated that fast- and slow-motion conditions were verified as a function of temperature for each radical with transition temperatures between the two domains that depended on the presence of the support, thus indicating appreciable surface effects on the probe dynamics. The observed differences in the (A/sub N/) coupling constants were discussed in terms of surface change and changes in molecular properties. The hydrogen-bond influence was also discussed.

  8. Facile and green preparation of novel adsorption materials by combining sol-gel with ion imprinting technology for selective removal of Cu(II) ions from aqueous solution

    Science.gov (United States)

    Ren, Zhongqi; Zhu, Xinyan; Du, Jian; Kong, Delong; Wang, Nian; Wang, Zhuo; Wang, Qi; Liu, Wei; Li, Qunsheng; Zhou, Zhiyong

    2018-03-01

    A novel green adsorption polymer was prepared by ion imprinted technology in conjunction with sol-gel process under mild conditions for the selective removal of Cu(II) ions from aqueous solution. Effects of preparation conditions on adsorption performance of prepared polymers were studied. The ion-imprinted polymer was prepared using Cu(II) ion as template, N-[3-(2-aminoethylamino) propyl] trimethoxysilane (AAPTMS) as functional monomer and tetraethyl orthosilicate (TEOS) as cross-linker. Water was used as solvent in the whole preparation process. The imprinted and non-imprinted polymers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), Brunauer, Emmett and Teller (BET) and zeta potential. Three-dimensional network structure was formed and functional monomer was successfully cross-linked into the network structure of polymers. Effects of adsorption conditions on adsorption performance of prepared polymers were studied too. The pH value is of great influence on adsorption behavior. Adsorption by ion-imprinted polymer was fast (adsorption equilibrium was reached within 60 min). The adsorption capacity of Cu(II) ion-imprinted polymer was always larger than that of non-imprinted polymer. Pseudo-second-order kinetics model and Freundlich isotherm model fitted well with adsorption data. The maximum adsorption capacity of Cu(II) ion-imprinted polymer was 39.82 mg·g-1. However, the preparation conditions used in this work are much milder than those reported in literatures. The Cu(II) ion-imprinted polymer showed high selectivity and relative selectivity coefficients for Pb(II), Ni(II), Cd(II) and Co(II). In addition, the prepared ion-imprinted polymer could be reused several times without significant loss of adsorption capacity.

  9. The adsorption and Fenton behavior of iron rich Terra Rosa soil for removal of aqueous anthraquinone dye solutions: kinetic and thermodynamic studies.

    Science.gov (United States)

    Aktas, Doga; Dizge, Nadir; Cengiz Yatmaz, H; Caliskan, Yasemin; Ozay, Yasin; Caputcu, Ayten

    2017-12-01

    Adsorption and advanced oxidation processes are being extensively used for treatment of wastewater containing dye chemicals. In this study, the adsorption and Fenton behavior of iron rich Terra Rosa soil was investigated for the treatment of aqueous anthraquinone dye (Reactive Blue 19 (RB19)) solutions. The impact of pH, initial dye concentration, soil loading rate, contact time and temperature was systematically investigated for adsorption process. A maximum removal efficiency of dye (86.6%) was obtained at pH 2, soil loading of 10 g/L, initial dye concentration of 25 mg/L, and contact time of 120 min. Pseudo-first-order, pseudo-second-order, Elovich, and Weber-Morris kinetic models were applied to describe the adsorption mechanism and sorption kinetic followed a pseudo-second-order kinetic model. Moreover, Langmuir, Freundlich and Temkin isotherm models were used to investigate the isothermal mechanism and equilibrium data were well represented by the Langmuir equation. The maximum adsorption capacity of soil was found as 4.11 mg/g using Langmuir adsorption isotherm. The effect of soil loading and hydrogen peroxide (H 2 O 2 ) dosage was solely tested for Fenton oxidation process. The highest removal efficiency of dye (89.4%) was obtained at pH 2, H 2 O 2 dosage of 10 mM, soil loading of 5 g/L, initial dye concentration of 50 mg/L, and contact time of 60 min. Thermodynamic studies showed that when the adsorption dosage of dye was 25 mg/L at 293-313 K, adsorption enthalpy (ΔH) and entropy (ΔS) were negative and adsorption free energy (ΔG) was positive. This result indicated that the adsorption was exothermic. Morphological characteristics of the soil were evaluated by X-ray fluorescence (XRF), scanning electron microscopy (SEM), and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy before and after the adsorption and oxidation process.

