WorldWideScience

Sample records for single small chip

  1. Single chip camera active pixel sensor

    Science.gov (United States)

    Shaw, Timothy (Inventor); Pain, Bedabrata (Inventor); Olson, Brita (Inventor); Nixon, Robert H. (Inventor); Fossum, Eric R. (Inventor); Panicacci, Roger A. (Inventor); Mansoorian, Barmak (Inventor)

    2003-01-01

    A totally digital single chip camera includes communications to operate most of its structure in serial communication mode. The digital single chip camera include a D/A converter for converting an input digital word into an analog reference signal. The chip includes all of the necessary circuitry for operating the chip using a single pin.

  2. Single-chip microcomputer application in nuclear radiation monitoring instruments

    International Nuclear Information System (INIS)

    Zhang Songshou

    1994-01-01

    The single-chip microcomputer has advantage in many respects i.e. multiple function, small size, low-power consumption,reliability etc. It is widely used now in industry, instrumentation, communication and machinery. The author introduced usage of single-chip microcomputer in nuclear radiation monitoring instruments for control, linear compensation, calculation, changeable parameter presetting and military training

  3. Application of single-chip microcomputer in radiation detection

    International Nuclear Information System (INIS)

    Zhang Songshou

    1993-01-01

    The single-chip microcomputer has some advantages in many aspects for example the strong function, the small volume, the low-power, firmed and reliable. It is used widely in the control of industry, instrument, communication and machine, etc.. The paper introduces that the single-chip microcomputer is used in radiation detection, mostly including the use of control, linear, compensation, calculation, prefabricated change, improving precision and training

  4. Distributed Processing Using Single-chip Microcomputers

    National Research Council Canada - National Science Library

    Pritchett, William

    1996-01-01

    This project investigates the use of single-chip microprocessors as nodes in a token ring control network and explores the implementation of a protocol to manage communication across such a network...

  5. A single-chip computer analysis system for liquid fluorescence

    International Nuclear Information System (INIS)

    Zhang Yongming; Wu Ruisheng; Li Bin

    1998-01-01

    The single-chip computer analysis system for liquid fluorescence is an intelligent analytic instrument, which is based on the principle that the liquid containing hydrocarbons can give out several characteristic fluorescences when irradiated by strong light. Besides a single-chip computer, the system makes use of the keyboard and the calculation and printing functions of a CASIO printing calculator. It combines optics, mechanism and electronics into one, and is small, light and practical, so it can be used for surface water sample analysis in oil field and impurity analysis of other materials

  6. The single chip microcomputer technique in an intelligent nuclear instrument

    International Nuclear Information System (INIS)

    Wang Tieliu; Sun Punan; Wang Ying

    1995-01-01

    The authors present that how to acquire and process the output signals from the nuclear detector adopting single chip microcomputer technique, including working principles and the designing method of the computer's software and hardware in the single chip microcomputer instrument

  7. A scalable single-chip multi-processor architecture with on-chip RTOS kernel

    NARCIS (Netherlands)

    Theelen, B.D.; Verschueren, A.C.; Reyes Suarez, V.V.; Stevens, M.P.J.; Nunez, A.

    2003-01-01

    Now that system-on-chip technology is emerging, single-chip multi-processors are becoming feasible. A key problem of designing such systems is the complexity of their on-chip interconnects and memory architecture. It is furthermore unclear at what level software should be integrated. An example of a

  8. Architectures for single-chip image computing

    Science.gov (United States)

    Gove, Robert J.

    1992-04-01

    This paper will focus on the architectures of VLSI programmable processing components for image computing applications. TI, the maker of industry-leading RISC, DSP, and graphics components, has developed an architecture for a new-generation of image processors capable of implementing a plurality of image, graphics, video, and audio computing functions. We will show that the use of a single-chip heterogeneous MIMD parallel architecture best suits this class of processors--those which will dominate the desktop multimedia, document imaging, computer graphics, and visualization systems of this decade.

  9. Single cell enzyme diagnosis on the chip

    DEFF Research Database (Denmark)

    Jensen, Sissel Juul; Harmsen, Charlotte; Nielsen, Mette Juul

    2013-01-01

    Conventional diagnosis based on ensemble measurements often overlooks the variation among cells. Here, we present a droplet-microfluidics based platform to investigate single cell activities. Adopting a previously developed isothermal rolling circle amplification-based assay, we demonstrate...... detection of enzymatic activities down to the single cell level with small quantities of biological samples, which outcompetes existing techniques. Such a system, capable of resolving single cell activities, will ultimately have clinical applications in diagnosis, prediction of drug response and treatment...

  10. Tractor performance monitor based on a single-chip microcomputer

    Energy Technology Data Exchange (ETDEWEB)

    Bedri, A.R.; Marley, S.J.; Buchelle, W.F.; Smay, T.A.

    1981-01-01

    A tractor performance monitor based on a single-chip microcomputer was developed to measure ground speed, slip, fuel consumption (rate and total), total area, theoretical time, and total time. Transducers used are presented in detail. 5 refs.

  11. The artificial satellite observation chronograph controlled by single chip microcomputer.

    Science.gov (United States)

    Pan, Guangrong; Tan, Jufan; Ding, Yuanjun

    1991-06-01

    The instrument specifications, hardware structure, software design, and other characteristics of the chronograph mounting on a theodolite used for artificial satellite observation are presented. The instrument is a real time control system with a single chip microcomputer.

  12. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    OpenAIRE

    Diwei He; Stephen P. Morgan; Dimitrios Trachanis; Jan van Hese; Dimitris Drogoudis; Franco Fummi; Francesco Stefanni; Valerio Guarnieri; Barrie R. Hayes-Gill

    2015-01-01

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 ?m CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the...

  13. A single chip with multiple talents

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The Medipix chips developed at CERN are being used in a variety of fields: from medicine to education and back to high-tech engineering. The scene is set for a bright future for this versatile technology.   The Medipix chip. It didn’t take long for a brilliant team of physicists and engineers who were working on pixel detectors for the LHC to realize that the technology had great potential in medical imaging. This was the birth of the Medipix project. Fifteen years later, with the collaboration of 18 research institutes, the team has produced an advanced version of the initial ideas: Medipix3 is a device that can measure very accurately the position and energy of the photons (one by one) that hit the associated detector. Radiography and computed tomography (CT) use X-ray photons to study the human body. The different energies of the photons in the beam can be thought of as the colours of the X-ray spectrum. This is why the use of Medipix3 chips in such diagnostic techniques is referred...

  14. Single-chip serial channel enhances multi-processor systems

    Energy Technology Data Exchange (ETDEWEB)

    Millar, J.

    1982-01-01

    In this paper multiprocessor systems are described and explained. The impact that VLSI advancements are having on multiprocessor design is pointed out. The TMS 7041 single-chip microcomputer is described briefly, highlighting its multiprocessor communication capability. And finally, a typical multiprocessor system is shown, implementing the TMS 7041.

  15. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    Directory of Open Access Journals (Sweden)

    Diwei He

    2015-07-01

    Full Text Available Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1% with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  16. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.

    Science.gov (United States)

    He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R

    2015-07-14

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  17. Fighting over small chips; Kjemper om smaa brikker

    Energy Technology Data Exchange (ETDEWEB)

    Valmot, Odd R

    2004-07-01

    In a few years, radio frequency identification (RFID) will replace bar codes. The major software suppliers are preparing for hard competition over small chips. Oracle, IBM and Microsoft have been working on RFID for many years. Together these companies are providing most of the database technology that takes care of the transactions and information we are dependent on. RFID is now going to be linked with such information storage. RFID also fits very well into the product development of industry and logistics for which the Internet has been a driving force. Firms that have begun using RFID profit considerably by it. Even by a small number of RFID readers around in works and stores many are experiencing a reduction of goods in the logistics chain of up to 30 per cent. The technology offers so many advantages that it is industrially profitable even with the current prices of the RFID chips.

  18. A Low Cost Single Chip VDL Compatible Transceiver ASIC

    Science.gov (United States)

    Becker, Robert

    2004-01-01

    Recent trends in commercial communications system components have focussed almost exclusively on cellular telephone technology. As many of the traditional sources of receiver components have discontinued non-cellular telephone products, the designers of avionics and other low volume radio applications find themselves increasingly unable to find highly integrated components. This is particularly true for low power, low cost applications which cannot afford the lavish current consumption of the software defined radio approach increasingly taken by certified device manufacturers. In this paper, we describe a low power transceiver chip targeting applications from low VHF to low UHF frequencies typical of avionics systems. The chip encompasses a selectable single or double conversion design for the receiver and a low power IF upconversion transmitter. All local oscillators are synthesized and integrated into the chip. An on-chip I-Q modulator and demodulator provide baseband modulation and demodulation capability allowing the use of low power, fixed point signal processing components for signal demodulation. The goal of this program is to demonstrate a low cost VDL mode-3 transceiver using this chip to receive text weather information sent using 4-slot TDMA with no support for voice. The data will be sent from an experimental ground station. This work is funded by NASA Glenn Research Center.

  19. An automatic single channel analyzer based on single-chip microcomputer

    International Nuclear Information System (INIS)

    Yan Xuekun; Jia Mingchun; Zhang Yan; Liu Mingjian; Luo Ming

    2008-01-01

    The hardware and software of an automatic single channel analyzer based on AT89C51RC single-chip microcomputer is described in this paper. The equipment takes a method of channel-width-adjusting symmetrically, and makes use of single-chip microcomputer to control the two DAC0832 so as to adjust the discriminating threshold and channel-width automatically. As a result, the auto-measuring of the single channel analyzer is realized. Its circuit configuration is simple, and the uniformity of its channel-width is well, too. (authors)

  20. Cohort analysis of a single nucleotide polymorphism on DNA chips.

    Science.gov (United States)

    Schwonbeck, Susanne; Krause-Griep, Andrea; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Meinl, Walter; Glatt, Hansrüdi; Bier, Frank F

    2004-11-15

    A method has been developed to determine SNPs on DNA chips by applying a flow-through bioscanner. As a practical application we demonstrated the fast and simple SNP analysis of 24 genotypes in an array of 96 spots with a single hybridisation and dissociation experiment. The main advantage of this methodical concept is the parallel and fast analysis without any need of enzymatic digestion. Additionally, the DNA chip format used is appropriate for parallel analysis up to 400 spots. The polymorphism in the gene of the human phenol sulfotransferase SULT1A1 was studied as a model SNP. Biotinylated PCR products containing the SNP (The SNP summary web site: ) (mutant) and those containing no mutation (wild-type) were brought onto the chips coated with NeutrAvidin using non-contact spotting. This was followed by an analysis which was carried out in a flow-through biochip scanner while constantly rinsing with buffer. After removing the non-biotinylated strand a fluorescent probe was hybridised, which is complementary to the wild-type sequence. If this probe binds to a mutant sequence, then one single base is not fully matching. Thereby, the mismatched hybrid (mutant) is less stable than the full-matched hybrid (wild-type). The final step after hybridisation on the chip involves rinsing with a buffer to start dissociation of the fluorescent probe from the immobilised DNA strand. The online measurement of the fluorescence intensity by the biochip scanner provides the possibility to follow the kinetics of the hybridisation and dissociation processes. According to the different stability of the full-match and the mismatch, either visual discrimination or kinetic analysis is possible to distinguish SNP-containing sequence from the wild-type sequence.

  1. Versatile single-chip event sequencer for atomic physics experiments

    Science.gov (United States)

    Eyler, Edward

    2010-03-01

    A very inexpensive dsPIC microcontroller with internal 32-bit counters is used to produce a flexible timing signal generator with up to 16 TTL-compatible digital outputs, with a time resolution and accuracy of 50 ns. This time resolution is easily sufficient for event sequencing in typical experiments involving cold atoms or laser spectroscopy. This single-chip device is capable of triggered operation and can also function as a sweeping delay generator. With one additional chip it can also concurrently produce accurately timed analog ramps, and another one-chip addition allows real-time control from an external computer. Compared to an FPGA-based digital pattern generator, this design is slower but simpler and more flexible, and it can be reprogrammed using ordinary `C' code without special knowledge. I will also describe the use of the same microcontroller with additional hardware to implement a digital lock-in amplifier and PID controller for laser locking, including a simple graphics-based control unit. This work is supported in part by the NSF.

  2. A monolithic glass chip for active single-cell sorting based on mechanical phenotyping.

    Science.gov (United States)

    Faigle, Christoph; Lautenschläger, Franziska; Whyte, Graeme; Homewood, Philip; Martín-Badosa, Estela; Guck, Jochen

    2015-03-07

    The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custom-built optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.

  3. K-band single-chip electron spin resonance detector.

    Science.gov (United States)

    Anders, Jens; Angerhofer, Alexander; Boero, Giovanni

    2012-04-01

    We report on the design, fabrication, and characterization of an integrated detector for electron spin resonance spectroscopy operating at 27 GHz. The microsystem, consisting of an LC-oscillator and a frequency division module, is integrated onto a single silicon chip using a conventional complementary metal-oxide-semiconductor technology. The achieved room temperature spin sensitivity is about 10(8)spins/G Hz(1/2), with a sensitive volume of about (100 μm)(3). Operation at 77K is also demonstrated. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Neuromorphic VLSI Models of Selective Attention: From Single Chip Vision Sensors to Multi-chip Systems.

    Science.gov (United States)

    Indiveri, Giacomo

    2008-09-03

    Biological organisms perform complex selective attention operations continuously and effortlessly. These operations allow them to quickly determine the motor actions to take in response to combinations of external stimuli and internal states, and to pay attention to subsets of sensory inputs suppressing non salient ones. Selective attention strategies are extremely effective in both natural and artificial systems which have to cope with large amounts of input data and have limited computational resources. One of the main computational primitives used to perform these selection operations is the Winner-Take-All (WTA) network. These types of networks are formed by arrays of coupled computational nodes that selectively amplify the strongest input signals, and suppress the weaker ones. Neuromorphic circuits are an optimal medium for constructing WTA networks and for implementing efficient hardware models of selective attention systems. In this paper we present an overview of selective attention systems based on neuromorphic WTA circuits ranging from single-chip vision sensors for selecting and tracking the position of salient features, to multi-chip systems implement saliency-map based models of selective attention.

  5. Neuromorphic VLSI Models of Selective Attention: From Single Chip Vision Sensors to Multi-chip Systems

    Directory of Open Access Journals (Sweden)

    Giacomo Indiveri

    2008-09-01

    Full Text Available Biological organisms perform complex selective attention operations continuously and effortlessly. These operations allow them to quickly determine the motor actions to take in response to combinations of external stimuli and internal states, and to pay attention to subsets of sensory inputs suppressing non salient ones. Selective attention strategies are extremely effective in both natural and artificial systems which have to cope with large amounts of input data and have limited computational resources. One of the main computational primitives used to perform these selection operations is the Winner-Take-All (WTA network. These types of networks are formed by arrays of coupled computational nodes that selectively amplify the strongest input signals, and suppress the weaker ones. Neuromorphic circuits are an optimal medium for constructing WTA networks and for implementing efficient hardware models of selective attention systems. In this paper we present an overview of selective attention systems based on neuromorphic WTA circuits ranging from single-chip vision sensors for selecting and tracking the position of salient features, to multi-chip systems implement saliency-map based models of selective attention.

  6. New generation of single-chip microcomputers focused on cost performance

    Energy Technology Data Exchange (ETDEWEB)

    Akao, Y.; Iwashita, H. (Hitachi, Ltd., Tokyo (Japan))

    1993-06-01

    A single-chip microcomputer which incorporates a CPU (central processing unit), memory, and peripheral functions in one chip has been increasingly applied to various fields as the heart of electronic equipment in terms of its economy, compactness, lightness, and suitability for mass production. In response to a wide variety of needs, a lineup must have substantial breadth with regard to performance, on-chip memory capacity, on-chip peripheral functions, operating voltage, and packaging. In particular, low-voltage high-speed operation, high integration, expanded address space, and improved software productivity, which are required for mobile communication terminals, are the common needs for single-chip microcomputers. In accordance with these needs, Hitachi has been actively developing new products. The present paper introduces Hitachi's lineup of single-chip microcomputers. 10 figs., 1 tab.

  7. Single-Chip Computers With Microelectromechanical Systems-Based Magnetic Memory

    NARCIS (Netherlands)

    Carley, L. Richard; Bain, James A.; Fedder, Gary K.; Greve, David W.; Guillou, David F.; Lu, Michael S.C.; Mukherjee, Tamal; Santhanam, Suresh; Abelmann, Leon; Min, Seungook

    This article describes an approach for implementing a complete computer system (CPU, RAM, I/O, and nonvolatile mass memory) on a single integrated-circuit substrate (a chip)—hence, the name "single-chip computer." The approach presented combines advances in the field of microelectromechanical

  8. Influence of transient radiation for the behaviour of the 80C31 single-chip microcontrollers

    International Nuclear Information System (INIS)

    Zhou Kaiming; Xie Zeyuan; Yang Youli

    2006-01-01

    Radiation characteristic of transient dose rate and the changed rule of latchup current with the gamma dose rate in 'flash-1' were researched in the 80C31 Single-chip Microcontrollers. The latchup current characteristic of the 80C31 Single-chip Microcontrollers was analyzed in shallow deep latchup. (authors)

  9. Chip based single cell analysis for nanotoxicity assessment.

    Science.gov (United States)

    Shah, Pratikkumar; Kaushik, Ajeet; Zhu, Xuena; Zhang, Chengxiao; Li, Chen-Zhong

    2014-05-07

    Nanomaterials, because of their tunable properties and performances, have been utilized extensively in everyday life related consumable products and technology. On exposure, beyond the physiological range, nanomaterials cause health risks via affecting the function of organisms, genomic systems, and even the central nervous system. Thus, new analytical approaches for nanotoxicity assessment to verify the feasibility of nanomaterials for future use are in demand. The conventional analytical techniques, such as spectrophotometric assay-based techniques, usually require a lengthy and time-consuming process and often produce false positives, and often cannot be implemented at a single cell level measurement for studying cell behavior without interference from its surrounding environment. Hence, there is a demand for a precise, accurate, sensitive assessment for toxicity using single cells. Recently, due to the advantages of automation of fluids and minimization of human errors, the integration of a cell-on-a-chip (CoC) with a microfluidic system is in practice for nanotoxicity assessments. This review explains nanotoxicity and its assessment approaches with advantages/limitations and new approaches to overcome the confines of traditional techniques. Recent advances in nanotoxicity assessment using a CoC integrated with a microfluidic system are also discussed in this review, which may be of use for nanotoxicity assessment and diagnostics.

  10. Quantitation of ultraviolet-induced single-strand breaks using oligonucleotide chip

    International Nuclear Information System (INIS)

    Pal, Sukdeb; Kim, Min Jung; Choo, Jaebum; Kang, Seong Ho; Lee, Kyeong-Hee; Song, Joon Myong

    2008-01-01

    A simple, accurate and robust methodology was established for the direct quantification of ultraviolet (UV)-induced single-strand break (SSB) using oligonucleotide chip. Oligonucleotide chips were fabricated by covalently anchoring the fluorescent-labeled ssDNAs onto silicon dioxide chip surfaces. Assuming that the possibility of more than one UV-induced SSB to be generated in a small oligonucleotide is extremely low, SSB formation was investigated quantifying the endpoint probe density by fluorescence measurement upon UV irradiation. The SSB yields obtained based on the highly sensitive laser-induced fluorometric determination of fluorophore-labeled oligonucleotides were found to coincide well with that predicted from a theoretical extrapolation of the results obtained for plasmid DNAs using conventional agarose gel electrophoresis. The developed method has the potential to serve as a high throughput, sample-thrifty, and time saving tool to realize more realistic, and direct quantification of radiation and chemical-induced strand breaks. It will be especially useful for determining the frequency of SSBs or lesions convertible to SSBs by specific cleaving reagents or enzymes

  11. Radiation effect characterization and test methods of single-chip and multi-chip stacked 16Mbit DRAMs

    International Nuclear Information System (INIS)

    LaBel, K.A.; Gates, M.M.; Moran, A.K.; Kim, H.S.; Seidleck, C.M.; Marshall, P.; Kinnison, J.; Carkhuff, B.

    1996-01-01

    This paper presents radiation effects characterization performed by the NASA Goddard Space Flight Center (GSFC) on spaceflight candidate 16Mbit DRAMs. This includes heavy ion, proton, and Co60 irradiations on single-chip devices as well as proton irradiation of a stacked DRAM module. Lastly, a discussion of test methodology is undertaken

  12. FISH & CHIPS: Single Chip Silicon MEMS CTDL Salinity, Temperature, Pressure and Light sensor for use in fisheries research

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Hansen, Ole; Thomsen, Erik Vilain

    2005-01-01

    A single-chip silicon MEMS CTDL multi sensor for use in aqueous environments is presented. The new sensor chip consists of a conductivity sensor based on platinum electrodes (C), an ion-implanted thermistor temperature sensor (T), a piezoresistive pressure sensor (D for depth/pressure) and an ion......-implanted p-n junction light sensor (L). The design and fabrication process is described. A temperature sensitivity of 0.8 × 10-3K-1 has been measured and detailed analysis of conductivity measurement data shows a cell constant of 81 cm-1....

  13. Study on irradiation effects of nucleus electromagnetic pulse on single chip computer system

    International Nuclear Information System (INIS)

    Hou Minsheng; Liu Shanghe; Wang Shuping

    2001-01-01

    Intense electromagnetic pulse, namely nucleus electromagnetic pulse (NEMP), lightning electromagnetic pulse (LEMP) and high power microwave (HPM), can disturb and destroy the single chip computer system. To study this issue, the authors made irradiation experiments by NEMPs generated by gigahertz transversal electromagnetic (GTEM) Cell. The experiments show that shutdown, restarting, communication errors of the single chip microcomputer system would occur when it was irradiated by the NEMPs. Based on the experiments, the cause on the effects on the single chip microcomputer system is discussed

  14. Chemical Transfer (Single Small-Scale) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Chemical Transfer Facility (CTF)  is the only U.S. single small-scale  facility, a single repository for the Army’s...

  15. Single-Chip Multiple-Frequency RF MEMS Resonant Platform for Wireless Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel, single-chip, multiple-frequency platform for RF/IF filtering and clock reference based on contour-mode aluminum nitride (AlN) MEMS piezoelectric resonators...

  16. A nuclear pulse amplitude acquisition system based on 80C31 single-chip microcomputer

    International Nuclear Information System (INIS)

    Zhao Xiuliang; Qu Guopu; Guo Lanying; Zhang Songbai

    1999-01-01

    A kind of multichannel nuclear pulse amplitude signal acquisition system is described, which is composed of pulse peak detector, integrated S/H circuit, A/D converter and 80C31 single-chip microcomputer

  17. The development of the time-keeping clock with TS-1 single chip microcomputer.

    Science.gov (United States)

    Zhou, Jiguang; Li, Yongan

    The authors have developed a time-keeping clock with Intel 8751 single chip microcomputer that has been successfully used in time-keeping station. The hard-soft ware design and performance of the clock are introduced.

  18. Small angle single arm spectrometer

    International Nuclear Information System (INIS)

    Chien, C.Y.

    1976-01-01

    A study is given of an experiment described in the 1975 Summer Study to review the adequacy of the apparatus for its physics goals, equipment needs, logistic needs, vacuum chambers, compatibility with other experiments and to summarize its impacts on ISABELLE. The spectrometer is designed to study single particle inclusive spectra near x = 1 with particle identification and good momentum resolution

  19. Application of single-chip microcomputer to portable radon and radon daughters monitor

    International Nuclear Information System (INIS)

    Meng Yecheng; Huang Zhanyun; She Chengye

    1992-01-01

    Application of single-chip microcomputer to portable radon and radon daughters monitor is introduced in this paper. With the single-chip microcomputer automation comes into effect in the process from sampling to measuring of radon and radon daughters. The concentrations of radon and radon daughters can be easily shown when the conversion coefficients are pre-settled before the measurement. Moreover, the principle and design are briefly discussed according to the characteristics of the monitor

  20. Single-chip RF communications systems in CMOS

    DEFF Research Database (Denmark)

    Olesen, Ole

    1997-01-01

    The paper describes the state of the art of the Nordic mobile communication project ConFront. This is a cooperation project with 3 Nordic universities and local industry. The ultimate goal is to make a CMOS one-chip mobile phone.......The paper describes the state of the art of the Nordic mobile communication project ConFront. This is a cooperation project with 3 Nordic universities and local industry. The ultimate goal is to make a CMOS one-chip mobile phone....

  1. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation

    Directory of Open Access Journals (Sweden)

    Liang Huang

    2016-08-01

    Full Text Available Single cell manipulation technology has been widely applied in biological fields, such as cell injection/enucleation, cell physiological measurement, and cell imaging. Recently, a biochip platform with a novel configuration of electrodes for cell 3D rotation has been successfully developed by generating rotating electric fields. However, the rotation platform still has two major shortcomings that need to be improved. The primary problem is that there is no on-chip module to facilitate the placement of a single cell into the rotation chamber, which causes very low efficiency in experiment to manually pipette single 10-micron-scale cells into rotation position. Secondly, the cell in the chamber may suffer from unstable rotation, which includes gravity-induced sinking down to the chamber bottom or electric-force-induced on-plane movement. To solve the two problems, in this paper we propose a new microfluidic chip with manipulation capabilities of single cell trap and single cell 3D stable rotation, both on one chip. The new microfluidic chip consists of two parts. The top capture part is based on the least flow resistance principle and is used to capture a single cell and to transport it to the rotation chamber. The bottom rotation part is based on dielectrophoresis (DEP and is used to 3D rotate the single cell in the rotation chamber with enhanced stability. The two parts are aligned and bonded together to form closed channels for microfluidic handling. Using COMSOL simulation and preliminary experiments, we have verified, in principle, the concept of on-chip single cell traps and 3D stable rotation, and identified key parameters for chip structures, microfluidic handling, and electrode configurations. The work has laid a solid foundation for on-going chip fabrication and experiment validation.

  2. Single-Chip FPGA Azimuth Pre-Filter for SAR

    Science.gov (United States)

    Gudim, Mimi; Cheng, Tsan-Huei; Madsen, Soren; Johnson, Robert; Le, Charles T-C; Moghaddam, Mahta; Marina, Miguel

    2005-01-01

    A field-programmable gate array (FPGA) on a single lightweight, low-power integrated-circuit chip has been developed to implement an azimuth pre-filter (AzPF) for a synthetic-aperture radar (SAR) system. The AzPF is needed to enable more efficient use of data-transmission and data-processing resources: In broad terms, the AzPF reduces the volume of SAR data by effectively reducing the azimuth resolution, without loss of range resolution, during times when end users are willing to accept lower azimuth resolution as the price of rapid access to SAR imagery. The data-reduction factor is selectable at a decimation factor, M, of 2, 4, 8, 16, or 32 so that users can trade resolution against processing and transmission delays. In principle, azimuth filtering could be performed in the frequency domain by use of fast-Fourier-transform processors. However, in the AzPF, azimuth filtering is performed in the time domain by use of finite-impulse-response filters. The reason for choosing the time-domain approach over the frequency-domain approach is that the time-domain approach demands less memory and a lower memory-access rate. The AzPF operates on the raw digitized SAR data. The AzPF includes a digital in-phase/quadrature (I/Q) demodulator. In general, an I/Q demodulator effects a complex down-conversion of its input signal followed by low-pass filtering, which eliminates undesired sidebands. In the AzPF case, the I/Q demodulator takes offset video range echo data to the complex baseband domain, ensuring preservation of signal phase through the azimuth pre-filtering process. In general, in an SAR I/Q demodulator, the intermediate frequency (fI) is chosen to be a quarter of the range-sampling frequency and the pulse-repetition frequency (fPR) is chosen to be a multiple of fI. The AzPF also includes a polyphase spatial-domain pre-filter comprising four weighted integrate-and-dump filters with programmable decimation factors and overlapping phases. To prevent aliasing of signals

  3. A Single-Chip Solar Energy Harvesting IC Using Integrated Photodiodes for Biomedical Implant Applications.

    Science.gov (United States)

    Chen, Zhiyuan; Law, Man-Kay; Mak, Pui-In; Martins, Rui P

    2017-02-01

    In this paper, an ultra-compact single-chip solar energy harvesting IC using on-chip solar cell for biomedical implant applications is presented. By employing an on-chip charge pump with parallel connected photodiodes, a 3.5 × efficiency improvement can be achieved when compared with the conventional stacked photodiode approach to boost the harvested voltage while preserving a single-chip solution. A photodiode-assisted dual startup circuit (PDSC) is also proposed to improve the area efficiency and increase the startup speed by 77%. By employing an auxiliary charge pump (AQP) using zero threshold voltage (ZVT) devices in parallel with the main charge pump, a low startup voltage of 0.25 V is obtained while minimizing the reversion loss. A 4 V in gate drive voltage is utilized to reduce the conduction loss. Systematic charge pump and solar cell area optimization is also introduced to improve the energy harvesting efficiency. The proposed system is implemented in a standard 0.18- [Formula: see text] CMOS technology and occupies an active area of 1.54 [Formula: see text]. Measurement results show that the on-chip charge pump can achieve a maximum efficiency of 67%. With an incident power of 1.22 [Formula: see text] from a halogen light source, the proposed energy harvesting IC can deliver an output power of 1.65 [Formula: see text] at 64% charge pump efficiency. The chip prototype is also verified using in-vitro experiment.

  4. Generation, transmission, and detection of terahertz photons on an electrically driven single chip

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Kenji; Ito, Atsushi; Okano, Shun [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan)

    2014-02-03

    We demonstrate single photon counting of terahertz (THz) waves transmitted from a local THz point source through a coplanar two-wire waveguide on a GaAs/AlGaAs single heterostructure crystal. In the electrically driven all-in-one chip, quantum Hall edge transport is used to achieve a noiseless injection current for a monochromatic point source of THz fields. The local THz fields are coupled to a coplanar two-wire metal waveguide and transmitted over a macroscopic scale greater than the wavelength (38 μm in GaAs). THz waves propagating on the waveguide are counted as individual photons by a quantum-dot single-electron transistor on the same chip. Photon counting on integrated high-frequency circuits will open the possibilities for on-chip quantum optical experiments.

  5. Research on single-chip microcomputer controlled rotating magnetic field mineralization model

    Science.gov (United States)

    Li, Yang; Qi, Yulin; Yang, Junxiao; Li, Na

    2017-08-01

    As one of the method of selecting ore, the magnetic separation method has the advantages of stable operation, simple process flow, high beneficiation efficiency and no chemical environment pollution. But the existing magnetic separator are more mechanical, the operation is not flexible, and can not change the magnetic field parameters according to the precision of the ore needed. Based on the existing magnetic separator is mechanical, the rotating magnetic field can be used for single chip microcomputer control as the research object, design and trial a rotating magnetic field processing prototype, and through the single-chip PWM pulse output to control the rotation of the magnetic field strength and rotating magnetic field speed. This method of using pure software to generate PWM pulse to control rotary magnetic field beneficiation, with higher flexibility, accuracy and lower cost, can give full play to the performance of single-chip.

  6. Programmable lab-on-a-chip system for single cell analysis

    Science.gov (United States)

    Thalhammer, S.

    2009-05-01

    The collection, selection, amplification and detection of minimum genetic samples became a part of everyday life in medical and biological laboratories, to analyze DNA-fragments of pathogens, patient samples and traces on crime scenes. About a decade ago, a handful of researchers began discussing an intriguing idea. Could the equipment needed for everyday chemistry and biology procedures be shrunk to fit on a chip in the size of a fingernail? Miniature devices for, say, analysing DNA and proteins should be faster and cheaper than conventional versions. Lab-on-a-chip is an advanced technology that integrates a microfluidic system on a microscale chip device. The "laboratory" is created by means of channels, mixers, reservoirs, diffusion chambers, integrated electrodes, pumps, valves and more. With lab-ona- chip technology, complete laboratories on a square centimetre can be created. Here, a multifunctional programmable Lab-on-a-Chip driven by nanofluidics and controlled by surface acoustic waves (SAW) is presented. This system combines serial DNA-isolation-, amplification- and array-detection-process on a modified glass-platform. The fluid actuation is controlled via SAW by interdigital transducers implemented in the chemical modified chip surface. The chemical surface modification allows fluid handling in the sub-microliter range. Minute amount of sample material is extracted by laser-based microdissection out of e.g. histological sections at the single cell level. A few picogram of genetic material are isolated and transferred via a low-pressure transfer system (SPATS) onto the chip. Subsequently the genetic material inside single droplets, which behave like "virtual" beaker, is transported to the reaction and analysis centers on the chip surface via surface acoustic waves, mainly known as noise dumping filters in mobile phones. At these "biological reactors" the genetic material is processed, e.g. amplified via polymerase chain reaction methods, and genetically

  7. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.

    Science.gov (United States)

    Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D

    2017-08-30

    Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.

