WorldWideScience

Sample records for single snp findings

  1. Evaluating melanocytic lesions with single nucleotide polymorphism (SNP) chromosomal microarray.

    Science.gov (United States)

    Hedayat, Amin A; Linos, Konstantinos; Jung, Hou-Sung; Tafe, Laura J; Yan, Shaofeng; LeBlanc, Robert E; Lefferts, Joel A

    2017-12-01

    Histopathology is the gold standard for diagnosing melanocytic lesions; however, distinguishing benign versus malignant is not always clear histologically. Single nucleotide polymorphism (SNP) microarray analysis may help in making a definitive diagnosis. Here, we share our experience with the Oncoscan FFPE Assay and demonstrate its diagnostic utility in the context of ambiguous melanocytic lesions. Eleven archival melanocytic lesions, including three benign nevi, four melanomas, three BAP1-deficient Spitzoid nevi and one nevoid melanoma were selected for validation. SNP-array was performed according to the manufacturer's protocol, using the recommended 80ng of DNA; however, as little as 15ng was used if the extraction yield was lower. Concordance was assessed with H&E and various combinations of BAP1 and p16 immunohistochemical stains (IHC) and external reference laboratory chromosomal microarray results. After validation, the SNP array was utilized to make definitive diagnoses in four challenging cases. Oncoscan SNP array findings were in concordance with H&E, IHC, and reference laboratory chromosomal microarray testing. The SNP-based microarray can accurately detect copy number changes and aid in making a more definitive diagnosis of challenging melanocytic lesions. This can be accomplished using significantly less DNA than is required by other microarray technologies. Copyright © 2017. Published by Elsevier Inc.

  2. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from...

  3. Development of a single nucleotide polymorphism (SNP) marker for ...

    African Journals Online (AJOL)

    The nature of the single nucleotide polymorphism (SNP) marker was validated by DNA sequencing of the parental PCR products. Using high resolution melt (HRM) profiles and normalised difference plots, we successfully differentiated the homozygous dominant (wild type), homozygous recessive (LPA) and heterozygous ...

  4. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from the se...

  5. A single nucleotide polymorphism (SNP) assay for population ...

    African Journals Online (AJOL)

    Therefore, we developed the first SNP assay to test stratification between Chinese and Japanese populations living in East Asia. The ancestry ... The SNP assay showed excellent promise as a highly potential application to test population stratification in case-control studies of association in Eastern Asians. Key words: ...

  6. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  7. Single nucleotide polymorphisms (SNPs) that map to gaps in the human SNP map

    Science.gov (United States)

    Tsui, Circe; Coleman, Laura E.; Griffith, Jacqulyn L.; Bennett, E. Andrew; Goodson, Summer G.; Scott, Jason D.; Pittard, W. Stephen; Devine, Scott E.

    2003-01-01

    An international effort is underway to generate a comprehensive haplotype map (HapMap) of the human genome represented by an estimated 300 000 to 1 million ‘tag’ single nucleotide polymorphisms (SNPs). Our analysis indicates that the current human SNP map is not sufficiently dense to support the HapMap project. For example, 24.6% of the genome currently lacks SNPs at the minimal density and spacing that would be required to construct even a conservative tag SNP map containing 300 000 SNPs. In an effort to improve the human SNP map, we identified 140 696 additional SNP candidates using a new bioinformatics pipeline. Over 51 000 of these SNPs mapped to the largest gaps in the human SNP map, leading to significant improvements in these regions. Our SNPs will be immediately useful for the HapMap project, and will allow for the inclusion of many additional genomic intervals in the final HapMap. Nevertheless, our results also indicate that additional SNP discovery projects will be required both to define the haplotype architecture of the human genome and to construct comprehensive tag SNP maps that will be useful for genetic linkage studies in humans. PMID:12907734

  8. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP) Array

    Science.gov (United States)

    You, Qian; Yang, Xiping; Peng, Ze; Xu, Liping; Wang, Jianping

    2018-01-01

    Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP) array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1) discussed the pros and cons of SNP array in general for high throughput genotyping, (2) presented the challenges of and solutions to SNP calling in polyploid species, (3) summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4) illustrated SNP array applications in several different polyploid crop species, then (5) discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6) provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes. PMID:29467780

  9. In-silico single nucleotide polymorphisms (SNP) mining of Sorghum ...

    African Journals Online (AJOL)

    Single nucleotide polymorphisms (SNPs) may be considered the ultimate genetic markers as they represent the finest resolution of a DNA sequence (a single nucleotide), and are generally abundant in populations with a low mutation rate. SNPs are important tools in studying complex genetic traits and genome evolution.

  10. Verification of genetic identity of introduced cacao germplasm in Ghana using single nucleotide polymorphism (SNP) markers

    Science.gov (United States)

    Accurate identification of individual genotypes is important for cacao (Theobroma cacao L.) breeding, germplasm conservation and seed propagation. The development of single nucleotide polymorphism (SNP) markers in cacao offers an effective way to use a high-throughput genotyping system for cacao gen...

  11. Single nucleotide polymorphisms (SNPs) that map to gaps in the human SNP map

    OpenAIRE

    Tsui, Circe; Coleman, Laura E.; Griffith, Jacqulyn L.; Bennett, E. Andrew; Goodson, Summer G.; Scott, Jason D.; Pittard, W. Stephen; Devine, Scott E.

    2003-01-01

    An international effort is underway to generate a comprehensive haplotype map (HapMap) of the human genome represented by an estimated 300 000 to 1 million ‘tag’ single nucleotide polymorphisms (SNPs). Our analysis indicates that the current human SNP map is not sufficiently dense to support the HapMap project. For example, 24.6% of the genome currently lacks SNPs at the minimal density and spacing that would be required to construct even a conservative tag SNP map containing 300 000 SNPs. In...

  12. Multiplex single nucleotide polymorphism (SNP) assay for detection of soybean mosaic virus resistance genes in soybean.

    Science.gov (United States)

    Shi, Ainong; Chen, Pengyin; Vierling, Richard; Zheng, Cuming; Li, Dexiao; Dong, Dekun; Shakiba, Ehsan; Cervantez, Innan

    2011-02-01

    Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybean (Glycine max). Three independent loci for SMV resistance have been identified in soybean germplasm. The use of genetic resistance is the most effective method of controlling this disease. Marker assisted selection (MAS) has become very important and useful in the effort of selecting genes for SMV resistance. Single nucleotide polymorphism (SNP), because of its abundance and high-throughput potential, is a powerful tool in genome mapping, association studies, diversity analysis, and tagging of important genes in plant genomics. In this study, a 10 SNPs plus one insert/deletion (InDel) multiplex assay was developed for SMV resistance: two SNPs were developed from the candidate gene 3gG2 at Rsv1 locus, two SNPs selected from the clone N11PF linked to Rsv1, one 'BARC' SNP screened from soybean chromosome 13 [linkage group (LG) F] near Rsv1, two 'BARC' SNPs from probe A519 linked to Rsv3, one 'BARC' SNP from chromosome 14 (LG B2) near Rsv3, and two 'BARC' SNPs from chromosome 2 (LG D1b) near Rsv4, plus one InDel marker from expressed sequence tag (EST) AW307114 linked to Rsv4. This 11 SNP/InDel multiplex assay showed polymorphism among 47 diverse soybean germplasm, indicating this assay can be used to investigate the mode of inheritance in a SMV resistant soybean line carrying Rsv1, Rsv3, and/or Rsv4 through a segregating population with phenotypic data, and to select a specific gene or pyramid two or three genes for SMV resistance through MAS in soybean breeding program. The presence of two SMV resistance genes (Rsv1 and Rsv3) in J05 soybean was confirmed by the SNP assay.

  13. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers.

    Science.gov (United States)

    Fang, Wan-Ping; Meinhardt, Lyndel W; Tan, Hua-Wei; Zhou, Lin; Mischke, Sue; Zhang, Dapeng

    2014-01-01

    Apart from water, tea is the world's most widely consumed beverage. Tea is produced in more than 50 countries with an annual production of approximately 4.7 million tons. The market segment for specialty tea has been expanding rapidly owing to increased demand, resulting in higher revenues and profits for tea growers and the industry. Accurate varietal identification is critically important to ensure traceability and authentication of premium tea products, which in turn contribute to on-farm conservation of tea genetic diversity. Using a set of single nucleotide polymorphism (SNP) markers developed from the expressed sequence tag (EST) database of Camilla senensis, we genotyped deoxyribonucleic acid (DNA) samples extracted from a diverse group of tea varieties, including both fresh and processed commercial loose-leaf teas. The validation led to the designation of 60 SNPs that unambiguously identified all 40 tested tea varieties with high statistical rigor (pauthenticity and genetic relationships among the analyzed cultivars were further characterized by ordination and Bayesian clustering analysis. These SNP markers, in combination with a high-throughput genotyping protocol, effectively established and verified specific DNA fingerprints for all tested tea varieties. This method provides a powerful tool for variety authentication and quality control for the tea industry. It is also highly useful for the management of tea genetic resources and breeding, where accurate and efficient genotype identification is essential.

  14. Differentiation of drug and non-drug Cannabis using a single nucleotide polymorphism (SNP) assay.

    Science.gov (United States)

    Rotherham, D; Harbison, S A

    2011-04-15

    Cannabis sativa is both an illegal drug and a legitimate crop. The differentiation of illegal drug Cannabis from non-drug forms of Cannabis is relevant in the context of the growth of fibre and seed oil varieties of Cannabis for commercial purposes. This differentiation is currently determined based on the levels of tetrahydrocannabinol (THC) in adult plants. DNA based methods have the potential to assay Cannabis material unsuitable for analysis using conventional means including seeds, pollen and severely degraded material. The purpose of this research was to develop a single nucleotide polymorphism (SNP) assay for the differentiation of "drug" and "non-drug"Cannabis plants. An assay was developed based on four polymorphisms within a 399 bp fragment of the tetrahydrocannabinolic acid (THCA) synthase gene, utilising the snapshot multiplex kit. This SNP assay was tested on 94 Cannabis plants, which included 10 blind samples, and was able to differentiate between "drug" and "non-drug"Cannabis in all cases, while also differentiating between Cannabis and other species. Non-drug plants were found to be homozygous at the four sites assayed while drug Cannabis plants were either homozygous or heterozygous. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Influence of the MDM2 single nucleotide polymorphism SNP309 on tumour development in BRCA1 mutation carriers

    Directory of Open Access Journals (Sweden)

    Johnson Peter W

    2006-03-01

    Full Text Available Abstract Background The MDM2 gene encodes a negative regulator of the p53 tumour suppressor protein. A single nucleotide polymorphism (SNP in the MDM2 promoter (a T to G exchange at nucleotide 309 has been reported to produce accelerated tumour formation in individuals with inherited p53 mutations. We have investigated the effect of the MDM2 SNP309 on clinical outcome in a cohort of patients with germline mutations of BRCA1. Methods Genomic DNA was obtained for 102 healthy controls and 116 patients with established pathogenic mutations of BRCA1 and Pyrosequencing technology™ was used to determine the genotype at the MDM2 SNP309 locus. Results The polymorphism was present in 52.9% of the controls (G/T in 37.3% and G/G in 15.6% and 58.6% of the BRCA1 mutation carriers (47.4% G/T and 11.2% G/G. Incidence of malignancy in female BRCA1 carriers was not significantly higher in SNP309 carriers than in wildtype (T/T individuals (72.7% vs. 75.6%, p = 1.00. Mean age of diagnosis of first breast cancer was 41.2 years in the SNP309 G/G genotype carriers, 38.6 years in those with the SNP309 G/T genotype and 39.0 years in wildtype subjects (p = 0.80. Conclusion We found no evidence that the MDM2 SNP309 accelerates tumour development in carriers of known pathogenic germline mutations of BRCA1.

  16. How to Use SNP_TATA_Comparator to Find a Significant Change in Gene Expression Caused by the Regulatory SNP of This Gene's Promoter via a Change in Affinity of the TATA-Binding Protein for This Promoter.

    Science.gov (United States)

    Ponomarenko, Mikhail; Rasskazov, Dmitry; Arkova, Olga; Ponomarenko, Petr; Suslov, Valentin; Savinkova, Ludmila; Kolchanov, Nikolay

    2015-01-01

    The use of biomedical SNP markers of diseases can improve effectiveness of treatment. Genotyping of patients with subsequent searching for SNPs more frequent than in norm is the only commonly accepted method for identification of SNP markers within the framework of translational research. The bioinformatics applications aimed at millions of unannotated SNPs of the "1000 Genomes" can make this search for SNP markers more focused and less expensive. We used our Web service involving Fisher's Z-score for candidate SNP markers to find a significant change in a gene's expression. Here we analyzed the change caused by SNPs in the gene's promoter via a change in affinity of the TATA-binding protein for this promoter. We provide examples and discuss how to use this bioinformatics application in the course of practical analysis of unannotated SNPs from the "1000 Genomes" project. Using known biomedical SNP markers, we identified 17 novel candidate SNP markers nearby: rs549858786 (rheumatoid arthritis); rs72661131 (cardiovascular events in rheumatoid arthritis); rs562962093 (stroke); rs563558831 (cyclophosphamide bioactivation); rs55878706 (malaria resistance, leukopenia), rs572527200 (asthma, systemic sclerosis, and psoriasis), rs371045754 (hemophilia B), rs587745372 (cardiovascular events); rs372329931, rs200209906, rs367732974, and rs549591993 (all four: cancer); rs17231520 and rs569033466 (both: atherosclerosis); rs63750953, rs281864525, and rs34166473 (all three: malaria resistance, thalassemia).

  17. Extending the scope of diagnostic chromosome analysis: detection of single gene defects using high-resolution SNP microarrays.

    Science.gov (United States)

    Bruno, Damien L; Stark, Zornitza; Amor, David J; Burgess, Trent; Butler, Kathy; Corrie, Sylvea; Francis, David; Ganesamoorthy, Devika; Hills, Louise; James, Paul A; O'Rielly, Darren; Oertel, Ralph; Savarirayan, Ravi; Prabhakara, Krishnamurthy; Salce, Nicholas; Slater, Howard R

    2011-12-01

    Microarray analysis has provided significant advances in the diagnosis of conditions resulting from submicroscopic chromosome abnormalities. It has been recommended that array testing should be a "first tier" test in the evaluation of individuals with intellectual disability, developmental delay, congenital anomalies, and autism. The availability of arrays with increasingly high probe coverage and resolution has increased the detection of decreasingly small copy number changes (CNCs) down to the intragenic or even exon level. Importantly, arrays that genotype SNPs also detect extended regions of homozygosity. We describe 14 examples of single gene disorders caused by intragenic changes from a consecutive set of 6,500 tests using high-resolution SNP microarrays. These cases illustrate the increased scope of cytogenetic testing beyond dominant chromosome rearrangements that typically contain many genes. Nine of the cases confirmed the clinical diagnosis, that is, followed a "phenotype to genotype" approach. Five were diagnosed by the laboratory analysis in the absence of a specific clinical diagnosis, that is, followed a "genotype to phenotype" approach. Two were clinically significant, incidental findings. The importance of astute clinical assessment and laboratory-clinician consultation is emphasized to optimize the value of microarrays in the diagnosis of disorders caused by single gene copy number and sequence mutations. © 2011 Wiley-Liss, Inc.

  18. Single Finds. The case of Roman Egypt

    DEFF Research Database (Denmark)

    Christiansen, Erik

    2006-01-01

    Survery of single or stray finds from Roman Egypt and discussion of them as evidence for the circulation and use of coins......Survery of single or stray finds from Roman Egypt and discussion of them as evidence for the circulation and use of coins...

  19. Advanced statistical tools for SNP arrays : signal calibration, copy number estimation and single array genotyping

    NARCIS (Netherlands)

    Rippe, Ralph Christian Alexander

    2012-01-01

    Fluorescence bias in in signals from individual SNP arrays can be calibrated using linear models. Given the data, the system of equations is very large, so a specialized symbolic algorithm was developed. These models are also used to illustrate that genomic waves do not exist, but are merely an

  20. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff

    Science.gov (United States)

    Cingolani, Pablo; Platts, Adrian; Wang, Le Lily; Coon, Melissa; Nguyen, Tung; Wang, Luan; Land, Susan J.; Lu, Xiangyi; Ruden, Douglas M.

    2012-01-01

    We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w1118; iso-2; iso-3 strain and the reference y1; cn1 bw1 sp1 strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5′UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5′ and 3′ UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory. PMID:22728672

  1. A single-tube 27-plex SNP assay for estimating individual ancestry and admixture from three continents.

    Science.gov (United States)

    Wei, Yi-Liang; Wei, Li; Zhao, Lei; Sun, Qi-Fan; Jiang, Li; Zhang, Tao; Liu, Hai-Bo; Chen, Jian-Gang; Ye, Jian; Hu, Lan; Li, Cai-Xia

    2016-01-01

    A single-tube multiplex assay of a small set of ancestry-informative markers (AIMs) for effectively estimating individual ancestry and admixture is an ideal forensic tool to trace the population origin of an unknown DNA sample. We present a newly developed 27-plex single nucleotide polymorphism (SNP) panel with highly robust and balanced differential power to perfectly assign individuals to African, European, and East Asian ancestries. Evaluating 968 previously described intercontinental AIMs from three HapMap population genotyping datasets (Yoruban in Ibadan, Nigeria (YRI); Utah residents with Northern and Western European ancestry from the Centre de'Etude du Polymorphism Humain (CEPH) collection (CEU); and Han Chinese in Beijing, China (CHB)), the best set of markers was selected on the basis of Hardy-Weinberg equilibrium (p > 0.00001), population-specific allele frequency (two of three δ values >0.5), according to linkage disequilibrium (r (2) ancestry of the 11 populations in the HapMap project. Then, we tested the 27-plex SNP assay with 1164 individuals from 17 additional populations. The results demonstrated that the SNP panel was successful for ancestry inference of individuals with African, European, and East Asian ancestry. Furthermore, the system performed well when inferring the admixture of Eurasians (EUR/EAS) after analyzing admixed populations from Xinjiang (Central Asian) as follows: Tajik (68:27), Uyghur (49:46), Kirgiz (40:57), and Kazak (36:60). For individual analyses, we interpreted each sample with a three-ancestry component percentage and a population match probability sequence. This multiplex assay is a convenient and cost-effective tool to assist in criminal investigations, as well as to correct for the effects of population stratification for case-control studies.

  2. Whole-genome single-nucleotide polymorphism (SNP marker discovery and association analysis with the eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content in Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Shijun Xiao

    2016-12-01

    Full Text Available Whole-genome single-nucleotide polymorphism (SNP markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms.

  3. Snap: an integrated SNP annotation platform

    DEFF Research Database (Denmark)

    Li, Shengting; Ma, Lijia; Li, Heng

    2007-01-01

    Snap (Single Nucleotide Polymorphism Annotation Platform) is a server designed to comprehensively analyze single genes and relationships between genes basing on SNPs in the human genome. The aim of the platform is to facilitate the study of SNP finding and analysis within the framework of medical...

  4. A forward-backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP array

    Directory of Open Access Journals (Sweden)

    Bailey Dione K

    2007-05-01

    Full Text Available Abstract Background DNA copy number aberration (CNA is one of the key characteristics of cancer cells. Recent studies demonstrated the feasibility of utilizing high density single nucleotide polymorphism (SNP genotyping arrays to detect CNA. Compared with the two-color array-based comparative genomic hybridization (array-CGH, the SNP arrays offer much higher probe density and lower signal-to-noise ratio at the single SNP level. To accurately identify small segments of CNA from SNP array data, segmentation methods that are sensitive to CNA while resistant to noise are required. Results We have developed a highly sensitive algorithm for the edge detection of copy number data which is especially suitable for the SNP array-based copy number data. The method consists of an over-sensitive edge-detection step and a test-based forward-backward edge selection step. Conclusion Using simulations constructed from real experimental data, the method shows high sensitivity and specificity in detecting small copy number changes in focused regions. The method is implemented in an R package FASeg, which includes data processing and visualization utilities, as well as libraries for processing Affymetrix SNP array data.

  5. dbSNP

    Data.gov (United States)

    U.S. Department of Health & Human Services — dbSNP is a database of single nucleotide polymorphisms (SNPs) and multiple small-scale variations that include insertions/deletions, microsatellites, and...

  6. Single nucleotide polymorphism (SNP) variation of wolves (Canis lupus) in Southeast Alaska and comparison with wolves, dogs, and coyotes in North America.

    Science.gov (United States)

    Cronin, Matthew A; Cánovas, Angela; Bannasch, Danika L; Oberbauer, Anita M; Medrano, Juan F

    2015-01-01

    There is considerable interest in the genetics of wolves (Canis lupus) because of their close relationship to domestic dogs (C. familiaris) and the need for informed conservation and management. This includes wolf populations in Southeast Alaska for which we determined genotypes of 305 wolves at 173662 single nucleotide polymorphism (SNP) loci. After removal of invariant and linked SNP, 123801 SNP were used to quantify genetic differentiation of wolves in Southeast Alaska and wolves, coyotes (C. latrans), and dogs from other areas in North America. There is differentiation of SNP allele frequencies between the species (wolves, coyotes, and dogs), although differentiation is relatively low between some wolf and coyote populations. There are varying levels of differentiation among populations of wolves, including low differentiation of wolves in interior Alaska, British Columbia, and the northern US Rocky Mountains. There is considerable differentiation of SNP allele frequencies of wolves in Southeast Alaska from wolves in other areas. However, wolves in Southeast Alaska are not a genetically homogeneous group and there are comparable levels of genetic differentiation among areas within Southeast Alaska and between Southeast Alaska and other geographic areas. SNP variation and other genetic data are discussed regarding taxonomy and management. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Finding markers that make a difference: DNA pooling and SNP-arrays identify population informative markers for genetic stock identification.

    Science.gov (United States)

    Ozerov, Mikhail; Vasemägi, Anti; Wennevik, Vidar; Diaz-Fernandez, Rogelio; Kent, Matthew; Gilbey, John; Prusov, Sergey; Niemelä, Eero; Vähä, Juha-Pekka

    2013-01-01

    Genetic stock identification (GSI) using molecular markers is an important tool for management of migratory species. Here, we tested a cost-effective alternative to individual genotyping, known as allelotyping, for identification of highly informative SNPs for accurate genetic stock identification. We estimated allele frequencies of 2880 SNPs from DNA pools of 23 Atlantic salmon populations using Illumina SNP-chip. We evaluated the performance of four common strategies (global F ST, pairwise F ST, Delta and outlier approach) for selection of the most informative set of SNPs and tested their effectiveness for GSI compared to random sets of SNP and microsatellite markers. For the majority of cases, SNPs selected using the outlier approach performed best followed by pairwise F ST and Delta methods. Overall, the selection procedure reduced the number of SNPs required for accurate GSI by up to 53% compared with randomly chosen SNPs. However, GSI accuracy was more affected by populations in the ascertainment group rather than the ranking method itself. We demonstrated for the first time the compatibility of different large-scale SNP datasets by compiling the largest population genetic dataset for Atlantic salmon to date. Finally, we showed an excellent performance of our top SNPs on an independent set of populations covering the main European distribution range of Atlantic salmon. Taken together, we demonstrate how combination of DNA pooling and SNP arrays can be applied for conservation and management of salmonids as well as other species.

  8. Finding markers that make a difference: DNA pooling and SNP-arrays identify population informative markers for genetic stock identification.

    Directory of Open Access Journals (Sweden)

    Mikhail Ozerov

    Full Text Available Genetic stock identification (GSI using molecular markers is an important tool for management of migratory species. Here, we tested a cost-effective alternative to individual genotyping, known as allelotyping, for identification of highly informative SNPs for accurate genetic stock identification. We estimated allele frequencies of 2880 SNPs from DNA pools of 23 Atlantic salmon populations using Illumina SNP-chip. We evaluated the performance of four common strategies (global F ST, pairwise F ST, Delta and outlier approach for selection of the most informative set of SNPs and tested their effectiveness for GSI compared to random sets of SNP and microsatellite markers. For the majority of cases, SNPs selected using the outlier approach performed best followed by pairwise F ST and Delta methods. Overall, the selection procedure reduced the number of SNPs required for accurate GSI by up to 53% compared with randomly chosen SNPs. However, GSI accuracy was more affected by populations in the ascertainment group rather than the ranking method itself. We demonstrated for the first time the compatibility of different large-scale SNP datasets by compiling the largest population genetic dataset for Atlantic salmon to date. Finally, we showed an excellent performance of our top SNPs on an independent set of populations covering the main European distribution range of Atlantic salmon. Taken together, we demonstrate how combination of DNA pooling and SNP arrays can be applied for conservation and management of salmonids as well as other species.

  9. The rs5934505 single nucleotide polymorphism (SNP) is associated with low testosterone and late-onset hypogonadism, but the rs10822184 SNP is associated with overweight and obesity in a Chinese Han population: a case-control study.

    Science.gov (United States)

    Chen, Y-P; Nie, L-L; Li, H-G; Liu, T-H; Fang, F; Zhao, K; Yang, R-F; Ma, X-L; Kong, X-B; Zhang, H-P; Guan, H-T; Xia, W; Hong, W-X; Duan, S; Zeng, X-C; Shang, X-J; Zhou, Y-Z; Gu, Y-Q; Wu, W-X; Xiong, C-L

    2016-01-01

    Low testosterone is associated with late-onset hypogonadism (LOH) and obesity. Recently, studies have shown that four single nucleotide polymorphisms (SNPs), rs12150660, rs727428, rs5934505, and rs10822184, are associated with testosterone levels in populations of European descent. Therefore, we investigated whether the SNP loci are related to low testosterone, LOH, or obesity in a Chinese Han population. Ruling out co-morbidities, DNA was prepared from 409 men (aged 40-65 years) with low serum testosterone (defined as total testosterone testosterone and calculated free testosterone (CFT) levels (p = 0.045 and p = 0.021). rs5934505 (C>T) was associated with an increased risk of low total testosterone, low CFT, and LOH and adjusted for other factors, with an odds ratio (OR) of 2.01 (1.34-3.01), 2.14 (1.42-3.20), and 1.64 (1.04-2.58). rs10822184 was significantly correlated with weight and BMI (p = 0.035 and p = 0.027). rs10822184 (T>C) was associated with an increased risk of overweight and obesity. We adjusted for other factors, with odds ratios (ORs) of 1.94 (1.36-2.78) and 1.56 (1.00-2.43). In summary, our study provided convincing evidence that rs5934505 (C>T) was associated with the risk of low testosterone and LOH in Chinese populations. We were the first to find that rs10822184 (T>C) was significantly correlated with the risk of overweight and obesity in Chinese populations. However, further large and functional studies are warranted to confirm our findings. © 2015 American Society of Andrology and European Academy of Andrology.

  10. QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species

    NARCIS (Netherlands)

    Tang, J.; Vosman, B.; Voorrips, R.E.; Linden, van der C.G.; Leunissen, J.A.M.

    2006-01-01

    Background - Single nucleotide polymorphisms (SNPs) are important tools in studying complex genetic traits and genome evolution. Computational strategies for SNP discovery make use of the large number of sequences present in public databases (in most cases as expressed sequence tags (ESTs)) and are

  11. Finding Markers That Make a Difference: DNA Pooling and SNP-Arrays Identify Population Informative Markers for Genetic Stock Identification

    OpenAIRE

    Ozerov, Mikhail; Vasem?gi, Anti; Wennevik, Vidar; Diaz-Fernandez, Rogelio; Kent, Matthew; Gilbey, John; Prusov, Sergey; Niemel?, Eero; V?h?, Juha-Pekka

    2013-01-01

    Genetic stock identification (GSI) using molecular markers is an important tool for management of migratory species. Here, we tested a cost-effective alternative to individual genotyping, known as allelotyping, for identification of highly informative SNPs for accurate genetic stock identification. We estimated allele frequencies of 2880 SNPs from DNA pools of 23 Atlantic salmon populations using Illumina SNP-chip. We evaluated the performance of four common strategies (global F ST, pairwise ...

  12. Analysis of multiple single nucleotide polymorphisms (SNP) on DNA traces from plasma and dried blood samples

    NARCIS (Netherlands)

    Catsburg, Arnold; van der Zwet, Wil C.; Morre, Servaas A.; Ouburg, Sander; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2007-01-01

    Reliable analysis of single nucleotide polymorphisms (SNPs) in DNA derived from samples containing low numbers of cells or from suboptimal sources can be difficult. A new procedure to characterize multiple SNPs in traces of DNA from plasma and old dried blood samples was developed. Six SNPs in the

  13. Results based on 124 cases of breast cancer and 97 controls from Taiwan suggest that the single nucleotide polymorphism (SNP309 in the MDM2 gene promoter is associated with earlier onset and increased risk of breast cancer

    Directory of Open Access Journals (Sweden)

    Lin I-Feng

    2009-01-01

    Full Text Available Abstract Background It has been suggested that the single nucleotide polymorphism 309 (SNP309, T -> G in the promoter region of the MDM2 gene is important for tumor development; however, with regards to breast cancer, inconsistent associations have been reported worldwide. It is speculated that these conflicting results may have arisen due to different patient subgroups and ethnicities studied. For the first time, this study explores the effect of the MDM2 SNP309 genotype on Taiwanese breast cancer patients. Methods Genomic DNA was obtained from the whole blood of 124 breast cancer patients and 97 cancer-free healthy women living in Taiwan. MDM2 SNP309 genotyping was carried out by restriction fragment length polymorphism (RFLP assay. The multivariate logistic regression and the Kaplan-Meier method were used for analyzing the risk association and significance of age at diagnosis among different MDM2 SNP309 genotypes, respectively. Results Compared to the TT genotype, an increased risk association with breast cancer was apparent for the GG genotype (OR = 3.05, 95% CI = 1.04 to 8.95, and for the TG genotype (OR = 2.12, 95% CI = 0.90 to 5.00 after adjusting for age, cardiovascular disease/diabetes, oral contraceptive usage, and body mass index, which exhibits significant difference between cases and controls. Furthermore, the average ages at diagnosis for breast cancer patients were 53.6, 52 and 47 years for those harboring TT, TG and GG genotypes, respectively. A significant difference in median age of onset for breast cancer between GG and TT+TG genotypes was obtained by the log-rank test (p = 0.0067. Conclusion Findings based on the current sample size suggest that the MDM2 SNP309 GG genotype may be associated with both the risk of breast cancer and an earlier age of onset in Taiwanese women.

  14. QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species

    Directory of Open Access Journals (Sweden)

    Voorrips Roeland E

    2006-10-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are important tools in studying complex genetic traits and genome evolution. Computational strategies for SNP discovery make use of the large number of sequences present in public databases (in most cases as expressed sequence tags (ESTs and are considered to be faster and more cost-effective than experimental procedures. A major challenge in computational SNP discovery is distinguishing allelic variation from sequence variation between paralogous sequences, in addition to recognizing sequencing errors. For the majority of the public EST sequences, trace or quality files are lacking which makes detection of reliable SNPs even more difficult because it has to rely on sequence comparisons only. Results We have developed a new algorithm to detect reliable SNPs and insertions/deletions (indels in EST data, both with and without quality files. Implemented in a pipeline called QualitySNP, it uses three filters for the identification of reliable SNPs. Filter 1 screens for all potential SNPs and identifies variation between or within genotypes. Filter 2 is the core filter that uses a haplotype-based strategy to detect reliable SNPs. Clusters with potential paralogs as well as false SNPs caused by sequencing errors are identified. Filter 3 screens SNPs by calculating a confidence score, based upon sequence redundancy and quality. Non-synonymous SNPs are subsequently identified by detecting open reading frames of consensus sequences (contigs with SNPs. The pipeline includes a data storage and retrieval system for haplotypes, SNPs and alignments. QualitySNP's versatility is demonstrated by the identification of SNPs in EST datasets from potato, chicken and humans. Conclusion QualitySNP is an efficient tool for SNP detection, storage and retrieval in diploid as well as polyploid species. It is available for running on Linux or UNIX systems. The program, test data, and user manual are available at

  15. QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species

    Science.gov (United States)

    Tang, Jifeng; Vosman, Ben; Voorrips, Roeland E; van der Linden, C Gerard; Leunissen, Jack AM

    2006-01-01

    Background Single nucleotide polymorphisms (SNPs) are important tools in studying complex genetic traits and genome evolution. Computational strategies for SNP discovery make use of the large number of sequences present in public databases (in most cases as expressed sequence tags (ESTs)) and are considered to be faster and more cost-effective than experimental procedures. A major challenge in computational SNP discovery is distinguishing allelic variation from sequence variation between paralogous sequences, in addition to recognizing sequencing errors. For the majority of the public EST sequences, trace or quality files are lacking which makes detection of reliable SNPs even more difficult because it has to rely on sequence comparisons only. Results We have developed a new algorithm to detect reliable SNPs and insertions/deletions (indels) in EST data, both with and without quality files. Implemented in a pipeline called QualitySNP, it uses three filters for the identification of reliable SNPs. Filter 1 screens for all potential SNPs and identifies variation between or within genotypes. Filter 2 is the core filter that uses a haplotype-based strategy to detect reliable SNPs. Clusters with potential paralogs as well as false SNPs caused by sequencing errors are identified. Filter 3 screens SNPs by calculating a confidence score, based upon sequence redundancy and quality. Non-synonymous SNPs are subsequently identified by detecting open reading frames of consensus sequences (contigs) with SNPs. The pipeline includes a data storage and retrieval system for haplotypes, SNPs and alignments. QualitySNP's versatility is demonstrated by the identification of SNPs in EST datasets from potato, chicken and humans. Conclusion QualitySNP is an efficient tool for SNP detection, storage and retrieval in diploid as well as polyploid species. It is available for running on Linux or UNIX systems. The program, test data, and user manual are available at and as Additional files

  16. saSNP Approach for Scalable SNP Analyses of Multiple Bacterial or Viral Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Shea [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Slezak, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-07-27

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs. The method is fast to compute, finding SNPs and building a SNP phylogeny in seconds to hours. We use it to identify thousands of putative SNPs from all publicly available Filoviridae, Poxviridae, foot-and-mouth disease virus, Bacillus, and Escherichia coli genomes and plasmids. The SNP-based trees that result are consistent with known taxonomy and trees determined in other studies. The approach we describe can handle as input hundreds of gigabases of sequence in a single run. The algorithm is based on k-mer analysis using a suffix array, so we call it saSNP.

  17. Report on ISFG SNP Panel Discussion

    DEFF Research Database (Denmark)

    Butler, John M.; Budowle, B.; Gill, P.

    2008-01-01

    Six scientists presented their views and experience with single nucleotide polymorphism (SNP) markers, multiplexes, and methods regarding their potential application in forensic identity and relationship testing. Benefits and limitations of SNPs were reviewed, as were different SNP marker...

  18. Report on ISFG SNP Panel Discussion

    DEFF Research Database (Denmark)

    Butler, John M.; Budowle, B.; Gill, P.

    2008-01-01

    Six scientists presented their views and experience with single nucleotide polymorphism (SNP) markers, multiplexes, and methods regarding their potential application in forensic identity and relationship testing. Benefits and limitations of SNPs were reviewed, as were different SNP marker categor...

  19. Preliminary Study on the Single Nucleotide Polymorphism (SNP of XRCC1 Gene Identificationto Improve the Outcomes of Radiotherapy for Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Devita Tetriana

    2015-09-01

    Full Text Available Cervical cancer is the most fatal disease among Indonesian women. In recognition of the substantial variation in the intrinsic response of individuals to radiation, an effort had been done to identify the genetic markers, primarily Single Nucleotide polymorphisms (SNPs, which are associated with responsiveness of cancer cells to radiation therapy. One of these SNPs is X-ray repair cross-complementing protein 1 (XRCC1 that is one of the most important genes in deoxyribonucleic acid (DNA repair pathways. Meta-analysis in the determination of the association of XRCC1 polymorphisms with cervical cancer revealed the potential role of XRCC1 polymorphisms in predicting cell response to radiotherapy.Our preliminary study with real-time polymerase chain reaction (RT-PCR showed that radiotherapy affected the XRCC1 gene analyzed in blood of cervical cancer patient. Other published study found three SNPs of XRCC1 (Arg194Trp, Arg280His, and Arg399Gln that cause amino acid substitutions. Arg194Trp is only SNPs that associated with high risk of cervical cancer but not others. Additionally, structure and function of this protein can be altered by functional SNPs, which may lead to the susceptibility of individuals to cancers. Anotherstudy found G399A polymorphisms. We concluded that SNP of this DNA repair genes have been found to be good predictors of efficacy of radiotherapy.Kanker serviks adalah penyakit yang paling fatal pada perempuan di Indonesia. Untuk memahami variasi substansial respon intrinsik individual terhadap radiasi, suatu usaha telah dilakukan untuk mengidentifikasi petanda genetik, terutama Single Nucleotide polymorphism (SNP, yang berkaitan dengan responsel kanker terhadap terapi radiasi. Satu dari SNP tersebut adalah X-ray repair cross-complementing protein 1 (XRCC1 yang merupakan satu dari gen paling penting dalam lajur perbaikan asam deoksiribonukleat (DNA. Meta-analysis dalam penentuan hubungan polimorfisme XRCC1 dengan kanker serviks

  20. STAT3 single nucleotide polymorphism rs4796793 SNP does not correlate with response to adjuvant IFNα therapy in stage III melanoma patients

    Directory of Open Access Journals (Sweden)

    David eSchrama

    2014-11-01

    Full Text Available Interferon alpha (IFNα is approved for adjuvant treatment of stage III melanoma in Europe and the US. Its clinical efficacy, however, is restricted to a subpopulation of patients while side effects occur in most of treated patients. Thus, the identification of predictive biomarkers would be highly beneficial to improve the benefit to risk ratio. In this regard, STAT3 is important for signaling of the IFNα receptor. Moreover, the STAT3 single nucleotide polymorphism (SNP rs4796793 has recently been reported to be associated with IFNα sensitivity in metastatic renal cell carcinoma. To translate this notion to melanoma, we scrutinized the impact of rs4796793 functionally and clinically in this cancer. Interestingly, melanoma cells carrying the minor allele of rs4796793 were the most sensitive to IFNα in vitro. However, we did not detect a correlation between SNP genotype and STAT3 mRNA expression for either melanoma cells or for peripheral blood lymphocytes. Next, we analyzed the impact of rs4796793 on the clinical outcome of 259 stage III melanoma patients of which one third had received adjuvant IFNα treatment. These analyses did not reveal a significant association between the STAT3 rs4796793 SNP and patients’ progression free or overall survival when IFN treated and untreated patients were compared. In conclusion, STAT3 rs4796793 SNP is no predictive marker for the efficacy of adjuvant IFNα treatment in melanoma patients.

  1. SNP-PHAGE – High throughput SNP discovery pipeline

    Directory of Open Access Journals (Sweden)

    Cregan Perry B

    2006-10-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs as defined here are single base sequence changes or short insertion/deletions between or within individuals of a given species. As a result of their abundance and the availability of high throughput analysis technologies SNP markers have begun to replace other traditional markers such as restriction fragment length polymorphisms (RFLPs, amplified fragment length polymorphisms (AFLPs and simple sequence repeats (SSRs or microsatellite markers for fine mapping and association studies in several species. For SNP discovery from chromatogram data, several bioinformatics programs have to be combined to generate an analysis pipeline. Results have to be stored in a relational database to facilitate interrogation through queries or to generate data for further analyses such as determination of linkage disequilibrium and identification of common haplotypes. Although these tasks are routinely performed by several groups, an integrated open source SNP discovery pipeline that can be easily adapted by new groups interested in SNP marker development is currently unavailable. Results We developed SNP-PHAGE (SNP discovery Pipeline with additional features for identification of common haplotypes within a sequence tagged site (Haplotype Analysis and GenBank (-dbSNP submissions. This tool was applied for analyzing sequence traces from diverse soybean genotypes to discover over 10,000 SNPs. This package was developed on UNIX/Linux platform, written in Perl and uses a MySQL database. Scripts to generate a user-friendly web interface are also provided with common queries for preliminary data analysis. A machine learning tool developed by this group for increasing the efficiency of SNP discovery is integrated as a part of this package as an optional feature. The SNP-PHAGE package is being made available open source at http://bfgl.anri.barc.usda.gov/ML/snp-phage/. Conclusion SNP-PHAGE provides a bioinformatics

  2. Accuracy of Assignment of Atlantic Salmon (Salmo salar L. to Rivers and Regions in Scotland and Northeast England Based on Single Nucleotide Polymorphism (SNP Markers.

    Directory of Open Access Journals (Sweden)

    John Gilbey

    Full Text Available Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L., and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations.

  3. Accuracy of Assignment of Atlantic Salmon (Salmo salar L.) to Rivers and Regions in Scotland and Northeast England Based on Single Nucleotide Polymorphism (SNP) Markers.

    Science.gov (United States)

    Gilbey, John; Cauwelier, Eef; Coulson, Mark W; Stradmeyer, Lee; Sampayo, James N; Armstrong, Anja; Verspoor, Eric; Corrigan, Laura; Shelley, Jonathan; Middlemas, Stuart

    2016-01-01

    Understanding the habitat use patterns of migratory fish, such as Atlantic salmon (Salmo salar L.), and the natural and anthropogenic impacts on them, is aided by the ability to identify individuals to their stock of origin. Presented here are the results of an analysis of informative single nucleotide polymorphic (SNP) markers for detecting genetic structuring in Atlantic salmon in Scotland and NE England and their ability to allow accurate genetic stock identification. 3,787 fish from 147 sites covering 27 rivers were screened at 5,568 SNP markers. In order to identify a cost-effective subset of SNPs, they were ranked according to their ability to differentiate between fish from different rivers. A panel of 288 SNPs was used to examine both individual assignments and mixed stock fisheries and eighteen assignment units were defined. The results improved greatly on previously available methods and, for the first time, fish caught in the marine environment can be confidently assigned to geographically coherent units within Scotland and NE England, including individual rivers. As such, this SNP panel has the potential to aid understanding of the various influences acting upon Atlantic salmon on their marine migrations, be they natural environmental variations and/or anthropogenic impacts, such as mixed stock fisheries and interactions with marine power generation installations.

  4. The CD14 C-260T single nucleotide polymorphism (SNP) modulates monocyte/macrophage activation in treated HIV-infected individuals.

    Science.gov (United States)

    Rajasuriar, Reena; Kong, Yong Yean; Nadarajah, Reshika; Abdullah, Noor Kamila; Spelman, Tim; Yuhana, Muhamad Yazli; Ponampalavanar, Sasheela; Kamarulzaman, Adeeba; Lewin, Sharon R

    2015-01-27

    HIV-infected individuals have an increased risk of cardiovascular disease (CVD). T-allele carriers of the CD14 C-260T single-nucleotide polymorphism (SNP) have reported increased expression of the LPS-binding receptor, CD14 and inflammation in the general population. Our aim was to explore the relationship of this SNP with monocyte/macrophage activation and inflammation and its association with sub-clinical atherosclerosis in HIV-infected individuals. Patients with no pre-existing CVD risk factors on suppressive antiretroviral therapy were recruited from University Malaya Medical Centre, Malaysia (n = 84). The CD14 C-260T and TLR4 SNPs, Asp299Gly and Thr399Ile were genotyped and soluble(s) CD14 and sCD163 and high-sensitivity C-reactive protein, hsCRP were measured in plasma. Subclinical atherosclerosis was assessed by measuring carotid intima media thickness (cIMT). The association between CD14 C-260T SNP carriage and cIMT was assessed in a multivariable quantile regression model where a p-value of CVD risk profile.

  5. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W

    2014-09-01

    A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

  6. Using 2k + 2 bubble searches to find single nucleotide polymorphisms in k-mer graphs.

    Science.gov (United States)

    Younsi, Reda; MacLean, Dan

    2015-03-01

    Single nucleotide polymorphism (SNP) discovery is an important preliminary for understanding genetic variation. With current sequencing methods, we can sample genomes comprehensively. SNPs are found by aligning sequence reads against longer assembled references. De Bruijn graphs are efficient data structures that can deal with the vast amount of data from modern technologies. Recent work has shown that the topology of these graphs captures enough information to allow the detection and characterization of genetic variants, offering an alternative to alignment-based methods. Such methods rely on depth-first walks of the graph to identify closing bifurcations. These methods are conservative or generate many false-positive results, particularly when traversing highly inter-connected (complex) regions of the graph or in regions of very high coverage. We devised an algorithm that calls SNPs in converted De Bruijn graphs by enumerating 2k + 2 cycles. We evaluated the accuracy of predicted SNPs by comparison with SNP lists from alignment-based methods. We tested accuracy of the SNP calling using sequence data from 16 ecotypes of Arabidopsis thaliana and found that accuracy was high. We found that SNP calling was even across the genome and genomic feature types. Using sequence-based attributes of the graph to train a decision tree allowed us to increase accuracy of SNP calls further. Together these results indicate that our algorithm is capable of finding SNPs accurately in complex sub-graphs and potentially comprehensively from whole genome graphs. The source code for a C++ implementation of our algorithm is available under the GNU Public Licence v3 at: https://github.com/danmaclean/2kplus2. The datasets used in this study are available at the European Nucleotide Archive, reference ERP00565, http://www.ebi.ac.uk/ena/data/view/ERP000565. © The Author 2014. Published by Oxford University Press.

  7. Analysis of Single Nucleotide Polymorphism (SNP rs22114085 Associated with Canine Atopic Dermatitis by PCR-RFLP Method

    Directory of Open Access Journals (Sweden)

    Martina Miluchová

    2012-05-01

    Full Text Available Canine atopic dermatitis (cAD is a common inflammatory skin disease that is considered to be a naturally occurring, spontaneous model of human atopic dermatitis (eczema. The aim of the paper was to identify of the SNP rs22114085 in different dog breeds. The material involved 52 dogs from 5 different breeds. Canine genomic DNA was isolated from saliva by modified method with using DNAzol® and linear polyacrylamide (LPA carrier and from blood by using commercial kit NucleospinBlood and used in order to estimate rs22114085 SNP genotypes by PCR-RFLP method. The PCR products were digested with DdeI restriction enzyme. The C allele was distributed in Czech Pointer, Chihuahua, German Wirehaired Pointer with an allele frequency ranging from 0.4545 to 1.00. In the population of Czech Pointer we detected all genotypes CC, CT and TT with frequency in male 0.25, 0.5833 and 0.1667, and in female 0.2728, 0.3636 and 0.3636, subsequently. In German Wirehaired Pointer was detected homozygote genotype CC in male and heterozygote genotype CT in female with frequency 1 and 1. In Chihuahua was observed homozygote genotype CC and heterozygote genotype CT with frequency 0.3333 and 0.6667, subsequently. In Golden retriever and Pincher we detected genotype TT with frequency 1.

  8. Analysis of single nucleotide polymorphism (SNP RS23472497 associated with canine atopic dermatitis by ACRS-PCR method

    Directory of Open Access Journals (Sweden)

    Martina Miluchová

    2014-05-01

    Full Text Available The aim of the paper was to identify of the SNP rs23472497 associated with canine atopic dermatitis (cAD. cAD is a common inflammatory skin disease that is considered to be a naturally occurring, spontaneous model of human atopic dermatitis (eczema. The material involved 60 dogs from 6 different breeds. Canine genomic DNA was isolated from saliva by modified method with using DNAzol® and linear polyacrylamide (LPA carrier and from blood by using commercial kit NucleospinBlood and used in order to estimate rs23472497 SNP genotypes by ACRS-PCR method. The PCR products were digested with NlaIII restriction enzyme. In the population of Czech Pointer and Slovak Wirehaired Pointer we detected all genotypes AA, AG and GG with frequency 0.0732, 0.5122 and 0.4146 for Czech Pointer and 0.1818, 0.5455 and 0.2727 for Slovak Wirehaired Pointer. In Border Collie was observed heterozygote genotype AG and homozygote genotype GG with frequency 0.6667 and 0.3333, subsequently. In German Wirehaired Pointer, Australian Shepherd dog and American Staffordshire terrier we detected only genotype AG with frequency 1. The A allele was distributed with an allele frequency ranging from 0.3293 to 0.5. The G allele was distributed with an allele frequency ranging from 0.5 to 0.6707.

  9. An improved PSO algorithm for generating protective SNP barcodes in breast cancer.

    Science.gov (United States)

    Chuang, Li-Yeh; Lin, Yu-Da; Chang, Hsueh-Wei; Yang, Cheng-Hong

    2012-01-01

    Possible single nucleotide polymorphism (SNP) interactions in breast cancer are usually not investigated in genome-wide association studies. Previously, we proposed a particle swarm optimization (PSO) method to compute these kinds of SNP interactions. However, this PSO does not guarantee to find the best result in every implement, especially when high-dimensional data is investigated for SNP-SNP interactions. In this study, we propose IPSO algorithm to improve the reliability of PSO for the identification of the best protective SNP barcodes (SNP combinations and genotypes with maximum difference between cases and controls) associated with breast cancer. SNP barcodes containing different numbers of SNPs were computed. The top five SNP barcode results are retained for computing the next SNP barcode with a one-SNP-increase for each processing step. Based on the simulated data for 23 SNPs of six steroid hormone metabolisms and signalling-related genes, the performance of our proposed IPSO algorithm is evaluated. Among 23 SNPs, 13 SNPs displayed significant odds ratio (OR) values (1.268 to 0.848; pPSO algorithm, two to four SNPs show significantly decreasing OR values (0.84 to 0.77; pPSO. The interquartile ranges of the boxplot, as well as the upper and lower hinges for each n-SNP barcode (n = 3∼10) are more narrow in IPSO than in PSO, suggesting that IPSO is highly reliable for SNP barcode identification. Overall, the proposed IPSO algorithm is robust to provide exact identification of the best protective SNP barcodes for breast cancer.

  10. Identification of the varietal origin of processed loose-leaf tea based on analysis of a single leaf by SNP nanofluidic array

    Directory of Open Access Journals (Sweden)

    Wanping Fang

    2016-08-01

    Full Text Available Tea is an important cash crop, representing a $40 billion-a-year global market. Differentiation of the tea market has resulted in increasing demand for tea products that are sustainably and responsibly produced. Tea authentication is important because of growing concerns about fraud involving premium tea products. Analytical technologies are needed for protection and value enhancement of high-quality brands. For loose-leaf teas, the challenge is that the authentication needs to be established on the basis of a single leaf, so that the products can be traced back to the original varieties. A new generation of molecular markers offers an ideal solution for authentication of processed agricultural products. Using a nanofluidic array to identify variant SNP sequences, we tested genetic identities using DNA extracted from single leaves of 14 processed commercial tea products. Based on the profiles of 60 SNP markers, the genetic identity of each tea sample was unambiguously identified by multilocus matching and ordination analysis. Results for repeated samples of multiple tea leaves from the same products (using three independent DNA extractions showed 100% concordance, showing that the nanofluidic system is a reliable platform for generating tea DNA fingerprints with high accuracy. The method worked well on green, oolong, and black teas, and can handle a large number of samples in a short period of time. It is robust and cost-effective, thus showing high potential for practical application in the value chain of the tea industry.

  11. Validation of a single nucleotide polymorphism (SNP) typing assay with 49 SNPs for forensic genetic testing in a laboratory accredited according to the ISO 17025 standard

    DEFF Research Database (Denmark)

    Børsting, Claus; Rockenbauer, Eszter; Morling, Niels

    2009-01-01

    cases and 33 twin cases were typed at least twice for the 49 SNPs. All electropherograms were analysed independently by two expert analysts prior to approval. Based on these results, detailed guidelines for analysis of the SBE products were developed. With these guidelines, the peak height ratio...... of a heterozygous allele call or the signal to noise ratio of a homozygous allele call is compared with previously obtained ratios. A laboratory protocol for analysis of SBE products was developed where allele calls with unusual ratios were highlighted to facilitate the analysis of difficult allele calls......A multiplex assay with 49 autosomal single nucleotide polymorphisms (SNPs) developed for human identification was validated for forensic genetic casework and accredited according to the ISO 17025 standard. The multiplex assay was based on the SNPforID 52plex SNP assay [J.J. Sanchez, C. Phillips, C...

  12. An improved PSO algorithm for generating protective SNP barcodes in breast cancer.

    Directory of Open Access Journals (Sweden)

    Li-Yeh Chuang

    Full Text Available BACKGROUND: Possible single nucleotide polymorphism (SNP interactions in breast cancer are usually not investigated in genome-wide association studies. Previously, we proposed a particle swarm optimization (PSO method to compute these kinds of SNP interactions. However, this PSO does not guarantee to find the best result in every implement, especially when high-dimensional data is investigated for SNP-SNP interactions. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we propose IPSO algorithm to improve the reliability of PSO for the identification of the best protective SNP barcodes (SNP combinations and genotypes with maximum difference between cases and controls associated with breast cancer. SNP barcodes containing different numbers of SNPs were computed. The top five SNP barcode results are retained for computing the next SNP barcode with a one-SNP-increase for each processing step. Based on the simulated data for 23 SNPs of six steroid hormone metabolisms and signalling-related genes, the performance of our proposed IPSO algorithm is evaluated. Among 23 SNPs, 13 SNPs displayed significant odds ratio (OR values (1.268 to 0.848; p<0.05 for breast cancer. Based on IPSO algorithm, the jointed effect in terms of SNP barcodes with two to seven SNPs show significantly decreasing OR values (0.84 to 0.57; p<0.05 to 0.001. Using PSO algorithm, two to four SNPs show significantly decreasing OR values (0.84 to 0.77; p<0.05 to 0.001. Based on the results of 20 simulations, medians of the maximum differences for each SNP barcode generated by IPSO are higher than by PSO. The interquartile ranges of the boxplot, as well as the upper and lower hinges for each n-SNP barcode (n = 3∼10 are more narrow in IPSO than in PSO, suggesting that IPSO is highly reliable for SNP barcode identification. CONCLUSIONS/SIGNIFICANCE: Overall, the proposed IPSO algorithm is robust to provide exact identification of the best protective SNP barcodes for breast cancer.

  13. Footprints of domestication revealed by RAD-tag resequencing in loquat: SNP data reveals a non-significant domestication bottleneck and a single domestication event.

    Science.gov (United States)

    Wang, Yunsheng; Shahid, Muhammad Qasim; Lin, Shunquan; Chen, Chengjie; Hu, Chen

    2017-05-06

    The process of crop domestication has long been a major area of research to gain insights into the history of human civilization and to understand the process of evolution. Loquat (Eriobotrya japonica Lindl.) is one of the typical subtropical fruit trees, which was domesticated in China at least 2000 years ago. In the present study, we re-sequenced the genome of nine wild loquat accessions collected from wide geographical range and 10 representative cultivated loquat cultivars by using RAD-tag tacit to exploit the molecular footprints of domestication. We obtained 26.4 Gb clean sequencing data from 19 loquat accessions, with an average of 32.64 M reads per genotype. We identified more than 80,000 SNPs distributed throughout the loquat genome. The SNP density and numbers were slightly higher in the wild loquat populations than that in the cultivated populations. All cultivars were clustered together by structure, phylogenetic and PCA analyses. The modern loquat cultivars have experienced a non-significant genetic bottleneck during domestication, and originated from a single domesticated event. Moreover, our study revealed that Hubei province of China is probably the origin center of cultivated loquat.

  14. Single nucleotide polymorphism (SNP discovery in duplicated genomes: intron-primed exon-crossing (IPEC as a strategy for avoiding amplification of duplicated loci in Atlantic salmon (Salmo salar and other salmonid fishes

    Directory of Open Access Journals (Sweden)

    Primmer Craig R

    2006-07-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs represent the most abundant type of DNA variation in the vertebrate genome, and their applications as genetic markers in numerous studies of molecular ecology and conservation of natural populations are emerging. Recent large-scale sequencing projects in several fish species have provided a vast amount of data in public databases, which can be utilized in novel SNP discovery in salmonids. However, the suggested duplicated nature of the salmonid genome may hamper SNP characterization if the primers designed in conserved gene regions amplify multiple loci. Results Here we introduce a new intron-primed exon-crossing (IPEC method in an attempt to overcome this duplication problem, and also evaluate different priming methods for SNP discovery in Atlantic salmon (Salmo salar and other salmonids. A total of 69 loci with differing priming strategies were screened in S. salar, and 27 of these produced ~13 kb of high-quality sequence data consisting of 19 SNPs or indels (one per 680 bp. The SNP frequency and the overall nucleotide diversity (3.99 × 10-4 in S. salar was lower than reported in a majority of other organisms, which may suggest a relative young population history for Atlantic salmon. A subset of primers used in cross-species analyses revealed considerable variation in the SNP frequencies and nucleotide diversities in other salmonids. Conclusion Sequencing success was significantly higher with the new IPEC primers; thus the total number of loci to screen in order to identify one potential polymorphic site was six times less with this new strategy. Given that duplication may hamper SNP discovery in some species, the IPEC method reported here is an alternative way of identifying novel polymorphisms in such cases.

  15. Use of different marker pre-selection methods based on single SNP regression in the estimation of Genomic-EBVs

    Directory of Open Access Journals (Sweden)

    Corrado Dimauro

    2010-01-01

    Full Text Available Two methods of SNPs pre-selection based on single marker regression for the estimation of genomic breeding values (G-EBVs were compared using simulated data provided by the XII QTL-MAS workshop: i Bonferroni correction of the significance threshold and ii Permutation test to obtain the reference distribution of the null hypothesis and identify significant markers at P<0.01 and P<0.001 significance thresholds. From the set of markers significant at P<0.001, random subsets of 50% and 25% markers were extracted, to evaluate the effect of further reducing the number of significant SNPs on G-EBV predictions. The Bonferroni correction method allowed the identification of 595 significant SNPs that gave the best G-EBV accuracies in prediction generations (82.80%. The permutation methods gave slightly lower G-EBV accuracies even if a larger number of SNPs resulted significant (2,053 and 1,352 for 0.01 and 0.001 significance thresholds, respectively. Interestingly, halving or dividing by four the number of SNPs significant at P<0.001 resulted in an only slightly decrease of G-EBV accuracies. The genetic structure of the simulated population with few QTL carrying large effects, might have favoured the Bonferroni method.

  16. Diagnosis of adult-type hypolactasia/lactase persistence: genotyping of single nucleotide polymorphism (SNP C/T-13910 is not consistent with breath test in Colombian Caribbean population

    Directory of Open Access Journals (Sweden)

    Evelyn Mendoza Torres

    2012-03-01

    Full Text Available CONTEXT: Genotyping of single nucleotide polymorphism (SNP C/T-13910 located upstream of the lactase gene is used to determine adult-type hypolactasia/lactase persistence in North-European Caucasian subjects. The applicability of this polymorphism has been studied by comparing it with the standard diagnostic methods in different populations. OBJECTIVE: To compare the lactose hydrogen breath test with the genetic test in a sample of the Colombian Caribbean population. METHODS: Lactose hydrogen breath test and genotyping of SNP C/T-13910 were applied to 128 healthy individuals (mean age 35 ± 1. A positive lactose hydrogen breath test was indicative of hypolactasia. Genotyping was done using polymerase chain reaction/restriction fragment length polymorphism. The kappa index was used to establish agreement between the two methods. RESULTS: Seventy-six subjects (59% were lactose-maldigesters (hypolactasia and 52 subjects (41% were lactose-digesters (lactase persistence. The frequencies of the CC, CT and TT genotypes were 80%, 20% and 0%, respectively. Genotyping had 97% sensitivity and 46% specificity. The kappa index = 0.473 indicates moderate agreement between the genotyping of SNP C/T-13910 and the lactose hydrogen breath test. CONCLUSION: The moderate agreement indicates that the genotyping of the SNP C/T-13910 is not applicable to determine adult-type hypolactasia/lactase persistence in the population participating in this study.

  17. Identification of Single Nucleotide Polymorphism (SNP in Mono Amine Oxidase A (MAO-A Gene as a genetic marker for aggressiveness in sheep

    Directory of Open Access Journals (Sweden)

    Eko Handiwirawan

    2012-12-01

    Full Text Available In the population, there are aggressive sheep in a small number which requires special management those specific animal house and routine management. The purpose of this study was to identify the variation of DNA marker SNP (single nucleotide polymorphism as a genetic marker for the aggressive trait in several of sheep breed. The identification of point mutations in exon 8 of MAO-A gene associated with aggressive behavior in sheep may be further useful to become of DNA markers for the aggressive trait in sheep. Five of sheep breed were used, i.e.: Barbados Black belly Cross sheep (BC, Composite Garut (KG, Local Garut (LG, Composite Sumatra (KS and St. Cross Croix (SC. Duration of ten behavior traits, blood serotonin concentrations and DNA sequence of exon 8 of MAO-A gene from the sheep aggressive and nonaggressive were observed. PROC GLM of SAS Ver. 9.0 program was used to analyze variable behavior and blood serotonin concentrations. DNA polymorphism in exon 8 of MAO-A gene was analyzed using the MEGA software Ver. 4.0. The results show that the percentage of the aggressive rams of each breed was less than 10 percent; except for the KS sheep is higher (23%. Based on the duration of behavior, aggressive sheep group was not significantly different with non aggressive sheep group, except duration of care giving and drinking behavior. It is known that concentration of blood serotonin in aggressive and non aggressive rams was not significantly different. The aggressive trait in sheep has a mechanism or a different cause like that occurs in mice and humans. In this study, aggressive behavior in sheep was not associated with a mutation in exon 8 of MAO-A gene.

  18. SNP interaction pattern identifier (SIPI)

    DEFF Research Database (Denmark)

    Lin, Hui Yi; Chen, Dung Tsa; Huang, Po Yu

    2017-01-01

    Motivation: Testing SNP-SNP interactions is considered as a key for overcoming bottlenecks of genetic association studies. However, related statistical methods for testing SNP-SNP interactions are underdeveloped. Results: We propose the SNP Interaction Pattern Identifier (SIPI), which tests 45 bi...

  19. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Galeano, Carlos H; Fernández, Andrea C; Gómez, Marcela; Blair, Matthew W

    2009-12-23

    Expressed sequence tags (ESTs) are an important source of gene-based markers such as those based on insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs), to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 x G19833 recombinant inbred line (RIL) population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 x 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction of a transcript map and given their high conservation

  20. Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Gómez Marcela

    2009-12-01

    Full Text Available Abstract Background Expressed sequence tags (ESTs are an important source of gene-based markers such as those based on insertion-deletions (Indels or single-nucleotide polymorphisms (SNPs. Several gel based methods have been reported for the detection of sequence variants, however they have not been widely exploited in common bean, an important legume crop of the developing world. The objectives of this project were to develop and map EST based markers using analysis of single strand conformation polymorphisms (SSCPs, to create a transcript map for common bean and to compare synteny of the common bean map with sequenced chromosomes of other legumes. Results A set of 418 EST based amplicons were evaluated for parental polymorphisms using the SSCP technique and 26% of these presented a clear conformational or size polymorphism between Andean and Mesoamerican genotypes. The amplicon based markers were then used for genetic mapping with segregation analysis performed in the DOR364 × G19833 recombinant inbred line (RIL population. A total of 118 new marker loci were placed into an integrated molecular map for common bean consisting of 288 markers. Of these, 218 were used for synteny analysis and 186 presented homology with segments of the soybean genome with an e-value lower than 7 × 10-12. The synteny analysis with soybean showed a mosaic pattern of syntenic blocks with most segments of any one common bean linkage group associated with two soybean chromosomes. The analysis with Medicago truncatula and Lotus japonicus presented fewer syntenic regions consistent with the more distant phylogenetic relationship between the galegoid and phaseoloid legumes. Conclusion The SSCP technique is a useful and inexpensive alternative to other SNP or Indel detection techniques for saturating the common bean genetic map with functional markers that may be useful in marker assisted selection. In addition, the genetic markers based on ESTs allowed the construction

  1. FunctSNP: an R package to link SNPs to functional knowledge and dbAutoMaker: a suite of Perl scripts to build SNP databases

    Directory of Open Access Journals (Sweden)

    Watson-Haigh Nathan S

    2010-06-01

    Full Text Available Abstract Background Whole genome association studies using highly dense single nucleotide polymorphisms (SNPs are a set of methods to identify DNA markers associated with variation in a particular complex trait of interest. One of the main outcomes from these studies is a subset of statistically significant SNPs. Finding the potential biological functions of such SNPs can be an important step towards further use in human and agricultural populations (e.g., for identifying genes related to susceptibility to complex diseases or genes playing key roles in development or performance. The current challenge is that the information holding the clues to SNP functions is distributed across many different databases. Efficient bioinformatics tools are therefore needed to seamlessly integrate up-to-date functional information on SNPs. Many web services have arisen to meet the challenge but most work only within the framework of human medical research. Although we acknowledge the importance of human research, we identify there is a need for SNP annotation tools for other organisms. Description We introduce an R package called FunctSNP, which is the user interface to custom built species-specific databases. The local relational databases contain SNP data together with functional annotations extracted from online resources. FunctSNP provides a unified bioinformatics resource to link SNPs with functional knowledge (e.g., genes, pathways, ontologies. We also introduce dbAutoMaker, a suite of Perl scripts, which can be scheduled to run periodically to automatically create/update the customised SNP databases. We illustrate the use of FunctSNP with a livestock example, but the approach and software tools presented here can be applied also to human and other organisms. Conclusions Finding the potential functional significance of SNPs is important when further using the outcomes from whole genome association studies. FunctSNP is unique in that it is the only R

  2. Multiobjective multifactor dimensionality reduction to detect SNP-SNP interactions.

    Science.gov (United States)

    Yang, Cheng-Hong; Chuang, Li-Yeh; Lin, Yu-Da

    2018-02-19

    Single-nucleotide polymorphism (SNP)-SNP interactions (SSIs) are popular markers for understanding disease susceptibility. Multifactor dimensionality reduction (MDR) can successfully detect considerable SSIs. Currently, MDR-based methods mainly adopt a single-objective function (a single measure based on contingency tables) to detect SSIs. However, generally, a single-measure function might not yield favorable results due to potential model preferences and disease complexities. This study proposes a multiobjective MDR (MOMDR) method that is based on a contingency table of MDR as an objective function. MOMDR considers the incorporated measures, including correct classification and likelihood rates, to detect SSIs and adopts set theory to predict the most favorable SSIs with cross-validation consistency. MOMDR enables simultaneously using multiple measures to determine potential SSIs. Three simulation studies were conducted to compare the detection success rates of MOMDR and single-objective MDR (SOMDR), revealing that MOMDR had higher detection success rates than SOMDR. Furthermore, the Wellcome Trust Case Control Consortium data set was analyzed by MOMDR to detect SSIs associated with coronary artery disease.

  3. Correcting estimators of theta and Tajima's D for ascertainment biases caused by the single-nucleotide polymorphism discovery process

    DEFF Research Database (Denmark)

    Ramírez-Soriano, Anna; Nielsen, Rasmus

    2009-01-01

    Most single-nucleotide polymorphism (SNP) data suffer from an ascertainment bias caused by the process of SNP discovery followed by SNP genotyping. The final genotyped data are biased toward an excess of common alleles compared to directly sequenced data, making standard genetic methods of analysis...... the variances and covariances of these estimators and provide a corrected version of Tajima's D statistic. We reanalyze a human genomewide SNP data set and find substantial differences in the results with or without ascertainment bias correction....

  4. Finding the right coverage : The impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates

    NARCIS (Netherlands)

    Fountain, Emily D.; Pauli, Jonathan N.; Reid, Brendan N.; Palsboll, Per J.; Peery, M. Zachariah

    Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown.

  5. Functionally informative tag SNP selection using a Pareto-optimal approach.

    Science.gov (United States)

    Lee, Phil Hyoun; Jung, Jae-Yoon; Shatkay, Hagit

    2010-01-01

    Selecting a representative set of single nucleotide polymorphism (SNP) markers for facilitating association studies is an important step to uncover the genetic basis of human disease. Tag SNP selection and functional SNP selection are the two main approaches for addressing the SNP selection problem. However, little was done so far to effectively combine these distinct and possibly competing approaches. Here, we present a new multiobjective optimization framework for identifying SNPs that are both informative tagging and have functional significance (FS). Our selection algorithm is based on the notion of Pareto optimality, which has been extensively used for addressing multiobjective optimization problems in game theory, economics, and engineering. We applied our method to 34 disease-susceptibility genes for lung cancer and compared the performance with that of other systems which support both tag SNP selection and functional SNP selection methods. The comparison shows that our algorithm always finds a subset of SNPs that improves upon the subset selected by other state-of-the-art systems with respect to both selection objectives.

  6. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh).

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  7. Development and validation of a 20K single nucleotide polymorphism (SNP whole genome genotyping array for apple (Malus × domestica Borkh.

    Directory of Open Access Journals (Sweden)

    Luca Bianco

    Full Text Available High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus. A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs. Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  8. Frequency of Finding Family Donors: A Single Center Experience.

    Science.gov (United States)

    Kasar, Mutlu; Yeral, Mahmut; Solmaz, Soner; Büyükkurt, Nurhilal; Asma, Suheyl; Gereklioğlu, Çiğdem; Boğa, Can; Özdoğu, Hakan; Baştürk, Bilkay

    2018-03-01

    Allogeneic hematopoietic stem cell transplant is a curative treatment option for many hematologic diseases. The existence of a fully compatible donor for recipients is the first condition for minimized transplant-related mortality and morbidity. The best donor for hematopoietic stem cell transplant is an HLA-matched sibling donor. The possibility of finding an HLA-matched sibling is less than 30% worldwide. Hematopoietic stem cell transplant is needed for an increasing number of patients every year, but the ability to find a fully compatible donor has limited its use. From August 2012 to May 2017, we screened 412 adult patients who required AHSCT and their families for HLA tissue groups who were seen at our center (Baskent University Adana Dr. Turgut Noyan Research and Medical Center Hematology Unit). To screen tissue groups at our center, we perform lowresolution typing for HLA-A, -B, -C, -DRB1, and -DQB. If an HLA genotype cannot be identified, verification typing is done using highresolution testing. We found matched family donors in 227 (55%) of 412 patients screened at our center. The ratio of HLAmatched related donors was 83% for 279 patients who received allogeneic stem cell transplant. The likelihood of finding eligible unrelated donors has been gradually increasing, in part due to the development of the National Bone Marrow Bank. However, a careful screening for related donors is still important. Our findings indicate the importance of careful examination of family genealogy and of careful family screening in our region.