  10. Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Wenwen; Li, Ping; Wang, Zheming; Zheng, Shili; Zhang, Yi

    2018-01-01

    tMgO nanosheets with thickness ranges of 3–10 molecule layers and high specific area (166.44 m2g-1)were successfully fabricated by an ultrasound-assisted exfoliation method and used as adsorbent forthe removal of both selenite (Se(IV)) and selenate (Se(VI)) from aqueous solutions. The resulting MgOnanosheets displayed high maximum adsorption capacities of 103.52 and 10.28 mg g-1for Se(IV) andSe(VI), respectively. ATR-FTIR and XPS spectroscopic results suggested that both Se(IV) and Se(VI) formedinner-sphere surface complexes on MgO nanosheets under the present experimental conditions. Fur-thermore, high adsorption capacity for Se(IV/VI) in the presence of coexistent anions (SO42-, PO43-, Cl-,and F-) and efficient regeneratability of adsorbent by NaOH solution were observed in the competitiveadsorption and regeneration steps. The simple one-step synthesis process of MgO nanosheets and highadsorption capacities offer a promising method for Se(IV/VI) removal in water treatment.

  11. The relation between inversion enthalpy and adsorption parameters for an activated carbon in aqueous Pb2+ solutions

    International Nuclear Information System (INIS)

    Giraldo, Liliana; Moreno, Juan Carlos

    2006-01-01

    We report the preparation of an activated carbon obtained by impregnation of mineral carbon samples with a phosphoric acid solution (50%).The obtained material, exhibits a superficial area of 586 m 2 .g -1 and a total pore volume of 0.37 cm 3 g -1 . With respect to the chemical properties, the activated carbon shows an increased number of acidic sites (0.92 meq g -l ) compared to basic sites (0.63 meq g-1) which yields a material with almost neutral characteristics (PHpzc: 7.4). At a pH: 4.0 the amount of Pb 2 + absorbed and the immersion enthalpy values for the activated carbon reached a maximum with values of 15.7 mg -1 y 27.6 Jg -1 respectively. It was established that similar behaviour occurs for the two properties, absorption and immersion enthalpy, as a function of pH. In addition, a second order function that relates the adsorption constant and immersion enthalpy, and the adsorption constant and pH of the solution are presented

  12. The relation between immersion enthalpy and adsorption parameters for an activated carbon in aqueous Pb2+solutions

    International Nuclear Information System (INIS)

    Girado, Liliana; Moreno, Juan Carlos

    2006-01-01

    We report the preparation of an activated carbon obtained by impregnation of mineral carbon samples with phosphoric acid solution (50%). the obtained material, exhibits a superficial area of 586 m 2 .g -1 and a total pore volume of 0,37 cm 3 g -1 . with respect to the chemical properties, the activated carbon shows an increased number of acidic sites (0,92 meq g -1 ) compared to basic sites (0,63 meq g -1 ) which yields a material with almost neutral characteristics (pH p zc: 7,4). At a pH: 4.0 the amount of pb2+ absorbed and the immersion enthalpy values for the activated carbon reached maxim with values of 15.7 mg -1 y 27,6 Jg -1 respectively. it was established that similar behavior occurs for the two properties, absorption and immersion enthalpy, as a function of pH. in addition, a second order function that relates the adsorption constant and immersion enthalpy, and the adsorption constant and ph of the solution are presented

  13. Studying the Adsorption of Lead from aqueous Solution using Local Adsorbent Material Produced from Waste Tires by Pyrolysis

    Directory of Open Access Journals (Sweden)

    Hayder M. Abdul-Hameed

    2017-02-01

    Full Text Available In this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2 activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work was investigated. The results in this study indicated that the produced activated carbon from waste tires was an attractive adsorbent for removal of lead from aqueous solutions. The optimum values of bed height, flow rate, initial concentration and particle size were found to be 0.04m, flow rate 1L/h, initial concentration 0.5mg/L and particle diameter 0.5mm, respectively.

  14. Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin.

    Science.gov (United States)

    Wang, Zhongmin; Li, Xiaojuan; Liang, Haijun; Ning, Jingliang; Zhou, Zhide; Li, Guiyin

    2017-10-01

    In this study, a novel bio-adsorbent (PT-GO) was prepared by functionalization persimmon tannin (PT) with graphene oxide (GO) and the effective adsorption behaviors of Au 3+ , Pd 2+ and Ag + ions from aqueous solution was investigated. The PT-GO was characterized by Fourier transform infrared spectrometer (FTIR), scanning electronic microscope (SEM), thermogravimetric analysis (TGA) and Zeta potential. Many influence factors such as pH value, bio-adsorbent dosage, initial concentration of metal ions and contact time were optimized. The maximum adsorption capacity for Au 3+ , Pd 2+ and Ag + was 1325.09mg/g, 797.66mg/g and 421.01mg/g, respectively. The equilibrium isotherm for the adsorption of Au 3+ and Ag + on PT-GO were found to obey the Langmuir model, while the Freundlich model fitted better for Pd 2+ . The adsorption process of Au 3+ , Pd 2+ presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model, while the pseudo-first-order kinetic model was suitable for describing the adsorption of Ag + . Combination of ion exchange, electrostatic interaction and physical adsorption was the mechanism for adsorption of Au 3+ , Pd 2+ and Ag + onto PT-GO bio-adsorbent. Therefore, the PT-GO bio-adsorbent would be an ideal adsorbent for removal of precious metal ions and broaden the potential applications of persimmon tannin in environmental research. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Adsorptive removal of Cr3+ from aqueous solutions using chitosan microfibers immobilized with plant polyphenols as biosorbents with high capacity and selectivity