  8. Reliable Single Chip Genotyping with Semi-Parametric Log-Concave Mixtures

    NARCIS (Netherlands)

    R.C.A. Rippe (Ralph); J.J. Meulman (Jacqueline); P.H.C. Eilers (Paul)

    2012-01-01

    textabstractThe common approach to SNP genotyping is to use (model-based) clustering per individual SNP, on a set of arrays. Genotyping all SNPs on a single array is much more attractive, in terms of flexibility, stability and applicability, when developing new chips. A new semi-parametric method,

  9. X-γ dose rate continuous monitor with wide range based on single-chip microcomputer

    International Nuclear Information System (INIS)

    Wu Debo; Ling Qiu; Guo Lanying; Yang Binhua

    2007-01-01

    This paper describes a concept about circuit designing of X-γ dose rate continuous monitor with wide range based on single-chip microcomputer, and also presents the design procedure of hardware and software, and gives several methods for solving the design procedure of hardware and software with emphasis. (authors)

  10. Development of based on 89S51 single-chip microcomputer electronic dosimeter

    International Nuclear Information System (INIS)

    Wang Junhua; Zhou Jiachao; Sun Jianghan; Du Xiao

    2009-01-01

    It describes the main design features and basic properties of based on 89S51 single-chip microcomputer electronic dosimeter with wide range and multi purposes. The dosimeter can display dose rate or accumulative dose or the maximum dose rate, record accumulative dose, the maximum dose rate and classes. (authors)

  11. A 2.4GHz ULP OOK single-chip transceiver for healthcare applications

    NARCIS (Netherlands)

    Vidojkovic, M.; Huang, X.; Harpe, P.J.A.; Rampu, S.; Zhou, C.; Huang, Li; Molengraft, van de J.; Imamura, K.; Büsze, B.; Bouwens, F.; Konijnenburg, M.; Santana, J.; Breeschoten, A.; Huisken, J.; Philips, K.; Dolmans, G.; Groot, de H.W.H.

    2011-01-01

    This paper describes an ultra-low power (ULP) single chip transceiver for wireless body area network (WBAN) applications. It supports on-off keying (OOK) modulation, and it operates in the 2.36–2.4 GHz medical BAN and 2.4–2.485 GHz ISM bands. It is implemented in 90 nm CMOS technology. The direct

  12. Trigger Data Serializer ASIC chip for the ATLAS New Small Wheel sTGC Detector

    CERN Document Server

    Wang, Jinhong; The ATLAS collaboration

    2014-01-01

    The small-strip Thin-Gap Chambers (sTGC) will be used as both trigger and precision tracking muon detectors for the Phase-I upgrade of the ATLAS New Small Wheel (NSW) muon detector. Signals from both the sTGC pad and strip detectors will be first read out by the Amplifier-Shaper-Discriminator (ASD) chip designed by the Brookhaven National Laboratory, and then collected and transmitted by a Trigger Data Serializer (TDS) chip at a rate of 4.8 Gbps to other related circuits. The pad-TDS chip checks the presence of pad hits and sends the information together with Bunching Crossing ID to the pad-trigger logic to define roads of interest. The strip-TDS chip collects and buffers strip charge information and transmits a range of strips within the road of interest to the router board located on the rim of the NSW. The large number of input channels (128 differential input channels), short time available to prepare and transmit trigger data (<100 ns), high speed output data rate (4.8 Gbps), harsh radiation environme...

  13. Development of γ dose rate monitor based on FPGA and single-chip microcomputer

    International Nuclear Information System (INIS)

    He Zhiguo; Ling Qiu; Guo Lanying; Yang Binhua

    2009-01-01

    A novelγdose rate monitor with multiple channels signal collection in which takes the FPGA as the core process chip and single-chip microcomputer as the data processor had been developed. This paper introduced the communication interface design between FPGA and MCU, and gave the data acquisition module and the function simulation chart designed by FPGA. In addition, the software and hardware design diagrams of MCU had been given in this paper. The maximum digitallization was carried on in the designing process. The experiments showed that the scheme for the system matched to the requests completely. (authors)

  14. On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot.

    Science.gov (United States)

    Wu, Xiaofei; Jiang, Ping; Razinskas, Gary; Huo, Yongheng; Zhang, Hongyi; Kamp, Martin; Rastelli, Armando; Schmidt, Oliver G; Hecht, Bert; Lindfors, Klas; Lippitz, Markus

    2017-07-12

    Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.

  15. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

    Science.gov (United States)

    Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan

    2018-03-01

    EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.

  16. Tip chip : Subcellular sampling from single cancer cells

    NARCIS (Netherlands)

    Quist, Jos; Sarajlic, Edin; Lai, Stanley C.S.; Lemay, Serge G.

    2016-01-01

    To analyze the molecular content of single cells, cell lysis is typically required, yielding a snapshot of cell behavior only. To follow complex molecular profiles over time, subcellular sampling methods potentially can be used, but to date these methods involve laborious offline analysis. Here we

  17. MACSYM. Towards a system of measurement and control on a single chip

    Energy Technology Data Exchange (ETDEWEB)

    Zannoli, S

    1984-03-01

    Since it is now possible to produce A/D and D/A integrated circuits on a single chip at a remarkably low cost, the production of an entire system for the acquisition of measurements and control of data on a single chip can be foreseen. The MACSYM (measurement and control system), produced by Analog Devices Inc., contains all its components on a single circuit board. The MACSYM 150 is a multiprocessor with separate analogue and digital buses. Because it contains three CPUS with special functions, it has high operating speeds and can handle a number of programs simultaneously. Since this model is designed for on line and real time measurements of physical quantities it has a number of different stores, including a central store, a store for graphs in colour and fast output and input stores for metered data. The author describes the interface provided and the terminals to which data can be supplied and mentions the programming language used.

  18. Design of Water Temperature Control System Based on Single Chip Microcomputer

    Science.gov (United States)

    Tan, Hanhong; Yan, Qiyan

    2017-12-01

    In this paper, we mainly introduce a multi-function water temperature controller designed with 51 single-chip microcomputer. This controller has automatic and manual water, set the water temperature, real-time display of water and temperature and alarm function, and has a simple structure, high reliability, low cost. The current water temperature controller on the market basically use bimetal temperature control, temperature control accuracy is low, poor reliability, a single function. With the development of microelectronics technology, monolithic microprocessor function is increasing, the price is low, in all aspects of widely used. In the water temperature controller in the application of single-chip, with a simple design, high reliability, easy to expand the advantages of the function. Is based on the appeal background, so this paper focuses on the temperature controller in the intelligent control of the discussion.

  19. Small-scale, self-propagating combustion realized with on-chip porous silicon.

    Science.gov (United States)

    Piekiel, Nicholas W; Morris, Christopher J

    2015-05-13

    For small-scale energy applications, energetic materials represent a high energy density source that, in certain cases, can be accessed with a very small amount of energy input. Recent advances in microprocessing techniques allow for the implementation of a porous silicon energetic material onto a crystalline silicon wafer at the microscale; however, combustion at a small length scale remains to be fully investigated, particularly with regards to the limitations of increased relative heat loss during combustion. The present study explores the critical dimensions of an on-chip porous silicon energetic material (porous silicon + sodium perchlorate (NaClO4)) required to propagate combustion. We etched ∼97 μm wide and ∼45 μm deep porous silicon channels that burned at a steady rate of 4.6 m/s, remaining steady across 90° changes in direction. In an effort to minimize the potential on-chip footprint for energetic porous silicon, we also explored the minimum spacing between porous silicon channels. We demonstrated independent burning of porous silicon channels at a spacing of 0.5 m on a chip surface area of 1.65 cm(2). Smaller porous silicon channels of ∼28 μm wide and ∼14 μm deep were also utilized. These samples propagated combustion, but at times, did so unsteadily. This result may suggest that we are approaching a critical length scale for self-propagating combustion in a porous silicon energetic material.

  20. Generation and Controlled Routing of Single Plasmons on a Chip

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Israelsen, Niels Møller; Huck, Alexander

    2014-01-01

    We demonstrate the excitation of single surface plasmon polaritons on a silver nanowire using a nitrogen vacancy center and the subsequent controlled coupling to a second silver nanowire. The coupling efficiency and thus the splitting ratio between the nanowires is controlled by adjusting the gap...... size between the wires with an atomic force microscope. By numerical methods, we estimate the splitting ratios for different gap sizes, and the results support the values obtained in the experiment.......We demonstrate the excitation of single surface plasmon polaritons on a silver nanowire using a nitrogen vacancy center and the subsequent controlled coupling to a second silver nanowire. The coupling efficiency and thus the splitting ratio between the nanowires is controlled by adjusting the gap...

  1. Design and Characterization of 64K Pixels Chips Working in Single Photon Processing Mode

    CERN Document Server

    Llopart Cudie, Xavier; Campbell, M

    2007-01-01

    Progress in CMOS technology and in fine pitch bump bonding has made possible the development of high granularity single photon counting detectors for X-ray imaging. This thesis studies the design and characterization of three pulse processing chips with 65536 square pixels of 55 µm x 55 µm designed in a commercial 0.25 µm 6-metal CMOS technology. The 3 chips share the same architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix. The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256 identical elements, each working in single photon counting mode for positive or negative input charge signals. The preamplifier feedback provides compensation for detector leakage current on a pixel by pixel basis. Two identical pulse height discriminators are used to define an energy window. Every event falling inside the energy window is counted with a 13 bit pseudo-random counter. The counter logic, based in a shift register, also behaves as the input/output register for the pixel. Each...

  2. Small systems, small sensors: Integrating sensing technologies into microfluidic and organ-on-a-chip devices

    OpenAIRE

    Oomen, Pieter Edmond

    2016-01-01

    Pieter Oomen presenteert in zijn proefschrift verschillende microfluïdische systemen met geïntegreerde sensors voor biologische en chemische analyses. Deze geminiaturiseerde systemen kennen veel voordelen: reagentia- en monstergebruik worden verminderd, parallelle experimenten kunnen op een enkel apparaat worden gedaan en natuurlijke celomgevingen kunnen worden nagebootst in incubatiesystemen (orgaan-op-chip). Echter, om zulke systemen te controleren en systematisch te verbeteren gedurende de...

  3. Ring resonator-based single-chip 1x8 optical beam forming network in LPCVD waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim; Koonen, A.M.J.; Leijtens, X.J.M.; van den Boom, H.P.A.; Verdurmen, E.J.M.; Molina Vázquez, J.

    2006-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in beam forming networks (BFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art 1×8 OBFN chip has been

  4. A single chip pulse processor for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Hilsenrath, F.; Bakke, J.C.; Voss, H.D.

    1985-01-01

    A high performance digital pulse processor, integrated into a single gate array microcircuit, has been developed for spaceflight applications. The new approach takes advantage of the latest CMOS high speed A/D flash converters and low-power gated logic arrays. The pulse processor measures pulse height, pulse area and the required timing information (e.g. multi detector coincidence and pulse pile-up detection). The pulse processor features high throughput rate (e.g. 0.5 Mhz for 2 usec gausssian pulses) and improved differential linearity (e.g. + or - 0.2 LSB for a + or - 1 LSB A/D). Because of the parallel digital architecture of the device, the interface is microprocessor bus compatible. A satellite flight application of this module is presented for use in the X-ray imager and high energy particle spectrometers of the PEM experiment on the Upper Atmospheric Research Satellite

  5. Experimental single-chip color HDTV image acquisition system with 8M-pixel CMOS image sensor

    Science.gov (United States)

    Shimamoto, Hiroshi; Yamashita, Takayuki; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed an experimental single-chip color HDTV image acquisition system using 8M-pixel CMOS image sensor. The sensor has 3840 × 2160 effective pixels and is progressively scanned at 60 frames per second. We describe the color filter array and interpolation method to improve image quality with a high-pixel-count single-chip sensor. We also describe an experimental image acquisition system we used to measured spatial frequency characteristics in the horizontal direction. The results indicate good prospects for achieving a high quality single chip HDTV camera that reduces pseudo signals and maintains high spatial frequency characteristics within the frequency band for HDTV.

  6. Implementing Cleaner Production as an Environmental Management Efforts in Small Industries of Cassava Chips

    Directory of Open Access Journals (Sweden)

    Rahmadyanti Erina

    2016-01-01

    Full Text Available Small and Medium Enterprises (SMEs is one of the major driving factors for Indonesian economy, especially in food processing industries. The cassava-based industry is one type of food and beverage industry with chips as its major product. The limitations of knowledge caused their activities to only aim at pursuing economic benefits and ignoring the environmental balance. The most appropriate preventive method used, according to the characteristics of SMEs in Indonesia, is Cleaner Production. This study aims to reduce the risk of environmental pollution caused by the waste production of small chips industries by implementing cleaner production. The method used in this study is quick scanning by analyzing mass balance, energy, and utilities that aim to find an inefficient process to minimize losses. Implementation of cleaner production may include good housekeeping, reducing, and reusing. Based on the assessment of alternative eligibility criteria, the equipment modifications are the main factor in implementing cleaner production that drives the profits by providing efficiency of cutting as much as 80 percent and optimizes the profits into 57.62 kg in a month or 691.44 kg in a year. If the price of cassava chips is IDR 40,000 in a kg, then it would save IDR 27,657,600 in a year.

  7. Testing of a single-polarity piezoresistive three-dimensional stress-sensing chip

    International Nuclear Information System (INIS)

    Gharib, H H; Moussa, W A

    2013-01-01

    A new piezoresistive stress-sensing rosette is developed to extract the components of the three-dimensional (3D) stress tensor using single-polarity (n-type) piezoresistors. This paper presents the testing of a micro-fabricated sensing chip utilizing the developed single-polarity rosette. The testing is conducted using a four-point bending of a chip-on-beam to induce five controlled stress components, which are analyzed both numerically and experimentally. Numerical analysis using finite element analysis is conducted to study the levels of the induced stress components at three rosette-sites and the levels of the stress field non-uniformities, and to simulate the extracted stress components from the sensing rosette. The experimental analysis applied tensile and compressive loads over three rosette-sites at different load increments. The experimentally extracted stress components show good linearity with the applied load and values close to the numerical model. (paper)

  8. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.

    Science.gov (United States)

    Knowlton, Stephanie; Yenilmez, Bekir; Tasoglu, Savas

    2016-09-01

    Organ-on-a-chip engineering employs microfabrication of living tissues within microscale fluid channels to create constructs that closely mimic human organs. With the advent of 3D printing, we predict that single-step fabrication of these devices will enable rapid design and cost-effective iterations in the development stage, facilitating rapid innovation in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.

    Science.gov (United States)

    Diederichs, Tim; Nguyen, Quoc Hung; Urban, Michael; Tampé, Robert; Tornow, Marc

    2018-06-13

    Membrane proteins involved in transport processes are key targets for pharmaceutical research and industry. Despite continuous improvements and new developments in the field of electrical readouts for the analysis of transport kinetics, a well-suited methodology for high-throughput characterization of single transporters with nonionic substrates and slow turnover rates is still lacking. Here, we report on a novel architecture of silicon chips with embedded nanopore microcavities, based on a silicon-on-insulator technology for high-throughput optical readouts. Arrays containing more than 14 000 inverted-pyramidal cavities of 50 femtoliter volumes and 80 nm circular pore openings were constructed via high-resolution electron-beam lithography in combination with reactive ion etching and anisotropic wet etching. These cavities feature both, an optically transparent bottom and top cap. Atomic force microscopy analysis reveals an overall extremely smooth chip surface, particularly in the vicinity of the nanopores, which exhibits well-defined edges. Our unprecedented transparent chip design provides parallel and independent fluorescent readout of both cavities and buffer reservoir for unbiased single-transporter recordings. Spreading of large unilamellar vesicles with efficiencies up to 96% created nanopore-supported lipid bilayers, which are stable for more than 1 day. A high lipid mobility in the supported membrane was determined by fluorescent recovery after photobleaching. Flux kinetics of α-hemolysin were characterized at single-pore resolution with a rate constant of 0.96 ± 0.06 × 10 -3 s -1 . Here, we deliver an ideal chip platform for pharmaceutical research, which features high parallelism and throughput, synergistically combined with single-transporter resolution.

  10. X-ray quality increasing system controlled by single-chip microcomputer in single phase fluoroscopy unit

    International Nuclear Information System (INIS)

    Wang Qiaolin; Gu Hongmei

    2004-01-01

    Objective: To decrease the amount of radiation that doctor and patient receives by increasing X-ray quality. Methods: Using Single-chip Microcomputer technology, test and modulate AC(Alternating Current) from high voltage generator by IGBT. X-ray tube generates X-rays only at high energy area. Thus the amount of radiation decreases. Results: The tube current decreases remarkably and the amount of radiation that doctor and patient receives decreases effectively. Conclusion: the system can effectively decrease the amount of radiation and is widely applicable to the upgrade of all kinds of single phase X-ray units. (authors)

  11. Remote monitor used on the 13N leak rate measurement system based on single-chip microcomputer

    International Nuclear Information System (INIS)

    Tang Rulong; Qiu Xiaoping; Guo Lanying

    2012-01-01

    It describes a design on Remote Monitor based on single-chip microcomputer, and also presents the design procedure of hardware and software for circuit design, and gives some of specific instructions about the important parts of the design. (authors)

  12. Dye molecules as single-photon sources and large optical nonlinearities on a chip

    International Nuclear Information System (INIS)

    Hwang, J; Hinds, E A

    2011-01-01

    We point out that individual organic dye molecules, deposited close to optical waveguides on a photonic chip, can act as single-photon sources. A thin silicon nitride strip waveguide is expected to collect 28% of the photons from a single dibenzoterrylene molecule. These molecules can also provide large, localized optical nonlinearities, which are enough to discriminate between one photon or two through a differential phase shift of 2 0 per photon. This new atom-photon interface may be used as a resource for processing quantum information.

  13. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells

    DEFF Research Database (Denmark)

    Spégel, Christer; Heiskanen, Arto; Pedersen, Simon

    2008-01-01

    A lab-on-a-chip device that enables positioning of single or small ensembles of cells on an aperture in close proximity to a mercaptopropionic acid (MPA) modified sensing electrode has been developed and characterized. The microchip was used for the detection of Ca2+-dependent quantal catecholamine...

  14. On-chip real-time single-copy polymerase chain reaction in picoliter droplets

    Energy Technology Data Exchange (ETDEWEB)

    Beer, N R; Hindson, B; Wheeler, E; Hall, S B; Rose, K A; Kennedy, I; Colston, B

    2007-04-20

    The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.

  15. A low-cost multichannel pulse-height analyzer PHA 256 using single-chip microcomputer

    International Nuclear Information System (INIS)

    Koehler, M.; Meiling, W.

    1985-01-01

    The PHA 256 multichannel analyzer on the base of the U8820 single-chip microcomputer applied for radiation measurements, for example in monitoring systems with scintillation detectors, is described. The analyzer contains a power supply unit and 7 boards, namely, the processor board; data and program memory; 8-bit analog-to-digital converter; driver to display device; keyboard with 23 function keys; pulse amplifier and high-voltage supply (up to 2 kV). Software used provides preprocessing of spectra supported by following functions: addition and subtraction of different spectra, spectrum monitoring by use of a 5-point-algorithm, calculation of peak areas with linearly interpolated background

  16. A new intelligent curtain control system based on 51 single chip microcomputer

    Science.gov (United States)

    Sun, Tuan; Wang, Yanhua; Wu, Mengmeng

    2017-04-01

    This paper uses 51 (single chip microcomputer) SCM as the operation and data processing center. According to the change of sunshine intensity and ambient temperature, a new type of intelligent curtain control system is designed by adopting photosensitive element and temperature sensor. In addition, the design also has a manual control mode. In the rain, when the light intensity is weak, the open position of the curtain can be set by the user. The system can maximize the user to provide user-friendly operation and comfortable living environment. The system can be applied to home or office environment, with a wide range of applications and simple operation and so on.

  17. Efficient generation of single and entangled photons on a silicon photonic integrated chip

    International Nuclear Information System (INIS)

    Mower, Jacob; Englund, Dirk

    2011-01-01

    We present a protocol for generating on-demand, indistinguishable single photons on a silicon photonic integrated chip. The source is a time-multiplexed spontaneous parametric down-conversion element that allows optimization of single-photon versus multiphoton emission while realizing high output rate and indistinguishability. We minimize both the scaling of active elements and the scaling of active element loss with multiplexing. We then discuss detection strategies and data processing to further optimize the procedure. We simulate an improvement in single-photon-generation efficiency over previous time-multiplexing protocols, assuming existing fabrication capabilities. We then apply this system to generate heralded Bell states. The generation efficiency of both nonclassical states could be increased substantially with improved fabrication procedures.

  18. Design of automatic curtain controlled by wireless based on single chip 51 microcomputer

    Science.gov (United States)

    Han, Dafeng; Chen, Xiaoning

    2017-08-01

    In order to realize the wireless control of the domestic intelligent curtains, a set of wireless intelligent curtain control system based on 51 single chip microcomputer have been designed in this paper. The intelligent curtain can work in the manual mode, automatic mode and sleep mode and can be carried out by the button and mobile phone APP mode loop switch. Through the photosensitive resistance module and human pyroelectric infrared sensor to collect the indoor light value and the data whether there is the person in the room, and then after single chip processing, the motor drive module is controlled to realize the positive inversion of the asynchronous motor, the intelligent opening and closing of the curtain have been realized. The operation of the motor can be stopped under the action of the switch and the curtain opening and closing and timing switch can be controlled through the keys and mobile phone APP. The optical fiber intensity, working mode, curtain state and system time are displayed by LCD1602. The system has a high reliability and security under practical testing and with the popularity and development of smart home, the design has broad market prospects.

  19. A single-walled carbon nanotube thin film-based pH-sensing microfluidic chip.

    Science.gov (United States)

    Li, Cheng Ai; Han, Kwi Nam; Pham, Xuan-Hung; Seong, Gi Hun

    2014-04-21

    A novel microfluidic pH-sensing chip was developed based on pH-sensitive single-walled carbon nanotubes (SWCNTs). In this study, the SWCNT thin film acted both as an electrode and a pH-sensitive membrane. The potentiometric pH response was observed by electronic structure changes in the semiconducting SWCNTs in response to the pH level. In a microfluidic chip consisting of a SWCNT pH-sensing working electrode and an Ag/AgCl reference electrode, the calibration plot exhibited promising pH-sensing performance with an ideal Nernstian response of 59.71 mV pH(-1) between pH 3 and 11 (standard deviation of the sensitivity is 1.5 mV pH(-1), R(2) = 0.985). Moreover, the SWCNT electrode in the microfluidic device showed no significant variation at any pH value in the range of the flow rate between 0.1 and 15 μl min(-1). The selectivity coefficients of the SWCNT electrode revealed good selectivity against common interfering ions.

  20. A Single Chip VLSI Implementation of a QPSK/SQPSK Demodulator for a VSAT Receiver Station

    Science.gov (United States)

    Kwatra, S. C.; King, Brent

    1995-01-01

    This thesis presents a VLSI implementation of a QPSK/SQPSK demodulator. It is designed to be employed in a VSAT earth station that utilizes the FDMA/TDM link. A single chip architecture is used to enable this chip to be easily employed in the VSAT system. This demodulator contains lowpass filters, integrate and dump units, unique word detectors, a timing recovery unit, a phase recovery unit and a down conversion unit. The design stages start with a functional representation of the system by using the C programming language. Then it progresses into a register based representation using the VHDL language. The layout components are designed based on these VHDL models and simulated. Component generators are developed for the adder, multiplier, read-only memory and serial access memory in order to shorten the design time. These sub-components are then block routed to form the main components of the system. The main components are block routed to form the final demodulator.

  1. Radiation induced Single Event Effects in the ATLAS MDT-ASD front-end chip

    CERN Document Server

    Posch, C

    2002-01-01

    Single Event Effect (SEE) tests of the MDT-ASD, the ATLAS MDT front-end chip have been performed at the Harvard Cyclotron Lab. The MDT-ASD is an 8-channel drift tube read-out ASIC fabricated in a commercial 0.5um CMOS process (AMOS14TB). The chip contains a 53 bit register which holds the setup information and an associated shift register of the same length plus some additional control logic. 10 test devices were exposed to a 160 MeV proton beam with a fluence of 1.05E9 p.cm-2.s-1 up to >4.4E p.cm-2 per device. After a total fluence of 4.46E13 p.cm-2, 7 soft SEEs (non-permanent bit flips in the registers) and 0 hard/destructive SEE (e.g. latch-ups, SEL) had occurred. The simulated fluence for 10 years of LHC operation at nominal luminosity for worst case location MDT components is 2.67E11 h.cm-2. The rate of SEUs in the ASD setup register for all of ATLAS, derived from these numbers, is 2.4 per day. It is foreseen to update the active registers of the on-detector electronics at regular intervals. Depending on...

  2. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip

    Science.gov (United States)

    Shulaker, Max M.; Hills, Gage; Park, Rebecca S.; Howe, Roger T.; Saraswat, Krishna; Wong, H.-S. Philip; Mitra, Subhasish

    2017-07-01

    The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors—promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage—fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce ‘highly processed’ information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.

  3. Radiographer performed single contrast small bowel enteroclysis

    International Nuclear Information System (INIS)

    Law, Robert L.; Slack, Nicola; Harvey, Richard F.

    2005-01-01

    Aim: To analyse the technical success and reporting sensitivity of radiographer performed small bowel enteroclysis (SBE) undertaken by a specialist radiographer according to a standard technique [Nolan DJ, Cadman PJ. The small bowel enema made easy. Clinical Radiology 1987;38(3):295-301]. Methods: Patients (1413) had 1646 SBE in 10 years from May 1992 to April 2002. The original request card and the separate radiographer and consultant radiologist reports were reviewed. Where the radiology reports were discordant or inconclusive, the clinical notes were also reviewed. Results: Patients (1022) X-ray films were available. Nine hundred and forty-three (93.3%) SBEs had been successfully completed. Radiographer and consultant radiologist reporting had a 99.3% concordance. There was a 98.4% sensitivity for Crohn's disease (181 of 184 cases where Crohn's disease was the clinical final diagnosis). Overall reporting sensitivity was 93.7% although correct 'probably normal and abnormal' reporting bias suggests a sensitivity of 96.9%. Sixty of 943 (6.4%) reports were inconclusive. Of 1022 patients, 68 (6.6%) of small bowel intubations were not achieved, or else consent was withdrawn at the time of the procedure. Conclusion: Specialist radiographers can perform small bowel enteroclysis with a reporting sensitivity equal to that of a consultant radiologist. Radiographers accustomed to providing an SBE service become skilled at passing fine bore feeding tubes into the small bowel and can provide this service also

  4. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase

    Directory of Open Access Journals (Sweden)

    Wenjun Zhang

    2015-06-01

    Full Text Available It is very important for human health to rapidly and accurately detect glucose levels in biological environments, especially for diabetes mellitus. We proposed a simple, highly sensitive, accurate, convenient, low-cost, and disposable glucose biosensor on a single chip. A working (sensor electrode, a counter electrode, and a reference electrode are integrated on a single chip through micro-fabrication. The working electrode is functionalized through a layer-by-layer (LBL assembly of single-walled carbon nanotubes (SWNTs and multilayer films composed of chitosan (CS, gold nanoparticles (GNp, and glucose oxidase (GOx to obtain high sensitivity and accuracy. The glucose sensor has following features: (1 direct electron transfer between GOx and the electrode surface; (2 on-a-chip; (3 glucose detection down to 0.1 mg/dL (5.6 μM; (4 good sensing linearity over 0.017–0.81 mM; (5 high sensitivity (61.4 μA/mM-cm2 with a small reactive area (8 mm2; (6 fast response; (7 high reproducibility and repeatability; (8 reliable and accurate saliva glucose detection. Thus, this disposable biosensor will be an alternative for real time tracking of glucose levels from body fluids, e.g. saliva, in a noninvasive, pain-free, accurate, and continuous way. In addition to being used as a disposable glucose biosensor, it also provides a suitable platform for on-chip electrochemical sensing for other chemical agents and biomolecules.

  5. Single event upset studies on the CMS tracker APV25 readout chip

    International Nuclear Information System (INIS)

    Noah, E.; Bauer, T.; Bisello, D.; Faccio, F.; Friedl, M.; Fulcher, J.R.; Hall, G.; Huhtinen, M.; Kaminsky, A.; Pernicka, M.; Raymond, M.; Wyss, J.

    2002-01-01

    The microstrip tracker for the CMS experiment at the CERN Large Hadron Collider will be read out using APV25 chips. During high luminosity running the tracker will be exposed to particle fluxes up to 10 7 cm -2 s -1 , which raises concerns that the APV25 could occasionally suffer Single Event Upsets (SEUs). The effect of SEU on the APV25 has been studied to investigate implications for CMS detector operation and from the viewpoint of detailed circuit operation, to improve the understanding of its origin and what factors affect its magnitude. Simulations were performed to reconstruct the effects created by highly ionising particles striking sensitive parts of the circuits, along with consideration of the underlying mechanisms of charge deposition, collection and the consequences. A model to predict the behaviour of the memory circuits in the APV25 has been developed and data collected from dedicated experiments using both heavy ions and hadrons have been shown to support it

  6. Irradiation of the CLARO-CMOS chip, a fast ASIC for single-photon counting

    International Nuclear Information System (INIS)

    Andreotti, M.; Baldini, W.; Calabrese, R.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Fiorini, M.; Giachero, A.; Gotti, C.; Luppi, E.; Maino, M.; Malaguti, R.; Pessina, G.; Tomassetti, L.

    2015-01-01

    The CLARO-CMOS is a prototype ASIC that allows fast photon counting with low power consumption, built in AMS 0.35 μm CMOS technology. It is intended to be used as a front-end readout for the upgraded LHCb RICH detectors. In this environment, assuming 10 years of operation at the nominal luminosity expected after the upgrade, the ASIC must withstand a total fluence of about 6×10 12 1 MeV n eq /cm 2 and a total ionising dose of 400 krad. Long term stability of the electronics front-end is essential and the effects of radiation damage on the CLARO-CMOS performance must be carefully studied. This paper describes results of multi-step irradiation tests with protons up to the dose of ~8 Mrad, including measurement of single event effects during irradiation and chip performance evaluation before and after each irradiation step

  7. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.

    Science.gov (United States)

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADmicroC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62 kbytes of flash memory, 8 kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40 bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100 ns and a minimum time delay between successive events of approximately 9 micros. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  8. The use of small (2.7 mm) screws for arthroscopically guided repair of carpal chip fractures.

    Science.gov (United States)

    Wright, I M; Smith, M R W

    2011-05-01

    Removal of large chip fractures of the carpal bones and the osteochondral deficits that result, have been associated with a worse prognosis than removal of small fragments in similar locations. Reducing the articular defects by repair of large osteochondral fragments may have advantages over removal. Horses with osteochondral chip fractures that were of sufficient size and infrastructure to be repaired with small (2.7 mm diameter) AO/ASIF cortex screws were identified and repair effected by arthroscopically guided internal fixation. Thirty-three horses underwent surgery to repair 35 fractures of the dorsodistal radial carpal bone (n = 25), the dorsal margin of the radial facet of the third carpal bone (n = 9) and the intermediate facet of the distal radius (n = 1). There were no surgical complications and fractures healed satisfactorily in 26 of 28 horses and 23 horses returned to racing performance. Arthroscopically guided repair of carpal chip fractures with small diameter cortex screws is technically feasible and experiences with 33 cases suggest that this may have advantages over fragment removal in managing such cases. Surgeons treating horses with large chip fractures of the carpal bones should consider arthroscopically guided internal fixation as an alternative to removal. © 2010 EVJ Ltd.

  9. Development of a small-scale protope of the GOSSIPO-2 chip in 0.13 um CMOS technology

    CERN Document Server

    Kluit, R; Gromov, V

    2007-01-01

    The GOSSIP (Gas On Slimmed Silicon Pixel) detector is a proposed alternative for silicon based pixel detectors. The Gossip Prototype (GOSSIPO) chip is being developed to serve as a prototype read-out chip for such a gas-filled detector. Thanks to the very low capacitance at the preamplifier input, the front-end of the chip demonstrates low-noise performance in combination with a fast peaking time and low analog power dissipation. Measurement of the drift time of every primary electron in the gas volume enables 3D reconstruction of the particle tracks. For this purpose a Time-to- Digital converter must be placed in each pixel. A small-scale prototype of the GOSSIP chip has been developed in the 0.13 μm CMOS technology. The prototype includes a 16 by 16 pixel array where each pixel is equipped with a front-end circuit, threshold DAC, and a 4-bit TDC. The chip is available for testing in May 2007 and after initial tests it will be postprocessed to build a prototype detector. This paper describes the detector de...

  10. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.

    Science.gov (United States)

    Ding, Xiaoyun; Lin, Sz-Chin Steven; Kiraly, Brian; Yue, Hongjun; Li, Sixing; Chiang, I-Kao; Shi, Jinjie; Benkovic, Stephen J; Huang, Tony Jun

    2012-07-10

    Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based "acoustic tweezers" that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers' compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering.

  11. Single-chip ring resonator-based 1 x 8 optical beam forming network in CMOS-compatible waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim

    2007-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in optical beam forming networks (OBFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art ring resonator-

  12. Automatic extraction and processing of small RNAs on a multi-well/multi-channel (M&M) chip.

    Science.gov (United States)

    Zhong, Runtao; Flack, Kenneth; Zhong, Wenwan

    2012-12-07

    The study of the regulatory roles in small RNAs can be accelerated by techniques that permit simple, low-cost, and rapid extraction of small RNAs from a small number of cells. In order to ensure highly specific and sensitive detection, the extracted RNAs should be free of the background nucleic acids and present stably in a small volume. To meet these criteria, we designed a multi-well/multi-channel (M&M) chip to carry out automatic and selective isolation of small RNAs via solid-phase extraction (SPE), followed by reverse-transcription (RT) to convert them to the more stable cDNAs in a final volume of 2 μL. Droplets containing buffers for RNA binding, washing, and elution were trapped in microwells, which were connected by one channel, and suspended in mineral oil. The silica magnetic particles (SMPs) for SPE were moved along the channel from well to well, i.e. in between droplets, by a fixed magnet and a translation stage, allowing the nucleic acid fragments to bind to the SMPs, be washed, and then be eluted for RT reaction within 15 minutes. RNAs shorter than 63 nt were selectively enriched from cell lysates, with recovery comparable to that of a commercial kit. Physical separation of the droplets on our M&M chip allowed the usage of multiple channels for parallel processing of multiple samples. It also permitted smooth integration with on-chip RT-PCR, which simultaneously detected the target microRNA, mir-191, expressed in fewer than 10 cancer cells. Our results have demonstrated that the M&M chip device is a valuable and cost-saving platform for studying small RNA expression patterns in a limited number of cells with reasonable sample throughput.