  9. Copy Number Variation Detection via High-Density SNP Genotyping

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Kai Wang & Maja Bucan ### INTRODUCTION High-density single nucleotide polymorphism (SNP) genotyping arrays recently have been used for copy number variation (CNV) detection and analysis, because the arrays can serve a dual role for SNP- and CNV-based association studies. They also can provide considerably higher precision and resolution than traditional techniques. Here we describe PennCNV, a computational protocol designed for CNV detection from high-density SNP genotyping d...

  10. snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package.

    Science.gov (United States)

    Luna, Augustin; Nicodemus, Kristin K

    2007-03-15

    snp.plotter is a newly developed R package which produces high-quality plots of results from genetic association studies. The main features of the package include options to display a linkage disequilibrium (LD) plot below the P-value plot using either the r2 or D' LD metric, to set the X-axis to equal spacing or to use the physical map of markers, and to specify plot labels, colors, symbols and LD heatmap color scheme. snp.plotter can plot single SNP and/or haplotype data and simultaneously plot multiple sets of results. R is a free software environment for statistical computing and graphics available for most platforms. The proposed package provides a simple way to convey both association and LD information in a single appealing graphic for genetic association studies. Downloadable R package and example datasets are available at http://cbdb.nimh.nih.gov/~kristin/snp.plotter.html and http://www.r-project.org.

  11. Is the Number of Different MRI Findings More Strongly Associated with Low Back Pain Than Single MRI Findings?

    DEFF Research Database (Denmark)

    Hancock, Mark J; Kjaer, Per; Kent, Peter

    2017-01-01

    STUDY DESIGN: A cross-sectional and longitudinal analysis using 2 different data sets OBJECTIVE.: To investigate if the number of different MRI findings present is more strongly associated with low back pain (LBP) than single MRI findings. SUMMARY OF BACKGROUND DATA: Most previous studies have....... The outcome for the cross-sectional study was presence of LBP during the last year. The outcome for the longitudinal study was days to recurrence of activity limiting LBP. In both data sets we created an aggregate score of the number of different MRI findings present in each individual and assessed...... investigated the associations between single MRI findings and back pain rather than investigating combinations of MRI findings. If different individuals have different pathoanatomic sources contributing to their pain, then combinations of MRI findings may be more strongly associated with LBP. METHODS...

  12. SNP-RFLPing: restriction enzyme mining for SNPs in genomes

    Directory of Open Access Journals (Sweden)

    Cheng Yu-Huei

    2006-02-01

    Full Text Available Abstract Background The restriction fragment length polymorphism (RFLP is a common laboratory method for the genotyping of single nucleotide polymorphisms (SNPs. Here, we describe a web-based software, named SNP-RFLPing, which provides the restriction enzyme for RFLP assays on a batch of SNPs and genes from the human, rat, and mouse genomes. Results Three user-friendly inputs are included: 1 NCBI dbSNP "rs" or "ss" IDs; 2 NCBI Entrez gene ID and HUGO gene name; 3 any formats of SNP-in-sequence, are allowed to perform the SNP-RFLPing assay. These inputs are auto-programmed to SNP-containing sequences and their complementary sequences for the selection of restriction enzymes. All SNPs with available RFLP restriction enzymes of each input genes are provided even if many SNPs exist. The SNP-RFLPing analysis provides the SNP contig position, heterozygosity, function, protein residue, and amino acid position for cSNPs, as well as commercial and non-commercial restriction enzymes. Conclusion This web-based software solves the input format problems in similar softwares and greatly simplifies the procedure for providing the RFLP enzyme. Mixed free forms of input data are friendly to users who perform the SNP-RFLPing assay. SNP-RFLPing offers a time-saving application for association studies in personalized medicine and is freely available at http://bio.kuas.edu.tw/snp-rflp/.

  13. SNP-RFLPing: restriction enzyme mining for SNPs in genomes.

    Science.gov (United States)

    Chang, Hsueh-Wei; Yang, Cheng-Hong; Chang, Phei-Lang; Cheng, Yu-Huei; Chuang, Li-Yeh

    2006-02-17

    The restriction fragment length polymorphism (RFLP) is a common laboratory method for the genotyping of single nucleotide polymorphisms (SNPs). Here, we describe a web-based software, named SNP-RFLPing, which provides the restriction enzyme for RFLP assays on a batch of SNPs and genes from the human, rat, and mouse genomes. Three user-friendly inputs are included: 1) NCBI dbSNP "rs" or "ss" IDs; 2) NCBI Entrez gene ID and HUGO gene name; 3) any formats of SNP-in-sequence, are allowed to perform the SNP-RFLPing assay. These inputs are auto-programmed to SNP-containing sequences and their complementary sequences for the selection of restriction enzymes. All SNPs with available RFLP restriction enzymes of each input genes are provided even if many SNPs exist. The SNP-RFLPing analysis provides the SNP contig position, heterozygosity, function, protein residue, and amino acid position for cSNPs, as well as commercial and non-commercial restriction enzymes. This web-based software solves the input format problems in similar softwares and greatly simplifies the procedure for providing the RFLP enzyme. Mixed free forms of input data are friendly to users who perform the SNP-RFLPing assay. SNP-RFLPing offers a time-saving application for association studies in personalized medicine and is freely available at http://bio.kuas.edu.tw/snp-rflp/.

  14. (SNP) markers for the Chinese black sleeper, Bostrychus sinensis

    African Journals Online (AJOL)

    We characterized 11 single nucleotide ploymorphism (SNP) markers for the Chinese black sleeper, Bostrychus sinensis. These markers were isolated from a genomic library and tested in ten geographically distant individuals of B. sinensis. Polymorphisms of these SNP loci were assessed using a wild population including ...

  15. CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data

    Directory of Open Access Journals (Sweden)

    Steve Davis

    2015-08-01

    Full Text Available The analysis of next-generation sequence (NGS data is often a fragmented step-wise process. For example, multiple pieces of software are typically needed to map NGS reads, extract variant sites, and construct a DNA sequence matrix containing only single nucleotide polymorphisms (i.e., a SNP matrix for a set of individuals. The management and chaining of these software pieces and their outputs can often be a cumbersome and difficult task. Here, we present CFSAN SNP Pipeline, which combines into a single package the mapping of NGS reads to a reference genome with Bowtie2, processing of those mapping (BAM files using SAMtools, identification of variant sites using VarScan, and production of a SNP matrix using custom Python scripts. We also introduce a Python package (CFSAN SNP Mutator that when given a reference genome will generate variants of known position against which we validate our pipeline. We created 1,000 simulated Salmonella enterica sp. enterica Serovar Agona genomes at 100× and 20× coverage, each containing 500 SNPs, 20 single-base insertions and 20 single-base deletions. For the 100× dataset, the CFSAN SNP Pipeline recovered 98.9% of the introduced SNPs and had a false positive rate of 1.04 × 10−6; for the 20× dataset 98.8% of SNPs were recovered and the false positive rate was 8.34 × 10−7. Based on these results, CFSAN SNP Pipeline is a robust and accurate tool that it is among the first to combine into a single executable the myriad steps required to produce a SNP matrix from NGS data. Such a tool is useful to those working in an applied setting (e.g., food safety traceback investigations as well as for those interested in evolutionary questions.

  16. Large Scale Association Analysis for Drug Addiction: Results from SNP to Gene

    Directory of Open Access Journals (Sweden)

    Xiaobo Guo

    2012-01-01

    Full Text Available Many genetic association studies used single nucleotide polymorphisms (SNPs data to identify genetic variants for complex diseases. Although SNP-based associations are most common in genome-wide association studies (GWAS, gene-based association analysis has received increasing attention in understanding genetic etiologies for complex diseases. While both methods have been used to analyze the same data, few genome-wide association studies compare the results or observe the connection between them. We performed a comprehensive analysis of the data from the Study of Addiction: Genetics and Environment (SAGE and compared the results from the SNP-based and gene-based analyses. Our results suggest that the gene-based method complements the individual SNP-based analysis, and conceptually they are closely related. In terms of gene findings, our results validate many genes that were either reported from the analysis of the same dataset or based on animal studies for substance dependence.

  17. SNP-SNP interactions in breast cancer susceptibility

    International Nuclear Information System (INIS)

    Onay, Venüs Ümmiye; Ozcelik, Hilmi; Briollais, Laurent; Knight, Julia A; Shi, Ellen; Wang, Yuanyuan; Wells, Sean; Li, Hong; Rajendram, Isaac; Andrulis, Irene L

    2006-01-01

    Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described

  18. SNP-SNP interactions in breast cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Wang Yuanyuan

    2006-05-01

    Full Text Available Abstract Background Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2 are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. Methods In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR principle. Results None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082A], cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val], cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln], and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val] pathways. Conclusion The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their

  19. Targeted SNP discovery in Atlantic salmon (Salmo salar genes using a 3'UTR-primed SNP detection approach

    Directory of Open Access Journals (Sweden)

    Høyheim Bjørn

    2010-12-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs represent the most widespread type of DNA variation in vertebrates and may be used as genetic markers for a range of applications. This has led to an increased interest in identification of SNP markers in non-model species and farmed animals. The in silico SNP mining method used for discovery of most known SNPs in Atlantic salmon (Salmo salar has applied a global (genome-wide approach. In this study we present a targeted 3'UTR-primed SNP discovery strategy that utilizes sequence data from Salmo salar full length sequenced cDNAs (FLIcs. We compare the efficiency of this new strategy to the in silico SNP mining method when using both methods for targeted SNP discovery. Results The SNP discovery efficiency of the two methods was tested in a set of FLIc target genes. The 3'UTR-primed SNP discovery method detected novel SNPs in 35% of the target genes while the in silico SNP mining method detected novel SNPs in 15% of the target genes. Furthermore, the 3'UTR-primed SNP discovery strategy was the less labor intensive one and revealed a higher success rate than the in silico SNP mining method in the initial amplification step. When testing the methods we discovered 112 novel bi-allelic polymorphisms (type I markers in 88 salmon genes [dbSNP: ss179319972-179320081, ss250608647-250608648], and three of the SNPs discovered were missense substitutions. Conclusions Full length insert cDNAs (FLIcs are important genomic resources that have been developed in many farmed animals. The 3'UTR-primed SNP discovery strategy successfully utilized FLIc data to detect novel SNPs in the partially tetraploid Atlantic salmon. This strategy may therefore be useful for targeted SNP discovery in several species, and particularly useful in species that, like salmonids, have duplicated genomes.

  20. Genetic algorithm-generated SNP barcodes of the mitochondrial D-loop for chronic dialysis susceptibility.

    Science.gov (United States)

    Chen, Jin-Bor; Chuang, Li-Yeh; Lin, Yu-Da; Liou, Chia-Wei; Lin, Tsu-Kung; Lee, Wen-Chin; Cheng, Ben-Chung; Chang, Hsueh-Wei; Yang, Cheng-Hong

    2014-06-01

    Single nucleotide polymorphism (SNP) interaction analysis can simultaneously evaluate the complex SNP interactions present in complex diseases. However, it is less commonly applied to evaluate the predisposition of chronic dialysis and its computational analysis remains challenging. In this study, we aimed to improve the analysis of SNP-SNP interactions within the mitochondrial D-loop in chronic dialysis. The SNP-SNP interactions between 77 reported SNPs within the mitochondrial D-loop in chronic dialysis study were evaluated in terms of SNP barcodes (different SNP combinations with their corresponding genotypes). We propose a genetic algorithm (GA) to generate SNP barcodes. The χ(2) values were then calculated by the occurrences of the specific SNP barcodes and their non-specific combinations between cases and controls. Each SNP barcode (2- to 7-SNP) with the highest value in the χ(2) test was regarded as the best SNP barcode (11.304 to 23.310; p algorithm to address the SNP-SNP interactions and demonstrated that many non-significant SNPs within the mitochondrial D-loop may play a role in jointed effects to chronic dialysis susceptibility.

  1. A novel statistical method to estimate the effective SNP size in vertebrate genomes and categorized genomic regions

    Directory of Open Access Journals (Sweden)

    Zhao Zhongming

    2006-12-01

    Full Text Available Abstract Background The local environment of single nucleotide polymorphisms (SNPs contains abundant genetic information for the study of mechanisms of mutation, genome evolution, and causes of diseases. Recent studies revealed that neighboring-nucleotide biases on SNPs were strong and the genome-wide bias patterns could be represented by a small subset of the total SNPs. It remains unsolved for the estimation of the effective SNP size, the number of SNPs that are sufficient to represent the bias patterns observed from the whole SNP data. Results To estimate the effective SNP size, we developed a novel statistical method, SNPKS, which considers both the statistical and biological significances. SNPKS consists of two major steps: to obtain an initial effective size by the Kolmogorov-Smirnov test (KS test and to find an intermediate effective size by interval evaluation. The SNPKS algorithm was implemented in computer programs and applied to the real SNP data. The effective SNP size was estimated to be 38,200, 39,300, 38,000, and 38,700 in the human, chimpanzee, dog, and mouse genomes, respectively, and 39,100, 39,600, 39,200, and 42,200 in human intergenic, genic, intronic, and CpG island regions, respectively. Conclusion SNPKS is the first statistical method to estimate the effective SNP size. It runs efficiently and greatly outperforms the algorithm implemented in SNPNB. The application of SNPKS to the real SNP data revealed the similar small effective SNP size (38,000 – 42,200 in the human, chimpanzee, dog, and mouse genomes as well as in human genomic regions. The findings suggest strong influence of genetic factors across vertebrate genomes.

  2. SNP discovery by illumina-based transcriptome sequencing of the olive and the genetic characterization of Turkish olive genotypes revealed by AFLP, SSR and SNP markers.

    Directory of Open Access Journals (Sweden)

    Hilal Betul Kaya

    Full Text Available BACKGROUND: The olive tree (Olea europaea L. is a diploid (2n = 2x = 46 outcrossing species mainly grown in the Mediterranean area, where it is the most important oil-producing crop. Because of its economic, cultural and ecological importance, various DNA markers have been used in the olive to characterize and elucidate homonyms, synonyms and unknown accessions. However, a comprehensive characterization and a full sequence of its transcriptome are unavailable, leading to the importance of an efficient large-scale single nucleotide polymorphism (SNP discovery in olive. The objectives of this study were (1 to discover olive SNPs using next-generation sequencing and to identify SNP primers for cultivar identification and (2 to characterize 96 olive genotypes originating from different regions of Turkey. METHODOLOGY/PRINCIPAL FINDINGS: Next-generation sequencing technology was used with five distinct olive genotypes and generated cDNA, producing 126,542,413 reads using an Illumina Genome Analyzer IIx. Following quality and size trimming, the high-quality reads were assembled into 22,052 contigs with an average length of 1,321 bases and 45 singletons. The SNPs were filtered and 2,987 high-quality putative SNP primers were identified. The assembled sequences and singletons were subjected to BLAST similarity searches and annotated with a Gene Ontology identifier. To identify the 96 olive genotypes, these SNP primers were applied to the genotypes in combination with amplified fragment length polymorphism (AFLP and simple sequence repeats (SSR markers. CONCLUSIONS/SIGNIFICANCE: This study marks the highest number of SNP markers discovered to date from olive genotypes using transcriptome sequencing. The developed SNP markers will provide a useful source for molecular genetic studies, such as genetic diversity and characterization, high density quantitative trait locus (QTL analysis, association mapping and map-based gene cloning in the olive. High levels

  3. Autopsy Findings in Conjoined Twin with Single Heart and Single Liver

    Directory of Open Access Journals (Sweden)

    Kar Asaranti

    2012-01-01

    Full Text Available Thoracoomphalopagus is the commonest type of conjoined twin where the bodies are fused from upper chest to lower chest. The autopsy done can help counsil the parents for further pregnancies and determine the prognosis depending upon the type of cardiac anomaly by Seo classification when detected antenatally. We describe the detail pathological autopsy of such a case with single heart and single liver. A detail autopsy was done on the twin fetus. The twins shared a single heart and sometimes the liver and part of digestive system. The combined weight was 4.1 KG. Both were full-term male babies joined from below the nipple till umbilicus. Autopsy in conjoined twins helps in deciding the type of fusion of the body and also of the heart and great vessels. It can help in counseling parents about future pregnancies that there is no chance of recurrence of this abnormality and no need to be scared.

  4. SNP-finding in pig mitochondrial ESTs

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Cirera Salicio, Susanna; Gilchrist, M.J.

    2008-01-01

    The Sino-Danish pig genome project produced 685 851 ESTs (Gorodkin et al. 2007), of which 41 499 originated from the mitochondrial genome. In this study, the mitochondrial ESTs were assembled, and 374 putative SNPs were found. Chromatograms for the ESTs containing SNPs were manually inspected...

  5. V-MitoSNP: visualization of human mitochondrial SNPs

    Directory of Open Access Journals (Sweden)

    Tsui Ke-Hung

    2006-08-01

    Full Text Available Abstract Background Mitochondrial single nucleotide polymorphisms (mtSNPs constitute important data when trying to shed some light on human diseases and cancers. Unfortunately, providing relevant mtSNP genotyping information in mtDNA databases in a neatly organized and transparent visual manner still remains a challenge. Amongst the many methods reported for SNP genotyping, determining the restriction fragment length polymorphisms (RFLPs is still one of the most convenient and cost-saving methods. In this study, we prepared the visualization of the mtDNA genome in a way, which integrates the RFLP genotyping information with mitochondria related cancers and diseases in a user-friendly, intuitive and interactive manner. The inherent problem associated with mtDNA sequences in BLAST of the NCBI database was also solved. Description V-MitoSNP provides complete mtSNP information for four different kinds of inputs: (1 color-coded visual input by selecting genes of interest on the genome graph, (2 keyword search by locus, disease and mtSNP rs# ID, (3 visualized input of nucleotide range by clicking the selected region of the mtDNA sequence, and (4 sequences mtBLAST. The V-MitoSNP output provides 500 bp (base pairs flanking sequences for each SNP coupled with the RFLP enzyme and the corresponding natural or mismatched primer sets. The output format enables users to see the SNP genotype pattern of the RFLP by virtual electrophoresis of each mtSNP. The rate of successful design of enzymes and primers for RFLPs in all mtSNPs was 99.1%. The RFLP information was validated by actual agarose electrophoresis and showed successful results for all mtSNPs tested. The mtBLAST function in V-MitoSNP provides the gene information within the input sequence rather than providing the complete mitochondrial chromosome as in the NCBI BLAST database. All mtSNPs with rs number entries in NCBI are integrated in the corresponding SNP in V-MitoSNP. Conclusion V-MitoSNP is a web

  6. In silico characterization of functional SNP within the oestrogen ...

    Indian Academy of Sciences (India)

    Keywords. ESR1 gene; polymorphism; prediction; bioinformatic tools; association studies. Abstract. Single-nucleotide polymorphism (SNP) association studies have become crucial in uncovering the genetic correlations of genomic variants with complex diseases, quantitative traits and physiological responses to drugs.

  7. Development and validation of a high-density\\ud SNP genotyping array for African Oil Palm

    OpenAIRE

    Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Heng, Huey Ying; Lee, Heng Leng; Mohamed, Mohaimi; Low, Joel Zi-Bin; Apparow, Sukganah; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Appleton, David Ross; Sime Darby Technology Centre

    2016-01-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are powerful tools that can measure the level of genetic polymorphism within a population. To develop a whole-genome SNP array for oil palms, SNP discovery was performed using deep resequencing of eight libraries derived from 132 Elaeis guineensis and Elaeis oleifera palms belonging to 59 origins, resulting in the discovery of >3 million putative SNPs. After SNP filtering, the Illumina OP200K custom array was built with 170 8...

  8. Exhaustive Genome-Wide Search for SNP-SNP Interactions Across 10 Human Diseases

    Directory of Open Access Journals (Sweden)

    William Murk

    2016-07-01

    Full Text Available The identification of statistical SNP-SNP interactions may help explain the genetic etiology of many human diseases, but exhaustive genome-wide searches for these interactions have been difficult, due to a lack of power in most datasets. We aimed to use data from the Resource for Genetic Epidemiology Research on Adult Health and Aging (GERA study to search for SNP-SNP interactions associated with 10 common diseases. FastEpistasis and BOOST were used to evaluate all pairwise interactions among approximately N = 300,000 single nucleotide polymorphisms (SNPs with minor allele frequency (MAF ≥ 0.15, for the dichotomous outcomes of allergic rhinitis, asthma, cardiac disease, depression, dermatophytosis, type 2 diabetes, dyslipidemia, hemorrhoids, hypertensive disease, and osteoarthritis. A total of N = 45,171 subjects were included after quality control steps were applied. These data were divided into discovery and replication subsets; the discovery subset had > 80% power, under selected models, to detect genome-wide significant interactions (P < 10−12. Interactions were also evaluated for enrichment in particular SNP features, including functionality, prior disease relevancy, and marginal effects. No interaction in any disease was significant in both the discovery and replication subsets. Enrichment analysis suggested that, for some outcomes, interactions involving SNPs with marginal effects were more likely to be nominally replicated, compared to interactions without marginal effects. If SNP-SNP interactions play a role in the etiology of the studied conditions, they likely have weak effect sizes, involve lower-frequency variants, and/or involve complex models of interaction that are not captured well by the methods that were utilized.

  9. Compression and fast retrieval of SNP data.

    Science.gov (United States)

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-11-01

    The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. How to stimulate single mothers on welfare to find a job : Evidence from a policy experiment

    NARCIS (Netherlands)

    Knoef, M.G.; van Ours, Jan

    2016-01-01

    We present the results from a policy experiment in which single mothers on welfare were stimulated to enter the labor market and increase their work experience. The aim of the policy was not per se for single mothers to leave welfare completely but to encourage them to find a job if only a part-time

  11. Forensic SNP genotyping with SNaPshot

    DEFF Research Database (Denmark)

    Fondevila, M; Børsting, C; Phillips, C

    2017-01-01

    This review explores the key factors that influence the optimization, routine use, and profile interpretation of the SNaPshot single-base extension (SBE) system applied to forensic single-nucleotide polymorphism (SNP) genotyping. Despite being a mainly complimentary DNA genotyping technique...... to routine STR profiling, use of SNaPshot is an important part of the development of SNP sets for a wide range of forensic applications with these markers, from genotyping highly degraded DNA with very short amplicons to the introduction of SNPs to ascertain the ancestry and physical characteristics...... of an unidentified contact trace donor. However, this technology, as resourceful as it is, displays several features that depart from the usual STR genotyping far enough to demand a certain degree of expertise from the forensic analyst before tackling the complex casework on which SNaPshot application provides...

  12. SNP mining porcine ESTs with MAVIANT, a novel tool for SNP evaluation and annotation

    DEFF Research Database (Denmark)

    Panitz, Frank; Stengaard, Henrik; Hornshoj, Henrik

    2007-01-01

    MOTIVATION: Single nucleotide polymorphisms (SNPs) analysis is an important means to study genetic variation. A fast and cost-efficient approach to identify large numbers of novel candidates is the SNP mining of large scale sequencing projects. The increasing availability of sequence trace data...... in public repositories makes it feasible to evaluate SNP predictions on the DNA chromatogram level. MAVIANT, a platform-independent Multipurpose Alignment VIewing and Annotation Tool, provides DNA chromatogram and alignment views and facilitates evaluation of predictions. In addition, it supports direct...... manual annotation, which is immediately accessible and can be easily shared with external collaborators. RESULTS: Large-scale SNP mining of polymorphisms bases on porcine EST sequences yielded more than 7900 candidate SNPs in coding regions (cSNPs), which were annotated relative to the human genome. Non...

  13. SNP Polymorphism Survey of the Parental Lines of ISRA Sorghum Breeding Program as Part of the Feed the Future

    Data.gov (United States)

    US Agency for International Development — Polymorphism of SNP Markers (single nucleotide polymorphisms) was assessed on 24 parental lines of the ISRA sorghum breeding program . About 1300 SNP have been used...

  14. SNP-RFLPing: restriction enzyme mining for SNPs in genomes

    OpenAIRE

    Chang, Hsueh-Wei; Yang, Cheng-Hong; Chang, Phei-Lang; Cheng, Yu-Huei; Chuang, Li-Yeh

    2006-01-01

    Abstract Background The restriction fragment length polymorphism (RFLP) is a common laboratory method for the genotyping of single nucleotide polymorphisms (SNPs). Here, we describe a web-based software, named SNP-RFLPing, which provides the restriction enzyme for RFLP assays on a batch of SNPs and genes from the human, rat, and mouse genomes. Results Three user-friendly inputs are included: 1) NCBI dbSNP "rs" or "ss" IDs; 2) NCBI Entrez gene ID and HUGO gene name; 3) any formats of SNP-in-se...

  15. A Genome-Wide Association Study for Agronomic Traits in Soybean Using SNP Markers and SNP-Based Haplotype Analysis.

    Directory of Open Access Journals (Sweden)

    Rodrigo Iván Contreras-Soto

    Full Text Available Mapping quantitative trait loci through the use of linkage disequilibrium (LD in populations of unrelated individuals provides a valuable approach for dissecting the genetic basis of complex traits in soybean (Glycine max. The haplotype-based genome-wide association study (GWAS has now been proposed as a complementary approach to intensify benefits from LD, which enable to assess the genetic determinants of agronomic traits. In this study a GWAS was undertaken to identify genomic regions that control 100-seed weight (SW, plant height (PH and seed yield (SY in a soybean association mapping panel using single nucleotide polymorphism (SNP markers and haplotype information. The soybean cultivars (N = 169 were field-evaluated across four locations of southern Brazil. The genome-wide haplotype association analysis (941 haplotypes identified eleven, seventeen and fifty-nine SNP-based haplotypes significantly associated with SY, SW and PH, respectively. Although most marker-trait associations were environment and trait specific, stable haplotype associations were identified for SY and SW across environments (i.e., haplotypes Gm12_Hap12. The haplotype block 42 on Chr19 (Gm19_Hap42 was confirmed to be associated with PH in two environments. These findings enable us to refine the breeding strategy for tropical soybean, which confirm that haplotype-based GWAS can provide new insights on the genetic determinants that are not captured by the single-marker approach.

  16. Development of a rapid SNP-typing assay to differentiate Bifidobacterium animalis ssp. lactis strains used in probiotic-supplemented dairy products.

    Science.gov (United States)

    Lomonaco, Sara; Furumoto, Emily J; Loquasto, Joseph R; Morra, Patrizia; Grassi, Ausilia; Roberts, Robert F

    2015-02-01

    Identification at the genus, species, and strain levels is desirable when a probiotic microorganism is added to foods. Strains of Bifidobacterium animalis ssp. lactis (BAL) are commonly used worldwide in dairy products supplemented with probiotic strains. However, strain discrimination is difficult because of the high degree of genome identity (99.975%) between different genomes of this subspecies. Typing of monomorphic species can be carried out efficiently by targeting informative single nucleotide polymorphisms (SNP). Findings from a previous study analyzing both reference and commercial strains of BAL identified SNP that could be used to discriminate common strains into 8 groups. This paper describes development of a minisequencing assay based on the primer extension reaction (PER) targeting multiple SNP that can allow strain differentiation of BAL. Based on previous data, 6 informative SNP were selected for further testing, and a multiplex preliminary PCR was optimized to amplify the DNA regions containing the selected SNP. Extension primers (EP) annealing immediately adjacent to the selected SNP were developed and tested in simplex and multiplex PER to evaluate their performance. Twenty-five strains belonging to 9 distinct genomic clusters of B. animalis ssp. lactis were selected and analyzed using the developed minisequencing assay, simultaneously targeting the 6 selected SNP. Fragment analysis was subsequently carried out in duplicate and demonstrated that the assay yielded 8 specific profiles separating the most commonly used commercial strains. This novel multiplex PER approach provides a simple, rapid, flexible SNP-based subtyping method for proper characterization and identification of commercial probiotic strains of BAL from fermented dairy products. To assess the usefulness of this method, DNA was extracted from yogurt manufactured with and without the addition of B. animalis ssp. lactis BB-12. Extracted DNA was then subjected to the minisequencing

  17. A novel approach to analyzing fMRI and SNP data via parallel independent component analysis

    Science.gov (United States)

    Liu, Jingyu; Pearlson, Godfrey; Calhoun, Vince; Windemuth, Andreas

    2007-03-01

    There is current interest in understanding genetic influences on brain function in both the healthy and the disordered brain. Parallel independent component analysis, a new method for analyzing multimodal data, is proposed in this paper and applied to functional magnetic resonance imaging (fMRI) and a single nucleotide polymorphism (SNP) array. The method aims to identify the independent components of each modality and the relationship between the two modalities. We analyzed 92 participants, including 29 schizophrenia (SZ) patients, 13 unaffected SZ relatives, and 50 healthy controls. We found a correlation of 0.79 between one fMRI component and one SNP component. The fMRI component consists of activations in cingulate gyrus, multiple frontal gyri, and superior temporal gyrus. The related SNP component is contributed to significantly by 9 SNPs located in sets of genes, including those coding for apolipoprotein A-I, and C-III, malate dehydrogenase 1 and the gamma-aminobutyric acid alpha-2 receptor. A significant difference in the presences of this SNP component is found between the SZ group (SZ patients and their relatives) and the control group. In summary, we constructed a framework to identify the interactions between brain functional and genetic information; our findings provide new insight into understanding genetic influences on brain function in a common mental disorder.

  18. Identification of the SNP (Single Nucleotide Polymorphism for Fatty Acid Composition Associated with Beef Flavor-related FABP4 (Fatty Acid Binding Protein 4 in Korean Cattle

    Directory of Open Access Journals (Sweden)

    Dong-yep Oh

    2012-07-01

    Full Text Available In this study, we investigated the relationship between unsaturated fatty acids influencing beef flavor and four types of SNPs (c.280A>G, c.388G>A, c.408G>C and c.456A>G located at exon 2, 3 and 4 of the FABP4 gene, which is a fatty acid binding protein 4 in Korean cattle (n = 513. When analyzing the relationship between single genotype, fatty acids and carcass trait, individuals of GG, GG, CC and GG genotypes that are homozygotes, had a higher content of unsaturated fatty acids and marbling scores than other genotypes (p<0.05. Then, haplotype block showed strong significant relationships not only with unsaturated fatty acids (54.73%, but also with marbling scores (5.82 in ht1×ht1 group (p<0.05. This ht1×ht1 group showed significant differences with unsaturated fatty acids and marbling scores that affected beef flavor in Korean cattle. Therefore, it can be inferred that the ht1×ht1 types might be valuable new markers for use in the improvement of Korean cattle.

  19. How to Stimulate Single Mothers on Welfare to Find a Job : Evidence from a Natural Experiment

    NARCIS (Netherlands)

    Knoef, M.G.; van Ours, J.C.

    2014-01-01

    We present the results from a natural experiment in which single mothers on welfare were stimulated to find a job. Two policy instruments were introduced: an earnings disregard and job creation. The experiment was performed at the level of municipalities in The Netherlands, a country with relatively

  20. Discovery and Potential of SNP Markers in Characterization of Tunisian Olive Germplasm

    OpenAIRE

    Imen Rekik Hakim; Naziha Grati Kammoun; Emna Makhloufi; Ahmed Rebaï

    2009-01-01

    Single Nucelotide Polymorphisms (SNPs) have become the most widely used markers in many current genetic applications. Here we report the discovery of nine new SNPs in olives by direct partial sequencing of two genes (OEX and OEW) in sixteen Tunisian cultivars. The SNP markers were then used to genotype 24 olive cultivars and assess the level of genetic diversity. Power of discrimination of SNP markers was then compared to that of microsatellites (SSRs). A combination of SSR and SNP markers wa...

  1. SNP Discovery by Illumina-Based Transcriptome Sequencing of the Olive and the Genetic Characterization of Turkish Olive Genotypes Revealed by AFLP, SSR and SNP Markers

    Science.gov (United States)

    Kaya, Hilal Betul; Cetin, Oznur; Kaya, Hulya; Sahin, Mustafa; Sefer, Filiz; Kahraman, Abdullah; Tanyolac, Bahattin

    2013-01-01

    Background The olive tree (Olea europaea L.) is a diploid (2n = 2x = 46) outcrossing species mainly grown in the Mediterranean area, where it is the most important oil-producing crop. Because of its economic, cultural and ecological importance, various DNA markers have been used in the olive to characterize and elucidate homonyms, synonyms and unknown accessions. However, a comprehensive characterization and a full sequence of its transcriptome are unavailable, leading to the importance of an efficient large-scale single nucleotide polymorphism (SNP) discovery in olive. The objectives of this study were (1) to discover olive SNPs using next-generation sequencing and to identify SNP primers for cultivar identification and (2) to characterize 96 olive genotypes originating from different regions of Turkey. Methodology/Principal Findings Next-generation sequencing technology was used with five distinct olive genotypes and generated cDNA, producing 126,542,413 reads using an Illumina Genome Analyzer IIx. Following quality and size trimming, the high-quality reads were assembled into 22,052 contigs with an average length of 1,321 bases and 45 singletons. The SNPs were filtered and 2,987 high-quality putative SNP primers were identified. The assembled sequences and singletons were subjected to BLAST similarity searches and annotated with a Gene Ontology identifier. To identify the 96 olive genotypes, these SNP primers were applied to the genotypes in combination with amplified fragment length polymorphism (AFLP) and simple sequence repeats (SSR) markers. Conclusions/Significance This study marks the highest number of SNP markers discovered to date from olive genotypes using transcriptome sequencing. The developed SNP markers will provide a useful source for molecular genetic studies, such as genetic diversity and characterization, high density quantitative trait locus (QTL) analysis, association mapping and map-based gene cloning in the olive. High levels of

  2. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.

    Science.gov (United States)

    Cingolani, Pablo; Platts, Adrian; Wang, Le Lily; Coon, Melissa; Nguyen, Tung; Wang, Luan; Land, Susan J; Lu, Xiangyi; Ruden, Douglas M

    2012-01-01

    We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.

  3. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to reliably identify many ...

  4. Large SNP arrays for genotyping in crop plants

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... Genotyping with large numbers of molecular markers is now an indispensable tool within plant genetics and breeding. Especially through the identification of large numbers of single nucleotide polymorphism (SNP) markers using the novel high-throughput sequencing technologies, it is now possible to ...

  5. SNP typing on the NanoChip electronic microarray

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez Sanchez, Juan Jose; Morling, Niels

    2005-01-01

    We describe a single nucleotide polymorphism (SNP) typing protocol developed for the NanoChip electronic microarray. The NanoChip array consists of 100 electrodes covered by a thin hydrogel layer containing streptavidin. An electric currency can be applied to one, several, or all electrodes...

  6. RESEARCH ARTICLE Application of high resolution SNP arrays in ...

    Indian Academy of Sciences (India)

    User

    and/or palate phenotypes. Tan et al. (2013) identified a de novo 2.3 Mb microdeletion of 1q32.2 involving the Van der Woude Syndrome locus using a high resolution single nucleotide poly-morphism (SNP) array. In our study, we used the CytoScanTM HD array platform provided by the Affymetrix Corporation to analyze 33 ...

  7. Single-ended transition state finding with the growing string method.

    Science.gov (United States)

    Zimmerman, Paul M

    2015-04-05

    Reaction path finding and transition state (TS) searching are important tasks in computational chemistry. Methods that seek to optimize an evenly distributed set of structures to represent a chemical reaction path are known as double-ended string methods. Such methods can be highly reliable because the endpoints of the string are fixed, which effectively lowers the dimensionality of the reaction path search. String methods, however, require that the reactant and product structures are known beforehand, which limits their ability for systematic exploration of reactive steps. In this article, a single-ended growing string method (GSM) is introduced which allows for reaction path searches starting from a single structure. The method works by sequentially adding nodes along coordinates that drive bonds, angles, and/or torsions to a desired reactive outcome. After the string is grown and an approximate reaction path through the TS is found, string optimization commences and the exact TS is located along with the reaction path. Fast convergence of the string is achieved through use of internal coordinates and eigenvector optimization schemes combined with Hessian estimates. Comparison to the double-ended GSM shows that single-ended method can be even more computationally efficient than the already rapid double-ended method. Examples, including transition metal reactivity and a systematic, automated search for unknown reactivity, demonstrate the efficacy of the new method. This automated reaction search is able to find 165 reaction paths from 333 searches for the reaction of NH3 BH3 and (LiH)4 , all without guidance from user intuition. © 2015 Wiley Periodicals, Inc.

  8. Atomic Force Microscopy for DNA SNP Identification

    Science.gov (United States)

    Valbusa, Ugo; Ierardi, Vincenzo

    The knowledge of the effects of single-nucleotide polymorphisms (SNPs) in the human genome greatly contributes to better comprehension of the relation between genetic factors and diseases. Sequence analysis of genomic DNA in different individuals reveals positions where variations that involve individual base substitutions can occur. Single-nucleotide polymorphisms are highly abundant and can have different consequences at phenotypic level. Several attempts were made to apply atomic force microscopy (AFM) to detect and map SNP sites in DNA strands. The most promising approach is the study of DNA mutations producing heteroduplex DNA strands and identifying the mismatches by means of a protein that labels the mismatches. MutS is a protein that is part of a well-known complex of mismatch repair, which initiates the process of repairing when the MutS binds to the mismatched DNA filament. The position of MutS on the DNA filament can be easily recorded by means of AFM imaging.

  9. An SNP caused loss of seed shattering during rice domestication.

    Science.gov (United States)

    Konishi, Saeko; Izawa, Takeshi; Lin, Shao Yang; Ebana, Kaworu; Fukuta, Yoshimichi; Sasaki, Takuji; Yano, Masahiro

    2006-06-02

    Loss of seed shattering was a key event in the domestication of major cereals. We revealed that the qSH1 gene, a major quantitative trait locus of seed shattering in rice, encodes a BEL1-type homeobox gene and demonstrated that a single-nucleotide polymorphism (SNP) in the 5' regulatory region of the qSH1 gene caused loss of seed shattering owing to the absence of abscission layer formation. Haplotype analysis and association analysis in various rice collections revealed that the SNP was highly associated with shattering among japonica subspecies of rice, implying that it was a target of artificial selection during rice domestication.

  10. How genome-wide SNP-SNP interactions relate to nasopharyngeal carcinoma susceptibility.

    Directory of Open Access Journals (Sweden)

    Wen-Hui Su

    Full Text Available This study is the first to use genome-wide association study (GWAS data to evaluate the multidimensional genetic architecture underlying nasopharyngeal cancer. Since analysis of data from GWAS confirms a close and consistent association between elevated risk for nasopharyngeal carcinoma (NPC and major histocompatibility complex class 1 genes, our goal here was to explore lesser effects of gene-gene interactions. We conducted an exhaustive genome-wide analysis of GWAS data of NPC, revealing two-locus interactions occurring between single nucleotide polymorphisms (SNPs, and identified a number of suggestive interaction loci which were missed by traditional GWAS analyses. Although none of the interaction pairs we identified passed the genome-wide Bonferroni-adjusted threshold for significance, using independent GWAS data from the same population (Stage 2, we selected 66 SNP pairs in 39 clusters with P<0.01. We identified that in several chromosome regions, multiple suggestive interactions group to form a block-like signal, effectively reducing the rate of false discovery. The strongest cluster of interactions involved the CREB5 gene and a SNP rs1607979 on chromosome 17q22 (P = 9.86×10(-11 which also show trans-expression quantitative loci (eQTL association in Chinese population. We then detected a complicated cis-interaction pattern around the NPC-associated HLA-B locus, which is immediately adjacent to copy-number variations implicated in male susceptibility for NPC. While it remains to be seen exactly how and to what degree SNP-SNP interactions such as these affect susceptibility for nasopharyngeal cancer, future research on these questions holds great promise for increasing our understanding of this disease's genetic etiology, and possibly also that of other gene-related cancers.

  11. DoGSD: the dog and wolf genome SNP database.

    Science.gov (United States)

    Bai, Bing; Zhao, Wen-Ming; Tang, Bi-Xia; Wang, Yan-Qing; Wang, Lu; Zhang, Zhang; Yang, He-Chuan; Liu, Yan-Hu; Zhu, Jun-Wei; Irwin, David M; Wang, Guo-Dong; Zhang, Ya-Ping

    2015-01-01

    The rapid advancement of next-generation sequencing technology has generated a deluge of genomic data from domesticated dogs and their wild ancestor, grey wolves, which have simultaneously broadened our understanding of domestication and diseases that are shared by humans and dogs. To address the scarcity of single nucleotide polymorphism (SNP) data provided by authorized databases and to make SNP data more easily/friendly usable and available, we propose DoGSD (http://dogsd.big.ac.cn), the first canidae-specific database which focuses on whole genome SNP data from domesticated dogs and grey wolves. The DoGSD is a web-based, open-access resource comprising ∼ 19 million high-quality whole-genome SNPs. In addition to the dbSNP data set (build 139), DoGSD incorporates a comprehensive collection of SNPs from two newly sequenced samples (1 wolf and 1 dog) and collected SNPs from three latest dog/wolf genetic studies (7 wolves and 68 dogs), which were taken together for analysis with the population genetic statistics, Fst. In addition, DoGSD integrates some closely related information including SNP annotation, summary lists of SNPs located in genes, synonymous and non-synonymous SNPs, sampling location and breed information. All these features make DoGSD a useful resource for in-depth analysis in dog-/wolf-related studies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. MDM2 gene SNP309 T/G and p53 gene SNP72 G/C do not influence diffuse large B-cell non-Hodgkin lymphoma onset or survival in central European Caucasians

    International Nuclear Information System (INIS)

    Bittenbring, Joerg; Pfreundschuh, Michael; Roemer, Klaus; Parisot, Frédérique; Wabo, Alain; Mueller, Monika; Kerschenmeyer, Lynn; Kreuz, Markus; Truemper, Lorenz; Landt, Olfert; Menzel, Alain

    2008-01-01

    SNP309 T/G (rs2279744) causes higher levels of MDM2, the most important negative regulator of the p53 tumor suppressor. SNP72 G/C (rs1042522) gives rise to a p53 protein with a greatly reduced capacity to induce apoptosis. Both polymorphisms have been implicated in cancer. The SNP309 G-allele has recently been reported to accelerate diffuse large B-cell lymphoma (DLBCL) formation in pre-menopausal women and suggested to constitute a genetic basis for estrogen affecting human tumorigenesis. Here we asked whether SNP309 and SNP72 are associated with DLBCL in women and are correlated with age of onset, diagnosis, or patient's survival. SNP309 and SNP72 were PCR-genotyped in a case-control study that included 512 controls and 311 patients diagnosed with aggressive NHL. Of these, 205 were diagnosed with DLBCL. The age of onset was similar in men and women. The control and patients group showed similar SNP309 and SNP72 genotype frequencies. Importantly and in contrast to the previous findings, similar genotype frequencies were observed in female patients diagnosed by 51 years of age and those diagnosed later. Specifically, 3/20 female DLBCL patients diagnosed by 51 years of age were homozygous for SNP309 G and 2/20 DLBCL females in that age group were homozygous for SNP72 C. Neither SNP309 nor SNP72 had a significant influence on event-free and overall survival in multivariate analyses. In contrast to the previous study on Ashkenazi Jewish Caucasians, DLBCL in pre-menopausal women of central European Caucasian ethnicity was not associated with SNP309 G. Neither SNP309 nor SNP72 seem to be correlated with age of onset, diagnosis, or survival of patients

  13. MDM2 gene SNP309 T/G and p53 gene SNP72 G/C do not influence diffuse large B-cell non-Hodgkin lymphoma onset or survival in central European Caucasians

    Directory of Open Access Journals (Sweden)

    Landt Olfert

    2008-04-01

    Full Text Available Abstract Background SNP309 T/G (rs2279744 causes higher levels of MDM2, the most important negative regulator of the p53 tumor suppressor. SNP72 G/C (rs1042522 gives rise to a p53 protein with a greatly reduced capacity to induce apoptosis. Both polymorphisms have been implicated in cancer. The SNP309 G-allele has recently been reported to accelerate diffuse large B-cell lymphoma (DLBCL formation in pre-menopausal women and suggested to constitute a genetic basis for estrogen affecting human tumorigenesis. Here we asked whether SNP309 and SNP72 are associated with DLBCL in women and are correlated with age of onset, diagnosis, or patient's survival. Methods SNP309 and SNP72 were PCR-genotyped in a case-control study that included 512 controls and 311 patients diagnosed with aggressive NHL. Of these, 205 were diagnosed with DLBCL. Results The age of onset was similar in men and women. The control and patients group showed similar SNP309 and SNP72 genotype frequencies. Importantly and in contrast to the previous findings, similar genotype frequencies were observed in female patients diagnosed by 51 years of age and those diagnosed later. Specifically, 3/20 female DLBCL patients diagnosed by 51 years of age were homozygous for SNP309 G and 2/20 DLBCL females in that age group were homozygous for SNP72 C. Neither SNP309 nor SNP72 had a significant influence on event-free and overall survival in multivariate analyses. Conclusion In contrast to the previous study on Ashkenazi Jewish Caucasians, DLBCL in pre-menopausal women of central European Caucasian ethnicity was not associated with SNP309 G. Neither SNP309 nor SNP72 seem to be correlated with age of onset, diagnosis, or survival of patients.

  14. A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis

    KAUST Repository

    Heckmann, J M

    2009-08-13

    Complement activation in myasthenia gravis (MG) may damage muscle endplate and complement regulatory proteins such as decay-accelerating factor (DAF) or CD55 may be protective. We hypothesize that the increased prevalence of severe extraocular muscle (EOM) dysfunction among African MG subjects reported earlier may result from altered DAF expression. To test this hypothesis, we screened the DAF gene sequences relevant to the classical complement pathway and found an association between myasthenics with EOM paresis and the DAF regulatory region c.-198CG SNP (odds ratio8.6; P0.0003). This single nucleotide polymorphism (SNP) results in a twofold activation of a DAF 5?-flanking region luciferase reporter transfected into three different cell lines. Direct matching of the surrounding SNP sequence within the DAF regulatory region with the known transcription factor-binding sites suggests a loss of an Sp1-binding site. This was supported by the observation that the c.-198CG SNP did not show the normal lipopolysaccharide-induced DAF transcriptional upregulation in lymphoblasts from four patients. Our findings suggest that at critical periods during autoimmune MG, this SNP may result in inadequate DAF upregulation with consequent complement-mediated EOM damage. Susceptible individuals may benefit from anti-complement therapy in addition to immunosuppression. © 2010 Macmillan Publishers Limited. All rights reserved.

  15. A SNP Genotyping Array for Hexaploid Oat

    Directory of Open Access Journals (Sweden)

    Nicholas A. Tinker

    2014-11-01

    Full Text Available Recognizing a need in cultivated hexaploid oat ( L. for a reliable set of reference single nucleotide polymorphisms (SNPs, we have developed a 6000 (6K BeadChip design containing 257 Infinium I and 5486 Infinium II designs corresponding to 5743 SNPs. Of those, 4975 SNPs yielded successful assays after array manufacturing. These SNPs were discovered based on a variety of bioinformatics pipelines in complementary DNA (cDNA and genomic DNA originating from 20 or more diverse oat cultivars. The array was validated in 1100 samples from six recombinant inbred line (RIL mapping populations and sets of diverse oat cultivars and breeding lines, and provided approximately 3500 discernible Mendelian polymorphisms. Here, we present an annotation of these SNPs, including methods of discovery, gene identification and orthology, population-genetic characteristics, and tentative positions on an oat consensus map. We also evaluate a new cluster-based method of calling SNPs. The SNP design sequences are made publicly available, and the full SNP genotyping platform is available for commercial purchase from an independent third party.

  16. SNP markers retrieval for a non-model species: a practical approach

    Directory of Open Access Journals (Sweden)

    Shahin Arwa

    2012-01-01

    Full Text Available Abstract Background SNP (Single Nucleotide Polymorphism markers are rapidly becoming the markers of choice for applications in breeding because of next generation sequencing technology developments. For SNP development by NGS technologies, correct assembly of the huge amounts of sequence data generated is essential. Little is known about assembler's performance, especially when dealing with highly heterogeneous species that show a high genome complexity and what the possible consequences are of differences in assemblies on SNP retrieval. This study tested two assemblers (CAP3 and CLC on 454 data from four lily genotypes and compared results with respect to SNP retrieval. Results CAP3 assembly resulted in higher numbers of contigs, lower numbers of reads per contig, and shorter average read lengths compared to CLC. Blast comparisons showed that CAP3 contigs were highly redundant. Contrastingly, CLC in rare cases combined paralogs in one contig. Redundant and chimeric contigs may lead to erroneous SNPs. Filtering for redundancy can be done by blasting selected SNP markers to the contigs and discarding all the SNP markers that show more than one blast hit. Results on chimeric contigs showed that only four out of 2,421 SNP markers were selected from chimeric contigs. Conclusion In practice, CLC performs better in assembling highly heterogeneous genome sequences compared to CAP3, and consequently SNP retrieval is more efficient. Additionally a simple flow scheme is suggested for SNP marker retrieval that can be valid for all non-model species.

  17. A 48 SNP set for grapevine cultivar identification

    Directory of Open Access Journals (Sweden)

    Cabezas José A

    2011-11-01

    Full Text Available Abstract Background Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification. Results We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification. Conclusions We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome, which is proposed as a standard set for grapevine (Vitis vinifera L. genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker

  18. Three clinical experiences with SNP array results consistent with parental incest: a narrative with lessons learned.

    Science.gov (United States)

    Helm, Benjamin M; Langley, Katherine; Spangler, Brooke; Vergano, Samantha

    2014-08-01

    Single nucleotide polymorphism microarrays have the ability to reveal parental consanguinity which may or may not be known to healthcare providers. Consanguinity can have significant implications for the health of patients and for individual and family psychosocial well-being. These results often present ethical and legal dilemmas that can have important ramifications. Unexpected consanguinity can be confounding to healthcare professionals who may be unprepared to handle these results or to communicate them to families or other appropriate representatives. There are few published accounts of experiences with consanguinity and SNP arrays. In this paper we discuss three cases where molecular evidence of parental incest was identified by SNP microarray. We hope to further highlight consanguinity as a potential incidental finding, how the cases were handled by the clinical team, and what resources were found to be most helpful. This paper aims to contribute further to professional discourse on incidental findings with genomic technology and how they were addressed clinically. These experiences may provide some guidance on how others can prepare for these findings and help improve practice. As genetic and genomic testing is utilized more by non-genetics providers, we also hope to inform about the importance of engaging with geneticists and genetic counselors when addressing these findings.

  19. SNP Analysis and Whole Exome Sequencing: Their Application in the Analysis of a Consanguineous Pedigree Segregating Ataxia

    Directory of Open Access Journals (Sweden)

    Sarah L. Nickerson

    2015-10-01

    Full Text Available Autosomal recessive cerebellar ataxia encompasses a large and heterogeneous group of neurodegenerative disorders. We employed single nucleotide polymorphism (SNP analysis and whole exome sequencing to investigate a consanguineous Maori pedigree segregating ataxia. We identified a novel mutation in exon 10 of the SACS gene: c.7962T>G p.(Tyr2654*, establishing the diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS. Our findings expand both the genetic and phenotypic spectrum of this rare disorder, and highlight the value of high-density SNP analysis and whole exome sequencing as powerful and cost-effective tools in the diagnosis of genetically heterogeneous disorders such as the hereditary ataxias.

  20. Assessing SNP-SNP interactions among DNA repair, modification and metabolism related pathway genes in breast cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Yadav Sapkota

    Full Text Available Genome-wide association studies (GWASs have identified low-penetrance common variants (i.e., single nucleotide polymorphisms, SNPs associated with breast cancer susceptibility. Although GWASs are primarily focused on single-locus effects, gene-gene interactions (i.e., epistasis are also assumed to contribute to the genetic risks for complex diseases including breast cancer. While it has been hypothesized that moderately ranked (P value based weak single-locus effects in GWASs could potentially harbor valuable information for evaluating epistasis, we lack systematic efforts to investigate SNPs showing consistent associations with weak statistical significance across independent discovery and replication stages. The objectives of this study were i to select SNPs showing single-locus effects with weak statistical significance for breast cancer in a GWAS and/or candidate-gene studies; ii to replicate these SNPs in an independent set of breast cancer cases and controls; and iii to explore their potential SNP-SNP interactions contributing to breast cancer susceptibility. A total of 17 SNPs related to DNA repair, modification and metabolism pathway genes were selected since these pathways offer a priori knowledge for potential epistatic interactions and an overall role in breast carcinogenesis. The study design included predominantly Caucasian women (2,795 cases and 4,505 controls from Alberta, Canada. We observed two two-way SNP-SNP interactions (APEX1-rs1130409 and RPAP1-rs2297381; MLH1-rs1799977 and MDM2-rs769412 in logistic regression that conferred elevated risks for breast cancer (P(interaction<7.3 × 10(-3. Logic regression identified an interaction involving four SNPs (MBD2-rs4041245, MLH1-rs1799977, MDM2-rs769412, BRCA2-rs1799943 (P(permutation = 2.4 × 10(-3. SNPs involved in SNP-SNP interactions also showed single-locus effects with weak statistical significance, while BRCA2-rs1799943 showed stronger statistical significance (P

  1. Adiponectin gene SNP 276G ? T, nutrient intakes, and cardiovascular disease risk in Korean type 2 DM patients

    OpenAIRE

    Yu, So Young; Ryu, Han Kyoung; Park, Hee Jung; Choi, Young Ju; Huh, Kap Bum; Kim, Wha Young

    2007-01-01

    Single nucleotide polymorphism (SNP) in adiponectin gene has been associated with insulin resistance, diabetes, and cardiovascular disease (CVD). This study was performed to investigate the association of SNP 276G?T at adiponectin gene with CVD risk factors in Korean type 2 diabetes mellitus (DM) patients. The subjects were 351 type 2 DM patients visited a DM clinic in Seoul, and the patients with known CVD were excluded. The adiponectin SNP 276G?T was analyzed and dietary intakes were assess...

  2. SNP Data Quality Control in a National Beef and Dairy Cattle System and Highly Accurate SNP Based Parentage Verification and Identification.

    Science.gov (United States)

    McClure, Matthew C; McCarthy, John; Flynn, Paul; McClure, Jennifer C; Dair, Emma; O'Connell, D K; Kearney, John F

    2018-01-01

    A major use of genetic data is parentage verification and identification as inaccurate pedigrees negatively affect genetic gain. Since 2012 the international standard for single nucleotide polymorphism (SNP) verification in Bos taurus cattle has been the ISAG SNP panels. While these ISAG panels provide an increased level of parentage accuracy over microsatellite markers (MS), they can validate the wrong parent at ≤1% misconcordance rate levels, indicating that more SNP are needed if a more accurate pedigree is required. With rapidly increasing numbers of cattle being genotyped in Ireland that represent 61 B. taurus breeds from a wide range of farm types: beef/dairy, AI/pedigree/commercial, purebred/crossbred, and large to small herd size the Irish Cattle Breeding Federation (ICBF) analyzed different SNP densities to determine that at a minimum ≥500 SNP are needed to consistently predict only one set of parents at a ≤1% misconcordance rate. For parentage validation and prediction ICBF uses 800 SNP (ICBF800) selected based on SNP clustering quality, ISAG200 inclusion, call rate (CR), and minor allele frequency (MAF) in the Irish cattle population. Large datasets require sample and SNP quality control (QC). Most publications only deal with SNP QC via CR, MAF, parent-progeny conflicts, and Hardy-Weinberg deviation, but not sample QC. We report here parentage, SNP QC, and a genomic sample QC pipelines to deal with the unique challenges of >1 million genotypes from a national herd such as SNP genotype errors from mis-tagging of animals, lab errors, farm errors, and multiple other issues that can arise. We divide the pipeline into two parts: a Genotype QC and an Animal QC pipeline. The Genotype QC identifies samples with low call rate, missing or mixed genotype classes (no BB genotype or ABTG alleles present), and low genotype frequencies. The Animal QC handles situations where the genotype might not belong to the listed individual by identifying: >1 non

  3. Genome wide in silico SNP-tumor association analysis

    International Nuclear Information System (INIS)

    Qiu, Ping; Wang, Luquan; Kostich, Mitch; Ding, Wei; Simon, Jason S; Greene, Jonathan R

    2004-01-01

    Carcinogenesis occurs, at least in part, due to the accumulation of mutations in critical genes that control the mechanisms of cell proliferation, differentiation and death. Publicly accessible databases contain millions of expressed sequence tag (EST) and single nucleotide polymorphism (SNP) records, which have the potential to assist in the identification of SNPs overrepresented in tumor tissue. An in silico SNP-tumor association study was performed utilizing tissue library and SNP information available in NCBI's dbEST (release 092002) and dbSNP (build 106). A total of 4865 SNPs were identified which were present at higher allele frequencies in tumor compared to normal tissues. A subset of 327 (6.7%) SNPs induce amino acid changes to the protein coding sequences. This approach identified several SNPs which have been previously associated with carcinogenesis, as well as a number of SNPs that now warrant further investigation This novel in silico approach can assist in prioritization of genes and SNPs in the effort to elucidate the genetic mechanisms underlying the development of cancer

  4. Antenatal and postnatal sonographic imaging findings of a single ventricle presenting as double outlet right ventricle with rudimentary left ventricle and single atrium

    Directory of Open Access Journals (Sweden)

    Donboklang Lynser

    2015-11-01

    Full Text Available Congenital heart disease is a major cause of morbidity and mortality. Single ventricle is a rare finding and usually of left ventricular morphology. We present here interesting antenatal and postnatal echocardiographic findings of a baby having a rare single ventricle of right ventricular morphology with double outlet. Antenatally we saw a large ventricular septal defect indistinguishable from a single ventricle with left to right ventricular ratio of 1:1. Postnatally we saw a single ventricle having the outlets for both the main pulmonary artery and aortic root. The left ventricle is collapse with a rudimentary morphology possibly due to changes in hemodynamics after birth and absent of outlet from it.

  5. Heterogeneous computing architecture for fast detection of SNP-SNP interactions.

    Science.gov (United States)

    Sluga, Davor; Curk, Tomaz; Zupan, Blaz; Lotric, Uros

    2014-06-25

    The extent of data in a typical genome-wide association study (GWAS) poses considerable computational challenges to software tools for gene-gene interaction discovery. Exhaustive evaluation of all interactions among hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) may require weeks or even months of computation. Massively parallel hardware within a modern Graphic Processing Unit (GPU) and Many Integrated Core (MIC) coprocessors can shorten the run time considerably. While the utility of GPU-based implementations in bioinformatics has been well studied, MIC architecture has been introduced only recently and may provide a number of comparative advantages that have yet to be explored and tested. We have developed a heterogeneous, GPU and Intel MIC-accelerated software module for SNP-SNP interaction discovery to replace the previously single-threaded computational core in the interactive web-based data exploration program SNPsyn. We report on differences between these two modern massively parallel architectures and their software environments. Their utility resulted in an order of magnitude shorter execution times when compared to the single-threaded CPU implementation. GPU implementation on a single Nvidia Tesla K20 runs twice as fast as that for the MIC architecture-based Xeon Phi P5110 coprocessor, but also requires considerably more programming effort. General purpose GPUs are a mature platform with large amounts of computing power capable of tackling inherently parallel problems, but can prove demanding for the programmer. On the other hand the new MIC architecture, albeit lacking in performance reduces the programming effort and makes it up with a more general architecture suitable for a wider range of problems.

  6. Large-scale SNP discovery through RNA sequencing and SNP genotyping by targeted enrichment sequencing in cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Pootakham, Wirulda; Shearman, Jeremy R; Ruang-Areerate, Panthita; Sonthirod, Chutima; Sangsrakru, Duangjai; Jomchai, Nukoon; Yoocha, Thippawan; Triwitayakorn, Kanokporn; Tragoonrung, Somvong; Tangphatsornruang, Sithichoke

    2014-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crop species being the main source of dietary energy in several countries. Marker-assisted selection has become an essential tool in plant breeding. Single nucleotide polymorphism (SNP) discovery via transcriptome sequencing is an attractive strategy for genome complexity reduction in organisms with large genomes. We sequenced the transcriptome of 16 cassava accessions using the Illumina HiSeq platform and identified 675,559 EST-derived SNP markers. A subset of those markers was subsequently genotyped by capture-based targeted enrichment sequencing in 100 F1 progeny segregating for starch viscosity phenotypes. A total of 2,110 non-redundant SNP markers were used to construct a genetic map. This map encompasses 1,785 cM and consists of 19 linkage groups. A major quantitative trait locus (QTL) controlling starch pasting properties was identified and shown to coincide with the QTL previously reported for this trait. With a high-density SNP-based linkage map presented here, we also uncovered a novel QTL associated with starch pasting time on LG 10.

  7. Discovery and Potential of SNP Markers in Characterization of Tunisian Olive Germplasm

    Directory of Open Access Journals (Sweden)

    Imen Rekik Hakim

    2009-12-01

    Full Text Available Single Nucelotide Polymorphisms (SNPs have become the most widely used markers in many current genetic applications. Here we report the discovery of nine new SNPs in olives by direct partial sequencing of two genes (OEX and OEW in sixteen Tunisian cultivars. The SNP markers were then used to genotype 24 olive cultivars and assess the level of genetic diversity. Power of discrimination of SNP markers was then compared to that of microsatellites (SSRs. A combination of SSR and SNP markers was finally proposed that can be used for cultivars identification in juvenile step or for oil traceability.

  8. Spectrum of single photon emission computed tomography/computed tomography findings in patients with parathyroid adenomas.

    Science.gov (United States)

    Chakraborty, Dhritiman; Mittal, Bhagwant Rai; Harisankar, Chidambaram Natrajan Balasubramanian; Bhattacharya, Anish; Bhadada, Sanjay

    2011-01-01

    Primary hyperparathyroidism results from excessive parathyroid hormone secretion. Approximately 85% of all cases of primary hyperparathyroidism are caused by a single parathyroid adenoma; 10-15% of the cases are caused by parathyroid hyperplasia. Parathyroid carcinoma accounts for approximately 3-4% of cases of primary disease. Technetium-99m-sestamibi (MIBI), the current scintigraphic procedure of choice for preoperative parathyroid localization, can be performed in various ways. The "single-isotope, double-phase technique" is based on the fact that MIBI washes out more rapidly from the thyroid than from abnormal parathyroid tissue. However, not all parathyroid lesions retain MIBI and not all thyroid tissue washes out quickly, and subtraction imaging is helpful. Single photon emission computed tomography (SPECT) provides information for localizing parathyroid lesions, differentiating thyroid from parathyroid lesions, and detecting and localizing ectopic parathyroid lesions. Addition of CT with SPECT improves the sensitivity. This pictorial assay demonstrates various SPECT/CT patterns observed in parathyroid scintigraphy.

  9. Single mode chalcogenide glass fiber as wavefront filter for the DARWIN planet finding misson

    NARCIS (Netherlands)

    Faber, A.J.; Cheng, L.K.; Gielesen, W.L.M.; Boussard-Plédel, C.; Houizot, P.; Danto, S.; Lucas, J.; Pereira Do Carmo, J.

    2017-01-01

    The development of single mode chalcogenide glass fibers as wavefront filter for the DARWIN mission is reported. Melting procedures and different preform techniques for manufacturing core-cladding chalcogenide fibers are described. Bulk glass samples on the basis of Te-As-Se- and high

  10. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel

    Directory of Open Access Journals (Sweden)

    Drechsel Marion

    2009-10-01

    Full Text Available Abstract Background Single nucleotide polymorphism (SNP genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. Findings The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis. Conclusion Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.

  11. Genetic Polymorphism of MDM2 SNP309 in Patients with Helicobacter Pylori-Associated Gastritis.

    Science.gov (United States)

    Tongtawee, Taweesak; Dechsukhum, Chavaboon; Leeanansaksiri, Wilairat; Kaewpitoon, Soraya; Kaewpitoon, Natthawut; Loyd, Ryan A; Matrakool, Likit; Panpimanmas, Sukij

    2015-01-01

    Helicobacter pylori plays an important role in gastric cancer, which has a relatively low inciduence in Thailand. MDM2 is a major negative regulator of p53, the key tumor suppressor involved in tumorigenesis of the majority of human cancers. Whether its expression might explain the relative lack of gastric cancer in Thailand was assessed here. This single-center study was conducted in the northeast region of Thailand. Gastric mucosa from 100 patients with Helicobacter pylori associated gastritis was analyzed for MDM2 SNP309 using real-time PCR hybridization (light-cycler) probes. In the total 100 Helicobacter pylori associated gastritis cases the incidence of SNP 309 T/T homozygous was 78 % with SNP309 G/T heterozygous found in 19% and SNP309 G/G homozygous in 3%. The result show SNP 309 T/T and SNP 309 G/T to be rather common in the Thai population. Our study indicates that the MDM2 SNP309 G/G homozygous genotype might be a risk factor for gastric cancer in Thailand and the fact that it is infrequent could explain to some extent the low incidence of gastric cancer in the Thai population.

  12. GenomeRunner web server: regulatory similarity and differences define the functional impact of SNP sets.

    Science.gov (United States)

    Dozmorov, Mikhail G; Cara, Lukas R; Giles, Cory B; Wren, Jonathan D

    2016-08-01

    The growing amount of regulatory data from the ENCODE, Roadmap Epigenomics and other consortia provides a wealth of opportunities to investigate the functional impact of single nucleotide polymorphisms (SNPs). Yet, given the large number of regulatory datasets, researchers are posed with a challenge of how to efficiently utilize them to interpret the functional impact of SNP sets. We developed the GenomeRunner web server to automate systematic statistical analysis of SNP sets within a regulatory context. Besides defining the functional impact of SNP sets, GenomeRunner implements novel regulatory similarity/differential analyses, and cell type-specific regulatory enrichment analysis. Validated against literature- and disease ontology-based approaches, analysis of 39 disease/trait-associated SNP sets demonstrated that the functional impact of SNP sets corresponds to known disease relationships. We identified a group of autoimmune diseases with SNPs distinctly enriched in the enhancers of T helper cell subpopulations, and demonstrated relevant cell type-specificity of the functional impact of other SNP sets. In summary, we show how systematic analysis of genomic data within a regulatory context can help interpreting the functional impact of SNP sets. GenomeRunner web server is freely available at http://www.integrativegenomics.org/ mikhail.dozmorov@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Two combinatorial optimization problems for SNP discovery using base-specific cleavage and mass spectrometry.

    Science.gov (United States)

    Chen, Xin; Wu, Qiong; Sun, Ruimin; Zhang, Louxin

    2012-01-01

    The discovery of single-nucleotide polymorphisms (SNPs) has important implications in a variety of genetic studies on human diseases and biological functions. One valuable approach proposed for SNP discovery is based on base-specific cleavage and mass spectrometry. However, it is still very challenging to achieve the full potential of this SNP discovery approach. In this study, we formulate two new combinatorial optimization problems. While both problems are aimed at reconstructing the sample sequence that would attain the minimum number of SNPs, they search over different candidate sequence spaces. The first problem, denoted as SNP - MSP, limits its search to sequences whose in silico predicted mass spectra have all their signals contained in the measured mass spectra. In contrast, the second problem, denoted as SNP - MSQ, limits its search to sequences whose in silico predicted mass spectra instead contain all the signals of the measured mass spectra. We present an exact dynamic programming algorithm for solving the SNP - MSP problem and also show that the SNP - MSQ problem is NP-hard by a reduction from a restricted variation of the 3-partition problem. We believe that an efficient solution to either problem above could offer a seamless integration of information in four complementary base-specific cleavage reactions, thereby improving the capability of the underlying biotechnology for sensitive and accurate SNP discovery.

  14. Unraveling biocomplexity of Northeast Atlantic herring stocks using SNP markers

    DEFF Research Database (Denmark)

    Bekkevold, Dorte; Limborg, Morten; Helyar, Sarah

    2012-01-01

    polymorphism (SNP) markers in Northeast Atlantic herring population samples. Marker panels were targeted to include gene‐associated loci to maximize statistical resolution. Application of 281 SNP markers to samples representing different levels of stock complexity showed that the regional origin of individual......Atlantic herring (Clupea harengus) exhibit biocomplexity, with widespread, geographically explicit populations that perform long‐range migration to common feeding and wintering areas, where they are exploited by fisheries. This means that exploited stocks do not describe discrete units, thereby...... complicating stock assessment and management. It is therefore of management interest to trace individual population migration patterns and contributions to fisheries. To underpin management and to develop a validated tool for traceability of individuals from mixed‐stock samples we applied single nucleotide...

  15. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties.