    Science.gov (United States)

    Zhang, Ting; Wang, Yujia; Kuang, Yiwen; Yang, Ruilin; Ma, Jun; Zhao, Shilin; Liao, Yang; Mao, Hui

    2017-05-01

    A novel biosorbent was facilely prepared by immobilizing bayberry tannin (BT, a typical natural polyphenols) onto chitosan microfiber (CM). The as-prepared CM-BT adsorbent featured to a well-defined microfibrous morphology and highly distributed adsorption sites, which was highly efficient and selective for the adsorptive removal of Cr3+ from aqueous solutions. Based on batch experiments, the adsorption of Cr3+ on CM-BT was pH-dependent, and the optimized adsorption pH was determined to be 5.5. The adsorption capacity of CM-BT to Cr3+ was high up to 20.90 mg/g. The co-existing cations, such as Mg2+, Ca2+, Fe3+ and Cu2+, exhibited no significant influences on the adsorption of Cr3+ on CM-BT. The adsorption kinetics were well fitted by the pseudo-second-order rate model (R2 > 0.99) while the adsorption isotherms were well described by the Langmuir model (R2 > 0.98). Importantly, CM-BT was effective for the continues treatment of low concentration Cr3+ (2.0 mg/L) contaminated wastewater. Before reached the breakthrough point (5% of the initial Cr3+ concentration, 0.1 mg/L), the treated volume was as high as 894 bed volume, manifesting the great potential of CM-BT in practical treatment of Cr3+ contaminated wastewater.

  16. INTERFACIAL FREE-ENERGY CHANGES OCCURRING DURING BSA ADSORPTION IN SOLUTION DROPLETS ON FEP-TEFLON SURFACES AS MEASURED BY ADSA-P

    NARCIS (Netherlands)

    BUSSCHER, HJ; VANDERVEGT, W; SCHAKENRAAD, JM; VANDERMEI, HC

    1991-01-01

    Axisymmetric drop shape analysis by profile (ADSA-P) was employed to determine the interfacial free energy changes occurring during bovine serum albumin (BSA) adsorption from solution droplets on fluoroethylenepropylene-Teflon (FEP-Teflon). 100-mu-l droplets of BSA solutions on FEP-Teflon were

  17. Selective adsorption of Pb (II) over the zinc-based MOFs in aqueous solution-kinetics, isotherms, and the ion exchange mechanism.

    Science.gov (United States)

    Wang, Lei; Zhao, Xinhua; Zhang, Jinmiao; Xiong, Zhenhu

    2017-06-01

    Two series of metal-organic frameworks (MOFs) with similar formula units but different central metal ions (M) or organic linkers (L), M-BDC (BDC = terephthalate, M = Zn, Zr, Cr, or Fe), or Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ), were prepared and employed as the receptors for adsorption lead ions. It was found that the Zn-BDC exhibited a much higher adsorption capacity than the other M-BDC series with various metal ions which have very closely low capacities at same conditions. Furthermore, the Zn-L (L = imidazolate-2-methyl, BDC, BDC-NH 2 ) still have highly efficient adsorption capacity of lead ions, although the adsorption capacity varies with different ligand, as well as the adsorption rate and the equilibrium pH of the solution. This significant high adsorption over Zn-L, different from other M-BDC series with various metal ions (Zr, Cr, or Fe), can be explained by ion exchange between the central metal ions of Zn-L and lead ion in solution. Based on the analysis of FT-IR, X-ray diffraction pattern, the nitrogen adsorption isotherms, the zeta potentials, and the results, a plausible adsorption mechanism is proposed. When equivalent Zn-L were added to equal volume of aqueous solution with different concentration of lead ion, the content of zinc ion in the solution increases with the increase of the initial concentration of lead ions. The new findings could provide a potential way to fabricate new metal organic frameworks with high and selective capacities of the heavy metal ions.

  18. Thermodynamic characteristics of the adsorption of 1,3,4-oxadiazoles and 1,2,4,5-tetrazines from methanol and water-methanol solutions onto hypercrosslinked polystyrene

    Science.gov (United States)

    Saifutdinov, B. R.; Davankov, V. A.; Il'in, M. M.

    2017-03-01

    The thermodynamic characteristics of the adsorption of several 1,3,4-oxadiazoles and 1,2,4,5- tetrazines from methanol and water-methanol solutions onto neutral hypercrosslinked polystyrene with a degree of crosslinking of 150% are determined via high performance liquid chromatography. It is shown how the obtained characteristics depend on the molecular structure of adsorbed substances and the composition of the liquid phase in which adsorption occurs.