  13. TC9447F, single-chip DSP (digital signal processor) for audio; 1 chip audio yo DSP LSI TC9447F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    TC9447F is a single-chip DSP for audio which builds in 2-channel AD converter/4-channel DA converter. It can build various application programs such as the sound field control like hall simulation, digital filter like equalizer, and dynamic range control, in the program memory (ROM). Further, it builds in {+-}10dB trim use electronic volume for two channels. It also builds data delay use RAM (64K-bit) in, so no RAM to be separately attached is necessary. (translated by NEDO)

  14. Reliable single chip genotyping with semi-parametric log-concave mixtures.

    Directory of Open Access Journals (Sweden)

    Ralph C A Rippe

    Full Text Available The common approach to SNP genotyping is to use (model-based clustering per individual SNP, on a set of arrays. Genotyping all SNPs on a single array is much more attractive, in terms of flexibility, stability and applicability, when developing new chips. A new semi-parametric method, named SCALA, is proposed. It is based on a mixture model using semi-parametric log-concave densities. Instead of using the raw data, the mixture is fitted on a two-dimensional histogram, thereby making computation time almost independent of the number of SNPs. Furthermore, the algorithm is effective in low-MAF situations.Comparisons between SCALA and CRLMM on HapMap genotypes show very reliable calling of single arrays. Some heterozygous genotypes from HapMap are called homozygous by SCALA and to lesser extent by CRLMM too. Furthermore, HapMap's NoCalls (NN could be genotyped by SCALA, mostly with high probability. The software is available as R scripts from the website www.math.leidenuniv.nl/~rrippe.

  15. On-Chip Spyhole Nanoelectrospray Ionization Mass Spectrometry for Sensitive Biomarker Detection in Small Volumes

    Science.gov (United States)

    Zhong, Xiaoqin; Qiao, Liang; Stauffer, Géraldine; Liu, Baohong; Girault, Hubert H.

    2018-03-01

    A polyimide microfluidic chip with a microhole emitter (Ø 10-12 μm) created on top of a microchannel by scanning laser ablation has been designed for nanoelectrospray ionization (spyhole-nanoESI) to couple microfluidics with mass spectrometry. The spyhole-nanoESI showed higher sensitivity compared to standard ESI and microESI from the end of the microchannel. The limits of detection (LOD) for peptide with the spyhole-nanoESI MS reached 50 pM, which was 600 times lower than that with standard ESI. The present microchip emitter allows the analysis of small volumes of samples. As an example, a small cell lung cancer biomarker, neuron-specific enolase (NSE), was detected by monitoring the transition of its unique peptide with the spyhole-nanoESI MS/MS. NSE at 0.2 nM could be well identified with a signal to noise ratio (S/N) of 50, and thereby its LOD was estimated to be 12 pM. The potential application of the spyhole-nanoESI MS/MS in cancer diagnosis was further demonstrated with the successful detection of 2 nM NSE from 1 μL of human serum. Before the detection, the serum sample spiked with NSE was first depleted with immune spin column, then desalted by centrifugal filter device, and finally digested by trypsin, without any other complicated preparation steps. The concentration matched the real condition of clinical samples. In addition, the microchips can be disposable to avoid any cross contamination. The present technique provides a highly efficient way to couple microfluidics with MS, which brings additional values to various microfluidics and MS-based analysis.

  16. Toyota's new single-chip microcomputer based engine and transmission control system

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T.; Kawai, M.; Aoki, K.; Tamaki, K.; Sugawara, M.

    1985-01-01

    Toyota succeeded in the fall of 1984 in manufacturing a complex engine and transmission control system using a newly developed single-chip microcomputer. This microcomputer, equipped with an 8K-byte ROM (Read Only Memory) and a 256-byte RAM (Random Access Memory), a powerful real time processing function, and a high-speed optimum instruction set, is better suited for automobiles. Application of the latest CMOS technology has enabled lower power consumption and improved noise immunity. The new system, which includes a new function; the electronic spark advance with knock control in addition to the conventional sophisticated system, has greatly improved the performance and driveability of vehicles. The newly designed electronic control unit (ECU) has been greatly improved in reliability and has not changed in its size with the adoption of the highly integrated new microcomputer, which is due to the fact that it uses fewer LSIs (Large Scale Integrated circuits) than the conventional ECU, although it includes the great additional function.

  17. Neutron-induced Single Event Upset on the RPC front-end chips for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Guida, R.; Merlo, M.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P. E-mail: paolo.vitulo@pv.infn.it; De Bari, A.; Manera, S

    2002-05-21

    Neutrons from a reactor and from a cyclotron have been used to characterise the CMS Resistive Plate Chambers (RPCs) front-end chip to neutron-induced damaging events. Single Event Upset (SEU) cross-sections have been measured up to 60 MeV for different chip thresholds. Tests at a reactor were done with an integrated fast (E{sub n}>3 MeV) neutron fluence of 1.7x10{sup 10} cm{sup -2} and a thermal neutron fluence of 9.5x10{sup 11} cm{sup -2}. High-energy neutrons from a cyclotron were used up to a fluence of 10{sup 12} cm{sup -2}. Data indicate the existence of a chip SEU sensitivity already at thermal energy and a saturated SEU cross-section from 3 to 60 MeV. Values of the SEU cross-sections from the thermal run well agree with those obtained by another CMS group that uses the same technology (0.8 {mu}m BiCMOS) though with different architecture. Cross-sections obtained with fast neutrons (from 3 MeV to about 10 MeV) are consistently higher by one order of magnitude compared to the thermal one. The average time between consecutive SEU events in each chip of the CMS barrel RPCs can be estimated to be 1 h.

  18. On-Chip Method to Measure Mechanical Characteristics of a Single Cell by Using Moiré Fringe

    Directory of Open Access Journals (Sweden)

    Hirotaka Sugiura

    2015-06-01

    Full Text Available We propose a method to characterize the mechanical properties of cells using a robot-integrated microfluidic chip (robochip and microscopy. The microfluidic chip is designed to apply the specified deformations to a single detached cell using an on-chip actuator probe. The reaction force is simultaneously measured using an on-chip force sensor composed of a hollow folded beam and probe structure. In order to measure the cellular characteristics in further detail, a sub-pixel level of resolution of probe position is required. Therefore, we utilize the phase detection of moiré fringe. Using this method, the experimental resolution of the probe position reaches 42 nm. This is approximately ten times smaller than the optical wavelength, which is the limit of sharp imaging with a microscope. Calibration of the force sensor is also important in accurately measuring cellular reaction forces. We calibrated the spring constant from the frequency response, by the proposed sensing method of the probe position. As a representative of mechanical characteristics, we measured the elastic modulus of Madin-Darby Cannie Kidney (MDCK cells. In spite of the rigid spring constant, the resolution and sensitivity were twice that achieved in our previous study. Unique cellular characteristics can be elucidated by the improvements in sensing resolution and accuracy.

  19. Precision Photothermal Annealing of Nanoporous Gold Thin Films for the Microfabrication of a Single-chip Material Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shen, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rubenchik, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Demos, S. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matthews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-30

    Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.

  20. Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera.

    Science.gov (United States)

    Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa

    2016-08-08

    We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

  1. The composing technique of fast and large scale nuclear data acquisition and control system with single chip microcomputers and PC computers

    International Nuclear Information System (INIS)

    Xu Zurun; Wu Shiying; Liu Haitao; Yao Yangsen; Wang Yingguan; Yang Chaowen

    1998-01-01

    The technique of employing single-chip microcomputers and PC computers to compose a fast and large scale nuclear data acquisition and control system was discussed in detail. The optimum composition mode of this kind of system, the acquisition and control circuit unit based on single-chip microcomputers, the real-time communication methods and the software composition under the Windows 3.2 were also described. One, two and three dimensional spectra measured by this system were demonstrated

  2. The composing technique of fast and large scale nuclear data acquisition and control system with single chip microcomputers and PC computers

    International Nuclear Information System (INIS)

    Xu Zurun; Wu Shiying; Liu Haitao; Yao Yangsen; Wang Yingguan; Yang Chaowen

    1997-01-01

    The technique of employing single-chip microcomputers and PC computers to compose a fast and large scale nuclear data acquisition and control system was discussed in detail. The optimum composition mode of this kind of system, the acquisition and control circuit unit based on single-chip microcomputers, the real-time communication methods and the software composition under the Windows 3.2 were also described. One, two and three dimensional spectra measured by this system were demonstrated

  3. WDM-Coherent OCDMA over one single device based on short chip Super Structured Fiber Bragg Gratings.

    Science.gov (United States)

    Amaya, Waldimar; Pastor, Daniel; Baños, Rocio; Garcia-Munoz, Victor

    2011-11-21

    We theoretically propose and demonstrate experimentally a Coherent Direct Sequence OCDMA en/decoder for multi-channel WDM operation based on a single device. It presents a broadband spectral envelope and a periodic spectral pattern that can be employed for en/decoding multiple sub-bands simultaneously. Multi-channel operation is verified experimentally by means of Multi-Band Super Structured Fiber Bragg Gratings with binary phase encoded chips fabricated with 1mm inter-chip separation that provides 4x100 GHz ITU sub-band separation at 1.25 Gbps. The WDM-OCDMA system verification was carried out employing simultaneous encoding of four adjacent sub-bands and two different OCDMA codes. © 2011 Optical Society of America

  4. Impedance spectra of patch clamp scenarios for single cells immobilized on a lab-on-a-chip

    DEFF Research Database (Denmark)

    Alberti, Massimo; Snakenborg, Detlef; Lopacinska, Joanna M.

    2014-01-01

    and simulated impedance spectra proved that the presented method could distinguish between a cell-attached mode and a whole-cell mode even with low-quality seals. In physiological conditions, the capacitance of HeLa cells was measured to *38 pF. The first gigaseal was recorded and maintained for 40 min. Once...... membrane. After incubating the chip for 24 h, HeLa cells adhered and grew on the chip surface but did not survive when trapped on the microapertures. The microfluidic system proved to work as a micro electrophysiological analysis system, and the IS-based method can be used for further studies on the post......A simple method based on impedance spectroscopy (IS) was developed to distinguish between different patch clamp modes for single cells trapped on microapertures in a patch clamp microchannel array designed for patch clamping on cultured cells. The method allows detecting via impedance analysis...

  5. Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.

    Science.gov (United States)

    Gurun, Gokce; Tekes, Coskun; Zahorian, Jaime; Xu, Toby; Satir, Sarp; Karaman, Mustafa; Hasler, Jennifer; Degertekin, F Levent

    2014-02-01

    Intravascular ultrasound (IVUS) and intracardiac echography (ICE) catheters with real-time volumetric ultrasound imaging capability can provide unique benefits to many interventional procedures used in the diagnosis and treatment of coronary and structural heart diseases. Integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with front-end electronics in single-chip configuration allows for implementation of such catheter probes with reduced interconnect complexity, miniaturization, and high mechanical flexibility. We implemented a single-chip forward-looking (FL) ultrasound imaging system by fabricating a 1.4-mm-diameter dual-ring CMUT array using CMUT-on-CMOS technology on a front-end IC implemented in 0.35-μm CMOS process. The dual-ring array has 56 transmit elements and 48 receive elements on two separate concentric annular rings. The IC incorporates a 25-V pulser for each transmitter and a low-noise capacitive transimpedance amplifier (TIA) for each receiver, along with digital control and smart power management. The final shape of the silicon chip is a 1.5-mm-diameter donut with a 430-μm center hole for a guide wire. The overall front-end system requires only 13 external connections and provides 4 parallel RF outputs while consuming an average power of 20 mW. We measured RF A-scans from the integrated single- chip array which show full functionality at 20.1 MHz with 43% fractional bandwidth. We also tested and demonstrated the image quality of the system on a wire phantom and an ex vivo chicken heart sample. The measured axial and lateral point resolutions are 92 μm and 251 μm, respectively. We successfully acquired volumetric imaging data from the ex vivo chicken heart at 60 frames per second without any signal averaging. These demonstrative results indicate that single-chip CMUT-on-CMOS systems have the potential to produce realtime volumetric images with image quality and speed suitable for catheter-based clinical applications.

  6. Detecting a single molecule using a micropore-nanopore hybrid chip.

    Science.gov (United States)

    Liu, Lei; Zhu, Lizhong; Ni, Zhonghua; Chen, Yunfei

    2013-11-21

    Nanopore-based DNA sequencing and biomolecule sensing have attracted more and more attention. In this work, novel sensing devices were built on the basis of the chips containing nanopore arrays in polycarbonate (PC) membranes and micropores in Si3N4 films. Using the integrated chips, the transmembrane ionic current induced by biomolecule's translocation was recorded and analyzed, which suggested that the detected current did not change linearly as commonly expected with increasing biomolecule concentration. On the other hand, detailed translocation information (such as translocation gesture) was also extracted from the discrete current blockages in basic current curves. These results indicated that the nanofluidic device based on the chips integrated by micropores and nanopores possessed comparative potentials in biomolecule sensing.

  7. Single-atom detection on a chip: from realization to application

    Energy Technology Data Exchange (ETDEWEB)

    Stibor, A; Bender, H; Kuehnhold, S; Fortagh, J; Zimmermann, C; Guenther, A, E-mail: aguenth@pit.physik.uni-tuebingen.d [CQ Center for Collective Quantum Phenomena and their Applications, Eberhard-Karls-Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    2010-06-15

    In this paper, we describe the preparation and detection of ultracold atoms on a microchip with single-atom sensitivity. The detection scheme is based on multi-photon ionization of atoms and the subsequent guiding of the generated ions by ion optics to a channel electron multiplier. We resolve single atoms with a detection efficiency above 60%. The detector is suitable for real-time observations of static and dynamic processes in ultracold quantum gases. Although the ionization is destructive, sampling a small subset of the atomic distribution is sufficient for the determination of the desired information. We take full high-resolution spectra of ultracold atoms by ionizing only 5% of the atoms. Using an additional microwave near 6.8 GHz, the detection scheme becomes energy, position and state selective. This can be used for in situ determination of the energy distribution and temperature of atom clouds inside the trap and applied for future correlation measurements.

  8. Small slot waveguide rings for on-chip quantum optical circuits.

    Science.gov (United States)

    Rotenberg, Nir; Türschmann, Pierre; Haakh, Harald R; Martin-Cano, Diego; Götzinger, Stephan; Sandoghdar, Vahid

    2017-03-06

    Nanophotonic interfaces between single emitters and light promise to enable new quantum optical technologies. Here, we use a combination of finite element simulations and analytic quantum theory to investigate the interaction of various quantum emitters with slot-waveguide rings. We predict that for rings with radii as small as 1.44 μm, with a Q-factor of 27,900, near-unity emitter-waveguide coupling efficiencies and emission enhancements on the order of 1300 can be achieved. By tuning the ring geometry or introducing losses, we show that realistic emitter-ring systems can be made to be either weakly or strongly coupled, so that we can observe Rabi oscillations in the decay dynamics even for micron-sized rings. Moreover, we demonstrate that slot waveguide rings can be used to directionally couple emission, again with near-unity efficiency. Our results pave the way for integrated solid-state quantum circuits involving various emitters.

  9. Chip-to-Chip Half Duplex Spiking Data Communication over Power Supply Rails

    Science.gov (United States)

    Hashida, Takushi; Nagata, Makoto

    Chip-to-chip serial data communication is superposed on power supply over common Vdd/Vss connections through chip, package, and board traces. A power line transceiver demonstrates half duplex spiking communication at more than 100Mbps. A pair of transceivers consumes 1.35mA from 3.3V, at 130Mbps. On-chip power line LC low pass filter attenuates pseudo-differential communication spikes by 30dB, purifying power supply current for internal circuits. Bi-directional spiking communication was successfully examined in a 90-nm CMOS prototype setup of on-chip waveform capturing. A micro controller forwards clock pulses to and receives data streams from a comparator based waveform capturer formed on a different chip, through a single pair of power and ground traces. The bit error rate is small enough not to degrade waveform acquisition capability, maintaining the spurious free dynamic range of higher than 50dB.

  10. Injection molded polymer chip for electrochemical and electrophysiological recordings from single cells

    DEFF Research Database (Denmark)

    Tanzi, Simone; Larsen, Simon Tylsgaard; Taboryski, Rafael J.

    We present a novel method to fabricate an all in polymer injection molded chip for electrochemical cell recordings and lateral cell trapping. The complete device is molded in thermoplastic polymer and it results from assembling two halves. We tested spin-coated conductive polymer poly(3,4-ethylen...

  11. Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    High temporal stability and spin dynamics of individual nitrogen-vacancy (NV) centers in diamond crystals make them one of the most promising quantum emitters operating at room temperature. We demonstrate a chip-integrated cavity-coupled emission into propagating surface plasmon polariton (SPP...

  12. A single microfluidic chip with dual surface properties for protein drug delivery.

    Science.gov (United States)

    Bokharaei, Mehrdad; Saatchi, Katayoun; Häfeli, Urs O

    2017-04-15

    Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Single cells as experimentation units in lab-on-a-chip devices

    NARCIS (Netherlands)

    le Gac, Severine; van den Berg, Albert

    'Lab-on-a-chip' technology (LOC) has now reached a mature state and is employed commonly in research in the life sciences. LOC devices make novel experimentation possible while providing a sophisticated environment for cellular investigation. As a next step, we introduce here the concept of a

  14. File list: His.Dig.50.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Dig.50.AllAg.Intestine,_Small hg19 Histone Digestive tract Intestine, Small htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Dig.50.AllAg.Intestine,_Small.bed ...

  15. Realization of a counter/timer circuit used in digital pulse height analysis in a single chip

    International Nuclear Information System (INIS)

    Mahmoud, I.I.

    2000-01-01

    This paper presents a single chip realization of a counter circuit, which is used in random signal processing and nuclear gamma ray spectrometers. The circuit contains a counter to count the repetition rate of a selected pulse train coming from a single channel analyzer circuit. Also, it contains a timer to measure the accumulation period. The timer possesses a predetermined time facility so that processing lasts for a certain adjustable predetermined period. The counter and the timer are synchronized to start and stop simultaneously at the beginning and end of the counting interval. A multiplexed BCD to 7-segment decoder/driver is also included in the circuit. The multiplexing allows the decrease of pin count of the chip.Two stages are designed, simulated for a single channel, however more stages and channels can be added by copying the designed circuits. Schematic flow of Xilinx v.1.2I is used as the design strategy with top-level schematic design containing VHDL and schematic macros

  16. Diamond turning of small Fresnel lens array in single crystal InSb

    International Nuclear Information System (INIS)

    Jasinevicius, R G; Duduch, J G; Cirino, G A; Pizani, P S

    2013-01-01

    A small Fresnel lens array was diamond turned in a single crystal (0 0 1) InSb wafer using a half-radius negative rake angle (−25°) single-point diamond tool. The machined array consisted of three concave Fresnel lenses cut under different machining sequences. The Fresnel lens profiles were designed to operate in the paraxial domain having a quadratic phase distribution. The sample was examined by scanning electron microscopy and an optical profilometer. Optical profilometry was also used to measure the surface roughness of the machined surface. Ductile ribbon-like chips were observed on the cutting tool rake face. No signs of cutting edge wear was observed on the diamond tool. The machined surface presented an amorphous phase probed by micro Raman spectroscopy. A successful heat treatment of annealing was carried out to recover the crystalline phase on the machined surface. The results indicated that it is possible to perform a ‘mechanical lithography’ process in single crystal semiconductors. (paper)

  17. Cost calculation model concerning small-scale production of chips and split firewood

    International Nuclear Information System (INIS)

    Ryynaenen, S.; Naett, H.; Valkonen, J.

    1995-01-01

    The TTS-Institute's Forestry Department has developed a computer-based cost calculation model for the production of wood chips and split firewood. This development work was carried out in conjunction with the nation-wide BIOENERGY -research programme. The said calculation model eases and speeds up the calculation of unit costs and resource needs in harvesting systems for wood chips and split firewood. The model also enables the user to find out how changes in the productivity and costs bases of different harvesting chains influences the unit costs of the system as a whole. The undertaking was composed of the following parts: clarification and modification of productivity bases for application in the model as mathematical models, clarification of machine and device costs bases, designing of the structure and functions of the calculation model, construction and testing of the model's 0-version, model calculations concerning typical chains, review of calculation bases, and charting of development needs focusing on the model. The calculation model was developed to serve research needs, but with further development it could be useful as a tool in forestry and agricultural extension work, related schools and colleges, and in the hands of firewood producers. (author)

  18. File list: Oth.Dig.50.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.50.AllAg.Intestine,_Small hg19 TFs and others Digestive tract Intestine, Sm...all http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Dig.50.AllAg.Intestine,_Small.bed ...

  19. File list: InP.Dig.05.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Dig.05.AllAg.Intestine,_Small hg19 Input control Digestive tract Intestine, Sma...ll http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Dig.05.AllAg.Intestine,_Small.bed ...

  20. File list: DNS.Dig.20.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Dig.20.AllAg.Intestine,_Small mm9 DNase-seq Digestive tract Intestine, Small ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Dig.20.AllAg.Intestine,_Small.bed ...

  1. File list: ALL.Dig.10.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.10.AllAg.Intestine,_Small mm9 All antigens Digestive tract Intestine, Small...4,SRX885798,SRX885799 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.10.AllAg.Intestine,_Small.bed ...

  2. File list: Pol.Dig.50.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.50.AllAg.Intestine,_Small hg19 RNA polymerase Digestive tract Intestine, Sm...all http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Dig.50.AllAg.Intestine,_Small.bed ...

  3. File list: Pol.Dig.10.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.10.AllAg.Intestine,_Small hg19 RNA polymerase Digestive tract Intestine, Sm...all http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Dig.10.AllAg.Intestine,_Small.bed ...

  4. File list: ALL.Dig.20.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Dig.20.AllAg.Intestine,_Small mm9 All antigens Digestive tract Intestine, Small...1,SRX885794,SRX885795 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Dig.20.AllAg.Intestine,_Small.bed ...

  5. File list: Pol.Dig.20.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.20.AllAg.Intestine,_Small hg19 RNA polymerase Digestive tract Intestine, Sm...all http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Dig.20.AllAg.Intestine,_Small.bed ...

  6. File list: Unc.Dig.20.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Dig.20.AllAg.Intestine,_Small hg19 Unclassified Digestive tract Intestine, Smal...l http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Dig.20.AllAg.Intestine,_Small.bed ...

  7. File list: DNS.Dig.50.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Dig.50.AllAg.Intestine,_Small mm9 DNase-seq Digestive tract Intestine, Small ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Dig.50.AllAg.Intestine,_Small.bed ...

  8. File list: Oth.Dig.10.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Dig.10.AllAg.Intestine,_Small hg19 TFs and others Digestive tract Intestine, Sm...all http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Dig.10.AllAg.Intestine,_Small.bed ...

  9. File list: InP.Dig.10.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Dig.10.AllAg.Intestine,_Small hg19 Input control Digestive tract Intestine, Sma...ll http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Dig.10.AllAg.Intestine,_Small.bed ...

  10. File list: DNS.Dig.10.AllAg.Intestine,_Small [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Dig.10.AllAg.Intestine,_Small mm9 DNase-seq Digestive tract Intestine, Small ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Dig.10.AllAg.Intestine,_Small.bed ...

  11. Analysis of single-cell differences by use of an on-chip microculture system and optical trapping.

    Science.gov (United States)

    Wakamoto, Y; Inoue, I; Moriguchi, H; Yasuda, K

    2001-09-01

    A method is described for continuous observation of isolated single cells that enables genetically identical cells to be compared; it uses an on-chip microculture system and optical tweezers. Photolithography is used to construct microchambers with 5-microm-high walls made of thick photoresist (SU-8) on the surface of a glass slide. These microchambers are connected by a channel through which cells are transported, by means of optical tweezers, from a cultivation microchamber to an analysis microchamber, or from the analysis microchamber to a waste microchamber. The microchambers are covered with a semi-permeable membrane to separate them from nutrient medium circulating through a "cover chamber" above. Differential analysis of isolated direct descendants of single cells showed that this system could be used to compare genetically identical cells under contamination-free conditions. It should thus help in the clarification of heterogeneous phenomena, for example unequal cell division and cell differentiation.

  12. Identification of novel single nucleotide polymorphisms (SNPs in deer (Odocoileus spp. using the BovineSNP50 BeadChip.

    Directory of Open Access Journals (Sweden)

    Gwilym D Haynes

    Full Text Available Single nucleotide polymorphisms (SNPs are growing in popularity as a genetic marker for investigating evolutionary processes. A panel of SNPs is often developed by comparing large quantities of DNA sequence data across multiple individuals to identify polymorphic sites. For non-model species, this is particularly difficult, as performing the necessary large-scale genomic sequencing often exceeds the resources available for the project. In this study, we trial the Bovine SNP50 BeadChip developed in cattle (Bos taurus for identifying polymorphic SNPs in cervids Odocoileus hemionus (mule deer and black-tailed deer and O. virginianus (white-tailed deer in the Pacific Northwest. We found that 38.7% of loci could be genotyped, of which 5% (n = 1068 were polymorphic. Of these 1068 polymorphic SNPs, a mixture of putatively neutral loci (n = 878 and loci under selection (n = 190 were identified with the F(ST-outlier method. A range of population genetic analyses were implemented using these SNPs and a panel of 10 microsatellite loci. The three types of deer could readily be distinguished with both the SNP and microsatellite datasets. This study demonstrates that commercially developed SNP chips are a viable means of SNP discovery for non-model organisms, even when used between very distantly related species (the Bovidae and Cervidae families diverged some 25.1-30.1 million years before present.

  13. Fully Printed Flexible Single-Chip RFID Tag with Light Detection Capabilities

    Directory of Open Access Journals (Sweden)

    Aniello Falco

    2017-03-01

    Full Text Available A printed passive radiofrequency identification (RFID tag in the ultra-high frequency band for light and temperature monitoring is presented. The whole tag has been manufactured by printing techniques on a flexible substrate. Antenna and interconnects are realized with silver nanoparticles via inkjet printing. A sprayed photodetector performs the light monitoring, whereas temperature measurement comes from an in-built sensor in the silicon RFID chip. One of the advantages of this system is the digital read-out and transmission of the sensors information on the RFID tag that ensures reliability. Furthermore, the use of printing techniques allows large-scale manufacturing and the direct fabrication of the tag on the desired surface. This work proves for the first time the feasibility of the embedment of large-scale organic photodetectors onto inkjet printed RFID tags. Here, we solve the problem of integration of different manufacturing techniques to develop an optimal final sensor system.

  14. Development of a new signal processor for tetralateral position sensitive detector based on single-chip microcomputer

    International Nuclear Information System (INIS)

    Huang Meizhen; Shi Longzhao; Wang Yuxing; Ni Yi; Li Zhenqing; Ding Haifeng

    2006-01-01

    An inherently nonlinear relation between the output current of the tetralateral position sensitive detector (PSD) and the position of the incident light spot has been found theoretically. Based on single-chip microcomputer and the theoretical relation between output current and position, a new signal processor capable of correcting nonlinearity and reducing position measurement deviation of tetralateral PSD was developed. A tetralateral PSD (S1200, 13x13 mm 2 , Hamamatsu Photonics K.K.) was measured with the new signal processor, a linear relation between the output position of the PSD, and the incident position of the light spot was obtained. In the 60% range of a 13x13 mm 2 active area, the position nonlinearity (rms) was 0.15% and the position measurement deviation (rms) was ±20 μm. Compared with traditional analog signal processor, the new signal processor is of better compatibility, lower cost, higher precision, and easier to be interfaced

  15. A Facile Droplet-Chip-Time-Resolved Inductively Coupled Plasma Mass Spectrometry Online System for Determination of Zinc in Single Cell.

    Science.gov (United States)

    Wang, Han; Chen, Beibei; He, Man; Hu, Bin

    2017-05-02

    Single cell analysis is a significant research field in recent years reflecting the heterogeneity of cells in a biological system. In this work, a facile droplet chip was fabricated and online combined with time-resolved inductively coupled plasma mass spectrometry (ICPMS) via a microflow nebulizer for the determination of zinc in single HepG2 cells. On the focusing geometric designed PDMS microfluidic chip, the aqueous cell suspension was ejected and divided by hexanol to generate droplets. The droplets encapsulated single cells remain intact during the transportation into ICP for subsequent detection. Under the optimized conditions, the frequency of droplet generation is 3-6 × 10 6 min -1 , and the injected cell number is 2500 min -1 , which can ensure the single cell encapsulation. ZnO nanoparticles (NPs) were used for the quantification of zinc in single cells, and the accuracy was validated by conventional acid digestion-ICPMS method. The ZnO NPs incubated HepG2 cells were analyzed as model samples, and the results exhibit the heterogeneity of HepG2 cells in the uptake/adsorption of ZnO NPs. The developed online droplet-chip-ICPMS analysis system achieves stable single cell encapsulation and has high throughput for single cell analysis. It has the potential in monitoring the content as well as distribution of trace elements/NPs at the single cell level.

  16. A single-chip event sequencer and related microcontroller instrumentation for atomic physics research.

    Science.gov (United States)

    Eyler, E E

    2011-01-01

    A 16-bit digital event sequencer with 50 ns resolution and 50 ns trigger jitter is implemented by using an internal 32-bit timer on a dsPIC30F4013 microcontroller, controlled by an easily modified program written in standard C. It can accommodate hundreds of output events, and adjacent events can be spaced as closely as 1.5 μs. The microcontroller has robust 5 V inputs and outputs, allowing a direct interface to common laboratory equipment and other electronics. A USB computer interface and a pair of analog ramp outputs can be added with just two additional chips. An optional display/keypad unit allows direct interaction with the sequencer without requiring an external computer. Minor additions also allow simple realizations of other complex instruments, including a precision high-voltage ramp generator for driving spectrum analyzers or piezoelectric positioners, and a low-cost proportional integral differential controller and lock-in amplifier for laser frequency stabilization with about 100 kHz bandwidth.

  17. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    DEFF Research Database (Denmark)

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders

    2011-01-01

    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  18. Accurate on-chip measurement of the Seebeck coefficient of high mobility small molecule organic semiconductors

    Science.gov (United States)

    Warwick, C. N.; Venkateshvaran, D.; Sirringhaus, H.

    2015-09-01

    We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10-DNTT). The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014)] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

  19. Accurate on-chip measurement of the Seebeck coefficient of high mobility small molecule organic semiconductors

    Directory of Open Access Journals (Sweden)

    C. N. Warwick

    2015-09-01

    Full Text Available We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT and 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT. The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

  20. Improved Laser Manipulation for On-chip Fabricated Microstructures Based on Solution Replacement and Its Application in Single Cell Analysis

    Directory of Open Access Journals (Sweden)

    Tao Yue

    2014-02-01

    Full Text Available In this paper, we present the fabrication and assembly of microstructures inside a microfluidic device based on a photocrosslinkable resin and optical tweezers. We also report a method of solution replacement inside the microfluidic channel in order to improve the manipulation performance and apply the assembled microstructures for single cell cultivation. By the illumination of patterned ultraviolet (UV through a microscope, microstructures of arbitrary shape were fabricated by the photocrosslinkable resin inside a microfluidic channel. Based on the microfluidic channel with both glass and polydimethylsiloxane (PDMS surfaces, immovable and movable microstructures were fabricated and manipulated. The microstructures were fabricated at the desired places and manipulated by the optical tweezers. A rotational microstructure including a microgear and a rotation axis was assembled and rotated in demonstrating this technique. The improved laser manipulation of microstructures was achieved based on the on-chip solution replacement method. The manipulation speed of the microstructures increased when the viscosity of the solvent decreased. The movement efficiency of the fabricated microstructures inside the lower viscosity solvent was evaluated and compared with those microstructures inside the former high viscosity solvent. A novel cell cage was fabricated and the cultivation of a single yeast cell (w303 was demonstrated in the cell cage, inside the microfluidic device.

  1. Hydrodynamic lift for single cell manipulation in a femtosecond laser fabricated optofluidic chip

    Directory of Open Access Journals (Sweden)

    Bragheri Francesca

    2017-08-01

    Full Text Available Single cell sorting based either on fluorescence or on mechanical properties has been exploited in the last years in microfluidic devices. Hydrodynamic focusing allows increasing the efficiency of theses devices by improving the matching between the region of optical analysis and that of cell flow. Here we present a very simple solution fabricated by femtosecond laser micromachining that exploits flow laminarity in microfluidic channels to easily lift the sample flowing position to the channel portion illuminated by the optical waveguides used for single cell trapping and analysis.

  2. On-Chip Magnetic Platform for Single-Particle Manipulation with Integrated Electrical Feedback.

    Science.gov (United States)

    Monticelli, Marco; Torti, Andrea; Cantoni, Matteo; Petti, Daniela; Albisetti, Edoardo; Manzin, Alessandra; Guerriero, Erica; Sordan, Roman; Gervasoni, Giacomo; Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco; Bertacco, Riccardo

    2016-02-17

    Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-μm sized beads is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    International Nuclear Information System (INIS)

    Accorsi, R.; Autiero, M.; Celentano, L.

    2007-01-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256x256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125 I, 27-35 keV, 99m Tc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor

  4. Prototyping of thermoplastic microfluidic chips and their application in high-performance liquid chromatography separations of small molecules.