    Science.gov (United States)

    Tian, Hong-Li; Wang, Feng-Ge; Zhao, Jiu-Ran; Yi, Hong-Mei; Wang, Lu; Wang, Rui; Yang, Yang; Song, Wei

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are abundant and evenly distributed throughout the maize ( Zea mays L.) genome. SNPs have several advantages over simple sequence repeats, such as ease of data comparison and integration, high-throughput processing of loci, and identification of associated phenotypes. SNPs are thus ideal for DNA fingerprinting, genetic diversity analysis, and marker-assisted breeding. Here, we developed a high-throughput and compatible SNP array, maizeSNP3072, containing 3072 SNPs developed from the maizeSNP50 array. To improve genotyping efficiency, a high-quality cluster file, maizeSNP3072_GT.egt, was constructed. All 3072 SNP loci were localized within different genes, where they were distributed in exons (43 %), promoters (21 %), 3' untranslated regions (UTRs; 22 %), 5' UTRs (9 %), and introns (5 %). The average genotyping failure rate using these SNPs was only 6 %, or 3 % using the cluster file to call genotypes. The genotype consistency of repeat sample analysis on Illumina GoldenGate versus Infinium platforms exceeded 96.4 %. The minor allele frequency (MAF) of the SNPs averaged 0.37 based on data from 309 inbred lines. The 3072 SNPs were highly effective for distinguishing among 276 examined hybrids. Comparative analysis using Chinese varieties revealed that the 3072SNP array showed a better marker success rate and higher average MAF values, evaluation scores, and variety-distinguishing efficiency than the maizeSNP50K array. The maizeSNP3072 array thus can be successfully used in DNA fingerprinting identification of Chinese maize varieties and shows potential as a useful tool for germplasm resource evaluation and molecular marker-assisted breeding.

  16. Finding Order in Randomness: Single-Molecule Studies Reveal Stochastic RNA Processing | Center for Cancer Research

    Science.gov (United States)

    Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.

  17. [Restriction endonuclease digest - melting curve analysis: a new SNP genotyping and its application in traditional Chinese medicine authentication].

    Science.gov (United States)

    Jiang, Chao; Huang, Lu-Qi; Yuan, Yuan; Chen, Min; Hou, Jing-Yi; Wu, Zhi-Gang; Lin, Shu-Fang

    2014-04-01

    Single nucleotide polymorphisms (SNP) is an important molecular marker in traditional Chinese medicine research, and it is widely used in TCM authentication. The present study created a new genotyping method by combining restriction endonuclease digesting with melting curve analysis, which is a stable, rapid and easy doing SNP genotyping method. The new method analyzed SNP genotyping of two chloroplast SNP which was located in or out of the endonuclease recognition site, the results showed that when attaching a 14 bp GC-clamp (cggcgggagggcgg) to 5' end of the primer and selecting suited endonuclease to digest the amplification products, the melting curve of Lonicera japonica and Atractylodes macrocephala were all of double peaks and the adulterants Shan-yin-hua and A. lancea were of single peaks. The results indicated that the method had good stability and reproducibility for identifying authentic medicines from its adulterants. It is a potential SNP genotyping method and named restriction endonuclease digest - melting curve analysis.

  18. A Novel Teaching-Learning-Based Optimization for Improved Mutagenic Primer Design in Mismatch PCR-RFLP SNP Genotyping.

    Science.gov (United States)

    Cheng, Yu-Huei

    2016-01-01

    Many single nucleotide polymorphisms (SNPs) for complex genetic diseases are genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in small-scale basic research studies. It is an essential work to design feasible PCR-RFLP primer pair and find out available restriction enzymes to recognize the target SNP for PCR experiments. However, many SNPs are incapable of performing PCR-RFLP makes SNP genotyping become unpractical. A genetic algorithm (GA) had been proposed for designing mutagenic primer and get available restriction enzymes, but it gives an unrefined solution in mutagenic primers. In order to improve the mutagenic primer design, we propose TLBOMPD (TLBO-based Mutagenic Primer Design) a novel computational intelligence-based method that uses the notion of "teaching and learning" to search for more feasible mutagenic primers and provide the latest available restriction enzymes. The original Wallace's formula for the calculation of melting temperature is maintained, and more accurate calculation formulas of GC-based melting temperature and thermodynamic melting temperature are introduced into the proposed method. Mutagenic matrix is also reserved to increase the efficiency of judging a hypothetical mutagenic primer if involve available restriction enzymes for recognizing the target SNP. Furthermore, the core of SNP-RFLPing version 2 is used to enhance the mining work for restriction enzymes based on the latest REBASE. Twenty-five SNPs with mismatch PCR-RFLP screened from 288 SNPs in human SLC6A4 gene are used to appraise the TLBOMPD. Also, the computational results are compared with those of the GAMPD. In the future, the usage of the mutagenic primers in the wet lab needs to been validated carefully to increase the reliability of the method. The TLBOMPD is implemented in JAVA and it is freely available at http://tlbompd.googlecode.com/.

  19. SNP-based typing: a useful tool to study Bordetella pertussis populations.

    Directory of Open Access Journals (Sweden)

    Marjolein van Gent

    Full Text Available To monitor changes in Bordetella pertussis populations, mainly two typing methods are used; Pulsed-Field Gel Electrophoresis (PFGE and Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA. In this study, a single nucleotide polymorphism (SNP typing method, based on 87 SNPs, was developed and compared with PFGE and MLVA. The discriminatory indices of SNP typing, PFGE and MLVA were found to be 0.85, 0.95 and 0.83, respectively. Phylogenetic analysis, using SNP typing as Gold Standard, revealed false homoplasies in the PFGE and MLVA trees. Further, in contrast to the SNP-based tree, the PFGE- and MLVA-based trees did not reveal a positive correlation between root-to-tip distance and the isolation year of strains. Thus PFGE and MLVA do not allow an estimation of the relative age of the selected strains. In conclusion, SNP typing was found to be phylogenetically more informative than PFGE and more discriminative than MLVA. Further, in contrast to PFGE, it is readily standardized allowing interlaboratory comparisons. We applied SNP typing to study strains with a novel allele for the pertussis toxin promoter, ptxP3, which have a worldwide distribution and which have replaced the resident ptxP1 strains in the last 20 years. Previously, we showed that ptxP3 strains showed increased pertussis toxin expression and that their emergence was associated with increased notification in The Netherlands. SNP typing showed that the ptxP3 strains isolated in the Americas, Asia, Australia and Europe formed a monophyletic branch which recently diverged from ptxP1 strains. Two predominant ptxP3 SNP types were identified which spread worldwide. The widespread use of SNP typing will enhance our understanding of the evolution and global epidemiology of B. pertussis.

  20. A Pipeline for Classifying Relationships Using Dense SNP/SNV Data and Putative Pedigree Information.

    Science.gov (United States)

    Zeng, Zhen; Weeks, Daniel E; Chen, Wei; Mukhopadhyay, Nandita; Feingold, Eleanor

    2016-02-01

    When genome-wide association studies (GWAS) or sequencing studies are performed on family-based datasets, the genotype data can be used to check the structure of putative pedigrees. Even in datasets of putatively unrelated people, close relationships can often be detected using dense single-nucleotide polymorphism/variant (SNP/SNV) data. A number of methods for finding relationships using dense genetic data exist, but they all have certain limitations, including that they typically use average genetic sharing, which is only a subset of the available information. Here, we present a set of approaches for classifying relationships in GWAS datasets or large-scale sequencing datasets. We first propose an empirical method for detecting identity by descent segments in close relative pairs using un-phased dense SNP data and demonstrate how that information can assist in building a relationship classifier. We then develop a strategy to take advantage of putative pedigree information to enhance classification accuracy. Our methods are tested and illustrated with two datasets from two distinct populations. Finally, we propose classification pipelines for checking and identifying relationships in datasets containing a large number of small pedigrees. © 2015 WILEY PERIODICALS, INC.

  1. Polygenic analysis of genome-wide SNP data identifies common variants on allergic rhinitis

    DEFF Research Database (Denmark)

    Mohammadnejad, Afsaneh; Brasch-Andersen, Charlotte; Haagerup, Annette

    Background: Allergic Rhinitis (AR) is a complex disorder that affects many people around the world. There is a high genetic contribution to the development of the AR, as twins and family studies have estimated heritability of more than 33%. Due to the complex nature of the disease, single SNP...... analysis has limited power in identifying the genetic variations for AR. We combined genome-wide association analysis (GWAS) with polygenic risk score (PRS) in exploring the genetic basis underlying the disease. Methods: We collected clinical data on 631 Danish subjects with AR cases consisting of 434...... sibling pairs and unrelated individuals and control subjects of 197 unrelated individuals. SNP genotyping was done by Affymetrix Genome-Wide Human SNP Array 5.0. SNP imputation was performed using "IMPUTE2". Using additive effect model, GWAS was conducted in discovery sample, the genotypes...

  2. Computational intelligence in bioinformatics: SNP/haplotype data in genetic association study for common diseases.

    Science.gov (United States)

    Kelemen, Arpad; Vasilakos, Athanasios V; Liang, Yulan

    2009-09-01

    Comprehensive evaluation of common genetic variations through association of single-nucleotide polymorphism (SNP) structure with common complex disease in the genome-wide scale is currently a hot area in human genome research due to the recent development of the Human Genome Project and HapMap Project. Computational science, which includes computational intelligence (CI), has recently become the third method of scientific enquiry besides theory and experimentation. There have been fast growing interests in developing and applying CI in disease mapping using SNP and haplotype data. Some of the recent studies have demonstrated the promise and importance of CI for common complex diseases in genomic association study using SNP/haplotype data, especially for tackling challenges, such as gene-gene and gene-environment interactions, and the notorious "curse of dimensionality" problem. This review provides coverage of recent developments of CI approaches for complex diseases in genetic association study with SNP/haplotype data.

  3. SNP discovery in nonmodel organisms: strand bias and base-substitution errors reduce conversion rates.

    Science.gov (United States)

    Gonçalves da Silva, Anders; Barendse, William; Kijas, James W; Barris, Wes C; McWilliam, Sean; Bunch, Rowan J; McCullough, Russell; Harrison, Blair; Hoelzel, A Rus; England, Phillip R

    2015-07-01

    Single nucleotide polymorphisms (SNPs) have become the marker of choice for genetic studies in organisms of conservation, commercial or biological interest. Most SNP discovery projects in nonmodel organisms apply a strategy for identifying putative SNPs based on filtering rules that account for random sequencing errors. Here, we analyse data used to develop 4723 novel SNPs for the commercially important deep-sea fish, orange roughy (Hoplostethus atlanticus), to assess the impact of not accounting for systematic sequencing errors when filtering identified polymorphisms when discovering SNPs. We used SAMtools to identify polymorphisms in a velvet assembly of genomic DNA sequence data from seven individuals. The resulting set of polymorphisms were filtered to minimize 'bycatch'-polymorphisms caused by sequencing or assembly error. An Illumina Infinium SNP chip was used to genotype a final set of 7714 polymorphisms across 1734 individuals. Five predictors were examined for their effect on the probability of obtaining an assayable SNP: depth of coverage, number of reads that support a variant, polymorphism type (e.g. A/C), strand-bias and Illumina SNP probe design score. Our results indicate that filtering out systematic sequencing errors could substantially improve the efficiency of SNP discovery. We show that BLASTX can be used as an efficient tool to identify single-copy genomic regions in the absence of a reference genome. The results have implications for research aiming to identify assayable SNPs and build SNP genotyping assays for nonmodel organisms. © 2014 John Wiley & Sons Ltd.

  4. Managing large SNP datasets with SNPpy.

    Science.gov (United States)

    Mitha, Faheem

    2013-01-01

    Using relational databases to manage SNP datasets is a very useful technique that has significant advantages over alternative methods, including the ability to leverage the power of relational databases to perform data validation, and the use of the powerful SQL query language to export data. SNPpy is a Python program which uses the PostgreSQL database and the SQLAlchemy Python library to automate SNP data management. This chapter shows how to use SNPpy to store and manage large datasets.

  5. Rapid SNP discovery and genetic mapping using sequenced RAD markers.

    Directory of Open Access Journals (Sweden)

    Nathan A Baird

    Full Text Available Single nucleotide polymorphism (SNP discovery and genotyping are essential to genetic mapping. There remains a need for a simple, inexpensive platform that allows high-density SNP discovery and genotyping in large populations. Here we describe the sequencing of restriction-site associated DNA (RAD tags, which identified more than 13,000 SNPs, and mapped three traits in two model organisms, using less than half the capacity of one Illumina sequencing run. We demonstrated that different marker densities can be attained by choice of restriction enzyme. Furthermore, we developed a barcoding system for sample multiplexing and fine mapped the genetic basis of lateral plate armor loss in threespine stickleback by identifying recombinant breakpoints in F(2 individuals. Barcoding also facilitated mapping of a second trait, a reduction of pelvic structure, by in silico re-sorting of individuals. To further demonstrate the ease of the RAD sequencing approach we identified polymorphic markers and mapped an induced mutation in Neurospora crassa. Sequencing of RAD markers is an integrated platform for SNP discovery and genotyping. This approach should be widely applicable to genetic mapping in a variety of organisms.

  6. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains

    KAUST Repository

    Coll, Francesc

    2014-09-01

    Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide polymorphisms (SNPs) as robust (stable) markers of genetic variation for phylogenetic analysis. We identify ∼92k SNP across a global collection of 1,601 genomes. The SNP-based phylogeny is consistent with the gold-standard regions of difference (RD) classification system. Of the ∼7k strain-specific SNPs identified, 62 markers are proposed to discriminate known circulating strains. This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives. It may be used to classify clinical isolates to evaluate tools to control the disease, including therapeutics and vaccines whose effectiveness may vary by strain type. © 2014 Macmillan Publishers Limited.

  7. MDM2 promoter SNP344T>A (rs1196333 status does not affect cancer risk.

    Directory of Open Access Journals (Sweden)

    Stian Knappskog

    Full Text Available The MDM2 proto-oncogene plays a key role in central cellular processes like growth control and apoptosis, and the gene locus is frequently amplified in sarcomas. Two polymorphisms located in the MDM2 promoter P2 have been shown to affect cancer risk. One of these polymorphisms (SNP309T>G; rs2279744 facilitates Sp1 transcription factor binding to the promoter and is associated with increased cancer risk. In contrast, SNP285G>C (rs117039649, located 24 bp upstream of rs2279744, and in complete linkage disequilibrium with the SNP309G allele, reduces Sp1 recruitment and lowers cancer risk. Thus, fine tuning of MDM2 expression has proven to be of significant importance with respect to tumorigenesis. We assessed the potential functional effects of a third MDM2 promoter P2 polymorphism (SNP344T>A; rs1196333 located on the SNP309T allele. While in silico analyses indicated SNP344A to modulate TFAP2A, SPIB and AP1 transcription factor binding, we found no effect of SNP344 status on MDM2 expression levels. Assessing the frequency of SNP344A in healthy Caucasians (n = 2,954 and patients suffering from ovarian (n = 1,927, breast (n = 1,271, endometrial (n = 895 or prostatic cancer (n = 641, we detected no significant difference in the distribution of this polymorphism between any of these cancer forms and healthy controls (6.1% in healthy controls, and 4.9%, 5.0%, 5.4% and 7.2% in the cancer groups, respectively. In conclusion, our findings provide no evidence indicating that SNP344A may affect MDM2 transcription or cancer risk.

  8. MRI brain findings in ephedrone encephalopathy associated with manganese abuse: Single-center perspective

    International Nuclear Information System (INIS)

    Poniatowska, Renata; Lusawa, Małgorzata; Skierczyńska, Agnieszka; Makowicz, Grzegorz; Habrat, Bogusław; Sienkiewicz-Jarosz, Halina

    2014-01-01

    Manganese (Mn) is a well-known toxic agent causing symptoms of parkinsonism in employees of certain branches of industry. Home production of a psychostimulant ephedrone (methcathinone), involving the use of potassium permanganate, became a new cause of intoxications in Poland. This article presents clinical symptoms, initial brain MRI findings and characteristics of changes observed in follow-up examinations in 4 patients with manganese intoxication associated with intravenous administration of ephedrone. All patients in our case series presented symptoms of parkinsonism. T1-WI MRI revealed high intensity signal in globi pallidi in all patients; hyperintense lesions in midbrain were observed in three patients, while lesions located in cerebellar hemispheres and pituitary gland in just one patient. The reduction of signal intensity in the affected brain structures was observed in follow-up studies, with no significant improvement in clinical symptoms. Brain MRI is helpful in the assessment of distribution as well as dynamics of changes in ephedrone encephalopathy. Regression of signal intensity changes visible in brain MRI is not associated with clinical condition improvement. Although brain MRI findings are not characteristic for ephedrone encephalopathy, they may contribute to diagnosing this condition

  9. Single-photon emission computed tomographic findings and motor neuron signs in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Terao, Shin-ichi; Sobue, Gen; Higashi, Naoki; Takahashi, Masahiko; Suga, Hidemichi; Mitsuma, Terunori

    1995-01-01

    123 I-amphetamine-single photon emission computed tomography (SPECT) was performed on 16 patients with amyotrophic lateral sclerosis (ALS) to investigate the correlation between regional cerebral blood flow (rCBF) and upper motor neuron signs. Significant decreased blood flow less than 2 SDs below the mean of controls was observed in the frontal lobe in 4 patients (25%) and in the frontoparietal lobe including the cortical motor area in 4 patients, respectively. The severity of extermity muscular weakness was significantly correlate with decrease in blood flow through the frontal lobe (p<0.05) and through the frontoparietal lobe (p<0.001). A significant correlation was also noted to exist between the severity of bulbar paralysis and decrease in blood flow through the frontoparietal lobe. No correlation, however, was observed between rCBF and severity of spasticity, presence or absence of Babinski's sign and the duration of illness. Although muscular weakness in the limbs and bulbar paralysis are not pure upper motor neuron signs, the observed reduction in blood flow through the frontal or frontoparietal lobes appears to reflect extensive progression of functional or organic lesions of cortical neurons including the motor area. (author)

  10. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement.

    Science.gov (United States)

    Hwang, Michael T; Landon, Preston B; Lee, Joon; Choi, Duyoung; Mo, Alexander H; Glinsky, Gennadi; Lal, Ratnesh

    2016-06-28

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine.

  11. SNPdetector: a software tool for sensitive and accurate SNP detection.

    Directory of Open Access Journals (Sweden)

    Jinghui Zhang

    2005-10-01

    Full Text Available Identification of single nucleotide polymorphisms (SNPs and mutations is important for the discovery of genetic predisposition to complex diseases. PCR resequencing is the method of choice for de novo SNP discovery. However, manual curation of putative SNPs has been a major bottleneck in the application of this method to high-throughput screening. Therefore it is critical to develop a more sensitive and accurate computational method for automated SNP detection. We developed a software tool, SNPdetector, for automated identification of SNPs and mutations in fluorescence-based resequencing reads. SNPdetector was designed to model the process of human visual inspection and has a very low false positive and false negative rate. We demonstrate the superior performance of SNPdetector in SNP and mutation analysis by comparing its results with those derived by human inspection, PolyPhred (a popular SNP detection tool, and independent genotype assays in three large-scale investigations. The first study identified and validated inter- and intra-subspecies variations in 4,650 traces of 25 inbred mouse strains that belong to either the Mus musculus species or the M. spretus species. Unexpected heterozygosity in CAST/Ei strain was observed in two out of 1,167 mouse SNPs. The second study identified 11,241 candidate SNPs in five ENCODE regions of the human genome covering 2.5 Mb of genomic sequence. Approximately 50% of the candidate SNPs were selected for experimental genotyping; the validation rate exceeded 95%. The third study detected ENU-induced mutations (at 0.04% allele frequency in 64,896 traces of 1,236 zebra fish. Our analysis of three large and diverse test datasets demonstrated that SNPdetector is an effective tool for genome-scale research and for large-sample clinical studies. SNPdetector runs on Unix/Linux platform and is available publicly (http://lpg.nci.nih.gov.

  12. Gene-based SNP discovery and genetic mapping in pea.

    Science.gov (United States)

    Sindhu, Anoop; Ramsay, Larissa; Sanderson, Lacey-Anne; Stonehouse, Robert; Li, Rong; Condie, Janet; Shunmugam, Arun S K; Liu, Yong; Jha, Ambuj B; Diapari, Marwan; Burstin, Judith; Aubert, Gregoire; Tar'an, Bunyamin; Bett, Kirstin E; Warkentin, Thomas D; Sharpe, Andrew G

    2014-10-01

    Gene-based SNPs were identified and mapped in pea using five recombinant inbred line populations segregating for traits of agronomic importance. Pea (Pisum sativum L.) is one of the world's oldest domesticated crops and has been a model system in plant biology and genetics since the work of Gregor Mendel. Pea is the second most widely grown pulse crop in the world following common bean. The importance of pea as a food crop is growing due to its combination of moderate protein concentration, slowly digestible starch, high dietary fiber concentration, and its richness in micronutrients; however, pea has lagged behind other major crops in harnessing recent advances in molecular biology, genomics and bioinformatics, partly due to its large genome size with a large proportion of repetitive sequence, and to the relatively limited investment in research in this crop globally. The objective of this research was the development of a genome-wide transcriptome-based pea single-nucleotide polymorphism (SNP) marker platform using next-generation sequencing technology. A total of 1,536 polymorphic SNP loci selected from over 20,000 non-redundant SNPs identified using deep transcriptome sequencing of eight diverse Pisum accessions were used for genotyping in five RIL populations using an Illumina GoldenGate assay. The first high-density pea SNP map defining all seven linkage groups was generated by integrating with previously published anchor markers. Syntenic relationships of this map with the model legume Medicago truncatula and lentil (Lens culinaris Medik.) maps were established. The genic SNP map establishes a foundation for future molecular breeding efforts by enabling both the identification and tracking of introgression of genomic regions harbouring QTLs related to agronomic and seed quality traits.

  13. Global haplotype partitioning for maximal associated SNP pairs.

    Science.gov (United States)

    Katanforoush, Ali; Sadeghi, Mehdi; Pezeshk, Hamid; Elahi, Elahe

    2009-08-27

    Global partitioning based on pairwise associations of SNPs has not previously been used to define haplotype blocks within genomes. Here, we define an association index based on LD between SNP pairs. We use the Fisher's exact test to assess the statistical significance of the LD estimator. By this test, each SNP pair is characterized as associated, independent, or not-statistically-significant. We set limits on the maximum acceptable proportion of independent pairs within all blocks and search for the partitioning with maximal proportion of associated SNP pairs. Essentially, this model is reduced to a constrained optimization problem, the solution of which is obtained by iterating a dynamic programming algorithm. In comparison with other methods, our algorithm reports blocks of larger average size. Nevertheless, the haplotype diversity within the blocks is captured by a small number of tagSNPs. Resampling HapMap haplotypes under a block-based model of recombination showed that our algorithm is robust in reproducing the same partitioning for recombinant samples. Our algorithm performed better than previously reported models in a case-control association study aimed at mapping a single locus trait, based on simulation results that were evaluated by a block-based statistical test. Compared to methods of haplotype block partitioning, we performed best on detection of recombination hotspots. Our proposed method divides chromosomes into the regions within which allelic associations of SNP pairs are maximized. This approach presents a native design for dimension reduction in genome-wide association studies. Our results show that the pairwise allelic association of SNPs can describe various features of genomic variation, in particular recombination hotspots.

  14. Global haplotype partitioning for maximal associated SNP pairs

    Directory of Open Access Journals (Sweden)

    Pezeshk Hamid

    2009-08-01

    Full Text Available Abstract Background Global partitioning based on pairwise associations of SNPs has not previously been used to define haplotype blocks within genomes. Here, we define an association index based on LD between SNP pairs. We use the Fisher's exact test to assess the statistical significance of the LD estimator. By this test, each SNP pair is characterized as associated, independent, or not-statistically-significant. We set limits on the maximum acceptable proportion of independent pairs within all blocks and search for the partitioning with maximal proportion of associated SNP pairs. Essentially, this model is reduced to a constrained optimization problem, the solution of which is obtained by iterating a dynamic programming algorithm. Results In comparison with other methods, our algorithm reports blocks of larger average size. Nevertheless, the haplotype diversity within the blocks is captured by a small number of tagSNPs. Resampling HapMap haplotypes under a block-based model of recombination showed that our algorithm is robust in reproducing the same partitioning for recombinant samples. Our algorithm performed better than previously reported models in a case-control association study aimed at mapping a single locus trait, based on simulation results that were evaluated by a block-based statistical test. Compared to methods of haplotype block partitioning, we performed best on detection of recombination hotspots. Conclusion Our proposed method divides chromosomes into the regions within which allelic associations of SNP pairs are maximized. This approach presents a native design for dimension reduction in genome-wide association studies. Our results show that the pairwise allelic association of SNPs can describe various features of genomic variation, in particular recombination hotspots.

  15. Robust Demographic Inference from Genomic and SNP Data

    Science.gov (United States)

    Excoffier, Laurent; Dupanloup, Isabelle; Huerta-Sánchez, Emilia; Sousa, Vitor C.; Foll, Matthieu

    2013-01-01

    We introduce a flexible and robust simulation-based framework to infer demographic parameters from the site frequency spectrum (SFS) computed on large genomic datasets. We show that our composite-likelihood approach allows one to study evolutionary models of arbitrary complexity, which cannot be tackled by other current likelihood-based methods. For simple scenarios, our approach compares favorably in terms of accuracy and speed with , the current reference in the field, while showing better convergence properties for complex models. We first apply our methodology to non-coding genomic SNP data from four human populations. To infer their demographic history, we compare neutral evolutionary models of increasing complexity, including unsampled populations. We further show the versatility of our framework by extending it to the inference of demographic parameters from SNP chips with known ascertainment, such as that recently released by Affymetrix to study human origins. Whereas previous ways of handling ascertained SNPs were either restricted to a single population or only allowed the inference of divergence time between a pair of populations, our framework can correctly infer parameters of more complex models including the divergence of several populations, bottlenecks and migration. We apply this approach to the reconstruction of African demography using two distinct ascertained human SNP panels studied under two evolutionary models. The two SNP panels lead to globally very similar estimates and confidence intervals, and suggest an ancient divergence (>110 Ky) between Yoruba and San populations. Our methodology appears well suited to the study of complex scenarios from large genomic data sets. PMID:24204310

  16. [SNP-19 genotypic variants of CAPN10 gene and its relation to diabetes mellitus type 2 in a population of Ciudad Juarez, Mexico].

    Science.gov (United States)

    Loya Méndez, Yolanda; Reyes Leal, Gilberto; Sánchez González, Adriana; Portillo Reyes, Verónica; Reyes Ruvalcaba, David; Bojórquez Rangel, Guillermo

    2014-09-28

    Diabetes Mellitus (DM) type 2 is a common pathology with multifactorial etiology, which exact genetic bases remain unknown. Some studies suggest that single nucleotides polymorphisms (SNPs) in the CAPN10 gene (Locus 2q37.3) could be associated with the development of this disease, including the insertion/deletion polymorphism SNP-19 (2R→3R). The present study determined the association between the SNP-19 and the risk of developing DM type 2 in Ciudad Juarez population. For this study 107 participants were selected: 43 diabetics type 2 (cases) and 64 non diabetics with no family history of DM type 2 in first grade (control). Anthropometric studies were realized as well as lipids, lipoproteins and serum glucose biochemical profiles. The genotypification of SNP-19 was performed using peripheral blood lymphocytes DNA, polymerase chain reactions (PCR), and electrophoretic analysis in agarose gels. Once obtained the genotypic and allelic frequencies, the Hardy-Weinberg equilibrium test (GenAlEx 6.4) was also performed. Using the X² analysis it was identified the genotypic differences between cases and control with higher frequency of the homozygous genotype 3R of SNP- 19 in the cases group (0.418) compared to control group (0.265). Also, it was observed an association between genotype 2R/3R with elevated weight, body mass index, and waist and hip circumferences, but only in the diabetic group (P=< 0.05). The findings in this study suggest that SNP-19 in CAPN10 may participate in the development of DM type 2 in the studied population. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. The association of the Clock 3111 T/C SNP with lipids and lipoproteins including small dense low-density lipoprotein: results from the Mima study

    Directory of Open Access Journals (Sweden)

    Takahashi Kaoru

    2010-10-01

    Full Text Available Abstract Background The clock molecule plays major roles in circadian rhythmicity and regulating lipid and glucose metabolism in peripheral organs. Disruption of the circadian rhythm can lead to cardiometabolic disorders. The existence of small dense low-density lipoprotein (sdLDL in the circulation, an abnormality of lipid metabolism, in part associated with lifestyle, is also one of risk parameters for cardiometabolic disorders. The 3111 T/C single nucleotide polymorphism (SNP of the Clock gene has been reported to be associated with lifestyle including morning/evening preference. We investigated whether the Clock 3111 T/C SNP may affect lipids and lipoproteins including sdLDL. Methods In 365 community-dwelling subjects (170 men and 195 women, mean age 63 ± 14 years, the 3111 T/C SNP was genotyped using a fluorescent allele-specific DNA primer assay system. The levels of sdLDL were measured with the electrophoretic separation of lipoproteins employing the Lipoprint system. Results The frequency of the Clock 3111 C allele was 0.14. The area of sdLDL did not differ between the subjects with obesity and those without. In carriers of T/T homozygotes, the area of sdLDL was significantly higher compared with carriers of the C allele (T/C or C/C (1.7 ± 3.4 vs. 0.8 ± 1.9%; p Clock 3111 T/C SNP (β = -0.114, p Conclusion Our findings indicated that the Clock 3111 T/C SNP might be associated with the existence of sdLDL.

  18. Clinical findings of extranodal SNT lymphoid malignancies in a four-decade single-centre series.

    Science.gov (United States)

    Vähämurto, Pauli; Silventoinen, Kaija; Vento, Seija I; Karjalainen-Lindsberg, Marja-Liisa; Haapaniemi, Aaro; Bäck, Leif; Mannisto, Susanna; Leppä, Sirpa; Mäkitie, Antti A

    2016-11-01

    Sinonasally located lymphoid malignancies are rare lesions with first symptoms similar to other obstructive conditions. Additionally, they often coexist with nasal inflammation and mucosal necrosis. Therefore, time from the first symptoms to diagnosis tends to be long. Awareness and early diagnosis of this disease entity could improve treatment outcome. Altogether, 142 patients with sinonasal or nasopharyngeal (i.e. sinonasal tract, SNT) lymphoid malignancies, diagnosed and treated at the Helsinki University Hospital, during a 39-year period from 1975 to 2013, were retrospectively reviewed. There were 90 males (63 %) and 52 females (37 %) with a median age of 64 years (range 26-92). Eighty-four percent of the patients had primary diseases and 16 % had relapses of lymphoid malignancies primarily diagnosed at other locations. The mean duration of symptoms prior to diagnosis was 4.8 months (range 0.5-24). The most common histological entity was diffuse large B-cell lymphoma (43 %), followed by plasmacytoma (18 %). The most common location was nasopharynx (58 %) followed by nasal cavity (44 %) and paranasal sinuses (35 %). Sixty-nine percent of the lesions were at a single anatomic location of the sinonasal tract. Fifty-two percent of the cases were of Ann Arbor Stage I. Lymphoid malignancies form an important and diverse group in the differential diagnosis of SNT tumours. They most often present with general obstructive nasal symptoms due to tumour location. Most of them are primary lesions, highlighting the importance of an accurate diagnosis as early as possible.

  19. Neuroimaging Findings in Cardiac Myxoma Patients: A Single-Center Case Series of 47 Patients.

    Science.gov (United States)

    Brinjikji, Waleed; Morris, Jonathan M; Brown, Robert D; Thielen, Kent R; Wald, John T; Giannini, Caterina; Cloft, Harry J; Wood, Christopher P

    2015-01-01

    Cardiac myxomas can present with a myriad of neurological complications including stroke, cerebral aneurysm formation and metastatic disease. Our study had two objectives: (1) to describe the neuroimaging findings of patients with cardiac myxomas and (2) to examine the relationship between a history of embolic complications secondary to myxoma and intracranial aneurysm formation, hemorrhage and metastatic disease. We hypothesized that patients who present with embolic complications related to myxoma would be more likely to have such complications. We searched our institutional database for all patients with pathologically proven cardiac myxomas from 1995 to 2014 who received neuroimaging. Neuroimaging findings were categorized as acute ischemic stroke, intracerebral hemorrhage, oncotic aneurysm, and cerebral metastasis. Cardiac myxoma patients were divided into those presenting with embolic complications (i.e. lower extremity emboli or cerebral emboli) and those presenting with non-embolic complications prior to surgical resection of the myxoma. The prevalence of intracranial hemorrhage, myxomatous aneurysm formation, and cerebral metastases was compared in myxoma patients presenting with and without embolic complications using a Chi-squared test. Forty-seven consecutive patients were included in this study. Sixteen patients (34.0%) had imaging evidence of acute ischemic stroke. Of these, 13 had acute ischemic strokes directly attributed to the cardiac myxoma (27.7%) and 3 had acute ischemic strokes secondary to causes other than myxoma (6.4%). Seven patients (14.9%) had aneurysms. Two patients (4.3%) had parenchymal metastatic disease on long-term imaging. Fourteen patients (29.8%) presented with ischemic symptoms that were attributed to cardiac myxoma (1 with lower extremity ischemia, 1 with lower extremity ischemia and ischemic stroke, and 12 with ischemic stroke). Patients presenting with embolic complications related to the myxoma (ischemic stroke or lower

  20. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    NARCIS (Netherlands)

    Chagné, D.; Crowhurst, R.N.; Troggio, M.; Davey, M.W.; Gilmore, B.; Lawley, C.; Vanderzande, S.; Hellens, R.P.; Kumar, S.; Cestaro, A.; Velasco, R.; Main, D.; Rees, J.D.; Iezzoni, A.F.; Mockler, T.; Wilhelm, L.; Weg, van de W.E.; Gardiner, S.E.; Bassil, N.; Peace, C.

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide

  1. Construction of a versatile SNP array for pyramiding useful genes of rice.

    Science.gov (United States)

    Kurokawa, Yusuke; Noda, Tomonori; Yamagata, Yoshiyuki; Angeles-Shim, Rosalyn; Sunohara, Hidehiko; Uehara, Kanako; Furuta, Tomoyuki; Nagai, Keisuke; Jena, Kshirod Kumar; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki; Doi, Kazuyuki

    2016-01-01

    DNA marker-assisted selection (MAS) has become an indispensable component of breeding. Single nucleotide polymorphisms (SNP) are the most frequent polymorphism in the rice genome. However, SNP markers are not readily employed in MAS because of limitations in genotyping platforms. Here the authors report a Golden Gate SNP array that targets specific genes controlling yield-related traits and biotic stress resistance in rice. As a first step, the SNP genotypes were surveyed in 31 parental varieties using the Affymetrix Rice 44K SNP microarray. The haplotype information for 16 target genes was then converted to the Golden Gate platform with 143-plex markers. Haplotypes for the 14 useful allele are unique and can discriminate among all other varieties. The genotyping consistency between the Affymetrix microarray and the Golden Gate array was 92.8%, and the accuracy of the Golden Gate array was confirmed in 3 F2 segregating populations. The concept of the haplotype-based selection by using the constructed SNP array was proofed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Direct inference of SNP heterozygosity rates and resolution of LOH detection.

    Directory of Open Access Journals (Sweden)

    Xiaohong Li

    2007-11-01

    Full Text Available Single nucleotide polymorphisms (SNPs have been increasingly utilized to investigate somatic genetic abnormalities in premalignancy and cancer. LOH is a common alteration observed during cancer development, and SNP assays have been used to identify LOH at specific chromosomal regions. The design of such studies requires consideration of the resolution for detecting LOH throughout the genome and identification of the number and location of SNPs required to detect genetic alterations in specific genomic regions. Our study evaluated SNP distribution patterns and used probability models, Monte Carlo simulation, and real human subject genotype data to investigate the relationships between the number of SNPs, SNP HET rates, and the sensitivity (resolution for detecting LOH. We report that variances of SNP heterozygosity rate in dbSNP are high for a large proportion of SNPs. Two statistical methods proposed for directly inferring SNP heterozygosity rates require much smaller sample sizes (intermediate sizes and are feasible for practical use in SNP selection or verification. Using HapMap data, we showed that a region of LOH greater than 200 kb can be reliably detected, with losses smaller than 50 kb having a substantially lower detection probability when using all SNPs currently in the HapMap database. Higher densities of SNPs may exist in certain local chromosomal regions that provide some opportunities for reliably detecting LOH of segment sizes smaller than 50 kb. These results suggest that the interpretation of the results from genome-wide scans for LOH using commercial arrays need to consider the relationships among inter-SNP distance, detection probability, and sample size for a specific study. New experimental designs for LOH studies would also benefit from considering the power of detection and sample sizes required to accomplish the proposed aims.

  3. Phenylethynylpyrene excimer forming hybridization probes for fluorescence SNP detection

    DEFF Research Database (Denmark)

    Prokhorenko, Igor A.; Astakhova, Irina V.; Momynaliev, Kuvat T.

    2009-01-01

    Excimer formation is a unique feature of some fluorescent dyes (e.g., pyrene) which can be used for probing the proximity of biomolecules. Pyrene excimer fluorescence has previously been used for homogeneous detection of single nucleotide polymorphism (SNP) on DNA. 1-Phenylethynylpyrene (1-1-PEPy......), a photostable pyrene derivative with redshifted fluorescence, is able to form excimers (emission maximum about 500-510 nm) and is well suitable for nucleic acid labeling. We have shown the utility of 1-1-PEPy in the excimer-forming DNA probes for detection of 2144A/G and 2143A/G transitions, and 2143A...

  4. Genome-wide Target Enrichment-aided Chip Design: a 66 K SNP Chip for Cashmere Goat.

    Science.gov (United States)

    Qiao, Xian; Su, Rui; Wang, Yang; Wang, Ruijun; Yang, Ting; Li, Xiaokai; Chen, Wei; He, Shiyang; Jiang, Yu; Xu, Qiwu; Wan, Wenting; Zhang, Yaolei; Zhang, Wenguang; Chen, Jiang; Liu, Bin; Liu, Xin; Fan, Yixing; Chen, Duoyuan; Jiang, Huaizhi; Fang, Dongming; Liu, Zhihong; Wang, Xiaowen; Zhang, Yanjun; Mao, Danqing; Wang, Zhiying; Di, Ran; Zhao, Qianjun; Zhong, Tao; Yang, Huanming; Wang, Jian; Wang, Wen; Dong, Yang; Chen, Xiaoli; Xu, Xun; Li, Jinquan

    2017-08-17

    Compared with the commercially available single nucleotide polymorphism (SNP) chip based on the Bead Chip technology, the solution hybrid selection (SHS)-based target enrichment SNP chip is not only design-flexible, but also cost-effective for genotype sequencing. In this study, we propose to design an animal SNP chip using the SHS-based target enrichment strategy for the first time. As an update to the international collaboration on goat research, a 66 K SNP chip for cashmere goat was created from the whole-genome sequencing data of 73 individuals. Verification of this 66 K SNP chip with the whole-genome sequencing data of 436 cashmere goats showed that the SNP call rates was between 95.3% and 99.8%. The average sequencing depth for target SNPs were 40X. The capture regions were shown to be 200 bp that flank target SNPs. This chip was further tested in a genome-wide association analysis of cashmere fineness (fiber diameter). Several top hit loci were found marginally associated with signaling pathways involved in hair growth. These results demonstrate that the 66 K SNP chip is a useful tool in the genomic analyses of cashmere goats. The successful chip design shows that the SHS-based target enrichment strategy could be applied to SNP chip design in other species.

  5. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan.

    Science.gov (United States)

    Ting, Jason C; Ye, Ying; Thomas, George H; Ruczinski, Ingo; Pevsner, Jonathan

    2006-01-18

    A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1) to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2) to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions), (3) to display uniparental isodisomy based on loss of heterozygosity (LOH) across genomic regions, (4) to compare paired samples (e.g. tumor and normal), and (5) to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC) Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Etude du Polymorphisme Humain (CEPH) collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently confirmed by fluorescence in situ

  6. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    Directory of Open Access Journals (Sweden)

    Thomas George H

    2006-01-01

    Full Text Available Abstract Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes, microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity. SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1 to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2 to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions, (3 to display uniparental isodisomy based on loss of heterozygosity (LOH across genomic regions, (4 to compare paired samples (e.g. tumor and normal, and (5 to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently

  7. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays.

    Science.gov (United States)

    Homer, Nils; Szelinger, Szabolcs; Redman, Margot; Duggan, David; Tembe, Waibhav; Muehling, Jill; Pearson, John V; Stephan, Dietrich A; Nelson, Stanley F; Craig, David W

    2008-08-29

    We use high-density single nucleotide polymorphism (SNP) genotyping microarrays to demonstrate the ability to accurately and robustly determine whether individuals are in a complex genomic DNA mixture. We first develop a theoretical framework for detecting an individual's presence within a mixture, then show, through simulations, the limits associated with our method, and finally demonstrate experimentally the identification of the presence of genomic DNA of specific individuals within a series of highly complex genomic mixtures, including mixtures where an individual contributes less than 0.1% of the total genomic DNA. These findings shift the perceived utility of SNPs for identifying individual trace contributors within a forensics mixture, and suggest future research efforts into assessing the viability of previously sub-optimal DNA sources due to sample contamination. These findings also suggest that composite statistics across cohorts, such as allele frequency or genotype counts, do not mask identity within genome-wide association studies. The implications of these findings are discussed.

  8. SNP marker detection and genotyping in tilapia

    NARCIS (Netherlands)

    Bers, van N.E.M.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Dibbits, B.W.; Komen, J.

    2012-01-01

    We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the

  9. Optimal Design of Low-Density SNP Arrays for Genomic Prediction: Algorithm and Applications.

    Directory of Open Access Journals (Sweden)

    Xiao-Lin Wu

    Full Text Available Low-density (LD single nucleotide polymorphism (SNP arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for the optimal design of LD SNP chips. A multiple-objective, local optimization (MOLO algorithm was developed for design of optimal LD SNP chips that can be imputed accurately to medium-density (MD or high-density (HD SNP genotypes for genomic prediction. The objective function facilitates maximization of non-gap map length and system information for the SNP chip, and the latter is computed either as locus-averaged (LASE or haplotype-averaged Shannon entropy (HASE and adjusted for uniformity of the SNP distribution. HASE performed better than LASE with ≤1,000 SNPs, but required considerably more computing time. Nevertheless, the differences diminished when >5,000 SNPs were selected. Optimization was accomplished conditionally on the presence of SNPs that were obligated to each chromosome. The frame location of SNPs on a chip can be either uniform (evenly spaced or non-uniform. For the latter design, a tunable empirical Beta distribution was used to guide location distribution of frame SNPs such that both ends of each chromosome were enriched with SNPs. The SNP distribution on each chromosome was finalized through the objective function that was locally and empirically maximized. This MOLO algorithm was capable of selecting a set of approximately evenly-spaced and highly-informative SNPs, which in turn led to increased imputation accuracy compared with selection solely of evenly-spaced SNPs. Imputation accuracy increased with LD chip size, and imputation error rate was extremely low for chips with ≥3,000 SNPs. Assuming that genotyping or imputation error occurs at random, imputation error rate can be viewed as the upper limit for genomic prediction error. Our results show that about 25% of imputation error rate was propagated to genomic prediction in an Angus

  10. Identification of Laying-Related SNP Markers in Geese Using RAD Sequencing.

    Directory of Open Access Journals (Sweden)

    ShiGang Yu

    Full Text Available Laying performance is an important economical trait of goose production. As laying performance is of low heritability, it is of significance to develop a marker-assisted selection (MAS strategy for this trait. Definition of sequence variation related to the target trait is a prerequisite of quantitating MAS, but little is presently known about the goose genome, which greatly hinders the identification of genetic markers for the laying traits of geese. Recently developed restriction site-associated DNA (RAD sequencing is a possible approach for discerning large-scale single nucleotide polymorphism (SNP and reducing the complexity of a genome without having reference genomic information available. In the present study, we developed a pooled RAD sequencing strategy for detecting geese laying-related SNP. Two DNA pools were constructed, each consisting of equal amounts of genomic DNA from 10 individuals with either high estimated breeding value (HEBV or low estimated breeding value (LEBV. A total of 139,013 SNP were obtained from 42,291,356 sequences, of which 18,771,943 were for LEBV and 23,519,413 were for HEBV cohorts. Fifty-five SNP which had different allelic frequencies in the two DNA pools were further validated by individual-based AS-PCR genotyping in the LEBV and HEBV cohorts. Ten out of 55 SNP exhibited distinct allele distributions in these two cohorts. These 10 SNP were further genotyped in a goose population of 492 geese to verify the association with egg numbers. The result showed that 8 of 10 SNP were associated with egg numbers. Additionally, liner regression analysis revealed that SNP Record-111407, 106975 and 112359 were involved in a multiplegene network affecting laying performance. We used IPCR to extend the unknown regions flanking the candidate RAD tags. The obtained sequences were subjected to BLAST to retrieve the orthologous genes in either ducks or chickens. Five novel genes were cloned for geese which harbored the

  11. Genetic variation among major sockeye salmon populations in Kamchatka peninsula inferred from SNP and microsatellite DNA analyses

    DEFF Research Database (Denmark)

    Khrustaleva, A.M.; Limborg, Morten; Seeb, J. E.

    Sockeye salmon samples from six populations from Kamchatka Peninsula were tested for polymorphism at six microsatellite (STR) and forty-five single nucleotide polymorphism (SNP) loci. These populations included the five largest populations in the region. Statistically significant genetic...... differentiation among the local populations from this part of the species range examined was demonstrated. The STR variability points to pronounced genetic divergence of the populations from two geographical regions, Eastern and Western Kamchatka. The results of SNP analysis further revealed that the populations...

  12. An abbreviated SNP panel for ancestry assignment of honeybees (Apis mellifera)

    Science.gov (United States)

    This paper examines whether an abbreviated panel of 37 single nucleotide polymorphisms (SNPs) has the same power as a larger and more expensive panel of 95 SNPs to assign ancestry of honeybees (Apis mellifera) to three ancestral lineages. We selected 37 SNPs from the original 95 SNP panel using alle...

  13. SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Korneliussen, Thorfinn Sand; Albrechtsen, Anders

    2012-01-01

    is calculated using a dynamic programming algorithm and numerically optimized using analytical derivatives. We then use a bayesian method for estimating the sample allele frequency in a single site, and show how the method can be used for genotype calling and SNP calling. We also show how the method can...

  14. Comparison between genotyping by sequencing and SNP-chip genotyping in QTL mapping in wheat

    Science.gov (United States)

    Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...

  15. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    Science.gov (United States)

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ~4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification pr...

  16. Reference-free SNP calling: improved accuracy by preventing incorrect calls from repetitive genomic regions

    Directory of Open Access Journals (Sweden)

    Dou Jinzhuang

    2012-06-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most abundant type of genetic variation in eukaryotic genomes and have recently become the marker of choice in a wide variety of ecological and evolutionary studies. The advent of next-generation sequencing (NGS technologies has made it possible to efficiently genotype a large number of SNPs in the non-model organisms with no or limited genomic resources. Most NGS-based genotyping methods require a reference genome to perform accurate SNP calling. Little effort, however, has yet been devoted to developing or improving algorithms for accurate SNP calling in the absence of a reference genome. Results Here we describe an improved maximum likelihood (ML algorithm called iML, which can achieve high genotyping accuracy for SNP calling in the non-model organisms without a reference genome. The iML algorithm incorporates the mixed Poisson/normal model to detect composite read clusters and can efficiently prevent incorrect SNP calls resulting from repetitive genomic regions. Through analysis of simulation and real sequencing datasets, we demonstrate that in comparison with ML or a threshold approach, iML can remarkably improve the accuracy of de novo SNP genotyping and is especially powerful for the reference-free genotyping in diploid genomes with high repeat contents. Conclusions The iML algorithm can efficiently prevent incorrect SNP calls resulting from repetitive genomic regions, and thus outperforms the original ML algorithm by achieving much higher genotyping accuracy. Our algorithm is therefore very useful for accurate de novo SNP genotyping in the non-model organisms without a reference genome. Reviewers This article was reviewed by Dr. Richard Durbin, Dr. Liliana Florea (nominated by Dr. Steven Salzberg and Dr. Arcady Mushegian.

  17. DNA mismatch repair MSH2 gene-based SNP associated with different populations.

    Science.gov (United States)

    Abduljaleel, Zainularifeen; Al-Allaf, Faisal A; Khan, Wajahatullah; Athar, Mohammad; Shahzad, Naiyer; Taher, Mohiuddin M; Alanazi, Mohammed; Elrobh, Mohamed; Reddy, Narasimha P

    2014-06-01

    We screened for the major essential single-nucleotide polymorphism (SNP) variant that might be associated with the MSH2 gene based on the data available from three types of human tissue samples [156 lymphoblastoid cell variations (LCL), 160 epidermis, 166 fat]. An association analysis confirmed that the KCNK12 SNP variant (rs748780) was highly associated (p value 9 × 10(-4)) with the MSH2 gene for all three samples. Using SNP identification, we further found that the recognized SNP was also relevant among Hapmap populations. Techniques that display specific SNPs associated with the gene of interest or nearby genes provide more reliable genetic associations than techniques that rely on data from individual SNPs. We investigated the MSH2 gene regional linkage association with the determined SNP (rs748780), KCNK12 variant (Allele T>C) in the intronic region, in HapMap3 full dataset populations, Yoruba in Ibadan, Nigeria (YRI), Utah residents with ancestry from northern Europe (CEU), Han Chinese in Beijing, China (CHB), and a population of Mexican ancestry in Los Angeles, California (MEX). A gene-based SNP association analysis analyzes the combined impact of every variant within the gene while creating referrals to linkage disequilibrium or connections between markers. Our results indicated that among the four populations studied, this association was highest in the MEX population based on the r(2) value; a similar pattern was also observed in the other three populations. The relevant SNP rs748780 in KCNK12 is related to a superfamily of potassium channel pore-forming P-domain proteins as well as to other non-pore-forming proteins and has been shown to be relevant to neurological disorder predisposition in MEX as well as in other populations.

  18. BlueSNP: R package for highly scalable genome-wide association studies using Hadoop clusters.

    Science.gov (United States)

    Huang, Hailiang; Tata, Sandeep; Prill, Robert J

    2013-01-01

    Computational workloads for genome-wide association studies (GWAS) are growing in scale and complexity outpacing the capabilities of single-threaded software designed for personal computers. The BlueSNP R package implements GWAS statistical tests in the R programming language and executes the calculations across computer clusters configured with Apache Hadoop, a de facto standard framework for distributed data processing using the MapReduce formalism. BlueSNP makes computationally intensive analyses, such as estimating empirical p-values via data permutation, and searching for expression quantitative trait loci over thousands of genes, feasible for large genotype-phenotype datasets. http://github.com/ibm-bioinformatics/bluesnp

  19. HLA-C -35kb expression SNP is associated with differential control of β-HPV infection in squamous cell carcinoma cases and controls.

    Directory of Open Access Journals (Sweden)

    Karin A Vineretsky

    Full Text Available A single nucleotide polymorphism (SNP 35 kb upstream of the HLA-C gene is associated with HLA-C expression, and the high expressing genotype (CC has been associated with HIV-I control. HLA-C is unique among the classical MHC class I molecules for its role in the control of viral infections and recognition of abnormal or missing self. This immunosurveillance is central to the pathogenesis of non-melanoma skin cancer (NMSC, and of squamous cell carcinoma (SCC in particular. While sun exposure is a major risk factor for these cancers, cutaneous infections with genus β-HPV have been implicated in the development of SCC. We hypothesized that the high expression HLA-C genotype is associated with β-HPV infections. Therefore, we investigated the association between β-HPV serology and the -35 kb SNP (rs9264942 in a population-based case-control study of 510 SCC cases and 608 controls. Among controls, the high expression -35 kb SNP genotype (CC reduced the likelihood of positive serology for multiple (≥2 β-HPV infections (OR = 0.49, 95% CI: 0.25-0.97, and β-HPV species 2 infection (OR = 0.43, 95% CI: 0.23-0.79. However, no association with β-HPV status was observed among SCC cases. Our findings suggest that underlying immunogenotype plays an important role in differential control of β-HPV in SCC cases and controls.

  20. A SNP panel for identification of DNA and RNA specimens

    NARCIS (Netherlands)

    Yousefi, Soheil; Abbassi-Daloii, Tooba; Kraaijenbrink, Thirsa; Vermaat, Martijn; Mei, Hailiang; van 't Hof, Peter; van Iterson, Maarten; Zhernakova, Daria V; Claringbould, Annique; Franke, Lude; 't Hart, Leen M; Slieker, Roderick C; van der Heijden, Amber; de Knijff, Peter; 't Hoen, Peter A C

    2018-01-01

    BACKGROUND: SNP panels that uniquely identify an individual are useful for genetic and forensic research. Previously recommended SNP panels are based on DNA profiles and mostly contain intragenic SNPs. With the increasing interest in RNA expression profiles, we aimed for establishing a SNP panel for

  1. Insertion sequence element single nucleotide polymorphism typing provides insights into the population structure and evolution of Mycobacterium ulcerans across Africa.

    Science.gov (United States)

    Vandelannoote, Koen; Jordaens, Kurt; Bomans, Pieter; Leirs, Herwig; Durnez, Lies; Affolabi, Dissou; Sopoh, Ghislain; Aguiar, Julia; Phanzu, Delphin Mavinga; Kibadi, Kapay; Eyangoh, Sara; Manou, Louis Bayonne; Phillips, Richard Odame; Adjei, Ohene; Ablordey, Anthony; Rigouts, Leen; Portaels, Françoise; Eddyani, Miriam; de Jong, Bouke C

    2014-02-01

    Buruli ulcer is an indolent, slowly progressing necrotizing disease of the skin caused by infection with Mycobacterium ulcerans. In the present study, we applied a redesigned technique to a vast panel of M. ulcerans disease isolates and clinical samples originating from multiple African disease foci in order to (i) gain fundamental insights into the population structure and evolutionary history of the pathogen and (ii) disentangle the phylogeographic relationships within the genetically conserved cluster of African M. ulcerans. Our analyses identified 23 different African insertion sequence element single nucleotide polymorphism (ISE-SNP) types that dominate in different areas where Buruli ulcer is endemic. These ISE-SNP types appear to be the initial stages of clonal diversification from a common, possibly ancestral ISE-SNP type. ISE-SNP types were found unevenly distributed over the greater West African hydrological drainage basins. Our findings suggest that geographical barriers bordering the basins to some extent prevented bacterial gene flow between basins and that this resulted in independent focal transmission clusters associated with the hydrological drainage areas. Different phylogenetic methods yielded two well-supported sister clades within the African ISE-SNP types. The ISE-SNP types from the "pan-African clade" were found to be widespread throughout Africa, while the ISE-SNP types of the "Gabonese/Cameroonian clade" were much rarer and found in a more restricted area, which suggested that the latter clade evolved more recently. Additionally, the Gabonese/Cameroonian clade was found to form a strongly supported monophyletic group with Papua New Guinean ISE-SNP type 8, which is unrelated to other Southeast Asian ISE-SNP types.

  2. Quantification of within-sample genetic heterogeneity from SNP-array data

    DEFF Research Database (Denmark)

    Martinez, Pierre; Kimberley, Christopher; Birkbak, Nicolai Juul

    2017-01-01

    Intra-tumour genetic heterogeneity (ITH) fosters drug resistance and is a critical hurdle to clinical treatment. ITH can be well-measured using multi-region sampling but this is costly and challenging to implement. There is therefore a need for tools to estimate ITH in individual samples, using...... standard genomic data such as SNP-arrays, that could be implemented routinely. We designed two novel scores S and R, respectively based on the Shannon diversity index and Ripley's L statistic of spatial homogeneity, to quantify ITH in single SNP-array samples. We created in-silico and in-vitro mixtures...... sequencing data but heterogeneity in the fraction of tumour cells present across samples hampered accurate quantification. The prognostic potential of both scores was moderate but significantly predictive of survival in several tumour types (corrected p = 0.03). Our work thus shows how individual SNP...

  3. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.

    Science.gov (United States)

    Welter, Danielle; MacArthur, Jacqueline; Morales, Joannella; Burdett, Tony; Hall, Peggy; Junkins, Heather; Klemm, Alan; Flicek, Paul; Manolio, Teri; Hindorff, Lucia; Parkinson, Helen

    2014-01-01

    The National Human Genome Research Institute (NHGRI) Catalog of Published Genome-Wide Association Studies (GWAS) Catalog provides a publicly available manually curated collection of published GWAS assaying at least 100,000 single-nucleotide polymorphisms (SNPs) and all SNP-trait associations with P Catalog includes 1751 curated publications of 11 912 SNPs. In addition to the SNP-trait association data, the Catalog also publishes a quarterly diagram of all SNP-trait associations mapped to the SNPs' chromosomal locations. The Catalog can be accessed via a tabular web interface, via a dynamic visualization on the human karyotype, as a downloadable tab-delimited file and as an OWL knowledge base. This article presents a number of recent improvements to the Catalog, including novel ways for users to interact with the Catalog and changes to the curation infrastructure.

  4. SNP calling using genotype model selection on high-throughput sequencing data

    KAUST Repository

    You, Na

    2012-01-16

    Motivation: A review of the available single nucleotide polymorphism (SNP) calling procedures for Illumina high-throughput sequencing (HTS) platform data reveals that most rely mainly on base-calling and mapping qualities as sources of error when calling SNPs. Thus, errors not involved in base-calling or alignment, such as those in genomic sample preparation, are not accounted for.Results: A novel method of consensus and SNP calling, Genotype Model Selection (GeMS), is given which accounts for the errors that occur during the preparation of the genomic sample. Simulations and real data analyses indicate that GeMS has the best performance balance of sensitivity and positive predictive value among the tested SNP callers. © The Author 2012. Published by Oxford University Press. All rights reserved.

  5. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.

    Science.gov (United States)

    Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David

    2018-04-11

    Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions

  6. Psoriasis prediction from genome-wide SNP profiles

    Directory of Open Access Journals (Sweden)

    Fang Xiangzhong

    2011-01-01

    Full Text Available Abstract Background With the availability of large-scale genome-wide association study (GWAS data, choosing an optimal set of SNPs for disease susceptibility prediction is a challenging task. This study aimed to use single nucleotide polymorphisms (SNPs to predict psoriasis from searching GWAS data. Methods Totally we had 2,798 samples and 451,724 SNPs. Process for searching a set of SNPs to predict susceptibility for psoriasis consisted of two steps. The first one was to search top 1,000 SNPs with high accuracy for prediction of psoriasis from GWAS dataset. The second one was to search for an optimal SNP subset for predicting psoriasis. The sequential information bottleneck (sIB method was compared with classical linear discriminant analysis(LDA for classification performance. Results The best test harmonic mean of sensitivity and specificity for predicting psoriasis by sIB was 0.674(95% CI: 0.650-0.698, while only 0.520(95% CI: 0.472-0.524 was reported for predicting disease by LDA. Our results indicate that the new classifier sIB performs better than LDA in the study. Conclusions The fact that a small set of SNPs can predict disease status with average accuracy of 68% makes it possible to use SNP data for psoriasis prediction.

  7. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    Science.gov (United States)

    Chagné, David; Crowhurst, Ross N.; Troggio, Michela; Davey, Mark W.; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P.; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D.; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E.; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple. PMID:22363718

  8. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple.

    Directory of Open Access Journals (Sweden)

    David Chagné

    Full Text Available As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of 'Golden Delicious', SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional, and genomic selection in apple.

  9. WNT3A gene polymorphisms are associated with bone mineral density variation in postmenopausal mestizo women of an urban Mexican population: findings of a pathway-based high-density single nucleotide screening.

    Science.gov (United States)

    Velázquez-Cruz, Rafael; García-Ortiz, Humberto; Castillejos-López, Manuel; Quiterio, Manuel; Valdés-Flores, Margarita; Orozco, Lorena; Villarreal-Molina, Teresa; Salmerón, Jorge

    2014-06-01

    Osteoporosis (OP) is a common skeletal disorder characterized by low bone mineral density (BMD) and is a common health problem in Mexico. To date, few genes affecting BMD variation in the Mexican population have been identified. The aim of this study was to investigate the association of single nucleotide polymorphisms (SNPs) located in genes of the Wnt pathway with BMD variation at various skeletal sites in a cohort of postmenopausal Mexican women. A total of 121 SNPs in or near 15 Wnt signaling pathway genes and 96 ancestry informative markers were genotyped in 425 postmenopausal women using the Illumina GoldenGate microarray SNP genotyping method. BMD was measured by dual-energy X-ray absorptiometry in total hip, femoral neck, Ward's triangle, and lumbar spine. Associations were tested by linear regression for quantitative traits adjusting for possible confounding factors. SNP rs752107 in WNT3A was strongly associated with decreased total hip BMD showing the highest significance under the recessive model (P = 0.00012). This SNP is predicted to disrupt a binding site for microRNA-149. In addition, a polymorphism of the Wnt antagonist DKK2 was associated with BMD in femoral neck under a recessive model (P = 0.009). Several LRP4, LRP5, and LRP6 gene variants showed site-specific associations with BMD. In conclusion, this is the first report associating Wnt pathway gene variants with BMD in the Mexican population.

  10. [A de novo partial 5p deletion and cryptic 18p duplication detected by SNP-Array in a boy featuring Cri du Chat syndrome].

    Science.gov (United States)

    Hu, Jian-cheng; Tan, Ke; Cheng, De-hua; Li, Lu-yun; Lu, Guang-xiu; Tan, Yue-qiu

    2013-02-01

    To determine the karyotype of a boy suspected to have Cri du Chat syndrome with severe clinical manifestations, and to assess the recurrence risk for his family. High-resolution GTG banding was performed to analyze the patient and his parents. Fluorescence in situ hybridization (FISH) with Cri du Chat syndrome region probe as well as subregional probes mapped to 5pter, 5qter, 18pter, 18qter, and whole chromosome painting probe 18 was performed to analyze the patient and his parents. In addition, single nucleotide polymorphism-based arrays (SNP-Array) analysis with Affymetrix GeneChip Genome-wide Human SNP Nsp/Sty 6.0 were also performed to analyze the patient. Karyotype analysis indicated that the patient has carried a terminal deletion in 5p. FISH with Cri du Chat syndrome region probe confirmed that D5S23 and D5S721 loci are deleted. SNP-Array has detected a 15 Mb deletion at 5p and a 2 Mb duplication at 18p. FISH with 5p subtelomeric probes and 18p subtelomeric probe further confirmed that the derivative chromosome 5 has derived from a translocation between 5p and 18p, which has given rise to a 46,XY,der(5)t(5;18)(p15.1;p11.31)dn karyotype. A de novo 5p partial deletion in conjunction with a cryptic 18p duplication has been detected in a boy featuring Cri-du-Chat syndrome. His parents, both with negative findings, have a low recurrence risk. For its ability to detect chromosomal imbalance, SNP-Array has a great value for counseling of similar patients and assessment of recurrence risks.

  11. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping.

    Science.gov (United States)

    Esteras, Cristina; Gómez, Pedro; Monforte, Antonio J; Blanca, José; Vicente-Dólera, Nelly; Roig, Cristina; Nuez, Fernando; Picó, Belén

    2012-02-22

    Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species.The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP), was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL). We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo) × Scallop (subsp. ovifera). The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research, especially considering that most of these markers are located in

  12. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping

    Directory of Open Access Journals (Sweden)

    Esteras Cristina

    2012-02-01

    Full Text Available Abstract Background Cucurbita pepo is a member of the Cucurbitaceae family, the second- most important horticultural family in terms of economic importance after Solanaceae. The "summer squash" types, including Zucchini and Scallop, rank among the highest-valued vegetables worldwide. There are few genomic tools available for this species. The first Cucurbita transcriptome, along with a large collection of Single Nucleotide Polymorphisms (SNP, was recently generated using massive sequencing. A set of 384 SNP was selected to generate an Illumina GoldenGate assay in order to construct the first SNP-based genetic map of Cucurbita and map quantitative trait loci (QTL. Results We herein present the construction of the first SNP-based genetic map of Cucurbita pepo using a population derived from the cross of two varieties with contrasting phenotypes, representing the main cultivar groups of the species' two subspecies: Zucchini (subsp. pepo × Scallop (subsp. ovifera. The mapping population was genotyped with 384 SNP, a set of selected EST-SNP identified in silico after massive sequencing of the transcriptomes of both parents, using the Illumina GoldenGate platform. The global success rate of the assay was higher than 85%. In total, 304 SNP were mapped, along with 11 SSR from a previous map, giving a map density of 5.56 cM/marker. This map was used to infer syntenic relationships between C. pepo and cucumber and to successfully map QTL that control plant, flowering and fruit traits that are of benefit to squash breeding. The QTL effects were validated in backcross populations. Conclusion Our results show that massive sequencing in different genotypes is an excellent tool for SNP discovery, and that the Illumina GoldenGate platform can be successfully applied to constructing genetic maps and performing QTL analysis in Cucurbita. This is the first SNP-based genetic map in the Cucurbita genus and is an invaluable new tool for biological research

  13. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients

    DEFF Research Database (Denmark)

    Andreassen, Christian Nicolaj; Rosenstein, Barry S; Kerns, Sarah L

    2016-01-01

    PURPOSE: Several small studies have indicated that the ATM rs1801516 SNP is associated with risk of normal tissue toxicity after radiotherapy. However, the findings have not been consistent. In order to test this SNP in a well-powered study, an individual patient data meta-analysis was carried ou...

  14. A novel algorithm for simultaneous SNP selection in high-dimensional genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Zuber Verena

    2012-10-01

    Full Text Available Abstract Background Identification of causal SNPs in most genome wide association studies relies on approaches that consider each SNP individually. However, there is a strong correlation structure among SNPs that needs to be taken into account. Hence, increasingly modern computationally expensive regression methods are employed for SNP selection that consider all markers simultaneously and thus incorporate dependencies among SNPs. Results We develop a novel multivariate algorithm for large scale SNP selection using CAR score regression, a promising new approach for prioritizing biomarkers. Specifically, we propose a computationally efficient procedure for shrinkage estimation of CAR scores from high-dimensional data. Subsequently, we conduct a comprehensive comparison study including five advanced regression approaches (boosting, lasso, NEG, MCP, and CAR score and a univariate approach (marginal correlation to determine the effectiveness in finding true causal SNPs. Conclusions Simultaneous SNP selection is a challenging task. We demonstrate that our CAR score-based algorithm consistently outperforms all competing approaches, both uni- and multivariate, in terms of correctly recovered causal SNPs and SNP ranking. An R package implementing the approach as well as R code to reproduce the complete study presented here is available from http://strimmerlab.org/software/care/.

  15. Forensic typing of autosomal SNPs with a 29 SNP-multiplex--results of a collaborative EDNAP exercise.

    Science.gov (United States)

    Sanchez, J J; Børsting, C; Balogh, K; Berger, B; Bogus, M; Butler, J M; Carracedo, A; Court, D Syndercombe; Dixon, L A; Filipović, B; Fondevila, M; Gill, P; Harrison, C D; Hohoff, C; Huel, R; Ludes, B; Parson, W; Parsons, T J; Petkovski, E; Phillips, C; Schmitter, H; Schneider, P M; Vallone, P M; Morling, N

    2008-06-01

    We report the results of an inter-laboratory exercise on typing of autosomal single nucleotide polymorphisms (SNP) for forensic genetic investigations in crime cases. The European DNA Profiling Group (EDNAP), a working group under the International Society for Forensic Genetics (ISFG), organised the exercise. A total of 11 European and one US forensic genetic laboratories tested a subset of a 52 SNP-multiplex PCR kit developed by the SNPforID consortium. The 52 SNP-multiplex kit amplifies 52 DNA fragments with 52 autosomal SNP loci in one multiplex PCR. The 52 SNPs are detected in two separate single base extension (SBE) multiplex reactions with 29 and 23 SNPs, respectively, using SNaPshot kit, capillary electrophoresis and multicolour fluorescence detection. For practical reasons, only the 29 SBE multiplex reaction was carried out by the participating laboratories. A total of 11 bloodstains on FTA cards including a sample of poor quality and a negative control were sent to the laboratories together with the essential reagents for the initial multiplex PCR and the multiplex SBE reaction. The total SNP locus dropout rate was 2.8% and more than 50% of the dropouts were observed with the poor quality sample. The overall rate of discrepant SNP allele assignments was 2.0%. Two laboratories reported 60% of all the discrepancies. Two laboratories reported all 29 SNP alleles in all 10 positive samples correctly. The results of the collaborative exercise were surprisingly good and demonstrate that SNP typing with SBE, capillary electrophoresis and multicolour detection methods can be developed for forensic genetics.

  16. Grouping preprocess for haplotype inference from SNP and CNV data

    International Nuclear Information System (INIS)

    Shindo, Hiroyuki; Chigira, Hiroshi; Nagaoka, Tomoyo; Inoue, Masato; Kamatani, Naoyuki

    2009-01-01

    The method of statistical haplotype inference is an indispensable technique in the field of medical science. The authors previously reported Hardy-Weinberg equilibrium-based haplotype inference that could manage single nucleotide polymorphism (SNP) data. We recently extended the method to cover copy number variation (CNV) data. Haplotype inference from mixed data is important because SNPs and CNVs are occasionally in linkage disequilibrium. The idea underlying the proposed method is simple, but the algorithm for it needs to be quite elaborate to reduce the calculation cost. Consequently, we have focused on the details on the algorithm in this study. Although the main advantage of the method is accuracy, in that it does not use any approximation, its main disadvantage is still the calculation cost, which is sometimes intractable for large data sets with missing values.

  17. SNP-VISTA: An Interactive SNPs Visualization Tool

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nameeta; Teplitsky, Michael V.; Pennacchio, Len A.; Hugenholtz, Philip; Hamann, Bernd; Dubchak, Inna L.