  19. Phase transitions in single macromolecules: Loop-stretch transition versus loop adsorption transition in end-grafted polymer chains

    Science.gov (United States)

    Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I.; Skvortsov, Alexander M.; Yan, Dadong; Schmid, Friederike

    2018-01-01

    We use Brownian dynamics simulations and analytical theory to compare two prominent types of single molecule transitions. One is the adsorption transition of a loop (a chain with two ends bound to an attractive substrate) driven by an attraction parameter ɛ and the other is the loop-stretch transition in a chain with one end attached to a repulsive substrate, driven by an external end-force F applied to the free end. Specifically, we compare the behavior of the respective order parameters of the transitions, i.e., the mean number of surface contacts in the case of the adsorption transition and the mean position of the chain end in the case of the loop-stretch transition. Close to the transition points, both the static behavior and the dynamic behavior of chains with different length N are very well described by a scaling ansatz with the scaling parameters (ɛ - ɛ*)Nϕ (adsorption transition) and (F - F*)Nν (loop-stretch transition), respectively, where ϕ is the crossover exponent of the adsorption transition and ν is the Flory exponent. We show that both the loop-stretch and the loop adsorption transitions provide an exceptional opportunity to construct explicit analytical expressions for the crossover functions which perfectly describe all simulation results on static properties in the finite-size scaling regime. Explicit crossover functions are based on the ansatz for the analytical form of the order parameter distributions at the respective transition points. In contrast to the close similarity in equilibrium static behavior, the dynamic relaxation at the two transitions shows qualitative differences, especially in the strongly ordered regimes. This is attributed to the fact that the surface contact dynamics in a strongly adsorbed chain is governed by local processes, whereas the end height relaxation of a strongly stretched chain involves the full spectrum of Rouse modes.

  20. Adsorption of Nucleic Acid/Protein Supramolecular Complexes on Goethite: The Influence of Solution Interactions on Behavior at the Solution-Mineral Interface

    Science.gov (United States)

    Schmidt, M.; Martinez, C. E.

    2017-12-01

    Adsorption of biomolecule rich supramolecular complexes onto mineral surfaces plays an important role in the development of organo-mineral associations in soils. In this study, a series of supramolecular complexes of a model nucleic acid (deoxyribonucleic acid (DNA)) and protein (bovine serum albumin (BSA)) are synthesized, characterized and exposed to goethite to probe their adsorption behavior. To synthesize DNA/BSA complexes, a fixed DNA concentration (0.1 mg/mL) was mixed with a range of BSA concentrations (0.025-0.5 mg/mL) in 5 mM KCl at pH=5.0. Circular dichroism spectroscopy demonstrates strong, cooperative, Hill-type binding between DNA and BSA (Ka= 4.74 x 105 M-1) with DNA saturation achieved when BSA concentration reaches 0.4 mg/mL. Dynamic light scattering measurements of DNA/BSA complexes suggest binding accompanies disruption of DNA-DNA intermolecular electrostatic repulsion, resulting in a decrease of the DNA slow relaxation mode with increasing amount of BSA. Zeta potential measurements show increasing amounts of BSA lead to a reduction of negative charge on DNA/BSA complexes, in line with light scattering results. In situ attenuated total reflectance Fourier transform infrared spectroscopic studies of adsorption of DNA/BSA complexes onto goethite show that complexation of BSA with DNA appears to hinder direct coordination of DNA backbone phosphodiester groups with goethite, relative to DNA by itself. Furthermore, increasing amount of BSA (up to 0.4 mg/mL) in DNA/BSA complexes enhances DNA adsorption, possibly as a result of reduced repulsion between adsorbed DNA helices. When BSA concentration exceeds 0.4 mg/mL, a decrease in adsorbed DNA is observed. We hypothesize that this discrepancy in behavior between systems with BSA concentrations below and above saturation of DNA is caused by initial fast adsorption of loosely associated BSA on goethite, restricting access to goethite surface sites. Overall, these results highlight the impact of solution

  1. Quality Scalability Compression on Single-Loop Solution in HEVC

    Directory of Open Access Journals (Sweden)

    Mengmeng Zhang

    2014-01-01

    Full Text Available This paper proposes a quality scalable extension design for the upcoming high efficiency video coding (HEVC standard. In the proposed design, the single-loop decoder solution is extended into the proposed scalable scenario. A novel interlayer intra/interprediction is added to reduce the amount of bits representation by exploiting the correlation between coding layers. The experimental results indicate that the average Bjøntegaard delta rate decrease of 20.50% can be gained compared with the simulcast encoding. The proposed technique achieved 47.98% Bjøntegaard delta rate reduction compared with the scalable video coding extension of the H.264/AVC. Consequently, significant rate savings confirm that the proposed method achieves better performance.