    Science.gov (United States)

    Wouters, Sam; De Vos, Jelle; Dores-Sousa, José Luís; Wouters, Bert; Desmet, Gert; Eeltink, Sebastiaan

    2017-11-10

    The present paper discusses practical aspects of prototyping of microfluidic chips using cyclic olefin copolymer as substrate and the application in high-performance liquid chromatography. The developed chips feature a 60mm long straight separation channel with circular cross section (500μm i.d.) that was created using a micromilling robot. To irreversibly seal the top and bottom chip substrates, a solvent-vapor-assisted bonding approach was optimized, allowing to approximate the ideal circular channel geometry. Four different approaches to establish the micro-to-macro interface were pursued. The average burst pressure of the microfluidic chips in combination with an encasing holder was established at 38MPa and the maximum burst pressure was 47MPa, which is believed to be the highest ever report for these polymer-based microfluidic chips. Porous polymer monolithic frits were synthesized in-situ via UV-initiated polymerization and their locations were spatially controlled by the application of a photomask. Next, high-pressure slurry packing was performed to introduce 3μm silica reversed-phase particles as the stationary phase in the separation channel. Finally, the application of the chip technology is demonstrated for the separation of alkyl phenones in gradient mode yielding baseline peak widths of 6s by applying a steep gradient of 1.8min at a flow rate of 10μL/min. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A novel single-step, multipoint calibration method for instrumented Lab-on-Chip systems

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Patou, François; Zulfiqar, Azeem

    2014-01-01

    for instrument-based PoC blood biomarker analysis systems. Motivated by the complexity of associating high-accuracy biosensing using silicon nanowire field effect transistors with ease of use for the PoC system user, we propose a novel one-step, multipoint calibration method for LoC-based systems. Our approach...... specifically addresses the important interfaces between a novel microfluidic unit to integrate the sensor array and a mobile-device hardware accessory. A multi-point calibration curve is obtained by generating a defined set of reference concentrations from a single input. By consecutively splitting the flow...

  6. Using single cell cultivation system for on-chip monitoring of the interdivision timer in Chlamydomonas reinhardtii cell cycle

    Directory of Open Access Journals (Sweden)

    Soloviev Mikhail

    2010-09-01

    Full Text Available Abstract Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation system that allows for the strict control of the extracellular environment. We divided the Chlamydomonas cell cycle into interdivision and division phases on the basis of changes in cell size and found that, regardless of the amount of photosynthetically active radiation (PAR and the extent of illumination, the length of the interdivision phase was inversely proportional to the rate of increase of cell volume. Their product remains constant indicating the existence of an 'interdivision timer'. The length of the division phase, in contrast, remained nearly constant. Cells cultivated under light-dark-light conditions did not divide unless they had grown to twice their initial volume during the first light period. This indicates the existence of a 'commitment sizer'. The ratio of the cell volume at the beginning of the division phase to the initial cell volume determined the number of daughter cells, indicating the existence of a 'mitotic sizer'.

  7. A Genome Wide Association Study on Age at First Calving Using High Density Single Nucleotide Polymorphism Chips in Hanwoo (

    Directory of Open Access Journals (Sweden)

    K.-E. Hyeong

    2014-10-01

    Full Text Available Age at first calving is an important trait for achieving earlier reproductive performance. To detect quantitative trait loci (QTL for reproductive traits, a genome wide association study was conducted on the 96 Hanwoo cows that were born between 2008 and 2010 from 13 sires in a local farm (Juk-Am Hanwoo farm, Suncheon, Korea and genotyped with the Illumina 50K bovine single nucleotide polymorphism (SNP chips. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model after the effects of birth-year-month and polygenes were considered. A forward regression procedure was applied to determine the best set of SNPs for age at first calving. A total of 15 QTL were detected at the comparison-wise 0.001 level. Two QTL with strong statistical evidence were found at 128.9 Mb and 111.1 Mb on bovine chromosomes (BTA 2 and 7, respectively, each of which accounted for 22% of the phenotypic variance. Also, five significant SNPs were detected on BTAs 10, 16, 20, 26, and 29. Multiple QTL were found on BTAs 1, 2, 7, and 14. The significant QTLs may be applied via marker assisted selection to increase rate of genetic gain for the trait, after validation tests in other Hanwoo cow populations.

  8. ALICE chip processor

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This tiny chip provides data processing for the time projection chamber on ALICE. Known as the ALICE TPC Read Out (ALTRO), this device was designed to minimize the size and power consumption of the TPC front end electronics. This single chip contains 16 low-power analogue-to-digital converters with six million transistors of digital processing and 8 kbits of data storage.

  9. Imputation Accuracy from Low to Moderate Density Single Nucleotide Polymorphism Chips in a Thai Multibreed Dairy Cattle Population

    Directory of Open Access Journals (Sweden)

    Danai Jattawa

    2016-04-01

    Full Text Available The objective of this study was to investigate the accuracy of imputation from low density (LDC to moderate density SNP chips (MDC in a Thai Holstein-Other multibreed dairy cattle population. Dairy cattle with complete pedigree information (n = 1,244 from 145 dairy farms were genotyped with GeneSeek GGP20K (n = 570, GGP26K (n = 540 and GGP80K (n = 134 chips. After checking for single nucleotide polymorphism (SNP quality, 17,779 SNP markers in common between the GGP20K, GGP26K, and GGP80K were used to represent MDC. Animals were divided into two groups, a reference group (n = 912 and a test group (n = 332. The SNP markers chosen for the test group were those located in positions corresponding to GeneSeek GGP9K (n = 7,652. The LDC to MDC genotype imputation was carried out using three different software packages, namely Beagle 3.3 (population-based algorithm, FImpute 2.2 (combined family- and population-based algorithms and Findhap 4 (combined family- and population-based algorithms. Imputation accuracies within and across chromosomes were calculated as ratios of correctly imputed SNP markers to overall imputed SNP markers. Imputation accuracy for the three software packages ranged from 76.79% to 93.94%. FImpute had higher imputation accuracy (93.94% than Findhap (84.64% and Beagle (76.79%. Imputation accuracies were similar and consistent across chromosomes for FImpute, but not for Findhap and Beagle. Most chromosomes that showed either high (73% or low (80% imputation accuracies were the same chromosomes that had above and below average linkage disequilibrium (LD; defined here as the correlation between pairs of adjacent SNP within chromosomes less than or equal to 1 Mb apart. Results indicated that FImpute was more suitable than Findhap and Beagle for genotype imputation in this Thai multibreed population. Perhaps additional increments in imputation accuracy could be achieved by increasing the completeness of pedigree information.

  10. Towards UV imaging sensors based on single-crystal diamond chips for spectroscopic applications

    Energy Technology Data Exchange (ETDEWEB)

    De Sio, A. [Department of Astronomy and Space Science, University of Firenze, Largo E. Fermi 2, 50125 Florence (Italy)], E-mail: desio@arcetri.astro.it; Bocci, A. [Department of Astronomy and Space Science, University of Firenze, Largo E. Fermi 2, 50125 Florence (Italy); Bruno, P.; Di Benedetto, R.; Greco, V.; Gullotta, G. [INAF-Astrophysical Observatory of Catania (Italy); Marinelli, M. [INFN-Department of Mechanical Engineering, University of Roma ' Tor Vergata' (Italy); Pace, E. [Department of Astronomy and Space Science, University of Firenze, Largo E. Fermi 2, 50125 Florence (Italy); Rubulotta, D.; Scuderi, S. [INAF-Astrophysical Observatory of Catania (Italy); Verona-Rinati, G. [INFN-Department of Mechanical Engineering, University of Roma ' Tor Vergata' (Italy)

    2007-12-11

    The recent improvements achieved in the Homoepitaxial Chemical Vapour Deposition technique have led to the production of high-quality detector-grade single-crystal diamonds. Diamond-based detectors have shown excellent performances in UV and X-ray detection, paving the way for applications of diamond technology to the fields of space astronomy and high-energy photon detection in harsh environments or against strong visible light emission. These applications are possible due to diamond's unique properties such as its chemical inertness and visible blindness, respectively. Actually, the development of linear array detectors represents the main issue for a full exploitation of diamond detectors. Linear arrays are a first step to study bi-dimensional sensors. Such devices allow one to face the problems related to pixel miniaturisation and of signal read-out from many channels. Immediate applications would be in spectroscopy, where such arrays are preferred. This paper reports on the development of imaging detectors made by our groups, starting from the material growth and characterisation, through the design, fabrication and packaging of 2xn pixel arrays, to their electro-optical characterisation in terms of UV sensitivity, uniformity of the response and to the development of an electronic circuit suitable to read-out very low photocurrent signals. The detector and its electronic read-out were then tested using a 2x5 pixel array based on a single-crystal diamond. The results will be discussed in the framework of the development of an imager device for X-UV astronomy applications in space missions.

  11. SU-E-T-108: Development of a Novel Clinical Neutron Dose Monitor for Proton Therapy Based On Twin TLD500 Chips in a Small PE Moderator

    International Nuclear Information System (INIS)

    Hentschel, R; Mukherjee, B

    2014-01-01

    Purpose: In proton therapy, it could be desirable to measure out-of-field fast neutron doses at critical locations near and outside the patient body. Methods: The working principle of a novel clinical neutron dose monitor is verified by MCNPX simulation. The device is based on a small PE moderator of just 5.5cm side length for easy handling covered with a thermal neutron suppression layer. In the simulation, a polystyrene phantom is bombarded with a standard proton beam. The secondary thermal neutron flux produced inside the moderator by the impinging fast neutrons from the treatment volume is estimated by pairs of α-Al2O3:C (TLD500) chips which are evaluated offline after the treatment either by TL or OSL methods. The first chip is wrapped with 0.5mm natural Gadolinium foil converting the thermal neutrons to gammas via (n,γ) reaction. The second chip is wrapped with a dummy material. The chip centers have a distance of 2cm from each other. Results: The simulation shows that the difference of gamma doses in the TLD500 chips is correlated to the mean fast neutron dose delivered to the moderator material. Different outer shielding materials have been studied. 0.5mm Cadmium shielding is preferred for cost reasons and convenience. Replacement of PE moderator material by other materials like lead or iron at any place is unfavorable. The spatial orientation of the moderator cube is uncritical. Using variance reduction techniques like splitting/Russian roulette, the TLD500 gamma dose simulation give positive differences up to distances of 0.5m from the treatment volume. Conclusion: Applicability and basic layout of a novel clinical neutron dose monitor are demonstrated. The monitor measures PE neutron doses at locations outside the patient body up to distances of 0.5m from the treatment volume. Tissue neutron doses may be calculated using neutron kerma factors

  12. A 3 W High-Voltage Single-Chip Green Light-Emitting Diode with Multiple-Cells Network

    Directory of Open Access Journals (Sweden)

    W. Wang

    2015-01-01

    Full Text Available A parallel and series network structure was introduced into the design of the high-voltage single-chip (HV-SC light-emitting diode to inhibit the effect of current crowding and to improve the yield. Using such a design, a 6.6×5 mm2 large area LED chip of 24 parallel stages was demonstrated with 3 W light output power (LOP at the current of 500 mA. The forward voltage was measured to be 83 V with the same current injection, corresponding to 3.5 V for a single stage. The LED chip’s average thermal resistance was identified to be 0.28 K/W by using infrared thermography analysis.

  13. A Taxonomy of Reconfigurable Single-/Multiprocessor Systems-on-Chip

    Directory of Open Access Journals (Sweden)

    Diana Göhringer

    2009-01-01

    Full Text Available Runtime adaptivity of hardware in processor architectures is a novel trend, which is under investigation in a variety of research labs all over the world. The runtime exchange of modules, implemented on a reconfigurable hardware, affects the instruction flow (e.g., in reconfigurable instruction set processors or the data flow, which has a strong impact on the performance of an application. Furthermore, the choice of a certain processor architecture related to the class of target applications is a crucial point in application development. A simple example is the domain of high-performance computing applications found in meteorology or high-energy physics, where vector processors are the optimal choice. A classification scheme for computer systems was provided in 1966 by Flynn where single/multiple data and instruction streams were combined to four types of architectures. This classification is now used as a foundation for an extended classification scheme including runtime adaptivity as further degree of freedom for processor architecture design. The developed scheme is validated by a multiprocessor system implemented on reconfigurable hardware as well as by a classification of existing static and reconfigurable processor systems.

  14. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    International Nuclear Information System (INIS)

    Pascal, Mathieu

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed azimuth. The tilt of the molecule with respect to the surface and the degree to which the surface is relaxed have also been investigated. The adsorption of methyl on Cu(111) was studied using either azomethane or methyl iodide to prepare the surface layers. At saturation coverage the preferred adsorption site is the fcc threefold hollow site, whereas at half saturation coverage ∼ 30 % of the methyl species occupy the hop threefold hollow sites. Best agreement between theory and experiment corresponded to a methyl group adsorbed with C 3v symmetry. The height of the C above the surface in a pure methyl layer was 1.66 ± 0.02 A, but was reduced to 1.62 ± 0.02 A in the presence of co-adsorbed iodine, suggesting that iodine increases the strength of adsorption. Iodine was also found to occupy the fee threefold hollow sites with a Cu-l bondlength of 2.61 ± 0.02 A. (author)

  15. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2013-08-01

    Full Text Available Ultra-low power radio frequency (RF transceivers used in short-range application such as wireless sensor networks (WSNs require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs in addition to a 2.0 GHz phase-locked loop (PLL based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.

  16. Directional emission of single photons from small atomic samples

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; V. Poulsen, Uffe; Mølmer, Klaus

    2013-01-01

    We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state i...... is coupled by a classical laser field to an optically excited state which rapidly decays to the ground atomic state. Our model accounts for the different field polarization components via re-absorption and emission of light by the Zeeman manifold of optically excited states.......We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state...

  17. The effect of Cytochalasin D on F-Actin behavior of single-cell electroendocytosis using multi-chamber micro cell chip

    KAUST Repository

    Lin, Ran

    2012-03-01

    Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (C CD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and C CD. © 2012 IEEE.

  18. The effect of Cytochalasin D on F-Actin behavior of single-cell electroendocytosis using multi-chamber micro cell chip

    KAUST Repository

    Lin, Ran; Chang, Donald C.; Lee, Yi Kuen

    2012-01-01

    Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (C CD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and C CD. © 2012 IEEE.

  19. Development of a Metal Cutting Tool Fase in Order to Create the Conditions of Ringed Chips Wrapping

    OpenAIRE

    Korchuganova, Mariya Anatolievna; Syrbakov, Andrey Pavlovich; Chernysheva, Tatiana Yurievna; Ivanov, G.; Korchuganov, Maksim Anatolievich

    2016-01-01

    When processing ductile metals with high cutting speed, there is a need to take additional measures for a comfortable and safe formation and removal of chips. In the conditions of large-scale manufacture, it is recommended to produce flow chips in the form of short fragments, while in the conditions of small-lot and single-piece manufacture, it is reasonable to wrap the chips spirally with a rather small turn radius. Such way of chips formation reduces the time of its removal from the working...

  20. Price of forest chips decreasing

    International Nuclear Information System (INIS)

    Hakkila, P.

    2001-01-01

    Use of forest chips was studied in 1999 in the national Puuenergia (Wood Energy) research program. Wood combusting heating plants were questioned about are the main reasons restricting the increment of the use of forest chips. Heating plants, which did not use forest chips at all or which used less than 250 m 3 (625 bulk- m 3 ) in 1999 were excluded. The main restrictions for additional use of forest chips were: too high price of forest chips; lack of suppliers and/or uncertainty of deliveries; technical problems of reception and processing of forest chips; insufficiency of boiler output especially in winter; and unsatisfactory quality of chips. The price of forest chips becomes relatively high because wood biomass used for production of forest chips has to be collected from wide area. Heavy equipment has to be used even though small fragments of wood are processed, which increases the price of chips. It is essential for forest chips that the costs can be pressed down because competition with fossil fuels, peat and industrial wood residues is hard. Low market price leads to the situation in which forest owner gets no price of the raw material, the entrepreneurs operate at the limit of profitability and renovation of machinery is difficult, and forest chips suppliers have to sell the chips at prime costs. Price of forest chips has decreased significantly during the past decade. Nominal price of forest chips is now lower than two decades ago. The real price of chips has decreased even more than the nominal price, 35% during the past decade and 20% during the last five years. Chips, made of small diameter wood, are expensive because the price includes the felling costs and harvesting is carried out at thinning lots. Price is especially high if chips are made of delimbed small diameter wood due to increased the work and reduced amount of chips. The price of logging residue chips is most profitable because cutting does not cause additional costs. Recovery of chips is

  1. Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming

    Directory of Open Access Journals (Sweden)

    Kyung Tae Lim

    2016-04-01

    Full Text Available Recent studies have shown that defined factors could lead to the direct conversion of fibroblasts into induced hepatocyte-like cells (iHeps. However, reported conversion efficiencies are very low, and the underlying mechanism of the direct hepatic reprogramming is largely unknown. Here, we report that direct conversion into iHeps is a stepwise transition involving the erasure of somatic memory, mesenchymal-to-epithelial transition, and induction of hepatic cell fate in a sequential manner. Through screening for additional factors that could potentially enhance the conversion kinetics, we have found that c-Myc and Klf4 (CK dramatically accelerate conversion kinetics, resulting in remarkably improved iHep generation. Furthermore, we identified small molecules that could lead to the robust generation of iHeps without CK. Finally, we show that Hnf1α supported by small molecules is sufficient to efficiently induce direct hepatic reprogramming. This approach might help to fully elucidate the direct conversion process and also facilitate the translation of iHep into the clinic.

  2. Measurements of Ultra-Fast single photon counting chip with energy window and 75 μm pixel pitch with Si and CdTe detectors

    International Nuclear Information System (INIS)

    Maj, P.; Grybos, P.; Kasinski, K.; Koziol, A.; Krzyzanowska, A.; Kmon, P.; Szczygiel, R.; Zoladz, M.

    2017-01-01

    Single photon counting pixel detectors become increasingly popular in various 2-D X-ray imaging techniques and scientific experiments mainly in solid state physics, material science and medicine. This paper presents architecture and measurement results of the UFXC32k chip designed in a CMOS 130 nm process. The chip consists of about 50 million transistors and has an area of 9.64 mm × 20.15 mm. The core of the IC is a matrix of 128 × 256 pixels of 75 μm pitch. Each pixel contains a CSA, a shaper with tunable gain, two discriminators with correction circuits and two 14-bit ripple counters operating in a normal mode (with energy window), a long counter mode (one 28-bit counter) and a zero-dead time mode. Gain and noise performance were verified with X-ray radiation and with the chip connected to Si (320 μm thick) and CdTe (750 μ m thick) sensors.

  3. A Single Global Small-User Nuclear Repository

    International Nuclear Information System (INIS)

    Conca, J.L.; Wright, J.

    2009-01-01

    Global energy partnerships in nuclear power, proposed by France, Russia, U.S. and England, seek to address the proliferation issue by controlling fuel production and nuclear materials, removing the need for each country to develop enrichment, fabrication, recycling or disposal capabilities. Several of the large generator countries such as France, the U.S., Japan, S. Korea, Russia, the U.K., China and India, all have plans for deep geologic repositories because they anticipate sufficient waste over the next century to justify the expense of a repository. However, countries having, or planning, less than five reactors, such as Egypt, Iran, Indonesia, Brazil and about 30 other countries, will not have sufficient waste generation, or a favorable geologic site, to justify the economic and environmental issues of developing their own repository. The Salado salt formation in New Mexico, set aside for nuclear waste disposal within the 16 square-mile area by the Land Withdrawal Act of 1992, is the most optimal geologic formation for the permanent disposal of any nuclear waste and is easily able to host all of the commercial nuclear waste that will be generated in the next thousand years. The U.S. commercial nuclear waste needs presently surpass all others, and will for the foreseeable future. Hosting the relatively small amount of waste from these small-user nations will add little to U.S. waste stream while the cost/benefit analysis from the standpoint of operations, safety, geology, cost and proliferation is overwhelmingly positive for developing such a global repository. Oceanic and overland transportation, high-level disposal logistics and costs from several programs, including WIPP, have demonstrated that the operation would pay for itself from international user fees with no U.S. taxpayer dollars required and still save the world about $400 billion over 100 years. The ethical considerations alone are compelling. (authors)

  4. Comparison of three types of XPAD3.2/CdTe single chip hybrids for hard X-ray applications in material science and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Buton, C., E-mail: clement.buton@synchrotron-soleil.fr [Synchrotron SOLEIL, L´Orme des Merisiers, Saint-Aubin — BP 48 91192, Gif-sur-Yvette Cedex (France); Dawiec, A. [Synchrotron SOLEIL, L´Orme des Merisiers, Saint-Aubin — BP 48 91192, Gif-sur-Yvette Cedex (France); Graber-Bolis, J.; Arnaud, K. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Bérar, J.F.; Blanc, N.; Boudet, N. [Université Grenoble Alpes, Institut NÉEL, F-38042 Grenoble (France); CNRS, Institut NÉEL, F-38042 Grenoble (France); Clémens, J.C.; Debarbieux, F. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Delpierre, P.; Dinkespiler, B. [imXPAD SAS — Espace Mistral, Athélia IV, 297 avenue du Mistral, 13600 La Ciotat (France); Gastaldi, T. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Hustache, S. [Synchrotron SOLEIL, L´Orme des Merisiers, Saint-Aubin — BP 48 91192, Gif-sur-Yvette Cedex (France); Morel, C.; Pangaud, P. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Perez-Ponce, H. [imXPAD SAS — Espace Mistral, Athélia IV, 297 avenue du Mistral, 13600 La Ciotat (France); Vigeolas, E. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France)

    2014-09-11

    The CHIPSPECT consortium aims at building a large multi-modules CdTe based photon counting detector for hard X-ray applications. For this purpose, we tested nine XPAD3.2 single chip hybrids in various configurations (i.e. Ohmic vs. Schottky contacts or electrons vs. holes collection mode) in order to select the most performing and best suited configuration for our experimental requirements. Measurements have been done using both X-ray synchrotron beams and {sup 241}Am source. Preliminary results on the image quality, calibration, stability, homogeneity and linearity of the different types of detectors are presented.

  5. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Directory of Open Access Journals (Sweden)

    Håkan Sand

    Full Text Available Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces and one small-sized ungulate; roe deer (Capreolus capreolus. Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.

  6. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Science.gov (United States)

    Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators’ primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves’ choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population. PMID:28030549

  7. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Science.gov (United States)

    Sand, Håkan; Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.

  8. Prototype detection unit for the CHIPS experiment

    Science.gov (United States)

    Pfützner, Maciej M.

    2017-09-01

    CHIPS (CHerenkov detectors In mine PitS) is an R&D project aiming to develop novel cost-effective neutrino detectors, focused on measuring the CP-violating neutrino mixing phase (δ CP). A single detector module, containing an enclosed volume of purified water, would be submerged in an existing lake, located in a neutrino beam. A staged approach is proposed with first detectors deployed in a flooded mine pit in Northern Minnesota, 7 mrad off-axis from the existing NuMI beam. A small proof-of-principle model (CHIPS-M) has already been tested and the first stage of a fully functional 10 kt module (CHIPS-10) is planned for 2018. One of the instruments submerged on board of CHIPS-M in autumn 2015 was a prototype detection unit, constructed at Nikhef. The unit contains hardware borrowed from the KM3NeT experiment, including 16 3 inch photomultiplier tubes and readout electronics. In addition to testing the mechanical design and data acquisition, the detector was used to record a large sample of cosmic ray muon events. The collected data is valuable for characterising the cosmic muon background and validating a Monte Carlo simulation used to optimise future designs. This paper introduces the CHIPS project, describes the design of the prototype unit, and presents the results of a preliminary data analysis.

  9. Design and Implementation of 8051 Single-Chip Microcontroller for Stationary 1.0 kW PEM Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Pei-Hsing Huang

    2014-01-01

    Full Text Available Proton exchange membrane fuel cells (PEMFCs have attracted significant interest as a potential green energy source. However, if the performance of such systems is to be enhanced, appropriate control strategies must be applied. Accordingly, the present study proposes a sophisticated control system for a 1.0 kW PEMFC system comprising a fuel cell stack, an auxiliary power supply, a DC-DC buck converter, and a DC-AC inverter. The control system is implemented using an 8051 single-chip microcontroller and is designed to optimize the system performance and safety in both the startup phase and the long-term operation phase. The major features of the proposed control system are described and the circuit diagrams required for its implementation introduced. In addition, the touch-sensitive, intuitive human-machine interface is introduced and typical screens are presented. Finally, the electrical characteristics of the PEMFC system are briefly examined. Overall, the results confirm that the single-chip microcontroller presented in this study has significant potential for commercialization in the near future.

  10. Using conjoint and cluster analysis in developing new product for micro, small and medium enterprises (SMEs) based on customer preferences (Case study: Lampung province's banana chips)

    Science.gov (United States)

    Kosasih, Wilson; Salomon, Lithrone Laricha; Hutomo, Reynaldo

    2017-08-01

    This paper discusses the development of new products of Micro, Small and Medium Entreprises (SMEs) to identify what attributes are considered by consumers, as well as combinations of attributes that need to be analyzed into the main preferences of consumers. The purpose of this research is to increase the added value and competitiveness of SMEs through product innovation. The object of this study is banana chips produced by SMEs from the province of Lampung which it considered to be unique souvenirs of the province. The research data were collected by distributing questionnaires in Jakarta which has heterogeneous population, in order to develop banana chip's marketing and increase its market share in Indonesia. Data processing was performed using conjoint analysis and cluster analysis. Segmentation was performed using conjoint analysis based on the importance level of attributes and part-worth of level attributes of each cluster. Finally, characteristics and consumer preferences of each cluster will be a consideration in determining the product development and marketing strategies.

  11. Construction of a microfluidic chip, using dried-down reagents, for LATE-PCR amplification and detection of single-stranded DNA.

    Science.gov (United States)

    Jia, Yanwei; Mak, Pui-In; Massey, Conner; Martins, Rui P; Wangh, Lawrence J

    2013-12-07

    LATE-PCR is an advanced form of non-symmetric PCR that efficiently generates single-stranded DNA which can readily be characterized at the end of amplification by hybridization to low-temperature fluorescent probes. We demonstrate here for the first time that monoplex and duplex LATE-PCR amplification and probe target hybridization can be carried out in double layered PDMS microfluidics chips containing dried reagents. Addition of a set of reagents during dry down overcomes the common problem of single-stranded oligonucleotide binding to PDMS. These proof-of-principle results open the way to construction of inexpensive point-of-care devices that take full advantage of the analytical power of assays built using LATE-PCR and low-temperature probes.

  12. A Single IGF1 Allele Is a Major Determinant of Small Size in Dogs

    Science.gov (United States)

    Sutter, Nathan B.; Bustamante, Carlos D.; Chase, Kevin; Gray, Melissa M.; Zhao, Keyan; Zhu, Lan; Padhukasahasram, Badri; Karlins, Eric; Davis, Sean; Jones, Paul G.; Quignon, Pascale; Johnson, Gary S.; Parker, Heidi G.; Fretwell, Neale; Mosher, Dana S.; Lawler, Dennis F.; Satyaraj, Ebenezer; Nordborg, Magnus; Lark, K. Gordon; Wayne, Robert K.; Ostrander, Elaine A.

    2009-01-01

    The domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate. We used a strategy that exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed. Second, we examined genetic variation in the 15-megabase interval surrounding the QTL in small and giant breeds and found marked evidence for a selective sweep spanning a single gene (IGF1), encoding insulin-like growth factor 1. A single IGF1 single-nucleotide polymorphism haplotype is common to all small breeds and nearly absent from giant breeds, suggesting that the same causal sequence variant is a major contributor to body size in all small dogs. PMID:17412960

  13. Analyzing System on A Chip Single Event Upset Responses using Single Event Upset Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We are investigating the application of classical reliability performance metrics combined with standard single event upset (SEU) analysis data. We expect to relate SEU behavior to system performance requirements. Our proposed methodology will provide better prediction of SEU responses in harsh radiation environments with confidence metrics. single event upset (SEU), single event effect (SEE), field programmable gate array devises (FPGAs)

  14. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip

    DEFF Research Database (Denmark)

    Liu, Liu; Kumar, R.; Huybrechts, K.

    2010-01-01

    Ultra-small, low-power, all-optical switching and memory elements, such as all-optical flip-flops, as well as photonic integrated circuits of many such elements, are in great demand for all-optical signal buffering, switching and processing. Silicon-on-insulator is considered to be a promising......-flop working in a continuous-wave regime with an electrical power consumption of a few milliwatts, allowing switching in 60 ps with 1.8 fJ optical energy. The total power consumption and the device size are, to the best of our knowledge, the smallest reported to date at telecom wavelengths. This is also...

  15. Chip compacting press; Jido kirikuzu asshukuki

    Energy Technology Data Exchange (ETDEWEB)

    Oura, K. [Yuken Kogyo Co. Ltd., Kanagawa (Japan)

    1998-08-15

    The chips exhausted from various machine tools are massy, occupy much space and make working environment worse by staying added cutting oil to lower part. The chips are exhausted as a result of machining and have not constant quality. Even if used material is same the chips have various shapes and properties by kinds and machining methods of used machine tools, and are troublesome materials from a standpoint of their treatment. Pressing and solidification of the chips have frequently been tried. A chip compacting press introduced in this paper, a relatively cheap chip compacting press aimed for relatively small scale chip treatment, and has such characteristics and effects as follows. Chips are pressed and solidified by each raw material, so fractional management can be easily conducted. As casting metal chips and curled chips of iron and aluminum can be pressed to about 1/3 to 1/5 and about 1/40, respectively, space saving can be conducted. Chip compacting pressing upgrades its transporting efficiency to make possible to reduce its transporting cost. As chip solidification controls its oxidation and most cutting oil are removed, chips are easy to recycle. 2 figs., 1 tab.

  16. On-site detection of Phytophthora spp.—single-stranded target DNA as the limiting factor to improve on-chip hybridization

    International Nuclear Information System (INIS)

    Schwenkbier, Lydia; Pollok, Sibyll; Popp, Jürgen; Weber, Karina; König, Stephan; Wagner, Stefan; Werres, Sabine; Weber, Jörg; Hentschel, Martin

    2014-01-01

    We report on a lab-on-a-chip approach for on-site detection of Phytophthora species that allows visual signal readout. The results demonstrate the significance of single-stranded DNA (ssDNA) generation in terms of improving the intensity of the hybridization signal and to improve the reliability of the method. Conventional PCR with subsequent heat denaturation, sodium hydroxide-based denaturation, lambda exonuclease digestion and two asymmetric PCR methods were investigated for the species P. fragariae, P. kernoviae, and P. ramorum. The positioning of the capture probe within the amplified yeast GTP-binding protein (YPT1) target DNA was also of interest because it significantly influences the intensity of the signal. Statistical tests were used to validate the impact of the ssDNA generation methods and the capture-target probe position. The single-stranded target DNA generated by Linear-After-The-Exponential PCR (LATE-PCR) was found to produce signal intensities comparable to post-PCR exonuclease treatment. The LATE-PCR is the best method for the on-site detection of Phytophthora because the enzymatic digestion after PCR is more laborious and time-consuming. (author)

  17. Measurements on very small single crystals of NdFeB using a vibrating reed magnetometer

    International Nuclear Information System (INIS)

    Richter, H.J.; Hempel, K.A.; Verhoef, R.

    1988-01-01

    Nd 2 Fe 14 B single crystals with magnetic moments ranging from 1.6 x 10 -8 Acm 2 to 9.5 x 10 -7 Acm 2 are measured using the ultra high sensitivity vibrating reed magnetometer. The hysteresis loops are compared to those of BaFe 12 O 19 single crystals. It turns out that the magnetization reversal of the Nd 2 Fe 14 B samples is similar to that of BaFe 12 O 19 single crystals if the ferrite samples are considerably bigger in size. This does not hold for bigger Nd 2 Fe 14 B particles where stronger domain wall pinning is observed. For very small grains of Nd 2 Fe 14 B there is still evidence of domain wall processes while for BaFe 12 O 19 grains of the same size true single domain behaviour can be observed

  18. Supply chains of forest chip production in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kaerhae, Kalle (Metsaeteho Oy, Helsinki (Finland)), e-mail: kalle.karha@metsateho.fi

    2010-07-15

    The Metsaeteho study investigated how logging residue chips, stump wood chips, and chips from small sized thinning wood and large-sized (rotten) roundwood used by heating and power plants were produced in Finland in 2008. Almost all the major forest chip suppliers in Finland were involved in the study. The total volume of forest chips supplied in 2008 by these suppliers was 6.5 TWh. The study was implemented by conducting an e-mail questionnaire survey and telephone interviews. Research data was collected in March-May 2009. The majority of the logging residue chips and chips from small-sized thinning wood were produced using the roadside chipping supply chain in Finland in 2008. The chipping at plant supply chain was also significant in the production of logging residue chips. 70% of all stump wood chips consumed were comminuted at the plant and 29% at terminals. The role of the terminal chipping supply chain was also significant in the production of chips from logging residues and small-sized wood chips. When producing chips from large-sized (rotten) roundwood, nearly a half of chips were comminuted at plants and more than 40% at terminals

  19. Supply systems of forest chip production in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kaerhae, K. (Metsaeteho Oy, Helsinki (Finland)), e-mail: kalle.karha@metsateho.fi

    2010-07-01

    The Metsaeteho study investigated how logging residue chips, stump wood chips, and chips from small-diameter thinning wood and large-sized (rotten) roundwood used by heating and power plants were produced in Finland in 2009. Almost all the major forest chip suppliers in Finland were involved in the study. The total volume of forest chips supplied in 2009 by these suppliers was 8,4 TWh. The study was implemented by conducting an e-mail questionnaire survey and telephone interviews. Research data was collected from March-May, 2010. The majority of the logging residue chips and chips from small-diameter thinning wood were produced using the roadside chipping supply system in Finland in 2009. The chipping at plant supply system was also significant in the production of logging residue chips. Nearly 70 % of all stump wood chips consumed were comminuted at the plant and 28 % at terminals. The role of the terminal chipping supply system was also significant in the production of chips from logging residues and small-diameter wood chips. When producing chips from large-sized (rotten) roundwood, similarly roughly 70 % of chips were comminuted at plants and 23 % at terminals. (orig.)