    2005-07-05

    Recent advances in sequencing technologies promise better diagnostics for many diseases as well as better understanding of evolution of microbial populations. Single Nucleotide Polymorphisms(SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it is possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease and then screen for causative mutations.In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmental samples makes possible more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at http://genome.lbl.gov/vista/snpvista.

  18. Changes in variance explained by top SNP windows over generations for three traits in broiler chicken.

    Science.gov (United States)

    Fragomeni, Breno de Oliveira; Misztal, Ignacy; Lourenco, Daniela Lino; Aguilar, Ignacio; Okimoto, Ronald; Muir, William M

    2014-01-01

    The purpose of this study was to determine if the set of genomic regions inferred as accounting for the majority of genetic variation in quantitative traits remain stable over multiple generations of selection. The data set contained phenotypes for five generations of broiler chicken for body weight, breast meat, and leg score. The population consisted of 294,632 animals over five generations and also included genotypes of 41,036 single nucleotide polymorphism (SNP) for 4,866 animals, after quality control. The SNP effects were calculated by a GWAS type analysis using single step genomic BLUP approach for generations 1-3, 2-4, 3-5, and 1-5. Variances were calculated for windows of 20 SNP. The top ten windows for each trait that explained the largest fraction of the genetic variance across generations were examined. Across generations, the top 10 windows explained more than 0.5% but less than 1% of the total variance. Also, the pattern of the windows was not consistent across generations. The windows that explained the greatest variance changed greatly among the combinations of generations, with a few exceptions. In many cases, a window identified as top for one combination, explained less than 0.1% for the other combinations. We conclude that identification of top SNP windows for a population may have little predictive power for genetic selection in the following generations for the traits here evaluated.

  19. Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea

    Directory of Open Access Journals (Sweden)

    Deulvot Chrystel

    2010-08-01

    Full Text Available Abstract Background Single Nucleotide Polymorphisms (SNPs can be used as genetic markers for applications such as genetic diversity studies or genetic mapping. New technologies now allow genotyping hundreds to thousands of SNPs in a single reaction. In order to evaluate the potential of these technologies in pea, we selected a custom 384-SNP set using SNPs discovered in Pisum through the resequencing of gene fragments in different genotypes and by compiling genomic sequence data present in databases. We then designed an Illumina GoldenGate assay to genotype both a Pisum germplasm collection and a genetic mapping population with the SNP set. Results We obtained clear allelic data for more than 92% of the SNPs (356 out of 384. Interestingly, the technique was successful for all the genotypes present in the germplasm collection, including those from species or subspecies different from the P. sativum ssp sativum used to generate sequences. By genotyping the mapping population with the SNP set, we obtained a genetic map and map positions for 37 new gene markers. Conclusion Our results show that the Illumina GoldenGate assay can be used successfully for high-throughput SNP genotyping of diverse germplasm in pea. This genotyping approach will simplify genotyping procedures for association mapping or diversity studies purposes and open new perspectives in legume genomics.

  20. An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.

    Science.gov (United States)

    Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K

    2014-01-01

    Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone

  1. An integrated SNP mining and utilization (ISMU pipeline for next generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Sarwar Azam

    Full Text Available Open source single nucleotide polymorphism (SNP discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2, SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a

  2. Functional characterization of the Thr946Ala SNP at the type 1 diabetes IFIH1 locus.

    Science.gov (United States)

    Zouk, Hana; Marchand, Luc; Li, Quan; Polychronakos, Constantin

    2014-02-01

    The Thr allele at the Thr946Ala non-synonymous single-nucleotide polymorphism (nsSNP) in the IFIH1 gene confers risk for type 1 diabetes (T1D). IFIH1 binds viral double-stranded RNA (dsRNA), inducing a type I interferon (IFN) response. Reports of this nsSNP's role in IFIH1 expression regulation have produced conflicting results and a study evaluating transfected Thr946Ala protein alleles in an artificial system overexpressing IFIH1 shows that the SNP does not affect IFH1 function. In this study, we examine the effects of the Thr946Ala polymorphism on IFN-α response in a cell line that endogenously expresses physiological levels of IFIH1. Eleven lymphoblastoid cell lines (LCLs) homozygous for the major predisposing allele (Thr/Thr) and 6 LCLs homozygous for the minor protective allele (Ala/Ala) were electroporated with the viral dsRNA mimic, poly I:C, in three independent experiments. Media were collected 24 hours later and measured for IFN-α production by ELISA. Basal IFN response is minimal in mock-transfected cells from both genotypes and increases by about 8-fold in cells treated with poly I:C. LCLs with the Ala/Ala genotype have slightly higher IFN-α levels than their Thr/Thr counterparts but this did not reach statistical significance because of the large variability of the IFN response, due mostly to two high outliers (biological, not technical). A larger sample size would be needed to determine whether the Thr946Ala SNP affects the poly I:C-driven IFN-α response. Additionally, the possibility that this nsSNP recognizes viral dsRNA specificities cannot be ruled out. Thus, the mechanism of the observed association of this SNP with T1D remains to be determined.

  3. CARD15 single nucleotide polymorphisms 8, 12 and 13 are not increased in ethnic Danes with sarcoidosis

    DEFF Research Database (Denmark)

    Milman, Nils; Nielsen, Ole Haagen; Hviid, Thomas Vauvert F

    2007-01-01

    and SNP13, respectively, were performed by capillary electrophoresis single-strand confirmation polymorphism in 53 patients with histologically verified sarcoidosis and in 103 healthy controls. RESULTS: The frequencies of CARD15 mutations in sarcoidosis patients were: SNP8, 4/106 chromosomes (3.8%); SNP12...... with Crohn's disease. OBJECTIVES: To evaluate whether ethnic Danes with sarcoidosis have an increased frequency of CARD15 mutations compared to healthy control subjects. METHODS: Genotyping for CARD15 mutations R702W, G908R, and L1007fsinsC, also designated single nucleotide polymorphism (SNP) SNP8, SNP12......, 2/106 chromosomes (1.9%); SNP13, 2/106 chromosomes (1.9%); SNP8+SNP12+SNP13, 8/106 chromosomes (7.6%). All 8 patients were heterozygous. The frequencies in controls were: SNP8, 9/206 chromosomes (4.4%); SNP12, 2/206 chromosomes (1.0%); SNP13, 4/206 chromosomes (1.9%); SNP8+SNP12+SNP13, 15...

  4. A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel

    DEFF Research Database (Denmark)

    Pujolar, J.M.; Jacobsen, M.W.; Frydenberg, J.

    2013-01-01

    Reduced representation genome sequencing such as restriction-site-associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single-nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the Eu......Reduced representation genome sequencing such as restriction-site-associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single-nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers...... for the European eel using the RAD sequencing approach that was simultaneously identified and scored in a genome-wide scan of 30 individuals. Whereas genomic resources are increasingly becoming available for this species, including the recent release of a draft genome, no genome-wide set of SNP markers...

  5. New insights into clinical characteristics of Gilles de la Tourette Syndrome: findings in 1032 patients from a single German center

    Directory of Open Access Journals (Sweden)

    Tanvi Sambrani

    2016-09-01

    Full Text Available Background: Gilles de la Tourette syndrome (TS is a complex neuropsychiatric disorder defined by the presence of motor and phonic tics, but often associated with psychiatric comorbidities. The main objective of this study was to explore the clinical presentation and comorbidities of TS. Method: We analyzed clinical data obtained from a large sample (n=1032; 529 children and 503 adults of patients with tic disorders from one single German TS center assessed by one investigator. Data was collected with the help of an expert-reviewed semi-structured interview, designed to assess tic severity and certain comorbidities. Group comparisons were carried out via independent sample t-tests and chi-square tests.Results: The main findings of the study are: (1 tic severity is associated with the presence of premonitory urges (PU, copro-, echo-, and paliphenomena and the number of comorbidities, but not age at tic onset; it is higher in patients with comorbid obsessive-compulsive disorder (OCD than in patients with comorbid attention deficit/hyperactivity disorder (ADHD. (2 PU were found to be highly associated with not just right experiences and to emerge much earlier than previously thought alongside with the ability to suppress tics (PU in >60% and suppressibility in >75% at age 8-10 years. (3 Self-injurious behavior (SIB is highly associated with complex motor tics and coprophenomena, but not with OCD/ obsessive-compulsive behavior (OCB. While comorbid ADHD is associated with a lower ability to suppress tics, comorbid depression is associated with sleeping problems.Discussion: Our results demonstrate that tic severity is not influenced by age at onset. From our data, it is suggested that PU represent a specific type of not just right experience that is not a prerequisite for tic suppression. Comorbid ADHD reduces patients’ ability of successful tic suppression. Our data suggest that SIB belongs to the coprophenomena spectrum and hence should be

  6. SNP high-throughput screening in grapevine using the SNPlex™ genotyping system

    Directory of Open Access Journals (Sweden)

    Velasco Riccardo

    2008-01-01

    Full Text Available Abstract Background Until recently, only a small number of low- and mid-throughput methods have been used for single nucleotide polymorphism (SNP discovery and genotyping in grapevine (Vitis vinifera L.. However, following completion of the sequence of the highly heterozygous genome of Pinot Noir, it has been possible to identify millions of electronic SNPs (eSNPs thus providing a valuable source for high-throughput genotyping methods. Results Herein we report the first application of the SNPlex™ genotyping system in grapevine aiming at the anchoring of an eukaryotic genome. This approach combines robust SNP detection with automated assay readout and data analysis. 813 candidate eSNPs were developed from non-repetitive contigs of the assembled genome of Pinot Noir and tested in 90 progeny of Syrah × Pinot Noir cross. 563 new SNP-based markers were obtained and mapped. The efficiency rate of 69% was enhanced to 80% when multiple displacement amplification (MDA methods were used for preparation of genomic DNA for the SNPlex assay. Conclusion Unlike other SNP genotyping methods used to investigate thousands of SNPs in a few genotypes, or a few SNPs in around a thousand genotypes, the SNPlex genotyping system represents a good compromise to investigate several hundred SNPs in a hundred or more samples simultaneously. Therefore, the use of the SNPlex assay, coupled with whole genome amplification (WGA, is a good solution for future applications in well-equipped laboratories.

  7. A SNP-centric database for the investigation of the human genome

    Directory of Open Access Journals (Sweden)

    Kohane Isaac S

    2004-03-01

    Full Text Available Abstract Background Single Nucleotide Polymorphisms (SNPs are an increasingly important tool for genetic and biomedical research. Although current genomic databases contain information on several million SNPs and are growing at a very fast rate, the true value of a SNP in this context is a function of the quality of the annotations that characterize it. Retrieving and analyzing such data for a large number of SNPs often represents a major bottleneck in the design of large-scale association studies. Description SNPper is a web-based application designed to facilitate the retrieval and use of human SNPs for high-throughput research purposes. It provides a rich local database generated by combining SNP data with the Human Genome sequence and with several other data sources, and offers the user a variety of querying, visualization and data export tools. In this paper we describe the structure and organization of the SNPper database, we review the available data export and visualization options, and we describe how the architecture of SNPper and its specialized data structures support high-volume SNP analysis. Conclusions The rich annotation database and the powerful data manipulation and presentation facilities it offers make SNPper a very useful online resource for SNP research. Its success proves the great need for integrated and interoperable resources in the field of computational biology, and shows how such systems may play a critical role in supporting the large-scale computational analysis of our genome.

  8. The SNP rs10911021 is associated with oxidative stress in coronary heart disease patients from Pakistan.

    Science.gov (United States)

    Shahid, Saleem Ullah; Shabana; Humphries, Steve

    2018-01-05

    rs10911021 (a single nucleotide polymorphism present upstream of the GLUL gene) affects glutamic acid metabolism, and was shown to be associated with coronary heart disease (CHD) in patients with T2DM but a definite mechanism is unknown. It may affect glutathione cycle, an important effector in the antioxidant defense mechanism, in the cells. We checked the association of this SNP with CHD and oxidative stress biomarkers, malondialdeheyde (MDA), GSH and GSSG in Pakistani patients. A total of 650 subjects (425 CHD cases and 225 controls) were genotyped by TaqMan allelic discrimination technique. The levels of MDA, GSH and GSSG were measured by standard protocols. The risk allele frequency was higher in cases than controls, but the difference was insignificant (p = 0.55). The SNP was not associated with CHD (p = 0.053) but when the analysis was limited to CHD patients having DM, a significant association (p = 0.03) was observed. The blood levels of MDA and GSSG were higher while that of GSH was significantly lower in the cases than the controls (p stress biomarkers MDA and GSH and GSSG levels. As the SNP rs10911021 showed significant association with oxidative stress parameters and these parameters should an increased oxidative stress in the CHD subjects, it can be concluded that the SNP may have contributed to increase the risk of heart diseases in the diabetic subjects by increasing the oxidative stress.

  9. ACNE: a summarization method to estimate allele-specific copy numbers for Affymetrix SNP arrays.

    Science.gov (United States)

    Ortiz-Estevez, Maria; Bengtsson, Henrik; Rubio, Angel

    2010-08-01

    Current algorithms for estimating DNA copy numbers (CNs) borrow concepts from gene expression analysis methods. However, single nucleotide polymorphism (SNP) arrays have special characteristics that, if taken into account, can improve the overall performance. For example, cross hybridization between alleles occurs in SNP probe pairs. In addition, most of the current CN methods are focused on total CNs, while it has been shown that allele-specific CNs are of paramount importance for some studies. Therefore, we have developed a summarization method that estimates high-quality allele-specific CNs. The proposed method estimates the allele-specific DNA CNs for all Affymetrix SNP arrays dealing directly with the cross hybridization between probes within SNP probesets. This algorithm outperforms (or at least it performs as well as) other state-of-the-art algorithms for computing DNA CNs. It better discerns an aberration from a normal state and it also gives more precise allele-specific CNs. The method is available in the open-source R package ACNE, which also includes an add on to the aroma.affymetrix framework (http://www.aroma-project.org/).

  10. Assessing the Clinical Utility of SNP Microarray for Prader-Willi Syndrome due to Uniparental Disomy.

    Science.gov (United States)

    Santoro, Stephanie L; Hashimoto, Sayaka; McKinney, Aimee; Mihalic Mosher, Theresa; Pyatt, Robert; Reshmi, Shalini C; Astbury, Caroline; Hickey, Scott E

    2017-01-01

    Maternal uniparental disomy (UPD) 15 is one of the molecular causes of Prader-Willi syndrome (PWS), a multisystem disorder which presents with neonatal hypotonia and feeding difficulty. Current diagnostic algorithms differ regarding the use of SNP microarray to detect PWS. We retrospectively examined the frequency with which SNP microarray could identify regions of homozygosity (ROH) in patients with PWS. We determined that 7/12 (58%) patients with previously confirmed PWS by methylation analysis and microsatellite-positive UPD studies had ROH (>10 Mb) by SNP microarray. Additional assessment of 5,000 clinical microarrays, performed from 2013 to present, determined that only a single case of ROH for chromosome 15 was not caused by an imprinting disorder or identity by descent. We observed that ROH for chromosome 15 is rarely incidental and strongly associated with hypotonic infants having features of PWS. Although UPD microsatellite studies remain essential to definitively establish the presence of UPD, SNP microarray has important utility in the timely diagnostic algorithm for PWS. © 2017 S. Karger AG, Basel.

  11. Breast cancer-associated high-order SNP-SNP interaction of CXCL12/CXCR4-related genes by an improved multifactor dimensionality reduction (MDR-ER).

    Science.gov (United States)

    Fu, Ou-Yang; Chang, Hsueh-Wei; Lin, Yu-Da; Chuang, Li-Yeh; Hou, Ming-Feng; Yang, Cheng-Hong

    2016-09-01

    In association studies, the combined effects of single nucleotide polymorphism (SNP)-SNP interactions and the problem of imbalanced data between cases and controls are frequently ignored. In the present study, we used an improved multifactor dimensionality reduction (MDR) approach namely MDR-ER to detect the high order SNP‑SNP interaction in an imbalanced breast cancer data set containing seven SNPs of chemokine CXCL12/CXCR4 pathway genes. Most individual SNPs were not significantly associated with breast cancer. After MDR‑ER analysis, six significant SNP‑SNP interaction models with seven genes (highest cross‑validation consistency, 10; classification error rates, 41.3‑21.0; and prediction error rates, 47.4‑55.3) were identified. CD4 and VEGFA genes were associated in a 2‑loci interaction model (classification error rate, 41.3; prediction error rate, 47.5; odds ratio (OR), 2.069; 95% bootstrap CI, 1.40‑2.90; P=1.71E‑04) and it also appeared in all the best 2‑7‑loci models. When the loci number increased, the classification error rates and P‑values decreased. The powers in 2‑7‑loci in all models were >0.9. The minimum classification error rate of the MDR‑ER‑generated model was shown with the 7‑loci interaction model (classification error rate, 21.0; OR=15.282; 95% bootstrap CI, 9.54‑23.87; P=4.03E‑31). In the epistasis network analysis, the overall effect with breast cancer susceptibility was identified and the SNP order of impact on breast cancer was identified as follows: CD4 = VEGFA > KITLG > CXCL12 > CCR7 = MMP2 > CXCR4. In conclusion, the MDR‑ER can effectively and correctly identify the best SNP‑SNP interaction models in an imbalanced data set for breast cancer cases.

  12. The Impact of a Common MDM2 SNP on the Sensitivity of Breast Cancer to Treatment

    Science.gov (United States)

    2012-06-01

    hormone receptor PV pemphigus vulgaris 3 Abstract: Purpose: A single nucleotide polymorphism (SNP) in PERP (rs2484067, G>A) has been...assembly and maintenance of epithelial integrity 6,7. PERP is also implicated in the pathogenesis of pemphigus vulgaris , an autoimmune disease with...Beaudry VG, et al: Loss of the desmosomal protein perp enhances the phenotypic effects of pemphigus vulgaris autoantibodies. J Invest Dermatol 129:1710-8

  13. Usefulness of the SNP microarray technology to identify rare mutations in the case of perinatal death

    DEFF Research Database (Denmark)

    Hoeffding, L. K.; Kock, K. F.; Johnsen, Iben Birgit Gade

    2015-01-01

    The single nucleotide polymorphism (SNP) microarray technology has emerged as a powerful tool to screen the whole genome for sub-microscopic duplications and deletions that are not detectable by traditional cytogenetic analysis. Case: We report a case of a female twin born at 27th week of gestati...... to maturation of the lungs or the perinatal death of one of the twins. However, disruptions in the biosynthesis of gangliosides have been previously associated with premature death in mice....

  14. CGTS: a site-clustering graph based tagSNP selection algorithm in genotype data.

    Science.gov (United States)

    Wang, Jun; Guo, Mao-zu; Wang, Chun-yu

    2009-01-30

    Recent studies have shown genetic variation is the basis of the genome-wide disease association research. However, due to the high cost on genotyping large number of single nucleotide polymorphisms (SNPs), it is essential to choose a small subset of informative SNPs (tagSNPs), which are able to capture most variation in a population, to represent the rest SNPs. Several methods have been proposed to find the minimum set of tagSNPs, but most of them still have some disadvantages such as information loss and block-partition limit. This paper proposes a new hybrid method named CGTS which combines the ideas of the clustering and the graph algorithms to select tagSNPs on genotype data. This method aims to maximize the number of the discarding nontagSNPs in the given set. CGTS integrates the information of the LD association and the genotype diversity using the site graphs, discards redundant SNPs using the algorithm based on these graph structures. The clustering algorithm is used to reduce the running time of CGTS. The efficiency of the algorithm and quality of solutions are evaluated on biological data and the comparisons with three popular selecting methods are shown in the paper. Our theoretical analysis and experimental results show that our algorithm CGTS is not only more efficient than other methods but also can be get higher accuracy in tagSNP selection.

  15. A SNP in steroid receptor coactivator-1 disrupts a GSK3β phosphorylation site and is associated with altered tamoxifen response in bone.

    Science.gov (United States)

    Hartmaier, R J; Richter, A S; Gillihan, R M; Sallit, J Z; McGuire, S E; Wang, J; Lee, A V; Osborne, C K; O'Malley, B W; Brown, P H; Xu, J; Skaar, T C; Philips, S; Rae, J M; Azzouz, F; Li, L; Hayden, J; Henry, N L; Nguyen, A T; Stearns, V; Hayes, D F; Flockhart, D A; Oesterreich, S

    2012-02-01

    The coregulator steroid receptor coactivator (SRC)-1 increases transcriptional activity of the estrogen receptor (ER) in a number of tissues including bone. Mice deficient in SRC-1 are osteopenic and display skeletal resistance to estrogen treatment. SRC-1 is also known to modulate effects of selective ER modulators like tamoxifen. We hypothesized that single nucleotide polymorphisms (SNP) in SRC-1 may impact estrogen and/or tamoxifen action. Because the only nonsynonymous SNP in SRC-1 (rs1804645; P1272S) is located in an activation domain, it was examined for effects on estrogen and tamoxifen action. SRC-1 P1272S showed a decreased ability to coactivate ER compared with wild-type SRC-1 in multiple cell lines. Paradoxically, SRC-1 P1272S had an increased protein half-life. The Pro to Ser change disrupts a putative glycogen synthase 3 (GSK3)β phosphorylation site that was confirmed by in vitro kinase assays. Finally, knockdown of GSK3β increased SRC-1 protein levels, mimicking the loss of phosphorylation at P1272S. These findings are similar to the GSK3β-mediated phospho-ubiquitin clock previously described for the related coregulator SRC-3. To assess the potential clinical significance of this SNP, we examined whether there was an association between SRC-1 P1272S and selective ER modulators response in bone. SRC-1 P1272S was associated with a decrease in hip and lumbar bone mineral density in women receiving tamoxifen treatment, supporting our in vitro findings for decreased ER coactivation. In summary, we have identified a functional genetic variant of SRC-1 with decreased activity, resulting, at least in part, from the loss of a GSK3β phosphorylation site, which was also associated with decreased bone mineral density in tamoxifen-treated women.

  16. Characterization of fifteen SNP markers by mining EST in sea ...

    Indian Academy of Sciences (India)

    salmon (Hayes et al. 2007). However, in A. japonicus, only. 13 SNP have thus far been developed and characterized (Sun et al. 2010). Here we report 15 polymorphic SNP to enrich the list of currently available genetic makers of A. japonicus. ∗For correspondence. E-mail: zunchunz@hotmail.com. Materials and methods.

  17. applying snp marker technology in the cacao breeding programme ...

    African Journals Online (AJOL)

    DNA extraction and quantification. Leaf samples ... to this protocol, 24 ul of water (molecular biology grade), 1ul of ... DNA once quantified was stored in the freezer and dilutions made accordingly when needed. The SNP assay. SNP assays were performed by the 5' nuclease (Taqman) assay (Holland et al.,. 1991; Livak ...

  18. (SNP) assay for population stratification test between eastern Asians ...

    African Journals Online (AJOL)

    Yomi

    2012-01-03

    Jan 3, 2012 ... al., 2009; HUGO et al., 2009). This is also the first SNP assay to detect individual ethnic origin in East Asia using Sequenom MassARRAY. SNP typing technology. It offered a molecular tool to help us in forensic investigations and anthropology studies. Forensic scientists have developed a series of STR and.

  19. Interactions Between SNP Alleles at Multiple Loci and Variation in Skin Pigmentation in 122 Caucasians

    Directory of Open Access Journals (Sweden)

    Sumiko Anno

    2007-01-01

    Full Text Available This study was undertaken to clarify the molecular basis for human skin color variation and the environmental adaptability to ultraviolet irradiation, with the ultimate goal of predicting the impact of changes in future environments on human health risk. One hundred twenty-two Caucasians living in Toledo, Ohio participated. Back and cheek skin were assayed for melanin as a quantitative trait marker. Buccal cell samples were collected and used for DNA extraction. DNA was used for SNP genotyping using the Masscode™ system, which entails two-step PCR amplification and a platform chemistry which allows cleavable mass spectrometry tags. The results show gene-gene interaction between SNP alleles at multiple loci (not necessarily on the same chromosome contributes to inter-individual skin color variation while suggesting a high probability of linkage disequilibrium. Confirmation of these findings requires further study with other ethic groups to analyze the associations between SNP alleles at multiple loci and human skin color variation. Our overarching goal is to use remote sensing data to clarify the interaction between atmospheric environments and SNP allelic frequency and investigate human adaptability to ultraviolet irradiation. Such information should greatly assist in the prediction of the health effects of future environmental changes such as ozone depletion and increased ultraviolet exposure. If such health effects are to some extent predictable, it might be possible to prepare for such changes in advance and thus reduce the extent of their impact.

  20. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Houston, Ross D; Taggart, John B; Cézard, Timothé; Bekaert, Michaël; Lowe, Natalie R; Downing, Alison; Talbot, Richard; Bishop, Stephen C; Archibald, Alan L; Bron, James E; Penman, David J; Davassi, Alessandro; Brew, Fiona; Tinch, Alan E; Gharbi, Karim; Hamilton, Alastair

    2014-02-06

    Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in salmonids and in aquaculture

  1. Development and characterization of a high density SNP genotyping assay for cattle.

    Directory of Open Access Journals (Sweden)

    Lakshmi K Matukumalli

    Full Text Available The success of genome-wide association (GWA studies for the detection of sequence variation affecting complex traits in human has spurred interest in the use of large-scale high-density single nucleotide polymorphism (SNP genotyping for the identification of quantitative trait loci (QTL and for marker-assisted selection in model and agricultural species. A cost-effective and efficient approach for the development of a custom genotyping assay interrogating 54,001 SNP loci to support GWA applications in cattle is described. A novel algorithm for achieving a compressed inter-marker interval distribution proved remarkably successful, with median interval of 37 kb and maximum predicted gap of <350 kb. The assay was tested on a panel of 576 animals from 21 cattle breeds and six outgroup species and revealed that from 39,765 to 46,492 SNP are polymorphic within individual breeds (average minor allele frequency (MAF ranging from 0.24 to 0.27. The assay also identified 79 putative copy number variants in cattle. Utility for GWA was demonstrated by localizing known variation for coat color and the presence/absence of horns to their correct genomic locations. The combination of SNP selection and the novel spacing algorithm allows an efficient approach for the development of high-density genotyping platforms in species having full or even moderate quality draft sequence. Aspects of the approach can be exploited in species which lack an available genome sequence. The BovineSNP50 assay described here is commercially available from Illumina and provides a robust platform for mapping disease genes and QTL in cattle.

  2. Effect of Myostatin SNP on muscle fiber properties in male Thoroughbred horses during training period.

    Science.gov (United States)

    Miyata, Hirofumi; Itoh, Rika; Sato, Fumio; Takebe, Naoya; Hada, Tetsuro; Tozaki, Teruaki

    2017-10-20

    Variants of the Myostatin gene have been shown to have an influence on muscle hypertrophy phenotypes in a wide range of mammalian species. Recently, a Thoroughbred horse with a C-Allele at the g.66493737C/T single-nucleotide polymorphism (SNP) has been reported to be suited to short-distance racing. In this study, we examined the effect of the Myostatin SNP on muscle fiber properties in young Thoroughbred horses during a training period. To investigate the effect of the Myostatin SNP on muscle fiber before training, several mRNA expressions were relatively quantified in biopsy samples from the middle gluteal muscle of 27 untrained male Thoroughbred horses (1.5 years old) using real-time RT-PCR analysis. The remaining muscle samples were used for immunohistochemical analysis to determine the population and area of each fiber type. All measurements were revaluated in biopsy samples of the same horses after a 5-month period of conventional training. Although the expressions of Myostatin mRNA decreased in all SNP genotypes, a significant decrease was found in only the C/C genotype after training. While, expression of VEGFa, PGC1α, and SDHa mRNAs, which relate to the biogenesis of mitochondria and capillaries, was significantly higher (54-82%) in the T/T than the C/C genotypes after training. It is suggested that hypertrophy of muscle fiber is directly associated with a decrease in Myostatin mRNA expression in the C/C genotype, and that increased expressions of VEGFa, PGC1α, and SDHa in the T/T genotype might be indirectly caused by the Myostatin SNP.

  3. The development and characterization of a 60K SNP chip for chicken

    Directory of Open Access Journals (Sweden)

    Vereijken Addie

    2011-05-01

    Full Text Available Abstract Background In livestock species like the chicken, high throughput single nucleotide polymorphism (SNP genotyping assays are increasingly being used for whole genome association studies and as a tool in breeding (referred to as genomic selection. To be of value in a wide variety of breeds and populations, the success rate of the SNP genotyping assay, the distribution of the SNP across the genome and the minor allele frequencies (MAF of the SNPs used are extremely important. Results We describe the design of a moderate density (60k Illumina SNP BeadChip in chicken consisting of SNPs known to be segregating at high to medium minor allele frequencies (MAF in the two major types of commercial chicken (broilers and layers. This was achieved by the identification of 352,303 SNPs with moderate to high MAF in 2 broilers and 2 layer lines using Illumina sequencing on reduced representation libraries. To further increase the utility of the chip, we also identified SNPs on sequences currently not covered by the chicken genome assembly (Gallus_gallus-2.1. This was achieved by 454 sequencing of the chicken genome at a depth of 12x and the identification of SNPs on 454-derived contigs not covered by the current chicken genome assembly. In total we added 790 SNPs that mapped to 454-derived contigs as well as 421 SNPs with a position on Chr_random of the current assembly. The SNP chip contains 57,636 SNPs of which 54,293 could be genotyped and were shown to be segregating in chicken populations. Our SNP identification procedure appeared to be highly reliable and the overall validation rate of the SNPs on the chip was 94%. We were able to map 328 SNPs derived from the 454 sequence contigs on the chicken genome. The majority of these SNPs map to chromosomes that are already represented in genome build Gallus_gallus-2.1.0. Twenty-eight SNPs were used to construct two new linkage groups most likely representing two micro-chromosomes not covered by the

  4. Single molecule measurements of DNA helicase activity with magnetic tweezers and t-test based step-finding analysis

    Science.gov (United States)

    Seol, Yeonee; Strub, Marie-Paule; Neuman, Keir C.

    2016-01-01

    Magnetic tweezers is a versatile and easy to implement single-molecule technique that has become increasingly prevalent in the study of nucleic acid based molecular motors. Here, we provide a description of the magnetic tweezers instrument and guidelines for measuring and analyzing DNA helicase activity. Along with experimental methods, we describe a robust method of single-molecule trajectory analysis based on the Student’s t-test that accommodates continuous transitions in addition to the discrete transitions assumed in most widely employed analysis routines. To illustrate the single-molecule unwinding assay and the analysis routine, we provide DNA unwinding measurements of Escherichia coli RecQ helicase under a variety of conditions (Na+, ATP, temperature, and DNA substrate geometry). These examples reveal that DNA unwinding measurements under various conditions can aid in elucidating the unwinding mechanism of DNA helicase but also emphasize that environmental effects on DNA helicase activity must be considered in relation to in vivo activity and mechanism. PMID:27131595

  5. Forensic typing of autosomal SNPs with a 29 SNP-multiplex--results of a collaborative EDNAP exercise

    DEFF Research Database (Denmark)

    Sanchez, Juan Jose; Børsting, C; Balogh, K

    2008-01-01

    We report the results of an inter-laboratory exercise on typing of autosomal single nucleotide polymorphisms (SNP) for forensic genetic investigations in crime cases. The European DNA Profiling Group (EDNAP), a working group under the International Society for Forensic Genetics (ISFG), organised...

  6. Presence of sequence and SNP variation in the IRF6 gene in healthy residents of Guangdong Province

    Directory of Open Access Journals (Sweden)

    Wu Wenli

    2016-01-01

    Full Text Available This study was to investigate the single nucleotide polymorphism (SNP in the interferon regulatory factor 6 (IRF6 gene in healthy residents of Guangdong Province, China, for further analysis of their associations with the development of cleft lip with or without palate (CL/P.

  7. A low-density SNP array for analyzing differential selection in freshwater and marine populations of threespine stickleback (Gasterosteus aculeatus)

    DEFF Research Database (Denmark)

    Ferchaud, Anne-Laure; Pedersen, Susanne H.; Bekkevold, Dorte

    2014-01-01

    for rapid and cost efficient analysis of genetic divergence between freshwater and marine sticklebacks, we generated a low-density SNP (Single Nucleotide Polymorphism) array encompassing markers of chromosome regions under putative directional selection, along with neutral markers for background. Results...... have developed a cost-efficient low-density SNP array that allows for rapid screening of polymorphisms in threespine stickleback. The array provides a valuable tool for analyzing adaptive divergence between freshwater and marine stickleback populations beyond the well-established candidate gene...

  8. SNP genotypes of olfactory receptor genes associated with olfactory ability in German Shepherd dogs.

    Science.gov (United States)

    Yang, M; Geng, G-J; Zhang, W; Cui, L; Zhang, H-X; Zheng, J-L

    2016-04-01

    To find out the relationship between SNP genotypes of canine olfactory receptor genes and olfactory ability, 28 males and 20 females from German Shepherd dogs in police service were scored by odor detection tests and analyzed using the Beckman GenomeLab SNPstream. The representative 22 SNP loci from the exonic regions of 12 olfactory receptor genes were investigated, and three kinds of odor (human, ice drug and trinitrotoluene) were detected. The results showed that the SNP genotypes at the OR10H1-like:c.632C>T, OR10H1-like:c.770A>T, OR2K2-like:c.518G>A, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A loci had a statistically significant effect on the scenting abilities (P odor influenced the performances of the dogs (P odor at the following loci: OR10H1-like:c.632C>T, OR10H1-like:c.770A>T, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A (P dogs with genotype CC at the OR10H1-like:c.632C>T, genotype AA at the OR10H1-like:c.770A>T, genotype TT at the OR4C11-like:c.511T>G and genotype GG at the OR4C11-like:c.692G>A loci did better at detecting the ice drug. We concluded that there was linkage between certain SNP genotypes and the olfactory ability of dogs and that SNP genotypes might be useful in determining dogs' scenting potential. © 2015 Stichting International Foundation for Animal Genetics.

  9. Functional Analysis of Deep Intronic SNP rs13438494 in Intron 24 of PCLO Gene

    Science.gov (United States)

    Seo, Seunghee; Takayama, Kanako; Uno, Kyosuke; Ohi, Kazutaka; Hashimoto, Ryota; Nishizawa, Daisuke; Ikeda, Kazutaka; Ozaki, Norio; Nabeshima, Toshitaka; Miyamoto, Yoshiaki; Nitta, Atsumi

    2013-01-01

    The single nucleotide polymorphism (SNP) rs13438494 in intron 24 of PCLO was significantly associated with bipolar disorder in a meta-analysis of genome-wide association studies. In this study, we performed functional minigene analysis and bioinformatics prediction of splicing regulatory sequences to characterize the deep intronic SNP rs13438494. We constructed minigenes with A and C alleles containing exon 24, intron 24, and exon 25 of PCLO to assess the genetic effect of rs13438494 on splicing. We found that the C allele of rs13438494 reduces the splicing efficiency of the PCLO minigene. In addition, prediction analysis of enhancer/silencer motifs using the Human Splice Finder web tool indicated that rs13438494 induces the abrogation or creation of such binding sites. Our results indicate that rs13438494 alters splicing efficiency by creating or disrupting a splicing motif, which functions by binding of splicing regulatory proteins, and may ultimately result in bipolar disorder in affected people. PMID:24167553

  10. Significant variation between SNP-based HLA imputations in diverse populations: the last mile is the hardest.

    Science.gov (United States)

    Pappas, D J; Lizee, A; Paunic, V; Beutner, K R; Motyer, A; Vukcevic, D; Leslie, S; Biesiada, J; Meller, J; Taylor, K D; Zheng, X; Zhao, L P; Gourraud, P-A; Hollenbach, J A; Mack, S J; Maiers, M

    2017-04-25

    Four single nucleotide polymorphism (SNP)-based human leukocyte antigen (HLA) imputation methods (e-HLA, HIBAG, HLA*IMP:02 and MAGPrediction) were trained using 1000 Genomes SNP and HLA genotypes and assessed for their ability to accurately impute molecular HLA-A, -B, -C and -DRB1 genotypes in the Human Genome Diversity Project cell panel. Imputation concordance was high (>89%) across all methods for both HLA-A and HLA-C, but HLA-B and HLA-DRB1 proved generally difficult to impute. Overall, <27.8% of subjects were correctly imputed for all HLA loci by any method. Concordance across all loci was not enhanced via the application of confidence thresholds; reliance on confidence scores across methods only led to noticeable improvement (+3.2%) for HLA-DRB1. As the HLA complex is highly relevant to the study of human health and disease, a standardized assessment of SNP-based HLA imputation methods is crucial for advancing genomic research. Considerable room remains for the improvement of HLA-B and especially HLA-DRB1 imputation methods, and no imputation method is as accurate as molecular genotyping. The application of large, ancestrally diverse HLA and SNP reference data sets and multiple imputation methods has the potential to make SNP-based HLA imputation methods a tractable option for determining HLA genotypes.The Pharmacogenomics Journal advance online publication, 25 April 2017; doi:10.1038/tpj.2017.7.

  11. SNP_tools: A compact tool package for analysis and conversion of genotype data for MS-Excel.

    Science.gov (United States)

    Chen, Bowang; Wilkening, Stefan; Drechsel, Marion; Hemminki, Kari

    2009-10-23

    Single nucleotide polymorphism (SNP) genotyping is a major activity in biomedical research. Scientists prefer to have a facile access to the results which may require conversions between data formats. First hand SNP data is often entered in or saved in the MS-Excel format, but this software lacks genetic and epidemiological related functions. A general tool to do basic genetic and epidemiological analysis and data conversion for MS-Excel is needed. The SNP_tools package is prepared as an add-in for MS-Excel. The code is written in Visual Basic for Application, embedded in the Microsoft Office package. This add-in is an easy to use tool for users with basic computer knowledge (and requirements for basic statistical analysis). Our implementation for Microsoft Excel 2000-2007 in Microsoft Windows 2000, XP, Vista and Windows 7 beta can handle files in different formats and converts them into other formats. It is a free software.

  12. Can a single dose of human papillomavirus (HPV) vaccine prevent cervical cancer? Early findings from an Indian study.

    Science.gov (United States)

    Sankaranarayanan, Rengaswamy; Joshi, Smita; Muwonge, Richard; Esmy, Pulikottil Okkuru; Basu, Partha; Prabhu, Priya; Bhatla, Neerja; Nene, Bhagwan M; Shaw, Janmesh; Poli, Usha Rani Reddy; Verma, Yogesh; Zomawia, Eric; Pimple, Sharmila; Tommasino, Massimo; Pawlita, Michael; Gheit, Tarik; Waterboer, Tim; Sehr, Peter; Pillai, Madhavan Radhakrishna

    2018-03-15

    Human papillomavirus (HPV) vaccination is a major strategy for preventing cervical and other ano-genital cancers. Worldwide HPV vaccination introduction and coverage will be facilitated if a single dose of vaccine is as effective as two or three doses or demonstrates significant protective effect compared to 'no vaccination'. In a multi-centre cluster randomized trial of two vs three doses of quadrivalent HPV vaccination (Gardasil™) in India, suspension of the vaccination due to events unrelated to the study led to per protocol and partial vaccination of unmarried 10-18 year old girls leading to four study groups, two by design and two by default. They were followed up for the primary outcomes of immunogenicity in terms of L1 genotype-specific binding antibody titres, neutralising antibody titres, and antibody avidity for the vaccine-targeted HPV types and HPV infections. Analysis was per actual number of vaccine doses received. This study is registered with ISRCTN, number ISRCTN98283094; and with ClinicalTrials.gov, number NCT00923702. Of the 17,729 vaccinated girls, 4348 (25%) received three doses on days 1, 60, 180 or later, 4979 (28%) received two doses on days 1 and 180 or later, 3452 (19%) received two doses on days 1 and 60, and 4950 (28%) received one dose. One dose recipients demonstrated a robust and sustained immune response against HPV 16 and 18, albeit inferior to that of 3- or 2-doses and the antibody levels were stable over a 4 year period. The frequencies of cumulative incident and persistent HPV 16 and 18 infections up to 7 years of follow-up were similar and uniformly low in all the vaccinated study groups; the frequency of HPV 16 and 18 infections were significantly higher in unvaccinated age-matched control women than among vaccine recipients. The frequency of vaccine non-targeted HPV types was similar in the vaccinated groups but higher in the unvaccinated control women. Our results indicate that a single dose of quadrivalent HPV

  13. Treatment Recommendations for Single-Unit Crowns: Findings from The National Dental Practice-Based Research Network

    Science.gov (United States)

    McCracken, Michael S.; Louis, David R.; Litaker, Mark S.; Minyé, Helena M.; Mungia, Rahma; Gordan, Valeria V.; Marshall, Don G.; Gilbert, Gregg H.

    2016-01-01

    Background Objectives were to: (1) quantify practitioner variation in likelihood to recommend a crown; and (2) test whether certain dentist, practice, and clinical factors are significantly associated with this likelihood. Methods Dentists in the National Dental Practice-Based Research Network completed a questionnaire about indications for single-unit crowns. In four clinical scenarios, practitioners ranked their likelihood of recommending a single-unit crown. These responses were used to calculate a dentist-specific “Crown Factor” (CF; range 0–12). A higher score implies a higher likelihood to recommend a crown. Certain characteristics were tested for statistically significant associations with the CF. Results 1,777 of 2,132 eligible dentists responded (83%). Practitioners were most likely to recommend crowns for teeth that were fractured, cracked, endodontically-treated, or had a broken restoration. Practitioners overwhelmingly recommended crowns for posterior teeth treated endodontically (94%). Practice owners, Southwest practitioners, and practitioners with a balanced work load were more likely to recommend crowns, as were practitioners who use optical scanners for digital impressions. Conclusions There is substantial variation in the likelihood of recommending a crown. While consensus exists in some areas (posterior endodontic treatment), variation dominates in others (size of an existing restoration). Recommendations varied by type of practice, network region, practice busyness, patient insurance status, and use of optical scanners. Practical Implications Recommendations for crowns may be influenced by factors unrelated to tooth and patient variables. A concern for tooth fracture -- whether from endodontic treatment, fractured teeth, or large restorations -- prompted many clinicians to recommend crowns. PMID:27492046

  14. Treatment recommendations for single-unit crowns: Findings from The National Dental Practice-Based Research Network.

    Science.gov (United States)

    McCracken, Michael S; Louis, David R; Litaker, Mark S; Minyé, Helena M; Mungia, Rahma; Gordan, Valeria V; Marshall, Don G; Gilbert, Gregg H

    2016-11-01

    The objectives of this study were to quantify practitioner variation in likelihood to recommend a crown and test whether certain dentist, practice, and clinical factors are associated significantly with this likelihood. Dentists in The National Dental Practice-Based Research Network completed a questionnaire about indications for single-unit crowns. In 4 clinical scenarios, practitioners ranked their likelihood of recommending a single-unit crown. The authors used these responses to calculate a dentist-specific crown factor (range, 0-12). A higher score implied a higher likelihood of recommending a crown. The authors tested certain characteristics for statistically significant associations with the crown factor. A total of 1,777 of 2,132 eligible dentists (83%) responded. Practitioners were most likely to recommend crowns for teeth that were fractured, cracked, or endodontically treated or had a broken restoration. Practitioners overwhelmingly recommended crowns for posterior teeth treated endodontically (94%). Practice owners, practitioners in the Southwest, and practitioners with a balanced workload were more likely to recommend crowns, as were practitioners who used optical scanners for digital impressions. There is substantial variation in the likelihood of recommending a crown. Although consensus exists in some areas (posterior endodontic treatment), variation dominates in others (size of an existing restoration). Recommendations varied according to type of practice, network region, practice busyness, patient insurance status, and use of optical scanners. Recommendations for crowns may be influenced by factors unrelated to tooth and patient variables. A concern for tooth fracture-whether from endodontic treatment, fractured teeth, or large restorations-prompted many clinicians to recommend crowns. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  15. Evaluation of the Ion Torrent™ HID SNP 169-plex

    DEFF Research Database (Denmark)

    Børsting, Claus; Fordyce, Sarah L; Olofsson, Jill Katharina

    2014-01-01

    The Ion Torrent™ HID SNP assay amplified 136 autosomal SNPs and 33 Y-chromosome markers in one PCR and the markers were subsequently typed using the Ion PGM™ second generation sequencing platform. A total of 51 of the autosomal SNPs were selected from the SNPforID panel that is routinely used...... in our ISO 17025 accredited laboratory. Concordance between the Ion Torrent™ HID SNP assay and the SNPforID assay was tested by typing 44 Iraqis twice with the Ion Torrent™ HID SNP assay. The same samples were previously typed with the SNPforID assay and the Y-chromosome haplogroups of the individuals...

  16. Biomek®-3000 and GenPlex SNP Genotyping in Forensic Genetics

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Tomas, Carmen; Hansen, Anders J.

    2008-01-01

    Single nucleotide polymorphism genotyping provides a supplement for conventional short tandem repeats-based kits currently used for human identification. GenPlex (Applied Biosystems (AB), Foster City, CA) is an SNP-genotyping kit based on a multiplex of 48 informative, autosomal SNPs from...... of both partial and full plates. A total of 286 samples were analyzed in duplicates with the GenPlex reaction using the Biomek-3000. The results were compared with those obtained from the same samples using the SNaPshot(AB) single-base extension system. Full concordance of the results was obtained in all...

  17. SNP markers identify widely distributed clonal lineages of Phytophthora colocasiae in Vietnam, Hawaii and Hainan Island, China.

    Science.gov (United States)

    Shrestha, Sandesh; Hu, Jian; Fryxell, Rebecca Trout; Mudge, Joann; Lamour, Kurt

    2014-01-01

    Taro (Colocasia esculenta) is an important food crop, and taro leaf blight caused by Phytophthora colocasiae can significantly affect production. Our objectives were to develop single nucleotide polymorphism (SNP) markers for P. colocasiae and characterize populations in Hawaii (HI), Vietnam (VN) and Hainan Island, China (HIC). In total, 379 isolates were analyzed for mating type and multilocus SNP profiles including 214 from HI, 97 from VN and 68 from HIC. A total of 1152 single nucleotide variant (SNV) sites were identified via restriction site-associated DNA (RAD) sequencing of two field isolates. Genotyping with 27 SNPs revealed 41 multilocus SNP genotypes grouped into seven clonal lineages containing 2-232 members. Three clonal lineages were shared among countries. In addition, five SNP markers had a low incidence of loss of heterozygosity (LOH) during asexual laboratory growth. For HI and VN, >95% of isolates were the A2 mating type. On HIC, isolates within single clonal lineages had A1, A2 and A0 (neuter) isolates. The implications for the wide dispersal of clonal lineages are discussed. © 2014 by The Mycological Society of America.

  18. Association of a single nucleotide polymorphism in titin gene with marbling in Japanese Black beef cattle

    Directory of Open Access Journals (Sweden)

    Fujita Tatsuo

    2009-05-01

    Full Text Available Abstract Background Marbling defined by the amount and distribution of intramuscular fat is an economically important trait of beef cattle in Japan. We have recently reported that single nucleotide polymorphisms (SNPs in the endothelial differentiation, sphingolipid G-protein-coupled receptor, 1 (EDG1 gene were associated with marbling in Japanese Black beef cattle. As well as EDG1, the titin (TTN gene, involved in myofibrillogenesis, has been previously shown to possess expression difference in musculus longissimus muscle between low-marbled and high-marbled steer groups, and to be located within genomic region of a quantitative trait locus for marbling. Thus TTN was considered as a positional functional candidate for the gene responsible for marbling. In this study, we explored SNP in TTN and analyzed association of the SNP with marbling. Findings A SNP in the promoter region of TTN, referred to as g.231054C>T, was the only difference detected between high- and low-marbled steer groups. The SNP was associated with marbling in 3 experiments using 101 sires (P = 0.004, 848 paternal half-sib progeny steers from 5 sires heterozygous for the g.231054C>T (P = 0.046, and 820 paternal half-sib progeny steers from 3 sires homozygous for C allele at the g.231054C>T (P = 0.051, in Japanese Black beef cattle. The effect of genotypes of the SNP on subcutaneous fat thickness was not statistically significant (P > 0.05. Conclusion These findings suggest that in addition to the EDG1 SNPs, the TTN SNP polymorphism is associated with marbling and may be useful for effective marker-assisted selection to increase the levels of marbling in Japanese Black beef cattle. Further replicate studies will be needed to confirm the allelic association observed here, and to expand the results to evaluate all possible genotypic combinations of alleles.

  19. ICAM-1 molecular mechanism and genome wide SNP's association studies

    Directory of Open Access Journals (Sweden)

    C. Anbarasan

    2015-05-01

    Full Text Available Macrophages transformed foam cell formation occurs as a result of leukocyte accumulation mediated through intercellular adhesion molecule 1 (ICAM1, vascular cell adhesion molecule 1 (VCAM1, and E-selectin, secreted by inflamed or damaged endothelium. The key molecule is the ICAM-1, member of the adhesion immunoglobulin super family that maps to chromosome 19 p13.2-p13.3 codes for 505 amino acids have five extracellular domains including circulatory leukocytes binding site (primarily monocytes for recruiting it at the sites of inflammation and the tight adhesion with vascular endothelium for the above mentioned pathogenesis as an initial step. Hence the objective of the current paper is to review the Genome Wide Association (GWA studies and summarizes its understanding of functional Single Nucleotide Polymorphism (SNP's of ICAM-1 clinical association to provide better guidance for the clinicians and researchers of the merits, demerits of the current results and direct them to do research on larger number of population for better prospective.

  20. Cytogenetic and Molecular Findings in Children with Acute Lymphoblastic Leukemia: Experience of a Single Institution in Argentina

    Science.gov (United States)

    Coccé, Mariela C.; Alonso, Cristina N.; Rossi, Jorge G.; Bernasconi, Andrea R.; Rampazzi, Maria A.; Felice, Maria S.; Rubio, Patricia L.; Eandi Eberle, Silvia; Medina, Adriana; Gallego, Marta S.

    2015-01-01

    The purpose of the current study was to evaluate the cytogenetic findings in 1,057 children with acute lymphoblastic leukemia (ALL) referred to the cytogenetics laboratory at the Hospital de Pediatría Dr. Juan P. Garrahan, between 1991 and 2014. Chromosomal abnormalities were evaluated by G-banding and FISH. Since December 2002, RT-PCR determinations were systematically carried out for BCR-ABL1, KMT2A-AFF1, ETV6-RUNX1, and TCF3-PBX1 rearrangements in children, adding KMT2A-MLLT3 and KMT2A-MLLT1 in infants. The percentage of abnormalities detected by cytogenetics was 70.1%. Four novel abnormalities, t(2;8)(p11.2;p22), inv(4)(p16q25), t(1;7)(q25;q32), and t(5;6)(q21;q21), were found in this cohort. We compared cytogenetic and RT-PCR results for BCR-ABL1, KMT2A-AFF1 and TCF3-PBX1 rearrangements in 497 children evaluated by both methods. The results were highly concordant (p cytogenetic findings in children with ALL reported in Argentina. PMID:26648836

  1. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays.

    Directory of Open Access Journals (Sweden)

    Nils Homer

    2008-08-01

    Full Text Available We use high-density single nucleotide polymorphism (SNP genotyping microarrays to demonstrate the ability to accurately and robustly determine whether individuals are in a complex genomic DNA mixture. We first develop a theoretical framework for detecting an individual's presence within a mixture, then show, through simulations, the limits associated with our method, and finally demonstrate experimentally the identification of the presence of genomic DNA of specific individuals within a series of highly complex genomic mixtures, including mixtures where an individual contributes less than 0.1% of the total genomic DNA. These findings shift the perceived utility of SNPs for identifying individual trace contributors within a forensics mixture, and suggest future research efforts into assessing the viability of previously sub-optimal DNA sources due to sample contamination. These findings also suggest that composite statistics across cohorts, such as allele frequency or genotype counts, do not mask identity within genome-wide association studies. The implications of these findings are discussed.

  2. Clinico-Biochemical Correlation to Histological Findings in Alcoholic Liver Disease: A Single Centre Study from Eastern India

    Science.gov (United States)

    Khanra, Dibbendhu; Sonthalia, Nikhil; Kundu, Supratip; Biswas, Kaushik; Talukdar, Arunansu; Saha, Manjari; Bera, Himel

    2014-01-01

    Background: Alcoholism is a health problem not only in developed countries but also in developing countries. Cirrhosis due to alcohol is a common cause of death among individuals abusing alcohol. A better knowledge of the spectrum of alcoholic liver diseases, its clinical, biochemical and histopathological features could result in early detection and prevention of alcoholic liver diseases before it’s catastrophic and life threatening effects. Materials and Methods: A total of 200 patients with alcoholic liver diseases were studied with respect to alcohol consumption, clinical features, biochemical and histopathological changes. The clinical features, biochemical parameters, and histopathology of liver including Ishak’s modified histological activity index (HAI) were correlated with the amount and duration of alcohol consumed. Result: Majority of the patients were in the age group of 40-49 years and all the cases were males. Majority consumed alcohol of about 75-90 grams per day for a duration of 10–12 years. Anorexia and jaundice were the most common symptom and clinical finding respectively. Hyperbilirubinemia and hypoalbuminemia were the most common abnormalities observed in liver function tests. Advanced HAI stages with features of cirrhosis were most frequent histo-pathological finding noted in this study. Clinico-biochemical profile was significantly correlated with degree of alcohol ingestion as well as with liver histopathology. Conclusion: The wide prevalence of alcoholic liver disease including cirrhosis among Indian males was noted with significantly lower quantity and duration of alcohol ingestion. The severity of liver damage is directly proportional to the quantity and duration of alcohol consumed. Clinical features and biochemical changes may forecast the liver histopathology among the patients of alcoholic liver disease. PMID:25478382

  3. Clinical features and laboratory findings of dengue fever in German travellers: A single-centre, retrospective analysis.

    Science.gov (United States)

    Tavakolipoor, Pulad; Schmidt-Chanasit, Jonas; Burchard, Gerd Dieter; Jordan, Sabine

    2016-01-01

    Dengue fever (DF) is one of the most relevant human arboviral infections worldwide and has become a frequent cause of fever in the returning traveller. This retrospective study aimed to characterize epidemiological and clinical features and laboratory findings of dengue fever in German travellers. This descriptive study analyzed medical records of patients diagnosed with DF presenting at the Section of Tropical Medicine of the University Medical Centre Hamburg-Eppendorf from 2007 to 2011. Data were collected and analyzed retrospectively. In total, data of 119 DF patients (52 female, 67 male) were included in this study. The median age of the patients was 35 (range 15-75 years). DF was most frequently acquired in South-East Asia (n = 65; 54.7%), and in particular in Thailand (n = 23; 19.7%). A considerable percentage of DF infections (n = 14; 11.8%) was imported from Africa. Patients predominantly presented with fever, headache, rash, myalgia and arthralgia but also with gastrointestinal symptoms, i.e. diarrhoea. Nine patients showed signs of minor haemorrhagic manifestations. Neurological complications occurred in 13 patients. Low platelet count, leukopenia and elevated liver enzymes were the most relevant laboratory findings. Twenty patients (17.8%) had to be hospitalized. Overall, the clinical course was mostly mild to moderate, 13 patients (10.9%) showed DF warnings signs, no fatalities occurred. DF presented as a mostly mild to moderate disease in this study cohort. Outpatient treatment was adequate for the majority of patients. Still, detailed knowledge of clinical symptoms and laboratory features is essential for appropriate triage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Finding The Charm In 800 GeV/c p-Cu and p-Be Single Muon Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Klinksiek, Stephen A. [Univ. of New Mexico, Albuquerque, NM (United States)

    2005-12-01

    Fermilab Experiment 866 took single muon data from 800 GeV/c (√s = 38.8 GeV) p-Cu and p-Be interactions in an attempt to extract the inclusive nuclear open charm/anti-charm (D/¯D) differential cross sections as a function of pT . The muons were decay products from semi-leptonic decays of open charm mesons as well as decays from lighter non-charmed mesons (π’s and K’s). Data were taken simultaneously from two interaction regions; one of two thin nuclear targets and a copper beam dump 92 inches downstream. The open decay length for hadrons produced in the targets increased the contribution to the muon spectrum from light hadron decays, relative to those from the dump. Production cross sections for light hadrons from previous experiments were used in conjunction with parameterized open charm cross sections to produce total Monte Carlo single muon spectra that were subsequently fit to the data. The sensitivity of this measurement covered an open charm hadron pT range of approximately 2 to 7 GeV/c, center-of-mass rapidity, ycm, between 0 and 2, and xF between 0.2 and 0.8. Previous experimental results for p-p or p-A open charm production at comparable energy was limited to √5 GeV/c. Three functions describing the shape of the open charm/anti-charm cross sections were fit to the data; an exponential, A1 exp (–B pT), and two polynomials, A2/(p2T + αm2c)n and A2 (1-pT/Pbeam)m/p2T + αm2c)n. The first polynomial was fit with the parameter n as a free parameter, and constant with three integer values, 4, 5 and 6. The second was fit with n held fixed at the constant integer values only. The best results were with the first polynomial with n around 6. All three parameterizations resulted in good fits. Extrapolation of the cross sections to small p

  5. Single Pass Albumin Dialysis-A Dose-Finding Study to Define Optimal Albumin Concentration and Dialysate Flow.

    Science.gov (United States)

    Schmuck, Rosa Bianca; Nawrot, Gesa-Henrike; Fikatas, Panagiotis; Reutzel-Selke, Anja; Pratschke, Johann; Sauer, Igor Maximilian

    2017-02-01

    Several artificial liver support concepts have been evaluated both in vitro and clinically. Single pass albumin dialysis (SPAD) has shown to be one of the most simple approaches for removing albumin-bound toxins and water-soluble substances. Being faced with acute liver failure (ALF) in everyday practice encouraged our attempt to define the optimal conditions for SPAD more precisely in a standardized experimental setup. Albumin concentration was adjusted to either 1%, 2%, 3%, or 4%, while the flow rate of the dialysate was kept constant at a speed of 700 mL/h. The flow rate of the dialysate was altered between 350, 500, 700, and 1000 mL/h, whereas the albumin concentration was continuously kept at 3%. This study revealed that the detoxification of albumin-bound substances could be improved by increasing the concentration of albumin in the dialysate with an optimum at 3%. A further increase of the albumin concentration to 4% did not lead to a significant increase in detoxification. Furthermore, we observed a gradual increase of the detoxification efficiency for albumin-bound substances, from 350 mL/h to 700 mL/h (for bilirubin) or 1000 mL/h (for bile acids) of dialysate flow. Water-soluble toxins (ammonia, creatinine, urea, uric acid) were removed almost completely, regardless of albumin concentration or flow rate. In conclusion, this study confirmed that SPAD is effective in eliminating albumin-bound as well as water-soluble toxins using a simulation of ALF. Furthermore, this project was successful in evaluating the most effective combination of albumin concentration (3%) and dialysate flow (700 mL/h-1000 mL/h) in SPAD for the first time. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Clinical findings in 25 patients with sinonasal or nasopharyngeal extramedullary plasmacytoma in a four-decade single-centre series.

    Science.gov (United States)

    Vento, Seija Inkeri; Vähämurto, Pauli; Silventoinen, Kaija; Karjalainen-Lindsberg, Marja-Liisa; Mannisto, Susanna; Leppä, Sirpa; Mäkitie, Antti Aarni

    2017-09-01

    Extramedullary plasmacytoma in the sinonasal tract or nasopharynx is rare. The aim of the study was to review data on symptoms, clinical findings, treatment and follow-up of plasmacytomas in the sinonasal and nasopharyngeal regions in order to delineate the main clinical characteristics and the optimal management. Twenty-five patients with sinonasal or nasopharyngeal plasmacytoma, diagnosed and treated at the Helsinki University Hospital during a 39-year period from 1975 to 2013 were retrospectively reviewed. There were 18 males and 7 females with a median age of 66 years (range, 36-80). Sixty-eight percent received only radiotherapy or (chemo)radiotherapy. Forty-seven percent of them had a complete response to primary radiotherapy and one patient had a complete response after receiving additional brachytherapy. Four patients were treated primarily with surgery only. Two of them had a local recurrence, but were then successfully treated with radiotherapy. Altogether, four patients received a combination of surgery and (chemo)radiotherapy. Forty-four percent were alive with no evidence of disease after a median follow-up time of 78 months. Forty percent died of their disease and 16% died of other causes. Our study supports radiotherapy as a treatment of choice, but for small tumours surgery alone or in combination with radiotherapy may also be considered.

  7. Quantification of the extent of myocardial infarction by thallium-201 single photon emission computed tomography; Comparisons with postmortem findings

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Hiroshi; Yamada, Hideo; Ohkawa, Shin-ichiro (Tokyo Metropolitan Geriatric Medical Center (Japan)); Sugiura, Masaya; Harumi, Ken-ichi

    1991-01-01

    The diagnostic capability of a circumferential profile analysis with a two-dimensional representation of Tl-201 myocardial SPECT depends on the normal range of thallium distribution. The present study was thus to determine the lower normal limits useful for assessing the precise extent of myocardial infarction (MI). The quantitative analysis of Tl-201 myocardial SPECT was correlated with pathological findings of the heart in 50 autopsy cases (28 with MI; 22 without MI). The lower normal limits were 2.5 standard deviations below the mean values calculated using profiles normalized to the maximum pixel count observed in each profile. Using this lower normal limit, the sensitivity was 63.8%; specificity was 87.4%; and accuracy was 80.7% for determining the extent of ischemic lesions. However, for detecting MI, the sensitivity by quantitative analysis was 97%, which was higher than that by visual analysis. Non-transmural infarction 2.5 cm in size, undetectable by visual analysis, was detected by two-dimensional polar representation. However, the specificity of detecting MI was low (59%). The detectability of MI extent varied from site to site; false negative lesions were frequent in the septal region, and false positive lesions in the posterolateral region of the dilated hypertrophic heart. In conclusion, Tl-201 myocardial SPECT is useful for evaluating MI automatically, although possible false positive diagnosis must be taken into accounts in cases of dilated hypertrophic heart. (N.K.).

  8. A SNP panel for identification of DNA and RNA specimens.

    Science.gov (United States)

    Yousefi, Soheil; Abbassi-Daloii, Tooba; Kraaijenbrink, Thirsa; Vermaat, Martijn; Mei, Hailiang; van 't Hof, Peter; van Iterson, Maarten; Zhernakova, Daria V; Claringbould, Annique; Franke, Lude; 't Hart, Leen M; Slieker, Roderick C; van der Heijden, Amber; de Knijff, Peter; 't Hoen, Peter A C

    2018-01-25

    SNP panels that uniquely identify an individual are useful for genetic and forensic research. Previously recommended SNP panels are based on DNA profiles and mostly contain intragenic SNPs. With the increasing interest in RNA expression profiles, we aimed for establishing a SNP panel for both DNA and RNA-based genotyping. To determine a small set of SNPs with maximally discriminative power, genotype calls were obtained from DNA and blood-derived RNA sequencing data belonging to healthy, geographically dispersed, Dutch individuals. SNPs were selected based on different criteria like genotype call rate, minor allele frequency, Hardy-Weinberg equilibrium and linkage disequilibrium. A panel of 50 SNPs was sufficient to identify an individual uniquely: the probability of identity was 6.9 × 10 - 20 when assuming no family relations and 1.2 × 10 - 10 when accounting for the presence of full sibs. The ability of the SNP panel to uniquely identify individuals on DNA and RNA level was validated in an independent population dataset. The panel is applicable to individuals from European descent, with slightly lower power in non-Europeans. Whereas most of the genes containing the 50 SNPs are expressed in various tissues, our SNP panel needs optimization for other tissues than blood. This first DNA/RNA SNP panel will be useful to identify sample mix-ups in biomedical research and for assigning DNA and RNA stains in crime scenes to unique individuals.

  9. A rare single cytogenetic finding of isochromosome 14q in a female with refractory anemia with ring sideroblasts (RARS)

    Energy Technology Data Exchange (ETDEWEB)

    Haag, M.M.; Sutcliffe, M.J.; Nelson, R.P. [All Children`s Hospital, St. Petersburg, FL (United States)]|[Univ. of South Florida, Tampa, FL (United States)] [and others

    1994-09-01

    Clonal cytogenetic abnormalities occur in 79% of patients with myelodysplastic syndrome (MDS) and can be used to diagnose malignancy. Some of these clonal chromosomal changes have been useful in evaluation of the pathobiological similarity between MDS and acute nonlymphocytic leukemia (ANLL) and can be used to monitor the disease progression. A 44-year-old woman, presenting with normochromic, normocytic anemia was clinically asymptomatic and physical examination revealed no lymphadenopathy or hepatosplenomegaly. Stains for iron demonstrated adequate stores but with numerours ring sideroblasts which constituted approximately 15% of the total erythoblastic population. No increased reticulum or fibrosis was noted. These findings supported a diagnosis of MDS, classification refractory anemia with ring sideroblasts (RARS). Bone marrow cytogentic analysis showed an isochromosome 14q as the sole chromosome abnormality and this was confirmed by molecular cytogenetics using a whole chromosome Coatasome probe for No. 14. A population of 46,XX cells (20%) was also observed. Numerous interphase cells had three isolated fluorescent signals for No. 14. Structural and numerical abnormalities of chromosome No. 14 are reported in many hematological disorders, but few structural abnormalities have been reported for RARS and no extra copies, including i(14q), have been reported for MD or RARS. However, examples of extra copies of No. 14, including the isochromosome form, have been reported for ANLL. Since 15% of RARS patients progress to ANLL, there may be prognostic significance to this chromosome abnormality for his patient. The patient is awaiting a suitable donor for bone marrow transplantation. The presence of isochromosome No. 14 in the malignant cells offers an opportunity to monitor disease progression pre-transplantation and minimal residual disease post-transplantation.

  10. SNP discovery and development of a high-density genotyping array for sunflower.

    Directory of Open Access Journals (Sweden)

    Eleni Bachlava

    Full Text Available Recent advances in next-generation DNA sequencing technologies have made possible the development of high-throughput SNP genotyping platforms that allow for the simultaneous interrogation of thousands of single-nucleotide polymorphisms (SNPs. Such resources have the potential to facilitate the rapid development of high-density genetic maps, and to enable genome-wide association studies as well as molecular breeding approaches in a variety of taxa. Herein, we describe the development of a SNP genotyping resource for use in sunflower (Helianthus annuus L.. This work involved the development of a reference transcriptome assembly for sunflower, the discovery of thousands of high quality SNPs based on the generation and analysis of ca. 6 Gb of transcriptome re-sequencing data derived from multiple genotypes, the selection of 10,640 SNPs for inclusion in the genotyping array, and the use of the resulting array to screen a diverse panel of sunflower accessions as well as related wild species. The results of this work revealed a high frequency of polymorphic SNPs and relatively high level of cross-species transferability. Indeed, greater than 95% of successful SNP assays revealed polymorphism, and more than 90% of these assays could be successfully transferred to related wild species. Analysis of the polymorphism data revealed patterns of genetic differentiation that were largely congruent with the evolutionary history of sunflower, though the large number of markers allowed for finer resolution than has previously been possible.

  11. SNP Discovery and Development of a High-Density Genotyping Array for Sunflower

    Science.gov (United States)

    Bachlava, Eleni; Taylor, Christopher A.; Tang, Shunxue; Bowers, John E.; Mandel, Jennifer R.; Burke, John M.; Knapp, Steven J.

    2012-01-01

    Recent advances in next-generation DNA sequencing technologies have made possible the development of high-throughput SNP genotyping platforms that allow for the simultaneous interrogation of thousands of single-nucleotide polymorphisms (SNPs). Such resources have the potential to facilitate the rapid development of high-density genetic maps, and to enable genome-wide association studies as well as molecular breeding approaches in a variety of taxa. Herein, we describe the development of a SNP genotyping resource for use in sunflower (Helianthus annuus L.). This work involved the development of a reference transcriptome assembly for sunflower, the discovery of thousands of high quality SNPs based on the generation and analysis of ca. 6 Gb of transcriptome re-sequencing data derived from multiple genotypes, the selection of 10,640 SNPs for inclusion in the genotyping array, and the use of the resulting array to screen a diverse panel of sunflower accessions as well as related wild species. The results of this work revealed a high frequency of polymorphic SNPs and relatively high level of cross-species transferability. Indeed, greater than 95% of successful SNP assays revealed polymorphism, and more than 90% of these assays could be successfully transferred to related wild species. Analysis of the polymorphism data revealed patterns of genetic differentiation that were largely congruent with the evolutionary history of sunflower, though the large number of markers allowed for finer resolution than has previously been possible. PMID:22238659

  12. Inferring the history of population size change from genome-wide SNP data.

    Science.gov (United States)

    Theunert, Christoph; Tang, Kun; Lachmann, Michael; Hu, Sile; Stoneking, Mark

    2012-12-01

    Dense, genome-wide single-nucleotide polymorphism (SNP) data can be used to reconstruct the demographic history of human populations. However, demographic inferences from such data are complicated by recombination and ascertainment bias. We introduce two new statistics, allele frequency-identity by descent (AF-IBD) and allele frequency-identity by state (AF-IBS), that make use of linkage disequilibrium information and show defined relationships to the time of coalescence. These statistics, when conditioned on the derived allele frequency, are able to infer complex population size changes. Moreover, the AF-IBS statistic, which is based on genome-wide SNP data, is robust to varying ascertainment conditions. We constructed an efficient approximate Bayesian computation (ABC) pipeline based on AF-IBD and AF-IBS that can accurately estimate demographic parameters, even for fairly complex models. Finally, we applied this ABC approach to genome-wide SNP data and inferred the demographic histories of two human populations, Yoruba and French. Our results suggest a rather stable ancestral population size with a mild recent expansion for Yoruba, whereas the French seemingly experienced a long-lasting severe bottleneck followed by a drastic population growth. This approach should prove useful for new insights into populations, especially those with complex demographic histories.