  2. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property

    International Nuclear Information System (INIS)

    Song, Wen; Gao, Baoyu; Xu, Xing; Wang, Fang; Xue, Nan; Sun, Shenglei; Song, Wuchang; Jia, Ruibao

    2016-01-01

    Graphical abstract: Scheme of mechanism for HCl and NaCl regeneration of MAB-CS. - Highlights: • Magnetic amine-crosslinked bio-adsorbent was prepared for nitrate uptake. • The characters of adsorbent were determined by VSM, TGA, XRD, SEM, TEM, FT-IR and XPS. • This novel bio-adsorbent could achieve rapid separation from effluents. • Chemical regeneration of the saturated magnetic bio-adsorbent was conducted. • The adsorption followed the pseudo second order model and Langmuir model. - Abstract: A novel adsorbent of magnetic amine-crosslinked biopolymer based corn stalk (MAB-CS) was synthesized and used for nitrate removal from aqueous solution. The characters and adsorption mechanisms of this bio-adsorbent were determined by using VSM, TGA, XRD, SEM, TEM, FT-IR and XPS, respectively. The results revealed that the saturated magnetization of MAB-CS reached 6.25 emu/g. Meanwhile, the studies of various factors indicated that this novel magnetic bio-adsorbent performed well over a considerable wide pH range of 6.0∼9.0, and the presence of PO 4 3− and SO 4 2− would markedly decrease the nitrate removal efficiency. Furthermore, the nitrate adsorption by MAB-CS perfectly fitted the Langmuir isotherm model (R 2 = 0.997–0.999) and pseudo second order kinetic model (R 2 = 0.953–0.995). The calculated nitrate adsorption capacity of MAB-CS was 102.04 mg/g at 318 K by Langmuir model, and thermodynamic study showed that nitrate adsorption is an spontaneous endothermic process. The regeneration experiments indicated its merit of regeneration and stability with the recovery efficient of 118∼147%. By integrating the experimental results, it was found that the removal of nitrate was mainly via electrostatic attraction and ion exchange. And this novel bio-adsorbent prepared in this work could achieve effective removal of nitrate and rapid separation from effluents simultaneously.

  3. Temperature effects on solute diffusion and adsorption in differently compacted kaolin clay

    DEFF Research Database (Denmark)

    Mon, Ei Ei; Hamamoto, Shoichiro; Kawamoto, Ken

    2016-01-01

    Effects of soil temperature on the solute diffusion process in soils are important since subsurface temperature variation affects solute transport such as a fertilizer movement, leaching of salt, and pollutant movement to groundwater aquifers. However, the temperature dependency on the solute dif...

  4. Competitive adsorption of uranium(VI) and thorium(IV) ions from aqueous solution using triphosphate-crosslinked magnetic chitosan resins

    International Nuclear Information System (INIS)

    Limin Zhou; Yuyan Jia; Juan Peng; Zhirong Liu; Essam Al-Zaini

    2014-01-01

    The triphosphate-crosslinked magnetic chitosan resins (TPP-MCR) with a diameter range of 200-350 nm were synthesized for the adsorption of U(VI) and Th(IV) ions from aqueous solutions. The adsorption experiments were conducted in both mono-component systems with pure actinide solution and bi-component systems with different U/Th mass ratios. The maximum adsorption capacities in mono-component systems determined by Langmuir model were 169.5 and 146.8 mg g -1 for U(VI) and Th(IV), respectively. In bi-component systems, U(VI) and Th(IV) adsorption capacities were reduced significantly, and the combined sorption capacities were substantially lower (almost halved) compared to those obtained by the addition of sorption capacities using mono-component solutions, indicating that U(VI) and Th(IV) compete for the same sorption sites. Adsorption-desorption experiments for five cycles illustrated the feasibility of the repeated use of TPP-MCR for the adsorption of U(VI) and Th(IV) ions. (author)

  5. Theoretical insight of physical adsorption for a single-component adsorbent+adsorbate system: I. Thermodynamic property surfaces.

    Science.gov (United States)

    Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon; Koyama, Shigeru; Srinivasan, Kandadai

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent+adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl2-in-silica gel+water system for cooling applications, and (ii) activated carbon (Maxsorb III)+methane system for gas storage.

  6. Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces

    KAUST Repository

    Chakraborty, Anutosh

    2009-02-17

    Thermodynamic property surfaces for a single-component adsorbent + adsorbate system are derived and developed from the viewpoint of classical thermodynamics, thermodynamic requirements of chemical equilibrium, Gibbs law, and Maxwell relations. They enable us to compute the entropy and enthalpy of the adsorbed phase, the isosteric heat of adsorption, specific heat capacity, and the adsorbed phase volume thoroughly. These equations are very simple and easy to handle for calculating the energetic performances of any adsorption system. We have shown here that the derived thermodynamic formulations fill up the information gap with respect to the state of adsorbed phase to dispel the confusion as to what is the actual state of the adsorbed phase. We have also discussed and established the temperature-entropy diagrams of (i) CaCl 2-in-silica gel + water system for cooling applications, and (ii) activated carbon (Maxsorb III) + methane system for gas storage. © Copyright 2009 American Chemical Society.

  7. Adsorption of some Hazardous Radionuclides from their Aqueous Waste Solutions using Synthetic Silico(IV)titanate

    International Nuclear Information System (INIS)

    EI-Naggar, I.M.; Mowafy, E.A.; Abdel-Galil, E.A.; Ghonaim, A.Kh.