  20. Supply chains of forest chip production in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kaerhae, K. (Metsaeteho Oy, Helsinki (Finland)), Email: kalle.karha@metsateho.fi

    2009-07-01

    The Metsaeteho study investigated how logging residue chips. stump wood chips, and chips from small-sized thinning wood and large-sized (rotten) roundwood used by heating and power plants were produced in Finland in 2008. Almost all the major forest chip suppliers in Finland were involved in the study. The total volume of forest chips supplied in 2008 by these suppliers was 6,5 TWh. The study was implemented by conducting an e-mail questionnaire survey and telephone interviews. Research data was collected in March-May 2009. The majority of the logging residue chips and chips from small-sized thinning wood were produced using the roadside chipping supply chain in Finland in 2008. The chipping at plant supply chain was also significant in the production of logging residue chips. 70% of all stump wood chips consumed were comminuted at the plant and 29% at terminals. The role of the terminal chipping supply chain was also significant in the production of chips from logging residues and small-sized wood chips. When producing chips from large-sized (rotten) roundwood, nearly a half of chips were comminuted at plants and more than 40 % at terminals. (orig.)

  1. INNOVATION STRATEGY TO IMPROVE THE COMPETITIVENESS OF MICRO, SMALL, AND MEDIUM ENTERPRISES OF BANDAR LAMPUNG BANANA CHIPS

    Directory of Open Access Journals (Sweden)

    Hartami Dewi

    2017-01-01

    Full Text Available Innovation is needed by micro, small, and medium enterprises to grow and develop into large businesses. However, that innovations are limited by existing constraints such as limited number of employees, total assets, total revenues and total budget for innovation. Human resources or the entrepreneur is known to be an important factor in improving the performance and innovation of SMEs or UMKM. This research aims to formulate strategies given the constraints of innovation, human resource capacity and opportunities for innovation in improving competitiveness. The analytical method used is confirmed method, the evaluation model of structural equation modeling (SEM and the analytic hierarchy process (AHP. The analysis showed an effect of human resources amounting to 0.761 on the settlement of the constraints and influence of 0.806 to successful innovation. The main obstacle that have to be resolved are human resources, promotion, managerial finance and administration, location, and marketing. The innovation that most influence in purchasing decisions and according to the ability of SMEs are service innovation, organization, business model, supply chain, and marketing. The best strategy formulation that can be done in improving the competitiveness of businesses are participation in exhibitions and entrepreneurship seminars, technical assistance, training and the online marketing promotion, as well as the provision of machinery and appropriate process equipment.Keywords: innovation, competitiveness, structural equation modeling, analytic hierarchy process

  2. Benchmarking of small-signal dynamics of single-phase PLLs

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    Phase-looked Loop (PLL) is a critical component for the control and grid synchronization of grid-connected power converters. This paper presents a benchmarking study on the small-signal dynamics of three commonly used PLLs for single-phase converters, including enhanced PLL, second......-order generalized integrator based PLL, and the inverse-PLL. First, a unified small-signal model of those PLLs is established for comparing their dynamics. Then, a systematic design guideline for parameters tuning of the PLLs is formulated. To confirm the validity of theoretical analysis, nonlinear time...

  3. Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS)

    DEFF Research Database (Denmark)

    Pauls, Mathilde M H; Clarke, Natasha; Trippier, Sarah

    2017-01-01

    vascular territories. The aim of this trial is to test the hypothesis that tadalafil increases cerebral blood flow in older people with small vessel disease. METHODS/DESIGN: Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS) is a phase II randomised double......-blind crossover trial. In two visits, 7-30 days apart, participants undergo arterial spin labelling to measure cerebral blood flow and a battery of cognitive tests, pre- and post-dosing with oral tadalafil (20 mg) or placebo. SAMPLE SIZE: 54 participants are required to detect a 15% increase in cerebral blood...

  4. Chips 2020

    CERN Document Server

    2016-01-01

    The release of this second volume of CHIPS 2020 coincides with the 50th anniversary of Moore’s Law, a critical year marked by the end of the nanometer roadmap and by a significantly reduced annual rise in chip performance. At the same time, we are witnessing a data explosion in the Internet, which is consuming 40% more electrical power every year, leading to fears of a major blackout of the Internet by 2020. The messages of the first CHIPS 2020, published in 2012, concerned the realization of quantum steps for improving the energy efficiency of all chip functions. With this second volume, we review these messages and amplify upon the most promising directions: ultra-low-voltage electronics, nanoscale monolithic 3D integration, relevant-data, brain- and human-vision-inspired processing, and energy harvesting for chip autonomy. The team of authors, enlarged by more world leaders in low-power, monolithic 3D, video, and Silicon brains, presents new vistas in nanoelectronics, promising  Moore-like exponential g...

  5. Investigation of current university research concerning energy conversion and conservation in small single-family dwellings

    Science.gov (United States)

    Grossman, G. R.; Roberts, A. S., Jr.

    1975-01-01

    An investigation was made of university research concerning energy conversion and conservation techniques which may be applied in small single-family residences. Information was accumulated through published papers, progress reports, telephone conversations, and personal interviews. A synopsis of each pertinent investigation is given. Finally, a discussion of the synopses is presented and recommendations are made concerning the applicability of concepts for the design and construction of NASA-Langley Research Center's proposed Technology Utilization House in Hampton, Virginia.

  6. A Single IGF1 Allele Is a Major Determinant of Small Size in Dogs

    OpenAIRE

    Sutter, Nathan B.; Bustamante, Carlos D.; Chase, Kevin; Gray, Melissa M.; Zhao, Keyan; Zhu, Lan; Padhukasahasram, Badri; Karlins, Eric; Davis, Sean; Jones, Paul G.; Quignon, Pascale; Johnson, Gary S.; Parker, Heidi G.; Fretwell, Neale; Mosher, Dana S.

    2007-01-01

    The domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate. We used a strategy that exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed. Second, we examined genetic variation in the 15-megabase interval surrounding the QTL in small and giant breeds and found marked evidence for a...

  7. Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system

    International Nuclear Information System (INIS)

    Ayano, Satoru; Wakamoto, Yuichi; Yamashita, Shinobu; Yasuda, Kenji

    2006-01-01

    We quantitatively examined the possible damage to the growth and cell division ability of Escherichia coli caused by 1064-nm optical trapping. Using the synchronous behavior of two sister E. coli cells, the growth and interdivision times between those two cells, one of which was trapped by optical tweezers, the other was not irradiated, were compared using an on-chip single cell cultivation system. Cell growth stopped during the optical trapping period, even with the smallest irradiated power on the trapped cells. Moreover, the damage to the cell's growth and interdivision period was proportional to the total irradiated energy (work) on the cell, i.e., irradiation time multiplied by irradiation power. The division ability was more easily affected by a smaller energy, 0.36 J, which was 30% smaller than the energy that adversely affected growth, 0.54 J. The results indicate that the damage caused by optical trapping can be estimated from the total energy applied to cells, and furthermore, that the use of optical trapping for manipulating cells might cause damage to cell division and growth mechanisms, even at wavelengths under 1064 nm, if the total irradiation energy is excessive

  8. Separate assessment of natural beta and gamma dose-rates with TL from α-Al2O3:C single-crystal chips

    International Nuclear Information System (INIS)

    Kalchgruber, R.; Wagner, G.A.

    2006-01-01

    A measurement procedure was developed for fast and separate assessment of beta and gamma dose-rates in natural sediments using highly sensitive α-Al 2 O 3 :C single-crystal chips. The dosemeters were buried for periods from two days to three weeks in sediments with different layer structure and homogeneity. For each measurement, a pair of dosemeters was buried, in order to assess beta and gamma dose-rates separately. One dosemeter was wrapped only in thin plastic foil to shield it from alpha radiation, thus measuring beta + gamma components. The second one, used for the gamma component only, was packed additionally in a 1mm copper container for absorption of beta radiation. For calibration, another set of dosemeters was buried in reference soil with a well-known dose-rate and similar content of radioactive nuclides. By comparing the thermally stimulated luminescence signals from the dosemeters the gamma dose-rate and also, by subtraction, the beta dose-rate in the unknown soil could be determined. The calculated uncertainties were 5-7% and 10%, respectively. The resulting dose-rates for homogeneous and inhomogeneous media were compared with the results obtained by Ge- and on-site NaI-gamma-ray spectrometry. An agreement within 2σ-error limits was found for homogeneous media after only few days of exposure

  9. A new architecture for a single-chip multi-channel beamformer based on a standard FPGA

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2001-01-01

    ) modulation analog-to-digital converters (ADC). Second, simple second-order ΔΣ modulation ADC with classic topology is used. This allows for simple analog circuitry and a very compact design. Several tens of these together with the corresponding preamplifiers can be fitted together onto a single analog......A new architecture for a compact medical ultrasound beamformer has been developed. Combination of novel and known principles has been utilized, leading to low processing power requirements and simple analog circuitry. Usage of a field programmable gate array (FPGA) for the digital signal processing...... integrated circuit. Third, parameter driven delay generation is used, using 3 input parameters per line per channel for either linear array imaging or phased array imaging. The delays are generated on the fly. The delay generation logic also determines the digital apodization by using 2 additional parameters...

  10. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.

    Science.gov (United States)

    Nowell, Harriott; Barnett, Sarah A; Christensen, Kirsten E; Teat, Simon J; Allan, David R

    2012-05-01

    The dedicated small-molecule single-crystal X-ray diffraction beamline (I19) at Diamond Light Source has been operational and supporting users for over three years. I19 is a high-flux tunable-wavelength beamline and its key details are described in this article. Much of the work performed on the beamline involves structure determination from small and weakly diffracting crystals. Other experiments that have been supported to date include structural studies at high pressure, studies of metastable species, variable-temperature crystallography, studies involving gas exchange in porous materials and structural characterizations that require analysis of the diffuse scattering between Bragg reflections. A range of sample environments to facilitate crystallographic studies under non-ambient conditions are available as well as a number of options for automation. An indication of the scope of the science carried out on the beamline is provided by the range of highlights selected for this paper.

  11. Large or small angle MSW from single right-handed neutrino dominance

    International Nuclear Information System (INIS)

    King, S.F

    2000-01-01

    In this talk we discuss a natural explanation of both neutrino mass hierarchies and large neutrino mixing angles, as required by the atmospheric neutrino data, in terms of a single right-handed neutrino giving the dominant contribution to the 23 block of the light effective neutrino matrix, and illustrate this mechanism in the framework of models with U(1) family symmetries. Sub-dominant contributions from other right-handed neutrinos are required to give small mass splittings appropriate to the MSW solution to the solar neutrino problem. We present three explicit examples for achieving the small angle MSW solution in the framework of U(1) family symmetry models containing three right-handed neutrinos, which can naturally describe all quark and lepton masses and mixing angles. In this talk we also extend the analysis to the large angle MSW solution

  12. Single Nucleotide Polymorphisms in the HIRA Gene Affect Litter Size in Small Tail Han Sheep

    Directory of Open Access Journals (Sweden)

    Mei Zhou

    2018-05-01

    Full Text Available Maintenance of appropriate levels of fecundity is critical for efficient sheep production. Opportunities to increase sheep litter size include identifying single gene mutations with major effects on ovulation rate and litter size. Whole-genome sequencing (WGS data of 89 Chinese domestic sheep from nine different geographical locations and ten Australian sheep were analyzed to detect new polymorphisms affecting litter size. Comparative genomic analysis of sheep with contrasting litter size detected a novel set of candidate genes. Two SNPs, g.71874104G>A and g.71833755T>C, were genotyped in 760 Small Tail Han sheep and analyzed for association with litter size. The two SNPs were significantly associated with litter size, being in strong linkage disequilibrium in the region 71.80–71.87 Mb. This haplotype block contains one gene that may affect litter size, Histone Cell Cycle Regulator (HIRA. HIRA mRNA levels in sheep with different lambing ability were significantly higher in ovaries of Small Tail Han sheep (high fecundity than in Sunite sheep (low fecundity. Moreover, the expression levels of HIRA in eight tissues of uniparous Small Tail Han sheep were significantly higher than in multiparous Small Tail Han sheep (p < 0.05. HIRA SNPs significantly affect litter size in sheep and are useful as genetic markers for litter size.

  13. Ruptured Jejunal Diverticulum Due to a Single-Band Small Bowel Obstruction

    Directory of Open Access Journals (Sweden)

    Rajaraman Durai

    2008-01-01

    Full Text Available Jejunal diverticulosis is rare and often goes unnoticed until complications occur. The diverticula are true, acquired diverticula and often asymptomatic. Jejunal diverticulosis can be associated with diverticulosis of the duodenum, ileum, and colon. Here we describe a patient with known severe diverticular disease of the large bowel, who presented acutely with abdominal pain and signs of generalised peritonitis. Laparotomy showed ruptured jejunal diverticulosis with a single band over the terminal ileum, causing small bowel obstruction. Spontaneous perforation of a jejunal diverticulum is rare and is usually an intraoperative finding. One should exclude a precipitating cause, such as coexisting distal obstruction, stricture, or a foreign body.

  14. Small cell lung cancer presenting as dermatomyositis: mistaken for single connective tissue disease.

    Science.gov (United States)

    Chao, Guanqun; Fang, Lizheng; Lu, Chongrong; Chen, Zhouwen

    2012-06-01

    Dermatomyositis (DM) is well-known to be associated with several types of malignancy. This case emphasizes the importance of a thorough examination for an underlying cancer, in patients with the symptoms of dermatomyositis. We report the case of a 62-year-old Chinese man who presented with a two-month history of edema of face and neck, together with erythema of the eyelids diagnosed of small cell lung cancer. Initially, it was thought to be single connective tissue disease such as DM. This study highlights the importance of a thorough physical examination when visiting a patient.

  15. Energy-expending behaviour in frightened caribou when dispersed singly or in small bands

    Directory of Open Access Journals (Sweden)

    Otto Blehr

    1997-04-01

    Full Text Available The behaviour of single, and small bands of caribou (Rangifer tarandus groenlandicus when confronted by humans was compared with the energy—saving behaviour zoologists have ascribed to caribou in encounters with non-hunting wolves (Canis lupus. When confronted by me, or upon getting my scent, caribou ran away on all occasions. Their flight was occasionally interrupted by short stops to look back in my direction, but would continue on all occasions until they were out of sight. This behaviour is inconsistent with the one ascribed to caribou by zoologists when the intruder is a wolf instead of a human. In their view, the caribou stop their flight soon after the wolf gives up the chase, and accordingly save energy owing to their ability to distinguish between hunting and non-hunting wolves. However, small bands of caribou, as well as single animals, have never been observed to behave in this manner. On the contrary, the behaviour of caribou in such encounters is known to follow the same pattern as in their encounters with humans. Energy—saving behaviour is, however, sometimes observed when caribou become inquisitive about something in their surroundings. They will then readily approach as well as try to get down-wind of the object. When the object does not induce fear, it may simply be ignored, or charged before the caribou calm down. The effect of this "confirming behaviour" is that energy which would otherwise have been spent in needless flights from non-predators is saved.

  16. Extreme-temperature lab on a chip for optogalvanic spectroscopy of ultra small samples - key components and a first integration attempt

    International Nuclear Information System (INIS)

    Berglund, Martin; Khaji, Zahra; Persson, Anders; Sturesson, Peter; Breivik, Johan Söderberg; Thornell, Greger; Klintberg, Lena

    2016-01-01

    This is a short summary of the authors’ recent R and D on valves, combustors, plasma sources, and pressure and temperature sensors, realized in high-temperature co-fired ceramics, and an account for the first attempt to monolithically integrate them to form a lab on a chip for sample administration, preparation and analysis, as a stage in optogalvanic spectroscopy. (paper)

  17. Tagging of Test Tubes with Electronic p-Chips for Use in Biorepositories.

    Science.gov (United States)

    Mandecki, Wlodek; Kopacka, Wesley M; Qian, Ziye; Ertwine, Von; Gedzberg, Katie; Gruda, Maryann; Reinhardt, David; Rodriguez, Efrain

    2017-08-01

    A system has been developed to electronically tag and track test tubes used in biorepositories. The system is based on a light-activated microtransponder, also known as a "p-Chip." One of the pressing problems with storing and retrieving biological samples at low temperatures is the difficulty of reliably reading the identification (ID) number that links each storage tube with the database containing sample details. Commonly used barcodes are not always reliable at low temperatures because of poor adhesion of the label to the test tube and problems with reading under conditions of frost and ice accumulation. Traditional radio frequency identification (RFID) tags are not cost effective and are too large for this application. The system described herein consists of the p-Chip, p-Chip-tagged test tubes, two ID readers (for single tubes or for racks of tubes), and software. We also describe a robot that is configured for retrofitting legacy test tubes in biorepositories with p-Chips while maintaining the temperature of the sample below -50°C at all times. The main benefits of the p-Chip over other RFID devices are its small size (600 × 600 × 100 μm) that allows even very small tubes or vials to be tagged, low cost due to the chip's unitary construction, durability, and the ability to read the ID through frost and ice.

  18. Transition from many domain to single domain martensite morphology in small-scale shape memory alloys

    International Nuclear Information System (INIS)

    Ueland, Stian M.; Schuh, Christopher A.

    2013-01-01

    The morphology of the martensitic transformation during a superelastic cycle is studied by in situ scanning electron microscopy deformation experiments in microwires of Cu–Zn–Al. The diameters of the wires studied (21–136 μm) span the range in which significant size effects upon transformation hysteresis have been observed. In larger wires the transformation is accommodated by the continual nucleation of many new martensite plates that grow and eventually coalesce with their neighbors. In small wires a single martensite plate nucleates at the start of transformation and then proceeds to grow in a monolithic fashion; the wire transforms by smooth axial propagation of a single interface. The transition from many domain to single domain transformation is gradual with wire diameter, and is based upon scaling of the domain density with sample size. We attribute it to a crossover from bulk to surface obstacle control of transformation front propagation. This observation also sheds light on reported size effects in energy dissipation in shape memory alloys

  19. On-chip particle trapping and manipulation

    Science.gov (United States)

    Leake, Kaelyn Danielle

    The ability to control and manipulate the world around us is human nature. Humans and our ancestors have used tools for millions of years. Only in recent years have we been able to control objects at such small levels. In order to understand the world around us it is frequently necessary to interact with the biological world. Optical trapping and manipulation offer a non-invasive way to move, sort and interact with particles and cells to see how they react to the world around them. Optical tweezers are ideal in their abilities but they require large, non-portable, and expensive setups limiting how and where we can use them. A cheap portable platform is required in order to have optical manipulation reach its full potential. On-chip technology offers a great solution to this challenge. We focused on the Liquid-Core Anti-Resonant Reflecting Optical Waveguide (liquid-core ARROW) for our work. The ARROW is an ideal platform, which has anti-resonant layers which allow light to be guided in liquids, allowing for particles to easily be manipulated. It is manufactured using standard silicon manufacturing techniques making it easy to produce. The planner design makes it easy to integrate with other technologies. Initially I worked to improve the ARROW chip by reducing the intersection losses and by reducing the fluorescence and background on the ARROW chip. The ARROW chip has already been used to trap and push particles along its channel but here I introduce several new methods of particle trapping and manipulation on the ARROW chip. Traditional two beam traps use two counter propagating beams. A trapping scheme that uses two orthogonal beams which counter to first instinct allow for trapping at their intersection is introduced. This scheme is thoroughly predicted and analyzed using realistic conditions. Simulations of this method were done using a program which looks at both the fluidics and optical sources to model complex situations. These simulations were also used to

  20. Multimedia-Based Chip Design Education.

    Science.gov (United States)

    Catalkaya, Tamer; Golze, Ulrich

    This paper focuses on multimedia computer-based training programs on chip design. Their development must be fast and economical, in order to be affordable by technical university institutions. The self-produced teaching program Illusion, which demonstrates a monitor controller as an example of a small but complete chip design, was implemented to…

  1. Osculum dynamics and filtration activity in small single-osculum explants of the demosponge Halichondria panicea

    DEFF Research Database (Denmark)

    Kumala, Lars; Riisgård, Hans Ulrik; Canfield, Donald Eugene

    2017-01-01

    the clearance method. Osculum dynamics, as expressed by temporal variation of the OSA, including osculum contraction and expansion, correlated with variability in the explant filtration rate, and no water pumping was observed during periods of osculum closure. A linear relationship between filtration rate (FR......Contraction-inflation behavior, including the closure and opening of the exhalant opening (osculum), is common among sponges. This behavior may temporally affect filtration activity, making it difficult to study and understand sponge feeding biology. To examine the interplay between osculum...... dynamics and filtration activity, small (18 mm3) single-osculum explants of the demosponge Halichondria panicea were studied. Time-lapse video stereo-microscope recordings of the osculum cross-sectional area (OSA) were made simultaneously with measurements of the filtration rate (∼15°C, ∼20 PSU) using...

  2. Siting analysis and risk assessment for small single-purpose heating reactors

    International Nuclear Information System (INIS)

    Tarjanne, R.

    1979-04-01

    Two alternative sites both 10km away from the centre of Helsinki are considered for reactor unit sizes of 400mw and 800mw. The risks associated with a small single-purpose heating reactor is evaluated for normal operation and accident conditions. The evaluation for accident condition is performed for three characteristics accidents. Three pathways are considered in the calculation of the radiation exposure: direct external gamma dose from the release plume, direct gamma radiation from deposited activity on the ground and dose due to inhalation. The risks are compared with the risks from alternative conventional fossil fuelled district heat production methods. The results show that the heating reactor alternative causes an unsignificant risk, which is far less than the risk caused by the fossil-fuelled alternatives

  3. Techniques and processes for the measurement of the resonances of small single crystals

    International Nuclear Information System (INIS)

    Migliori, A.; Stekel, A.; Sarrao, J.L.; Visscher, W.M.; Bell, T.; Lei, M.

    1991-01-01

    The mechanical resonances of small oriented single crystals of materials of interest to basic science and engineering can be used to determine all the elastic moduli and the ultrasonic attenuation of these materials. To measure the resonances of the samples without introducing the resonances of the measuring system requires that the transducers be non-resonant at the frequencies of interest, and that they be well isolated from their mounts. However, for samples near 1 mm in the largest dimension, the transducer design problem becomes sever, and the signals become weak. In addition, no resonances can be missed, and, often, the symmetry class of the resonances must be known. We outline here appropriate transducer, electronics, and system designs to circumvent these problems. 10 refs., 4 figs

  4. Prototype design of singles processing unit for the small animal PET

    Science.gov (United States)

    Deng, P.; Zhao, L.; Lu, J.; Li, B.; Dong, R.; Liu, S.; An, Q.

    2018-05-01

    Position Emission Tomography (PET) is an advanced clinical diagnostic imaging technique for nuclear medicine. Small animal PET is increasingly used for studying the animal model of disease, new drugs and new therapies. A prototype of Singles Processing Unit (SPU) for a small animal PET system was designed to obtain the time, energy, and position information. The energy and position is actually calculated through high precison charge measurement, which is based on amplification, shaping, A/D conversion and area calculation in digital signal processing domian. Analysis and simulations were also conducted to optimize the key parameters in system design. Initial tests indicate that the charge and time precision is better than 3‰ FWHM and 350 ps FWHM respectively, while the position resolution is better than 3.5‰ FWHM. Commination tests of the SPU prototype with the PET detector indicate that the system time precision is better than 2.5 ns, while the flood map and energy spectra concored well with the expected.

  5. Anisotropic small-polaron hopping in W:BiVO4 single crystals

    International Nuclear Information System (INIS)

    Rettie, Alexander J. E.; Chemelewski, William D.; Zhou, Jianshi; Lindemuth, Jeffrey; McCloy, John S.; Marshall, Luke G.; Emin, David; Mullins, C. Buddie

    2015-01-01

    DC electrical conductivity, Seebeck and Hall coefficients are measured between 300 and 450 K on single crystals of monoclinic bismuth vanadate that are doped n-type with 0.3% tungsten donors (W:BiVO 4 ). Strongly activated small-polaron hopping is implied by the activation energies of the Arrhenius conductivities (about 300 meV) greatly exceeding the energies characterizing the falls of the Seebeck coefficients' magnitudes with increasing temperature (about 50 meV). Small-polaron hopping is further evidenced by the measured Hall mobility in the ab-plane (10 −1  cm 2  V −1  s −1 at 300 K) being larger and much less strongly activated than the deduced drift mobility (about 5 × 10 −5  cm 2  V −1  s −1 at 300 K). The conductivity and n-type Seebeck coefficient is found to be anisotropic with the conductivity larger and the Seebeck coefficient's magnitude smaller and less temperature dependent for motion within the ab-plane than that in the c-direction. These anisotropies are addressed by considering highly anisotropic next-nearest-neighbor (≈5 Å) transfers in addition to the somewhat shorter (≈4 Å), nearly isotropic nearest-neighbor transfers

  6. Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jeffs, S.P., E-mail: s.p.jeffs@swansea.ac.uk [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Lancaster, R.J. [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Garcia, T.E. [IUTA (University Institute of Industrial Technology of Asturias), University of Oviedo, Edificio Departamental Oeste 7.1.17, Campus Universitario, 33203 Gijón (Spain)

    2015-06-11

    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k{sub SP} method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results.

  7. Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    International Nuclear Information System (INIS)

    Jeffs, S.P.; Lancaster, R.J.; Garcia, T.E.

    2015-01-01

    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k SP method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results

  8. Single-balloon enteroscopy following videocapsule endoscopy for diagnosis of small bowel tumors: preliminary experiences.

    Science.gov (United States)

    Trifan, A; Singeap, A M; Cojocariu, C; Sfarti, C; Tarcoveanu, E; Georgescu, S

    2010-01-01

    Small bowel tumors (SBTs), either benign or malignant, are rare, accounting for 3-6% of all digestive neoplasms. Videocapsule endoscopy (VCE) and double-balloon enteroscopy (DBE) have revolutionized the diagnosis and management of patients with small bowel diseases, including SBTs. A novel method using the single-balloon enteroscopy (SBE) has recently been developed. The aim of present study was to present our preliminary experience with SBE in patients with suspected SBTs on VCE examination. Patients in whom VCE showed one or more lesions suggesting SBTs underwent SBE. Three patients (2 males, 1 female; mean age 52 +/- 11 years) underwent SBE, and then surgery. There were two gastrointestinal stromal tumors and one adenocarcinoma. Clinically, all patients had iron-deficiency anemia and abdominal pain, and one patient had episodes of nausea/ vomiting. SBE was well tolerated without adverse events. SBE is a safe procedure and overcomes the limitations of VCE. Both procedures are complimentary in patients with suspected SBTs. VCE should be used first for initial diagnosis, followed by SBE for histopathological confrmation of the diagnosis and, if necessary, endoscopic therapy.

  9. Single fraction prophylactic cranial irradiation for small cell carcinoma of the lung

    International Nuclear Information System (INIS)

    Brewster, A.E.; Hopwood, P.; Stout, R.; Burt, P.A.; Thatcher, N.

    1995-01-01

    The effectiveness of a single 8-Gy fraction prophylactic cranial irradiation regime was assessed in 106 patients with small-cell carcinoma of the lung. All patients had limited stage disease and received combination chemotherapy consisting of either cisplatin or carboplatin with ifosfamide, etoposide, and vincristine (VICE). Cranial irradiation was administered 48 h after the first cycle of chemotherapy and was well tolerated. Actual 2-year survival was 35% and cranial relapse occurred in 22% of those patients who achieved complete remission. This compares favourably with a cranial relapse rate of 45% incomplete remitters previously reported with the same chemotherapy regime after a minimum follow-up of 2 years where PCI was not used. Formal psychometric testing was performed retrospectively on a series of 25 long-term survivors of whom 14 were taken from this reported series. Whilst 75% of patients were impaired on at least one test with 68% performing badly in the most complex task, this was not associated with clinically detectable neurological damage and the patients did not complain of memory or concentration difficulties. In conclusion, single fraction PCI, when used with platinum based combination chemotherapy, appears to be equally effective but may be less neurotoxic than the more standard fractionated regimes

  10. Bone mineral content measurement in small infants by single-photon absorptiometry: current methodologic issues

    International Nuclear Information System (INIS)

    Steichen, J.J.; Asch, P.A.; Tsang, R.C.

    1988-01-01

    Single-photon absorptiometry (SPA), developed in 1963 and adapted for infants by Steichen et al. in 1976, is an important tool to quantitate bone mineralization in infants. Studies of infants in which SPA was used include studies of fetal bone mineralization and postnatal bone mineralization in very low birth weight infants. The SPA technique has also been used as a research tool to investigate longitudinal bone mineralization and to study the effect of nutrition and disease processes such as rickets or osteopenia of prematurity. At present, it has little direct clinical application for diagnosing bone disease in single patients. The bones most often used to measure bone mineral content (BMC) are the radius, the ulna, and, less often, the humerus. The radius appears to be preferred as a suitable bone to measure BMC in infants. It is easily accessible; anatomic reference points are easily palpated and have a constant relationship to the radial mid-shaft site; soft tissue does not affect either palpation of anatomic reference points or BMC quantitation in vivo. The peripheral location of the radius minimizes body radiation exposure. Trabecular and cortical bone can be measured separately. Extensive background studies exist on radial BMC in small infants. Most important, the radius has a relatively long zone of constant BMC. Finally, SPA for BMC in the radius has a high degree of precision and accuracy. 61 references

  11. Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization

    International Nuclear Information System (INIS)

    Anh, N.D.; Hieu, N.N.; Chung, P.N.; Anh, N.T.

    2016-01-01

    Highlights: • Linearization criteria are presented for a single-node model of satellite thermal. • A nonlinear algebraic system for linearization coefficients is obtained. • The temperature evolutions obtained from different methods are explored. • The temperature mean and amplitudes versus the heat capacity are discussed. • The dual criterion approach yields smaller errors than other approximate methods. - Abstract: In this paper, the method of equivalent linearization is extended to the thermal analysis of satellite using both conventional and dual criteria of linearization. These criteria are applied to a differential nonlinear equation of single-node model of the heat transfer of a small satellite in the Low Earth Orbit. A system of nonlinear algebraic equations for linearization coefficients is obtained in the closed form and then solved by the iteration method. The temperature evolution, average values and amplitudes versus the heat capacity obtained by various approaches including Runge–Kutta algorithm, conventional and dual criteria of equivalent linearization, and Grande's approach are compared together. Numerical results reveal that temperature responses obtained from the method of linearization and Grande's approach are quite close to those obtained from the Runge–Kutta method. The dual criterion yields smaller errors than those of the remaining methods when the nonlinearity of the system increases, namely, when the heat capacity varies in the range [1.0, 3.0] × 10 4  J K −1 .

  12. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography

    International Nuclear Information System (INIS)

    Janssen, Xander J A; Jonsson, Magnus P; Plesa, Calin; Soni, Gautam V; Dekker, Cees; Dekker, Nynke H

    2012-01-01

    In recent years, the concept of nanopore sensing has matured from a proof-of-principle method to a widespread, versatile technique for the study of biomolecular properties and interactions. While traditional nanopore devices based on a nanopore in a single layer membrane supported on a silicon chip can be rapidly fabricated using standard microfabrication methods, chips with additional insulating layers beyond the membrane region can provide significantly lower noise levels, but at the expense of requiring more costly and time-consuming fabrication steps. Here we present a novel fabrication protocol that overcomes this issue by enabling rapid and reproducible manufacturing of low-noise membranes for nanopore experiments. The fabrication protocol, termed trans-chip illumination lithography, is based on illuminating a membrane-containing wafer from its backside such that a photoresist (applied on the wafer’s top side) is exposed exclusively in the membrane regions. Trans-chip illumination lithography permits the local modification of membrane regions and hence the fabrication of nanopore chips containing locally patterned insulating layers. This is achieved while maintaining a well-defined area containing a single thin membrane for nanopore drilling. The trans-chip illumination lithography method achieves this without relying on separate masks, thereby eliminating time-consuming alignment steps as well as the need for a mask aligner. Using the presented approach, we demonstrate rapid and reproducible fabrication of nanopore chips that contain small (12 μm × 12 μm) free-standing silicon nitride membranes surrounded by insulating layers. The electrical noise characteristics of these nanopore chips are shown to be superior to those of simpler designs without insulating layers and comparable in quality to more complex designs that are more challenging to fabricate. (paper)

  13. National impacts of the Weatherization Assistance Program in single-family and small multifamily dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Berry, L.G.; Balzer, R.A.; Faby, E.