  13. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    Science.gov (United States)

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-08-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. Imputation of KIR Types from SNP Variation Data.

    Science.gov (United States)

    Vukcevic, Damjan; Traherne, James A; Næss, Sigrid; Ellinghaus, Eva; Kamatani, Yoichiro; Dilthey, Alexander; Lathrop, Mark; Karlsen, Tom H; Franke, Andre; Moffatt, Miriam; Cookson, William; Trowsdale, John; McVean, Gil; Sawcer, Stephen; Leslie, Stephen

    2015-10-01

    Large population studies of immune system genes are essential for characterizing their role in diseases, including autoimmune conditions. Of key interest are a group of genes encoding the killer cell immunoglobulin-like receptors (KIRs), which have known and hypothesized roles in autoimmune diseases, resistance to viruses, reproductive conditions, and cancer. These genes are highly polymorphic, which makes typing expensive and time consuming. Consequently, despite their importance, KIRs have been little studied in large cohorts. Statistical imputation methods developed for other complex loci (e.g., human leukocyte antigen [HLA]) on the basis of SNP data provide an inexpensive high-throughput alternative to direct laboratory typing of these loci and have enabled important findings and insights for many diseases. We present KIR∗IMP, a method for imputation of KIR copy number. We show that KIR∗IMP is highly accurate and thus allows the study of KIRs in large cohorts and enables detailed investigation of the role of KIRs in human disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Imputation of KIR Types from SNP Variation Data

    Science.gov (United States)

    Vukcevic, Damjan; Traherne, James A.; Næss, Sigrid; Ellinghaus, Eva; Kamatani, Yoichiro; Dilthey, Alexander; Lathrop, Mark; Karlsen, Tom H.; Franke, Andre; Moffatt, Miriam; Cookson, William; Trowsdale, John; McVean, Gil; Sawcer, Stephen; Leslie, Stephen

    2015-01-01

    Large population studies of immune system genes are essential for characterizing their role in diseases, including autoimmune conditions. Of key interest are a group of genes encoding the killer cell immunoglobulin-like receptors (KIRs), which have known and hypothesized roles in autoimmune diseases, resistance to viruses, reproductive conditions, and cancer. These genes are highly polymorphic, which makes typing expensive and time consuming. Consequently, despite their importance, KIRs have been little studied in large cohorts. Statistical imputation methods developed for other complex loci (e.g., human leukocyte antigen [HLA]) on the basis of SNP data provide an inexpensive high-throughput alternative to direct laboratory typing of these loci and have enabled important findings and insights for many diseases. We present KIR∗IMP, a method for imputation of KIR copy number. We show that KIR∗IMP is highly accurate and thus allows the study of KIRs in large cohorts and enables detailed investigation of the role of KIRs in human disease. PMID:26430804

  16. Pyrosequencing as a method for SNP identification in the rhesus macaque (Macaca mulatta

    Directory of Open Access Journals (Sweden)

    Kanthaswamy S

    2008-05-01

    Full Text Available Abstract Background Rhesus macaques (Macaca mulatta are the primate most used for biomedical research, but phenotypic differences between Indian-origin and Chinese rhesus macaques have encouraged genetic methods for identifying genetic differences between these two populations. The completion of the rhesus genome has led to the identification of many single nucleotide polymorphisms (SNPs in this species. These single nucleotide polymorphisms have many advantages over the short tandem repeat (STR loci currently used to assay genetic variation. However, the number of currently identified polymorphisms is too small for whole genome analysis or studies of quantitative trait loci. To that end, we tested a combination of methods to identify large numbers of high-confidence SNPs, and screen those with high minor allele frequencies (MAF. Results By testing our previously reported single nucleotide polymorphisms, we identified a subset of high-confidence, high-MAF polymorphisms. Resequencing revealed a large number of regionally specific SNPs not identified through a single pyrosequencing run. By resequencing a pooled sample of four individuals, we reliably identified loci with a MAF of at least 12.5%. Finally, we found that when applied to a larger, geographically variable sample of rhesus, a large proportion of our loci were variable in both populations, and very few loci were ancestry informative. Despite this fact, the SNP loci were more effective at discriminating Indian and Chinese rhesus than STR loci. Conclusion Pyrosequencing and pooled resequencing are viable methods for the identification of high-MAF SNP loci in rhesus macaques. These SNP loci are appropriate for screening both the inter- and intra-population genetic variation.

  17. SNP marker analysis for validating the authenticity of Tunisian olive oil

    Indian Academy of Sciences (India)

    The other. SNP, called SOD, is an insertion/deletion polymorphism type localized in Cu–Zn superoxide dismutase gene which is involved in the oxidative stress, one of .... Authenticity of olive oil by SNP markers. Table 1. Characteristics of SNP markers used for DNA amplification. Size of. SNP amplicon. Gene name. SNPs.

  18. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism

    Directory of Open Access Journals (Sweden)

    HyoYoung Kim

    2014-12-01

    Full Text Available Copy number variation (CNV or single nucleotide phlyorphism (SNP is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i the enrichment of genome contents in CNV; ii the physical distribution of CNV or SNP on chromosomes; iii the distribution of log2 ratio of CNVs with criteria of interested; iv the number of CNV or SNP per binning unit; v the distribution of homozygosity of SNP genotype; and vi cytomap of genes within CNV or SNP region.

  19. A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment

    Directory of Open Access Journals (Sweden)

    Høyheim Bjørn

    2010-01-01

    Full Text Available Abstract Background Technological advances have lead to the rapid increase in availability of single nucleotide polymorphisms (SNPs in a range of organisms, and there is a general optimism that SNPs will become the marker of choice for a range of evolutionary applications. Here, comparisons between 300 polymorphic SNPs and 14 short tandem repeats (STRs were conducted on a data set consisting of approximately 500 Atlantic salmon arranged in 10 samples/populations. Results Global FST ranged from 0.033-0.115 and -0.002-0.316 for the 14 STR and 300 SNP loci respectively. Global FST was similar among 28 linkage groups when averaging data from mapped SNPs. With the exception of selecting a panel of SNPs taking the locus displaying the highest global FST for each of the 28 linkage groups, which inflated estimation of genetic differentiation among the samples, inferred genetic relationships were highly similar between SNP and STR data sets and variants thereof. The best 15 SNPs (30 alleles gave a similar level of self-assignment to the best 4 STR loci (83 alleles, however, addition of further STR loci did not lead to a notable increase assignment whereas addition of up to 100 SNP loci increased assignment. Conclusion Whilst the optimal combinations of SNPs identified in this study are linked to the samples from which they were selected, this study demonstrates that identification of highly informative SNP loci from larger panels will provide researchers with a powerful approach to delineate genetic relationships at the individual and population levels.

  20. Light whole genome sequence for SNP discovery across domestic cat breeds

    Directory of Open Access Journals (Sweden)

    Driscoll Carlos

    2010-06-01

    Full Text Available Abstract Background The domestic cat has offered enormous genomic potential in the veterinary description of over 250 hereditary disease models as well as the occurrence of several deadly feline viruses (feline leukemia virus -- FeLV, feline coronavirus -- FECV, feline immunodeficiency virus - FIV that are homologues to human scourges (cancer, SARS, and AIDS respectively. However, to realize this bio-medical potential, a high density single nucleotide polymorphism (SNP map is required in order to accomplish disease and phenotype association discovery. Description To remedy this, we generated 3,178,297 paired fosmid-end Sanger sequence reads from seven cats, and combined these data with the publicly available 2X cat whole genome sequence. All sequence reads were assembled together to form a 3X whole genome assembly allowing the discovery of over three million SNPs. To reduce potential false positive SNPs due to the low coverage assembly, a low upper-limit was placed on sequence coverage and a high lower-limit on the quality of the discrepant bases at a potential variant site. In all domestic cats of different breeds: female Abyssinian, female American shorthair, male Cornish Rex, female European Burmese, female Persian, female Siamese, a male Ragdoll and a female African wildcat were sequenced lightly. We report a total of 964 k common SNPs suitable for a domestic cat SNP genotyping array and an additional 900 k SNPs detected between African wildcat and domestic cats breeds. An empirical sampling of 94 discovered SNPs were tested in the sequenced cats resulting in a SNP validation rate of 99%. Conclusions These data provide a large collection of mapped feline SNPs across the cat genome that will allow for the development of SNP genotyping platforms for mapping feline diseases.

  1. Comprehensive evaluation of SNP identification with the Restriction Enzyme-based Reduced Representation Library (RRL method

    Directory of Open Access Journals (Sweden)

    Du Ye

    2012-02-01

    Full Text Available Abstract Background Restriction Enzyme-based Reduced Representation Library (RRL method represents a relatively feasible and flexible strategy used for Single Nucleotide Polymorphism (SNP identification in different species. It has remarkable advantage of reducing the complexity of the genome by orders of magnitude. However, comprehensive evaluation for actual efficacy of SNP identification by this method is still unavailable. Results In order to evaluate the efficacy of Restriction Enzyme-based RRL method, we selected Tsp 45I enzyme which covers 266 Mb flanking region of the enzyme recognition site according to in silico simulation on human reference genome, then we sequenced YH RRL after Tsp 45I treatment and obtained reads of which 80.8% were mapped to target region with an 20-fold average coverage, about 96.8% of target region was covered by at least one read and 257 K SNPs were identified in the region using SOAPsnp software. Compared with whole genome resequencing data, we observed false discovery rate (FDR of 13.95% and false negative rate (FNR of 25.90%. The concordance rate of homozygote loci was over 99.8%, but that of heterozygote were only 92.56%. Repeat sequences and bases quality were proved to have a great effect on the accuracy of SNP calling, SNPs in recognition sites contributed evidently to the high FNR and the low concordance rate of heterozygote. Our results indicated that repeat masking and high stringent filter criteria could significantly decrease both FDR and FNR. Conclusions This study demonstrates that Restriction Enzyme-based RRL method was effective for SNP identification. The results highlight the important role of bias and the method-derived defects represented in this method and emphasize the special attentions noteworthy.

  2. Report on the development of putative functional SSR and SNP markers in passion fruits.

    Science.gov (United States)

    da Costa, Zirlane Portugal; Munhoz, Carla de Freitas; Vieira, Maria Lucia Carneiro

    2017-09-06

    Passionflowers Passiflora edulis and Passiflora alata are diploid, outcrossing and understudied fruit bearing species. In Brazil, passion fruit cultivation began relatively recently and has earned the country an outstanding position as the world's top producer of passion fruit. The fruit's main economic value lies in the production of juice, an essential exotic ingredient in juice blends. Currently, crop improvement strategies, including those for underexploited tropical species, tend to incorporate molecular genetic approaches. In this study, we examined a set of P. edulis transcripts expressed in response to infection by Xanthomonas axonopodis, (the passion fruit's main bacterial pathogen that attacks the vines), aiming at the development of putative functional markers, i.e. SSRs (simple sequence repeats) and SNPs (single nucleotide polymorphisms). A total of 210 microsatellites were found in 998 sequences, and trinucleotide repeats were found to be the most frequent (31.4%). Of the sequences selected for designing primers, 80.9% could be used to develop SSR markers, and 60.6% SNP markers for P. alata. SNPs were all biallelic and found within 15 gene fragments of P. alata. Overall, gene fragments generated 10,003 bp. SNP frequency was estimated as one SNP every 294 bp. Polymorphism rates revealed by SSR and SNP loci were 29.4 and 53.6%, respectively. Passiflora edulis transcripts were useful for the development of putative functional markers for P. alata, suggesting a certain level of sequence conservation between these cultivated species. The markers developed herein could be used for genetic mapping purposes and also in diversity studies.

  3. Population-standardized genetic risk score: the SNP-based method of choice for inherited risk assessment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Carly A Conran

    2016-01-01

    Full Text Available Several different approaches are available to clinicians for determining prostate cancer (PCa risk. The clinical validity of various PCa risk assessment methods utilizing single nucleotide polymorphisms (SNPs has been established; however, these SNP-based methods have not been compared. The objective of this study was to compare the three most commonly used SNP-based methods for PCa risk assessment. Participants were men (n = 1654 enrolled in a prospective study of PCa development. Genotypes of 59 PCa risk-associated SNPs were available in this cohort. Three methods of calculating SNP-based genetic risk scores (GRSs were used for the evaluation of individual disease risk such as risk allele count (GRS-RAC, weighted risk allele count (GRS-wRAC, and population-standardized genetic risk score (GRS-PS. Mean GRSs were calculated, and performances were compared using area under the receiver operating characteristic curve (AUC and positive predictive value (PPV. All SNP-based methods were found to be independently associated with PCa (all P 0.05 for comparisons between the three methods, and all three SNP-based methods had a significantly higher AUC than family history (all P < 0.05. Results from this study suggest that while the three most commonly used SNP-based methods performed similarly in discriminating PCa from non-PCa at the population level, GRS-PS is the method of choice for risk assessment at the individual level because its value (where 1.0 represents average population risk can be easily interpreted regardless of the number of risk-associated SNPs used in the calculation.

  4. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift

    Directory of Open Access Journals (Sweden)

    Douglas Mark Ruden

    2012-03-01

    Full Text Available This paper describes a new program SnpSift for filtering differential DNA sequence variants between two or more experimental genomes after genotoxic chemical exposure. Here, we illustrate how SnpSift can be used to identify candidate phenotype-relevant variants including single nucleotide polymorphisms (SNPs, multiple nucleotide polymorphisms (MNPs, insertions and deletions (InDels in mutant strains isolated from genome-wide chemical mutagenesis of Drosophila melanogaster. First, the genomes of two independently-isolated mutant fly strains that are allelic for a novel recessive male-sterile locus generated by genotoxic chemical exposure were sequenced using the Illumina next-generation DNA sequencer to obtain 20- to 29-fold coverage of the euchromatic sequences. The sequencing reads were processed and variants were called using standard bioinformatic tools. Next, SnpEff was used to annotate all sequence variants and their potential mutational effects on associated genes. Then, SnpSift was used to filter and select differential variants that potentially disrupt a common gene in the two allelic mutant strains. The potential causative DNA lesions were partially validated by capillary sequencing of PCR-amplified DNA in the genetic interval as defined by meiotic mapping and deletions that remove defined regions of the chromosome. Of the five candidate genes located in the genetic interval, the Pka-like gene CG12069 was found to carry a separate premature stop codon mutation in each of the two allelic mutants whereas the other 4 candidate genes within the interval have wild-type sequences. The Pka-like gene is therefore a strong candidate gene for the male-sterile locus. These results demonstrate that combining SnpEff and SnpSift can expedite the identification of candidate phenotype-causative mutations in chemically-mutagenized Drosophila strains. This technique can also be used to characterize the variety of mutations generated by genotoxic

  5. Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways

    Directory of Open Access Journals (Sweden)

    Foley William J

    2009-09-01

    Full Text Available Abstract Background There is little information about the DNA sequence variation within and between closely related plant species. The combination of re-sequencing technologies, large-scale DNA pools and availability of reference gene sequences allowed the extensive characterisation of single nucleotide polymorphisms (SNPs in genes of four biosynthetic pathways leading to the formation of ecologically relevant secondary metabolites in Eucalyptus. With this approach the occurrence and patterns of SNP variation for a set of genes can be compared across different species from the same genus. Results In a single GS-FLX run, we sequenced over 103 Mbp and assembled them to approximately 50 kbp of reference sequences. An average sequencing depth of 315 reads per nucleotide site was achieved for all four eucalypt species, Eucalyptus globulus, E. nitens, E. camaldulensis and E. loxophleba. We sequenced 23 genes from 1,764 individuals and discovered 8,631 SNPs across the species, with about 1.5 times as many SNPs per kbp in the introns compared to exons. The exons of the two closely related species (E. globulus and E. nitens had similar numbers of SNPs at synonymous and non-synonymous sites. These species also had similar levels of SNP diversity, whereas E. camaldulensis and E. loxophleba had much higher SNP diversity. Neither the pathway nor the position in the pathway influenced gene diversity. The four species share between 20 and 43% of the SNPs in these genes. Conclusion By using conservative statistical detection methods, we were confident about the validity of each SNP. With numerous individuals sampled over the geographical range of each species, we discovered one SNP in every 33 bp for E. nitens and one in every 31 bp in E. globulus. In contrast, the more distantly related species contained more SNPs: one in every 16 bp for E. camaldulensis and one in 17 bp for E. loxophleba, which is, to the best of our knowledge, the highest frequency of SNPs

  6. Transcriptomic SNP discovery for custom genotyping arrays: impacts of sequence data, SNP calling method and genotyping technology on the probability of validation success.

    Science.gov (United States)

    Humble, Emily; Thorne, Michael A S; Forcada, Jaume; Hoffman, Joseph I

    2016-08-26

    Single nucleotide polymorphism (SNP) discovery is an important goal of many studies. However, the number of 'putative' SNPs discovered from a sequence resource may not provide a reliable indication of the number that will successfully validate with a given genotyping technology. For this it may be necessary to account for factors such as the method used for SNP discovery and the type of sequence data from which it originates, suitability of the SNP flanking sequences for probe design, and genomic context. To explore the relative importance of these and other factors, we used Illumina sequencing to augment an existing Roche 454 transcriptome assembly for the Antarctic fur seal (Arctocephalus gazella). We then mapped the raw Illumina reads to the new hybrid transcriptome using BWA and BOWTIE2 before calling SNPs with GATK. The resulting markers were pooled with two existing sets of SNPs called from the original 454 assembly using NEWBLER and SWAP454. Finally, we explored the extent to which SNPs discovered using these four methods overlapped and predicted the corresponding validation outcomes for both Illumina Infinium iSelect HD and Affymetrix Axiom arrays. Collating markers across all discovery methods resulted in a global list of 34,718 SNPs. However, concordance between the methods was surprisingly poor, with only 51.0 % of SNPs being discovered by more than one method and 13.5 % being called from both the 454 and Illumina datasets. Using a predictive modeling approach, we could also show that SNPs called from the Illumina data were on average more likely to successfully validate, as were SNPs called by more than one method. Above and beyond this pattern, predicted validation outcomes were also consistently better for Affymetrix Axiom arrays. Our results suggest that focusing on SNPs called by more than one method could potentially improve validation outcomes. They also highlight possible differences between alternative genotyping technologies that could be

  7. An updated meta-analysis on the association of MDM2 SNP309 polymorphism with colorectal cancer risk.

    Directory of Open Access Journals (Sweden)

    Xue Qin

    Full Text Available The mouse double minute 2 (MDM2 gene encodes a phosphoprotein that interacts with P53 and negatively regulates its activity. The SNP309 polymorphism (T-G in the promoter of MDM2 gene has been reported to be associated with enhanced MDM2 expression and tumor development. Studies investigating the association between MDM2 SNP309 polymorphism and colorectal cancer (CRC risk reported conflicting results. We performed a meta-analysis of all available studies to explore the association of this polymorphism with CRC risk.All studies published up to July 2013 on the association between MDM2 SNP309 polymorphism and CRC risk were identified by searching electronic databases PubMed, EMBASE, and Chinese Biomedical Literature database (CBM databases. The association between the MDM2 SNP309 polymorphism and CRC risk was assessed by odds ratios (ORs together with their 95% confidence intervals (CIs.A total of 14 case-control studies including 4460 CRC cases and 4828 controls were identified. We did not find a significant association between the MDM2 SNP309 polymorphism and CRC risk in all genetic models in overall population. However, in subgroup analysis by ethnicity, significant associations were found in Asians (TG vs. TT: OR = 1.197, 95% CI = 1.055-1.358, P=0.005; GG+TG vs. TT: OR = 1.246, 95% CI = 1.106-1.404, P=0.000 and Africans. When stratified by HWE in controls, significantly increased risk was also found among the studies consistent with HWE (TG vs. TT: OR = 1.166, 95% CI = 1.037-1.311, P= 0.010. In subgroup analysis according to p53 mutation status, and gender, no any significant association was detected.The present meta-analysis suggests that the MDM2 is a candidate gene for CRC susceptibility. The MDM2 SNP309 polymorphism may be a risk factor for CRC in Asians.

  8. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion.

    Science.gov (United States)

    Qin, Sisi; Ingle, James N; Liu, Mohan; Yu, Jia; Wickerham, D Lawrence; Kubo, Michiaki; Weinshilboum, Richard M; Wang, Liewei

    2017-08-18

    We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.

  9. Cell cycle genes and ovarian cancer susceptibility: a tagSNP analysis

    DEFF Research Database (Denmark)

    Cunningham, J M; Vierkant, R A; Sellers, T A

    2009-01-01

    BACKGROUND: Dysregulation of the cell cycle is a hallmark of many cancers including ovarian cancer, a leading cause of gynaecologic cancer mortality worldwide. METHODS: We examined single nucleotide polymorphisms (SNPs) (n=288) from 39 cell cycle regulation genes, including cyclins, cyclin...... in a replication population, and the association remained suggestive in the combined analysis [OR(BB vs AA) 1.59 (1.08-2.34), P=0.02]. No other SNP associations remained suggestive in the replication populations. CONCLUSION: ABL1 has been implicated in multiple processes including cell division, cell adhesion...

  10. Single photon emission computed tomography (SPECT) findings using N-isopropyl-p-[123I]iodoamphetamine (123I-IMP) in schizophrenia and atypical psychosis

    International Nuclear Information System (INIS)

    Suga, Hidemichi; Hayashi, Takuji; Mitsugi, Ohara

    1994-01-01

    As a basis for possible classification of schinzophrenic psychoses into schizophrenia and atypical psychosis, we studied the brain functional differences among 16 schizophrenic patients, 16 atypical psychosis patients and 16 healthy volunteers by single photon emission computed tomography (SPECT) using N-isopropyl-p-[ 123 I] iodoamphetamine. As a result, schizophrenics showed hypofrontality. On the other hand, atypical psychotics had no such hypofrontality but showed a reduced uptake rate in the right thalamic region. No influence of sex, duration of illness and medication was confirmed by the findings. The results suggest that schizophrenics might have some lesions in the frontal regions, whereas atypical psychotics might have no such lesions, but dysfunction in the right thalamic region. Consequently, the SPECT findings as least indicate possibly different etiologies for schizophrenia and atypical psychosis. (author)

  11. Single photon emission computed tomography (SPECT) findings using N-isopropyl-p-[{sup 123}I]iodoamphetamine ({sup 123}I-IMP) in schizophrenia and atypical psychosis

    Energy Technology Data Exchange (ETDEWEB)

    Suga, Hidemichi; Hayashi, Takuji; Mitsugi, Ohara [Aichi Medical Univ., Nagakute (Japan)

    1994-12-01

    As a basis for possible classification of schinzophrenic psychoses into schizophrenia and atypical psychosis, we studied the brain functional differences among 16 schizophrenic patients, 16 atypical psychosis patients and 16 healthy volunteers by single photon emission computed tomography (SPECT) using N-isopropyl-p-[{sup 123}I] iodoamphetamine. As a result, schizophrenics showed hypofrontality. On the other hand, atypical psychotics had no such hypofrontality but showed a reduced uptake rate in the right thalamic region. No influence of sex, duration of illness and medication was confirmed by the findings. The results suggest that schizophrenics might have some lesions in the frontal regions, whereas atypical psychotics might have no such lesions, but dysfunction in the right thalamic region. Consequently, the SPECT findings as least indicate possibly different etiologies for schizophrenia and atypical psychosis. (author).

  12. RASSF1A and the rs2073498 Cancer Associated SNP

    International Nuclear Information System (INIS)

    Donninger, Howard; Barnoud, Thibaut; Nelson, Nick; Kassler, Suzanna; Clark, Jennifer; Cummins, Timothy D.; Powell, David W.; Nyante, Sarah; Millikan, Robert C.; Clark, Geoffrey J.

    2011-01-01

    RASSF1A is one of the most frequently inactivated tumor suppressors yet identified in human cancer. It is pro-apoptotic and appears to function as a scaffolding protein that interacts with a variety of other tumor suppressors to modulate their function. It can also complex with the Ras oncoprotein and may serve to integrate pro-growth and pro-death signaling pathways. A SNP has been identified that is present in approximately 29% of European populations [rs2073498, A(133)S]. Several studies have now presented evidence that this SNP is associated with an enhanced risk of developing breast cancer. We have used a proteomics based approach to identify multiple differences in the pattern of protein/protein interactions mediated by the wild type compared to the SNP variant protein. We have also identified a significant difference in biological activity between wild type and SNP variant protein. However, we have found only a very modest association of the SNP with breast cancer predisposition.

  13. MDM2 SNP309, gene-gene interaction, and tumor susceptibility: an updated meta-analysis

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-05-01

    Full Text Available Abstract Background The tumor suppressor gene p53 is involved in multiple cellular pathways including apoptosis, transcriptional control, and cell cycle regulation. In the last decade it has been demonstrated that the single nucleotide polymorphism (SNP at codon 72 of the p53 gene is associated with the risk for development of various neoplasms. MDM2 SNP309 is a single nucleotide T to G polymorphism located in the MDM2 gene promoter. From the time that this well-characterized functional polymorphism was identified, a variety of case-control studies have been published that investigate the possible association between MDM2 SNP309 and cancer risk. However, the results of the published studies, as well as the subsequent meta-analyses, remain contradictory. Methods To investigate whether currently published epidemiological studies can clarify the potential interaction between MDM2 SNP309 and the functional genetic variant in p53 codon72 (Arg72Pro and p53 mutation status, we performed a meta-analysis of the risk estimate on 27,813 cases with various tumor types and 30,295 controls. Results The data we reviewed indicated that variant homozygote 309GG and heterozygote 309TG were associated with a significant increased risk of all tumor types (homozygote comparison: odds ratio (OR = 1.25, 95% confidence interval (CI = 1.13-1.37; heterozygote comparison: OR = 1.10, 95% CI = 1.03-1.17. We also found that the combination of GG and Pro/Pro, TG and Pro/Pro, GG and Arg/Arg significantly increased the risk of cancer (OR = 3.38, 95% CI = 1.77-6.47; OR = 1.88, 95% CI = 1.26-2.81; OR = 1.96, 95% CI = 1.01-3.78, respectively. In a stratified analysis by tumor location, we also found a significant increased risk in brain, liver, stomach and uterus cancer (OR = 1.47, 95% CI = 1.06-2.03; OR = 2.24, 95%CI = 1.57-3.18; OR = 1.54, 95%CI = 1.04-2.29; OR = 1.34, 95%CI = 1.07-1.29, respectively. However, no association was seen between MDM2 SNP309 and tumor susceptibility

  14. MDM2 SNP309, gene-gene interaction, and tumor susceptibility: an updated meta-analysis

    International Nuclear Information System (INIS)

    Wan, Yan; Wu, Wei; Yin, Zhihua; Guan, Peng; Zhou, Baosen

    2011-01-01

    The tumor suppressor gene p53 is involved in multiple cellular pathways including apoptosis, transcriptional control, and cell cycle regulation. In the last decade it has been demonstrated that the single nucleotide polymorphism (SNP) at codon 72 of the p53 gene is associated with the risk for development of various neoplasms. MDM2 SNP309 is a single nucleotide T to G polymorphism located in the MDM2 gene promoter. From the time that this well-characterized functional polymorphism was identified, a variety of case-control studies have been published that investigate the possible association between MDM2 SNP309 and cancer risk. However, the results of the published studies, as well as the subsequent meta-analyses, remain contradictory. To investigate whether currently published epidemiological studies can clarify the potential interaction between MDM2 SNP309 and the functional genetic variant in p53 codon72 (Arg72Pro) and p53 mutation status, we performed a meta-analysis of the risk estimate on 27,813 cases with various tumor types and 30,295 controls. The data we reviewed indicated that variant homozygote 309GG and heterozygote 309TG were associated with a significant increased risk of all tumor types (homozygote comparison: odds ratio (OR) = 1.25, 95% confidence interval (CI) = 1.13-1.37; heterozygote comparison: OR = 1.10, 95% CI = 1.03-1.17). We also found that the combination of GG and Pro/Pro, TG and Pro/Pro, GG and Arg/Arg significantly increased the risk of cancer (OR = 3.38, 95% CI = 1.77-6.47; OR = 1.88, 95% CI = 1.26-2.81; OR = 1.96, 95% CI = 1.01-3.78, respectively). In a stratified analysis by tumor location, we also found a significant increased risk in brain, liver, stomach and uterus cancer (OR = 1.47, 95% CI = 1.06-2.03; OR = 2.24, 95%CI = 1.57-3.18; OR = 1.54, 95%CI = 1.04-2.29; OR = 1.34, 95%CI = 1.07-1.29, respectively). However, no association was seen between MDM2 SNP309 and tumor susceptibility in the stratified analysis by p53 mutation status

  15. Multiplex target enrichment using DNA indexing for ultra-high throughput SNP detection.

    LENUS (Irish Health Repository)

    Kenny, Elaine M

    2011-02-01

    Screening large numbers of target regions in multiple DNA samples for sequence variation is an important application of next-generation sequencing but an efficient method to enrich the samples in parallel has yet to be reported. We describe an advanced method that combines DNA samples using indexes or barcodes prior to target enrichment to facilitate this type of experiment. Sequencing libraries for multiple individual DNA samples, each incorporating a unique 6-bp index, are combined in equal quantities, enriched using a single in-solution target enrichment assay and sequenced in a single reaction. Sequence reads are parsed based on the index, allowing sequence analysis of individual samples. We show that the use of indexed samples does not impact on the efficiency of the enrichment reaction. For three- and nine-indexed HapMap DNA samples, the method was found to be highly accurate for SNP identification. Even with sequence coverage as low as 8x, 99% of sequence SNP calls were concordant with known genotypes. Within a single experiment, this method can sequence the exonic regions of hundreds of genes in tens of samples for sequence and structural variation using as little as 1 μg of input DNA per sample.

  16. TheSNPpit-A High Performance Database System for Managing Large Scale SNP Data.

    Science.gov (United States)

    Groeneveld, Eildert; Lichtenberg, Helmut

    2016-01-01

    The fast development of high throughput genotyping has opened up new possibilities in genetics while at the same time producing considerable data handling issues. TheSNPpit is a database system for managing large amounts of multi panel SNP genotype data from any genotyping platform. With an increasing rate of genotyping in areas like animal and plant breeding as well as human genetics, already now hundreds of thousand of individuals need to be managed. While the common database design with one row per SNP can manage hundreds of samples this approach becomes progressively slower as the size of the data sets increase until it finally fails completely once tens or even hundreds of thousands of individuals need to be managed. TheSNPpit has implemented three ideas to also accomodate such large scale experiments: highly compressed vector storage in a relational database, set based data manipulation, and a very fast export written in C with Perl as the base for the framework and PostgreSQL as the database backend. Its novel subset system allows the creation of named subsets based on the filtering of SNP (based on major allele frequency, no-calls, and chromosomes) and manually applied sample and SNP lists at negligible storage costs, thus avoiding the issue of proliferating file copies. The named subsets are exported for down stream analysis. PLINK ped and map files are processed as in- and outputs. TheSNPpit allows management of different panel sizes in the same population of individuals when higher density panels replace previous lower density versions as it occurs in animal and plant breeding programs. A completely generalized procedure allows storage of phenotypes. TheSNPpit only occupies 2 bits for storing a single SNP implying a capacity of 4 mio SNPs per 1MB of disk storage. To investigate performance scaling, a database with more than 18.5 mio samples has been created with 3.4 trillion SNPs from 12 panels ranging from 1000 through 20 mio SNPs resulting in a

  17. TheSNPpit—A High Performance Database System for Managing Large Scale SNP Data

    Science.gov (United States)

    Groeneveld, Eildert; Lichtenberg, Helmut

    2016-01-01

    The fast development of high throughput genotyping has opened up new possibilities in genetics while at the same time producing considerable data handling issues. TheSNPpit is a database system for managing large amounts of multi panel SNP genotype data from any genotyping platform. With an increasing rate of genotyping in areas like animal and plant breeding as well as human genetics, already now hundreds of thousand of individuals need to be managed. While the common database design with one row per SNP can manage hundreds of samples this approach becomes progressively slower as the size of the data sets increase until it finally fails completely once tens or even hundreds of thousands of individuals need to be managed. TheSNPpit has implemented three ideas to also accomodate such large scale experiments: highly compressed vector storage in a relational database, set based data manipulation, and a very fast export written in C with Perl as the base for the framework and PostgreSQL as the database backend. Its novel subset system allows the creation of named subsets based on the filtering of SNP (based on major allele frequency, no-calls, and chromosomes) and manually applied sample and SNP lists at negligible storage costs, thus avoiding the issue of proliferating file copies. The named subsets are exported for down stream analysis. PLINK ped and map files are processed as in- and outputs. TheSNPpit allows management of different panel sizes in the same population of individuals when higher density panels replace previous lower density versions as it occurs in animal and plant breeding programs. A completely generalized procedure allows storage of phenotypes. TheSNPpit only occupies 2 bits for storing a single SNP implying a capacity of 4 mio SNPs per 1MB of disk storage. To investigate performance scaling, a database with more than 18.5 mio samples has been created with 3.4 trillion SNPs from 12 panels ranging from 1000 through 20 mio SNPs resulting in a

  18. TheSNPpit-A High Performance Database System for Managing Large Scale SNP Data.

    Directory of Open Access Journals (Sweden)

    Eildert Groeneveld

    Full Text Available The fast development of high throughput genotyping has opened up new possibilities in genetics while at the same time producing considerable data handling issues. TheSNPpit is a database system for managing large amounts of multi panel SNP genotype data from any genotyping platform. With an increasing rate of genotyping in areas like animal and plant breeding as well as human genetics, already now hundreds of thousand of individuals need to be managed. While the common database design with one row per SNP can manage hundreds of samples this approach becomes progressively slower as the size of the data sets increase until it finally fails completely once tens or even hundreds of thousands of individuals need to be managed. TheSNPpit has implemented three ideas to also accomodate such large scale experiments: highly compressed vector storage in a relational database, set based data manipulation, and a very fast export written in C with Perl as the base for the framework and PostgreSQL as the database backend. Its novel subset system allows the creation of named subsets based on the filtering of SNP (based on major allele frequency, no-calls, and chromosomes and manually applied sample and SNP lists at negligible storage costs, thus avoiding the issue of proliferating file copies. The named subsets are exported for down stream analysis. PLINK ped and map files are processed as in- and outputs. TheSNPpit allows management of different panel sizes in the same population of individuals when higher density panels replace previous lower density versions as it occurs in animal and plant breeding programs. A completely generalized procedure allows storage of phenotypes. TheSNPpit only occupies 2 bits for storing a single SNP implying a capacity of 4 mio SNPs per 1MB of disk storage. To investigate performance scaling, a database with more than 18.5 mio samples has been created with 3.4 trillion SNPs from 12 panels ranging from 1000 through 20 mio SNPs

  19. Characterizing associations and SNP-environment interactions for GWAS-identified prostate cancer risk markers--results from BPC3.

    Directory of Open Access Journals (Sweden)

    Sara Lindstrom

    2011-02-01

    Full Text Available Genome-wide association studies (GWAS have identified multiple single nucleotide polymorphisms (SNPs associated with prostate cancer risk. However, whether these associations can be consistently replicated, vary with disease aggressiveness (tumor stage and grade and/or interact with non-genetic potential risk factors or other SNPs is unknown. We therefore genotyped 39 SNPs from regions identified by several prostate cancer GWAS in 10,501 prostate cancer cases and 10,831 controls from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3. We replicated 36 out of 39 SNPs (P-values ranging from 0.01 to 10⁻²⁸. Two SNPs located near KLK3 associated with PSA levels showed differential association with Gleason grade (rs2735839, P = 0.0001 and rs266849, P = 0.0004; case-only test, where the alleles associated with decreasing PSA levels were inversely associated with low-grade (as defined by Gleason grade < 8 tumors but positively associated with high-grade tumors. No other SNP showed differential associations according to disease stage or grade. We observed no effect modification by SNP for association with age at diagnosis, family history of prostate cancer, diabetes, BMI, height, smoking or alcohol intake. Moreover, we found no evidence of pair-wise SNP-SNP interactions. While these SNPs represent new independent risk factors for prostate cancer, we saw little evidence for effect modification by other SNPs or by the environmental factors examined.

  20. SNP assay to detect the ‘Hyuuga’ red-brown lesion resistance gene for Asian soybean rust

    Science.gov (United States)

    Ha, Bo-Keun; Phillips, Daniel V.; Boerma, H. Roger

    2010-01-01

    Asian soybean rust (ASR), caused by Phakopsora pachyrhizi Syd., has the potential to become a serious threat to soybean, Glycine max L. Merr., production in the USA. A novel rust resistance gene, Rpp?(Hyuuga), from the Japanese soybean cultivar Hyuuga has been identified and mapped to soybean chromosome 6 (Gm06). Our objectives were to fine-map the Rpp?(Hyuuga) gene and develop a high-throughput single nucleotide polymorphism (SNP) assay to detect this ASR resistance gene. The integration of recombination events from two different soybean populations and the ASR reaction data indicates that the Rpp?(Hyuuga) locus is located in a region of approximately 371 kb between STS70887 and STS70923 on chromosome Gm06. A set of 32 ancestral genotypes which is predicted to contain 95% of the alleles present in current elite North American breeding populations and the sources of the previously reported ASR resistance genes (Rpp1, Rpp2, Rpp3, Rpp4, Rpp5, and rpp5) were genotyped with five SNP markers. We developed a SimpleProbe assay based on melting curve analysis for SNP06-44058 which is tighly linked to the Rpp?(Hyuuga) gene. This SNP assay can differentiate plants/lines that are homozygous/homogeneous or heterozygous/heterogeneous for the resistant and susceptible alleles at the Rpp?(Hyuuga) locus. PMID:20532750

  1. Genomic scans for selective sweeps using SNP data

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Williamson, Scott; Kim, Yuseob

    2005-01-01

    of the selection coefficient. To illustrate the method, we apply our approach to data from the Seattle SNP project and to Chromosome 2 data from the HapMap project. In Chromosome 2, the most extreme signal is found in the lactase gene, which previously has been shown to be undergoing positive selection. Evidence......Detecting selective sweeps from genomic SNP data is complicated by the intricate ascertainment schemes used to discover SNPs, and by the confounding influence of the underlying complex demographics and varying mutation and recombination rates. Current methods for detecting selective sweeps have...... little or no robustness to the demographic assumptions and varying recombination rates, and provide no method for correcting for ascertainment biases. Here, we present several new tests aimed at detecting selective sweeps from genomic SNP data. Using extensive simulations, we show that a new parametric...

  2. Re-evaluation of SNP heritability in complex human traits

    Science.gov (United States)

    Speed, Doug; Cai, Na; Johnson, Michael R.; Nejentsev, Sergey; Balding, David J

    2017-01-01

    SNP heritability, the proportion of phenotypic variance explained by SNPs, has been reported for many hundreds of traits. Its estimation requires strong prior assumptions about the distribution of heritability across the genome, but the assumptions in current use have not been thoroughly tested. By analyzing imputed data for a large number of human traits, we empirically derive a model that more accurately describes how heritability varies with minor allele frequency, linkage disequilibrium and genotype certainty. Across 19 traits, our improved model leads to estimates of common SNP heritability on average 43% (standard deviation 3) higher than those obtained from the widely-used software GCTA, and 25% (standard deviation 2) higher than those from the recently-proposed extension GCTA-LDMS. Previously, DNaseI hypersensitivity sites were reported to explain 79% of SNP heritability; using our improved heritability model their estimated contribution is only 24%. PMID:28530675

  3. Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology

    DEFF Research Database (Denmark)

    Ramos, Antonio M; Crooijmans, Richard P M A; Nabeel, Nabeel A

    2009-01-01

    generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain......) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now...... commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion...

  4. Investigation of single nucleotide polymorphism loci susceptible to degradation by ultraviolet light.

    Science.gov (United States)

    Machida, Mitsuyo; Taki, Takashi; Shimada, Ryo; Kibayashi, Kazuhiko

    2016-10-01

    DNA in biological fluids is often degraded by environmental factors. Given that single nucleotide polymorphism (SNP) analyses require shorter amplicons than short tandem repeat (STR) analyses do, their use in human identification using degraded samples has recently attracted attention. Although various SNP loci are used to analyze degraded samples, it is unclear which ones are more appropriate. To characterize and identify SNP loci that are susceptible or resistant to degradation, we artificially degraded DNA, obtained from buccal swabs from 11 volunteers, by exposure to ultraviolet (UV) light for different durations (254 nm for 5, 15, 30, 60, or 120 min) and analyzed the resulting SNP loci. DNA degradation was assessed using gel electrophoresis, STR, and SNP profiling. DNA fragmentation occurred within 5 min of UV irradiation, and successful STR and SNP profiling decreased with increasing duration. However, 73% of SNP loci were still detected correctly in DNA samples irradiated for 120 min, a dose that rendered STR loci undetectable. The unsuccessful SNP typing and the base call failure of nucleotides neighboring the SNPs were traced to rs1031825, and we found that this SNP was susceptible to UV light. When comparing the detection efficiencies of STR and SNP loci, SNP typing was more successful than STR typing, making it effective when using degraded DNA. However, it is important to use rs1031825 with caution when interpreting SNP analyses of degraded DNA. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. Associations of Two Obesity-Related Single-Nucleotide Polymorphisms with Adiponectin in Chinese Children

    Directory of Open Access Journals (Sweden)

    Lijun Wu

    2017-01-01

    Full Text Available Purpose. Genome-wide association studies have found two obesity-related single-nucleotide polymorphisms (SNPs, rs17782313 near the melanocortin-4 receptor (MC4R gene and rs6265 near the brain-derived neurotrophic factor (BDNF gene, but the associations of both SNPs with other obesity-related traits are not fully described, especially in children. The aim of the present study is to investigate the associations between the SNPs and adiponectin that has a regulatory role in glucose and lipid metabolism. Methods. We examined the associations of the SNPs with adiponectin in Beijing Child and Adolescent Metabolic Syndrome (BCAMS study. A total of 3503 children participated in the study. Results. The SNP rs6265 was significantly associated with adiponectin under an additive model (P=0.02 and 0.024, resp. after adjustment for age, gender, and BMI or obesity statuses. The SNP rs17782313 was significantly associated with low adiponectin under a recessive model. No statistical significance was found between the two SNPs and low adiponectin after correction for multiple testing. Conclusion. We demonstrate for the first time that the SNP rs17782313 near MC4R and the SNP rs6265 near BDNF are associated with adiponectin in Chinese children. These novel findings provide important evidence that adiponectin possibly mediates MC4R and BDNF involved in obesity.

  6. Forensically relevant SNaPshot®assays for human DNA SNP analysis: a review.

    Science.gov (United States)

    Mehta, Bhavik; Daniel, Runa; Phillips, Chris; McNevin, Dennis

    2017-01-01

    Short tandem repeats are the gold standard for human identification but are not informative for forensic DNA phenotyping (FDP). Single-nucleotide polymorphisms (SNPs) as genetic markers can be applied to both identification and FDP. The concept of DNA intelligence emerged with the potential for SNPs to infer biogeographical ancestry (BGA) and externally visible characteristics (EVCs), which together enable the FDP process. For more than a decade, the SNaPshot ® technique has been utilised to analyse identity and FDP-associated SNPs in forensic DNA analysis. SNaPshot is a single-base extension (SBE) assay with capillary electrophoresis as its detection system. This multiplexing technique offers the advantage of easy integration into operational forensic laboratories without the requirement for any additional equipment. Further, the SNP panels from SNaPshot ® assays can be incorporated into customised panels for massively parallel sequencing (MPS). Many SNaPshot ® assays are available for identity, BGA and EVC profiling with examples including the well-known SNPforID 52-plex identity assay, the SNPforID 34-plex BGA assay and the HIrisPlex EVC assay. This review lists the major forensically relevant SNaPshot ® assays for human DNA SNP analysis and can be used as a guide for selecting the appropriate assay for specific identity and FDP applications.

  7. Predicting the neural effect of switching from donepezil to galantamine based on single-photon emission computed tomography findings in patients with Alzheimer's disease.

    Science.gov (United States)

    Oka, Mizuki; Nakaaki, Shutaro; Negi, Atsushi; Miyata, Jun; Nakagawa, Atsuo; Hirono, Nobutsugu; Mimura, Masaru

    2016-03-01

    A number of neuroimaging studies have addressed the specific effect of treatment with cholinesterase inhibitors on the frontal lobe in patients with Alzheimer's disease (AD). However, the neural effects of cholinesterase inhibitors on both apathy and executive dysfunction remain unclear. We examined whether baseline regional cerebral blood flow, as determined by using single-photon emission computed tomography, is capable of predicting changes in apathy and executive dysfunction in response to AD patients switching from donepezil to galantamine therapy. We conducted a 24-week, prospective, open-label study of AD patients treated with galantamine who did not respond to previous treatment with donepezil. Single-photon emission computed tomography was performed at baseline, and behaviour and cognitive assessments including the Mini-Mental State Examination, the Japanese version of the Alzheimer's Disease Assessment Scale-cognitive subscale, the Frontal Assessment Battery, the Neuropsychiatry Inventory Brief Questionnaire Form, and the Dysexecutive Questionnaire were conducted at three time points (baseline and after 12 and 24 weeks of galantamine therapy). After galantamine therapy, the Neuropsychiatry Inventory Brief Questionnaire Form scores (apathy, irritability, and aberrant motor symptoms) and the Dysexecutive Questionnaire score improved significantly. The single-photon emission computed tomography findings showed that lower baseline regional cerebral blood flow values in several frontal areas, including the dorsolateral and ventrolateral prefrontal cortex, the anterior cingulate, and the orbitofrontal cortex, predicted greater reductions in the score for apathy (distress) on the Neuropsychiatry Inventory Brief Questionnaire Form and the Dysexecutive Questionnaire score after patients switched from donepezil to galantamine therapy. Our study suggests that galantamine therapy, unlike donepezil, is characterized by a dual mechanism of action that may increase

  8. Insecure attachment style as a vulnerability factor for depression: recent findings in a community-based study of Malay single and married mothers.

    Science.gov (United States)

    Abdul Kadir, Nor Ba'yah; Bifulco, Antonia

    2013-12-30

    The role of marital breakdown in women's mental health is of key concern in Malaysia and internationally. A cross-sectional questionnaire study of married and separated/divorced and widowed women examined insecure attachment style as an associated risk factor for depression among 1002 mothers in an urban community in Malaysia. A previous report replicated a UK-based vulnerability-provoking agent model of depression involving negative evaluation of self (NES) and negative elements in close relationships (NECRs) interacting with severe life events to model depression. This article reports on the additional contribution of insecure attachment style to the model using the Vulnerable Attachment Style Questionnaire (VASQ). The results showed that VASQ scores were highly correlated with NES, NECR and depression. A multiple regression analysis of depression with backward elimination found that VASQ scores had a significant additional effect. Group comparisons showed different risk patterns for single and married mothers. NES was the strongest risk factor for both groups, with the 'anxious style' subset of the VASQ being the best additional predictor for married mothers and the total VASQ score (general attachment insecurity) for single mothers. The findings indicate that attachment insecurity adds to a psychosocial vulnerability model of depression among mothers cross-culturally and is important in understanding and identifying risk. © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. (SNP) markers for the Chinese black sleeper, Bostrychus sinensis

    African Journals Online (AJOL)

    ajl yemi

    2011-04-25

    Apr 25, 2011 ... population genetics (Morin et al., 2004). Here, we developed the first set of SNP markers for Chinese black sleeper which can be widely used in population genetics studies of this organism in the future. *Corresponding author. E-mail: sxding@xmu.edu.cn. Genomic DNA of B. sinensis individuals sampled ...

  10. cDNA cloning, structural analysis, SNP detection and tissue ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Issue 2. cDNA cloning, structural analysis, SNP detection and tissue ... Abstract. Insulin-like growth factor 1 (IGF1) plays an important role in growth, reproduction, foetal development and cell proliferation. The present study was conducted to clone and sequence the ...

  11. Do you really know where this SNP goes?

    Science.gov (United States)

    The release of build 10.2 of the swine genome was a marked improvement over previous builds and has proven extremely useful. However, as most know, there are regions of the genome that this particular build does not accurately represent. For instance, nearly 25% of the 62,162 SNP on the Illumina Por...

  12. Short communication: Evaluation of the BovineSNP50 genotyping ...

    African Journals Online (AJOL)

    The BovineSNP50 genotyping array is a product with a wide range of applications in cattle such as genome-wide association studies, identification of copy number variation and investigation of genetic relationships among cattle breeds. It also holds potential for genomic selection, especially for traits that are expensive and ...

  13. SNP Discovery In Marine Fish Species By 454 Sequencing

    DEFF Research Database (Denmark)

    Panitz, Frank; Nielsen, Rasmus Ory; van Houdt, Jeroen K J

    2011-01-01

    Based on the 454 Next-Generation-Sequencing technology (Roche) a high throughput screening method was devised in order to generate novel genetic markers (SNPs). SNP discovery was performed for three target species of marine fish: hake (Merluccius merluccius), herring (Clupea harengus) and sole...

  14. Short communication Evaluation of the BovineSNP50 genotyping ...

    African Journals Online (AJOL)

    Olga Qwabe

    2013-03-20

    Mar 20, 2013 ... The successfulness of this chip for any of these applications depends on the degree of .... BeadChip v2 which features 54 609 SNP probes distributed across the whole bovine genome with an average ... Weinberg Equilibrium (HWE), allele and genotype counts were calculated using the Quality Assurance.

  15. Application of high resolution SNP arrays in patients with congenital ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. RESEARCH ARTICLE. Application of high resolution SNP arrays in patients with congenital oral clefts in south .... developmental delays, autism and multiple congenital anom- alies. In these studies, the diagnostic yield was much higher than that of standard GTG-banded karyotyping (de Vries.

  16. In silico characterization of functional SNP within the oestrogen ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. RESEARCH ARTICLE. In silico characterization of functional SNP within the oestrogen receptor gene. MAHA REBAÏ. ∗ and AHMED REBAÏ. ∗. Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax,. University of Sfax, Route Sidi Mansour, P.O. Box 1177, ...

  17. cDNA cloning, structural analysis, SNP detection and tissue ...

    Indian Academy of Sciences (India)

    THOMAS NAICY

    IGF1 gene might play important roles in almost all body functions especially growth, reproduction and meat quality traits in goats. Further studies are required to establish the role of the detected SNP in the IGF1 gene expression and association with economic traits in goats. The results of the present study suggests that IGF1 ...

  18. Sodium nitroprusside (SNP) alleviates the oxidative stress induced ...

    African Journals Online (AJOL)

    Oxidative damage is often induced by abiotic stress, nitric oxide (NO) is considered as a functional molecule in modulating antioxidant metabolism of plants. In the present study, effects of sodium nitroprusside (SNP), a NO donor, on the phenotype, antioxidant capacity and chloroplast ultrastructure of cucumber leaves were ...

  19. Application of high resolution SNP arrays in patients with congenital ...

    Indian Academy of Sciences (India)

    743,304 SNP probes, on an industry standard 1 × 3 glass slide. These oligonucleotide probes cover the whole genome with an average spatial resolution of 1148 ..... Clayton-Smith et al. (2011) showed that mice with a hypomorphic KAT6B gt/gt mutation are of nor- mal size at birth but fail to thrive and have brain develop-.

  20. Minimum Conflict Individual Haplotyping from SNP Fragments and Related Genotype

    Directory of Open Access Journals (Sweden)

    Ling-Yun Wu

    2006-01-01

    Full Text Available The Minimum Error Correction (MEC is an important model for haplotype reconstruction from SNP fragments. However, this model is effective only when the error rate of SNP fragments is low. In this paper, we propose a new computational model called Minimum Conflict Individual Haplotyping (MCIH as an extension to MEC. In contrast to the conventional approaches, the new model employs SNP fragment information and also related genotype information, thereby a high accurate inference can be expected. We first prove the MCIH problem to be NP-hard. To evaluate the practicality of the new model we design an exact algorithm (a dynamic programming procedure to implement MCIH on a special data structure. The numerical experience indicates that it is fairly effective to use MCIH at the cost of related genotype information, especially in the case of SNP fragments with a high error rate. Moreover, we present a feed-forward neural network algorithm to solve MCIH for general data structure and large size instances. Numerical results on real biological data and simulation data show that the algorithm works well and MCIH is a potential alternative in individual haplotyping.

  1. cDNA cloning, structural analysis, SNP detection and tissue ...

    Indian Academy of Sciences (India)

    THOMAS NAICY

    [Naicy T., Venkatachalapathy T., Aravindakshan T., Raghavan K. C., Mini M. and Shyama K. 2017 cDNA cloning, structural analysis, SNP detection and tissue expression profile of the IGF1 gene in Malabari and Attappady Black goats of India. J. Genet. 96, xx–xx]. Introduction. Insulin-like growth factor 1 (IGF1), an important ...

  2. Characterization of fifteen SNP markers by mining EST in sea ...

    Indian Academy of Sciences (India)

    Molecular mark- ers are powerful tools for conservation and management of natural resources, and for marker-assisted selection in captive populations. In recent years, SNP have rapidly become the markers ... nonredundant (NR) database using BLASTX (http://blast. ncbi.nlm.nih.gov/Blast.cgi) (cut off E-value of 1.0 × 10.

  3. In silico characterization of functional SNP within the oestrogen ...

    Indian Academy of Sciences (India)

    MAHA REBAÕ

    found that one SNP in 5 UTR may potentially change protein expression level, nine SNPs were found to affect miRNA binding site and 28 SNPs might affect ..... Riancho et al. 2010), breast cancer (Tapper et al. 2008; Ding et al. .... in postmenopausal women: associations with common estrogen receptor alpha polymorphic ...

  4. SNP based heritability estimation using a Bayesian approach

    DEFF Research Database (Denmark)

    Krag, Kristian; Janss, Luc; Mahdi Shariati, Mohammad

    2013-01-01

    . Differences in family structure were in general not found to influence the estimation of the heritability. For the sample sizes used in this study, a 10-fold increase of SNP density did not improve precision estimates compared with set-ups with a less dense distribution of SNPs. The methods used in this study...

  5. Enrichment of HLA Types and Single-Nucleotide Polymorphism Associated With Non-progression in a Strictly Defined Cohort of HIV-1 Controllers

    Directory of Open Access Journals (Sweden)

    Samantha J. Westrop

    2017-06-01

    Full Text Available HIV-1 controllers (HIC are extremely rare patients with the ability to control viral replication, maintain unchanging CD4 T-cell count, and evade disease progression for extensive periods of time, in the absence of antiretroviral therapy. In order to establish the representation of key genetic correlates of atypical disease progression within a cohort of HIV-1+ individuals who control viral replication, we examine four-digit resolution HLA type and single-nucleotide polymorphisms (SNP previously identified to be correlated to non-progressive infection, in strictly defined HIC. Clinical histories were examined to identify patients exhibiting HIC status. Genomic DNA was extracted, and high definition HLA typing and genome-wide SNP analysis was performed. Data were compared with frequencies of SNP in European long-term non-progressors (LTNP and primary infection cohorts. HLA-B alleles associated with atypical disease progression were at very high frequencies in the group of five HIC studied. All four HIC of European ancestry were HLA-B*57+ and half were also HLA-B*27+. All HIC, including one of self-reported African ethnicity, had the HLA-Cw*0602 allele, and the HLA-DQ9 allele was present only in HIC of European ancestry. A median 95% of the top 19 SNP known to be associated with LTNP status was observed in European HIC (range 78–100%; 17/19 of the SNP considered mapped to chromosome 6 in the HLA region, whereas 2/19 mapped to chromosome 8. The HIC investigated here demonstrated high enrichment of HLA types and SNP previously associated with long-term non-progression. These findings suggest that the extreme non-progressive phenotype considered here is associated with a genetic signature characterized by a single-genetic unit centered around the HLA-B*57 haplotype and the possible additive effect of HLA-B*27.

  6. Single photon emission computed tomography (SPECT) findings using N-isopropyl-p-[[sup 123]I]iodoamphetamine ([sup 123]I-IMP) in schizophrenia and atypical psychosis

    Energy Technology Data Exchange (ETDEWEB)

    Suga, Hidemichi (Aichi Medical Univ., Nagakute (Japan))

    1993-05-01

    Sixteen schizophrenic patients, 16 atypical psychosis patients, and 16 healthy volunteers were subjected to single photon emission computed tomography (SPECT) of the brain using N-isopropyl-p-[[sup 123]I]iodoamphetamine ([sup 123]I-IMP). The basal ganglia region was in particular examined not only in transverse sections, but in coronal sections. Schizophrenics showed significantly decreased uptake rates in the bilateral frontal regions and increased uptakes in the bilateral basal ganglia. On the other hand, atypical psychotics had a reduced uptake rate only in the right thalamic region, compared to the controls. The increased uptake rates in the basal ganglia were associated with auditory hallucination, but gender difference, duration of illness and dose of neuroleptics had no influence on these SPECT findings. The results suggest that schizophrenics might have some lesions in the frontal area of the brain, whereas atypical psychotics might have no lesion in the frontal region but dysfunction in the right thalamic region. Subsequently, using only SPECT findings, all the cases were divided by cluster analysis into 4 groups and a residue group. Schizophrenics distributed mainly in the 2 groups that have lesion in the frontal regions. Atypical psychotics distributed principally in the other 2 groups that have alterations in the bilateral thalamic region. The present study suggests that schizophrenia and atypical psychosis might have different etiologies. (author).

  7. Single photon emission computed tomography (SPECT) findings using N-isopropyl-p-[123I]iodoamphetamine (123I-IMP) in schizophrenia and atypical psychosis

    International Nuclear Information System (INIS)

    Suga, Hidemichi

    1993-01-01

    Sixteen schizophrenic patients, 16 atypical psychosis patients, and 16 healthy volunteers were subjected to single photon emission computed tomography (SPECT) of the brain using N-isopropyl-p-[ 123 I]iodoamphetamine ( 123 I-IMP). The basal ganglia region was in particular examined not only in transverse sections, but in coronal sections. Schizophrenics showed significantly decreased uptake rates in the bilateral frontal regions and increased uptakes in the bilateral basal ganglia. On the other hand, atypical psychotics had a reduced uptake rate only in the right thalamic region, compared to the controls. The increased uptake rates in the basal ganglia were associated with auditory hallucination, but gender difference, duration of illness and dose of neuroleptics had no influence on these SPECT findings. The results suggest that schizophrenics might have some lesions in the frontal area of the brain, whereas atypical psychotics might have no lesion in the frontal region but dysfunction in the right thalamic region. Subsequently, using only SPECT findings, all the cases were divided by cluster analysis into 4 groups and a residue group. Schizophrenics distributed mainly in the 2 groups that have lesion in the frontal regions. Atypical psychotics distributed principally in the other 2 groups that have alterations in the bilateral thalamic region. The present study suggests that schizophrenia and atypical psychosis might have different etiologies. (author)

  8. Novel Quantitative Real-Time LCR for the Sensitive Detection of SNP Frequencies in Pooled DNA: Method Development, Evaluation and Application

    Science.gov (United States)

    Psifidi, Androniki; Dovas, Chrysostomos; Banos, Georgios

    2011-01-01

    Background Single nucleotide polymorphisms (SNP) have proven to be powerful genetic markers for genetic applications in medicine, life science and agriculture. A variety of methods exist for SNP detection but few can quantify SNP frequencies when the mutated DNA molecules correspond to a small fraction of the wild-type DNA. Furthermore, there is no generally accepted gold standard for SNP quantification, and, in general, currently applied methods give inconsistent results in selected cohorts. In the present study we sought to develop a novel method for accurate detection and quantification of SNP in DNA pooled samples. Methods The development and evaluation of a novel Ligase Chain Reaction (LCR) protocol that uses a DNA-specific fluorescent dye to allow quantitative real-time analysis is described. Different reaction components and thermocycling parameters affecting the efficiency and specificity of LCR were examined. Several protocols, including gap-LCR modifications, were evaluated using plasmid standard and genomic DNA pools. A protocol of choice was identified and applied for the quantification of a polymorphism at codon 136 of the ovine PRNP gene that is associated with susceptibility to a transmissible spongiform encephalopathy in sheep. Conclusions The real-time LCR protocol developed in the present study showed high sensitivity, accuracy, reproducibility and a wide dynamic range of SNP quantification in different DNA pools. The limits of detection and quantification of SNP frequencies were 0.085% and 0.35%, respectively. Significance The proposed real-time LCR protocol is applicable when sensitive detection and accurate quantification of low copy number mutations in DNA pools is needed. Examples include oncogenes and tumour suppressor genes, infectious diseases, pathogenic bacteria, fungal species, viral mutants, drug resistance resulting from point mutations, and genetically modified organisms in food. PMID:21283808

  9. Comparison of SNP Variation and Distribution in Indigenous Ethiopian and Korean Cattle (Hanwoo Populations

    Directory of Open Access Journals (Sweden)

    Zewdu Edea

    2012-09-01

    Full Text Available Although a large number of single nucleotide polymorphisms (SNPs have been identified from the bovine genome-sequencing project, few of these have been validated at large in Bos indicus breeds. We have genotyped 192 animals, representing 5 cattle populations of Ethiopia, with the Illumina Bovine 8K SNP BeadChip. These include 1 Sanga (Danakil, 3 zebu (Borana, Arsi and Ambo, and 1 zebu × Sanga intermediate (Horro breeds. The Hanwoo (Bos taurus was included for comparison purposes. Analysis of 7,045 SNP markers revealed that the mean minor allele frequency (MAF was 0.23, 0.22, 0.21, 0.21, 0.23, and 0.29 for Ambo, Arsi, Borana, Danakil, Horro, and Hanwoo, respectively. Significant differences of MAF were observed between the indigenous Ethiopian cattle populations and Hanwoo breed (p < 0.001. Across the Ethiopian cattle populations, a common variant MAF (≥0.10 and ≤0.5 accounted for an overall estimated 73.79% of the 7,045 SNPs. The Hanwoo displayed a higher proportion of common variant SNPs (90%. Investigation within Ethiopian cattle populations showed that on average, 16.64% of the markers were monomorphic, but in the Hanwoo breed, only 6% of the markers were monomorphic. Across the sampled Ethiopian cattle populations, the mean observed and expected heterozygosities were 0.314 and 0.313, respectively. The level of SNP variation identified in this particular study highlights that these markers can be potentially used for genetic studies in African cattle breeds.

  10. On the impact of relatedness on SNP association analysis.

    Science.gov (United States)

    Gross, Arnd; Tönjes, Anke; Scholz, Markus

    2017-12-06

    When testing for SNP (single nucleotide polymorphism) associations in related individuals, observations are not independent. Simple linear regression assuming independent normally distributed residuals results in an increased type I error and the power of the test is also affected in a more complicate manner. Inflation of type I error is often successfully corrected by genomic control. However, this reduces the power of the test when relatedness is of concern. In the present paper, we derive explicit formulae to investigate how heritability and strength of relatedness contribute to variance inflation of the effect estimate of the linear model. Further, we study the consequences of variance inflation on hypothesis testing and compare the results with those of genomic control correction. We apply the developed theory to the publicly available HapMap trio data (N=129), the Sorbs (a self-contained population with N=977 characterised by a cryptic relatedness structure) and synthetic family studies with different sample sizes (ranging from N=129 to N=999) and different degrees of relatedness. We derive explicit and easily to apply approximation formulae to estimate the impact of relatedness on the variance of the effect estimate of the linear regression model. Variance inflation increases with increasing heritability. Relatedness structure also impacts the degree of variance inflation as shown for example family structures. Variance inflation is smallest for HapMap trios, followed by a synthetic family study corresponding to the trio data but with larger sample size than HapMap. Next strongest inflation is observed for the Sorbs, and finally, for a synthetic family study with a more extreme relatedness structure but with similar sample size as the Sorbs. Type I error increases rapidly with increasing inflation. However, for smaller significance levels, power increases with increasing inflation while the opposite holds for larger significance levels. When genomic control

  11. A hybrid qPCR/SNP array approach allows cost efficient assessment of KIR gene copy numbers in large samples.

    Science.gov (United States)

    Pontikos, Nikolas; Smyth, Deborah J; Schuilenburg, Helen; Howson, Joanna M M; Walker, Neil M; Burren, Oliver S; Guo, Hui; Onengut-Gumuscu, Suna; Chen, Wei-Min; Concannon, Patrick; Rich, Stephen S; Jayaraman, Jyothi; Jiang, Wei; Traherne, James A; Trowsdale, John; Todd, John A; Wallace, Chris

    2014-04-11

    Killer Immunoglobulin-like Receptors (KIRs) are surface receptors of natural killer cells that bind to their corresponding Human Leukocyte Antigen (HLA) class I ligands, making them interesting candidate genes for HLA-associated autoimmune diseases, including type 1 diabetes (T1D). However, allelic and copy number variation in the KIR region effectively mask it from standard genome-wide association studies: single nucleotide polymorphism (SNP) probes targeting the region are often discarded by standard genotype callers since they exhibit variable cluster numbers. Quantitative Polymerase Chain Reaction (qPCR) assays address this issue. However, their cost is prohibitive at the sample sizes required for detecting effects typically observed in complex genetic diseases. We propose a more powerful and cost-effective alternative, which combines signals from SNPs with more than three clusters found in existing datasets, with qPCR on a subset of samples. First, we showed that noise and batch effects in multiplexed qPCR assays are addressed through normalisation and simultaneous copy number calling of multiple genes. Then, we used supervised classification to impute copy numbers of specific KIR genes from SNP signals. We applied this method to assess copy number variation in two KIR genes, KIR3DL1 and KIR3DS1, which are suitable candidates for T1D susceptibility since they encode the only KIR molecules known to bind with HLA-Bw4 epitopes. We find no association between KIR3DL1/3DS1 copy number and T1D in 6744 cases and 5362 controls; a sample size twenty-fold larger than in any previous KIR association study. Due to our sample size, we can exclude odds ratios larger than 1.1 for the common KIR3DL1/3DS1 copy number groups at the 5% significance level. We found no evidence of association of KIR3DL1/3DS1 copy number with T1D, either overall or dependent on HLA-Bw4 epitope. Five other KIR genes, KIR2DS4, KIR2DL3, KIR2DL5, KIR2DS5 and KIR2DS1, in high linkage disequilibrium with

  12. Direct detection of single-nucleotide polymorphisms in bacterial DNA by SNPtrap

    DEFF Research Database (Denmark)

    Grønlund, Hugo Ahlm; Moen, Birgitte; Hoorfar, Jeffrey

    2011-01-01

    A major challenge with single-nucleotide polymorphism (SNP) fingerprinting of bacteria and higher organisms is the combination of genome-wide screenings with the potential of multiplexing and accurate SNP detection. Single-nucleotide extension by the minisequencing principle represents a technology...

  13. Quantitative Review Finds No Evidence of Cognitive Effects in Healthy Populations From Single-session Transcranial Direct Current Stimulation (tDCS).

    Science.gov (United States)

    Horvath, Jared Cooney; Forte, Jason D; Carter, Olivia

    2015-01-01

    Over the last 15-years, transcranial direct current stimulation (tDCS), a relatively novel form of neuromodulation, has seen a surge of popularity in both clinical and academic settings. Despite numerous claims suggesting that a single session of tDCS can modulate cognition in healthy adult populations (especially working memory and language production), the paradigms utilized and results reported in the literature are extremely variable. To address this, we conduct the largest quantitative review of the cognitive data to date. Single-session tDCS data in healthy adults (18-50) from every cognitive outcome measure reported by at least two different research groups in the literature was collected. Outcome measures were divided into 4 broad categories: executive function, language, memory, and miscellaneous. To account for the paradigmatic variability in the literature, we undertook a three-tier analysis system; each with less-stringent inclusion criteria than the prior. Standard mean difference values with 95% CIs were generated for included studies and pooled for each analysis. Of the 59 analyses conducted, tDCS was found to not have a significant effect on any - regardless of inclusion laxity. This includes no effect on any working memory outcome or language production task. Our quantitative review does not support the idea that tDCS generates a reliable effect on cognition in healthy adults. Reasons for and limitations of this finding are discussed. This work raises important questions regarding the efficacy of tDCS, state-dependency effects, and future directions for this tool in cognitive research. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. SNP2Structure: A Public and Versatile Resource for Mapping and Three-Dimensional Modeling of Missense SNPs on Human Protein Structures.

    Science.gov (United States)

    Wang, Difei; Song, Lei; Singh, Varun; Rao, Shruti; An, Lin; Madhavan, Subha

    2015-01-01

    One of the long-standing challenges in biology is to understand how non-synonymous single nucleotide polymorphisms (nsSNPs) change protein structure and further affect their function. While it is impractical to solve all the mutated protein structures experimentally, it is quite feasible to model the mutated structures in silico. Toward this goal, we built a publicly available structure database resource (SNP2Structure, https://apps.icbi.georgetown.edu/snp2structure) focusing on missense mutations, msSNP. Compared with web portals with similar aims, SNP2Structure has the following major advantages. First, our portal offers direct comparison of two related 3D structures. Second, the protein models include all interacting molecules in the original PDB structures, so users are able to determine regions of potential interaction changes when a protein mutation occurs. Third, the mutated structures are available to download locally for further structural and functional analysis. Fourth, we used Jsmol package to display the protein structure that has no system compatibility issue. SNP2Structure provides reliable, high quality mapping of nsSNPs to 3D protein structures enabling researchers to explore the likely functional impact of human disease-causing mutations.