    2008-01-01

    Silico(IV)titanate as a cation exchanger has been obtained in a semi-crystalline form. This inorganic ion exchanger has high chemical stability. The capacities of this material for selected radionuclides such as Cs + , Na + , Co 2+ and Eu 3+ were investigated, and the selectivity was found in the order; Cs + > Eu 3+ > Co 2+ > Na + , Exchange isotherms for H + /Cs + , H + /Co 2+ and H + /Eu 3+ were determined at 25, 45 and 65±1 degree C. These isotherms showed that Cs + , Co 2+ and Eu 3+ are chemically adsorbed. Moreover, the values of thermodynamic parameters were determined and the overall adsorption processes were found spontaneous and endothermic

  8. Competitive protein adsorption to polymer surface from human serum

    DEFF Research Database (Denmark)

    Holmberg, Maria; Jensen, Karin Bagger Stibius; Larsen, Niels Bent

    2008-01-01

    Surface modification by "soft" plasma polymerisation to obtain a hydrophilic and non-fouling polymer surface has been validated using radioactive labelling. Adsorption to unmodified and modified polymer surfaces, from both single protein and human serum solutions, has been investigated. By using...... different radioisotopes, albumin and Immunoglobulin G (IgG) adsorption has been monitored simultaneously during competitive adsorption processes, which to our knowledge has not been reported in the literature before. Results show that albumin and IgG adsorption is dependent on adsorption time...

  9. Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell

    Energy Technology Data Exchange (ETDEWEB)

    Anirudhan, T.S. [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695 581 (India)], E-mail: tsani@rediffmail.com; Radhakrishnan, P.G. [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695 581 (India)

    2008-04-15

    A novel cation exchanger (TFS-CE) having carboxylate functionality was prepared through graft copolymerization of hydroxyethylmethacrylate onto tamarind fruit shell (TFS) in the presence of N,N'-methylenebisacrylamide as a cross-linking agent using K{sub 2}S{sub 2}O{sub 8}/Na{sub 2}S{sub 2}O{sub 3} initiator system, followed by functionalisation. The TFS-CE was used for the removal of Cu(II) from aqueous solutions. At fixed solid/solution ratio the various factors affecting adsorption such as pH, initial concentration, contact time, and temperature were investigated. Kinetic experiments showed that the amount of Cu(II) adsorbed increased with increase in Cu(II) concentration and equilibrium was attained at 1 h. The kinetics of adsorption follows pseudo-second-order model and the rate constant increases with increase in temperature indicating endothermic nature of adsorption. The Arrhenius and Eyring equations were used to obtain the kinetic parameters such as activation energy (E{sub a}) and enthalpy ({delta}H'), entropy ({delta}S') and free energy ({delta}G') of activation for the adsorption process. The value of E{sub a} for adsorption was found to be 10.84 kJ . mol{sup -1} and the adsorption involves diffusion controlled process. The equilibrium data were well fitted to the Langmuir isotherm. The maximum adsorption capacity for Cu(II) was 64 . 10 mg . g{sup -1} at T = 303 K. The thermodynamic parameters such as changes in free energy ({delta}G{sup 0}), enthalpy ({delta}H{sup 0}), and entropy ({delta}S{sup 0}) were derived to predict the nature of adsorption process. The isosteric heat of adsorption increases with increase in surface loading indicating some lateral interactions between the adsorbed metal ions.

  10. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  11. Thermodynamic analysis of single-stage and multi-stage adsorption refrigeration cycles with activated carbon–ammonia working pair

    International Nuclear Information System (INIS)

    Xu, S.Z.; Wang, L.W.; Wang, R.Z.

    2016-01-01

    Highlights: • Activated carbon–ammonia multi-stage adsorption refrigerator was analyzed. • COP, exergetic efficiency and entropy production of cycles were calculated. • Single-stage cycle usually has the advantages of simple structure and high COP. • Multi-stage cycles adapt to critical conditions better than single-stage cycle. • Boundary conditions for choosing optimal cycle were summarized as tables. - Abstract: Activated carbon–ammonia multi-stage adsorption refrigeration cycle was analyzed in this article, which realized deep-freezing for evaporating temperature under −18 °C with heating source temperature much lower than 100 °C. Cycle mathematical models for single, two and three-stage cycles were established on the basis of thorough thermodynamic analysis. According to simulation results of thermodynamic evaluation indicators such as COP (coefficient of performance), exergetic efficiency and cycle entropy production, multi-stage cycle adapts to high condensing temperature, low evaporating temperature and low heating source temperature well. Proposed cycle with selected working pair can theoretically work under very severe conditions, such as −25 °C evaporating temperature, 40 °C condensing temperature, and 70 °C heating source temperature, but under these working conditions it has the drawback of low cycle adsorption quantity. It was found that both COP and exergetic efficiency are of great reference value in the choice of cycle, whereas entropy production is not so useful for cycle stage selection. Finally, the application boundary conditions of single-stage, two-stage, and three-stage cycles were summarized as tables according to the simulation results, which provides reference for choosing optimal cycle under different conditions.