    1993-05-01

    Since 1976, the US Department of Energy (DOE) has operated one of the largest energy conservation programs in the nation -- the low-income Weatherization Assistance Program. The program strives to increase the energy efficiency of dwellings occupied by low-income persons in order to reduce their energy consumption, lower their fuel bills, increase the comfort of their homes, and safeguard their health. It targets vulnerable groups including the elderly, people with disabilities, and families with children. The most recent national evaluation of the impacts of the Program was completed in 1984 based on energy consumption data for households weatherized in 1981. DOE Program regulations and operations have changed substantially since then: new funding sources, management principles, diagnostic procedures, and weatherization technologies have been incorporated. Many of these new features have been studied in isolation or at a local level; however, no recent evaluation has assessed their combined, nationwide impacts to date or their potential for the future. In 1990, DOE initiated such an evaluation. This evaluation is comprised of three ``impact`` studies (the Single-Family Study, High-Density Multifamily Study, and Fuel-Oil Study) and two ``policy`` studies. Altogether, these five studies will provide a comprehensive national assessment of the Weatherization Assistance Program as it existed in the 1989 Program Year (PY 1989). This report presents the results of the first phase of the Single-Family Study. It evaluates the energy savings and cost effectiveness of the Program as it has been applied to the largest portion of its client base -- low-income households that occupy single-family dwellings, mobile homes, and small (2- to 4-unit) multifamily dwellings. It is based upon a representative national sample that covers the full range of conditions under which the program was implemented in PY 1989.

  14. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  15. Site-Specific Growth and in Situ Integration of Different Nanowire Material Networks on a Single Chip: Toward a Nanowire-Based Electronic Nose for Gas Detection.

    Science.gov (United States)

    Hrachowina, Lukas; Domènech-Gil, Guillem; Pardo, Antonio; Seifner, Michael S; Gràcia, Isabel; Cané, Carles; Romano-Rodríguez, Albert; Barth, Sven

    2018-03-23

    A new method for the site-selective synthesis of nanowires has been developed to enable material growth with defined morphology and, at the same time, different composition on the same chip surface. The chemical vapor deposition approach for the growth of these nanowire-based resistive devices using micromembranes can be easily modified and represents a simple, adjustable fabrication process for the direct integration of nanowire meshes in multifunctional devices. This proof-of-concept study includes the deposition of SnO 2 , WO 3 , and Ge nanowires on the same chip. The individual resistors exhibit adequate gas sensing responses toward changing gas concentrations of CO, NO 2 , and humidity diluted in synthetic air. The data have been processed by principal component analysis with cluster responses that can be easily separated, and thus, the devices described herein are in principle suitable for environmental monitoring.

  16. The use of forest chips in Finland

    International Nuclear Information System (INIS)

    Hakkila, P.

    2001-01-01

    International commitments require the industrial world to restrict their greenhouse gas emissions. In Finland, where the annual timber cut per capita is more than ten times the average cut in the other EU countries, the primary means to reduce CO 2 emissions is to replace fossil fuels with forest biomass. The annual consumption of wood-based energy corresponds to 6 million tonnes of oil equivalent (toe) or almost 20% of the total primary energy consumption. The goal is to rise the annual production of wood-based energy to 7.8 million toe by 2010. Substantial part of the targeted increase could be obtained by forest chips produced of unmerchantable small-diameter trees and logging residues. The goal for 2010 is to use 5 million solid m 3 of forest chips, which equals to 0.9 million toe. The use of forest chips is increasing. About 474 000 solid m 3 of forest chips were used as fuel in 1999. At the moment, the growth is rapid especially in cogeneration plants producing both heat and electricity. The growth is based primarily on chips obtained from logging residues. The price of forest chips decreased considerably during the 1990s but the price range remained wide. Chips made of logging residues are cheaper than those made of small trees. The average price of forest chips at the plant, VAT excluded, is about 53 FIM per MWh. In Sweden, the average price is more than 40% higher

  17. A method for multiple sequential analyses of macrophage functions using a small single cell sample

    Directory of Open Access Journals (Sweden)

    F.R.F. Nascimento

    2003-09-01

    Full Text Available Microbial pathogens such as bacillus Calmette-Guérin (BCG induce the activation of macrophages. Activated macrophages can be characterized by the increased production of reactive oxygen and nitrogen metabolites, generated via NADPH oxidase and inducible nitric oxide synthase, respectively, and by the increased expression of major histocompatibility complex class II molecules (MHC II. Multiple microassays have been developed to measure these parameters. Usually each assay requires 2-5 x 10(5 cells per well. In some experimental conditions the number of cells is the limiting factor for the phenotypic characterization of macrophages. Here we describe a method whereby this limitation can be circumvented. Using a single 96-well microassay and a very small number of peritoneal cells obtained from C3H/HePas mice, containing as little as <=2 x 10(5 macrophages per well, we determined sequentially the oxidative burst (H2O2, nitric oxide production and MHC II (IAk expression of BCG-activated macrophages. More specifically, with 100 µl of cell suspension it was possible to quantify H2O2 release and nitric oxide production after 1 and 48 h, respectively, and IAk expression after 48 h of cell culture. In addition, this microassay is easy to perform, highly reproducible and more economical.

  18. Design of Single Stage Axial Turbine with Constant Nozzle Angle Blading for Small Turbojet

    Science.gov (United States)

    Putra Adnan, F.; Hartono, Firman

    2018-04-01

    In this paper, an aerodynamic design of a single stage gas generator axial turbine for small turbojet engine is explained. As per design requirement, the turbine should be able to deliver power output of 155 kW at 0.8139 kg/s gas mass flow, inlet total temperature of 1200 K and inlet total pressure of 335330 Pa. The design phase consist of several steps, i.e.: determination of velocity triangles in 2D plane, 2D blading design and 3D flow analysis at design point using Computational Fluid Dynamics method. In the determination of velocity triangles, two conditions are applied: zero inlet swirl (i.e. the gas flow enter the turbine at axial direction) and constant nozzle angle design (i.e. the inlet and outlet angle of the nozzle blade are constant from root to tip). The 2D approach in cascade plane is used to specify airfoil type at root, mean and tip of the blade based on inlet and outlet flow conditions. The 3D approach is done by simulating the turbine in full configuration to evaluate the overall performance of the turbine. The observed parameters including axial gap, stagger angle, and tip clearance affect its output power. Based on analysis results, axial gap and stagger angle are positively correlated with output power up to a certain point at which the power decreases. Tip clearance, however, gives inversely correlation with output power.

  19. Use of single large or several small policies as strategies to manage people-park interactions.

    Science.gov (United States)

    Mackenzie, Catrina A; Baird, Timothy D; Hartter, Joel

    2014-12-01

    Biodiversity conservation has been criticized for undermining or ignoring social well-being. Currently efforts to mutually promote social justice, rural development, and biodiversity conservation, which have been contentious and yielded mixed results, continue to spread despite a general dearth of effective management strategies. We contend that social and economic concerns should be integral to conservation planning and propose that the scale of these phenomena is also critical. To evaluate the merit of this proposal, we adopted and expanded a conservation management strategy framework developed by Joel Heinen and examined how population density, economic disparity, and ethnic heterogeneity vary spatially surrounding 2 contrasting protected areas in East Africa: Kibale National Park in Uganda and Tarangire National Park in Tanzania. Analyses of demographic, wealth, and ethnicity data from regional censuses and household surveys conducted in 2009 and 2010 indicated that choice of scale (landscape or community) changed the management strategies recommended by the model. Therefore, "several small" people-park management strategies varying around a given protected area may be more appropriate than a "single large" people-park strategy applied across an entire protected area. Correspondingly, scale adjusted Heinen recommendations offered new strategies for effective conservation management within these human landscapes not incorporated in current in situ management plans. © 2014 Society for Conservation Biology.

  20. Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation.

    Science.gov (United States)

    Anderson, Eric C; Ng, Thomas C

    2016-02-01

    We develop a computational framework for addressing pedigree inference problems using small numbers (80-400) of single nucleotide polymorphisms (SNPs). Our approach relaxes the assumptions, which are commonly made, that sampling is complete with respect to the pedigree and that there is no genotyping error. It relies on representing the inferred pedigree as a factor graph and invoking the Sum-Product algorithm to compute and store quantities that allow the joint probability of the data to be rapidly computed under a large class of rearrangements of the pedigree structure. This allows efficient MCMC sampling over the space of pedigrees, and, hence, Bayesian inference of pedigree structure. In this paper we restrict ourselves to inference of pedigrees without loops using SNPs assumed to be unlinked. We present the methodology in general for multigenerational inference, and we illustrate the method by applying it to the inference of full sibling groups in a large sample (n=1157) of Chinook salmon typed at 95 SNPs. The results show that our method provides a better point estimate and estimate of uncertainty than the currently best-available maximum-likelihood sibling reconstruction method. Extensions of this work to more complex scenarios are briefly discussed. Published by Elsevier Inc.

  1. Ascertainment biases in SNP chips affect measures of population divergence

    DEFF Research Database (Denmark)

    Albrechtsen, Anders; Nielsen, Finn Cilius; Nielsen, Rasmus

    2010-01-01

    Chip-based high-throughput genotyping has facilitated genome-wide studies of genetic diversity. Many studies have utilized these large data sets to make inferences about the demographic history of human populations using measures of genetic differentiation such as F(ST) or principal component...... on direct sequencing. In addition, we also analyze publicly available genome-wide data. We demonstrate that the ascertainment biases will distort measures of human diversity and possibly change conclusions drawn from these measures in some times unexpected ways. We also show that details of the genotyping...... analyses. However, the single nucleotide polymorphism (SNP) chip data suffer from ascertainment biases caused by the SNP discovery process in which a small number of individuals from selected populations are used as discovery panels. In this study, we investigate the effect of the ascertainment bias...

  2. Optimization of high frequency flip-chip interconnects for digital superconducting circuits

    International Nuclear Information System (INIS)

    Rafique, M R; Engseth, H; Kidiyarova-Shevchenko, A

    2006-01-01

    This paper presents the results of theoretical optimization of the multi-chip-module (MCM) contact and driver circuitries for gigabit chip-to-chip communication. Optimization has been done using 3D electromagnetic (EM) simulations of MCM contacts and time domain simulations of drivers and receivers. A single optimized MCM contact has a signal reflection of less than -20 dB for more than 400 GHz bandwidth. The MCM data link with the optimized SFQ driver, receiver and two MCM contacts has operational margins on the global bias current of ± 30% at 30 Gbit s -1 speedand can operate above 100 Gbit s -1 speed. Wide bandwidth transmission requires the realization of an advanced flip-chip process with a small dimension of the MCM contact (less than 30 μm diameter of the contact pad) and small height of the flip-chip contact bumps of the order of 2 μm. Current processes with about 7 μm height of the bumps require the application of a double-flux-quantum (DFQ) driver. The data link with the DFQ driver was also simulated. It has operational margins on the global bias current of ± 30% at 30 Gbit s -1 ; however, the maximum speed of operation is 61 Gbit s -1 . Several test structures have been designed for measurements of signal reflection, bit error rate and operational margins of the data link

  3. THE STRATEGIC RESPONSE OF SMALL AND MEDIUM-SIZED ENTERPRISE SECTOR FIRMS TO THE SINGLE EUROPEAN MARKET - A COMPARATIVE STUDY

    OpenAIRE

    BRICKAU, RALF ALEXANDER

    1994-01-01

    The creation of the post-1992 European Single Market represents a significant change in the business environment confronting firms throughout Europe. Although there is an extensive source of literature available on appropriate strategic responses to the Single Market, very few of these writings contain guidance specifically related to the situation facing small and medium- sized enterprises (SMEs). The objectives of this study are i) to determine important veu-iables which m...

  4. Development of a Metal Cutting Tool Fase in Order to Create the Conditions of Ringed Chips Wrapping

    Science.gov (United States)

    Korchuganova, M.; Syrbakov, A.; Chernysheva, T.; Ivanov, G.; Korchuganov, M.

    2016-08-01

    When processing ductile metals with high cutting speed, there is a need to take additional measures for a comfortable and safe formation and removal of chips. In the conditions of large-scale manufacture, it is recommended to produce flow chips in the form of short fragments, while in the conditions of small-lot and single-piece manufacture, it is reasonable to wrap the chips spirally with a rather small turn radius. Such way of chips formation reduces the time of its removal from the working area as well as facilitates its transportation and processing. In order to solve the problem of chip wrapping and breakage, almost all modern manufacturers of tools with replaceable many-sided plates (RMSP) followed the way of complication of tool faces and determination of the areas of effective chip breaking. On the one hand, the suggested solution turns out to be effective; however, as showed the analysis of recommended cutting modes for complex forms of RMSP made by leading manufacturers, they all correspond to the definite cross section of the cut-layer S/t=0.1.

  5. Correlation of matrix metalloproteinase-2 single nucleotide polymorphisms with the risk of small vessel disease (SVD).

    Science.gov (United States)

    Zhang, Min; Zhu, Wusheng; Yun, Wenwei; Wang, Qizhang; Cheng, Maogang; Zhang, Zhizhong; Liu, Xinfeng; Zhou, Xianju; Xu, Gelin

    2015-09-15

    Maladjustment of matrix metalloproteinases (MMPs) results in cerebral vasculature and blood-brain barrier dysfunction, which is associated with small vessel disease (SVD). This study was to aim at evaluating correlations between matrix metalloproteinase-2 and 9 single nucleotide polymorphisms and the risk of SVD. A total of 178 patients with SVD were enrolled into this study via Nanjing Stroke Registry Program (NSRP) from January 2010 to November 2011. SVD patients were further subtyped as isolated lacunar infarction (ILI, absent or with mild leukoaraiosis) and ischemic leukoaraiosis (ILA, with moderate or severe leukoaraiosis) according to the Fazekas scale. 100 age- and gender-matched individuals from outpatient medical examination were recruited as the control group. The genotypes of MMP-2-1306 T/C and MMP-9-1562 C/T were determined by the TaqMan method. Of 178 SVD patients, 86 and 92 patients were classified as ILI and ILA, respectively. Comparison analysis between SVD patients and controls revealed a significant correlation between SVD and hypertension, as well as a prevalence of hypertension in ILA. Further genotype analysis showed that the frequency of MMP-2-1306 CC genotype was higher in ILA patients than in controls (P=0.009, χ(2) test; P=0.027, the multiple test with Bonferroni correction). Finally, logistic regression analysis with adjustment of age, sex and vascular risk factors showed that the MMP-2-1306 T/C polymorphism was an independent predictor for ILA (OR: 2.605; 95% confidence interval [CI], 1.067-6.364; P=0.036). Our findings suggest that the MMP-2-1306 T/C polymorphism is a direct risk factor for ILA. Copyright © 2015. Published by Elsevier B.V.

  6. Percutaneous CT-guided radiofrequency ablation of solitary small renal masses. A single center experience

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, C.C.; Fischer, S.; Strunk, H.; Meyer, C.; Thomas, D.; Willinek, W.A.; Schild, H. [Univ. Bonn (Germany). Dept. of Radiology; Hauser, S. [Univ. Bonn (Germany). Dept. of Urology; Nadal, J. [Univ. Bonn (Germany). Inst. for Medical Biometry; Wilhelm, K. [Johanniter Hospital Bonn (Germany). Dept. of Radiology

    2015-07-15

    To analyze the outcome of patients undergoing percutaneous CT-guided radiofrequency ablation (RFA) of small renal masses (SRM) at a single center during a ten-year time period. Patient records of renal RFAs (07/2003 - 11/2013) were reviewed. Indications were SRM suspicious of malignancy on imaging and one of the following: severe comorbidity; old age; solitary kidney; impaired renal function; patient wish. Biopsy was performed at the time of RFA. Patients were excluded if no follow-up was available. Patient and procedural characteristics were recorded. Survival rates were calculated using the Kaplan-Meier's method and compared with log-rank or cox tests. 38 patients (16 females, mean age 70.0 years [range 52 - 87]) presenting with a solitary SRM were included in the study. Biopsy showed malignancy in 29 patients; 9 had benign tumors. 26 patients suffered from cardiovascular, respiratory or hepatic comorbidities. Technical success (complete ablation on first follow-up) was achieved in 95 % of cases. Two major complications (bowel perforation; hematothorax) occurred. The 3- and 7-year overall survival (OS) [any cause] rates were 73.4 ± 0.8 % and 50.3 ± 1.0 %, respectively (mean follow-up 54.6 months, range 1 - 127). 4 recurrences and 2 metastases were observed. The presence of comorbidities was the only independent predictor of OS. There was no difference in survival between patients with benign and malignant tumors. RFA of SRM is successful in a large percentage of cases with a low complication rate and durable local control. As RFA is typically performed in multimorbid patients, overall survival seems to depend primarily on comorbidities rather than cancer progression.

  7. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    Science.gov (United States)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and

  8. Amrubicin therapy improves patients with refractory small-cell lung cancer: A single-arm confirmatory Chinese clinical study

    Directory of Open Access Journals (Sweden)

    Mengli Zheng

    2016-09-01

    Full Text Available Our objective was to evaluate an open-label, multicenter, single-arm study to appraise whether amrubicin therapy improves patients with refractory small-cell lung cancer in Chinese clinical study. Patients (n=95 with refractory small-cell lung cancer received 3 consecutive days amrubicin therapy for 21 days. Overall response rate of response to amrubicin was 39%. Anemia, febrile neutropenia, thrombocytopenia, hyperglycemia, hyponatremia, infection, elevated serum transaminases levels were appeared, but the incidences of adverse events were very few. Our results suggest amrubicin therapy can improve patients with refractory small-cell lung cancer and may be an effective and safe treatment option.

  9. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator.

    Science.gov (United States)

    Kuroda, Masaharu; Ikenaga, Sachiko

    2015-01-01

    We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.

  10. Single-step solution processing of small-molecule organic semiconductor field-effect transistors at high yield

    NARCIS (Netherlands)

    Yu, Liyang; Li, X.; Pavlica, E.; Loth, M.A.; Anthony, J.E.; Bratina, G.; Kjellander, B.K.C.; Gelinck, G.H.; Stutzmann, N.

    2011-01-01

    Here, we report a simple, alternative route towards high-mobility structures of the small-molecular semiconductor 5,11-bis(triethyl silylethynyl) anthradithiophene that requires one single processing step without the need for any post-deposition processing. The method relies on careful control of

  11. A multi-channel low-power system-on-chip for single-unit recording and narrowband wireless transmission of neural signal.

    Science.gov (United States)

    Bonfanti, A; Ceravolo, M; Zambra, G; Gusmeroli, R; Spinelli, A S; Lacaita, A L; Angotzi, G N; Baranauskas, G; Fadiga, L

    2010-01-01

    This paper reports a multi-channel neural recording system-on-chip (SoC) with digital data compression and wireless telemetry. The circuit consists of a 16 amplifiers, an analog time division multiplexer, an 8-bit SAR AD converter, a digital signal processor (DSP) and a wireless narrowband 400-MHz binary FSK transmitter. Even though only 16 amplifiers are present in our current die version, the whole system is designed to work with 64 channels demonstrating the feasibility of a digital processing and narrowband wireless transmission of 64 neural recording channels. A digital data compression, based on the detection of action potentials and storage of correspondent waveforms, allows the use of a 1.25-Mbit/s binary FSK wireless transmission. This moderate bit-rate and a low frequency deviation, Manchester-coded modulation are crucial for exploiting a narrowband wireless link and an efficient embeddable antenna. The chip is realized in a 0.35- εm CMOS process with a power consumption of 105 εW per channel (269 εW per channel with an extended transmission range of 4 m) and an area of 3.1 × 2.7 mm(2). The transmitted signal is captured by a digital TV tuner and demodulated by a wideband phase-locked loop (PLL), and then sent to a PC via an FPGA module. The system has been tested for electrical specifications and its functionality verified in in-vivo neural recording experiments.

  12. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. I. Construction of single chromosomal DNA libraries.

    Science.gov (United States)

    Huang, D; Wu, W; Zhou, Y; Hu, Z; Lu, L

    2004-05-01

    Construction of single chromosomal DNA libraries by means of chromosome microdissection and microcloning will be useful for genomic research, especially for those species that have not been extensively studied genetically. Application of the technology of microdissection and microcloning to woody fruit plants has not been reported hitherto, largely due to the generally small sizes of metaphase chromosomes and the difficulty of chromosome preparation. The present study was performed to establish a method for single chromosome microdissection and microcloning in woody fruit species using pomelo as a model. The standard karyotype of a pomelo cultivar ( Citrus grandis cv. Guanxi) was established based on 20 prometaphase photomicrographs. According to the standard karyotype, chromosome 1 was identified and isolated with fine glass microneedles controlled by a micromanipulator. DNA fragments ranging from 0.3 kb to 2 kb were acquired from the isolated single chromosome 1 via two rounds of PCR mediated by Sau3A linker adaptors and then cloned into T-easy vectors to generate a DNA library of chromosome 1. Approximately 30,000 recombinant clones were obtained. Evaluation based on 108 randomly selected clones showed that the sizes of the cloned inserts varied from 0.5 kb to 1.5 kb with an average of 860 bp. Our research suggests that microdissection and microcloning of single small chromosomes in woody plants is feasible.

  13. Chips with everything

    CERN Document Server

    CERN. Geneva

    2007-01-01

    In March 1972, Sir Robin Saxby gave a talk to the Royal Television Society called 'TV and Chips' about a 'state of the art' integrated circuit, containing 50 resistors and 50 transistors. Today's 'state of the art' chips contain up to a billion transistors. This enormous leap forward illustrates how dramatically the semiconductor industry has evolved in the past 34 years. The next 10 years are predicted to bring times of turbulent change for the industry, as more and more digital devices are used around the world. In this talk, Sir Robin will discuss the history of the Microchip Industry in parallel with ARM's history, demonstrating how a small European start-up can become a world player in the IT sector. He will also present his vision of important applications and developments in the next 20 years that are likely to become even more pervasive than the mobile phone is today, and will provide anecdotes and learning points from his own experience at ARM. About ARM: Sir Robin and a group of designers from Acorn...

  14. Single center experience with percutaneous and laparoscopic cryoablation of small renal masses.

    Science.gov (United States)

    Malcolm, John B; Berry, Tristan T; Williams, Michael B; Logan, Joshua E; Given, Robert W; Lance, Raymond S; Barone, Bethany; Shaves, Sarah; Vingan, Harlan; Fabrizio, Michael D

    2009-06-01

    While partial nephrectomy remains the gold standard for the management of most small renal masses, increasing experience with renal cryoablation has suggested a viable alternative with a favorable morbidity profile and good efficacy. We report intermediate-term oncologic outcomes from a single-center experience with laparoscopic and percutaneous renal cryoablation. We performed a retrospective review of our laparoscopic renal cryoablation (LRC) and percutaneous renal cryoablation (PRC) experience between January 2003 and April 2007. Patients with at least 12 months of follow-up were included in the analysis. Follow-up consisted of imaging and laboratory studies at regular intervals. Persistent mass enhancement or interval tumor growth was considered a treatment failure. Sixty-six patients (44% women/56% men; 42% African-American/58% Caucasian/other; mean body mass index, 29.7) with 72 tumors underwent either LRC (n = 52) or PRC (n = 20) with a mean follow-up of 30 months (median 25.1 mos; range 13-63 mos). Average patient age was 66.5 years (range 34-82 yrs). Mean tumor size was 2.33 cm (range 1-4.6 cm). Comorbid conditions were prevalent: 76% hypertension, 36% hyperlipidemia, 24% chronic kidney disease, 29% diabetes mellitus, 36% tobacco use, and 32% heart disease. RESULTS of pretreatment biopsy were 62% renal-cell carcinoma and 38% benign or nondiagnostic. Overall cancer-specific and cancer-free survival were 100% and 97%, respectively. There were two treatment failures (3.8%) in the LRC group and five primary failures in the PRC group (25%) (P = 0.015), four of which were salvaged with repeated PRC with no evidence of recurrence at 6 to 36 months of follow-up. There has been no significant local or metastatic progression. LRC and PRC achieved good oncologic control with minimal morbidity at a mean follow-up of 30 months in a patient cohort characterized by numerous comorbid conditions. PRC had a significantly higher primary treatment failure rate than LRC, but

  15. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  16. Single-Molecule Force Spectroscopy Trajectories of a Single Protein and Its Polyproteins Are Equivalent: A Direct Experimental Validation Based on A Small Protein NuG2.

    Science.gov (United States)

    Lei, Hai; He, Chengzhi; Hu, Chunguang; Li, Jinliang; Hu, Xiaodong; Hu, Xiaotang; Li, Hongbin

    2017-05-22

    Single-molecule force spectroscopy (SMFS) has become a powerful tool in investigating the mechanical unfolding/folding of proteins at the single-molecule level. Polyproteins made of tandem identical repeats have been widely used in atomic force microscopy (AFM)-based SMFS studies, where polyproteins not only serve as fingerprints to identify single-molecule stretching events, but may also improve statistics of data collection. However, the inherent assumption of such experiments is that all the domains in the polyprotein are equivalent and one SMFS trajectory of stretching a polyprotein made of n domains is equivalent to n trajectories of stretching a single domain. Such an assumption has not been validated experimentally. Using a small protein NuG2 and its polyprotein (NuG2) 4 as model systems, here we use optical trapping (OT) to directly validate this assumption. Our results show that OT experiments on NuG2 and (NuG2) 4 lead to identical parameters describing the unfolding and folding kinetics of NuG2, demonstrating that indeed stretching a polyprotein of NuG2 is equivalent to stretching single NuG2 in force spectroscopy experiments and thus validating the use of polyproteins in SMFS experiments. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electrical and functional characterisation with single chips and module prototypes of the 1.2 Gb/s serial data link of the monolithic active pixel sensor for the upgrade of the ALICE Inner Tracking System

    CERN Document Server

    Bonora, Matthias; Aglieri Rinella, Gianluca; Hillemanns, Hartmut; Kim, Daehyeok; Kugathasan, Thanushan; Lattuca, Alessandra; Mazza, Giovanni; Sielewicz, Krzysztof Marek; Snoeys, Walter

    2017-01-01

    The upgrade of the ALICE Inner Tracking System uses a newly developed monolithic active pixel sensor (ALPIDE) which will populate seven tracking layers surrounding the interaction point. Chips communicate with the readout electronics using a 1.2 Gb/s data link and a 40 Mb/s bidirectional control link. Event data are transmitted to the readout electronics over microstrips on a Flexible Printed Circuit and a 6 m long twinaxial cable. This paper outlines the characterisation effort for assessing the Data Transmission Unit performance of single sensors and prototypes of the detector modules. It describes the different prototypes used, the test system and procedures, and results of laboratory and irradiation tests.

  18. Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation

    CSIR Research Space (South Africa)

    Ashok, AC

    2010-03-01

    Full Text Available The authors describe the realization of integrated optical chromatography, in conjunction with on-chip fluorescence excitation, in a monolithically fabricated poly-dimethylsiloxane (PDMS) microfluidic chip. The unique endlessly-single-mode guiding...

  19. Implantable Biomedical Signal Monitoring Using RF Energy Harvestingand On-Chip Antenna

    Directory of Open Access Journals (Sweden)

    Jiann-Shiun Yuan

    2015-08-01

    Full Text Available This paper presents the design of an energy harvesting wireless and battery-less silicon-on-chip (SoC device that can be implanted in the human body to monitor certain health conditions. The proposed architecture has been designed on TSMC 0.18μm CMOS ICs and is an integrated system with a rectenna (antenna and rectifier and transmitting circuit, all on a single chip powered by an external transmitter and that is small enough to be inserted in the human eye, heart or brain. The transmitting and receiving antennas operate in the 5.8- GHz ISM band and have a -10dB gain. The distinguishing feature of this design is the rectenna that comprises of a singlestage diode connected NMOS rectifier and a 3-D on-chip antenna that occupies only 2.5 × 1 × 2.8 mm3 of chip area and has the ability to communicate within proximity of 5 cm while giving 10% efficiency. The external source is a reader that powers up the RF rectifier in the implantable chip triggering it to start sending data back to the reader enabling an efficient method of health evaluation for the patient.

  20. FE-I4 pixel chip characterization with USBpix3 test system

    Energy Technology Data Exchange (ETDEWEB)

    Filimonov, Viacheslav; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [University of Bonn, Bonn (Germany)

    2015-07-01

    The USBpix readout system is a small and light weighting test system for the ATLAS pixel readout chips. It is widely used to operate and characterize FE-I4 pixel modules in lab and test beam environments. For multi-chip modules the resources on the Multi-IO board, that is the central control unit of the readout system, are coming to their limits, which makes the simultaneous readout of more than one chip at a time challenging. Therefore an upgrade of the current USBpix system has been developed. The upgraded system is called USBpix3 - the main focus of the talk. Characterization of single chip FE-I4 modules was performed with USBpix3 prototype (digital, analog, threshold and source scans; tuning). PyBAR (Bonn ATLAS Readout in Python scripting language) was used as readout software. PyBAR consists of FEI4 DAQ and Data Analysis Libraries in Python. The presentation describes the USBpix3 system, results of FE-I4 modules characterization and preparation for the multi-chip module and multi-module readout with USBpix3.

  1. Immunological detection of small organic molecules in the presence of perchlorates: relevance to the life marker chip and life detection on Mars.

    Science.gov (United States)

    Rix, Catherine S; Sims, Mark R; Cullen, David C

    2011-11-01

    The proposed ExoMars mission, due to launch in 2018, aims to look for evidence of extant and extinct life in martian rocks and regolith. Previous attempts to detect organic molecules of biological or abiotic origin on Mars have been unsuccessful, which may be attributable to destruction of these molecules by perchlorate salts during pyrolysis sample extraction techniques. Organic molecules can also be extracted and measured with solvent-based systems. The ExoMars payload includes the Life Marker Chip (LMC) instrument, capable of detecting biomarker molecules of extant and extinct Earth-like life in liquid extracts of martian samples with an antibody microarray assay. The aim of the work reported here was to investigate whether the presence of perchlorate salts, at levels similar to those at the NASA Phoenix landing site, would compromise the LMC extraction and detection method. To test this, we implemented an LMC-representative sample extraction process with an LMC-representative antibody assay and used these to extract and analyze a model sample that consisted of a Mars analog sample matrix (JSC Mars-1) spiked with a representative organic molecular target (pyrene, an example of abiotic meteoritic infall targets) in the presence of perchlorate salts. We found no significant change in immunoassay function when using pyrene standards with added perchlorate salts. When model samples spiked with perchlorate salts were subjected to an LMC-representative liquid extraction, immunoassays functioned in a liquid extract and detected extracted pyrene. For the same model sample matrix without perchlorate salts, we observed anomalous assay signals that coincided with yellow coloration of the extracts. This unexpected observation is being studied further. This initial study indicates that the presence of perchlorate salts, at levels similar to those detected at the NASA Phoenix landing site, is unlikely to prevent the LMC from extracting and detecting organic molecules from

  2. Controlled and tunable polymer particles' production using a single microfluidic device

    Science.gov (United States)

    Amoyav, Benzion; Benny, Ofra

    2018-04-01

    Microfluidics technology offers a new platform to control liquids under flow in small volumes. The advantage of using small-scale reactions for droplet generation along with the capacity to control the preparation parameters, making microfluidic chips an attractive technology for optimizing encapsulation formulations. However, one of the drawback in this methodology is the ability to obtain a wide range of droplet sizes, from sub-micron to microns using a single chip design. In fact, typically, droplet chips are used for micron-dimension particles, while nanoparticles' synthesis requires complex chips design (i.e., microreactors and staggered herringbone micromixer). Here, we introduce the development of a highly tunable and controlled encapsulation technique, using two polymer compositions, for generating particles ranging from microns to nano-size using the same simple single microfluidic chip design. Poly(lactic-co-glycolic acid) (PLGA 50:50) or PLGA/polyethylene glycol polymeric particles were prepared with focused-flow chip, yielding monodisperse particle batches. We show that by varying flow rate, solvent, surfactant and polymer composition, we were able to optimize particles' size and decrease polydispersity index, using simple chip designs with no further related adjustments or costs. Utilizing this platform, which offers tight tuning of particle properties, could offer an important tool for formulation development and can potentially pave the way towards a better precision nanomedicine.

  3. SINGLE AGENT DOCETAXEL AS SECOND- LINE CHEMOTHERAPY FOR PRETREATED PATIENTS WITH RECURRENT NON- SMALL CELL LUNG CANCER

    Directory of Open Access Journals (Sweden)

    Deyan N. Davidov

    2013-04-01

    Full Text Available Objective: Single agent Docetaxel is a standard therapy for patients with non- small cell lung cancer after the failure of platinum- containing regimens. The aim of this study was to explore the efficacy and safety of Docetaxel monotherapy as second- line chemotherapy in pretreated patient with inoperable non- small cell lung cancer. Methods: From January 2005 to May 2008 thirty- six consecutive patients with locally advanced or metastatic morphologically proven stage IIIB/ IV non- small cell lung cancer entered the study after failure of previous platinum- based regimens. Treatment schedule consist of Docetaxel 75 mg/m2 administered every three weeks with repetition after 21 days with Dexamethasone premedication. Results: Overall response rate, median time to progression and median survival was 16,6 %, 4,5 months and 5,6 months respectively. The main hematological toxicity was neutropenia. Conclusions: That data suggest that single agent Docetaxel remain reasonable choices for the chemotherapy in pretreated patients with non- small cell lung cancer.

  4. Solid state silicon based condenser microphone for hearing aid, has transducer chip and IC chip between intermediate chip and openings on both sides of intermediate chip, to allow sound towards diaphragm

    DEFF Research Database (Denmark)

    2000-01-01

    towards diaphragm. Surface of the chip (2) has electrical conductors (14) to connect chip with IC chip (3). USE - For use in miniature electroacoustic devices such as hearing aid. ADVANTAGE - Since sound inlet is covered by filter, dust, moisture and other impurities do not obstruct interior and sound...... inlet of microphone. External electrical connection can be made economically reliable and the thermal stress is avoided with the small size solid state silicon based condenser microphone....