  15. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality

    Science.gov (United States)

    Ali, Shahin S.; Shao, Jonathan; Strem, Mary D.; Phillips-Mora, Wilberth; Zhang, Dapeng; Meinhardt, Lyndel W.; Bailey, Bryan A.

    2015-01-01

    Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed single nucleotide polymorphism (SNP) markers from RNASeq results for 13 M. roreri isolates and validated the markers for their ability to reveal genetic diversity in an international M. roreri collection. The SNP resources reported herein represent the first study of RNA sequencing (RNASeq)-derived SNP validation in M. roreri and demonstrates the utility of RNASeq as an approach for de novo SNP identification in M. roreri. A total of 88 polymorphic SNPs were used to evaluate the genetic diversity of 172 M. roreri cacao isolates resulting in 37 distinct genotypes (including 14 synonymous groups). Absence of heterozygosity for the 88 SNP markers indicates reproduction in M. roreri is clonal and likely due to a homothallic life style. The upper Magdalena Valley of Colombia showed the highest levels of genetic diversity with 20 distinct genotypes of which 13 were limited to this region, and indicates this region as the possible center of origin for M. roreri. PMID:26379633

  16. SNP2Structure: A Public and Versatile Resource for Mapping and Three-Dimensional Modeling of Missense SNPs on Human Protein Structures

    Directory of Open Access Journals (Sweden)

    Difei Wang

    2015-01-01

    Full Text Available One of the long-standing challenges in biology is to understand how non-synonymous single nucleotide polymorphisms (nsSNPs change protein structure and further affect their function. While it is impractical to solve all the mutated protein structures experimentally, it is quite feasible to model the mutated structures in silico. Toward this goal, we built a publicly available structure database resource (SNP2Structure, https://apps.icbi.georgetown.edu/snp2structure focusing on missense mutations, msSNP. Compared with web portals with similar aims, SNP2Structure has the following major advantages. First, our portal offers direct comparison of two related 3D structures. Second, the protein models include all interacting molecules in the original PDB structures, so users are able to determine regions of potential interaction changes when a protein mutation occurs. Third, the mutated structures are available to download locally for further structural and functional analysis. Fourth, we used Jsmol package to display the protein structure that has no system compatibility issue. SNP2Structure provides reliable, high quality mapping of nsSNPs to 3D protein structures enabling researchers to explore the likely functional impact of human disease-causing mutations.

  17. Candidate SNP Markers of Chronopathologies Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters.

    Science.gov (United States)

    Ponomarenko, Petr; Rasskazov, Dmitry; Suslov, Valentin; Sharypova, Ekaterina; Savinkova, Ludmila; Podkolodnaya, Olga; Podkolodny, Nikolay L; Tverdokhleb, Natalya N; Chadaeva, Irina; Ponomarenko, Mikhail; Kolchanov, Nikolay

    2016-01-01

    Variations in human genome (e.g., single nucleotide polymorphisms, SNPs) may be associated with hereditary diseases, their complications, comorbidities, and drug responses. Using Web service SNP_TATA_Comparator presented in our previous paper, here we analyzed immediate surroundings of known SNP markers of diseases and identified several candidate SNP markers that can significantly change the affinity of TATA-binding protein for human gene promoters, with circadian consequences. For example, rs572527200 may be related to asthma, where symptoms are circadian (worse at night), and rs367732974 may be associated with heart attacks that are characterized by a circadian preference (early morning). By the same method, we analyzed the 90 bp proximal promoter region of each protein-coding transcript of each human gene of the circadian clock core. This analysis yielded 53 candidate SNP markers, such as rs181985043 (susceptibility to acute Q fever in male patients), rs192518038 (higher risk of a heart attack in patients with diabetes), and rs374778785 (emphysema and lung cancer in smokers). If they are properly validated according to clinical standards, these candidate SNP markers may turn out to be useful for physicians (to select optimal treatment for each patient) and for the general population (to choose a lifestyle preventing possible circadian complications of diseases).

  18. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality.

    Science.gov (United States)

    Ali, Shahin S; Shao, Jonathan; Strem, Mary D; Phillips-Mora, Wilberth; Zhang, Dapeng; Meinhardt, Lyndel W; Bailey, Bryan A

    2015-01-01

    Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed single nucleotide polymorphism (SNP) markers from RNASeq results for 13 M. roreri isolates and validated the markers for their ability to reveal genetic diversity in an international M. roreri collection. The SNP resources reported herein represent the first study of RNA sequencing (RNASeq)-derived SNP validation in M. roreri and demonstrates the utility of RNASeq as an approach for de novo SNP identification in M. roreri. A total of 88 polymorphic SNPs were used to evaluate the genetic diversity of 172 M. roreri cacao isolates resulting in 37 distinct genotypes (including 14 synonymous groups). Absence of heterozygosity for the 88 SNP markers indicates reproduction in M. roreri is clonal and likely due to a homothallic life style. The upper Magdalena Valley of Colombia showed the highest levels of genetic diversity with 20 distinct genotypes of which 13 were limited to this region, and indicates this region as the possible center of origin for M. roreri.

  19. [Association Between SNP rs6007897 of CELSR1 and Acute Ischemic Stroke in Western China Han Population: a Case-control Study].

    Science.gov (United States)

    Qin, Feng-qin; Yu, Li-hua; Hu, Wen-ting; Guo, Jian; Chen, Ning; Guo, Jiang; Fang, Jing-huan; He, Li

    2015-07-01

    To investigate the relationship between single nucleotide polymorphism (SNP) rs6007897 of CELSR1 and acute ischemic stroke in Western China Han population. All subjects (759 acute ischemic stroke patients and 786 controls) were genotyped using ligation detection reaction (LDR). We analyzed the differences between SNP rs6007897 genotypes and allele frequencies between two groups. Two genotypes (AA, AG) of rs6007897 were found in both stroke and control group. There was no statistically significance between two groups about genotype and allele frequency. After adjusting for risk factors, we found there was no significant association between rs6007897 and ischemic stroke CP = 0.797, odds ratio (OR) = 0.886, 95% confidence interval (CI) = 0.352-2.227). SNP rs6007897 of CELSR1 was not significantly associated with ischemic stroke in Western China Han population.

  20. Administering Multiple Injectable Vaccines During a Single Visit-Summary of Findings From the Accelerated Introduction of Inactivated Polio Vaccine Globally.

    Science.gov (United States)

    Dolan, Samantha B; Patel, Manish; Hampton, Lee M; Burnett, Eleanor; Ehlman, Daniel C; Garon, Julie; Cloessner, Emily; Chmielewski, Elizabeth; Hyde, Terri B; Mantel, Carsten; Wallace, Aaron S

    2017-07-01

    In 2013, the World Health Organization's (WHO's) Strategic Advisory Group of Experts (SAGE) recommended that all 126 countries using only oral polio vaccine (OPV) introduce at least 1 dose of inactivated polio vaccine (IPV) into their routine immunization schedules by the end of 2015. In many countries, the addition of IPV would necessitate delivery of multiple injectable vaccines (hereafter, "multiple injections") during a single visit, with infants receiving IPV alongside pentavalent vaccine (which covers diphtheria, tetanus, and whole-cell pertussis; hepatitis B; and Haemophilus influenzae type b) and pneumococcal vaccine. Unanticipated concerns emerged from countries over acceptability of multiple injections, sites of administration, and safety. We contextualized the issues surrounding multiple injections by documenting concerns associated with administration of ≥3 injections, existing evidence in the published literature, and findings of a systematic review on administration practices and techniques. Concerns associated with multiple-injection visits were documented from meetings and personal communications with immunization program managers. Published literature on the acceptability of multiple injections by providers and caregivers was summarized, and a systematic review of the literature on administration practices was completed on the following topics: spacing between injection sites (ie, vaccine spacing), site of injection, route of injection, and procedural preparedness. WHO and United Nations Children's Fund data from 2013-2015 were used to assess multiple-injection visits included in national immunization schedules. Healthcare provider and caregiver attitudes and practices indicated concerns about infant pain, potential adverse effects, and uncertainty about vaccine effectiveness with multiple-injection visits. Published literature reinforced the record of safety and acceptance of the recommended schedule of IPV by the SAGE, but the evidence was

  1. A novel synonymous SNP (A47A of the TMEM95 gene is significantly associated with the reproductive traits related to testis in male piglets

    Directory of Open Access Journals (Sweden)

    L. Liu

    2017-07-01

    Full Text Available Transmembrane protein 95 (TMEM95 is located on the acrosomal membrane of the sperm head involved in the acrosome reaction; thus, it is regarded as affecting spermatogenesis and reproduction traits. The aim of this study was to explore the novel single nucleotide polymorphisms (SNPs within the pig TMEM95 gene as well as to evaluate their associations with the testicular sizes in male Landrace (LD and Large White (LW breeds. After pool sequencing and bioinformatics analysis, only one novel coding SNP was found in exon 1, namely NC_010454.3: g.341T > C, resulting in a synonymous mutation (A47A. This SNP could be genotyped using the StuI polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP assay. The minor allelic frequencies (MAFs were 0.259 and 0.480 in the LD and LW breeds. Their polymorphism information content (PIC values were 0.310 and 0.375. The LW population was at the Hardy–Weinberg equilibrium (HWE (p > 0.05, whereas the LD population was not (p < 0.05. Association analyses demonstrated that a significant relationship was found between this A47A polymorphism and testis weight at 40 days of age in the LW population (p  =  0.047, and the heterozygote individuals showed lower testis weight than those with other genotypes. Moreover, this SNP was significantly associated with three testis measurement traits at 15 days of age in the LW population (p < 0.05; the individuals with genotypes TT and TC showed consistently superior testis measurement traits than those with genotype CC. These findings demonstrate that the A47A polymorphism had a significant effect on testis measurement traits, suggesting that the TMEM95 gene could be a candidate gene associated with reproductive traits. These results could contribute to breeding and genetics programs in the pig industry via DNA marker-assisted selection (MAS.

  2. Effect of 593C>T GPx1 SNP alone and in synergy with 47C>T SOD2 SNP on the outcome of critically ill patients.

    Science.gov (United States)

    Majolo, Fernanda; Oliveira Paludo, Francis Jackson de; Ponzoni, Aline; Graebin, Pietra; Dias, Fernando Suparregui; Alho, Clarice Sampaio

    2015-02-01

    During critical illness and sepsis there is severe antioxidant depletion, and this scenario raises the critical ill patient's mortality risk. Glutathione peroxidase (GPx) is one of the first endogenous antioxidant defense enzymes, and it works cooperatively with superoxide dismutase (SOD) and catalase (CAT) to detoxify free radicals from the cellular environment. Genetic studies are important to understand the complexity of human oxidative stress and how the organism responds to an extreme situation such as critically care conditions. Previous studies with a GPx1 single nucleotide polymorphism (593C>T SNP; rs1050450; protein variant in GPx1: Pro198Leu) showed 593T carriers and 593TT homozygotes present higher risk to develop different diseases. We assessed the relationship of the genotype distribution of GPx1 SNP in critically ill patients with their conditions (organ dysfunction, sepsis, and septic shock) and their outcome. We monitored 626 critically ill patients daily from the ICU (intensive care unit) admission to their discharge from hospital, or death. Our study revealed a significant association between 593TT GPx1 genotype and mortality; the mortality rate was higher in homozygous 593TT GPx1 (N=94) when compared with the group of subjects with genotypes 593CT or 593CC GPx1 (N=532) (52% vs. 38%, P=0.009; OR=1.79; 95% CI=1.13-2.85). Evaluating the subgroup of 293 ICU patients with sepsis, a pooled analysis including two genetic variants GPx1 and SOD2 (47C>T SNP, rs4880; protein variant in MnSOD: Ala-9Val) showed a significant difference in relation to progression to septic shock. The frequency of septic shock among septic patients with 593T GPx1 and 47C SOD2 alleles (N=122) was higher when compared with septic patients carrying other settings of genotypes (N=174) (78% vs. 66%; P=0.028; OR=1.81; 95% CI=1.03-3.18). Accepting the previously reported functional effects of these two SNPs on GPx1 and SOD2 gene expressions and, consequently, on GPx1 and MnSOD enzyme

  3. Perfusion impairments in infantile autism on technetium-99m ethyl cysteinate dimer brain single-photon emission tomography: comparison with findings on magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ryu, Y.H.; Lee, J.D.; Yoon, P.H.; Kim, D.I.; Lee, H.B.; Shin, Y.J.

    1999-01-01

    The neuro-anatomical substrate of autism has been the subject of detailed investigation. Because previous studies have not demonstrated consistent and specific neuro-imaging findings in autism and most such studies have been performed in adults and school-aged children, we performed a retrospective review in young children in search of common functional and anatomical abnormalities with brain single-photon emission tomography (SPET) using technetium-99m ethyl cysteinate dimer (ECD) and correlative magnetic resonance imaging (MRI). The patient population was composed of 23 children aged 28-92 months (mean: 54 months) who met the diagnostic criteria of autism as defined in the DSM-IV and CARS. Brain SPET was performed after intravenous injection of 185-370 MBq of 99m Tc-ECD using a brain-dedicated annular crystal gamma camera. MRI was performed in all patients, including T1, T2 axial and T1 sagittal sequences. SPET data were assessed visually. Twenty patients had abnormal SPET scans revealing focal areas of decreased perfusion. Decreased perfusion of the cerebellar hemisphere (20/23), thalami (19/23), basal ganglia (5/23) and posterior parietal (10/23) and temporal (7/23) areas were noted on brain SPET. By contrast all patients had normal MRI findings without evidence of abnormalities of the cerebellar vermis, cerebellar hemisphere, thalami, basal ganglia or parietotemporal cortex. In conclusion, extensive perfusion impairments involving the cerebellum, thalami and parietal cortex were found in this study. SPET may be more sensitive in reflecting the pathophysiology of autism than MRI. However, further studies are necessary to determine the significance of thalamic and parietal perfusion impairment in autism. (orig.)

  4. Perfusion impairments in infantile autism on technetium-99m ethyl cysteinate dimer brain single-photon emission tomography: comparison with findings on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Y.H.; Lee, J.D.; Yoon, P.H.; Kim, D.I. [Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, H.B.; Shin, Y.J. [Department of Psychiatry, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1999-03-01

    The neuro-anatomical substrate of autism has been the subject of detailed investigation. Because previous studies have not demonstrated consistent and specific neuro-imaging findings in autism and most such studies have been performed in adults and school-aged children, we performed a retrospective review in young children in search of common functional and anatomical abnormalities with brain single-photon emission tomography (SPET) using technetium-99m ethyl cysteinate dimer (ECD) and correlative magnetic resonance imaging (MRI). The patient population was composed of 23 children aged 28-92 months (mean: 54 months) who met the diagnostic criteria of autism as defined in the DSM-IV and CARS. Brain SPET was performed after intravenous injection of 185-370 MBq of {sup 99m}Tc-ECD using a brain-dedicated annular crystal gamma camera. MRI was performed in all patients, including T1, T2 axial and T1 sagittal sequences. SPET data were assessed visually. Twenty patients had abnormal SPET scans revealing focal areas of decreased perfusion. Decreased perfusion of the cerebellar hemisphere (20/23), thalami (19/23), basal ganglia (5/23) and posterior parietal (10/23) and temporal (7/23) areas were noted on brain SPET. By contrast all patients had normal MRI findings without evidence of abnormalities of the cerebellar vermis, cerebellar hemisphere, thalami, basal ganglia or parietotemporal cortex. In conclusion, extensive perfusion impairments involving the cerebellum, thalami and parietal cortex were found in this study. SPET may be more sensitive in reflecting the pathophysiology of autism than MRI. However, further studies are necessary to determine the significance of thalamic and parietal perfusion impairment in autism. (orig.) With 2 figs., 1 tab., 33 refs.

  5. An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Rabbi, Ismail Yusuf; Kulembeka, Heneriko Philbert; Masumba, Esther; Marri, Pradeep Reddy; Ferguson, Morag

    2012-07-01

    Cassava (Manihot esculenta Crantz) is one of the most important food security crops in the tropics and increasingly being adopted for agro-industrial processing. Genetic improvement of cassava can be enhanced through marker-assisted breeding. For this, appropriate genomic tools are required to dissect the genetic architecture of economically important traits. Here, a genome-wide SNP-based genetic map of cassava anchored in SSRs is presented. An outbreeder full-sib (F1) family was genotyped on two independent SNP assay platforms: an array of 1,536 SNPs on Illumina's GoldenGate platform was used to genotype a first batch of 60 F1. Of the 1,358 successfully converted SNPs, 600 which were polymorphic in at least one of the parents and was subsequently converted to KBiosciences' KASPar assay platform for genotyping 70 additional F1. High-precision genotyping of 163 informative SSRs using capillary electrophoresis was also carried out. Linkage analysis resulted in a final linkage map of 1,837 centi-Morgans (cM) containing 568 markers (434 SNPs and 134 SSRs) distributed across 19 linkage groups. The average distance between adjacent markers was 3.4 cM. About 94.2% of the mapped SNPs and SSRs have also been localized on scaffolds of version 4.1 assembly of the cassava draft genome sequence. This more saturated genetic linkage map of cassava that combines SSR and SNP markers should find several applications in the improvement of cassava including aligning scaffolds of the cassava genome sequence, genetic analyses of important agro-morphological traits, studying the linkage disequilibrium landscape and comparative genomics.

  6. QualitySNPng: a user-friendly SNP detection and visualization tool.

    Science.gov (United States)

    Nijveen, Harm; van Kaauwen, Martijn; Esselink, Danny G; Hoegen, Brechtje; Vosman, Ben

    2013-07-01

    QualitySNPng is a new software tool for the detection and interactive visualization of single-nucleotide polymorphisms (SNPs). It uses a haplotype-based strategy to identify reliable SNPs; it is optimized for the analysis of current RNA-seq data; but it can also be used on genomic DNA sequences derived from next-generation sequencing experiments. QualitySNPng does not require a sequenced reference genome and delivers reliable SNPs for di- as well as polyploid species. The tool features a user-friendly interface, multiple filtering options to handle typical sequencing errors, support for SAM and ACE files and interactive visualization. QualitySNPng produces high-quality SNP information that can be used directly in genotyping by sequencing approaches for application in QTL and genome-wide association mapping as well as to populate SNP arrays. The software can be used as a stand-alone application with a graphical user interface or as part of a pipeline system like Galaxy. Versions for Windows, Mac OS X and Linux, as well as the source code, are available from http://www.bioinformatics.nl/QualitySNPng.

  7. MEF2B gene SNP markers of meat productivity in Severokavkazskaya sheep breed

    Directory of Open Access Journals (Sweden)

    Trukhachev Vladimir

    2016-01-01

    Full Text Available One of the new promising candidate genes defining productive qualities of sheep is MEF2B. Protein from the MEF2 group encoded by it affects the production of myostatin and the expression of the genes responsible for the growth of skeletal muscle fibers. Thus, the knowledge of the MEF2B gene structure is important for genomic selection. We have studied the structure of the MEF2B gene at sheep of Severokavkazskaya breed bred in Russia. To detect alleles we use NimbleGen sequencing technology by Roche (USA. As a result, it was revealed 14 single nucleotide polymorphisms (SNP at the given breed. The discovered SNPare located in not coding areas. From them 7 polymorphisms are in the area of 5’ upstream gene in loci: c.-1713, c.-1319, c.-839, c.-321, c.-246, c.-161, c.-3; 6 polymorphisms are in introns, loci: c.55-51, c.258+312, c.258+380, c.259-52, c.452+95, c.452+103, 1 SNP is in 3’ downstream gene, c.

  8. A phased SNP-based classification of sickle cell anemia HBB haplotypes.

    Science.gov (United States)

    Shaikho, Elmutaz M; Farrell, John J; Alsultan, Abdulrahman; Qutub, Hatem; Al-Ali, Amein K; Figueiredo, Maria Stella; Chui, David H K; Farrer, Lindsay A; Murphy, George J; Mostoslavsky, Gustavo; Sebastiani, Paola; Steinberg, Martin H

    2017-08-11

    Sickle cell anemia causes severe complications and premature death. Five common β-globin gene cluster haplotypes are each associated with characteristic fetal hemoglobin (HbF) levels. As HbF is the major modulator of disease severity, classifying patients according to haplotype is useful. The first method of haplotype classification used restriction fragment length polymorphisms (RFLPs) to detect single nucleotide polymorphisms (SNPs) in the β-globin gene cluster. This is labor intensive, and error prone. We used genome-wide SNP data imputed to the 1000 Genomes reference panel to obtain phased data distinguishing parental alleles. We successfully haplotyped 813 sickle cell anemia patients previously classified by RFLPs with a concordance >98%. Four SNPs (rs3834466, rs28440105, rs10128556, and rs968857) marking four different restriction enzyme sites unequivocally defined most haplotypes. We were able to assign a haplotype to 86% of samples that were either partially or misclassified using RFLPs. Phased data using only four SNPs allowed unequivocal assignment of a haplotype that was not always possible using a larger number of RFLPs. Given the availability of genome-wide SNP data, our method is rapid and does not require high computational resources.

  9. A Family with Von Hippel-Lindau Syndrome: The Findings of Indium-111 Somatostatin Receptor Scintigraphy, Iodine-123 Metaiodobenzylguanidine Scintigraphy and Single Photon Emission Computerized Tomography

    Directory of Open Access Journals (Sweden)

    Pelin Arıcan

    2017-02-01

    Full Text Available Von Hippel-Lindau syndrome (VHLS is an autosomal dominant hereditary familial disorder characterized by development of malignant and benign neoplasms. Differential diagnosis of the adrenal and pancreatic masses are difficult in patients with VHLS. Iodine-123 metaiodobenzylguanidine (I-123 MIBG and indium-111 somatostatin receptor scintigraphies (In-111 SRS have important roles in the differential diagnosis of adrenal and pancreatic masses in those patients. In this case report, we present the findings of I-123 MIBG single-photon emission computerized tomography (SPECT/CT and In-111 SRS SPECT/CT in three members of a family with VHLS. In case 1, a residual neuroendocrine tumor (NET was detected in the head of pancreas on In-111 SRS SPECT/CT images. In case 2 and 3, I-123 MIBG SPECT/CT confirmed the adrenal masses as pheochromocytoma, and the extra-adrenal mass as NET, before surgery. We thought that In-111 SRS and I-123 MIBG scan might be helpful in the routine work up of VHLS patients for diagnostic and therapeutic purposes. Hybrid SPECT/CT system may improve diagnostic accuracy of planar images since it assesses morphologic and functional information together.

  10. Short Tree, Long Tree, Right Tree, Wrong Tree: New Acquisition Bias Corrections for Inferring SNP Phylogenies.

    Science.gov (United States)

    Leaché, Adam D; Banbury, Barbara L; Felsenstein, Joseph; de Oca, Adrián Nieto-Montes; Stamatakis, Alexandros

    2015-11-01

    Single nucleotide polymorphisms (SNPs) are useful markers for phylogenetic studies owing in part to their ubiquity throughout the genome and ease of collection. Restriction site associated DNA sequencing (RADseq) methods are becoming increasingly popular for SNP data collection, but an assessment of the best practises for using these data in phylogenetics is lacking. We use computer simulations, and new double digest RADseq (ddRADseq) data for the lizard family Phrynosomatidae, to investigate the accuracy of RAD loci for phylogenetic inference. We compare the two primary ways RAD loci are used during phylogenetic analysis, including the analysis of full sequences (i.e., SNPs together with invariant sites), or the analysis of SNPs on their own after excluding invariant sites. We find that using full sequences rather than just SNPs is preferable from the perspectives of branch length and topological accuracy, but not of computational time. We introduce two new acquisition bias corrections for dealing with alignments composed exclusively of SNPs, a conditional likelihood method and a reconstituted DNA approach. The conditional likelihood method conditions on the presence of variable characters only (the number of invariant sites that are unsampled but known to exist is not considered), while the reconstituted DNA approach requires the user to specify the exact number of unsampled invariant sites prior to the analysis. Under simulation, branch length biases increase with the amount of missing data for both acquisition bias correction methods, but branch length accuracy is much improved in the reconstituted DNA approach compared to the conditional likelihood approach. Phylogenetic analyses of the empirical data using concatenation or a coalescent-based species tree approach provide strong support for many of the accepted relationships among phrynosomatid lizards, suggesting that RAD loci contain useful phylogenetic signal across a range of divergence times despite the

  11. Application of high resolution SNP arrays in patients with congenital ...

    Indian Academy of Sciences (India)

    TING-YING LEI

    lent oligonucleotide-based array-CGH to determine the exact breakpoints in 14 patients with partial deletions of chromo- some 13q21.1-qter. They were able to refine the smallest deletion region linked to cleft lip/palate (13q31.3–13q33.1). Except for the arrays that measure DNA copy number differ- ences only, SNP arrays, ...

  12. QTL detection for coccidiosis (Eimeria tenella) resistance in a Fayoumi × Leghorn F₂ cross, using a medium-density SNP panel.

    Science.gov (United States)

    Bacciu, Nicola; Bed'Hom, Bertrand; Filangi, Olivier; Romé, Hélène; Gourichon, David; Répérant, Jean-Michel; Le Roy, Pascale; Pinard-van der Laan, Marie-Hélène; Demeure, Olivier

    2014-02-19

    Coccidiosis is a major parasitic disease that causes huge economic losses to the poultry industry. Its pathogenicity leads to depression of body weight gain, lesions and, in the most serious cases, death in affected animals. Genetic variability for resistance to coccidiosis in the chicken has been demonstrated and if this natural resistance could be exploited, it would reduce the costs of the disease. Previously, a design to characterize the genetic regulation of Eimeria tenella resistance was set up in a Fayoumi × Leghorn F2 cross. The 860 F2 animals of this design were phenotyped for weight gain, plasma coloration, hematocrit level, intestinal lesion score and body temperature. In the work reported here, the 860 animals were genotyped for a panel of 1393 (157 microsatellites and 1236 single nucleotide polymorphism (SNP) markers that cover the sequenced genome (i.e. the 28 first autosomes and the Z chromosome). In addition, with the aim of finding an index capable of explaining a large amount of the variance associated with resistance to coccidiosis, a composite factor was derived by combining the variables of all these traits in a single variable. QTL detection was performed by linkage analysis using GridQTL and QTLMap. Single and multi-QTL models were applied. Thirty-one QTL were identified i.e. 27 with the single-QTL model and four with the multi-QTL model and the average confidence interval was 5.9 cM. Only a few QTL were common with the previous study that used the same design but focused on the 260 more extreme animals that were genotyped with the 157 microsatellites only. Major differences were also found between results obtained with QTLMap and GridQTL. The medium-density SNP panel made it possible to genotype new regions of the chicken genome (including micro-chromosomes) that were involved in the genetic control of the traits investigated. This study also highlights the strong variations in QTL detection between different models and marker densities.

  13. QTL detection for coccidiosis (Eimeria tenella) resistance in a Fayoumi × Leghorn F2 cross, using a medium-density SNP panel

    Science.gov (United States)

    2014-01-01

    Background Coccidiosis is a major parasitic disease that causes huge economic losses to the poultry industry. Its pathogenicity leads to depression of body weight gain, lesions and, in the most serious cases, death in affected animals. Genetic variability for resistance to coccidiosis in the chicken has been demonstrated and if this natural resistance could be exploited, it would reduce the costs of the disease. Previously, a design to characterize the genetic regulation of Eimeria tenella resistance was set up in a Fayoumi × Leghorn F2 cross. The 860 F2 animals of this design were phenotyped for weight gain, plasma coloration, hematocrit level, intestinal lesion score and body temperature. In the work reported here, the 860 animals were genotyped for a panel of 1393 (157 microsatellites and 1236 single nucleotide polymorphism (SNP) markers that cover the sequenced genome (i.e. the 28 first autosomes and the Z chromosome). In addition, with the aim of finding an index capable of explaining a large amount of the variance associated with resistance to coccidiosis, a composite factor was derived by combining the variables of all these traits in a single variable. QTL detection was performed by linkage analysis using GridQTL and QTLMap. Single and multi-QTL models were applied. Results Thirty-one QTL were identified i.e. 27 with the single-QTL model and four with the multi-QTL model and the average confidence interval was 5.9 cM. Only a few QTL were common with the previous study that used the same design but focused on the 260 more extreme animals that were genotyped with the 157 microsatellites only. Major differences were also found between results obtained with QTLMap and GridQTL. Conclusions The medium-density SNP panel made it possible to genotype new regions of the chicken genome (including micro-chromosomes) that were involved in the genetic control of the traits investigated. This study also highlights the strong variations in QTL detection between

  14. Regulatory T Cell Responses in Participants with Type 1 Diabetes after a Single Dose of Interleukin-2: A Non-Randomised, Open Label, Adaptive Dose-Finding Trial.

    Directory of Open Access Journals (Sweden)

    John A Todd

    2016-10-01

    Full Text Available Interleukin-2 (IL-2 has an essential role in the expansion and function of CD4+ regulatory T cells (Tregs. Tregs reduce tissue damage by limiting the immune response following infection and regulate autoreactive CD4+ effector T cells (Teffs to prevent autoimmune diseases, such as type 1 diabetes (T1D. Genetic susceptibility to T1D causes alterations in the IL-2 pathway, a finding that supports Tregs as a cellular therapeutic target. Aldesleukin (Proleukin; recombinant human IL-2, which is administered at high doses to activate the immune system in cancer immunotherapy, is now being repositioned to treat inflammatory and autoimmune disorders at lower doses by targeting Tregs.To define the aldesleukin dose response for Tregs and to find doses that increase Tregs physiologically for treatment of T1D, a statistical and systematic approach was taken by analysing the pharmacokinetics and pharmacodynamics of single doses of subcutaneous aldesleukin in the Adaptive Study of IL-2 Dose on Regulatory T Cells in Type 1 Diabetes (DILT1D, a single centre, non-randomised, open label, adaptive dose-finding trial with 40 adult participants with recently diagnosed T1D. The primary endpoint was the maximum percentage increase in Tregs (defined as CD3+CD4+CD25highCD127low from the baseline frequency in each participant measured over the 7 d following treatment. There was an initial learning phase with five pairs of participants, each pair receiving one of five pre-assigned single doses from 0.04 × 106 to 1.5 × 106 IU/m2, in order to model the dose-response curve. Results from each participant were then incorporated into interim statistical modelling to target the two doses most likely to induce 10% and 20% increases in Treg frequencies. Primary analysis of the evaluable population (n = 39 found that the optimal doses of aldesleukin to induce 10% and 20% increases in Tregs were 0.101 × 106 IU/m2 (standard error [SE] = 0.078, 95% CI = -0.052, 0.254 and 0.497

  15. Tag SNP selection for prediction of tick resistance in Brazilian Braford and Hereford cattle breeds using Bayesian methods.

    Science.gov (United States)

    Sollero, Bruna P; Junqueira, Vinícius S; Gomes, Cláudia C G; Caetano, Alexandre R; Cardoso, Fernando F

    2017-06-15

    Cattle resistance to ticks is known to be under genetic control with a complex biological mechanism within and among breeds. Our aim was to identify genomic segments and tag single nucleotide polymorphisms (SNPs) associated with tick-resistance in Hereford and Braford cattle. The predictive performance of a very low-density tag SNP panel was estimated and compared with results obtained with a 50 K SNP dataset. BayesB (π = 0.99) was initially applied in a genome-wide association study (GWAS) for this complex trait by using deregressed estimated breeding values for tick counts and 41,045 SNP genotypes from 3455 animals raised in southern Brazil. To estimate the combined effect of a genomic region that is potentially associated with quantitative trait loci (QTL), 2519 non-overlapping 1-Mb windows that varied in SNP number were defined, with the top 48 windows including 914 SNPs and explaining more than 20% of the estimated genetic variance for tick resistance. Subsequently, the most informative SNPs were selected based on Bayesian parameters (model frequency and t-like statistics), linkage disequilibrium and minor allele frequency to propose a very low-density 58-SNP panel. Some of these tag SNPs mapped close to or within genes and pseudogenes that are functionally related to tick resistance. Prediction ability of this SNP panel was investigated by cross-validation using K-means and random clustering and a BayesA model to predict direct genomic values. Accuracies from these cross-validations were 0.27 ± 0.09 and 0.30 ± 0.09 for the K-means and random clustering groups, respectively, compared to respective values of 0.37 ± 0.08 and 0.43 ± 0.08 when using all 41,045 SNPs and BayesB with π = 0.99, or of 0.28 ± 0.07 and 0.40 ± 0.08 with π = 0.999. Bayesian GWAS model parameters can be used to select tag SNPs for a very low-density panel, which will include SNPs that are potentially linked to functional genes. It can be useful for cost

  16. The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

    Directory of Open Access Journals (Sweden)

    Young-Sup Lee

    2016-01-01

    Full Text Available Milk-related traits (milk yield, fat and protein have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP. This suggestion is based on the best linear unbiased prediction (BLUP and the Fisher’s fundamental theorem of natural selection both of which are trait-dependent. Fisher’s theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs in all traits and p-value <0.001 (nearly top 0.1% in any traits was 14. They are phosphodiesterase 4B (PDE4B, serine/threonine kinase 40 (STK40, collagen, type XI, alpha 1 (COL11A1, ephrin-A1 (EFNA1, netrin 4 (NTN4, neuron specific gene family member 1 (NSG1, estrogen receptor 1 (ESR1, neurexin 3 (NRXN3, spectrin, beta, non-erythrocytic 1 (SPTBN1, ADP-ribosylation factor interacting protein 1 (ARFIP1, mutL homolog 1 (MLH1, transmembrane channel-like 7 (TMC7, carboxypeptidase X, member 2 (CPXM2 and ADAM metallopeptidase domain 12 (ADAM12. These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to 2*SNP effect.

  17. Single Nucleotide Polymorphism Detection Using Au-Decorated Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Keum-Ju Lee

    2011-01-01

    Full Text Available We demonstrate that Au-cluster-decorated single-walled carbon nanotubes (SWNTs may be used to discriminate single nucleotide polymorphism (SNP. Nanoscale Au clusters were formed on the side walls of carbon nanotubes in a transistor geometry using electrochemical deposition. The effect of Au cluster decoration appeared as hole doping when electrical transport characteristics were examined. Thiolated single-stranded probe peptide nucleic acid (PNA was successfully immobilized on Au clusters decorating single-walled carbon nanotube field-effect transistors (SWNT-FETs, resulting in a conductance decrease that could be explained by a decrease in Au work function upon adsorption of thiolated PNA. Although a target single-stranded DNA (ssDNA with a single mismatch did not cause any change in electrical conductance, a clear decrease in conductance was observed with matched ssDNA, thereby showing the possibility of SNP (single nucleotide polymorphism detection using Au-cluster-decorated SWNT-FETs. However, a power to discriminate SNP target is lost in high ionic environment. We can conclude that observed SNP discrimination in low ionic environment is due to the hampered binding of SNP target on nanoscale surfaces in low ionic conditions.

  18. Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses.

    Science.gov (United States)

    Orr, N; Back, W; Gu, J; Leegwater, P; Govindarajan, P; Conroy, J; Ducro, B; Van Arendonk, J A M; MacHugh, D E; Ennis, S; Hill, E W; Brama, P A J

    2010-12-01

    The recent completion of the horse genome and commercial availability of an equine SNP genotyping array has facilitated the mapping of disease genes. We report putative localization of the gene responsible for dwarfism, a trait in Friesian horses that is thought to have a recessive mode of inheritance, to a 2-MB region of chromosome 14 using just 10 affected animals and 10 controls. We successfully genotyped 34,429 SNPs that were tested for association with dwarfism using chi-square tests. The most significant SNP in our study, BIEC2-239376 (P(2df)=4.54 × 10(-5), P(rec)=7.74 × 10(-6)), is located close to a gene implicated in human dwarfism. Fine-mapping and resequencing analyses did not aid in further localization of the causative variant, and replication of our findings in independent sample sets will be necessary to confirm these results. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.

  19. Effects of fluoxetine on the amygdala and the hippocampus after administration of a single prolonged stress to male Wistar rates: In vivo proton magnetic resonance spectroscopy findings.

    Science.gov (United States)

    Han, Fang; Xiao, Bing; Wen, Lili; Shi, Yuxiu

    2015-05-30

    Posttraumatic stress disorder (PTSD) is an anxiety- and memory-based disorder. The hippocampus and amygdala are key areas in mood regulation. Fluoxetine was found to improve the anxiety-related symptoms of PTSD patients. However, little work has directly examined the effects of fluoxetine on the hippocampus and the amygdala. In the present study, male Wistar rats received fluoxetine or vehicle after exposure to a single prolonged stress (SPS), an animal model of PTSD. In vivo proton magnetic resonance spectroscopy ((1)H-MRS) was performed -1, 1, 4, 7 and 14 days after SPS to examine the effects of fluoxetine on neurometabolite changes in amygdala, hippocampus and thalamus. SPS increased the N-acetylaspartate (NAA)/creatine (Cr) and choline moieties (Cho)/Cr ratios in the bilateral amygdala on day 4, decreased the NAA/Cr ratio in the left hippocampus on day 1, and increased both ratios in the right hippocampus on day 14. But no significant change was found in the thalamus. Fluoxetine treatment corrected the SPS increases in the NAA/Cr and Cho/Cr levels in the amygdala on day 4 and in the hippocampus on day 14, but it failed to normalise SPS-associated decreases in NAA/Cr levels in the left hippocampus on day 1. These results suggested that metabolic abnormalities in the amygdala and the hippocampus were involved in SPS, and different effects of fluoxetine in correcting SPS-induced neurometabolite changes among the three areas. These findings have implications for fluoxetine treatment in PTSD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Integrating milk metabolite profile information for the prediction of traditional milk traits based on SNP information for Holstein cows.

    Directory of Open Access Journals (Sweden)

    Nina Melzer

    Full Text Available In this study the benefit of metabolome level analysis for the prediction of genetic value of three traditional milk traits was investigated. Our proposed approach consists of three steps: First, milk metabolite profiles are used to predict three traditional milk traits of 1,305 Holstein cows. Two regression methods, both enabling variable selection, are applied to identify important milk metabolites in this step. Second, the prediction of these important milk metabolite from single nucleotide polymorphisms (SNPs enables the detection of SNPs with significant genetic effects. Finally, these SNPs are used to predict milk traits. The observed precision of predicted genetic values was compared to the results observed for the classical genotype-phenotype prediction using all SNPs or a reduced SNP subset (reduced classical approach. To enable a comparison between SNP subsets, a special invariable evaluation design was implemented. SNPs close to or within known quantitative trait loci (QTL were determined. This enabled us to determine if detected important SNP subsets were enriched in these regions. The results show that our approach can lead to genetic value prediction, but requires less than 1% of the total amount of (40,317 SNPs., significantly more important SNPs in known QTL regions were detected using our approach compared to the reduced classical approach. Concluding, our approach allows a deeper insight into the associations between the different levels of the genotype-phenotype map (genotype-metabolome, metabolome-phenotype, genotype-phenotype.

  1. Effective Natural PCR-RFLP Primer Design for SNP Genotyping Using Teaching-Learning-Based Optimization With Elite Strategy.

    Science.gov (United States)

    Cheng, Yu-Huei; Kuo, Che-Nan; Lai, Ching-Ming

    2016-10-01

    SNP (single nucleotide polymorphism) genotyping is the determination of genetic variations of SNPs between members of a species. In many laboratories, PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) is a usually used biotechnology for SNP genotyping, especially in small-scale basic research studies of complex genetic diseases. PCR-RFLP requires an available restriction enzyme at least for identify a target SNP and an effective primer pair conforms numerous constraints. However, the lots of restriction enzymes, tedious sequence and complicated constraints make the mining of available restriction enzymes and the design of effective primer pairs become a major challenge. In the study, we propose a novel and available CI (Computation Intelligence)-based method called TLBO (teaching-learning-based optimization) and introduce the elite strategy to design effective primer pairs. Three common melting temperature computations are available in the method. REHUNT (Restriction Enzymes HUNTing) is first combined with the method to mine available restriction enzymes. Robust in silico simulations for the GA (genetic algorithm), the PSO (particle swarm optimization), and the method for natural PCR-RFLP primer design in the SLC6A4 gene with two hundred and eighty-eight SNPs had been performed and compared. These methods had been implemented in JAVA and they are freely available at https://sites.google.com/site/yhcheng1981/tlbonpd-elite for users of academic and non-commercial interests.

  2. Ubiquitin-conjugating enzyme E2-like gene associated to pathogen response in Concholepas concholepas: SNP identification and transcription expression.

    Science.gov (United States)

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2012-10-01

    Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Development of a temperature-switch PCR-based SNP typing method for Mycobacterium ulcerans.

    Directory of Open Access Journals (Sweden)

    Katharina Röltgen

    Full Text Available Mycobacterium ulcerans (M. ulcerans, the causative agent of the devastating skin disease Buruli ulcer (BU, is characterized by an extremely low level of genetic diversity. Recently, we have reported the first discrimination of closely related M. ulcerans variants in the BU endemic Densu River Valley of Ghana. In the study real-time PCR-based single nucleotide polymorphism (SNP typing at 89 predefined loci revealed the presence of ten M. ulcerans haplotypes circulating in the BU endemic region. Here we describe the development of temperature-switch PCR (TSP assays that allow distinguishing these haplotypes by conventional agarose gel-based analysis of the PCR products. After validation of the accuracy of typing results, the TSP assays were successfully established in a reference laboratory in Ghana. Development of the cost-effective and rapid TSP-based genetic fingerprinting method will thus allow investigating the spread of M. ulcerans clones by regular genetic monitoring in BU endemic countries.

  4. Olive oil DNA fingerprinting by multiplex SNP genotyping on fluorescent microspheres.

    Science.gov (United States)

    Kalogianni, Despina P; Bazakos, Christos; Boutsika, Lemonia M; Targem, Mehdi Ben; Christopoulos, Theodore K; Kalaitzis, Panagiotis; Ioannou, Penelope C

    2015-04-01

    Olive oil cultivar verification is of primary importance for the competitiveness of the product and the protection of consumers and producers from fraudulence. Single-nucleotide polymorphisms (SNPs) have emerged as excellent DNA markers for authenticity testing. This paper reports the first multiplex SNP genotyping assay for olive oil cultivar identification that is performed on a suspension of fluorescence-encoded microspheres. Up to 100 sets of microspheres, with unique "fluorescence signatures", are available. Allele discrimination was accomplished by primer extension reaction. The reaction products were captured via hybridization on the microspheres and analyzed, within seconds, by a flow cytometer. The "fluorescence signature" of each microsphere is assigned to a specific allele, whereas the signal from a reporter fluorophore denotes the presence of the allele. As a model, a panel of three SNPs was chosen that enabled identification of five common Greek olive cultivars (Adramytini, Chondrolia Chalkidikis, Kalamon, Koroneiki, and Valanolia).

  5. Identification of a sex-linked SNP marker in the salmon louse (Lepeophtheirus salmonis using RAD sequencing.

    Directory of Open Access Journals (Sweden)

    Stephen N Carmichael

    Full Text Available The salmon louse (Lepeophtheirus salmonis (Krøyer, 1837 is a parasitic copepod that can, if untreated, cause considerable damage to Atlantic salmon (Salmo salar Linnaeus, 1758 and incurs significant costs to the Atlantic salmon mariculture industry. Salmon lice are gonochoristic and normally show sex ratios close to 1:1. While this observation suggests that sex determination in salmon lice is genetic, with only minor environmental influences, the mechanism of sex determination in the salmon louse is unknown. This paper describes the identification of a sex-linked Single Nucleotide Polymorphism (SNP marker, providing the first evidence for a genetic mechanism of sex determination in the salmon louse. Restriction site-associated DNA sequencing (RAD-seq was used to isolate SNP markers in a laboratory-maintained salmon louse strain. A total of 85 million raw Illumina 100 base paired-end reads produced 281,838 unique RAD-tags across 24 unrelated individuals. RAD marker Lsa101901 showed complete association with phenotypic sex for all individuals analysed, being heterozygous in females and homozygous in males. Using an allele-specific PCR assay for genotyping, this SNP association pattern was further confirmed for three unrelated salmon louse strains, displaying complete association with phenotypic sex in a total of 96 genotyped individuals. The marker Lsa101901 was located in the coding region of the prohibitin-2 gene, which showed a sex-dependent differential expression, with mRNA levels determined by RT-qPCR about 1.8-fold higher in adult female than adult male salmon lice. This study's observations of a novel sex-linked SNP marker are consistent with sex determination in the salmon louse being genetic and following a female heterozygous system. Marker Lsa101901 provides a tool to determine the genetic sex of salmon lice, and could be useful in the development of control strategies.

  6. Snpdat: Easy and rapid annotation of results from de novo snp discovery projects for model and non-model organisms

    Directory of Open Access Journals (Sweden)

    Doran Anthony G

    2013-02-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most abundant genetic variant found in vertebrates and invertebrates. SNP discovery has become a highly automated, robust and relatively inexpensive process allowing the identification of many thousands of mutations for model and non-model organisms. Annotating large numbers of SNPs can be a difficult and complex process. Many tools available are optimised for use with organisms densely sampled for SNPs, such as humans. There are currently few tools available that are species non-specific or support non-model organism data. Results Here we present SNPdat, a high throughput analysis tool that can provide a comprehensive annotation of both novel and known SNPs for any organism with a draft sequence and annotation. Using a dataset of 4,566 SNPs identified in cattle using high-throughput DNA sequencing we demonstrate the annotations performed and the statistics that can be generated by SNPdat. Conclusions SNPdat provides users with a simple tool for annotation of genomes that are either not supported by other tools or have a small number of annotated SNPs available. SNPdat can also be used to analyse datasets from organisms which are densely sampled for SNPs. As a command line tool it can easily be incorporated into existing SNP discovery pipelines and fills a niche for analyses involving non-model organisms that are not supported by many available SNP annotation tools. SNPdat will be of great interest to scientists involved in SNP discovery and analysis projects, particularly those with limited bioinformatics experience.

  7. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Liezhao Liu

    Full Text Available A high density genetic linkage map for the complex allotetraploid crop species Brassica napus (oilseed rape was constructed in a late-generation recombinant inbred line (RIL population, using genome-wide single nucleotide polymorphism (SNP markers assayed by the Brassica 60 K Infinium BeadChip Array. The linkage map contains 9164 SNP markers covering 1832.9 cM. 1232 bins account for 7648 of the markers. A subset of 2795 SNP markers, with an average distance of 0.66 cM between adjacent markers, was applied for QTL mapping of seed colour and the cell wall fiber components acid detergent lignin (ADL, cellulose and hemicellulose. After phenotypic analyses across four different environments a total of 11 QTL were detected for seed colour and fiber traits. The high-density map considerably improved QTL resolution compared to the previous low-density maps. A previously identified major QTL with very high effects on seed colour and ADL was pinpointed to a narrow genome interval on chromosome A09, while a minor QTL explaining 8.1% to 14.1% of variation for ADL was detected on chromosome C05. Five and three QTL accounting for 4.7% to 21.9% and 7.3% to 16.9% of the phenotypic variation for cellulose and hemicellulose, respectively, were also detected. To our knowledge this is the first description of QTL for seed cellulose and hemicellulose in B. napus, representing interesting new targets for improving oil content. The high density SNP genetic map enables navigation from interesting B. napus QTL to Brassica genome sequences, giving useful new information for understanding the genetics of key seed quality traits in rapeseed.

  8. A SNP resource for studying North American moose [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Theodore S. Kalbfleisch

    2018-01-01

    Full Text Available Background: Moose (Alces alces colonized the North American continent from Asia less than 15,000 years ago, and spread across the boreal forest regions of Canada and the northern United States (US.  Contemporary populations have low genetic diversity, due either to low number of individuals in the original migration (founder effect, and/or subsequent population bottlenecks in North America.  Genetic tests based on informative single nucleotide polymorphism (SNP markers are helpful in forensic and wildlife conservation activities, but have been difficult to develop for moose, due to the lack of a reference genome assembly and whole genome sequence (WGS data. Methods:  WGS data were generated for four individual moose from the US states of Alaska, Idaho, Wyoming, and Vermont with minimum and average genome coverage depths of 14- and 19-fold, respectively.  Cattle and sheep reference genomes were used for aligning sequence reads and identifying moose SNPs. Results:  Approximately 11% and 9% of moose WGS reads aligned to cattle and sheep genomes, respectively.  The reads clustered at genomic segments, where sequence identity between these species was greater than 95%.  In these segments, average mapped read depth was approximately 19-fold.  Sets of 46,005 and 36,934 high-confidence SNPs were identified from cattle and sheep comparisons, respectively, with 773 and 552 of those having minor allele frequency of 0.5 and conserved flanking sequences in all three species.  Among the four moose, heterozygosity and allele sharing of SNP genotypes were consistent with decreasing levels of moose genetic diversity from west to east.  A minimum set of 317 SNPs, informative across all four moose, was selected as a resource for future SNP assay design. Conclusions:  All SNPs and associated information are available, without restriction, to support development of SNP-based tests for animal identification, parentage determination, and estimating

  9. New Insights into the Geographic Distribution of Mycobacterium leprae SNP Genotypes Determined for Isolates from Leprosy Cases Diagnosed in Metropolitan France and French Territories.

    Directory of Open Access Journals (Sweden)

    Florence Reibel

    Full Text Available Between 20 and 30 bacteriologically confirmed cases of leprosy are diagnosed each year at the French National Reference Center for mycobacteria. Patients are mainly immigrants from various endemic countries or living in French overseas territories. We aimed at expanding data regarding the geographical distribution of the SNP genotypes of the M. leprae isolates from these patients.Skin biopsies were obtained from 71 leprosy patients diagnosed between January 2009 and December 2013. Data regarding age, sex and place of birth and residence were also collected. Diagnosis of leprosy was confirmed by microscopic detection of acid-fast bacilli and/or amplification by PCR of the M. leprae-specific RLEP region. Single nucleotide polymorphisms (SNP, present in the M. leprae genome at positions 14 676, 1 642 875 and 2 935 685, were determined with an efficiency of 94% (67/71. Almost all patients were from countries other than France where leprosy is still prevalent (n = 31 or from French overseas territories (n = 36 where leprosy is not totally eradicated, while only a minority (n = 4 was born in metropolitan France but have lived in other countries. SNP type 1 was predominant (n = 33, followed by type 3 (n = 17, type 4 (n = 11 and type 2 (n = 6. SNP types were concordant with those previously reported as prevalent in the patients' countries of birth. SNP types found in patients born in countries other than France (Comoros, Haiti, Benin, Congo, Sri Lanka and French overseas territories (French Polynesia, Mayotte and La Réunion not covered by previous work correlated well with geographical location and history of human settlements.The phylogenic analysis of M. leprae strains isolated in France strongly suggests that French leprosy cases are caused by SNP types that are (a concordant with the geographic origin or residence of the patients (non-French countries, French overseas territories, metropolitan France or (b more likely random in regions where

  10. New Insights into the Geographic Distribution of Mycobacterium leprae SNP Genotypes Determined for Isolates from Leprosy Cases Diagnosed in Metropolitan France and French Territories.

    Science.gov (United States)

    Reibel, Florence; Chauffour, Aurélie; Brossier, Florence; Jarlier, Vincent; Cambau, Emmanuelle; Aubry, Alexandra

    2015-01-01

    Between 20 and 30 bacteriologically confirmed cases of leprosy are diagnosed each year at the French National Reference Center for mycobacteria. Patients are mainly immigrants from various endemic countries or living in French overseas territories. We aimed at expanding data regarding the geographical distribution of the SNP genotypes of the M. leprae isolates from these patients. Skin biopsies were obtained from 71 leprosy patients diagnosed between January 2009 and December 2013. Data regarding age, sex and place of birth and residence were also collected. Diagnosis of leprosy was confirmed by microscopic detection of acid-fast bacilli and/or amplification by PCR of the M. leprae-specific RLEP region. Single nucleotide polymorphisms (SNP), present in the M. leprae genome at positions 14 676, 1 642 875 and 2 935 685, were determined with an efficiency of 94% (67/71). Almost all patients were from countries other than France where leprosy is still prevalent (n = 31) or from French overseas territories (n = 36) where leprosy is not totally eradicated, while only a minority (n = 4) was born in metropolitan France but have lived in other countries. SNP type 1 was predominant (n = 33), followed by type 3 (n = 17), type 4 (n = 11) and type 2 (n = 6). SNP types were concordant with those previously reported as prevalent in the patients' countries of birth. SNP types found in patients born in countries other than France (Comoros, Haiti, Benin, Congo, Sri Lanka) and French overseas territories (French Polynesia, Mayotte and La Réunion) not covered by previous work correlated well with geographical location and history of human settlements. The phylogenic analysis of M. leprae strains isolated in France strongly suggests that French leprosy cases are caused by SNP types that are (a) concordant with the geographic origin or residence of the patients (non-French countries, French overseas territories, metropolitan France) or (b) more likely random in regions where diverse

  11. A comparative study of genome-wide SNP, CGH microarray and protein expression analysis to explore genotypic and phenotypic mechanisms of acquired antiestrogen resistance in breast cancer.

    Science.gov (United States)

    Johnson, Neil; Speirs, Valerie; Curtin, Nicola J; Hall, Andrew G

    2008-09-01

    Allelic imbalance is a common feature of many malignancies. We have measured allelic imbalance in genomic DNA from the breast cancer cell lines T47D, MDA-MB-231, two antiestrogen sensitive (MCF7N and MCF7L) and two resistant MCF7 cell lines (MMU2 and LCC9) using single nucleotide polymorphism (SNP) oligonucleotide microarrays. DNA from MCF7(L) and MMU2 cells was also analysed by comparative genome hybridisation (CGH) to compare with SNP microarray data. Proteins previously determined to be involved in disease progression were quantified by Western blot and compared to array data. The SNP and CGH array both detected cytogenetic abnormalities commonly found in breast cancer: amplification of chromosomes 11q13-14.1, 17q and 20q containing cyclin D1, BCAS1 and 3 (Breast Cancer Amplified Sequence) and AIB1 (Amplified in Breast cancer) genes; losses at 6q, 9p and X chromosomes, which included ERalpha (Estrogen Receptor alpha) and p16 ( INK4A ) genes. However the SNP chip array data additionally identified regions of loss of heterozygosity (LOH) followed by duplication of the remaining allele-uniparental disomy (UPD). Good concordance between SNP arrays and CGH analyses was observed, however there was poor correlation between gene copy number and protein levels between the cell lines. There were reductions in ERalpha, cyclin D1 and p27 protein levels whilst p21 protein levels were elevated in antiestrogen resistant MCF7 cell lines. Although protein levels varied there was no difference in gene copy number. This study shows SNP and CGH array analysis are powerful tools for analysis of allelic imbalance in breast cancer. However, the antiestrogen resistant phenotype was likely to be due to changes in gene expression and protein degradation rather than in altered gene copy number.

  12. Population structure of Atlantic Mackerel inferred from RAD-seq derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection

    KAUST Repository

    Rodríguez-Ezpeleta, Naiara

    2016-03-03

    Restriction-site associated DNA sequencing (RAD-seq) and related methods are revolutionizing the field of population genomics in non-model organisms as they allow generating an unprecedented number of single nucleotide polymorphisms (SNPs) even when no genomic information is available. Yet, RAD-seq data analyses rely on assumptions on nature and number of nucleotide variants present in a single locus, the choice of which may lead to an under- or overestimated number of SNPs and/or to incorrectly called genotypes. Using the Atlantic mackerel (Scomber scombrus L.) and a close relative, the Atlantic chub mackerel (Scomber colias), as case study, here we explore the sensitivity of population structure inferences to two crucial aspects in RAD-seq data analysis: the maximum number of mismatches allowed to merge reads into a locus and the relatedness of the individuals used for genotype calling and SNP selection. Our study resolves the population structure of the Atlantic mackerel, but, most importantly, provides insights into the effects of alternative RAD-seq data analysis strategies on population structure inferences that are directly applicable to other species.

  13. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks.

    Science.gov (United States)

    Guo, Liyuan; Wang, Jing

    2018-01-04

    Here, we present the updated rSNPBase 3.0 database (http://rsnp3.psych.ac.cn), which provides human SNP-related regulatory elements, element-gene pairs and SNP-based regulatory networks. This database is the updated version of the SNP regulatory annotation database rSNPBase and rVarBase. In comparison to the last two versions, there are both structural and data adjustments in rSNPBase 3.0: (i) The most significant new feature is the expansion of analysis scope from SNP-related regulatory elements to include regulatory element-target gene pairs (E-G pairs), therefore it can provide SNP-based gene regulatory networks. (ii) Web function was modified according to data content and a new network search module is provided in the rSNPBase 3.0 in addition to the previous regulatory SNP (rSNP) search module. The two search modules support data query for detailed information (related-elements, element-gene pairs, and other extended annotations) on specific SNPs and SNP-related graphic networks constructed by interacting transcription factors (TFs), miRNAs and genes. (3) The type of regulatory elements was modified and enriched. To our best knowledge, the updated rSNPBase 3.0 is the first data tool supports SNP functional analysis from a regulatory network prospective, it will provide both a comprehensive understanding and concrete guidance for SNP-related regulatory studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. SNP array profiling of mouse cell lines identifies their strains of origin and reveals cross-contamination and widespread aneuploidy.

    Science.gov (United States)

    Didion, John P; Buus, Ryan J; Naghashfar, Zohreh; Threadgill, David W; Morse, Herbert C; de Villena, Fernando Pardo-Manuel

    2014-10-03

    The crisis of Misidentified and contaminated cell lines have plagued the biological research community for decades. Some repositories and journals have heeded calls for mandatory authentication of human cell lines, yet misidentification of mouse cell lines has received little publicity despite their importance in sponsored research. Short tandem repeat (STR) profiling is the standard authentication method, but it may fail to distinguish cell lines derived from the same inbred strain of mice. Additionally, STR profiling does not reveal karyotypic changes that occur in some high-passage lines and may have functional consequences. Single nucleotide polymorphism (SNP) profiling has been suggested as a more accurate and versatile alternative to STR profiling; however, a high-throughput method for SNP-based authentication of mouse cell lines has not been described. We have developed computational methods (Cell Line Authentication by SNP Profiling, CLASP) for cell line authentication and copy number analysis based on a cost-efficient SNP array, and we provide a reference database of commonly used mouse strains and cell lines. We show that CLASP readily discriminates among cell lines of diverse taxonomic origins, including multiple cell lines derived from a single inbred strain, intercross or wild caught mouse. CLASP is also capable of detecting contaminants present at concentrations as low as 5%. Of the 99 cell lines we tested, 15 exhibited substantial divergence from the reported genetic background. In all cases, we were able to distinguish whether the authentication failure was due to misidentification (one cell line, Ba/F3), the presence of multiple strain backgrounds (five cell lines), contamination by other cells and/or the presence of aneuploid chromosomes (nine cell lines). Misidentification and contamination of mouse cell lines is potentially as widespread as it is in human cell culture. This may have substantial implications for studies that are dependent on the

  15. A functional SNP associated with atopic dermatitis controls cell type-specific methylation of the VSTM1 gene locus

    Directory of Open Access Journals (Sweden)

    Dilip Kumar

    2017-02-01

    Full Text Available Abstract Background Expression quantitative trait loci (eQTL databases represent a valuable resource to link disease-associated SNPs to specific candidate genes whose gene expression is significantly modulated by the SNP under investigation. We previously identified signal inhibitory receptor on leukocytes-1 (SIRL-1 as a powerful regulator of human innate immune cell function. While it is constitutively high expressed on neutrophils, on monocytes the SIRL-1 surface expression varies strongly between individuals. The underlying mechanism of regulation, its genetic control as well as potential clinical implications had not been explored yet. Methods Whole blood eQTL data of a Chinese cohort was used to identify SNPs regulating the expression of VSTM1, the gene encoding SIRL-1. The genotype effect was validated by flow cytometry (cell surface expression, correlated with electrophoretic mobility shift assay (EMSA, chromatin immunoprecipitation (ChIP and bisulfite sequencing (C-methylation and its functional impact studied the inhibition of reactive oxygen species (ROS. Results We found a significant association of a single CpG-SNP, rs612529T/C, located in the promoter of VSTM1. Through flow cytometry analysis we confirmed that primarily in the monocytes the protein level of SIRL-1 is strongly associated with genotype of this SNP. In monocytes, the T allele of this SNP facilitates binding of the transcription factors YY1 and PU.1, of which the latter has been recently shown to act as docking site for modifiers of DNA methylation. In line with this notion rs612529T associates with a complete demethylation of the VSTM1 promoter correlating with the allele-specific upregulation of SIRL-1 expression. In monocytes, this upregulation strongly impacts the IgA-induced production of ROS by these cells. Through targeted association analysis we found a significant Meta P value of 1.14 × 10–6 for rs612529 for association to atopic dermatitis (AD

  16. Identification and Validation of SNP Markers Linked to Dwarf Traits Using SLAF-Seq Technology in Lagerstroemia

    Science.gov (United States)

    Ju, Yiqian; Jiao, Yao; Feng, Lu; Pan, Huitang; Cheng, Tangren; Zhang, Qixiang

    2016-01-01

    The genetic control of plant architecture is a promising approach to breed desirable cultivars, particularly in ornamental flowers. In this study, the F1 population (142 seedlings) derived from Lagerstroemia fauriei (non-dwarf) × L. indica ‘Pocomoke’ (dwarf) was phenotyped for six traits (plant height (PH), internode length (IL), internode number, primary lateral branch height (PLBH), secondary lateral branch height and primary branch number), and the IL and PLBH traits were positively correlated with the PH trait and considered representative indexes of PH. Fifty non-dwarf and dwarf seedlings were pooled and subjected to a specific-locus amplified fragment sequencing (SLAF-seq) method, which screened 1221 polymorphic markers. A total of 3 markers segregating between bulks were validated in the F1 population, with the M16337 and M38412 markers highly correlated with the IL trait and the M25207 marker highly correlated with the PLBH trait. These markers provide a predictability of approximately 80% using a single marker (M25207) and a predictability of 90% using marker combinations (M16337 + M25207) in the F1 population, which revealed that the IL and the PLBH traits, especially the PLBH, were the decisive elements for PH in terms of molecular regulation. Further validation was performed in the BC1 population and a set of 28 Lagerstroemia stocks using allele-specific PCR (AS-PCR) technology, and the results showed the stability and reliability of the SNP markers and the co-determination of PH by multiple genes. Our findings provide an important theoretical and practical basis for the early prediction and indirect selection of PH using the IL and the PLBH, and the detected SNPs may be useful for marker-assisted selection (MAS) in crape myrtle. PMID:27404662

  17. Strong effect of SNP rs4988300 of the LRP5 gene on bone phenotype of Caucasian postmenopausal women.

    Science.gov (United States)

    Horváth, Péter; Balla, Bernadett; Kósa, János P; Tóbiás, Bálint; Szili, Balázs; Kirschner, Gyöngyi; Győri, Gabriella; Kató, Karina; Lakatos, Péter; Takács, István

    2016-01-01

    The purpose of this study was to identify relationships between single nucleotide polymorphisms (SNPs) in the genes of the Wnt pathway and bone mineral density (BMD) of postmenopausal women. We chose this pathway due to its importance in bone metabolism that was underlined in several studies. DNA samples of 932 Hungarian postmenopausal women were studied. First, their BMD values at different sites (spine, total hip) were measured, using a Lunar Prodigy DXA scanner. Thereafter, T-score values and the patients' body mass indices (BMIs) were calculated, while information about the fracture history of the sample population was also collected. We genotyped nine SNPs of the following three genes: LRP5, GPR177, and SP7, using a Sequenom MassARRAY Analyzer 4 instrument. The genomic DNA samples used for genotyping were extracted from the buccal mucosa of the subjects. Statistical analyses were carried out using the SPSS 21 and R package. The results of this analysis showed a significant association between SNP rs4988300 of the LRP5 gene and total hip BMD values. We could not reveal any associations between the markers of GPR177, SP7, and bone phenotypes. We found no effect of these genotypes on fracture risk. We could demonstrate a significant gene-gene interaction between two SNPs of LRP5 (rs4988300 and rs634008, p = 0.009) which was lost after Bonferroni correction. We could firmly demonstrate a significant association between rs4988300 of the LRP5 gene and bone density of the hip on the largest homogeneous postmenopausal study group analyzed to date. Our finding corroborates the relationship between LRP5 genotype and bone phenotype in postmenopausal women, however, the complete mechanism of this relationship requires further investigations.

  18. Transcriptome sequencing for SNP discovery across Cucumis melo

    Directory of Open Access Journals (Sweden)

    Blanca José

    2012-06-01

    Full Text Available Abstract Background Melon (Cucumis melo L. is a highly diverse species that is cultivated worldwide. Recent advances in massively parallel sequencing have begun to allow the study of nucleotide diversity in this species. The Sanger method combined with medium-throughput 454 technology were used in a previous study to analyze the genetic diversity of germplasm representing 3 botanical varieties, yielding a collection of about 40,000 SNPs distributed in 14,000 unigenes. However, the usefulness of this resource is limited as the sequenced genotypes do not represent the whole diversity of the species, which is divided into two subspecies with many botanical varieties variable in plant, flowering, and fruit traits, as well as in stress response. As a first step to extensively document levels and patterns of nucleotide variability across the species, we used the high-throughput SOLiD™ system to resequence the transcriptomes of a set of 67 genotypes that had previously been selected from a core collection representing the extant variation of the entire species. Results The deep transcriptome resequencing of all of the genotypes, grouped into 8 pools (wild African agrestis, Asian agrestis and acidulus, exotic Far Eastern conomon, Indian momordica and Asian dudaim and flexuosus, commercial cantalupensis, subsp. melo Asian and European landraces, Spanish inodorus landraces, and Piel de Sapo breeding lines yielded about 300 M reads. Short reads were mapped to the recently generated draft genome assembly of the DHL line Piel de Sapo (inodorus x Songwhan Charmi (conomon and to a new version of melon transcriptome. Regions with at least 6X coverage were used in SNV calling, generating a melon collection with 303,883 variants. These SNVs were dispersed across the entire C. melo genome, and distributed in 15,064 annotated genes. The number and variability of in silico SNVs differed considerably between pools. Our finding of higher genomic diversity in wild

  19. Ascertainment biases in SNP chips affect measures of population divergence

    DEFF Research Database (Denmark)

    Albrechtsen, Anders; Nielsen, Finn Cilius; Nielsen, Rasmus

    2010-01-01

    on inferences regarding genetic differentiation among populations in one of the common genome-wide genotyping platforms. We generate SNP genotyping data for individuals that previously have been subject to partial genome-wide Sanger sequencing and compare inferences based on genotyping data to inferences based...... on direct sequencing. In addition, we also analyze publicly available genome-wide data. We demonstrate that the ascertainment biases will distort measures of human diversity and possibly change conclusions drawn from these measures in some times unexpected ways. We also show that details of the genotyping...

  20. Tag SNP polymorphism of CCL2 and its role in clinical tuberculosis in Han Chinese pediatric population.

    Directory of Open Access Journals (Sweden)

    Wei-Xing Feng

    Full Text Available BACKGROUND: Chemokine (C-C motif ligand 2 CCL2/MCP-1 is among the key signaling molecules of innate immunity; in particular, it is involved in recruitment of mononuclear and other cells in response to infection, including tuberculosis (TB and is essential for granuloma formation. METHODOLOGY/PRINCIPAL FINDINGS: We identified a tag SNP for the CCL2/MCP-1 gene (rs4586 C/T. In order to understand whether this SNP may serve to evaluate the contribution of the CCL2 gene to the expression of TB disease, we further analysed distribution of its alleles and genotypes in 301 TB cases versus 338 non-infected controls (all BCG vaccinated representing a high-risk pediatric population of North China. In the male TB subgroup, the C allele was identified in a higher rate (P = 0.045, and, acting dominantly, was found to be a risk factor for clinical TB (P = 0.029. Homozygous TT genotype was significantly associated with lower CSF mononuclear leukocyte (ML counts in patients with tuberculous meningitis (TBM (P = 0.001. CONCLUSIONS/SIGNIFICANCE: The present study found an association of the CCL2 tag SNP rs4586 C allele and pediatric TB disease in males, suggesting that gender may affect the susceptibility to TB even in children. The association of homozygous TT genotype with decreased CSF mononuclear leukocyte (ML count not only suggests a clinical significance of this SNP, but indicates its potential to assist in the clinical assessment of suspected TBM, where delay is critical and diagnosis is difficult.

  1. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.

    Directory of Open Access Journals (Sweden)

    Chandra Shekhar Pareek

    Full Text Available Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs within potential candidate genes (CGs or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF, Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis

  2. Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters.