  12. Single Component and Competitive Adsorption of Propane, Carbon Dioxide and Butane on Vycor Glass

    Czech Academy of Sciences Publication Activity Database

    Řezníčková Čermáková, Jiřina; Marković, A.; Uchytil, Petr; Seidel-Morgenstern, A.

    2008-01-01

    Roč. 63, č. 6 (2008), s. 1586-1601 ISSN 0009-2509 R&D Projects: GA AV ČR(CZ) 1QS401250509; GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : porous media * gases * adsorption Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.884, year: 2008

  13. Ab initio study of aspirin adsorption on single-walled carbon and carbon nitride nanotubes

    Science.gov (United States)

    Lee, Yongju; Kwon, Dae-Gyeon; Kim, Gunn; Kwon, Young-Kyun

    We use ab intio density functional theory to investigate the adsorption properties of acetylsalicylic acid or aspirin on a (10, 0) carbon nanotube (CNT) and a (8, 0) triazine-based graphitic carbon nitride nanotube (CNNT). It is found that an aspirin molecule binds stronger to the CNNT with its adsorption energy of 0.67 eV than to the CNT with 0.51 eV. The stronger adsorption energy on the CNNT is ascribed to the high reactivity of its N atoms with high electron affinity. The CNNT exhibits local electric dipole moments, which cause strong charge redistribution in the aspirin molecule adsorbed on the CNNT than on the CNT. We also explore the influence of an external electric field on the adsorption properties of aspirin on these nanotubes by examining the modifications in their electronic band structures, partial densities of states, and charge distributions. It is found that an electric field applied along a particular direction induces aspirin molecular states in the in-gap region of the CNNT implying a potential application of aspirin detection.

  14. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone

    2012-01-01

    The adsorption dynamics of *OH and *O species at Pt(111) and Cu/Pt(111) near-surface alloy (NSA) surfaces in oxygen-free and O2-saturated 0.1M HClO4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(111) surface resulting in weaker bonding to adsorbates like *OH, *H or *...

  15. Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems.

    Science.gov (United States)

    Mandal, Abhishek; Singh, Neera

    2017-05-01

    Contamination of surface and ground water by pesticides from agricultural runoff and industrial discharge is one of the main causes of aqueous contaminations world over. Biochar, agricultural waste derived highly aromatic substance produced after pyrolysis and carbonification of biomass have exhibited good adsorption capacity for pesticides and can be used to develop on-site bio-purification systems for organic contaminant removal from polluted waters. However, high amounts of adsorbent required in single stage-batch sorption plant increases the cost of water treatment; therefore, multistage plant systems were investigated. Normal (RSBC) and phosphoric acid treated (T-RSBC) rice straw biochars were evaluated for atrazine and imidacloprid sorption and data fitted to the Freundlich isotherm. The adsorption data was modelled to develop single or multi-staged adsorber plants for pesticide removal from water. Both biochars showed significantly high adsorption capacity for imidacloprid and atrazine. Modelling studies using the Freundlich adsorption parameters suggested that the amounts (kg/1000L) of RSBC and T-RSBC for 95% of atrazine removal (10mg/L) in single-, two- and three-staged adsorber plant models were 8.84, 2.44, 1.61kg and 4.47, 1.42, 0.98kg, respectively. Corresponding amounts for 95% imidacloprid removal (10mg/L) were 3.97, 1.22, 0.84kg and 3.98, 1.38, 0.96kg, respectively. Thus, the two-staged model suggested 65-72% reduction in amount of adsorbent required over the single stage model, while the three-staged model suggested 30-34% adsorbent saving over the two-staged plant model. Single and two-staged adsorber plant model findings were validated for atrazine removal using T-RSBC. Results suggested that amounts calculated using modelling studies were fairly accurate. Biochars, as low cost adsorbents for atrazine and imidacloprid removal from contaminated water, can be used to develop low cost adsorber plants based on multiple batch sorption systems for the

  16. Adsorption of di-2-ethylhexylphosphoric acid from toluene the interface with inorganic salt aqueous solutions

    International Nuclear Information System (INIS)

    Fajnshtejn, E.V.; Popov, A.N.

    1990-01-01

    Interfacial tension in the system toluene solution of di-2-ethylhexylphosphoric acid HDEHP-aqueous solutions of inorganic salts has been measured by the drop volume method. The ion-exchange constants in the monolayers formed by HDEHP and alkaline-earth metals have been measured

  17. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions.