  5. Outcome and prognostic factors in single brain metastases from small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, Denise; Koenig, Laila [University Hospital Heidelberg, Department of Radiation Oncology, INF 400, Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Adeberg, Sebastian; Debus, Juergen [University Hospital Heidelberg, Department of Radiation Oncology, INF 400, Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, Heidelberg (Germany); Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany); Bozorgmehr, Farastuk; Thomas, Michael; Steins, Martin [Heidelberg University, Department of Thoracic Oncology, Thoraxklinik, Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg (Germany); German Centre for Lung Research (DZL), Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg (Germany); Opfermann, Nils; Hoerner-Rieber, Juliane; Rieken, Stefan [University Hospital Heidelberg, Department of Radiation Oncology, INF 400, Heidelberg (Germany); Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg (Germany); Kappes, Jutta [Heidelberg University, Department of Pneumology, Thoraxklinik, Heidelberg (Germany); Unterberg, Andreas [University Hospital Heidelberg, Department of Neurosurgery, INF 400, Heidelberg (Germany); Herth, Felix [Heidelberg University, Department of Pneumology, Thoraxklinik, Heidelberg (Germany); German Centre for Lung Research (DZL), Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg (Germany); Heussel, Claus Peter [German Centre for Lung Research (DZL), Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg (Germany); University of Heidelberg, Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, Heidelberg (Germany); University of Heidelberg, Diagnostic and Interventional Radiology, Heidelberg (Germany); Warth, Arne [German Centre for Lung Research (DZL), Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg (DE); Heidelberg University, Institute of Pathology, Heidelberg (DE)

    2018-02-15

    Whole brain radiation therapy (WBRT) is historically the standard of care for patients with brain metastases (BM) from small-cell lung cancer (SCLC), although locally ablative treatments are the standard of care for patients with 1-4 BM from other solid tumors. The objective of this analysis was to find prognostic factors influencing overall survival (OS) and intracranial progression-free survival (iPFS) in SCLC patients with single BM (SBM) treated with WBRT. A total of 52 patients were identified in the authors' cancer center database with histologically confirmed SCLC and contrast-enhanced magnet resonance imaging (MRI) or computed tomography (CT), which confirmed SBM between 2006 and 2015 and were therefore treated with WBRT. A Kaplan-Meier survival analysis was performed for OS analyses. The log-rank (Mantel-Cox) test was used to compare survival curves. Univariate Cox proportional-hazards ratios (HRs) were used to assess the influence of cofactors on OS and iPFS. The median OS after WBRT was 5 months and the median iPFS after WBRT 16 months. Patients that received surgery prior to WBRT had a significantly longer median OS of 19 months compared to 5 months in the group receiving only WBRT (p = 0.03; HR 2.24; 95% confidence interval [CI] 1.06-4.73). Patients with synchronous disease had a significantly longer OS compared to patients with metachronous BM (6 months vs. 3 months, p = 0.005; HR 0.27; 95% CI 0.11-0.68). Univariate analysis for OS revealed a statistically significant effect for metachronous disease (HR 2.25; 95% CI 1.14-4.46; p = 0.019), initial response to first-line chemotherapy (HR 0.58; 95% CI 0.35-0.97; p = 0.04), and surgical resection (HR 0.36; 95% CI 0.15-0.88; p = 0.026). OS was significantly affected by metachronous disease in multivariate analysis (HR 2.20; 95% CI 1.09-4.45; p = 0.028). Univariate analysis revealed that surgery followed by WBRT can improve OS in patients with SBM in SCLC. Furthermore, synchronous disease and response

  6. Penetration of a Small Caliber Projectile into Single and Multi-layered Targets

    Directory of Open Access Journals (Sweden)

    Riad A.M.

    2010-06-01

    Full Text Available The normal penetration of armor-piercing projectiles into single and multi-layered steel plates has been investigated. An experimental program has been conducted to study the effect of spaced and in-contact layered targets on their ballistic resistance. Armor piercing projectiles with caliber of 7.62 mm were fired against a series of single and multi-layered steel targets. The projectile impact velocities were ranged from 300-600 m/s, whereas the total thicknesses of the tested single, spaced and in-contact layered steel targets were 3 mm. The penetration process of different tested target configurations has been simulated using Autodayn-2D hydrocode. The experimental measurements of the present work were used to discuss the effect of impact velocity, target configurations and number of layers of different spaced and in-contact layered steel targets on their ballistic resistance. In addition, the post-firing examination of the tested targets over the used impact velocity range showed that the single and each layer of spaced and in-contact laminated steel targets were failed by petalling. Finally, the obtained experimental measurements were compared with the corresponding numerical results of Autodyn-2D hydrocode, good agreement was generally obtained.

  7. Improved functional immobilization of llama single-domain antibody fragments to polystyrene surfaces using small peptides

    NARCIS (Netherlands)

    Harmsen, M.M.; Fijten, H.P.D.

    2012-01-01

    We studied the effect of different fusion domains on the functional immobilization of three llama single-domain antibody fragments (VHHs) after passive adsorption to polystyrene in enzyme-linked immunosorbent assays (ELISA). Three VHHs produced without any fusion domain were efficiently adsorbed to

  8. Production of vertical arrays of small diameter single-walled carbon nanotubes

    Science.gov (United States)

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  9. Prognostic factors in primary adenocarcinoma of the small intestine: 13-year single institution experience

    Directory of Open Access Journals (Sweden)

    Jacobs Michael J

    2008-01-01

    Full Text Available Abstract Background Adenocarcinoma of the small bowel is a relatively rare malignancy as compared to the other malignancies of the gastrointestinal tract. Nonspecific presentation and infrequent occurrence often leads to a delay in diagnosis and consequent poor prognosis. Various other factors are of prognostic importance while managing these tumors. Methods The medical records of a total of 27 patients treated for adenocarcinoma of the small bowel at Providence Hospital and Medical Centers from year 1990 through 2003 were reviewed retrospectively. Data were analyzed using SPSS software (version 10.0; SPSS, Inc., Chicago, IL. Survival analyses were calculated using the Kaplan Meier method with the log rank test to assess the statistical significance. The socio-demographics (age, gender were calculated using frequency analyses. Results The patients included nine males and eighteen females with a median age at diagnosis of 62 years. Only 48% of the patients had an accurate preoperative diagnosis while another 33% had a diagnosis suspicious of small bowel malignancy. None of the patients presented in stage 1. The cumulative five-year survival was 30% while the median survival was 3.3 years. There was no 30-day mortality in the postoperative period in our series. Conclusion The univariate analysis demonstrated that tumor grade, stage at presentation, lymph nodal metastasis and resection margins were significant predictors of survival.

  10. Single-row versus double-row arthroscopic rotator cuff repair in small- to medium-sized tears.

    Science.gov (United States)

    Aydin, Nuri; Kocaoglu, Baris; Guven, Osman

    2010-07-01

    Double-row rotator cuff repair leads to superior cuff integrity and clinical results compared with single-row repair. The study enrolled 68 patients with a full-thickness rotator cuff tear who were divided into 2 groups of 34 patients according to repair technique. The patients were followed-up for at least 2 years. The results were evaluated by Constant score. Despite the biomechanical studies and cadaver studies that proved the superiority of double-row fixation over single-row fixation, our clinical results show no difference in functional outcome between the two methods. It is evident that double-row repair is more technically demanding, expensive, and time-consuming than single-row repair, without providing a significant improvement in clinical results. Comparison between groups did not show significant differences. At the final follow-up, the Constant score was 82.2 in the single-row group and 78.8 in the double-row group. Functional outcome was improved in both groups after surgery, but the difference between the 2 groups was not significant. At long-term follow-up, arthroscopic rotator cuff repair with the double-row technique showed no significant difference in clinical outcome compared with single-row repair in small to medium tears. 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  11. Characterization of System on a Chip (SoC) Single Event Upset (SEU) Responses Using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  12. UW VLSI chip tester

    Science.gov (United States)

    McKenzie, Neil

    1989-12-01

    We present a design for a low-cost, functional VLSI chip tester. It is based on the Apple MacIntosh II personal computer. It tests chips that have up to 128 pins. All pin drivers of the tester are bidirectional; each pin is programmed independently as an input or an output. The tester can test both static and dynamic chips. Rudimentary speed testing is provided. Chips are tested by executing C programs written by the user. A software library is provided for program development. Tests run under both the Mac Operating System and A/UX. The design is implemented using Xilinx Logic Cell Arrays. Price/performance tradeoffs are discussed.

  13. Prophylactic cranial irradiation in small cell lung cancer: a single institution experience.

    Science.gov (United States)

    Naidoo, J; Kehoe, M; Sasiadek, W; Hacking, D; Calvert, P

    2014-03-01

    Prophylactic cranial irradiation (PCI) is used to prevent the development of brain metastases in small cell lung carcinoma. PCI confers an overall survival (OS) benefit in both limited and extensive stage disease. We analyze the incidence of symptomatic brain metastases, progression-free survival (PFS) and OS in a cohort of patients who received PCI, in a 5-year period. A retrospective review of all patients who had received PCI between 2006 and 2011 at the Whitfield Clinic was completed. Patient- and disease-related characteristics, the number of patients who developed brain metastases, PFS and OS data were collected. 24 patients were identified. 14 (58.3 %) patients were male, 10 (41.7 %) were female, with a mean age of 62.5 years (range 31-78). All patients were smokers. 12 (50 %) patients had limited stage small cell lung cancer (SCLC), 12 (50 %) had extensive stage disease. 2 (8.2 %) patients developed brain metastases post PCI (p = 0.478.) The median PFS for limited stage SCLC was 13 months (range 3-20) and 10 months (range 5-18) for extensive stage SCLC. Median OS was 15 months (range 4-29) in limited stage SCLC, and 11 months (range 5-29) in extensive stage SCLC. Our study demonstrated a low incidence of symptomatic brain metastases and favourable median PFS and OS in the patients that received PCI, when compared to published phase III data.

  14. Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors.

    Science.gov (United States)

    Thurber, Greg M; Reiner, Thomas; Yang, Katherine S; Kohler, Rainer H; Weissleder, Ralph

    2014-04-01

    The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging, given the complex tumor microenvironment including intra- and intertumor heterogeneity. The difficulty in studying this distribution is even more significant for small-molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small-molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model.

  15. Effect of Small Molecule Modification on Single Cell Pharmacokinetics of PARP Inhibitors

    Science.gov (United States)

    Thurber, Greg M.; Reiner, Thomas; Yang, Katherine S; Kohler, Rainer; Weissleder, Ralph

    2014-01-01

    The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging given the complex tumor microenvironment including intra- and inter-tumor heterogeneity. The difficulty in studying this distribution is even more significant for small molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model. PMID:24552776

  16. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  17. Design of a 1-chip IBM-3270 protocol handler

    NARCIS (Netherlands)

    Spaanenburg, L.

    1989-01-01

    The single-chip design of a 20MHz IBM-3270 coax protocol handler in a conventional 3 μ CMOS process-technology is discussed. The harmonious combination of CMOS circuit tricks and high-level design disciplines allows the 50k transistor design to be compiled and optimized into a 35 mm**2 chip in 4

  18. SNP typing on the NanoChip electronic microarray

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez Sanchez, Juan Jose; Morling, Niels

    2005-01-01

    We describe a single nucleotide polymorphism (SNP) typing protocol developed for the NanoChip electronic microarray. The NanoChip array consists of 100 electrodes covered by a thin hydrogel layer containing streptavidin. An electric currency can be applied to one, several, or all electrodes...

  19. Exploration within the Network-on-Chip Paradigm

    NARCIS (Netherlands)

    Wolkotte, P.T.

    2009-01-01

    A general purpose processor used to consist of a single processing core, which performed and controlled all tasks on the chip. Its functionality and maximum clock frequency grew steadily over the years. Due to the continuous increase of the number of transistors available on-chip and the operational

  20. Modification of Pawlow's thermodynamical model for the melting of small single-component particles

    Science.gov (United States)

    Barybin, Anatoly; Shapovalov, Victor

    2011-02-01

    A new approach to the melting of small particles is proposed to modify the known Pawlow's model by taking into account the transfer of material from solid spherical particles to liquid ones through a gas phase. Thermodynamical analysis gives rise to a differential equation for the melting point Tm involving such size-dependent and temperature-dependent parameters of a material as the surface tensions σs(l ), molar heat of fusion ΔHm and molar volumes vs(l ). Solution of this equation has shown that all the limiting cases for size-independent situations coincide with results known in the literature and our analysis of size-dependent situations gives results close to the experimental data previously obtained by other authors for some metallic particles.

  1. Single-Molecule View of Small RNA-Guided Target Search and Recognition.

    Science.gov (United States)

    Globyte, Viktorija; Kim, Sung Hyun; Joo, Chirlmin

    2018-05-20

    Most everyday processes in life involve a necessity for an entity to locate its target. On a cellular level, many proteins have to find their target to perform their function. From gene-expression regulation to DNA repair to host defense, numerous nucleic acid-interacting proteins use distinct target search mechanisms. Several proteins achieve that with the help of short RNA strands known as guides. This review focuses on single-molecule advances studying the target search and recognition mechanism of Argonaute and CRISPR (clustered regularly interspaced short palindromic repeats) systems. We discuss different steps involved in search and recognition, from the initial complex prearrangement into the target-search competent state to the final proofreading steps. We focus on target search mechanisms that range from weak interactions, to one- and three-dimensional diffusion, to conformational proofreading. We compare the mechanisms of Argonaute and CRISPR with a well-studied target search system, RecA.

  2. A primary battery-on-a-chip using monolayer graphene

    Science.gov (United States)

    Iost, Rodrigo M.; Crespilho, Frank N.; Kern, Klaus; Balasubramanian, Kannan

    2016-07-01

    We present here a bottom-up approach for realizing on-chip on-demand batteries starting out with chemical vapor deposition-grown graphene. Single graphene monolayers contacted by electrode lines on a silicon chip serve as electrodes. The anode and cathode are realized by electrodeposition of zinc and copper respectively onto graphene, leading to the realization of a miniature graphene-based Daniell cell on a chip. The electrolyte is housed partly in a gel and partly in liquid form in an on-chip enclosure molded using a 3d printer or made out of poly(dimethylsiloxane). The realized batteries provide a stable voltage (∼1.1 V) for many hours and exhibit capacities as high as 15 μAh, providing enough power to operate a pocket calculator. The realized batteries show promise for deployment as on-chip power sources for autonomous systems in lab-on-a-chip or biomedical applications.

  3. On-Chip Chemical Self-Assembly of Semiconducting Single-Walled Carbon Nanotubes (SWNTs) : Toward Robust and Scale Invariant SWNTs Transistors

    NARCIS (Netherlands)

    Derenskyi, Vladimir; Gomulya, Widianta; Talsma, Wytse; Salazar-Rios, Jorge Mario; Fritsch, Martin; Nirmalraj, Peter; Riel, Heike; Allard, Sybille; Scherf, Ullrich; Loi, Maria A.

    2017-01-01

    In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self-assembly of semiconducting single walled carbon nanotubes (s-SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s-SWNTs from raw

  4. Single Bit Radar Systems for Digital Integration

    OpenAIRE

    Bjørndal, Øystein

    2017-01-01

    Small, low cost, radar systems have exciting applications in monitoring and imaging for the industrial, healthcare and Internet of Things (IoT) sectors. We here explore, and show the feasibility of, several single bit square wave radar architectures; that benefits from the continuous improvement in digital technologies for system-on-chip digital integration. By analysis, simulation and measurements we explore novel and harmonic-rich continuous wave (CW), stepped-frequency CW (SFCW) and freque...

  5. Experimental investigation of single small bubble motion in linear shear flow in water

    International Nuclear Information System (INIS)

    Li, Zhongchun; Zhao, Yang; Song, Xiaoming; Yu, Hongxing; Jiang, Shengyao; Ishii, Mamoru

    2016-01-01

    Highlights: • The bubble motion in simple linear shear flow was experimentally investigated. • The bubble trajectories, bubble velocity and drag and lift force were obtained using image process routine. • The bubble trajectory was coupled with a zigzag motion and incline path. • The lift force was kept negative and it decreased when bubble diameter and shear flow magnitude increased. - Abstract: The motion of small bubble in a simple shear flow in water was experimental studied. Stable shear flow with low turbulence level was achieved with curved screen and measured using LDV. The bubbles were captured by high speed camera and the captured images were processed with digital image routine. The bubble was released from a capillary tube. The instantaneous bubble position, bubble velocity and forces were obtained based on the captured parameters. The quasi-steady lift coefficient was determined by the linear fitting of the bubble trajectory of several cycles. The results indicated that the lateral migration was coupled with the zigzag motion of bubble in the present experiment. The bubble migrated to the left side and its quasi-steady lift coefficient was negative. Good repeatable results were observed by measurements of 18 bubbles. The bubble motion in shear flow in water was first experimental studied and negative lift force was observed in the present study condition. The lift coefficient decreased when shear stress magnitude or bubble diameter increased in the present experiment condition.

  6. Cytokine single-nucleotide polymorphisms and risk of non-small-cell lung cancer.

    Science.gov (United States)

    Pérez-Ramírez, Cristina; Alnatsha, Ahmed; Cañadas-Garre, Marisa; Villar, Eduardo; Valdivia-Bautista, Javier; Faus-Dáder, María J; Calleja-Hernández, Miguel Á

    2017-12-01

    Lung cancer, particularly the non-small-cell lung cancer (NSCLC) subtype, is the leading cause of cancer-related death worldwide. Several functional polymorphisms in inflammatory cytokine genes, such as IL1B, IL6, IL12A, IL13 and IL16, have been associated with the risk of NSCLC. The aim of this study was to evaluate the association between ILs gene polymorphisms and the risk of developing NSCLC. A retrospective case-control study was carried out, including 174 NSCLC cases and 298 controls of Spanish origin. IL1B (rs1143634), IL1B (rs12621220), IL1B (rs1143623), IL1B (rs16944), IL1B (rs1143627), IL12A (rs662959), IL13 (rs1881457), IL6 (rs1800795) and IL16 (rs7170924) gene polymorphisms were analysed by TaqMan. The genotypic logistic regression model adjusted by smoking status showed that the IL1B rs1143634-TT genotype was associated with a lower risk of NSCLC (P=0.04312; odds ratio=0.226; 95% confidence interval=0.044-0.840). No other gene polymorphisms showed an association with NSCLC in any of the models tested. In conclusion, IL1B rs1143634 was significantly associated with a higher risk of NSCLC. No influence of IL1B rs12621220, rs1143623, rs16944, rs1143627, IL12A rs662959, IL13 rs1881457 and IL16 rs7170924 on the risk of developing NSCLC was found in our study.

  7. Assignment of Streptococcus agalactiae isolates to clonal complexes using a small set of single nucleotide polymorphisms.

    Science.gov (United States)

    Honsa, Erin; Fricke, Thomas; Stephens, Alex J; Ko, Danny; Kong, Fanrong; Gilbert, Gwendolyn L; Huygens, Flavia; Giffard, Philip M

    2008-08-19

    Streptococcus agalactiae (Group B Streptococcus (GBS)) is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP) based method for assigning GBS isolates to multilocus sequence typing (MLST)-defined clonal complexes. It was found that a SNP set derived from the MLST database on the basis of maximization of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.

  8. Resonator quantum electrodynamics on a microtrap chip

    International Nuclear Information System (INIS)

    Steinmetz, Tilo

    2008-01-01

    In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to ∼37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g 0 =2π.300 MHz respectively C 0 =210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached. [de

  9. Advanced flip chip packaging

    CERN Document Server

    Lai, Yi-Shao; Wong, CP

    2013-01-01

    Advanced Flip Chip Packaging presents past, present and future advances and trends in areas such as substrate technology, material development, and assembly processes. Flip chip packaging is now in widespread use in computing, communications, consumer and automotive electronics, and the demand for flip chip technology is continuing to grow in order to meet the need for products that offer better performance, are smaller, and are environmentally sustainable. This book also: Offers broad-ranging chapters with a focus on IC-package-system integration Provides viewpoints from leading industry executives and experts Details state-of-the-art achievements in process technologies and scientific research Presents a clear development history and touches on trends in the industry while also discussing up-to-date technology information Advanced Flip Chip Packaging is an ideal book for engineers, researchers, and graduate students interested in the field of flip chip packaging.

  10. Comparative Performance in Single-Port Versus Multiport Minimally Invasive Surgery, and Small Versus Large Operative Working Spaces: A Preclinical Randomized Crossover Trial.

    Science.gov (United States)

    Marcus, Hani J; Seneci, Carlo A; Hughes-Hallett, Archie; Cundy, Thomas P; Nandi, Dipankar; Yang, Guang-Zhong; Darzi, Ara

    2016-04-01

    Surgical approaches such as transanal endoscopic microsurgery, which utilize small operative working spaces, and are necessarily single-port, are particularly demanding with standard instruments and have not been widely adopted. The aim of this study was to compare simultaneously surgical performance in single-port versus multiport approaches, and small versus large working spaces. Ten novice, 4 intermediate, and 1 expert surgeons were recruited from a university hospital. A preclinical randomized crossover study design was implemented, comparing performance under the following conditions: (1) multiport approach and large working space, (2) multiport approach and intermediate working space, (3) single-port approach and large working space, (4) single-port approach and intermediate working space, and (5) single-port approach and small working space. In each case, participants performed a peg transfer and pattern cutting tasks, and each task repetition was scored. Intermediate and expert surgeons performed significantly better than novices in all conditions (P Performance in single-port surgery was significantly worse than multiport surgery (P performance in the intermediate versus large working space. In single-port surgery, there was a converse trend; performances in the intermediate and small working spaces were significantly better than in the large working space. Single-port approaches were significantly more technically challenging than multiport approaches, possibly reflecting loss of instrument triangulation. Surprisingly, in single-port approaches, in which triangulation was no longer a factor, performance in large working spaces was worse than in intermediate and small working spaces. © The Author(s) 2015.

  11. New experimental model for single liver lobe hyperthermia in small animals using non-directional microwaves.

    Directory of Open Access Journals (Sweden)

    Ionuț Tudorancea

    Full Text Available Our aim was to develop a new experimental model for in vivo hyperthermia using non-directional microwaves, applicable to small experimental animals. We present an affordable approach for targeted microwave heat delivery to an isolated liver lobe in rat, which allows rapid, precise and stable tissue temperature control.A new experimental model is proposed. We used a commercial available magnetron generating 2450 MHz, with 4.4V and 14A in the filament and 4500V anodic voltage. Modifications were required in order to adjust tissue heating such as to prevent overheating and to allow for fine adjustments according to real-time target temperature. The heating is controlled using a virtual instrument application implemented in LabView® and responds to 0.1° C variations in the target. Ten healthy adult male Wistar rats, weighing 250-270 g were used in this study. The middle liver lobe was the target for controlled heating, while the rest of the living animal was protected.In vivo microwave delivery using our experimental setting is safe for the animals. Target tissue temperature rises from 30°C to 40°C with 3.375°C / second (R2 = 0.9551, while the increment is lower it the next two intervals (40-42°C and 42-44°C with 0.291°C/ s (R2 = 0.9337 and 0.136°C/ s (R2 = 0.7894 respectively, when testing in sequences. After reaching the desired temperature, controlled microwave delivery insures a very stable temperature during the experiments.We have developed an inexpensive and easy to manufacture system for targeted hyperthermia using non-directional microwave radiation. This system allows for fine and stable temperature adjustments within the target tissue and is ideal for experimental models testing below or above threshold hyperthermia.

  12. Safety assessment of a new single-use small-incision injector for intraocular lens implantation.

    Science.gov (United States)

    Satanovsky, Alexandra; Ben-Eliahu, Shmuel; Apple, David J; Kleinmann, Guy

    2011-07-01

    To evaluate the safety of a new injector, the Raysert R-INJ-04/18, for implantation of the C-flex intraocular lens (IOL). Ophthalmology Department, Kaplan Medical Center, Rehovot, Israel. Experimental study. Sixty IOLs were subdivided into 2 equally sized groups. Group A IOLs were injected using the established R-INJ-04 injector, and those in Group B were injected with the new injector. The IOLs were injected into a Petri dish. Subsequently, all IOLs and injectors were evaluated macroscopically and microscopically and then photographed under light microscopy (LM). Two IOLs in each group were randomly chosen and sent for evaluation by scanning electron microscopy (SEM) and energy dispersive analysis of x-ray. All remaining IOLs were sent for power and modulation transfer function (MTF) analysis. All Group B IOLs were successfully injected without evident signs of scratching, cracks, or deposits on LM and SEM examination. In Group A, findings were confined to a singular incidence of a small deposit detected on the periphery of the posterior optical surface of the IOL, with corresponding findings detected on the injector nozzle. No signs of scratching, cracks, or deposits were found in the rest of the IOLs or injectors. The power and MTF analyses were within the normal range for all IOLs. The new 1.8 mm external diameter soft-tipped injector for 2.4 to 2.2 mm incisions was shown to be safe for the implantation of the C-flex 21.0 diopter IOL. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Assignment of Streptococcus agalactiae isolates to clonal complexes using a small set of single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Gilbert Gwendolyn L

    2008-08-01

    Full Text Available Abstract Background Streptococcus agalactiae (Group B Streptococcus (GBS is an important human pathogen, particularly of newborns. Emerging evidence for a relationship between genotype and virulence has accentuated the need for efficient and well-defined typing methods. The objective of this study was to develop a single nucleotide polymorphism (SNP based method for assigning GBS isolates to multilocus sequence typing (MLST-defined clonal complexes. Results It was found that a SNP set derived from the MLST database on the basis of maximisation of Simpsons Index of Diversity provided poor resolution and did not define groups concordant with the population structure as defined by eBURST analysis of the MLST database. This was interpreted as being a consequence of low diversity and high frequency horizontal gene transfer. Accordingly, a different approach to SNP identification was developed. This entailed use of the "Not-N" bioinformatic algorithm that identifies SNPs diagnostic for groups of known sequence variants, together with an empirical process of SNP testing. This yielded a four member SNP set that divides GBS into 10 groups that are concordant with the population structure. A fifth SNP was identified that increased the sensitivity for the clinically significant clonal complex 17 to 100%. Kinetic PCR methods for the interrogation of these SNPs were developed, and used to genotype 116 well characterized isolates. Conclusion A five SNP method for dividing GBS into biologically valid groups has been developed. These SNPs are ideal for high throughput surveillance activities, and combining with more rapidly evolving loci when additional resolution is required.

  14. First-line single agent treatment with gefitinib in patients with advanced non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Shu Yong-Qian

    2010-09-01

    Full Text Available Abstract Background Lung cancer is a malignant carcinoma which has the highest morbidity and mortality in Chinese population. Gefitinib, a tyrosine kinase (TK inhibitor of epidermal growth factor receptor (EGFR, displays anti-tumor activity. The present data regarding first-line treatment with single agent gefitinib against non-small-cell lung cancer (NSCLC in Chinese population are not sufficient. Purpose To assess the efficacy and toxicity of gefitinib in Chinese patients with advanced non-small-cell lung cancer (NSCLC, a study of single agent treatment with gefitinib in Chinese patients was conducted. Methods 45 patients with advanced NSCLC were treated with gefitinib (250 mg daily until the disease progression or intolerable toxicity. Results Among the 45 patients, 15 patients achieved partial response (PR, 17 patients experienced stable disease (SD, and 13 patients developed progression disease (PD. None of the patients achieved complete response (CR. The tumor response rate and disease control rate was 33% and 71.1%, respectively. Symptom remission rate was 72.5%, and median remission time was 8 days. Median overall survival and median progression-free survival was 15.3 months and 6.0 months, respectively. The main induced toxicities by gefitinib were skin rash and diarrhea (53.3% and 33.3%, respectively. The minor induced toxicities included dehydration and pruritus of skin (26.7% and 22.2%, respectively. In addition, hepatic toxicity and oral ulceration occurred in few patients (6.7% and 4.4%2, respectively. Conclusions Single agent treatment with gefitinib is effective and well tolerated in Chinese patients with advanced NSCLC.

  15. Clinical significance and predictive factors of early massive recurrence after radiofrequency ablation in patients with a single small hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Ju-Yeon Cho

    2016-12-01

    Full Text Available Background/Aims Radiofrequency ablation (RFA is one of the most frequently applied curative treatments in patients with a single small hepatocellular carcinoma (HCC. However, the clinical significance of and risk factors for early massive recurrence after RFA—a dreadful event limiting further curative treatment—have not been fully evaluated. Methods In total, 438 patients with a single HCC of size ≤3 cm who underwent percutaneous RFA as an initial treatment between 2006 and 2009 were included. Baseline patient characteristics, overall survival, predictive factors, and recurrence after RFA were evaluated. In addition, the incidence, impact on survival, and predictive factors of early massive recurrence, and initial recurrence beyond the Milan criteria within 2 years were also investigated. Results During the median follow-up of 68.4 months, recurrent HCC was confirmed in 302 (68.9% patients, with early massive recurrence in 27 patients (6.2%. The 1-, 3-, and 5-year overall survival rates were 95.4%, 84.7%, and 81.8%, respectively, in patients with no recurrence, 99.6%, 86.4%, and 70.1% in patients with recurrence within the Milan criteria or late recurrence, and 92.6%, 46.5%, and 0.05% in patients with early massive recurrence. Multivariable analysis identified older age, Child-Pugh score B or C, and early massive recurrence as predictive of poor overall survival. A tumor size of ≥2 cm and tumor location adjacent to the colon were independent risk factors predictive of early massive recurrence. Conclusions Early massive recurrence is independently predictive of poor overall survival after RFA in patients with a single small HCC. Tumors sized ≥2 cm and located adjacent to the colon appear to be independent risk factors for early massive recurrence.

  16. Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.

    Science.gov (United States)

    Baker, Matthew A B; Tuckwell, Andrew J; Berengut, Jonathan F; Bath, Jonathan; Benn, Florence; Duff, Anthony P; Whitten, Andrew E; Dunn, Katherine E; Hynson, Robert M; Turberfield, Andrew J; Lee, Lawrence K

    2018-06-04

    The rational design of complementary DNA sequences can be used to create nanostructures that self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides complementary structural information on the ensemble-averaged state of DNA nanostructures in solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA origami tiles that look identical when immobilized on a mica surface and imaged with atomic force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles with different crossover periodicities: these measurements highlight the extreme structural sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA origami tile and use this method to measure the overall dimensions and geometry of the DNA nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used for the interpretation of SAXS data from biomolecules, to measure the distance between DNA helix pairs in a DNA origami nanotube. Together, these results provide important methodological advances in the use of SAXS to analyze DNA nanostructures in solution and insights into the structures of single-layer DNA origami.

  17. Interfacing Lab-on-a-Chip Embryo Technology with High-Definition Imaging Cytometry.

    Science.gov (United States)

    Zhu, Feng; Hall, Christopher J; Crosier, Philip S; Wlodkowic, Donald

    2015-08-01

    To spearhead deployment of zebrafish embryo biotests in large-scale drug discovery studies, automated platforms are needed to integrate embryo in-test positioning and immobilization (suitable for high-content imaging) with fluidic modules for continuous drug and medium delivery under microperfusion to developing embryos. In this work, we present an innovative design of a high-throughput three-dimensional (3D) microfluidic chip-based device for automated immobilization and culture and time-lapse imaging of developing zebrafish embryos under continuous microperfusion. The 3D Lab-on-a-Chip array was fabricated in poly(methyl methacrylate) (PMMA) transparent thermoplastic using infrared laser micromachining, while the off-chip interfaces were fabricated using additive manufacturing processes (fused deposition modelling and stereolithography). The system's design facilitated rapid loading and immobilization of a large number of embryos in predefined clusters of traps during continuous microperfusion of drugs/toxins. It was conceptually designed to seamlessly interface with both upright and inverted fluorescent imaging systems and also to directly interface with conventional microtiter plate readers that accept 96-well plates. Compared with the conventional Petri dish assays, the chip-based bioassay was much more convenient and efficient as only small amounts of drug solutions were required for the whole perfusion system running continuously over 72 h. Embryos were spatially separated in the traps that assisted tracing single embryos, preventing interembryo contamination and improving imaging accessibility.

  18. "Hook"-calibration of GeneChip-microarrays: Chip characteristics and expression measures

    Directory of Open Access Journals (Sweden)

    Krohn Knut

    2008-08-01

    Full Text Available Abstract Background Microarray experiments rely on several critical steps that may introduce biases and uncertainty in downstream analyses. These steps include mRNA sample extraction, amplification and labelling, hybridization, and scanning causing chip-specific systematic variations on the raw intensity level. Also the chosen array-type and the up-to-dateness of the genomic information probed on the chip affect the quality of the expression measures. In the accompanying publication we presented theory and algorithm of the so-called hook method which aims at correcting expression data for systematic biases using a series of new chip characteristics. Results In this publication we summarize the essential chip characteristics provided by this method, analyze special benchmark experiments to estimate transcript related expression measures and illustrate the potency of the method to detect and to quantify the quality of a particular hybridization. It is shown that our single-chip approach provides expression measures responding linearly on changes of the transcript concentration over three orders of magnitude. In addition, the method calculates a detection call judging the relation between the signal and the detection limit of the particular measurement. The performance of the method in the context of different chip generations and probe set assignments is illustrated. The hook method characterizes the RNA-quality in terms of the 3'/5'-amplification bias and the sample-specific calling rate. We show that the proper judgement of these effects requires the disentanglement of non-specific and specific hybridization which, otherwise, can lead to misinterpretations of expression changes. The consequences of modifying probe/target interactions by either changing the labelling protocol or by substituting RNA by DNA targets are demonstrated. Conclusion The single-chip based hook-method provides accurate expression estimates and chip-summary characteristics

  19. The Advances, Challenges and Future Possibilities of Millimeter-Wave Chip-to-Chip Interconnections for Multi-Chip Systems

    Directory of Open Access Journals (Sweden)

    Amlan Ganguly

    2018-02-01

    Full Text Available With aggressive scaling of device geometries, density of manufacturing faults is expected to increase. Therefore, yield of complex Multi-Processor Systems-on-Chips (MP-SoCs will decrease due to higher probability of manufacturing defects especially, in dies with large area. Therefore, disintegration of large SoCs into smaller chips called chiplets will improve yield and cost of complex platform-based systems. This will also provide functional flexibility, modular scalability as well as the capability to integrate heterogeneous architectures and technologies in a single unit. However, with scaling of the number of chiplets in such a system, the shared resources in the system such as the interconnection fabric and memory modules will become performance bottlenecks. Additionally, the integration of heterogeneous chiplets operating at different frequencies and voltages can be challenging. State-of-the-art inter-chip communication requires power-hungry high-speed I/O circuits and data transfer over long wired traces on substrates. This increases energy consumption and latency while decreasing data bandwidth for chip-to-chip communication. In this paper, we explore the advances and the challenges of interconnecting a multi-chip system with millimeter-wave (mm-wave wireless interconnects from a variety of perspectives spanning multiple aspects of the wireless interconnection design. Our discussion on the recent advances include aspects such as interconnection topology, physical layer, Medium Access Control (MAC and routing protocols. We also present some potential paradigm-shifting applications as well as complementary technologies of wireless inter-chip communications.