    Science.gov (United States)

    Arkova, Olga V; Ponomarenko, Mikhail P; Rasskazov, Dmitry A; Drachkova, Irina A; Arshinova, Tatjana V; Ponomarenko, Petr M; Savinkova, Ludmila K; Kolchanov, Nikolay A

    2015-01-01

    Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we empirically validated the

  3. Pacifiplex: an ancestry-informative SNP panel centred on Australia and the Pacific region.

    Science.gov (United States)

    Santos, Carla; Phillips, Christopher; Fondevila, Manuel; Daniel, Runa; van Oorschot, Roland A H; Burchard, Esteban G; Schanfield, Moses S; Souto, Luis; Uacyisrael, Jolame; Via, Marc; Carracedo, Ángel; Lareu, Maria V

    2016-01-01

    The analysis of human population variation is an area of considerable interest in the forensic, medical genetics and anthropological fields. Several forensic single nucleotide polymorphism (SNP) assays provide ancestry-informative genotypes in sensitive tests designed to work with limited DNA samples, including a 34-SNP multiplex differentiating African, European and East Asian ancestries. Although assays capable of differentiating Oceanian ancestry at a global scale have become available, this study describes markers compiled specifically for differentiation of Oceanian populations. A sensitive multiplex assay, termed Pacifiplex, was developed and optimized in a small-scale test applicable to forensic analyses. The Pacifiplex assay comprises 29 ancestry-informative marker SNPs (AIM-SNPs) selected to complement the 34-plex test, that in a combined set distinguish Africans, Europeans, East Asians and Oceanians. Nine Pacific region study populations were genotyped with both SNP assays, then compared to four reference population groups from the HGDP-CEPH human diversity panel. STRUCTURE analyses estimated population cluster membership proportions that aligned with the patterns of variation suggested for each study population's currently inferred demographic histories. Aboriginal Taiwanese and Philippine samples indicated high East Asian ancestry components, Papua New Guinean and Aboriginal Australians samples were predominantly Oceanian, while other populations displayed cluster patterns explained by the distribution of divergence amongst Melanesians, Polynesians and Micronesians. Genotype data from Pacifiplex and 34-plex tests is particularly well suited to analysis of Australian Aboriginal populations and when combined with Y and mitochondrial DNA variation will provide a powerful set of markers for ancestry inference applied to modern Australian demographic profiles. On a broader geographic scale, Pacifiplex adds highly informative data for inferring the ancestry

  4. RNASEL and MIR146A SNP-SNP interaction as a susceptibility factor for non-melanoma skin cancer.

    Directory of Open Access Journals (Sweden)

    Shohreh F Farzan

    Full Text Available Immunity and inflammatory pathways are important in the genesis of non-melanoma skin cancers (NMSC. Functional genetic variation in immune modulators has the potential to affect disease etiology. We investigated associations between common variants in two key regulators, MIR146A and RNASEL, and their relation to NMSCs. Using a large population-based case-control study of basal cell (BCC and squamous cell carcinoma (SCC, we investigated the impact of MIR146A SNP rs2910164 on cancer risk, and interaction with a SNP in one of its putative targets (RNASEL, rs486907. To examine associations between genotype and BCC and SCC, occurrence odds ratios (OR and 95% confidence intervals (95%CI were calculated using unconditional logistic regression, accounting for multiple confounding factors. We did not observe an overall change in the odds ratios for SCC or BCC among individuals carrying either of the RNASEL or MIR146A variants compared with those who were wild type at these loci. However, there was a sex-specific association between BCC and MIR146A in women (ORGC = 0.73, [95%CI = 0.52-1.03]; ORCC = 0.29, [95% CI = 0.14-0.61], p-trend<0.001, and a reduction in risk, albeit not statistically significant, associated with RNASEL and SCC in men (ORAG = 0.88, [95%CI = 0.65-1.19]; ORAA = 0.68, [95%CI = 0.43-1.08], p-trend = 0.10. Most striking was the strong interaction between the two genes. Among individuals carrying variant alleles of both rs2910164 and rs486907, we observed inverse relationships with SCC (ORSCC = 0.56, [95%CI = 0.38-0.81], p-interaction = 0.012 and BCC (ORBCC = 0.57, [95%CI = 0.40-0.80], p-interaction = 0.005. Our results suggest that genetic variation in immune and inflammatory regulators may influence susceptibility to NMSC, and novel SNP-SNP interaction for a microRNA and its target. These data suggest that RNASEL, an enzyme involved in RNA turnover, is controlled by miR-146a and may be important in NMSC etiology.

  5. A SNP uncoupling Mina expression from the TGFβ signaling pathway.

    Science.gov (United States)

    Lian, Shang L; Mihi, Belgacem; Koyanagi, Madoka; Nakayama, Toshinori; Bix, Mark

    2018-03-01

    Mina is a JmjC family 2-oxoglutarate oxygenase with pleiotropic roles in cell proliferation, cancer, T cell differentiation, pulmonary inflammation, and intestinal parasite expulsion. Although Mina expression varies according to cell-type, developmental stage and activation state, its transcriptional regulation is poorly understood. Across inbred mouse strains, Mina protein level exhibits a bimodal distribution, correlating with inheritance of a biallelic haplotype block comprising 21 promoter/intron 1-region SNPs. We previously showed that heritable differences in Mina protein level are transcriptionally regulated. Accordingly, we decided to test the hypothesis that at least one of the promoter/intron 1-region SNPs perturbs a Mina cis-regulatory element (CRE). Here, we have comprehensively scanned for CREs across a Mina locus-spanning 26-kilobase genomic interval. We discovered 8 potential CREs and functionally validated 4 of these, the strongest of which (E2), residing in intron 1, contained a SNP whose BALB/c-but not C57Bl/6 allele-abolished both Smad3 binding and transforming growth factor beta (TGFβ) responsiveness. Our results demonstrate the TGFβ signaling pathway plays a critical role in regulating Mina expression and SNP rs4191790 controls heritable variation in Mina expression level, raising important questions regarding the evolution of an allele that uncouples Mina expression from the TGFβ signaling pathway. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  6. RNA-Seq identifies SNP markers for growth traits in rainbow trout.

    Directory of Open Access Journals (Sweden)

    Mohamed Salem

    Full Text Available Fast growth is an important and highly desired trait, which affects the profitability of food animal production, with feed costs accounting for the largest proportion of production costs. Traditional phenotype-based selection is typically used to select for growth traits; however, genetic improvement is slow over generations. Single nucleotide polymorphisms (SNPs explain 90% of the genetic differences between individuals; therefore, they are most suitable for genetic evaluation and strategies that employ molecular genetics for selective breeding. SNPs found within or near a coding sequence are of particular interest because they are more likely to alter the biological function of a protein. We aimed to use SNPs to identify markers and genes associated with genetic variation in growth. RNA-Seq whole-transcriptome analysis of pooled cDNA samples from a population of rainbow trout selected for improved growth versus unselected genetic cohorts (10 fish from 1 full-sib family each identified SNP markers associated with growth-rate. The allelic imbalances (the ratio between the allele frequencies of the fast growing sample and that of the slow growing sample were considered at scores >5.0 as an amplification and <0.2 as loss of heterozygosity. A subset of SNPs (n = 54 were validated and evaluated for association with growth traits in 778 individuals of a three-generation parent/offspring panel representing 40 families. Twenty-two SNP markers and one mitochondrial haplotype were significantly associated with growth traits. Polymorphism of 48 of the markers was confirmed in other commercially important aquaculture stocks. Many markers were clustered into genes of metabolic energy production pathways and are suitable candidates for genetic selection. The study demonstrates that RNA-Seq at low sequence coverage of divergent populations is a fast and effective means of identifying SNPs, with allelic imbalances between phenotypes. This technique is

  7. Radial basis function regression methods for predicting quantitative traits using SNP markers.

    Science.gov (United States)

    Long, Nanye; Gianola, Daniel; Rosa, Guilherme J M; Weigel, Kent A; Kranis, Andreas; González-Recio, Oscar

    2010-06-01

    A challenge when predicting total genetic values for complex quantitative traits is that an unknown number of quantitative trait loci may affect phenotypes via cryptic interactions. If markers are available, assuming that their effects on phenotypes are additive may lead to poor predictive ability. Non-parametric radial basis function (RBF) regression, which does not assume a particular form of the genotype-phenotype relationship, was investigated here by simulation and analysis of body weight and food conversion rate data in broilers. The simulation included a toy example in which an arbitrary non-linear genotype-phenotype relationship was assumed, and five different scenarios representing different broad sense heritability levels (0.1, 0.25, 0.5, 0.75 and 0.9) were created. In addition, a whole genome simulation was carried out, in which three different gene action modes (pure additive, additive+dominance and pure epistasis) were considered. In all analyses, a training set was used to fit the model and a testing set was used to evaluate predictive performance. The latter was measured by correlation and predictive mean-squared error (PMSE) on the testing data. For comparison, a linear additive model known as Bayes A was used as benchmark. Two RBF models with single nucleotide polymorphism (SNP)-specific (RBF I) and common (RBF II) weights were examined. Results indicated that, in the presence of complex genotype-phenotype relationships (i.e. non-linearity and non-additivity), RBF outperformed Bayes A in predicting total genetic values using SNP markers. Extension of Bayes A to include all additive, dominance and epistatic effects could improve its prediction accuracy. RBF I was generally better than RBF II, and was able to identify relevant SNPs in the toy example.

  8. The T687G SNP in a P-glycoprotein gene of Fasciola hepatica is not associated with resistance to triclabendazole in two resistant Australian populations.

    Science.gov (United States)

    Elliott, Timothy P; Spithill, Terry W

    2014-11-01

    Triclabendazole (TCBZ) is widely used for control of Fasciola hepatica (liver fluke) in animals and humans and resistance to this drug is now widespread. However, the mechanism of resistance to TCBZ is not known. A T687G single nucleotide polymorphism (SNP) in a P-glycoprotein gene was proposed as a molecular marker for TCBZ resistance in F. hepatica (Wilkinson et al., 2012). We analyzed this Pgp gene from TCBZ-susceptible and TCBZ-resistant populations from Australia to determine if the SNP was a marker for TCBZ resistance. From the 21 parasites studied we observed 27 individual haplotypes in the Pgp sequences which comprised seven haplotypic groups (A-G), with haplotypes A and B representing 81% of the total observed. The T687G SNP was not observed in either of the resistant or susceptible populations. We conclude that the T687G SNP in this Pgp gene is not associated with TCBZ resistance in these Australian F. hepatica populations and therefore unlikely to be a universal molecular marker for TCBZ resistance. Copyright © 2014. Published by Elsevier B.V.

  9. A Unique Primer with an Inosine Chain at the 5'-Terminus Improves the Reliability of SNP Analysis Using the PCR-Amplified Product Length Polymorphism Method.

    Directory of Open Access Journals (Sweden)

    Hideki Shojo

    Full Text Available Polymerase chain reaction-amplified product length polymorphism (PCR-APLP is one of the most convenient and reliable methods for single nucleotide polymorphism (SNP analysis. This method is based on PCR, but uses allele-specific primers containing SNP sites at the 3'-terminus of each primer. To use this method at least two allele-specific primers and one "counter-primer", which serves as a common forward or reverse primer of the allele-specific primers, are required. The allele-specific primers have SNP sites at the 3'-terminus, and another primer should have a few non-complementary flaps at the 5'-terminus to detect SNPs by determining the difference of amplicon length by PCR and subsequent electrophoresis. A major disadvantage of the addition of a non-complementary flap is the non-specific annealing of the primer with non-complementary flaps. However, a design principle for avoiding this undesired annealing has not been fully established, therefore, it is often difficult to design effective APLP primers. Here, we report allele-specific primers with an inosine chain at the 5'-terminus for PCR-APLP analysis. This unique design improves the competitiveness of allele-specific primers and the reliability of SNP analysis when using the PCR-APLP method.

  10. Association of MYLIP rs3757354 SNP and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations

    Directory of Open Access Journals (Sweden)

    Yan Ting-Ting

    2012-10-01

    Full Text Available Abstract Background The association of rs3757354 single nucleotide polymorphism (SNP in the E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP, also known as IDOL gene and serum lipid levels is not well known in the general population. The present study aimed to detect the association of rs3757354 SNP and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Method A total of 627 subjects of Bai Ku Yao minority and 614 participants of Han nationality were randomly selected from our stratified randomized cluster samples. Genotyping of the rs3757354 SNP was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results The levels of serum total cholesterol (TC, high-density lipoprotein cholesterol (HDL-C, low-density lipoprotein cholesterol (LDL-C, apolipoprotein (Apo AI and ApoB were lower in Bai Ku Yao than in Han (P P P 0.05; respectively. There were no significant differences in the genotypic and allelic frequencies between males and females in both ethnic groups. The levels of HDL-C in Bai Ku Yao were different among the genotypes (P P P P Conclusions The present study suggests that the MYLIP rs3757354 SNP is associated with serum TC, HDL-C and ApoAI levels in the Bai Ku Yao and Han populations. But the association is different between the two ethnic groups.

  11. Construction of an SNP-based high-density linkage map for flax (Linum usitatissimum L.) using specific length amplified fragment sequencing (SLAF-seq) technology.

    Science.gov (United States)

    Yi, Liuxi; Gao, Fengyun; Siqin, Bateer; Zhou, Yu; Li, Qiang; Zhao, Xiaoqing; Jia, Xiaoyun; Zhang, Hui

    2017-01-01

    Flax is an important crop for oil and fiber, however, no high-density genetic maps have been reported for this species. Specific length amplified fragment sequencing (SLAF-seq) is a high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. In this study, SLAF-seq was employed to develop SNP markers in an F2 population to construct a high-density genetic map for flax. In total, 196.29 million paired-end reads were obtained. The average sequencing depth was 25.08 in male parent, 32.17 in the female parent, and 9.64 in each F2 progeny. In total, 389,288 polymorphic SLAFs were detected, from which 260,380 polymorphic SNPs were developed. After filtering, 4,638 SNPs were found suitable for genetic map construction. The final genetic map included 4,145 SNP markers on 15 linkage groups and was 2,632.94 cM in length, with an average distance of 0.64 cM between adjacent markers. To our knowledge, this map is the densest SNP-based genetic map for flax. The SNP markers and genetic map reported in here will serve as a foundation for the fine mapping of quantitative trait loci (QTLs), map-based gene cloning and marker assisted selection (MAS) for flax.

  12. Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties.

    Directory of Open Access Journals (Sweden)

    Franck Curk

    Full Text Available Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105 were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species

  13. SNP Discovery for mapping alien introgressions in wheat.

    Science.gov (United States)

    Tiwari, Vijay K; Wang, Shichen; Sehgal, Sunish; Vrána, Jan; Friebe, Bernd; Kubaláková, Marie; Chhuneja, Praveen; Doležel, Jaroslav; Akhunov, Eduard; Kalia, Bhanu; Sabir, Jamal; Gill, Bikram S

    2014-04-10

    Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and monitoring of alien segments in crop

  14. SNP Discovery for mapping alien introgressions in wheat

    Science.gov (United States)

    2014-01-01

    Background Monitoring alien introgressions in crop plants is difficult due to the lack of genetic and molecular mapping information on the wild crop relatives. The tertiary gene pool of wheat is a very important source of genetic variability for wheat improvement against biotic and abiotic stresses. By exploring the 5Mg short arm (5MgS) of Aegilops geniculata, we can apply chromosome genomics for the discovery of SNP markers and their use for monitoring alien introgressions in wheat (Triticum aestivum L). Results The short arm of chromosome 5Mg of Ae. geniculata Roth (syn. Ae. ovata L.; 2n = 4x = 28, UgUgMgMg) was flow-sorted from a wheat line in which it is maintained as a telocentric chromosome. DNA of the sorted arm was amplified and sequenced using an Illumina Hiseq 2000 with ~45x coverage. The sequence data was used for SNP discovery against wheat homoeologous group-5 assemblies. A total of 2,178 unique, 5MgS-specific SNPs were discovered. Randomly selected samples of 59 5MgS-specific SNPs were tested (44 by KASPar assay and 15 by Sanger sequencing) and 84% were validated. Of the selected SNPs, 97% mapped to a chromosome 5Mg addition to wheat (the source of t5MgS), and 94% to 5Mg introgressed from a different accession of Ae. geniculata substituting for chromosome 5D of wheat. The validated SNPs also identified chromosome segments of 5MgS origin in a set of T5D-5Mg translocation lines; eight SNPs (25%) mapped to TA5601 [T5DL · 5DS-5MgS(0.75)] and three (8%) to TA5602 [T5DL · 5DS-5MgS (0.95)]. SNPs (gsnp_5ms83 and gsnp_5ms94), tagging chromosome T5DL · 5DS-5MgS(0.95) with the smallest introgression carrying resistance to leaf rust (Lr57) and stripe rust (Yr40), were validated in two released germplasm lines with Lr57 and Yr40 genes. Conclusion This approach should be widely applicable for the identification of species/genome-specific SNPs. The development of a large number of SNP markers will facilitate the precise introgression and

  15. Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes

    International Nuclear Information System (INIS)

    Wang, Xuting; Tomso, Daniel J.; Liu Xuemei; Bell, Douglas A.

    2005-01-01

    Single nucleotide polymorphisms (SNPs) in the human genome are DNA sequence variations that can alter an individual's response to environmental exposure. SNPs in gene coding regions can lead to changes in the biological properties of the encoded protein. In contrast, SNPs in non-coding gene regulatory regions may affect gene expression levels in an allele-specific manner, and these functional polymorphisms represent an important but relatively unexplored class of genetic variation. The main challenge in analyzing these SNPs is a lack of robust computational and experimental methods. Here, we first outline mechanisms by which genetic variation can impact gene regulation, and review recent findings in this area; then, we describe a methodology for bioinformatic discovery and functional analysis of regulatory SNPs in cis-regulatory regions using the assembled human genome sequence and databases on sequence polymorphism and gene expression. Our method integrates SNP and gene databases and uses a set of computer programs that allow us to: (1) select SNPs, from among the >9 million human SNPs in the NCBI dbSNP database, that are similar to cis-regulatory element (RE) consensus sequences; (2) map the selected dbSNP entries to the human genome assembly in order to identify polymorphic REs near gene start sites; (3) prioritize the candidate polymorphic RE containing genes by searching the existing genotype and gene expression data sets. The applicability of this system has been demonstrated through studies on p53 responsive elements and is being extended to additional pathways and environmentally responsive genes

  16. Combination of RNAseq and SNP nanofluidic array reveals the center of genetic diversity of cacao pathogen Moniliophthora roreri in the upper Magdalena Valley of Colombia and its clonality

    OpenAIRE

    Ali, Shahin S.; Shao, Jonathan; Strem, Mary D.; Phillips-Mora, Wilberth; Zhang, Dapeng; Meinhardt, Lyndel W.; Bailey, Bryan A.

    2015-01-01

    Moniliophthora roreri is the fungal pathogen that causes frosty pod rot (FPR) disease of Theobroma cacao L., the source of chocolate. FPR occurs in most of the cacao producing countries in the Western Hemisphere, causing yield losses up to 80%. Genetic diversity within the FPR pathogen population may allow the population to adapt to changing environmental conditions and adapt to enhanced resistance in the host plant. The present study developed single nucleotide polymorphism (SNP) markers fro...

  17. Haplotype block partitioning as a tool for dimensionality reduction in SNP association studies.

    Science.gov (United States)

    Pattaro, Cristian; Ruczinski, Ingo; Fallin, Danièle M; Parmigiani, Giovanni

    2008-08-29

    Identification of disease-related genes in association studies is challenged by the large number of SNPs typed. To address the dilution of power caused by high dimensionality, and to generate results that are biologically interpretable, it is critical to take into consideration spatial correlation of SNPs along the genome. With the goal of identifying true genetic associations, partitioning the genome according to spatial correlation can be a powerful and meaningful way to address this dimensionality problem. We developed and validated an MCMC Algorithm To Identify blocks of Linkage DisEquilibrium (MATILDE) for clustering contiguous SNPs, and a statistical testing framework to detect association using partitions as units of analysis. We compared its ability to detect true SNP associations to that of the most commonly used algorithm for block partitioning, as implemented in the Haploview and HapBlock software. Simulations were based on artificially assigning phenotypes to individuals with SNPs corresponding to region 14q11 of the HapMap database. When block partitioning is performed using MATILDE, the ability to correctly identify a disease SNP is higher, especially for small effects, than it is with the alternatives considered. Advantages can be both in terms of true positive findings and limiting the number of false discoveries. Finer partitions provided by LD-based methods or by marker-by-marker analysis are efficient only for detecting big effects, or in presence of large sample sizes. The probabilistic approach we propose offers several additional advantages, including: a) adapting the estimation of blocks to the population, technology, and sample size of the study; b) probabilistic assessment of uncertainty about block boundaries and about whether any two SNPs are in the same block; c) user selection of the probability threshold for assigning SNPs to the same block. We demonstrate that, in realistic scenarios, our adaptive, study-specific block partitioning

  18. A 48-plex autosomal SNP GenPlex™ assay for human individualization and relationship testing

    DEFF Research Database (Denmark)

    Tomas Mas, Carmen; Børsting, Claus; Morling, Niels

    2012-01-01

    SNPs are being increasingly used by forensic laboratories. Different platforms have been developed for SNP typing. We describe the GenPlex™ HID system protocol, a new SNP-typing platform developed by Applied Biosystems where 48 of the 52 SNPforID SNPs and amelogenin are included. The GenPlex™ HID...

  19. Association of expression levels in skeletal muscle and a SNP in the ...

    Indian Academy of Sciences (India)

    effect of the expression levels and g.70014208A>G SNP of the MYBPC1 gene on the growth-related trait in JB. The. MYBPC1 SNP may be useful for effective marker-assisted selection to increase the beef production in JB. Growth performance as well as marbling are the main breeding objectives in JB cattle, the major beef ...

  20. Performance of the SNPforID 52 SNP-plex assay in paternity testing

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez, Juan Jose; Hansen, Hanna E

    2008-01-01

    (VNTRs). The typical PIs based on 15 STRs or seven VNTRs were 5-50 times higher than the typical PIs based on 52 SNPs. Six mutations in tandem repeats were detected among the randomly selected trios. In contrast, there was not found any mutations in the SNP loci. The results showed that the 52 SNP...

  1. Evaluation of the OvineSNP50 chip for use in four South African ...

    African Journals Online (AJOL)

    Relatively rapid and cost-effective genotyping using the OvineSNP50 chip holds great promise for the South African sheep industry and research partners. However, SNP ascertainment bias may influence inferences from the genotyping results of South African sheep breeds. Therefore, samples from Dorper, Namaqua ...

  2. High-throughput bacterial SNP typing identifies distinct clusters of Salmonella Typhi causing typhoid in Nepalese children

    LENUS (Irish Health Repository)

    Holt, Kathryn E

    2010-05-31

    Abstract Background Salmonella Typhi (S. Typhi) causes typhoid fever, which remains an important public health issue in many developing countries. Kathmandu, the capital of Nepal, is an area of high incidence and the pediatric population appears to be at high risk of exposure and infection. Methods We recently defined the population structure of S. Typhi, using new sequencing technologies to identify nearly 2,000 single nucleotide polymorphisms (SNPs) that can be used as unequivocal phylogenetic markers. Here we have used the GoldenGate (Illumina) platform to simultaneously type 1,500 of these SNPs in 62 S. Typhi isolates causing severe typhoid in children admitted to Patan Hospital in Kathmandu. Results Eight distinct S. Typhi haplotypes were identified during the 20-month study period, with 68% of isolates belonging to a subclone of the previously defined H58 S. Typhi. This subclone was closely associated with resistance to nalidixic acid, with all isolates from this group demonstrating a resistant phenotype and harbouring the same resistance-associated SNP in GyrA (Phe83). A secondary clone, comprising 19% of isolates, was observed only during the second half of the study. Conclusions Our data demonstrate the utility of SNP typing for monitoring bacterial populations over a defined period in a single endemic setting. We provide evidence for genotype introduction and define a nalidixic acid resistant subclone of S. Typhi, which appears to be the dominant cause of severe pediatric typhoid in Kathmandu during the study period.

  3. Expression Level of the DREB2-Type Gene, Identified with Amplifluor SNP Markers, Correlates with Performance, and Tolerance to Dehydration in Bread Wheat Cultivars from Northern Kazakhstan

    Science.gov (United States)

    Shavrukov, Yuri; Zhumalin, Aibek; Serikbay, Dauren; Botayeva, Makpal; Otemisova, Ainur; Absattarova, Aiman; Sereda, Grigoriy; Sereda, Sergey; Shvidchenko, Vladimir; Turbekova, Arysgul; Jatayev, Satyvaldy; Lopato, Sergiy; Soole, Kathleen; Langridge, Peter

    2016-01-01

    A panel of 89 local commercial cultivars of bread wheat was tested in field trials in the dry conditions of Northern Kazakhstan. Two distinct groups of cultivars (six cultivars in each group), which had the highest and the lowest grain yield under drought were selected for further experiments. A dehydration test conducted on detached leaves indicated a strong association between rates of water loss in plants from the first group with highest grain yield production in the dry environment relative to the second group. Modern high-throughput Amplifluor Single Nucleotide Polymorphism (SNP) technology was applied to study allelic variations in a series of drought-responsive genes using 19 SNP markers. Genotyping of an SNP in the TaDREB5 (DREB2-type) gene using the Amplifluor SNP marker KATU48 revealed clear allele distribution across the entire panel of wheat accessions, and distinguished between the two groups of cultivars with high and low yield under drought. Significant differences in expression levels of TaDREB5 were revealed by qRT-PCR. Most wheat plants from the first group of cultivars with high grain yield showed slight up-regulation in the TaDREB5 transcript in dehydrated leaves. In contrast, expression of TaDREB5 in plants from the second group of cultivars with low grain yield was significantly down-regulated. It was found that SNPs did not alter the amino acid sequence of TaDREB5 protein. Thus, a possible explanation is that alternative splicing and up-stream regulation of TaDREB5 may be affected by SNP, but these hypotheses require additional analysis (and will be the focus of future studies). PMID:27917186

  4. Rapid detection of SNP (c.309T>G in the MDM2 gene by the Duplex SmartAmp method.

    Directory of Open Access Journals (Sweden)

    Yasuaki Enokida

    Full Text Available BACKGROUND: Genetic polymorphisms in the human MDM2 gene are suggested to be a tumor susceptibility marker and a prognostic factor for cancer. It has been reported that a single nucleotide polymorphism (SNP c.309T>G in the MDM2 gene attenuates the tumor suppressor activity of p53 and accelerates tumor formation in humans. METHODOLOGY: In this study, to detect the SNP c.309T>G in the MDM2 gene, we have developed a new SNP detection method, named "Duplex SmartAmp," which enabled us to simultaneously detect both 309T and 309G alleles in one tube. To develop this new method, we introduced new primers i.e., nBP and oBPs, as well as two different fluorescent dyes that separately detect those genetic polymorphisms. RESULTS AND CONCLUSIONS: By the Duplex SmartAmp method, the genetic polymorphisms of the MDM2 gene were detected directly from a small amount of genomic DNA or blood samples. We used 96 genomic DNA and 24 blood samples to validate the Duplex SmartAmp by comparison with results of the conventional PCR-RFLP method; consequently, the Duplex SmartAmp results agreed totally with those of the PCR-RFLP method. Thus, the new SNP detection method is considered useful for detecting the SNP c.309T>G in the MDM2 gene so as to judge cancer susceptibility against some cellular stress in the clinical setting, and also to handle a large number of samples and enable rapid clinical diagnosis.

  5. Clinical features and radiological findings of adenovirus pneumonia associated with progression to acute respiratory distress syndrome: A single center study in 19 adult patients

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Min Jae; Chong, Semin [Dept. of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul (Korea, Republic of); Chung, Myung Jin; Lee, Kyung Soo; KIm, Tae Jung; Kim, Tae Sung; Han, Jung Ho [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-11-15

    To describe radiologic findings of adenovirus pneumonia and to understand clinico-radiological features associated with progression to acute respiratory distress syndrome (ARDS) in patients with adenovirus pneumonia. This study included 19 patients diagnosed with adenovirus pneumonia at a tertiary referral center, in the period between March 2003 and April 2015. Clinical findings were reviewed, and two radiologists assessed imaging findings by consensus. Chi-square, Fisher's exact, and Student's t tests were used for comparing patients with and without subsequent development of ARDS. Of 19 patients, nine were immunocompromised, and 10 were immunocompetent. Twelve patients (63%) progressed to ARDS, six of whom (32%) eventually died from the disease. The average time for progression to ARDS from symptom onset was 9.6 days. Initial chest radiographic findings were normal (n = 2), focal opacity (n = 9), or multifocal or diffuse opacity (n = 8). Computed tomography (CT) findings included bilateral (n = 17) or unilateral (n = 2) ground-glass opacity with consolidation (n = 14) or pleural effusion (n = 11). Patients having subsequent ARDS had a higher probability of pleural effusion and a higher total CT extent compared with the non-ARDS group (p = 0.010 and 0.007, respectively). However, there were no significant differences in clinical variables such as patient age and premorbid condition. Adenovirus pneumonia demonstrates high rates of ARDS and mortality, regardless of patient age and premorbid conditions, in the tertiary care setting. Large disease extent and presence of pleural effusion on CT are factors suggestive of progression to ARDS.

  6. LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures.

    Science.gov (United States)

    Ryan, Michael; Diekhans, Mark; Lien, Stephanie; Liu, Yun; Karchin, Rachel

    2009-06-01

    LS-SNP/PDB is a new WWW resource for genome-wide annotation of human non-synonymous (amino acid changing) SNPs. It serves high-quality protein graphics rendered with UCSF Chimera molecular visualization software. The system is kept up-to-date by an automated, high-throughput build pipeline that systematically maps human nsSNPs onto Protein Data Bank structures and annotates several biologically relevant features. LS-SNP/PDB is available at (http://ls-snp.icm.jhu.edu/ls-snp-pdb) and via links from protein data bank (PDB) biology and chemistry tabs, UCSC Genome Browser Gene Details and SNP Details pages and PharmGKB Gene Variants Downloads/Cross-References pages.

  7. Findings of a Four-Year Randomized Controlled Clinical Trial Comparing Two-Piece and One-Piece Zirconia Abutments Supporting Single Prosthetic Restorations in Maxillary Anterior Region

    Directory of Open Access Journals (Sweden)

    Guerino Paolantoni

    2016-01-01

    Full Text Available The purpose of this randomized controlled study is to investigate the clinical results obtained over four years and incidence of complications associated with one- versus two-piece custom made zirconia anchorages, in single tooth implant-supported restorations of the maxillary anterior region. Sixty-five patients, with a total of 74 missing maxillary teeth, were selected in the period from February 2007 to July 2010. Two different ways of custom made zirconia abutment and final prosthetic restoration were evaluated: a standard zirconia abutment associated with a pressed layer of lithium disilicate with an all-ceramic cemented restoration versus one-piece restoration with the facing porcelain fired and pressed straight to the custom made zirconia abutment. In 29 cases, the restoration consisted of an all-ceramic restoration for cementation (two pieces; in 45 cases the restoration was a screw-retained restoration (one piece. Three all-ceramic restorations broke during the observation time. Two one-piece restorations fractured after 26 months. At follow-up examination there were no significant differences between one-piece and two-piece groups regarding the PI, BI, and MBL. Awaiting studies with longer follow-up times, a careful conclusion is that zirconia anchorages for single-implant restorations seem to demonstrate good short-term technical and biological results.

  8. Findings of a Four-Year Randomized Controlled Clinical Trial Comparing Two-Piece and One-Piece Zirconia Abutments Supporting Single Prosthetic Restorations in Maxillary Anterior Region

    Science.gov (United States)

    Paolantoni, Guerino; Marenzi, Gaetano; Blasi, Andrea; Mignogna, Jolanda; Sammartino, Gilberto

    2016-01-01

    The purpose of this randomized controlled study is to investigate the clinical results obtained over four years and incidence of complications associated with one- versus two-piece custom made zirconia anchorages, in single tooth implant-supported restorations of the maxillary anterior region. Sixty-five patients, with a total of 74 missing maxillary teeth, were selected in the period from February 2007 to July 2010. Two different ways of custom made zirconia abutment and final prosthetic restoration were evaluated: a standard zirconia abutment associated with a pressed layer of lithium disilicate with an all-ceramic cemented restoration versus one-piece restoration with the facing porcelain fired and pressed straight to the custom made zirconia abutment. In 29 cases, the restoration consisted of an all-ceramic restoration for cementation (two pieces); in 45 cases the restoration was a screw-retained restoration (one piece). Three all-ceramic restorations broke during the observation time. Two one-piece restorations fractured after 26 months. At follow-up examination there were no significant differences between one-piece and two-piece groups regarding the PI, BI, and MBL. Awaiting studies with longer follow-up times, a careful conclusion is that zirconia anchorages for single-implant restorations seem to demonstrate good short-term technical and biological results. PMID:27027093

  9. Findings of a Four-Year Randomized Controlled Clinical Trial Comparing Two-Piece and One-Piece Zirconia Abutments Supporting Single Prosthetic Restorations in Maxillary Anterior Region.

    Science.gov (United States)

    Paolantoni, Guerino; Marenzi, Gaetano; Blasi, Andrea; Mignogna, Jolanda; Sammartino, Gilberto

    2016-01-01

    The purpose of this randomized controlled study is to investigate the clinical results obtained over four years and incidence of complications associated with one- versus two-piece custom made zirconia anchorages, in single tooth implant-supported restorations of the maxillary anterior region. Sixty-five patients, with a total of 74 missing maxillary teeth, were selected in the period from February 2007 to July 2010. Two different ways of custom made zirconia abutment and final prosthetic restoration were evaluated: a standard zirconia abutment associated with a pressed layer of lithium disilicate with an all-ceramic cemented restoration versus one-piece restoration with the facing porcelain fired and pressed straight to the custom made zirconia abutment. In 29 cases, the restoration consisted of an all-ceramic restoration for cementation (two pieces); in 45 cases the restoration was a screw-retained restoration (one piece). Three all-ceramic restorations broke during the observation time. Two one-piece restorations fractured after 26 months. At follow-up examination there were no significant differences between one-piece and two-piece groups regarding the PI, BI, and MBL. Awaiting studies with longer follow-up times, a careful conclusion is that zirconia anchorages for single-implant restorations seem to demonstrate good short-term technical and biological results.

  10. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Katase, S.; Fujikawa, A.; Hachiya, J. [Department of Radiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, 181-8611, Tokyo (Japan); Kanazawa, H. [Toshiba Corporation, 1-1-1 Shibaura, Minato-ku, 105-8001, Tokyo (Japan); Yodo, K. [Toshiba Medical Systems, 3-26-5 Hongo, Bunkyo-ku, 113-8456, Tokyo (Japan)

    2003-02-01

    We have implemented a new diffusion-weighted MRI (DWI) sequence based on the single-shot fast spin-echo technique. We hypothesised that this would add information to conventional MRI for diagnosis of lesions of the cervical spinal cord. DWI was performed using a technique in which echo collection after the application of motion-probing gradients was done in the same manner as in the single-shot fast spin-echo technique. We first imaged six healthy volunteers to demonstrate the cervical spinal cord using the sequence. Then we applied the sequence to 12 patients with cervical myelomalacia due to chronic cord compression. The spinal cord was well seen in all subjects without the distortion associated with echo-planar DWI. In the patients, lesions appeared as areas of low- or isointense signal on DWI. Calculated apparent diffusion coefficients of the lesions (3.30{+-}0.38 x 10{sup -3} mm{sup 2}/s) were significantly higher than those of normal volunteers (2.26{+-}0.08 x 10{sup -3} mm{sup 2}/s). Increased diffusion in areas of cervical myelomalacia, suggesting irreversible damage, can be detected using this technique. (orig.)

  11. Single nucleotide polymorphism barcoding to evaluate oral cancer risk using odds ratio-based genetic algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    2012-07-01

    Full Text Available Cancers often involve the synergistic effects of gene–gene interactions, but identifying these interactions remains challenging. Here, we present an odds ratio-based genetic algorithm (OR-GA that is able to solve the problems associated with the simultaneous analysis of multiple independent single nucleotide polymorphisms (SNPs that are associated with oral cancer. The SNP interactions between four SNPs—namely rs1799782, rs2040639, rs861539, rs2075685, and belonging to four genes (XRCC1, XRCC2, XRCC3, and XRCC4—were tested in this study, respectively. The GA decomposes the SNPs sets into different SNP combinations with their corresponding genotypes (called SNP barcodes. The GA can effectively identify a specific SNP barcode that has an optimized fitness value and uses this to calculate the difference between the case and control groups. The SNP barcodes with a low fitness value are naturally removed from the population. Using two to four SNPs, the best SNP barcodes with maximum differences in occurrence between the case and control groups were generated by GA algorithm. Subsequently, the OR provides a quantitative measure of the multiple SNP synergies between the oral cancer and control groups by calculating the risk related to the best SNP barcodes and others. When these were compared to their corresponding non-SNP barcodes, the estimated ORs for oral cancer were found to be great than 1 [approx. 1.72–2.23; confidence intervals (CIs: 0.94–5.30, p < 0.03–0.07] for various specific SNP barcodes with two to four SNPs. In conclusion, the proposed OR-GA method successfully generates SNP barcodes, which allow oral cancer risk to be evaluated and in the process the OR-GA method identifies possible SNP–SNP interactions.

  12. Non-invasive prenatal detection of trisomy 21 using tandem single nucleotide polymorphisms.

    Directory of Open Access Journals (Sweden)

    Sujana Ghanta

    Full Text Available BACKGROUND: Screening tests for Trisomy 21 (T21, also known as Down syndrome, are routinely performed for the majority of pregnant women. However, current tests rely on either evaluating non-specific markers, which lead to false negative and false positive results, or on invasive tests, which while highly accurate, are expensive and carry a risk of fetal loss. We outline a novel, rapid, highly sensitive, and targeted approach to non-invasively detect fetal T21 using maternal plasma DNA. METHODS AND FINDINGS: Highly heterozygous tandem Single Nucleotide Polymorphism (SNP sequences on chromosome 21 were analyzed using High-Fidelity PCR and Cycling Temperature Capillary Electrophoresis (CTCE. This approach was used to blindly analyze plasma DNA obtained from peripheral blood from 40 high risk pregnant women, in adherence to a Medical College of Wisconsin Institutional Review Board approved protocol. Tandem SNP sequences were informative when the mother was heterozygous and a third paternal haplotype was present, permitting a quantitative comparison between the maternally inherited haplotype and the paternally inherited haplotype to infer fetal chromosomal dosage by calculating a Haplotype Ratio (HR. 27 subjects were assessable; 13 subjects were not informative due to either low DNA yield or were not informative at the tandem SNP sequences examined. All results were confirmed by a procedure (amniocentesis/CVS or at postnatal follow-up. Twenty subjects were identified as carrying a disomy 21 fetus (with two copies of chromosome 21 and seven subjects were identified as carrying a T21 fetus. The sensitivity and the specificity of the assay was 100% when HR values lying between 3/5 and 5/3 were used as a threshold for normal subjects. CONCLUSIONS: In summary, a targeted approach, based on calculation of Haplotype Ratios from tandem SNP sequences combined with a sensitive and quantitative DNA measurement technology can be used to accurately detect fetal

  13. Local ancestry transitions modify snp-trait associations.

    Science.gov (United States)

    Fish, Alexandra E; Crawford, Dana C; Capra, John A; Bush, William S

    2018-01-01

    Genomic maps of local ancestry identify ancestry transitions - points on a chromosome where recent recombination events in admixed individuals have joined two different ancestral haplotypes. These events bring together alleles that evolved within separate continential populations, providing a unique opportunity to evaluate the joint effect of these alleles on health outcomes. In this work, we evaluate the impact of genetic variants in the context of nearby local ancestry transitions within a sample of nearly 10,000 adults of African ancestry with traits derived from electronic health records. Genetic data was located using the Metabochip, and used to derive local ancestry. We develop a model that captures the effect of both single variants and local ancestry, and use it to identify examples where local ancestry transitions significantly interact with nearby variants to influence metabolic traits. In our most compelling example, we find that the minor allele of rs16890640 occuring on a European background with a downstream local ancestry transition to African ancestry results in significantly lower mean corpuscular hemoglobin and volume. This finding represents a new way of discovering genetic interactions, and is supported by molecular data that suggest changes to local ancestry may impact local chromatin looping.

  14. A customized pigmentation SNP array identifies a novel SNP associated with melanoma predisposition in the SLC45A2 gene.

    Directory of Open Access Journals (Sweden)

    Maider Ibarrola-Villava

    Full Text Available As the incidence of Malignant Melanoma (MM reflects an interaction between skin colour and UV exposure, variations in genes implicated in pigmentation and tanning response to UV may be associated with susceptibility to MM. In this study, 363 SNPs in 65 gene regions belonging to the pigmentation pathway have been successfully genotyped using a SNP array. Five hundred and ninety MM cases and 507 controls were analyzed in a discovery phase I. Ten candidate SNPs based on a p-value threshold of 0.01 were identified. Two of them, rs35414 (SLC45A2 and rs2069398 (SILV/CKD2, were statistically significant after conservative Bonferroni correction. The best six SNPs were further tested in an independent Spanish series (624 MM cases and 789 controls. A novel SNP located on the SLC45A2 gene (rs35414 was found to be significantly associated with melanoma in both phase I and phase II (P<0.0001. None of the other five SNPs were replicated in this second phase of the study. However, three SNPs in TYR, SILV/CDK2 and ADAMTS20 genes (rs17793678, rs2069398 and rs1510521 respectively had an overall p-value<0.05 when considering the whole DNA collection (1214 MM cases and 1296 controls. Both the SLC45A2 and the SILV/CDK2 variants behave as protective alleles, while the TYR and ADAMTS20 variants seem to function as risk alleles. Cumulative effects were detected when these four variants were considered together. Furthermore, individuals carrying two or more mutations in MC1R, a well-known low penetrance melanoma-predisposing gene, had a decreased MM risk if concurrently bearing the SLC45A2 protective variant. To our knowledge, this is the largest study on Spanish sporadic MM cases to date.

  15. Adolescent gambling behaviour, a single latent construct and indicators of risk: findings from a national survey of New Zealand high school students

    Directory of Open Access Journals (Sweden)

    Fiona V. Rossen

    2016-08-01

    Full Text Available Abstract This study explores underlying latent construct/s of gambling behaviour, and identifies indicators of “unhealthy gambling”. Data were collected from Youth’07 a nationally representative sample of New Zealand secondary school students (N = 9107. Exploratory factor analyses, item-response theory analyses, multiple indicators-multiple causes, and differential item functioning analyses were used to assess dimensionality of gambling behaviour, underlying factors, and indicators of unhealthy gambling. A single underlying continuum of gambling behaviour was identified. Gambling frequency and ‘gambling because I can’t stop’ were most strongly associated with unhealthy gambling. Gambling to ‘feel better about myself’ and to ‘forget about things’ provided the most precise discriminants of unhealthy gambling. Multivariable analyses found that school connectedness was associated with lower levels of unhealthy gambling.

  16. A SNaPshot of next generation sequencing for forensic SNP analysis.

    Science.gov (United States)

    Daniel, R; Santos, C; Phillips, C; Fondevila, M; van Oorschot, R A H; Carracedo, A; Lareu, M V; McNevin, D

    2015-01-01

    Forensic phenotyping can provide useful intelligence regarding the biogeographical ancestry (BGA) and externally visible characteristics (EVCs) of the donor of an evidentiary sample. Currently, single nucleotide polymorphism (SNP) based inference of BGA and EVCs is performed most commonly using SNaPshot(®), a single base extension (SBE) assay. However, a single SNaPshot multiplex PCR is limited to 30-40 SNPs. Next generation sequencing (NGS) offers the potential to genotype hundreds to thousands of SNPs from multiple samples in a single experimental run. The PCR multiplexes from five SNaPshot assays (SNPforID 52plex, SNPforID 34plex, Eurasiaplex, IrisPlex and an unpublished BGA assay) were applied to three different DNA template amounts (0.1, 0.2 and 0.3 ng) in three samples (9947A and 007 control DNAs and a male donor). The pooled PCR amplicons containing 136 unique SNPs were sequenced using Life Technologies' Ion Torrent™ PGM system. Approximately 72 Mb of sequence was generated from two 10 Mb Ion 314™ v1 chips. Accurate genotypes were readily obtained from all three template amounts. Of a total of 408 genotypes, 395 (97%) were fully concordant with SNaPshot across all three template amounts. Of those genotypes discordant with SNaPshot, six Ion Torrent sequences (1.5%) were fully concordant with Sanger sequencing across the three template amounts. Seven SNPs (1.7%) were either discordant between template amounts or discordant with Sanger sequencing. Sequence coverage observed in the negative control, and, allele coverage variation for heterozygous genotypes highlights the need to establish a threshold for background levels of sequence output and heterozygous balance. This preliminary study of the Ion Torrent PGM system has demonstrated considerable potential for use in forensic DNA analyses as a low to medium throughput NGS platform using established SNaPshot assays. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. SNP (-617C>A in ARE-like loci of the NRF2 gene: a new biomarker for prognosis of lung adenocarcinoma in Japanese non-smoking women.

    Directory of Open Access Journals (Sweden)

    Yasuko Okano

    Full Text Available The transcription factor NRF2 plays a pivotal role in protecting normal cells from external toxic challenges and oxidative stress, whereas it can also endow cancer cells resistance to anticancer drugs. At present little information is available about the genetic polymorphisms of the NRF2 gene and their clinical relevance. We aimed to investigate the single nucleotide polymorphisms in the NRF2 gene as a prognostic biomarker in lung cancer.We prepared genomic DNA samples from 387 Japanese patients with primary lung cancer and detected SNP (c.-617C>A; rs6721961 in the ARE-like loci of the human NRF2 gene by the rapid genetic testing method we developed in this study. We then analyzed the association between the SNP in the NRF2 gene and patients' overall survival.Patients harboring wild-type (WT homozygous (c.-617C/C, SNP heterozygous (c.-617C/A, and SNP homozygous (c.-617A/A alleles numbered 216 (55.8%, 147 (38.0%, and 24 (6.2%, respectively. Multivariate logistic regression models revealed that SNP homozygote (c.-617A/A was significantly related to gender. Its frequency was four-fold higher in female patients than in males (10.8% female vs 2.7% male and was associated with female non-smokers with adenocarcinoma. Interestingly, lung cancer patients carrying NRF2 SNP homozygous alleles (c.-617A/A and the 309T (WT allele in the MDM2 gene exhibited remarkable survival over 1,700 days after surgical operation (log-rank p = 0.021.SNP homozygous (c.-617A/A alleles in the NRF2 gene are associated with female non-smokers with adenocarcinoma and regarded as a prognostic biomarker for assessing overall survival of patients with lung adenocarcinoma.

  18. Construction and Annotation of a High Density SNP Linkage Map of the Atlantic Salmon (Salmo salar Genome

    Directory of Open Access Journals (Sweden)

    Hsin Y. Tsai

    2016-07-01

    Full Text Available High density linkage maps are useful tools for fine-scale mapping of quantitative trait loci, and characterization of the recombination landscape of a species’ genome. Genomic resources for Atlantic salmon (Salmo salar include a well-assembled reference genome, and high density single nucleotide polymorphism (SNP arrays. Our aim was to create a high density linkage map, and to align it with the reference genome assembly. Over 96,000 SNPs were mapped and ordered on the 29 salmon linkage groups using a pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with the ‘ssalar01’ high density SNP array. The number of SNPs per group showed a high positive correlation with physical chromosome length (r = 0.95. While the order of markers on the genetic and physical maps was generally consistent, areas of discrepancy were identified. Approximately 6.5% of the previously unmapped reference genome sequence was assigned to chromosomes using the linkage map. Male recombination rate was lower than females across the vast majority of the genome, but with a notable peak in subtelomeric regions. Finally, using RNA-Seq data to annotate the reference genome, the mapped SNPs were categorized according to their predicted function, including annotation of ∼2500 putative nonsynonymous variants. The highest density SNP linkage map for any salmonid species has been created, annotated, and integrated with the Atlantic salmon reference genome assembly. This map highlights the marked heterochiasmy of salmon, and provides a useful resource for salmonid genetics and genomics research.

  19. Construction and Annotation of a High Density SNP Linkage Map of the Atlantic Salmon (Salmo salar) Genome.

    Science.gov (United States)

    Tsai, Hsin Y; Robledo, Diego; Lowe, Natalie R; Bekaert, Michael; Taggart, John B; Bron, James E; Houston, Ross D

    2016-07-07

    High density linkage maps are useful tools for fine-scale mapping of quantitative trait loci, and characterization of the recombination landscape of a species' genome. Genomic resources for Atlantic salmon (Salmo salar) include a well-assembled reference genome, and high density single nucleotide polymorphism (SNP) arrays. Our aim was to create a high density linkage map, and to align it with the reference genome assembly. Over 96,000 SNPs were mapped and ordered on the 29 salmon linkage groups using a pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with the 'ssalar01' high density SNP array. The number of SNPs per group showed a high positive correlation with physical chromosome length (r = 0.95). While the order of markers on the genetic and physical maps was generally consistent, areas of discrepancy were identified. Approximately 6.5% of the previously unmapped reference genome sequence was assigned to chromosomes using the linkage map. Male recombination rate was lower than females across the vast majority of the genome, but with a notable peak in subtelomeric regions. Finally, using RNA-Seq data to annotate the reference genome, the mapped SNPs were categorized according to their predicted function, including annotation of ∼2500 putative nonsynonymous variants. The highest density SNP linkage map for any salmonid species has been created, annotated, and integrated with the Atlantic salmon reference genome assembly. This map highlights the marked heterochiasmy of salmon, and provides a useful resource for salmonid genetics and genomics research. Copyright © 2016 Tsai et al.

  20. MixHMM: inferring copy number variation and allelic imbalance using SNP arrays and tumor samples mixed with stromal cells.

    Science.gov (United States)

    Liu, Zongzhi; Li, Ao; Schulz, Vincent; Chen, Min; Tuck, David

    2010-06-01

    Genotyping platforms such as single nucleotide polymorphism (SNP) arrays are powerful tools to study genomic aberrations in cancer samples. Allele specific information from SNP arrays provides valuable information for interpreting copy number variation (CNV) and allelic imbalance including loss-of-heterozygosity (LOH) beyond that obtained from the total DNA signal available from array comparative genomic hybridization (aCGH) platforms. Several algorithms based on hidden Markov models (HMMs) have been designed to detect copy number changes and copy-neutral LOH making use of the allele information on SNP arrays. However heterogeneity in clinical samples, due to stromal contamination and somatic alterations, complicates analysis and interpretation of these data. We have developed MixHMM, a novel hidden Markov model using hidden states based on chromosomal structural aberrations. MixHMM allows CNV detection for copy numbers up to 7 and allows more complete and accurate description of other forms of allelic imbalance, such as increased copy number LOH or imbalanced amplifications. MixHMM also incorporates a novel sample mixing model that allows detection of tumor CNV events in heterogeneous tumor samples, where cancer cells are mixed with a proportion of stromal cells. We validate MixHMM and demonstrate its advantages with simulated samples, clinical tumor samples and a dilution series of mixed samples. We have shown that the CNVs of cancer cells in a tumor sample contaminated with up to 80% of stromal cells can be detected accurately using Illumina BeadChip and MixHMM. The MixHMM is available as a Python package provided with some other useful tools at http://genecube.med.yale.edu:8080/MixHMM.

  1. MixHMM: inferring copy number variation and allelic imbalance using SNP arrays and tumor samples mixed with stromal cells.

    Directory of Open Access Journals (Sweden)

    Zongzhi Liu

    Full Text Available BACKGROUND: Genotyping platforms such as single nucleotide polymorphism (SNP arrays are powerful tools to study genomic aberrations in cancer samples. Allele specific information from SNP arrays provides valuable information for interpreting copy number variation (CNV and allelic imbalance including loss-of-heterozygosity (LOH beyond that obtained from the total DNA signal available from array comparative genomic hybridization (aCGH platforms. Several algorithms based on hidden Markov models (HMMs have been designed to detect copy number changes and copy-neutral LOH making use of the allele information on SNP arrays. However heterogeneity in clinical samples, due to stromal contamination and somatic alterations, complicates analysis and interpretation of these data. METHODS: We have developed MixHMM, a novel hidden Markov model using hidden states based on chromosomal structural aberrations. MixHMM allows CNV detection for copy numbers up to 7 and allows more complete and accurate description of other forms of allelic imbalance, such as increased copy number LOH or imbalanced amplifications. MixHMM also incorporates a novel sample mixing model that allows detection of tumor CNV events in heterogeneous tumor samples, where cancer cells are mixed with a proportion of stromal cells. CONCLUSIONS: We validate MixHMM and demonstrate its advantages with simulated samples, clinical tumor samples and a dilution series of mixed samples. We have shown that the CNVs of cancer cells in a tumor sample contaminated with up to 80% of stromal cells can be detected accurately using Illumina BeadChip and MixHMM. AVAILABILITY: The MixHMM is available as a Python package provided with some other useful tools at http://genecube.med.yale.edu:8080/MixHMM.

  2. A novel TCF7L2 type 2 diabetes SNP identified from fine mapping in African American women.

    Directory of Open Access Journals (Sweden)

    Stephen A Haddad

    Full Text Available SNP rs7903146 in the Wnt pathway's TCF7L2 gene is the variant most significantly associated with type 2 diabetes to date, with associations observed across diverse populations. We sought to determine whether variants in other Wnt pathway genes are also associated with this disease. We evaluated 69 genes involved in the Wnt pathway, including TCF7L2, for associations with type 2 diabetes in 2632 African American cases and 2596 controls from the Black Women's Health Study. Tag SNPs for each gene region were genotyped on a custom Affymetrix Axiom Array, and imputation was performed to 1000 Genomes Phase 3 data. Gene-based analyses were conducted using the adaptive rank truncated product (ARTP statistic. The PSMD2 gene was significantly associated with type 2 diabetes after correction for multiple testing (corrected p = 0.016, based on the nine most significant single variants in the +/- 20 kb region surrounding the gene, which includes nearby genes EIF4G1, ECE2, and EIF2B5. Association data on four of the nine variants were available from an independent sample of 8284 African American cases and 15,543 controls; associations were in the same direction, but weak and not statistically significant. TCF7L2 was the only other gene associated with type 2 diabetes at nominal p <0.01 in our data. One of the three variants in the best gene-based model for TCF7L2, rs114770437, was not correlated with the GWAS index SNP rs7903146 and may represent an independent association signal seen only in African ancestry populations. Data on this SNP were not available in the replication sample.

  3. Accurate determination of genetic identity for a single cacao bean, using molecular markers with a nanofluidic system, ensures cocoa authentication.

    Science.gov (United States)

    Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Bellato, Cláudia M; Motilal, Lambert; Zhang, Dapeng

    2014-01-15

    Cacao (Theobroma cacao L.), the source of cocoa, is an economically important tropical crop. One problem with the premium cacao market is contamination with off-types adulterating raw premium material. Accurate determination of the genetic identity of single cacao beans is essential for ensuring cocoa authentication. Using nanofluidic single nucleotide polymorphism (SNP) genotyping with 48 SNP markers, we generated SNP fingerprints for small quantities of DNA extracted from the seed coat of single cacao beans. On the basis of the SNP profiles, we identified an assumed adulterant variety, which was unambiguously distinguished from the authentic beans by multilocus matching. Assignment tests based on both Bayesian clustering analysis and allele frequency clearly separated all 30 authentic samples from the non-authentic samples. Distance-based principle coordinate analysis further supported these results. The nanofluidic SNP protocol, together with forensic statistical tools, is sufficiently robust to establish authentication and to verify gourmet cacao varieties. This method shows significant potential for practical application.

  4. Effects of food intake on the pharmacokinetic properties of dalcetrapib: findings from three phase I, single-dose crossover studies in healthy volunteers.

    Science.gov (United States)

    Derks, Michael; Kawamura, Hitoshi; Abt, Markus; Meneses-Lorente, Georgina; Phelan, Mary; Ishikawa, Tomohiro

    2011-06-01

    Preclinical studies have reported that the relative bioavailability of dalcetrapib, a modulator of cholesteryl ester transfer protein (CETP) inhibitor activity, was ∼60% higher when administered in the fed state compared with the fasting state. This article reports on 3 studies conducted to assess the effects of food intake, timing of administration with respect to meals, and meal size and content on the relative bioavailability of dalcetrapib in healthy male subjects. Three Phase I studies were performed in healthy subjects: (1) a 2-period crossover study of a single dose of dalcetrapib 900 mg administered in the fed and fasting states (fed versus fasting study [1999]); (2) a 3-period crossover study of a single dose of dalcetrapib 600 mg administered after a light morning meal, a standard evening meal, and a light evening meal (meal timing/size study [2005]); and (3) a 4-period crossover study of a single dose of dalcetrapib 600 mg administered 30 minutes after a high-fat meal or a standard evening meal, and 30 minutes before or 3 hours after the latter (high-fat meal study [2007]). Blood samples for pharmacokinetic analyses (AUC(0-36) or AUC(0-∞), C(max)) were collected up to 36, 144, and 96 hours after study drug administration in the fed versus fasting, meal timing/size, and high-fat meal studies, respectively. CETP activity was measured using a radioisotopic method in the fed versus fasting study and a fluorometric method in the meal timing/size and high-fat meal studies. Tolerability was assessed using monitoring of adverse events, laboratory parameters, vital signs, and ECG. Six men were enrolled in the fed versus fasting study (mean age, 37 years; mean body mass index [BMI], 23.6 kg/m(2)). Dalcetrapib exposure was increased by 64% (AUC(0-36)) and 126% (C(max)) after administration in the fed state. Eighteen men were enrolled in the analysis of the effects of meal timing and size on the properties of dalcetrapib (mean age, 30.5 years; mean BMI, 25.1 kg

  5. Genome sequences and SNP analyses of Corynespora cassiicola from cotton and soybean in the southeastern United States reveal limited diversity.

    Directory of Open Access Journals (Sweden)

    Sandesh K Shrestha

    Full Text Available Corynespora cassiicola attackes diverse agriculturally important plants, including soybean and cotton, in the US. It is a reemerge pathogen on cotton in southeastern US. Whole genome sequences of four cotton and one soybean isolate from Tennessee were used to develop single nucleotide polymorphism markers for cotton isolates. Cotton isolates had little diversity at the genome level and very little differentiation from the soybean isolate. Analysis of 75 isolates from cotton and soybean, using targeted-sequencing of 22 polymorphic SNP sites, revealed eight multi-locus genotypes and it appears a single clonal lineage predominates across the southeastern region. The cotton and soybean genome sequences were significantly different from the public reference genome derived from a rubber isolate and the utility of these novel resources will be discussed.

  6. A randomized, placebo-controlled double-blinded comparative clinical study of five over-the-counter non-pharmacological topical analgesics for myofascial pain: single session findings

    Directory of Open Access Journals (Sweden)

    Avrahami Daniel

    2012-03-01

    Full Text Available Abstract Objectives To investigate the effects of topical agents for the treatment of Myofascial Pain Syndrome (MPS and Myofascial Trigger Point (MTRP. Methods Subjects with an identifiable trigger point in the trapezius muscle, age 18-80 were recruited for a single-session randomized, placebo-blinded clinical study. Baseline measurements of trapezius muscle pressure pain threshold (PPT: by pressure algometer along with right and left cervical lateral flexion (rangiometer were obtained by a blinded examiner. An assessor blinded to the outcomes assessments applied one of 6 topical formulations which had been placed in identical plastic containers. Five of these topicals were proposed active formulations; the control group was given a non-active formulation (PLA. Five minutes after the application of the formula the outcome measures were re-tested. Data were analyzed with a 5-way ANOVA and Holms-adjusted t-tests with an alpha level of 0.05. Results 120 subjects were entered into the study (63 females; ages 16-82; 20 subjects randomly allocated into each group. The pre- and post-treatment results for pressure threshold did show significant intra-group increases for the Ben-Gay Ultra Strength Muscle Pain Ointment (BG, the Professional Therapy MuscleCare Roll-on (PTMC roll-on and Motion Medicine Cream (MM with an increased threshold of 0.5 kg/cm2 (+/-0.15, 0.72 kg/cm2 (+/-0.17 and 0.47 Kg/cm2 (+/-0.19 respectively. With respect to the inter-group comparisons, PTMC roll-on showed significant increases in pressure threshold compared with Placebo (PLA (p = 0.002 and Icy Hot Extra Strength Cream (IH (p = 0.006. In addition, BG demonstrated significant increases in pressure threshold compared with PLA (p = 0.0003. Conclusions With regards to pressure threshold, PTMC roll-on, BG and MM showed significant increases in pain threshold tolerance after a short-term application on a trigger points located in the trapezius muscle. PTMC roll-on and BG were both

  7. [Effect of exogenous Ca2+ and NO donor SNP on seed germination and antioxidase activities of Perilla frutescens seedlings under NaCl stress].

    Science.gov (United States)

    Zhang, Chunping; He, Ping; Yu, Zeli; Du, Dandan; Wei, Pinxiang

    2010-12-01

    In order to find a method for improving the salt resistance of seeds and seedlings for Perilla frutescens under NaCl stress, seed germination and physiological characteristics of P. frutescens seedlings were studied. Several physiological indexes of P. frutescens seeds treated by Ca2+ and sodium nitroprusside (SNP) under NaCl stress like the germination vigor, germination rate, germination index and vigor index were measured. And other indexes like the biomass of the seedlings, the content of malondialdehyde (MDA) in leaves, the activities of superoxide (SOD), peroxidase (POD) and catalase (CAT) were also measured. The germination of P. frutescens seeds under NaCl stress was inhibited obviously. But after the treatment with Ca2+ and SNP, all of the germination indexes increased. And the seeds that treated with SNP + Ca2+ had the most significantly increase in all indexes. The germination vigor was 65.1%, the germination rate was 89.3%, the germination index and vigor index were 13.9 and 0.1109, respectively. The content of MDA decreased after the treatment. The activities of three enzymes include SOD, POD and CAT were increased by the treatment and get the maximin 0.84, 5.71 and 4.92 U x mg(-1) respectively. And the EGTA showed an obvious inhibition to the effect of SNP on P. frutescens. SNP (0.1 mmol x L(-1)) and Ca2+ (10 mmol x L(-1)) could significantly alleviate the damages to the seeds and seedlings of P. frutescens under NaCl stress, and promote the salt resistance of the seeds and seedlings. These results might suggest that exogenous NO might enhance P. frutescens salt resistance and alleviate salt injury possible by enhancing Ca2+ influx by activating Ca2+ channels and improving concentration of Ca2+ of P. frutescens seedlings.

  8. The functional SNP in the matrix metalloproteinase-3 promoter modifies susceptibility and lymphatic metastasis in esophageal squamous cell carcinoma but not in gastric cardiac adenocarcinoma.

    Science.gov (United States)

    Zhang, Jianhui; Jin, Xia; Fang, Shumei; Li, Yan; Wang, Rui; Guo, Wei; Wang, Na; Wang, Yimin; Wen, Denggui; Wei, Lizhen; Kuang, Gang; Dong, Zhiming

    2004-12-01

    The matrix metalloproteinases (MMPs), a family of proteolytic enzymes that degrade different components of the extracellular matrix, play important roles in tumor development and invasion. A single adenine insertion/deletion polymorphism (6A/5A) in the MMP3 promoter region causes transcriptional elevation. The aim of this study was to assess the effects of this single nucleotide polymorphism (SNP) on the development and clinical staging of esophageal squamous cell carcinoma (ESCC) and gastric cardiac adenocarcinoma (GCA). The MMP3 SNP was genotyped by polymerase chain reaction-restriction fragment length polymorphism analysis in 417 cancer patients (234 ESCC and 183 GCA) and 350 controls in north China. The overall distribution of the MMP3 SNP in ESCC and GCA patients was not significantly different from that in healthy controls. However, smoking individuals with the 5A/5A or 5A/6A genotype were significantly more common in ESCC patients than in controls (37.5 versus 23.3%, xi(2) = 5.13, P = 0.02). Thus, smokers with at least one 5A allele had a significantly increased risk of ESCC, compared with 6A homozygotes (age and sex adjusted OR = 1.95, 95% CI = 1.08-3.53). The significant difference in the SNP distribution between ESCC patients, GCA patients and controls was not observed when stratified by family history of upper gastrointestinal cancer. In addition, the frequency of the 5A/5A + 5A/6A genotypes in ESCC patients with and without lymphatic metastasis was significantly different (45.8 versus 27.8%, xi(2) = 4.56, P = 0.03). Therefore, patients with at least one 5A allele were significantly more prone to lymphatic metastasis of ESCC. In contrast, no significant difference in the SNP distribution between patients with and without lymphatic metastasis was observed in GCA. The present study suggests that the MMP3 promoter SNP might be associated with a risk of development and lymphatic metastasis in ESCC but not in GCA.

  9. A set of 14 DIP-SNP markers to detect unbalanced DNA mixtures.

    Science.gov (United States)

    Liu, Zhizhen; Liu, Jinding; Wang, Jiaqi; Chen, Deqing; Liu, Zidong; Shi, Jie; Li, Zeqin; Li, Wenyan; Zhang, Gengqian; Du, Bing

    2018-03-04

    Unbalanced DNA mixture is still a difficult problem for forensic practice. DIP-STRs are useful markers for detection of minor DNA but they are not widespread in the human genome and having long amplicons. In this study, we proposed a novel type of genetic marker, termed DIP-SNP. DIP-SNP refers to the combination of INDEL and SNP in less than 300bp length of human genome. The multiplex PCR and SNaPshot assay were established for 14 DIP-SNP markers in a Chinese Han population from Shanxi, China. This novel compound marker allows detection of the minor DNA contributor with sensitivity from 1:50 to 1:1000 in a DNA mixture of any gender with 1 ng-10 ng DNA template. Most of the DIP-SNP markers had a relatively high probability of informative alleles with an average I value of 0.33. In all, we proposed DIP-SNP as a novel kind of genetic marker for detection of minor contributor from unbalanced DNA mixture and established the detection method by associating the multiplex PCR and SNaPshot assay. DIP-SNP polymorphisms are promising markers for forensic or clinical mixture examination because they are shorter, widespread and higher sensitive. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Single-nucleotide polymorphisms in peroxisome proliferator ...

    Indian Academy of Sciences (India)

    Prakash

    the metabolic syndrome (MS) and type 2 diabetes. We also investigated the correlation of these two single-nucleotide polymorphisms (SNPs) with plasma resistin levels. The C1431T SNP was associated with higher levels of plasma resistin (P = 0.017). Furthermore, C1431T was associated with resistin in different tertiles.

  11. Single Nucleotide Polymorphisms in Regulator-Encoding Genes Have an Additive Effect on Virulence Gene Expression in a Vibrio cholerae Clinical Isolate.

    Science.gov (United States)

    Carignan, Bailey M; Brumfield, Kyle D; Son, Mike S

    2016-01-01

    Vibrio cholerae is the etiological agent of the infectious disease cholera, which is characterized by vomiting and severe watery diarrhea. Recently, V. cholerae clinical isolates have demonstrated increased virulence capabilities, causing more severe symptoms with a much higher rate of disease progression than previously observed. We have identified single nucleotide polymorphisms (SNPs) in four virulence-regulatory genes (hapR, hns, luxO, and vieA) of a hypervirulent V. cholerae clinical isolate, MQ1795. Herein, all SNPs and SNP combinations of interest were introduced into the prototypical El Tor reference strain N16961, and the effects on the production of numerous virulence-related factors, including cholera toxin (CT), the toxin-coregulated pilus (TCP), and ToxT, were analyzed. Our data show that triple-SNP (hapR hns luxO and hns luxO vieA) and quadruple-SNP combinations produced the greatest increases in CT, TCP, and ToxT production. The hns and hns luxO SNP combinations were sufficient for increased TCP and ToxT production. Notably, the hns luxO vieA triple-SNP combination strain produced TCP and ToxT levels similar to those of MQ1795. Certain SNP combinations (hapR and hapR vieA) had the opposite effect on CT, TCP, and ToxT expression. Interestingly, the hns vieA double-SNP combination strain increased TCP production while decreasing CT production. Our findings suggest that SNPs identified in the four regulatory genes, in various combinations, are associated with increased virulence capabilities observed in V. cholerae clinical isolates. These studies provide insight into the evolution of highly virulent strains. IMPORTANCE Cholera, an infectious disease of the small intestine caused by the aquatic bacterium Vibrio cholerae, often results in vomiting and acute watery diarrhea. If left untreated or if the response is too slow, the symptoms can quickly lead to extreme dehydration and ultimately death of the patient. Recent anecdotal evidence of cholera

  12. MDM2 SNP309 promoter polymorphism and p53 mutations in urinary bladder carcinoma stage T1

    Directory of Open Access Journals (Sweden)

    Olsson Hans

    2013-01-01

    Full Text Available Abstract Background Urinary bladder carcinoma stage T1 is an unpredictable disease that in some cases has a good prognosis with only local or no recurrence, but in others can appear as a more aggressive tumor with progression to more advanced stages. The aim here was to investigate stage T1 tumors regarding MDM2 promoter SNP309 polymorphism, mutations in the p53 gene, and expression of p53 and p16 measured by immunohistochemistry, and subsequently relate these changes to tumor recurrence and progression. We examined a cohort of patients with primary stage T1 urothelial carcinoma of the bladder and their tumors. Methods After re-evaluation of the original slides and exclusions, the study population comprised 141 patients, all with primary stage T1 urothelial carcinoma of the bladder. The hospital records were screened for clinical parameters and information concerning presence of histologically proven recurrence and progression. The paraffin-embedded tumor material was evaluated by immunohistochemistry. Any mutations found in the p53 gene were studied by single-strand conformation analysis and Sanger sequencing. The MDM2 SNP309 polymorphism was investigated by pyrosequencing. Multivariate analyses concerning association with prognosis were performed, and Kaplan-Meier analysis was conducted for a combination of changes and time to progression. Results Of the 141 patients, 82 had at least one MDM2 SNP309 G allele, and 53 had a mutation in the p53 gene, but neither of those anomalies was associated with a worse prognosis. A mutation in the p53 gene was associated with immunohistochemically visualized p53 protein expression at a cut-off value of 50%. In the group with p53 mutation Kaplan-Meier analysis showed higher rate of progression and shorter time to progression in patients with immunohistochemically abnormal p16 expression compared to them with normal p16 expression (p = 0.038. Conclusions MDM2 SNP309 promoter polymorphism and mutations in

  13. Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays

    Directory of Open Access Journals (Sweden)

    Wagner Mark C

    2005-05-01

    Full Text Available Abstract Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As

  14. Identification of QTL and Qualitative Trait Loci for Agronomic Traits Using SNP Markers in the Adzuki Bean.

    Science.gov (United States)

    Li, Yuan; Yang, Kai; Yang, Wei; Chu, Liwei; Chen, Chunhai; Zhao, Bo; Li, Yisong; Jian, Jianbo; Yin, Zhichao; Wang, Tianqi; Wan, Ping

    2017-01-01

    The adzuki bean ( Vigna angularis ) is an important grain legume. Fine mapping of quantitative trait loci (QTL) and qualitative trait genes plays an important role in gene cloning, molecular-marker-assisted selection (MAS), and trait improvement. However, the genetic control of agronomic traits in the adzuki bean remains poorly understood. Single-nucleotide polymorphisms (SNPs) are invaluable in the construction of high-density genetic maps. We mapped 26 agronomic QTLs and five qualitative trait genes related to pigmentation using 1,571 polymorphic SNP markers from the adzuki bean genome via restriction-site-associated DNA sequencing of 150 members of an F 2 population derived from a cross between cultivated and wild adzuki beans. We mapped 11 QTLs for flowering time and pod maturity on chromosomes 4, 7, and 10. Six 100-seed weight (SD100WT) QTLs were detected. Two major flowering time QTLs were located on chromosome 4, firstly VaFld4.1 (PEVs 71.3%), co-segregating with SNP marker s690-144110, and VaFld4.2 (PEVs 67.6%) at a 0.974 cM genetic distance from the SNP marker s165-116310. Three QTLs for seed number per pod ( Snp3.1, Snp3.2 , and Snp4.1 ) were mapped on chromosomes 3 and 4. One QTL VaSdt4.1 of seed thickness (SDT) and three QTLs for branch number on the main stem were detected on chromosome 4. QTLs for maximum leaf width (LFMW) and stem internode length were mapped to chromosomes 2 and 9, respectively. Trait genes controlling the color of the seed coat, pod, stem and flower were mapped to chromosomes 3 and 1. Three candidate genes, VaAGL, VaPhyE , and VaAP2 , were identified for flowering time and pod maturity. VaAGL encodes an agamous-like MADS-box protein of 379 amino acids. VaPhyE encodes a phytochrome E protein of 1,121 amino acids. Four phytochrome genes ( VaPhyA1, VaPhyA2, VaPhyB , and VaPhyE ) were identified in the adzuki bean genome. We found candidate genes VaAP2/ERF.81 and VaAP2/ERF.82 of SD100WT, VaAP2-s4 of SDT, and VaAP2/ERF.86 of LFMW. A

  15. T-786C single-nucleotide polymorphism (SNP) of endothelial nitric ...

    African Journals Online (AJOL)

    The study was designed to investigate the frequency of T-786C polymorphism of the gene in patients suffering from coronary artery disease (CAD) in North West of Iran. One hundred and twenty (120) subjects including 60 patients with angiographically diagnosed CAD and 60 age and sex matched CAD-free subjects as ...