    Science.gov (United States)

    Monier, M; Abdel-Latif, D A

    2012-03-30

    In this study, cross-linked magnetic chitosan-phenylthiourea (CSTU) resin were prepared and characterized by means of FTIR, (1)H NMR, SEM high-angle X-ray diffraction (XRD), magnetic properties and thermogravimetric analysis (TGA). The prepared resin were used to investigate the adsorption properties of Hg(II), Cd(II) and Zn(II) metal ions in an aqueous solution. The extent of adsorption was investigated as a function of pH and the metal ion removal reached maximum at pH 5.0. Also, the kinetic and thermodynamic parameters of the adsorption process were estimated. These data indicated that the adsorption process is exothermic and followed the pseudo-second-order kinetics. Equilibrium studies showed that the data of Hg(II), Cd(II) and Zn(II) adsorption followed the Langmuir model. The maximum adsorption capacities for Hg(II), Cd(II) and Zn(II) were estimated to be 135 ± 3, 120 ± 1 and 52 ± 1 mg/g, which demonstrated the high adsorption efficiency of CSTU toward the studied metal ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions

    Science.gov (United States)

    Hadadian, Mahboubeh; Goharshadi, Elaheh K.; Fard, Mina Matin; Ahmadzadeh, Hossein

    2018-03-01

    The threat of toxic substances such as heavy metals to public health and wildlife has led to an increasing public awareness. Different techniques for neutralizing the toxic effects of heavy metals in wastewater have been used. Here, we prepared a new and efficient type of adsorbent, zinc oxide-graphene nanocomposite (ZnO-Gr), via a green method to remove Ni (II) ions from aqueous solutions. A facile microwave-assisted hydrothermal technique in the presence of an ionic liquid, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [C6mim] [NTf2], was used to prepare ZnO-Gr. The synergistic effect between graphene nanosheets and ZnO nanoparticles in this new adsorbent for Ni (II) ions caused a maximum adsorption capacity of 66.7 mg g-1 at room temperature which is much higher than that of graphene nanosheets (3.8 mg g-1) and other carbonaceous nanomaterials used as an adsorbent in the literature. The maximum desorption percentage (90.32%) was achieved at pH 3.6. By thermodynamic study, we found that the adsorption of this heavy metal ion on ZnO-Gr was spontaneous (Δ G° = -6.14 kJ mol-1) and endothermic (Δ H° = 53.31 kJ mol-1) with entropy change of Δ S° = 199.45 J K-1 mol- 1.

  19. Preparation and evaluation adsorption capacity of cellulose xanthate of sugarcane bagasse for removal heavy metal ion from aqueous solutions

    Science.gov (United States)

    Iryani, D. A.; Risthy, N. M.; Resagian, D. A.; Yuwono, S. D.; Hasanudin, U.

    2017-05-01

    The discharge of heavy metals from industrial effluents into aquatic system in surrounding area of Lampung bay become a serious problem today. The data shows that the concentrations of heavy metals in this area are above allowable limits for the discharge of toxic heavy metals in the aquatic systems. The most common of heavy metal pollutant is divalent metal ions. Cellulose xanthate is one of the selective adsorbent to solve this problem, since xanthate contains two negative sulfur atoms that is capable to catch divalent metal ions. Preparation of cellulose xanthate was conducted by reacting carbon disulfide (CS2) and cellulose from sugarcane bagasse. The morphological characteristics of cellulose xanthate were visualized via Scanning Electron Microscope (SEM) and the presence of sulfur groups on sugarcane bagasse xanthate were identified by FTIR spectroscopic study. The degree of substitution (DS), degree of polymerization (DP), and adsorption capacities of cellulose xanthate for Cu2+ and Pb2+ metal were studied. The results of study reveals that the maximum adsorption capacities of Cu2+ and Pb2+ metal on cellulose xanthate are 54.226 mg Cu2+/g, and 51.776 mg Pb2+/g, respectively. This study reveals that cellulose xanthate could be a solution to reduce environmental pollution caused by industrial wastewater.

  20. Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2nanocomposite: Experimental investigation and artificial neural network modeling.

    Science.gov (United States)

    Tanzifi, Marjan; Yaraki, Mohammad Tavakkoli; Kiadehi, Asieh Dehghani; Hosseini, Seyyed Hossein; Olazar, Martin; Bharti, Arvind Kumar; Agarwal, Shilpi; Gupta, Vinod Kumar; Kazemi, Atefeh

    2018-01-15

    The present work focused on the performance of Polyaniline/SiO 2 nanocomposite for removing Amido Black 10B dye from aqueous solution. The effect of different variables, such as adsorption time, the mass of adsorbent, solution pH and initial dye concentration was studied and also was optimized by an Artificial Neural Network (ANN) method. Lagergren, pseudo-second order, Intra-particle Diffusion, Elovich and Boyd models were tested to track the kinetics of the adsorption process. The experimental data were fitted to different two-parameter, and three-parameter isotherm models, namely, Langmuir, Freundlich, Temkin, D-R, Hill, Sips and Redlich-Peterson models, and their validity was examined. The results showed that the dye adsorption process was well described by Redlich-Peterson isotherm model. Thermodynamic studies revealed that the adsorption of Amido Black 10B onto Polyaniline/SiO 2 nanocomposite was endothermic. The comparison of the adsorption efficiencies obtained by the ANN model and the experimental data evidenced that the ANN model could estimate the behavior of the Amido Black 10B dye adsorption process under various conditions. Copyright © 2017 Elsevier Inc. All rights reserved.