  16. An economical mtDNA SNP assay detecting different mitochondrial haplogroups in identical HVR 1 samples of Caucasian ancestry.

    Science.gov (United States)

    Köhnemann, Stephan; Hohoff, Carsten; Pfeiffer, Heidi

    2009-09-01

    We had sequenced 329 Caucasian samples in Hypervariable Region 1 (HVR 1) and found that they belong to eleven different mitochondrial DNA (mtDNA) haplotypes. The sample set was further analysed by an mtDNA assay examining 32 single nucleotide polymorphisms (SNPs) for haplogroup discrimination. In a validation study on 160 samples of different origin it was shown that these SNPs were able to discriminate between the evolved superhaplogroups worldwide (L, M and N) and between the nine most common Caucasian haplogroups (H, I, J, K, T, U, V, W and X). The 32 mtDNA SNPs comprised 42 different SNP haplotypes instead of only eleven haplotypes after HVR 1 sequencing. The assay provided stable results in a range of 5ng genomic DNA down to virtually no genomic DNA per reaction. It was possible to detect samples of African, Asian and Eurasian ancestry, respectively. The 32 mtDNA SNP assay is a helpful adjunct to further distinguish between identical HVR 1 sequences of Caucasian origin. Our results suggest that haplogroup prediction using HVR 1 sequencing provides instable results. The use of coding region SNPs for haplogroup assignment is more suited than using HVR 1 haplotypes.

  17. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean

    Science.gov (United States)

    Patil, Gunvant; Do, Tuyen; Vuong, Tri D.; Valliyodan, Babu; Lee, Jeong-Dong; Chaudhary, Juhi; Shannon, J. Grover; Nguyen, Henry T.

    2016-01-01

    Soil salinity is a limiting factor of crop yield. The soybean is sensitive to soil salinity, and a dominant gene, Glyma03g32900 is primarily responsible for salt-tolerance. The identification of high throughput and robust markers as well as the deployment of salt-tolerant cultivars are effective approaches to minimize yield loss under saline conditions. We utilized high quality (15x) whole-genome resequencing (WGRS) on 106 diverse soybean lines and identified three major structural variants and allelic variation in the promoter and genic regions of the GmCHX1 gene. The discovery of single nucleotide polymorphisms (SNPs) associated with structural variants facilitated the design of six KASPar assays. Additionally, haplotype analysis and pedigree tracking of 93 U.S. ancestral lines were performed using publically available WGRS datasets. Identified SNP markers were validated, and a strong correlation was observed between the genotype and salt treatment phenotype (leaf scorch, chlorophyll content and Na+ accumulation) using a panel of 104 soybean lines and, an interspecific bi-parental population (F8) from PI483463 x Hutcheson. These markers precisely identified salt-tolerant/sensitive genotypes (>91%), and different structural-variants (>98%). These SNP assays, supported by accurate phenotyping, haplotype analyses and pedigree tracking information, will accelerate marker-assisted selection programs to enhance the development of salt-tolerant soybean cultivars. PMID:26781337

  18. Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data

    KAUST Repository

    Kobayashi, Masaaki

    2017-04-20

    Recent availability of large-scale genomic resources enables us to conduct so called genome-wide association studies (GWAS) and genomic prediction (GP) studies, particularly with next-generation sequencing (NGS) data. The effectiveness of GWAS and GP depends on not only their mathematical models, but the quality and quantity of variants employed in the analysis. In NGS single nucleotide polymorphism (SNP) calling, conventional tools ideally require more reads for higher SNP sensitivity and accuracy. In this study, we aimed to develop a tool, Heap, that enables robustly sensitive and accurate calling of SNPs, particularly with a low coverage NGS data, which must be aligned to the reference genome sequences in advance. To reduce false positive SNPs, Heap determines genotypes and calls SNPs at each site except for sites at the both ends of reads or containing a minor allele supported by only one read. Performance comparison with existing tools showed that Heap achieved the highest F-scores with low coverage (7X) restriction-site associated DNA sequencing reads of sorghum and rice individuals. This will facilitate cost-effective GWAS and GP studies in this NGS era. Code and documentation of Heap are freely available from https://github.com/meiji-bioinf/heap (29 March 2017, date last accessed) and our web site (http://bioinf.mind.meiji.ac.jp/lab/en/tools.html (29 March 2017, date last accessed)).

  19. Ictal technetium-99m ethyl cysteinate dimer single-photon emission tomographic findings and propagation of epileptic seizure activity in patients with extratemporal epilepsies

    International Nuclear Information System (INIS)

    Noachtar, S.; Arnold, S.; Werhahn, K.J.; Yousry, T.A.; Tatsch, K.

    1998-01-01

    We investigated the influence of the propagation of extratemporal epileptic seizure activity on the regional increase in cerebral blood flow, which is usually associated with epileptic seizure activity. Forty-two consecutive patients with extratemporal epilepsies were prospectively evaluated. All patients underwent ictal SPET studies with simultaneous electroencephalography (EEG) and video recordings of habitual seizures and imaging studies including cranial magnetic resonance imaging and positron emission tomography with 2-[ 18 F]-fluoro-2 deoxy-d-glucose. Propagation of epilptic seizure activity (PESA) was defined as the absence of hyperperfusion on ictal ECD SPET in the lobe of seizure onset, but its presence in another ipsilateral or contralateral lobe. Observers analysing the SPET images were not informed of the other results. PESA was observed in 8 of the 42 patients (19%) and was ipsilateral to the seizure onset in five (63%) of these eight patients. The time between clinical seizure onset and injection of the ECD tracer ranged from 14 to 61 s (mean 34 s). Seven patients (88%) with PESA had parieto-occipital epilepsy and one patient had a frontal epilepsy. PESA was statistically more frequent in patients with parieto-occipital lobe epilepsies (58%) than in the remaining extratemporal epilepsy syndromes (3%) (P<0.0002). These findings indicate that ictal SPET studies require simultaneous EEG-video recordings in patients with extratemporal epilepsies. PESA should be considered when interpreting ictal SPET studies in these patients. Patients with PESA are more likely to have parieto-occipital lobe epilepsy than seizure onset in other extratemporal regions. (orig./MG) (orig.)

  20. Clinical, Laboratorial, and Urodynamic Findings of Prostatic Artery Embolization for the Treatment of Urinary Retention Related to Benign Prostatic Hyperplasia. A Prospective Single-Center Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Alberto A. [University of Sao Paulo Medical School, Division of Urology (Brazil); Carnevale, Francisco C., E-mail: fcarnevale@uol.com.br; Motta Leal Filho, Joaquim M. da [University of Sao Paulo Medical School, Interventional Radiology Unit (Brazil); Yoshinaga, Eduardo M. [University of Sao Paulo Medical School, Division of Urology (Brazil); Cerri, Luciana M. O. [University of Sao Paulo Medical School, Ultrasound Unit (Brazil); Baroni, Ronaldo H. [University of Sao Paulo Medical School, Magnetic Resonance Unit (Brazil); Marcelino, Antonio S. Z. [University of Sao Paulo Medical School, Ultrasound Unit (Brazil); Cerri, Giovanni G. [University of Sao Paulo Medical School, Radiology Department (Brazil); Srougi, Miguel [University of Sao Paulo Medical School, Division of Urology (Brazil)

    2013-08-01

    PurposeThis study was designed to describe the clinical, laboratorial, and urodynamic findings of prostatic artery embolization (PAE) in patients with urinary retention due to benign prostatic hyperplasia (BPH).MethodsA prospective study of 11 patients with urinary retention due to BPH was conducted. Patients underwent physical examination, prostate specific antigen (PSA) measurement, transrectal ultrasound, and magnetic resonance imaging. International prostate symptom score (IPSS), quality of life (QoL), and urodynamic testing were used to assess the outcome before and after 1 year.ResultsClinical success was 91 % (10/11 patients) with a mean follow-up of 22.3 months (range, 12-41 months). At the first year follow-up, the mean IPSS score was 2.8 points (p = 0.04), mean QoL was 0.4 points (p = 0.001), mean PSA decreased from 10.1 to 4.3 ng/mL (p = 0.003), maximum urinary flow (Qmax) improved from 4.2 to 10.8 mL/sec (p = 0.009), and detrusor pressure (Pdet) decreased from 85.7 to 51.5 cm H{sub 2}O (p = 0.007). Before PAE, Bladder Outlet Obstruction Index (BOOI) showed values >40 in 100 % of patients. After PAE, 30 % of patients were >40 (obstructed), 40 % were between 20 and 40 (undetermined), and 30 % were <20 (unobstructed). Patients with a BOOI <20 had higher PSA values at 1-day after PAE.ConclusionsClinical and urodynamic parameters improved significantly after PAE in patients with acute urinary retention due to BPH. Total PSA at day 1 after PAE was higher in patients with unobstructed values in pressure flow studies.

  1. CT Imaging Findings and Their Relevance to the Clinical Outcomes After Stent Graft Repair of Penetrating Aortic Ulcers: Six-year, Single-center Experience

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji Hoon [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology (Korea, Republic of); Angle, John F.; Park, Auh Whan; Anderson, Curtis; Sabri, Saher S.; Turba, Ulku C. [University of Virginia Health System, Division of Angiography, Interventional Radiology and Special Procedures, Department of Radiology (United States); Kern, John A.; Cherry, Kenneth J. [University of Virginia Health System, Department of Surgery (United States); Matsumoto, Alan H., E-mail: ahm4d@virginia.edu [University of Virginia Health System, Division of Angiography, Interventional Radiology and Special Procedures, Department of Radiology (United States)

    2012-12-15

    Purpose: To present the computed tomographic (CT) imaging findings and their relevance to clinical outcomes related to stent graft placement in patients with penetrating aortic ulcers (PAUs). Methods: Medical and imaging records and imaging studies were reviewed for consecutive patients who underwent stent graft repair of a PAU. The distribution and characteristics of the PAU, technical success of stent graft repair, procedure-related complications, associated aortic wall abnormalities, and outcomes of the PAUs at follow-up CT scans were evaluated. Results: Fifteen patients underwent endovascular treatment for PAU. A total of 87% of the PAUs were in the proximal (n = 8) or distal (n = 5) descending thoracic aorta. There was a broad spectrum of PAU depth (mean, 7.9 {+-} 5.6 mm; range 1.5-25.0 mm) and diameter (mean, 13.5 {+-} 9.7 mm; range 2.2-41.0 mm). Atherosclerosis of the thoracic aorta and intramural hematoma were associated in 53 and 93% of the patients, respectively. Technical success was achieved in 100%. Two or more stent grafts were used in five patients. Endoleaks were observed in two patients within 2 weeks of the procedure, both of which resolved spontaneously. At follow-up CT scanning, regression and thrombosis of the PAUs were observed in all patients. The average patient survival was 61.8 months, with an overall mortality of 13% (2 of 15) at follow-up. Neither death was related to the endograft device or the PAU. Conclusion: Endovascular stent graft placement was safe and effective in causing regression and thrombosis of PAUs in this small series of patients. Two or more stent grafts were used in five patients (33%) with associated long-segmental atherosclerotic changes of the thoracic aorta or intramural hematoma.

  2. [Correlations between SNP of LALBA gene and economic traits in Inner Mongolian white cashmere goat].

    Science.gov (United States)

    Lan, Xian-Yong; Chen, Hong; Tian, Zhi-Quan; Liu, Shao-Qing; Zhang, Yong-Bin; Wang, Xin; Fang, Xing-Tang

    2008-02-01

    PCR-SSCP and DNA sequencing methods were conducted to detect single nucleotide polymorphism of alpha-lactalbumin (LALBA) gene in 452 Inner Mongolian white cashmere goats (IMWC). Correlations between SNP of goat LALBA gene and economic traits, e.g., cashmere yield, cashmere thickness, length and weight, were analyzed. The SSCP in P2 primer locus, which was caused by the point mutation M63868:g.1897T>C in the exon 3 of LALBA gene was detected. At this locus, the genotype TT and allele T were predominant in the IMWC population, which agreed with Hardy-Weinberg equilibrium. Moreover, there was a significant correlation between polymorphism of goat M63868:g.1897 locus and cashmere yield of IMWC (P=0.017). The individuals with genotype TC had more cashmere yield than those with geontype TT. Hence, genotype TC of LALBA gene can be used as a molecular marker for breeding superior cashmere yield in goat marker-assisted selection.

  3. Simulating multiplexed SNP discovery rates using base-specific cleavage and mass spectrometry.

    Science.gov (United States)

    Böcker, Sebastian

    2007-01-15

    Single Nucleotide Polymorphisms (SNPs) are believed to contribute strongly to the genetic variability in living beings, and SNP and mutation discovery are of great interest in today's Life Sciences. A comparatively new method to discover such polymorphisms is based on base-specific cleavage, where resulting cleavage products are analyzed by mass spectrometry (MS). One particular advantage of this method is the possibility of multiplexing the biochemical reactions, i.e. examining multiple genomic regions in parallel. Simulations can help estimating the performance of a method for polymorphism discovery, and allow us to evaluate the influence of method parameters on the discovery rate, and also to investigate whether the method is well suited for a certain genomic region. We show how to efficiently conduct such simulations for polymorphism discovery using base-specific cleavage and MS. Simulating multiplexed polymorphism discovery leads us to the problem of uniformly drawing a multiplex. Given a multiset of natural numbers we want to uniformly draw a subset of fixed cardinality so that the elements sum up to some fixed total length. We show how to enumerate multiplex layouts using dynamic programming, which allows us to uniformly draw a multiplex.

  4. SNPpy - Database Management for SNP Data from Genome Wide Association Studies

    Science.gov (United States)

    Mitha, Faheem; Herodotou, Herodotos; Borisov, Nedyalko; Jiang, Chen; Yoder, Josh; Owzar, Kouros

    2011-01-01

    Background We describe SNPpy, a hybrid script database system using the Python SQLAlchemy library coupled with the PostgreSQL database to manage genotype data from Genome-Wide Association Studies (GWAS). This system makes it possible to merge study data with HapMap data and merge across studies for meta-analyses, including data filtering based on the values of phenotype and Single-Nucleotide Polymorphism (SNP) data. SNPpy and its dependencies are open source software. Results The current version of SNPpy offers utility functions to import genotype and annotation data from two commercial platforms. We use these to import data from two GWAS studies and the HapMap Project. We then export these individual datasets to standard data format files that can be imported into statistical software for downstream analyses. Conclusions By leveraging the power of relational databases, SNPpy offers integrated management and manipulation of genotype and phenotype data from GWAS studies. The analysis of these studies requires merging across GWAS datasets as well as patient and marker selection. To this end, SNPpy enables the user to filter the data and output the results as standardized GWAS file formats. It does low level and flexible data validation, including validation of patient data. SNPpy is a practical and extensible solution for investigators who seek to deploy central management of their GWAS data. PMID:22039405

  5. SNPpy--database management for SNP data from genome wide association studies.

    Directory of Open Access Journals (Sweden)

    Faheem Mitha

    Full Text Available BACKGROUND: We describe SNPpy, a hybrid script database system using the Python SQLAlchemy library coupled with the PostgreSQL database to manage genotype data from Genome-Wide Association Studies (GWAS. This system makes it possible to merge study data with HapMap data and merge across studies for meta-analyses, including data filtering based on the values of phenotype and Single-Nucleotide Polymorphism (SNP data. SNPpy and its dependencies are open source software. RESULTS: The current version of SNPpy offers utility functions to import genotype and annotation data from two commercial platforms. We use these to import data from two GWAS studies and the HapMap Project. We then export these individual datasets to standard data format files that can be imported into statistical software for downstream analyses. CONCLUSIONS: By leveraging the power of relational databases, SNPpy offers integrated management and manipulation of genotype and phenotype data from GWAS studies. The analysis of these studies requires merging across GWAS datasets as well as patient and marker selection. To this end, SNPpy enables the user to filter the data and output the results as standardized GWAS file formats. It does low level and flexible data validation, including validation of patient data. SNPpy is a practical and extensible solution for investigators who seek to deploy central management of their GWAS data.

  6. SNPpy--database management for SNP data from genome wide association studies.

    Science.gov (United States)

    Mitha, Faheem; Herodotou, Herodotos; Borisov, Nedyalko; Jiang, Chen; Yoder, Josh; Owzar, Kouros

    2011-01-01

    We describe SNPpy, a hybrid script database system using the Python SQLAlchemy library coupled with the PostgreSQL database to manage genotype data from Genome-Wide Association Studies (GWAS). This system makes it possible to merge study data with HapMap data and merge across studies for meta-analyses, including data filtering based on the values of phenotype and Single-Nucleotide Polymorphism (SNP) data. SNPpy and its dependencies are open source software. The current version of SNPpy offers utility functions to import genotype and annotation data from two commercial platforms. We use these to import data from two GWAS studies and the HapMap Project. We then export these individual datasets to standard data format files that can be imported into statistical software for downstream analyses. By leveraging the power of relational databases, SNPpy offers integrated management and manipulation of genotype and phenotype data from GWAS studies. The analysis of these studies requires merging across GWAS datasets as well as patient and marker selection. To this end, SNPpy enables the user to filter the data and output the results as standardized GWAS file formats. It does low level and flexible data validation, including validation of patient data. SNPpy is a practical and extensible solution for investigators who seek to deploy central management of their GWAS data.

  7. Reducing Bias of Allele Frequency Estimates by Modeling SNP Genotype Data with Informative Missingness

    Directory of Open Access Journals (Sweden)

    Wan-Yu eLin

    2012-06-01

    Full Text Available The presence of missing single-nucleotide polymorphism (SNP genotypes is common in genetic data. For studies with low-density SNPs, the most commonly used approach to deal with genotype missingness is to simply remove the observations with missing genotypes from the analyses. This naïve method is straightforward but is appropriate only when the missingness is random. However, a given assay often has a different capability in genotyping heterozygotes and homozygotes, causing the phenomenon of ‘differential dropout’ in the sense that the missing rates of heterozygotes and homozygotes are different. In practice, differential dropout among genotypes exists in even carefully designed studies, such as the data from the HapMap project and the Wellcome Trust Case Control Consortium. In this study, we propose a statistical method to model the differential dropout among different genotypes. Compared with the naïve method, our method provides more accurate allele frequency estimates when the differential dropout is present. To demonstrate its practical use, we further apply our method to the HapMap data and a scleroderma data set.

  8. Genetic Diversity in Jatropha curcas L. Assessed with SSR and SNP Markers

    Directory of Open Access Journals (Sweden)

    Juan M. Montes

    2014-08-01

    Full Text Available Jatropha curcas L. (jatropha is an undomesticated plant that has recently received great attention for its utilization in biofuel production, rehabilitation of wasteland, and rural development. Knowledge of genetic diversity and marker-trait associations is urgently needed for the design of breeding strategies. The main goal of this study was to assess the genetic structure and diversity in jatropha germplasm with co-dominant markers (Simple Sequence Repeats (SSR and Single Nucleotide Polymorphism (SNP in a diverse, worldwide, germplasm panel of 70 accessions. We found a high level of homozygosis in the germplasm that does not correspond to the purely outcrossing mating system assumed to be present in jatropha. We hypothesize that the prevalent mating system of jatropha comprise a high level of self-fertilization and that the outcrossing rate is low. Genetic diversity in accessions from Central America and Mexico was higher than in accession from Africa, Asia, and South America. We identified makers associated with the presence of phorbol esters. We think that the utilization of molecular markers in breeding of jatropha will significantly accelerate the development of improved cultivars.

  9. SNP discovery and characterisation in White Rhino (Ceratotherium simum) with application to parentage assignment

    Science.gov (United States)

    Labuschagne, Christiaan; Dalton, Desiré L.; Grobler, J. Paul; Kotzé, Antoinette

    2017-01-01

    Abstract The white rhino is one of the great success stories of modern wildlife conservation, growing from as few as 50-100 animals in the 1880s, to approximately 20,000 white rhinoceros remaining today. However, illegal trade in conservational rhinoceros horns is adding constant pressure on remaining populations. Captive management of ex situ populations of endangered species using molecular methods can contribute to improving the management of the species. Here we compare for the first time the utility of 33 Single Nucleotide Polymorphisms (SNPs) and nine microsatellites (MS) in isolation and in combination for assigning parentage in captive White Rhinoceros. We found that a combined dataset of SNPs and microsatellites was most informative with the highest confidence level. This study thus provided us with a useful set of SNP and MS markers for parentage and relatedness testing. Further assessment of the utility of these markers over multiple (> three) generations and the incorporation of a larger variety of relationships among individuals (e.g. half-siblings or cousins) is strongly suggested. PMID:28170027

  10. SNP discovery and characterisation in White Rhino (Ceratotherium simum with application to parentage assignment

    Directory of Open Access Journals (Sweden)

    Christiaan Labuschagne

    Full Text Available Abstract The white rhino is one of the great success stories of modern wildlife conservation, growing from as few as 50-100 animals in the 1880s, to approximately 20,000 white rhinoceros remaining today. However, illegal trade in conservational rhinoceros horns is adding constant pressure on remaining populations. Captive management of ex situ populations of endangered species using molecular methods can contribute to improving the management of the species. Here we compare for the first time the utility of 33 Single Nucleotide Polymorphisms (SNPs and nine microsatellites (MS in isolation and in combination for assigning parentage in captive White Rhinoceros. We found that a combined dataset of SNPs and microsatellites was most informative with the highest confidence level. This study thus provided us with a useful set of SNP and MS markers for parentage and relatedness testing. Further assessment of the utility of these markers over multiple (> three generations and the incorporation of a larger variety of relationships among individuals (e.g. half-siblings or cousins is strongly suggested.

  11. Association between genetic subgroups of pancreatic ductal adenocarcinoma defined by high density 500 K SNP-arrays and tumor histopathology.

    Directory of Open Access Journals (Sweden)

    María Laura Gutiérrez

    Full Text Available The specific genes and genetic pathways associated with pancreatic ductal adenocarcinoma are still largely unknown partially due to the low resolution of the techniques applied so far to their study. Here we used high-density 500 K single nucleotide polymorphism (SNP-arrays to define those chromosomal regions which most commonly harbour copy number (CN alterations and loss of heterozygozity (LOH in a series of 20 PDAC tumors and we correlated the corresponding genetic profiles with the most relevant clinical and histopathological features of the disease. Overall our results showed that primary PDAC frequently display (>70% extensive gains of chromosomes 1q, 7q, 8q and 20q, together with losses of chromosomes 1p, 9p, 12q, 17p and 18q, such chromosomal regions harboring multiple cancer- and PDAC-associated genes. Interestingly, these alterations clustered into two distinct genetic profiles characterized by gains of the 2q14.2, 3q22.1, 5q32, 10q26.13, 10q26.3, 11q13.1, 11q13.3, 11q13.4, 16q24.1, 16q24.3, 22q13.1, 22q13.31 and 22q13.32 chromosomal regions (group 1; n = 9 versus gains at 1q21.1 and losses of the 1p36.11, 6q25.2, 9p22.1, 9p24.3, 17p13.3 and Xp22.33 chromosomal regions (group 2; n = 11. From the clinical and histopathological point of view, group 1 cases were associated with smaller and well/moderately-differentiated grade I/II PDAC tumors, whereas and group 2 PDAC displayed a larger size and they mainly consisted of poorly-differentiated grade III carcinomas. These findings confirm the cytogenetic complexity and heterozygozity of PDAC and provide evidence for the association between tumor cytogenetics and its histopathological features. In addition, we also show that the altered regions identified harbor multiple cancer associate genes that deserve further investigation to determine their relevance in the pathogenesis of PDAC.

  12. A linkage map of the Atlantic salmon (Salmo salar based on EST-derived SNP markers

    Directory of Open Access Journals (Sweden)

    Kjøglum Sissel

    2008-05-01

    Full Text Available Abstract Background The Atlantic salmon is a species of commercial and ecological significance. Like other salmonids, the species displays residual tetrasomy and a large difference in recombination rate between sexes. Linkage maps with full genome coverage, containing both type I and type II markers, are needed for progress in genomics. Furthermore, it is important to estimate levels of linkage disequilibrium (LD in the species. In this study, we developed several hundred single nucleotide polymorphism (SNP markers for the Atlantic salmon, and constructed male and female linkage maps containing SNP and microsatellite markers. We also investigated further the distribution of male and female recombination events across the genome, and estimated levels of LD between pairs of markers. Results The male map had 29 linkage groups and was 390 cM long. The female map had 30 linkage groups as was 1983 cM long. In total, the maps contained 138 microsatellite markers and 304 SNPs located within genes, most of which were successfully annotated. The ratio of male to female recombination events was either close to zero or very large, indicating that there is little overlap between regions in which male and female crossovers occur. The female map is likely to have close to full genome coverage, while the majority of male linkage groups probably lack markers in telomeric regions where male recombination events occur. Levels of r2 increased with decreasing inter-marker distance in a bimodal fashion; increasing slowly from ~60 cM, and more rapidly more from ~12 cM. Long-ranging LD may be consequence of recent admixture in the population, the population being a 'synthetic' breeding population with contributions from several distinct rivers. Levels of r2 dropped to half its maximum value (above baseline within 15 cM, and were higher than 0.2 above baseline for unlinked markers ('useful LD' at inter-marker distances less than 5 cM. Conclusion The linkage map

  13. Genome-wide SNP data unveils the globalization of domesticated pigs.

    Science.gov (United States)

    Yang, Bin; Cui, Leilei; Perez-Enciso, Miguel; Traspov, Aleksei; Crooijmans, Richard P M A; Zinovieva, Natalia; Schook, Lawrence B; Archibald, Alan; Gatphayak, Kesinee; Knorr, Christophe; Triantafyllidis, Alex; Alexandri, Panoraia; Semiadi, Gono; Hanotte, Olivier; Dias, Deodália; Dovč, Peter; Uimari, Pekka; Iacolina, Laura; Scandura, Massimo; Groenen, Martien A M; Huang, Lusheng; Megens, Hendrik-Jan

    2017-09-21

    Pigs were domesticated independently in Eastern and Western Eurasia early during the agricultural revolution, and have since been transported and traded across the globe. Here, we present a worldwide survey on 60K genome-wide single nucleotide polymorphism (SNP) data for 2093 pigs, including 1839 domestic pigs representing 122 local and commercial breeds, 215 wild boars, and 39 out-group suids, from Asia, Europe, America, Oceania and Africa. The aim of this study was to infer global patterns in pig domestication and diversity related to demography, migration, and selection. A deep phylogeographic division reflects the dichotomy between early domestication centers. In the core Eastern and Western domestication regions, Chinese pigs show differentiation between breeds due to geographic isolation, whereas this is less pronounced in European pigs. The inferred European origin of pigs in the Americas, Africa, and Australia reflects European expansion during the sixteenth to nineteenth centuries. Human-mediated introgression, which is due, in particular, to importing Chinese pigs into the UK during the eighteenth and nineteenth centuries, played an important role in the formation of modern pig breeds. Inbreeding levels vary markedly between populations, from almost no runs of homozygosity (ROH) in a number of Asian wild boar populations, to up to 20% of the genome covered by ROH in a number of Southern European breeds. Commercial populations show moderate ROH statistics. For domesticated pigs and wild boars in Asia and Europe, we identified highly differentiated loci that include candidate genes related to muscle and body development, central nervous system, reproduction, and energy balance, which are putatively under artificial selection. Key events related to domestication, dispersal, and mixing of pigs from different regions are reflected in the 60K SNP data, including the globalization that has recently become full circle since Chinese pig breeders in the past

  14. Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform

    Directory of Open Access Journals (Sweden)

    Kardia Sharon LR

    2011-05-01

    Full Text Available Abstract Background Copy number data are routinely being extracted from genome-wide association study chips using a variety of software. We empirically evaluated and compared four freely-available software packages designed for Affymetrix SNP chips to estimate copy number: Affymetrix Power Tools (APT, Aroma.Affymetrix, PennCNV and CRLMM. Our evaluation used 1,418 GENOA samples that were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0. We compared bias and variance in the locus-level copy number data, the concordance amongst regions of copy number gains/deletions and the false-positive rate amongst deleted segments. Results APT had median locus-level copy numbers closest to a value of two, whereas PennCNV and Aroma.Affymetrix had the smallest variability associated with the median copy number. Of those evaluated, only PennCNV provides copy number specific quality-control metrics and identified 136 poor CNV samples. Regions of copy number variation (CNV were detected using the hidden Markov models provided within PennCNV and CRLMM/VanillaIce. PennCNV detected more CNVs than CRLMM/VanillaIce; the median number of CNVs detected per sample was 39 and 30, respectively. PennCNV detected most of the regions that CRLMM/VanillaIce did as well as additional CNV regions. The median concordance between PennCNV and CRLMM/VanillaIce was 47.9% for duplications and 51.5% for deletions. The estimated false-positive rate associated with deletions was similar for PennCNV and CRLMM/VanillaIce. Conclusions If the objective is to perform statistical tests on the locus-level copy number data, our empirical results suggest that PennCNV or Aroma.Affymetrix is optimal. If the objective is to perform statistical tests on the summarized segmented data then PennCNV would be preferred over CRLMM/VanillaIce. Specifically, PennCNV allows the analyst to estimate locus-level copy number, perform segmentation and evaluate CNV-specific quality-control metrics within a

  15. Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform.

    Science.gov (United States)

    Eckel-Passow, Jeanette E; Atkinson, Elizabeth J; Maharjan, Sooraj; Kardia, Sharon L R; de Andrade, Mariza

    2011-05-31

    Copy number data are routinely being extracted from genome-wide association study chips using a variety of software. We empirically evaluated and compared four freely-available software packages designed for Affymetrix SNP chips to estimate copy number: Affymetrix Power Tools (APT), Aroma.Affymetrix, PennCNV and CRLMM. Our evaluation used 1,418 GENOA samples that were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0. We compared bias and variance in the locus-level copy number data, the concordance amongst regions of copy number gains/deletions and the false-positive rate amongst deleted segments. APT had median locus-level copy numbers closest to a value of two, whereas PennCNV and Aroma.Affymetrix had the smallest variability associated with the median copy number. Of those evaluated, only PennCNV provides copy number specific quality-control metrics and identified 136 poor CNV samples. Regions of copy number variation (CNV) were detected using the hidden Markov models provided within PennCNV and CRLMM/VanillaIce. PennCNV detected more CNVs than CRLMM/VanillaIce; the median number of CNVs detected per sample was 39 and 30, respectively. PennCNV detected most of the regions that CRLMM/VanillaIce did as well as additional CNV regions. The median concordance between PennCNV and CRLMM/VanillaIce was 47.9% for duplications and 51.5% for deletions. The estimated false-positive rate associated with deletions was similar for PennCNV and CRLMM/VanillaIce. If the objective is to perform statistical tests on the locus-level copy number data, our empirical results suggest that PennCNV or Aroma.Affymetrix is optimal. If the objective is to perform statistical tests on the summarized segmented data then PennCNV would be preferred over CRLMM/VanillaIce. Specifically, PennCNV allows the analyst to estimate locus-level copy number, perform segmentation and evaluate CNV-specific quality-control metrics within a single software package. PennCNV has relatively small bias

  16. Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery

    Directory of Open Access Journals (Sweden)

    Stothard Paul

    2011-11-01

    Full Text Available Abstract Background One of the goals of livestock genomics research is to identify the genetic differences responsible for variation in phenotypic traits, particularly those of economic importance. Characterizing the genetic variation in livestock species is an important step towards linking genes or genomic regions with phenotypes. The completion of the bovine genome sequence and recent advances in DNA sequencing technology allow for in-depth characterization of the genetic variations present in cattle. Here we describe the whole-genome resequencing of two Bos taurus bulls from distinct breeds for the purpose of identifying and annotating novel forms of genetic variation in cattle. Results The genomes of a Black Angus bull and a Holstein bull were sequenced to 22-fold and 19-fold coverage, respectively, using the ABI SOLiD system. Comparisons of the sequences with the Btau4.0 reference assembly yielded 7 million single nucleotide polymorphisms (SNPs, 24% of which were identified in both animals. Of the total SNPs found in Holstein, Black Angus, and in both animals, 81%, 81%, and 75% respectively are novel. In-depth annotations of the data identified more than 16 thousand distinct non-synonymous SNPs (85% novel between the two datasets. Alignments between the SNP-altered proteins and orthologues from numerous species indicate that many of the SNPs alter well-conserved amino acids. Several SNPs predicted to create or remove stop codons were also found. A comparison between the sequencing SNPs and genotyping results from the BovineHD high-density genotyping chip indicates a detection rate of 91% for homozygous SNPs and 81% for heterozygous SNPs. The false positive rate is estimated to be about 2% for both the Black Angus and Holstein SNP sets, based on follow-up genotyping of 422 and 427 SNPs, respectively. Comparisons of read depth between the two bulls along the reference assembly identified 790 putative copy-number variations (CNVs. Ten

  17. Fish scales and SNP chips: SNP genotyping and allele frequency estimation in individual and pooled DNA from historical samples of Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Johnston, Susan E; Lindqvist, Meri; Niemelä, Eero; Orell, Panu; Erkinaro, Jaakko; Kent, Matthew P; Lien, Sigbjørn; Vähä, Juha-Pekka; Vasemägi, Anti; Primmer, Craig R

    2013-07-03

    DNA extracted from historical samples is an important resource for understanding genetic consequences of anthropogenic influences and long-term environmental change. However, such samples generally yield DNA of a lower amount and quality, and the extent to which DNA degradation affects SNP genotyping success and allele frequency estimation is not well understood. We conducted high density SNP genotyping and allele frequency estimation in both individual DNA samples and pooled DNA samples extracted from dried Atlantic salmon (Salmo salar) scales stored at room temperature for up to 35 years, and assessed genotyping success, repeatability and accuracy of allele frequency estimation using a high density SNP genotyping array. In individual DNA samples, genotyping success and repeatability was very high (> 0.973 and > 0.998, respectively) in samples stored for up to 35 years; both increased with the proportion of DNA of fragment size > 1000 bp. In pooled DNA samples, allele frequency estimation was highly repeatable (Repeatability = 0.986) and highly correlated with empirical allele frequency measures (Mean Adjusted R2 = 0.991); allele frequency could be accurately estimated in > 95% of pooled DNA samples with a reference group of at least 30 individuals. SNPs located in polyploid regions of the genome were more sensitive to DNA degradation: older samples had lower genotyping success at these loci, and a larger reference panel of individuals was required to accurately estimate allele frequencies. SNP genotyping was highly successful in degraded DNA samples, paving the way for the use of degraded samples in SNP genotyping projects. DNA pooling provides the potential for large scale population genetic studies with fewer assays, provided enough reference individuals are also genotyped and DNA quality is properly assessed beforehand. We provide recommendations for future studies intending to conduct high-throughput SNP genotyping and allele frequency estimation in

  18. [Comparative study of prenatal diagnosis with single nucleotide polymorphism array and karyotype analysis].

    Science.gov (United States)

    Chang, Ling; Zhao, Nan; Wei, Yuan; Zhong, Su; Liu, Ping; Qiao, Jie

    2014-10-18

    To compare the roles of single nucleotide polymorphism array (SNP array) and karyotype analysis in high-risk pregnant women prenatal diagnosis. From July 2012 to December 2013, a total of 141 pregnant women with high-risk in prenatal diagnosis were selected as the object of study in Department of Obstetrics and Gynecology, Peking University Third Hospital, 78 cases of umbilical cord puncture and 63 of amnion cavity puncture , both taking SNP array detection and karyotype analysis. The abnormality karyotype rate was 6.4%, the abnormal rate of SNP array result was 11.3%, and the abnormal rate of the combined two methods for detecting was 12.1%. There were significant differences between the SNP array and karyotype analysis (P=0.039). There were obvious differences between the two techniques. It is an effective way to determine genetic disease by integrating SNP array and karyotype analysis in prenatal diagnosis.

  19. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology

    DEFF Research Database (Denmark)

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr

    2017-01-01

    Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver...... constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF......, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive QTL/CG analysis of 110 QTL/CG with RNA-seq data identified 20 monomorphic SNP hit loci (CARTPT, GAD1, GDF5, GHRH, GHRL, GRB10...

  20. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    Science.gov (United States)

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  1. Gene-environment interaction in the etiology of mathematical ability using SNP sets.

    Science.gov (United States)

    Docherty, Sophia J; Kovas, Yulia; Plomin, Robert

    2011-01-01

    Mathematics ability and disability is as heritable as other cognitive abilities and disabilities, however its genetic etiology has received relatively little attention. In our recent genome-wide association study of mathematical ability in 10-year-old children, 10 SNP associations were nominated from scans of pooled DNA and validated in an individually genotyped sample. In this paper, we use a 'SNP set' composite of these 10 SNPs to investigate gene-environment (GE) interaction, examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children with complete data. We found two significant GE interactions for environmental measures in the home and the school both in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative.

  2. Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters.

    Science.gov (United States)

    Chadaeva, Irina V; Ponomarenko, Petr M; Rasskazov, Dmitry A; Sharypova, Ekaterina B; Kashina, Elena V; Zhechev, Dmitry A; Drachkova, Irina A; Arkova, Olga V; Savinkova, Ludmila K; Ponomarenko, Mikhail P; Kolchanov, Nikolay A; Osadchuk, Ludmila V; Osadchuk, Alexandr V

    2018-02-09

    The progress of medicine, science, technology, education, and culture improves, year by year, quality of life and life expectancy of the populace. The modern human has a chance to further improve the quality and duration of his/her life and the lives of his/her loved ones by bringing their lifestyle in line with their sequenced individual genomes. With this in mind, one of genome-based developments at the junction of personalized medicine and bioinformatics will be considered in this work, where we used two Web services: (i) SNP_TATA_Comparator to search for alleles with a single nucleotide polymorphism (SNP) that alters the affinity of TATA-binding protein (TBP) for the TATA boxes of human gene promoters and (ii) PubMed to look for retrospective clinical reviews on changes in physiological indicators of reproductive potential in carriers of these alleles. A total of 126 SNP markers of female reproductive potential, capable of altering the affinity of TBP for gene promoters, were found using the two above-mentioned Web services. For example, 10 candidate SNP markers of thrombosis (e.g., rs563763767) can cause overproduction of coagulation inducers. In pregnant women, Hughes syndrome provokes thrombosis with a fatal outcome although this syndrome can be diagnosed and eliminated even at the earliest stages of its development. Thus, in women carrying any of the above SNPs, preventive treatment of this syndrome before a planned pregnancy can reduce the risk of death. Similarly, seven SNP markers predicted here (e.g., rs774688955) can elevate the risk of myocardial infarction. In line with Bowles' lifespan theory, women carrying any of these SNPs may modify their lifestyle to improve their longevity if they can take under advisement that risks of myocardial infarction increase with age of the mother, total number of pregnancies, in multiple pregnancies, pregnancies under the age of 20, hypertension, preeclampsia, menstrual cycle irregularity, and in women smokers

  3. Involvement of Sodium Nitroprusside (SNP in the Mechanism That Delays Stem Bending of Different Gerbera Cultivars

    Directory of Open Access Journals (Sweden)

    Aung H. Naing

    2017-11-01

    Full Text Available Longevity of cut flowers of many gerbera cultivars (Gerbera jamesonii is typically short because of stem bending; hence, stem bending that occurs during the early vase life period is a major problem in gerbera. Here, we investigated the effects of sodium nitroprusside (SNP on the delay of stem bending in the gerbera cultivars, Alliance, Rosalin, and Bintang, by examining relative fresh weight, bacterial density in the vase solution, transcriptional analysis of a lignin biosynthesis gene, antioxidant activity, and xylem blockage. All three gerbera cultivars responded to SNP by delaying stem bending, compared to the controls; however, the responses were dose- and cultivar-dependent. Among the treatments, SNP at 20 mg L-1 was the best to delay stem bending in Alliance, while dosages of 10 and 5 mg L-1 were the best for Rosalin and Bintang, respectively. However, stem bending in Alliance and Rosalin was faster than in Bintang, indicating a discrepancy influenced by genotype. According to our analysis of the role of SNP in the delay of stem bending, the results revealed that SNP treatment inhibited bacterial growth and xylem blockage, enhanced expression levels of a lignin biosynthesis gene, and maintained antioxidant activities. Therefore, it is suggested that the cause of stem bending is associated with the above-mentioned parameters and SNP is involved in the mechanism that delays stem bending in the different gerbera cultivars.

  4. SNP Microarray in FISH Negative Clinically Suspected 22q11.2 Microdeletion Syndrome

    Science.gov (United States)

    Jain, Manish; Kalsi, Amanpreet Kaur

    2016-01-01

    The present study evaluated the role of SNP microarray in 101 cases of clinically suspected FISH negative (noninformative/normal) 22q11.2 microdeletion syndrome. SNP microarray was carried out using 300 K HumanCytoSNP-12 BeadChip array or CytoScan 750 K array. SNP microarray identified 8 cases of 22q11.2 microdeletions and/or microduplications in addition to cases of chromosomal abnormalities and other pathogenic/likely pathogenic CNVs. Clinically suspected specific deletions (22q11.2) were detectable in approximately 8% of cases by SNP microarray, mostly from FISH noninformative cases. This study also identified several LOH/AOH loci with known and well-defined UPD (uniparental disomy) disorders. In conclusion, this study suggests more strict clinical criteria for FISH analysis. However, if clinical criteria are few or doubtful, in particular newborn/neonate in intensive care, SNP microarray should be the first screening test to be ordered. FISH is ideal test for detecting mosaicism, screening family members, and prenatal diagnosis in proven families. PMID:27051557

  5. SNP Microarray in FISH Negative Clinically Suspected 22q11.2 Microdeletion Syndrome.

    Science.gov (United States)

    Halder, Ashutosh; Jain, Manish; Kalsi, Amanpreet Kaur

    2016-01-01

    The present study evaluated the role of SNP microarray in 101 cases of clinically suspected FISH negative (noninformative/normal) 22q11.2 microdeletion syndrome. SNP microarray was carried out using 300 K HumanCytoSNP-12 BeadChip array or CytoScan 750 K array. SNP microarray identified 8 cases of 22q11.2 microdeletions and/or microduplications in addition to cases of chromosomal abnormalities and other pathogenic/likely pathogenic CNVs. Clinically suspected specific deletions (22q11.2) were detectable in approximately 8% of cases by SNP microarray, mostly from FISH noninformative cases. This study also identified several LOH/AOH loci with known and well-defined UPD (uniparental disomy) disorders. In conclusion, this study suggests more strict clinical criteria for FISH analysis. However, if clinical criteria are few or doubtful, in particular newborn/neonate in intensive care, SNP microarray should be the first screening test to be ordered. FISH is ideal test for detecting mosaicism, screening family members, and prenatal diagnosis in proven families.

  6. Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries

    Science.gov (United States)

    Park, Jae-Wan; Park, Cheol-Min

    2016-10-01

    The development of new anode materials having high electrochemical performances and interesting reaction mechanisms is highly required to satisfy the need for long-lasting mobile electronic devices and electric vehicles. Here, we report a layer crystalline structured SnP3 and its unique electrochemical behaviors with Li. The SnP3 was simply synthesized through modification of Sn crystallography by combination with P and its potential as an anode material for LIBs was investigated. During Li insertion reaction, the SnP3 anode showed an interesting two-step electrochemical reaction mechanism comprised of a topotactic transition (0.7-2.0 V) and a conversion (0.0-2.0 V) reaction. When the SnP3-based composite electrode was tested within the topotactic reaction region (0.7-2.0 V) between SnP3 and LixSnP3 (x ≤ 4), it showed excellent electrochemical properties, such as a high volumetric capacity (1st discharge/charge capacity was 840/663 mA h cm-3) with a high initial coulombic efficiency, stable cycle behavior (636 mA h cm-3 over 100 cycles), and fast rate capability (550 mA h cm-3 at 3C). This layered SnP3 anode will be applicable to a new anode material for rechargeable LIBs.

  7. SNP Microarray in FISH Negative Clinically Suspected 22q11.2 Microdeletion Syndrome

    Directory of Open Access Journals (Sweden)

    Ashutosh Halder

    2016-01-01

    Full Text Available The present study evaluated the role of SNP microarray in 101 cases of clinically suspected FISH negative (noninformative/normal 22q11.2 microdeletion syndrome. SNP microarray was carried out using 300 K HumanCytoSNP-12 BeadChip array or CytoScan 750 K array. SNP microarray identified 8 cases of 22q11.2 microdeletions and/or microduplications in addition to cases of chromosomal abnormalities and other pathogenic/likely pathogenic CNVs. Clinically suspected specific deletions (22q11.2 were detectable in approximately 8% of cases by SNP microarray, mostly from FISH noninformative cases. This study also identified several LOH/AOH loci with known and well-defined UPD (uniparental disomy disorders. In conclusion, this study suggests more strict clinical criteria for FISH analysis. However, if clinical criteria are few or doubtful, in particular newborn/neonate in intensive care, SNP microarray should be the first screening test to be ordered. FISH is ideal test for detecting mosaicism, screening family members, and prenatal diagnosis in proven families.

  8. ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using next generation sequence.

    Science.gov (United States)

    Blanca, Jose M; Pascual, Laura; Ziarsolo, Peio; Nuez, Fernando; Cañizares, Joaquin

    2011-06-02

    The possibilities offered by next generation sequencing (NGS) platforms are revolutionizing biotechnological laboratories. Moreover, the combination of NGS sequencing and affordable high-throughput genotyping technologies is facilitating the rapid discovery and use of SNPs in non-model species. However, this abundance of sequences and polymorphisms creates new software needs. To fulfill these needs, we have developed a powerful, yet easy-to-use application. The ngs_backbone software is a parallel pipeline capable of analyzing Sanger, 454, Illumina and SOLiD (Sequencing by Oligonucleotide Ligation and Detection) sequence reads. Its main supported analyses are: read cleaning, transcriptome assembly and annotation, read mapping and single nucleotide polymorphism (SNP) calling and selection. In order to build a truly useful tool, the software development was paired with a laboratory experiment. All public tomato Sanger EST reads plus 14.2 million Illumina reads were employed to test the tool and predict polymorphism in tomato. The cleaned reads were mapped to the SGN tomato transcriptome obtaining a coverage of 4.2 for Sanger and 8.5 for Illumina. 23,360 single nucleotide variations (SNVs) were predicted. A total of 76 SNVs were experimentally validated, and 85% were found to be real. ngs_backbone is a new software package capable of analyzing sequences produced by NGS technologies and predicting SNVs with great accuracy. In our tomato example, we created a highly polymorphic collection of SNVs that will be a useful resource for tomato researchers and breeders. The software developed along with its documentation is freely available under the AGPL license and can be downloaded from http://bioinf.comav.upv.es/ngs_backbone/ or http://github.com/JoseBlanca/franklin.

  9. ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using Next Generation Sequence

    Directory of Open Access Journals (Sweden)

    Cañizares Joaquin

    2011-06-01

    Full Text Available Abstract Background The possibilities offered by next generation sequencing (NGS platforms are revolutionizing biotechnological laboratories. Moreover, the combination of NGS sequencing and affordable high-throughput genotyping technologies is facilitating the rapid discovery and use of SNPs in non-model species. However, this abundance of sequences and polymorphisms creates new software needs. To fulfill these needs, we have developed a powerful, yet easy-to-use application. Results The ngs_backbone software is a parallel pipeline capable of analyzing Sanger, 454, Illumina and SOLiD (Sequencing by Oligonucleotide Ligation and Detection sequence reads. Its main supported analyses are: read cleaning, transcriptome assembly and annotation, read mapping and single nucleotide polymorphism (SNP calling and selection. In order to build a truly useful tool, the software development was paired with a laboratory experiment. All public tomato Sanger EST reads plus 14.2 million Illumina reads were employed to test the tool and predict polymorphism in tomato. The cleaned reads were mapped to the SGN tomato transcriptome obtaining a coverage of 4.2 for Sanger and 8.5 for Illumina. 23,360 single nucleotide variations (SNVs were predicted. A total of 76 SNVs were experimentally validated, and 85% were found to be real. Conclusions ngs_backbone is a new software package capable of analyzing sequences produced by NGS technologies and predicting SNVs with great accuracy. In our tomato example, we created a highly polymorphic collection of SNVs that will be a useful resource for tomato researchers and breeders. The software developed along with its documentation is freely available under the AGPL license and can be downloaded from http://bioinf.comav.upv.es/ngs_backbone/ or http://github.com/JoseBlanca/franklin.

  10. Using Genome-Wide SNP Discovery and Genotyping to Reveal the Main Source of Population Differentiation in Nothofagus dombeyi (Mirb. Oerst. in Chile

    Directory of Open Access Journals (Sweden)

    Rodrigo Hasbún

    2016-01-01

    Full Text Available Within a woody plant species, environmental heterogeneity has the potential to influence the distribution of genetic variation among populations through several evolutionary processes. In some species, a relationship between environmental characteristics and the distribution of genotypes can be detected, showing the importance of natural selection as the main source of differentiation. Nothofagus dombeyi (Mirb. Oerst. (Nothofagaceae is an endemic tree species occurring both in Chile and in Argentina temperate forests. Postglacial history has been studied with chloroplast DNA and evolutionary forces shaping genetic variation patterns have been analysed with isozymes but fine-scale genetic diversity studies are needed. The study of demographic and selection histories in Nothofagus dombeyi requires more informative markers such as single nucleotide polymorphisms (SNP. Genotyping-by-Sequencing tools now allow studying thousands of SNP markers at reasonable prices in nonmodel species. We investigated more than 10 K SNP loci for signatures of local adaptation and showed that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this nonmodel woody species.

  11. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    Science.gov (United States)

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  12. De novo SNP discovery in the Scandinavian brown bear (Ursus arctos.

    Directory of Open Access Journals (Sweden)

    Anita J Norman

    Full Text Available Information about relatedness between individuals in wild populations is advantageous when studying evolutionary, behavioural and ecological processes. Genomic data can be used to determine relatedness between individuals either when no prior knowledge exists or to confirm suspected relatedness. Here we present a set of 96 SNPs suitable for inferring relatedness for brown bears (Ursus arctos within Scandinavia. We sequenced reduced representation libraries from nine individuals throughout the geographic range. With consensus reads containing putative SNPs, we applied strict filtering criteria with the aim of finding only high-quality, highly-informative SNPs. We tested 150 putative SNPs of which 96% were validated on a panel of 68 individuals. Ninety-six of the validated SNPs with the highest minor allele frequency were selected. The final SNP panel includes four mitochondrial markers, two monomorphic Y-chromosome sex-determination markers, three X-chromosome SNPs and 87 autosomal SNPs. From our validation sample panel, we identified two previously known parent-offspring dyads with reasonable accuracy. This panel of SNPs is a promising tool for inferring relatedness in the brown bear population in Scandinavia.

  13. Development and application of a novel genome-wide SNP array reveals domestication history in soybean.

    Science.gov (United States)

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-02-09

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean.

  14. Development and application of a novel genome-wide SNP array reveals domestication history in soybean

    Science.gov (United States)

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-01-01

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean. PMID:26856884

  15. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    DEFF Research Database (Denmark)

    Brorsson, C.; Hansen, Niclas Tue; Hansen, Kasper Lage

    2009-01-01

    genes. We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein-protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC......To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1...... are well known in the pathogenesis of T1D, but the modules also contain additional candidates that have been implicated in beta-cell development and diabetic complications. The extensive LD within the MHC region makes it important to develop new methods for analysing genotyping data for identification...

  16. Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding.

    Science.gov (United States)

    Bjelland, D W; Weigel, K A; Vukasinovic, N; Nkrumah, J D

    2013-07-01

    The effects of increased pedigree inbreeding in dairy cattle populations have been well documented and result in a negative impact on profitability. Recent advances in genotyping technology have allowed researchers to move beyond pedigree analysis and study inbreeding at a molecular level. In this study, 5,853 animals were genotyped for 54,001 single nucleotide polymorphisms (SNP); 2,913 cows had phenotypic records including a single lactation for milk yield (from either lactation 1, 2, 3, or 4), reproductive performance, and linear type conformation. After removing SNP with poor call rates, low minor allele frequencies, and departure from Hardy-Weinberg equilibrium, 33,025 SNP remained for analyses. Three measures of genomic inbreeding were evaluated: percent homozygosity (FPH), inbreeding calculated from runs of homozygosity (FROH), and inbreeding derived from a genomic relationship matrix (FGRM). Average FPH was 60.5±1.1%, average FROH was 3.8±2.1%, and average FGRM was 20.8±2.3%, where animals with larger values for each of the genomic inbreeding indices were considered more inbred. Decreases in total milk yield to 205d postpartum of 53, 20, and 47kg per 1% increase in FPH, FROH, and FGRM, respectively, were observed. Increases in days open per 1% increase in FPH (1.76 d), FROH (1.72 d), and FGRM (1.06 d) were also noted, as well as increases in maternal calving difficulty (0.09, 0.03, and 0.04 on a 5-point scale for FPH, FROH, and FGRM, respectively). Several linear type traits, such as strength (-0.40, -0.11, and -0.19), rear legs rear view (-0.35, -0.16, and -0.14), front teat placement (0.35, 0.25, 0.18), and teat length (-0.24, -0.14, and -0.13) were also affected by increases in FPH, FROH, and FGRM, respectively. Overall, increases in each measure of genomic inbreeding in this study were associated with negative effects on production and reproductive ability in dairy cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc

  17. SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection.

    Directory of Open Access Journals (Sweden)

    Charlotte Tollenaere

    Full Text Available Molecular tools may greatly improve our understanding of pathogen evolution and epidemiology but technical constraints have hindered the development of genetic resources for parasites compared to free-living organisms. This study aims at developing molecular tools for Podosphaera plantaginis, an obligate fungal pathogen of Plantago lanceolata. This interaction has been intensively studied in the Åland archipelago of Finland with epidemiological data collected from over 4,000 host populations annually since year 2001.A cDNA library of a pooled sample of fungal conidia was sequenced on the 454 GS-FLX platform. Over 549,411 reads were obtained and annotated into 45,245 contigs. Annotation data was acquired for 65.2% of the assembled sequences. The transcriptome assembly was screened for SNP loci, as well as for functionally important genes (mating-type genes and potential effector proteins. A genotyping assay of 27 SNP loci was designed and tested on 380 infected leaf samples from 80 populations within the Åland archipelago. With this panel we identified 85 multilocus genotypes (MLG with uneven frequencies across the pathogen metapopulation. Approximately half of the sampled populations contain polymorphism. Our genotyping protocol revealed mixed-genotype infection within a single host leaf to be common. Mixed infection has been proposed as one of the main drivers of pathogen evolution, and hence may be an important process in this pathosystem.The developed SNP panel offers exciting research perspectives for future studies in this well-characterized pathosystem. Also, the transcriptome provides an invaluable novel genomic resource for powdery mildews, which cause significant yield losses on commercially important crops annually. Furthermore, the features that render genetic studies in this system a challenge are shared with the majority of obligate parasitic species, and hence our results provide methodological insights from SNP calling to field

  18. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan.

    Science.gov (United States)

    Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter

    2014-09-28

    New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.

  19. Development of a Genetic Map for Onion (Allium cepa L. Using Reference-Free Genotyping-by-Sequencing and SNP Assays

    Directory of Open Access Journals (Sweden)

    Jinkwan Jo

    2017-09-01

    Full Text Available Single nucleotide polymorphisms (SNPs play important roles as molecular markers in plant genomics and breeding studies. Although onion (Allium cepa L. is an important crop globally, relatively few molecular marker resources have been reported due to its large genome and high heterozygosity. Genotyping-by-sequencing (GBS offers a greater degree of complexity reduction followed by concurrent SNP discovery and genotyping for species with complex genomes. In this study, GBS was employed for SNP mining in onion, which currently lacks a reference genome. A segregating F2 population, derived from a cross between ‘NW-001’ and ‘NW-002,’ as well as multiple parental lines were used for GBS analysis. A total of 56.15 Gbp of raw sequence data were generated and 1,851,428 SNPs were identified from the de novo assembled contigs. Stringent filtering resulted in 10,091 high-fidelity SNP markers. Robust SNPs that satisfied the segregation ratio criteria and with even distribution in the mapping population were used to construct an onion genetic map. The final map contained eight linkage groups and spanned a genetic length of 1,383 centiMorgans (cM, with an average marker interval of 8.08 cM. These robust SNPs were further analyzed using the high-throughput Fluidigm platform for marker validation. This is the first study in onion to develop genome-wide SNPs using GBS. The resulting SNP markers and developed linkage map will be valuable tools for genetic mapping of important agronomic traits and marker-assisted selection in onion breeding programs.

  20. Whole Genome and Core Genome Multilocus Sequence Typing and Single Nucleotide Polymorphism Analyses of Listeria monocytogenes Isolates Associated with an Outbreak Linked to Cheese, United States, 2013

    Science.gov (United States)

    Luo, Yan; Carleton, Heather; Timme, Ruth; Melka, David; Muruvanda, Tim; Wang, Charles; Kastanis, George; Katz, Lee S.; Turner, Lauren; Fritzinger, Angela; Moore, Terence; Stones, Robert; Blankenship, Joseph; Salter, Monique; Parish, Mickey; Hammack, Thomas S.; Evans, Peter S.; Tarr, Cheryl L.; Allard, Marc W.; Strain, Errol A.; Brown, Eric W.

    2017-01-01

    ABSTRACT Epidemiological findings of a listeriosis outbreak in 2013 implicated Hispanic-style cheese produced by company A, and pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) were performed on clinical isolates and representative isolates collected from company A cheese and environmental samples during the investigation. The results strengthened the evidence for cheese as the vehicle. Surveillance sampling and WGS 3 months later revealed that the equipment purchased by company B from company A yielded an environmental isolate highly similar to all outbreak isolates. The whole genome and core genome multilocus sequence typing and single nucleotide polymorphism (SNP) analyses results were compared to demonstrate the maximum discriminatory power obtained by using multiple analyses, which were needed to differentiate outbreak-associated isolates from a PFGE-indistinguishable isolate collected in a nonimplicated food source in 2012. This unrelated isolate differed from the outbreak isolates by only 7 to 14 SNPs, and as a result, the minimum spanning tree from the whole genome analyses and certain variant calling approach and phylogenetic algorithm for core genome-based analyses could not provide differentiation between unrelated isolates. Our data also suggest that SNP/allele counts should always be combined with WGS clustering analysis generated by phylogenetically meaningful algorithms on a sufficient number of isolates, and the SNP/allele threshold alone does not provide sufficient evidence to delineate an outbreak. The putative prophages were conserved across all the outbreak isolates. All outbreak isolates belonged to clonal complex 5 and serotype 1/2b and had an identical inlA sequence which did not have premature stop codons. IMPORTANCE In this outbreak, multiple analytical approaches were used for maximum discriminatory power. A PFGE-matched, epidemiologically unrelated isolate had high genetic similarity to the outbreak

  1. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Arg and Pl 8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Qi, L L; Talukder, Z I; Hulke, B S; Foley, M E

    2017-06-01

    Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly effective against P. halstedii races in the USA, and have been previously mapped to the sunflower linkage groups (LGs) 1 and 13, respectively, using simple sequence repeat (SSR) markers. In this study, we developed high-density single nucleotide polymorphism (SNP) maps encompassing the Pl arg and Pl 8 genes and identified diagnostic SNP markers closely linked to these genes. The specificity of the diagnostic markers was validated in a highly diverse panel of 548 sunflower lines. Dissection of a large marker cluster co-segregated with Pl Arg revealed that the closest SNP markers NSA_007595 and NSA_001835 delimited Pl Arg to an interval of 2.83 Mb on the LG1 physical map. The SNP markers SFW01497 and SFW06597 delimited Pl 8 to an interval of 2.85 Mb on the LG13 physical map. We also developed sunflower lines with homozygous, three gene pyramids carrying Pl Arg , Pl 8 , and the sunflower rust resistance gene R 12 using the linked SNP markers from a segregating F 2 population of RHA 340 (carrying Pl 8 )/RHA 464 (carrying Pl Arg and R 12 ). The high-throughput diagnostic SNP markers developed in this study will facilitate marker-assisted selection breeding, and the pyramided sunflower lines will provide durable resistance to downy mildew and rust diseases.

  2. Comparative assessment of SSR and SNP markers for inferring the population genetic structure of the common fungus Armillaria cepistipes.

    Science.gov (United States)

    Tsykun, T; Rellstab, C; Dutech, C; Sipos, G; Prospero, S

    2017-11-01

    During the last years, simple sequence repeats (SSRs, also known as microsatellites) and single-nucleotide polymorphisms (SNPs) have become the most popular molecular markers for describing neutral genetic variation in populations of a wide range of organisms. However, only a limited number of studies has focused on comparing the performance of these two types of markers for describing the underlying genetic structure of wild populations. Moreover, none of these studies targeted fungi, the group of organisms with one of the most complex reproductive strategies. We evaluated the utility of SSRs and SNPs for inferring the neutral genetic structure of Armillaria cepistipes (basidiomycetes) at different spatial scales. For that, 407 samples were collected across a small (150 km 2 ) area in the Ukrainian Carpathians and a large (41 000 km 2 ) area in the Swiss Alps. All isolates were analyzed at 17 SSR loci distributed throughout the whole genome and at 24 SNP loci located in different single-copy conserved genes. The two markers showed different patterns of structure within the two spatial scales studied. The multi-allelic SSR markers seemed to be best suited for detecting genetic structure in indigenous fungal populations at a rather small spatial scale (radius of ~50-100 km). The pattern observed at SNP markers rather reflected ancient divergence of distant (~1000 km) populations that in addition are separated by mountain ranges. Despite these differences, both marker types were suitable for detecting the weak genetic structure of the two A. cepistipes populations investigated.

  3. Association between MDM2 SNP309 T>G polymorphism and the risk of bladder cancer: new data in a Chinese population and an updated meta-analysis

    Directory of Open Access Journals (Sweden)

    Xie LG

    2015-12-01

    Full Text Available Linguo Xie,1,2,* Yan Sun,2,* Tao Chen,1,2,* Dawei Tian,1,2 Yujuan Li,3 Yu Zhang,1,2 Na Ding,2 Zhonghua Shen,1,2 Hao Xu,1,2 Xuewu Nian,4 Nan Sha,1,2 Ruifa Han,1,2 Hailong Hu,1,2 Changli Wu1,2 Objective: Human murine double minute 2 protein (MDM2 is mainly a negative regulator of p53 tumor suppressor pathway. We aimed to investigate the association between MDM2 SNP309 polymorphism and bladder cancer risk. Methods: A total of 535 bladder cancer patients and 649 health controls were recruited for our study. MDM2 SNP309 T>G polymorphism was genotyped by polymerase chain reaction-ligase detection reaction method. Logistic regression was used to analyze the relationship between the genotype and susceptibility of bladder cancer. Kaplan–Meier estimates and log-rank test were obtained to analyze the association between the genotype and risk of recrudesce in nonmuscle-invasive bladder cancer patients. A multivariable Cox proportional hazards model was fitted to identify independent prognostic factors. To further investigate the association, we conducted a meta-analysis including six studies. Results: The frequency of the MDM2 SNP309 T>G polymorphism showed no significant difference between cases and controls (all P>0.05. In the stratification analysis, the results showed that G allele carriers were prone to have a significant decrease in risk of low-grade bladder cancer (adjusted odds ratio: 0.613, 95% confidence interval: 0.427–0.881, and G variant was associated with a significantly reduced risk of recurrence in nonmuscle-invasive bladder cancer patients with or without chemotherapy (P<0.05. The results of the meta-analysis showed that G allele and GG genotype of MDM2 SNP309 polymorphism were significantly associated with increased risk of bladder cancer in Caucasians (both P<0.05, and no association was observed in total populations and Asians (P>0.05. Conclusion: MDM2 SNP309 T>G polymorphism has no influence on bladder cancer risk in Asians, but

  4. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers

    DEFF Research Database (Denmark)

    Gaasenbeek, Michelle; Howarth, Kimberley; Rowan, Andrew J

    2006-01-01

    (CGH) for copy number changes and single-copy number polymorphism (SNP) microarrays for allelic loss (LOH). Many array-based CGH changes were not found by LOH because they did not cause true reduction-to-homozygosity. Conversely, many regions of SNP-LOH occurred in the absence of copy number change...

  5. Dog Y chromosomal DNA sequence: identification, sequencing and SNP discovery

    Directory of Open Access Journals (Sweden)

    Kirkness Ewen

    2006-10-01

    Full Text Available Abstract Background Population genetic studies of dogs have so far mainly been based on analysis of mitochondrial DNA, describing only the history of female dogs. To get a picture of the male history, as well as a second independent marker, there is a need for studies of biallelic Y-chromosome polymorphisms. However, there are no biallelic polymorphisms reported, and only 3200 bp of non-repetitive dog Y-chromosome sequence deposited in GenBank, necessitating the identification of dog Y chromosome sequence and the search for polymorphisms therein. The genome has been only partially sequenced for one male dog, disallowing mapping of the sequence into specific chromosomes. However, by comparing the male genome sequence to the complete female dog genome sequence, candidate Y-chromosome sequence may be identified by exclusion. Results The male dog genome sequence was analysed by Blast search against the human genome to identify sequences with a best match to the human Y chromosome and to the female dog genome to identify those absent in the female genome. Candidate sequences were then tested for male specificity by PCR of five male and five female dogs. 32 sequences from the male genome, with a total length of 24 kbp, were identified as male specific, based on a match to the human Y chromosome, absence in the female dog genome and male specific PCR results. 14437 bp were then sequenced for 10 male dogs originating from Europe, Southwest Asia, Siberia, East Asia, Africa and America. Nine haplotypes were found, which were defined by 14 substitutions. The genetic distance between the haplotypes indicates that they originate from at least five wolf haplotypes. There was no obvious trend in the geographic distribution of the haplotypes. Conclusion We have identified 24159 bp of dog Y-chromosome sequence to be used for population genetic studies. We sequenced 14437 bp in a worldwide collection of dogs, identifying 14 SNPs for future SNP analyses, and

  6. The TNFSF15 gene single nucleotide polymorphism rs7848647 is associated with surgical diverticulitis.

    Science.gov (United States)

    Connelly, Tara M; Berg, Arthur S; Hegarty, John P; Deiling, Sue; Brinton, David; Poritz, Lisa S; Koltun, Walter A

    2014-06-01

    To determine if single nuclear polymorphisms (SNPs) in the TFNSF15 gene play a role in patients requiring surgery for diverticulitis. A role for a genetic predisposition in diverticulitis is suggested by its association with hereditary connective tissue disorders, youthful onset in some patients, and the observation of famil