  20. High throughput synthesis and characterization of the PbnNb2O5+n (0.5 < n < 4.1) system on a single chip

    International Nuclear Information System (INIS)

    Mirsaneh, Mehdi; Hayden, Brian E.; Miao Shu; Pokorny, Jan; Perini, Steve; Furman, Eugene; Lanagan, Michael T.; Ubic, Rick; Reaney, Ian M.

    2011-01-01

    Most high throughput studies focus on assessing the effect of composition within a single known fundamental structure type, such as perovskite. Here we demonstrate how high throughput synthesis and screening can be used to establish structure-property relations in the PbO-Nb 2 O 5 system, for which eight distinct fundamental structure types are known to exist. PbNb 4 O 11 , PbNb 2 O 6 and pyrochlore could be easily distinguished by X-ray diffraction (XRD). However, XRD was insensitive to distortions of the pyrochlore structure and instead Raman spectroscopy was utilized to determine changes in symmetry from cubic to rhombohedral as the PbO concentration increased. High throughput screening of the capacitance revealed permittivity (ε r ) maxima in the PbNb 4 O 11 (ε r = 700) and cubic pyrochlore phases (ε r = 450). The ε r of PbNb 4 O 11 has not to date been reported but the value for cubic pyrochlore is higher than that reported for bulk ceramics (ε r = 270). Initial high electric field studies also revealed exceptionally high tunability (four times that reported for bismuth zinc niobate-based pyrochlores) of the capacitance in the pyrochlore phase.

  1. Medicaid CHIP ESPC Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Environmental Scanning and Program Characteristic (ESPC) Database is in a Microsoft (MS) Access format and contains Medicaid and CHIP data, for the 50 states and...

  2. FISH & CHIPS: Four Electrode Conductivity / Salinity Sensor on a Silicon Multi-sensor chip for Fisheries Research

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Olafsdottir, Iris; Olesen, M.

    2005-01-01

    The design and fabrication of a single chip silicon salinity, temperature, pressure and light multisensor is presented. The behavior 2- and 4-electrode conductivity microsensors are described and methods for precise determination of water conductivity are given......The design and fabrication of a single chip silicon salinity, temperature, pressure and light multisensor is presented. The behavior 2- and 4-electrode conductivity microsensors are described and methods for precise determination of water conductivity are given...

  3. Single case design studies in music therapy: resurrecting experimental evidence in small group and individual music therapy clinical settings.

    Science.gov (United States)

    Geist, Kamile; Hitchcock, John H

    2014-01-01

    The profession would benefit from greater and routine generation of causal evidence pertaining to the impact of music therapy interventions on client outcomes. One way to meet this goal is to revisit the use of Single Case Designs (SCDs) in clinical practice and research endeavors in music therapy. Given the appropriate setting and goals, this design can be accomplished with small sample sizes and it is often appropriate for studying music therapy interventions. In this article, we promote and discuss implementation of SCD studies in music therapy settings, review the meaning of internal study validity and by extension the notion of causality, and describe two of the most commonly used SCDs to demonstrate how they can help generate causal evidence to inform the field. In closing, we describe the need for replication and future meta-analysis of SCD studies completed in music therapy settings. SCD studies are both feasible and appropriate for use in music therapy clinical practice settings, particularly for testing effectiveness of interventions for individuals or small groups. © the American Music Therapy Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. A single-supply, high rate, small size and cheap electronic chain for 3He neutron counters

    International Nuclear Information System (INIS)

    Boffa, A.; Fazzi, A.; Pirovano, C.; Varoli, V.

    1996-01-01

    The paper describes a complete counting chain (charge preamplifier, shaping amplifier and threshold discriminator) devoted to 3 He neutron detectors. Since it is characterized by single supply operation, high counting rate, small size and low cost, it is well suited for high efficiency neutron well detectors where a large number (10 - 100) of counting tubes are used. Such detectors are commonly used for verification of Plutonium stocks. The preamplifier adopts an innovative circuit with the gate of the input JFET floating and a DC feedback loop that stabilizes the output voltage acting on the input cascode second transistor. Static and dynamic analysis, including the effects of the detector bias network, is reported. The shaping amplifier transfer function is a fifth order approximation of the gaussian response. All the complex pole pairs are realized with a single fourth order Voltage Controlled Voltage Source cell thus minimizing component count. Experimental signals and spectra, obtained with shaping time constants in the 1 μs - 100 ns range, are reported and discussed

  5. The spin chirality in MnSi single crystal probed by small angle scattering with polarized neutrons

    International Nuclear Information System (INIS)

    Okorokov, A.I.; Grigoriev, S.V.; Chetverikov, Yu.O.; Georgii, R.; Boeni, P.; Eckerlebe, H.; Pranzas, K.; Roessli, B.

    2004-01-01

    The weak itinerant ferromagnet MnSi orders with a left-handed helical spin structure below T C =29 K. The helicity with a vector m=[S 1 xS 2 ]/S 2 along the crystallographic axis [1 1 1] is realized by an antisymmetric Dzyaloshinski-Moriya interaction. The small angle diffraction study with polarized neutrons on a single MnSi crystal was performed within the temperature range from 10 K to T C and the magnetic field B from 1 to 350 mT. The single crystal was oriented in such a way that two axes [1 1 1] and [1 1 -1] were set in a plane perpendicular to the incident beam. Four major diffraction peaks at ±q 1 and ±q 2 along the axes and four minor peaks at q=±q 1 ±q 2 were observed. The intensity I p =I(+P 0 )+I(-P 0 ), the polarization P p =[I(+P 0 )-I(-P 0 )]/I p and the position q p of the peaks were measured as a function of the temperature and the magnetic field. From intensity of the peaks the chiral critical exponent is obtained as β=0.47±0.04

  6. Extrapulmonary small-cell carcinoma series in a single-institution experience. With a case report of small cell carcinoma in the hypopharynx

    International Nuclear Information System (INIS)

    Monobe, Hiroko; Kagoya, Ryoji; Tojima, Hitoshi

    2010-01-01

    Extrapulmonary small-cell carcinoma (EPSCC) is clinically underrecognized and optimal management remains illusive. Although head and neck EPSCC tends to involve early widespread dissemination and poor prognosis, recently reported favorable outcomes have used concurrent chemoradiotherapy in limited-stage disease. We report an EPSCC case of arising in the hypopharynx successfully treated by induction chemotherapy followed by concurrent chemoradiotherapy. To clarify EPSCC clinically, we retrospectively reviewed clinical courses of all EPSCC records between 1999 and 2008 in a single-institution series. The 14 subjects identified had primary sites at the gastrointestinal tract in 5, uterine cervix in 3, genitourinary system in 2 and at the gallbladder, liver, hypopharynx, and an unidentified primary lymph node in one case each. Of the 14, 2 cases had stage I, 2 cases had stage II, 4 cases had stage III, 5 cases had stage IV in tumor-node-metastasis (TNM) classification. Stage IV subjects usually underwent platinum-based chemotherapy, to which 25% showed partial response (PR) and 75% progressive disease (PD) with median overall survival (OS) of 114.0 days, or 16 weeks. Of stage III or lower subjects, 75% underwent surgery and 62.5% chemotherapy. OS was 1244.0 days or 3.7 years and 2-year survival rates was estimated at 87.5%. Survival duration differed significantly between those in stage III or lower and those in group IV. Age significantly affected survival time in the Cox proportional hazard regression model. Brain metastasis was uncommon in this series, despite the absence of prophylactic cranial radiation. Further studies are needed to improve and clarify the clinical EPSCC course. (author)

  7. On-Chip Chemical Self-Assembly of Semiconducting Single-Walled Carbon Nanotubes (SWNTs): Toward Robust and Scale Invariant SWNTs Transistors.

    Science.gov (United States)

    Derenskyi, Vladimir; Gomulya, Widianta; Talsma, Wytse; Salazar-Rios, Jorge Mario; Fritsch, Martin; Nirmalraj, Peter; Riel, Heike; Allard, Sybille; Scherf, Ullrich; Loi, Maria A

    2017-06-01

    In this paper, the fabrication of carbon nanotubes field effect transistors by chemical self-assembly of semiconducting single walled carbon nanotubes (s-SWNTs) on prepatterned substrates is demonstrated. Polyfluorenes derivatives have been demonstrated to be effective in selecting s-SWNTs from raw mixtures. In this work the authors functionalized the polymer with side chains containing thiols, to obtain chemical self-assembly of the selected s-SWNTs on substrates with prepatterned gold electrodes. The authors show that the full side functionalization of the conjugated polymer with thiol groups partially disrupts the s-SWNTs selection, with the presence of metallic tubes in the dispersion. However, the authors determine that the selectivity can be recovered either by tuning the number of thiol groups in the polymer, or by modulating the polymer/SWNTs proportions. As demonstrated by optical and electrical measurements, the polymer containing 2.5% of thiol groups gives the best s-SWNT purity. Field-effect transistors with various channel lengths, using networks of SWNTs and individual tubes, are fabricated by direct chemical self-assembly of the SWNTs/thiolated-polyfluorenes on substrates with lithographically defined electrodes. The network devices show superior performance (mobility up to 24 cm 2 V -1 s -1 ), while SWNTs devices based on individual tubes show an unprecedented (100%) yield for working devices. Importantly, the SWNTs assembled by mean of the thiol groups are stably anchored to the substrate and are resistant to external perturbation as sonication in organic solvents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Laparoscopic nephrectomy for a single-system ectopic ureter draining a small, dysplastic and poorly functioning kidney in children

    International Nuclear Information System (INIS)

    Jeong, Byong-Chang; Lim, Dae-Jung; Lee, Sang-Chul; Choi, Hwang; Kim, Hyeon-Hoe

    2007-01-01

    The purpose of this study was to assess the efficacy of laparoscopic nephrectomy for a single-system ectopic ureter draining a dysplastic kidney in children. Between February 1999 and September 2005, 16 girls with a mean age of 6.2 years (range: 2-15 years) presented with urinary incontinence accompanied by regular voiding since birth (15 patients) and vaginitis (one patient). Ultrasonography, intravenous urography and a technetium-99m dimercaptosuccinic acid ( 99m Tc-DMSA) renal scan showed the presence of only a single kidney in all cases. Computed tomography (CT) showed a dysplastic kidney definitely in nine patients, structures suspicious of dysplastic kidney in three cases, and no dysplastic kidney in four cases. Magnetic resonance imaging was carried out in the four cases with non-visualized dysplastic kidneys by CT, and showed a suspicious lesion in only one case, and no lesion in the other three patients. All patients underwent transperitoneal laparoscopic nephrectomy for a dysplastic kidney. Laparoscopy identifies all dysplastic kidneys easily, even in those cases in which dystrophic kidney could not be identified by preoperative imaging. Dysplastic kidneys and ectopic ureters were removed successfully in all 16 patients. Mean operative time was 109 min (range: 40-155 min) with little intraoperative bleeding. Mean postoperative hospital stay was 2.6 days (range: 2-4 days). No intraoperative complication was encountered, except in one single case, in which a small bowel injury occurred during open Hasson's procedure. All patients became dry soon after the operation. Laparoscopic nephrectomy for an ectopic ureter draining into a dysplastic kidney is a safe and effective method, and can be carried out successfully, despite a failure by preoperative imaging studies to localize the dysplastic kidney. (author)

  9. A compact PE memory for vision chips

    Science.gov (United States)

    Cong, Shi; Zhe, Chen; Jie, Yang; Nanjian, Wu; Zhihua, Wang

    2014-09-01

    This paper presents a novel compact memory in the processing element (PE) for single-instruction multiple-data (SIMD) vision chips. The PE memory is constructed with 8 × 8 register cells, where one latch in the slave stage is shared by eight latches in the master stage. The memory supports simultaneous read and write on the same address in one clock cycle. Its compact area of 14.33 μm2/bit promises a higher integration level of the processor. A prototype chip with a 64 × 64 PE array is fabricated in a UMC 0.18 μm CMOS technology. Five types of the PE memory cell structure are designed and compared. The testing results demonstrate that the proposed PE memory architecture well satisfies the requirement of the vision chip in high-speed real-time vision applications, such as 1000 fps edge extraction.

  10. A compact PE memory for vision chips

    International Nuclear Information System (INIS)

    Shi Cong; Chen Zhe; Yang Jie; Wu Nanjian; Wang Zhihua

    2014-01-01

    This paper presents a novel compact memory in the processing element (PE) for single-instruction multiple-data (SIMD) vision chips. The PE memory is constructed with 8 × 8 register cells, where one latch in the slave stage is shared by eight latches in the master stage. The memory supports simultaneous read and write on the same address in one clock cycle. Its compact area of 14.33 μm 2 /bit promises a higher integration level of the processor. A prototype chip with a 64 × 64 PE array is fabricated in a UMC 0.18 μm CMOS technology. Five types of the PE memory cell structure are designed and compared. The testing results demonstrate that the proposed PE memory architecture well satisfies the requirement of the vision chip in high-speed real-time vision applications, such as 1000 fps edge extraction. (semiconductor integrated circuits)

  11. A proposed holistic approach to on-chip, off-chip, test, and package interconnections

    Science.gov (United States)

    Bartelink, Dirk J.

    1998-11-01

    recognize—test is also performed using IC's. A system interconnection is proposed using multiple chips fabricated with conventional silicon processes, including MEMS technology. The system resembles an MCM that can be joined without committing to final assembly to perform at-speed testing. 50-Ohm test probes never load the circuit; only intended neighboring chips are ever connected. A `back-plane' chip provides the connection layers for both inter- and intra-chip signals and also serves as the probe card, in analogy with membrane probes now used for single-chip testing. Intra-chip connections, which require complicated connections during test that exactly match the product, are then properly made and all waveforms and loading conditions under test will be identical to those of the product. The major benefit is that all front-end chip technologies can be merged—logic, memory, RF, even passives. ESD protection is required only on external system connections. Manufacturing test information will accurately characterize process faults and thus avoid the Known-Good-Die problem that has slowed the arrival of conventional MCM's.

  12. The Effect of A Single Sub-Lethal Dose of Whole Body Irradiation on the Small Intestine of Rats

    International Nuclear Information System (INIS)

    Al-Ramli, M. A.; Kubba, M. A.; Al-Bassam, L. S.; Belhaj, K.; Al-shawish, N. M.

    2007-01-01

    The effect of whole body radiation with a single sub-lethal dose at 4 Gy on rat small intestine was studied histologically and quantitatively. Irradiated animals were euthanized at 24 hours, 3, 7, 14, 21 and 28 days post- irradiation. Crypts of Leiberkuhn and peyer's patches were especially targeted by irradiation. The crypts showed severe cellular fragmentation in the germinal cellular compartments twenty Four hours after irradiation resulting in partial denudation of villi especially at their Tips. At three days, these cells resumed their proliferative activity with the appearance of unusually large numbers of mitotic figures. Cellular regeneration in the crypts and on the villous surface showed improvement with advancing time till day 28 when the villi had complete epithelial covering and the proliferative activity of the germinal cryptic cells returned to normal. The quantitative study included the measurement of about fifty villi at each time after irradiation. A significant decrease in villous length was noticed at twenty four hours post-irradiation compared to the control values. The length of villi plateaued at about this level till day twenty one when it slightly increased to reach a sub normal mean length on day 28. We concluded that whole body irradiation with a single dose at 4 Gy was enough to induce cryptic cellular necrosis with sloughing of epithelial villous columnar covering. This cellular damage was, however, sub- total since quick regenerative cellular activity was noticed three days post-irradiation. The decrease in the villous length paralleled the cryptic cellular damage whereas full recovery was not achieved despite obvious cellular regeneration.

  13. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  14. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    International Nuclear Information System (INIS)

    Mejia, J.; Reis, M.A.; Miranda, A.C.C.; Batista, I.R.; Barboza, M.R.F.; Shih, M.C.; Fu, G.; Chen, C.T.; Meng, L.J.; Bressan, R.A.; Amaro, E. Jr

    2013-01-01

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s -1 ·MBq -1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99m Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99m Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity

  15. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  16. Single agent and synergistic combinatorial efficacy of first-in-class small molecule imipridone ONC201 in hematological malignancies.

    Science.gov (United States)

    Prabhu, Varun V; Talekar, Mala K; Lulla, Amriti R; Kline, C Leah B; Zhou, Lanlan; Hall, Junior; Van den Heuvel, A Pieter J; Dicker, David T; Babar, Jawad; Grupp, Stephan A; Garnett, Mathew J; McDermott, Ultan; Benes, Cyril H; Pu, Jeffrey J; Claxton, David F; Khan, Nadia; Oster, Wolfgang; Allen, Joshua E; El-Deiry, Wafik S

    2018-01-01

    ONC201, founding member of the imipridone class of small molecules, is currently being evaluated in advancer cancer clinical trials. We explored single agent and combinatorial efficacy of ONC201 in preclinical models of hematological malignancies. ONC201 demonstrated (GI50 1-8 µM) dose- and time-dependent efficacy in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Burkitt's lymphoma, anaplastic large cell lymphoma (ALCL), cutaneous T-cell lymphoma (CTCL), Hodgkin's lymphoma (nodular sclerosis) and multiple myeloma (MM) cell lines including cells resistant to standard of care (dexamethasone in MM) and primary samples. ONC201 induced caspase-dependent apoptosis that involved activation of the integrated stress response (ATF4/CHOP) pathway, inhibition of Akt phosphorylation, Foxo3a activation, downregulation of cyclin D1, IAP and Bcl-2 family members. ONC201 synergistically reduced cell viability in combination with cytarabine and 5-azacytidine in AML cells. ONC201 combined with cytarabine in a Burkitt's lymphoma xenograft model induced tumor growth inhibition that was superior to either agent alone. ONC201 synergistically combined with bortezomib in MM, MCL and ALCL cells and with ixazomib or dexamethasone in MM cells. ONC201 combined with bortezomib in a Burkitt's lymphoma xenograft model reduced tumor cell density and improved CHOP induction compared to either agent alone. These results serve as a rationale for ONC201 single-agent trials in relapsed/refractory acute leukemia, non-Hodgkin's lymphoma, MM and combination trial with dexamethasone in MM, provide pharmacodynamic biomarkers and identify further synergistic combinatorial regimens that can be explored in the clinic.

  17. Systems Analysis of Ten Supply Chains for Whole Tree Chips

    Directory of Open Access Journals (Sweden)

    Helmer Belbo

    2014-09-01

    Full Text Available Whole trees from energy thinnings constitute one of many forest fuel sources, yet ten widely applied supply chains could be defined for this feedstock alone. These ten represent only a subset of the real possibilities, as felling method was held constant and only a single market (combustion of whole tree chips was considered. Stages included in-field, roadside landing, terminal, and conversion plant, and biomass states at each of these included loose whole trees, bundled whole trees or chipped material. Assumptions on prices, performances, and conversion rates were based on field trials and published literature in similar boreal forest conditions. The economic outcome was calculated on the basis of production, handling, treatment and storage costs and losses. Outcomes were tested for robustness on a range of object volumes (50–350 m3solid, extraction distances (50–550 m and transport distances (10–70 km using simulation across a set of discrete values. Transport was calculated for both a standard 19.5 m and an extended 24 m timber truck. Results showed that the most expensive chain (roadside bundling, roadside storage, terminal storage and delivery using a 19.5 m timber truck at 158 € td−1 was 23% more costly than the cheapest chain (roadside chipping and direct transport to conversion plant with container truck, at 128 € td−1. Outcomes vary at specific object volumes and transport distances, highlighting the need to verify assumptions, although standard deviations around mean supply costs for each chain were small (6%–9%. Losses at all stages were modelled, with the largest losses (23 € td−1 occurring in the chains including bundles. The study makes all methods and assumptions explicit and can assist the procurement manager in understanding the mechanisms at work.

  18. Low-NO{sub x}, wood chip combustion

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.; Oravainen, H.; Haemaelaeinen, J.; Paakkinen, K. [VTT Energy, Jyvaeskylae (Finland)

    1997-10-01

    The regulations for nitrogen oxide emissions vary in different countries, but the general trend in the future will probably be that the emissions limits will be lowered also for wood combustion plants, which are small or medium size units. Thus, the development of wood chip burning furnaces (grate furnaces, fluidized bed combustors, stoker furnaces) with lower nitrogen oxide emissions, is important. The wood used in the combustor, its particle size, moisture and fuel properties (nitrogen content) affect the nitrogen emissions. The nitrogen oxide release is also much affected by the design and operation of the combustor (air staging, fuel air preheat, flue gas circulation, air to fuel mass ratio). The fate of nitrogen compounds originally in the virgin wood depends much on the design of the combustor system and by proper planning it is possible to reduce the emission of nitrogen oxides. Basic knowledge of the release of nitrogen compounds from single wood particles is attained. The release of gaseous nitrogen compounds from wood particles during pyrolysis and combustion is studied experimentally and by modelling. Nitrogen release is studied experimentally by two ways, by analysing the gas and by quenching the particle and analysing the char residue. Formation of nitrogen oxide emissions in a fuel bed is studied by modelling and by combustion experiments with a pot furnace. This research gives general information of nitrogen oxide formation in wood bunting especially in fixed beds. The development of a horizontal stoker burner for wood chips with low emissions is the practical aim of the research. (orig.)

  19. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  20. Similar mitochondrial signaling responses to a single bout of continuous or small-sided-games-based exercise in sedentary men.

    Science.gov (United States)

    Mendham, Amy E; Duffield, Rob; Coutts, Aaron J; Marino, Frank E; Boyko, Andriy; McAinch, Andrew J; Bishop, David John

    2016-12-01

    This study assessed the mitochondrial related signaling responses to a single bout of noncontact, modified football (touch rugby), played as small-sided games (SSG), or cycling (CYC) exercise in sedentary, obese, middle-aged men. In a randomized, crossover design, nine middle-aged, sedentary, obese men completed two, 40-min exercise conditions (CYC and SSG) separated by a 21-day recovery period. Heart rate (HR) and ratings of perceived exertion (RPE) were collected during each bout. Needle biopsies from the vastus lateralis muscle were collected at rest and 30 and 240 min postexercise for analysis of protein content and phosphorylation (PGC-1α, SIRT1, p53, p53 Ser15 , AMPK, AMPK Thr172 , CAMKII, CAMKII Thr286 , p38MAPK, and p38MAPK Thr180/Tyr182 ) and mRNA expression (PGC-1α, p53, NRF1, NRF2, Tfam, and cytochrome c). A main effect of time effect for both conditions was evident for HR, RPE, and blood lactate (P 0.05). Both conditions increased PGC1-α protein and mRNA expression at 240 min (P 0.05). CYC increased p53 protein content at 240 min to a greater extent than SSG (P benefit for stimulating mitochondrial biogenesis. Differences between conditions regarding fluctuation in exercise intensity and type of muscle contraction may explain the increase of p53 and AMPK within CYC and not SSG (noncontact, modified football). Copyright © 2016 the American Physiological Society.

  1. Small scale endemism in Brazil's Atlantic Forest: 14 new species of Mesabolivar (Araneae, Pholcidae), each known from a single locality.

    Science.gov (United States)

    Huber, Bernhard A

    2015-04-07

    In an ongoing mega-transect project that aims at analyzing pholcid spider diversity and distribution in the Atlantic Forest of Brazil, many species appear restricted to small geographic ranges. Of the 84 species collected between 2003 and 2011 at 17 sites between Bahia and Santa Catarina, 51 species (61%) were found at only one locality. The present paper focuses on such species in the genus Mesabolivar, and compares diversity and distribution patterns of this genus within and outside the Atlantic Forest. The percentage of species known from single localities is higher in the Atlantic Forest (34 of 52 species; 65%) than outside the Atlantic Forest (10 of 25; 40%). Distribution rages of species in the Atlantic Forest are significantly smaller than of species outside the Atlantic Forest (mean maximum distances between localities: 184 versus 541 km; medians: 10 km versus 220 km). The following species are newly described (arranged from north to south), each currently known from the respective type locality only: M. caipora; M. kathrinae; M. bonita; M. pau (Bahia); M. monteverde; M. perezi (Espírito Santo); M. giupponii; M. goitaca; M. sai (Rio de Janeiro); M. tamoio; M. unicornis; M. gabettae; M. inornatus (São Paulo); M. itapoa (Santa Catarina).

  2. Optimal selection of TLD chips

    International Nuclear Information System (INIS)

    Phung, P.; Nicoll, J.J.; Edmonds, P.; Paris, M.; Thompson, C.

    1996-01-01

    Large sets of TLD chips are often used to measure beam dose characteristics in radiotherapy. A sorting method is presented to allow optimal selection of chips from a chosen set. This method considers the variation

  3. Biostability of an implantable glucose sensor chip

    Science.gov (United States)

    Fröhlich, M.; Birkholz, M.; Ehwald, K. E.; Kulse, P.; Fursenko, O.; Katzer, J.

    2012-12-01

    Surface materials of an implantable microelectronic chip intended for medical applications were evaluated with respect to their long-term stability in bio-environments. The sensor chip shall apply in a glucose monitor by operating as a microviscosimeter according to the principle of affinity viscosimetry. A monolithic integration of a microelectromechanical system (MEMS) into the sensor chip was successfully performed in a combined 0.25 μm CMOS/BiCMOS technology. In order to study material durability and biostability of the surfaces, sensor chips were exposed to various in vitro and in vivo tests. Corrosional damage of SiON, SiO2 and TiN surfaces was investigated by optical microscopy, ellipsometry and AFM. The results served for optimizing the Back-end-of-Line (BEoL) stack, from which the MEMS was prepared. Corrosion of metal lines could significantly be reduced by improving the topmost passivation layer. The experiments revealed no visible damage of the actuator or other functionally important MEMS elements. Sensor chips were also exposed to human body fluid for three month by implantation into the abdomen of a volunteer. Only small effects were observed for layer thickness and Ra roughness after explantation. In particular, TiN as used for the actuator beam showed no degradation by biocorrosion. The highest degradation rate of about 50 nm per month was revealed for the SiON passivation layer. These results suggest that the sensor chip may safely operate in subcutaneous tissue for a period of several months.

  4. Biostability of an implantable glucose sensor chip

    International Nuclear Information System (INIS)

    Fröhlich, M; Ehwald, K E; Kulse, P; Fursenko, O; Katzer, J; Birkholz, M

    2012-01-01

    Surface materials of an implantable microelectronic chip intended for medical applications were evaluated with respect to their long-term stability in bio-environments. The sensor chip shall apply in a glucose monitor by operating as a microviscosimeter according to the principle of affinity viscosimetry. A monolithic integration of a microelectromechanical system (MEMS) into the sensor chip was successfully performed in a combined 0.25 μm CMOS/BiCMOS technology. In order to study material durability and biostability of the surfaces, sensor chips were exposed to various in vitro and in vivo tests. Corrosional damage of SiON, SiO 2 and TiN surfaces was investigated by optical microscopy, ellipsometry and AFM. The results served for optimizing the Back-end-of-Line (BEoL) stack, from which the MEMS was prepared. Corrosion of metal lines could significantly be reduced by improving the topmost passivation layer. The experiments revealed no visible damage of the actuator or other functionally important MEMS elements. Sensor chips were also exposed to human body fluid for three month by implantation into the abdomen of a volunteer. Only small effects were observed for layer thickness and R a roughness after explantation. In particular, TiN as used for the actuator beam showed no degradation by biocorrosion. The highest degradation rate of about 50 nm per month was revealed for the SiON passivation layer. These results suggest that the sensor chip may safely operate in subcutaneous tissue for a period of several months.

  5. Smart vision chips: An overview

    Science.gov (United States)

    Koch, Christof

    1994-01-01

    This viewgraph presentation presents four working analog VLSI vision chips: (1) time-derivative retina, (2) zero-crossing chip, (3) resistive fuse, and (4) figure-ground chip; work in progress on computing motion and neuromorphic systems; and conceptual and practical lessons learned.

  6. A simple clockless Network-on-Chip for a commercial audio DSP chip

    DEFF Research Database (Denmark)

    Stensgaard, Mikkel Bystrup; Bjerregaard, Tobias; Sparsø, Jens

    2006-01-01

    We design a very small, packet-switched, clockless Network-on-Chip (NoC) as a replacement for the existing crossbar-based communication infrastructure in a commercial audio DSP chip. Both solutions are laid out in a 0.18 um process, and compared in terms of area, power consumption and routing...... to the existing crossbar, it allows all blocks to communicate. The total wire length is decreased by 22% which eases the layout process and makes the design less prone to routing congestion. Not least, the communicating blocks are decoupled by means of the NoC, providing a Globally-Asynchronous, Locally...

  7. Proposed method of producing large optical mirrors Single-point diamond crushing followed by polishing with a small-area tool

    Science.gov (United States)

    Wright, G.; Bryan, J. B.

    1986-01-01

    Faster production of large optical mirrors may result from combining single-point diamond crushing of the glass with polishing using a small area tool to smooth the surface and remove the damaged layer. Diamond crushing allows a surface contour accurate to 0.5 microns to be generated, and the small area computer-controlled polishing tool allows the surface roughness to be removed without destroying the initial contour. Final contours with an accuracy of 0.04 microns have been achieved.

  8. In vivo assessment of the tolerance dose of small liver volumes after single-fraction HDR irradiation

    International Nuclear Information System (INIS)

    Ricke, Jens; Seidensticker, Max; Luedemann, Lutz; Pech, Maciej; Wieners, Gero; Hengst, Susanne; Mohnike, Konrad; Cho, Chie Hee; Lopez Haenninen, Enrique; Al-Abadi, Hussain; Felix, Roland; Wust, Peter

    2005-01-01

    Purpose: To prospectively assess a dose-response relationship for small volumes of liver parenchyma after single-fraction irradiation. Methods and Materials: Twenty-five liver metastases were treated by computed tomography (CT)-guided interstitial brachytherapy. Magnetic resonance imaging was performed 1 day before and 3 days and 6, 12, and 24 weeks after therapy. MR sequences included T1-w gradient echo (GRE) enhanced by hepatocyte-targeted gadobenate dimeglumine. All MRI data sets were merged with 3D dosimetry data and evaluated by two radiologists. The reviewers indicated the border of hyperintensity on T2-w images (edema) or hypointensity on T1-w images (loss of hepatocyte function). Based on the total 3D data, a dose-volume histogram was calculated. We estimated the threshold dose for either edema or function loss as the D 90 , i.e., the dose achieved in at least 90% of the pseudolesion volume. Results: Between 3 days and 6 weeks, the extension of the edema increased significantly from the 12.9 Gy isosurface to 9.9 Gy (standard deviation [SD], 3.3 and 2.6). No significant change was detected between 6 and 12 weeks. After 24 weeks, the edematous tissue had shrunk significantly to 14.7 Gy (SD, 4.2). Three days postbrachytherapy, the D 90 for hepatocyte function loss reached the 14.9 Gy isosurface (SD, 3.9). At 6 weeks, the respective zone had increased significantly to 9.9 Gy (SD, 2.3). After 12 and 24 weeks, the dysfunction volume had decreased significantly to the 11.9 Gy and 15.2 Gy isosurface, respectively (SD, 3 and 4.1). Conclusions: The 95% interval from 7.6 to 12.2 Gy found as the minimal hepatocyte tolerance after 6 weeks accounts for the radiobiologic variations found in CT-guided brachytherapy, including heterogeneous dose rates by variable catheter arrays

  9. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Jiang, H.; Kauppinen, E. I., E-mail: esko.kauppinen@aalto.fi [Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Susi, T. [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria); Nasibulin, A. G. [Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Skolkovo Institute of Science and Technology, Nobel str. 3, 143026 (Russian Federation); Saint-Petersburg State Polytechnical University, 29 Polytechniheskaya st., St. Petersburg, 195251 (Russian Federation)

    2015-07-06

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3–4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ∼10{sup 5 }cm{sup −3} prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.

  10. Silicon-Chip-Based Optical Frequency Combs

    Science.gov (United States)

    2015-10-26

    fiber-based polarization controllers and a polarization beam splitter , and the output power is monitored with a sensitive photodiode. We use a...a single CW laser beam coupled to a microresonators can produce stabilized, octave-spanning combs through highly cascaded four-wave mixing (FWM...resonator designs , the resonator and the coupling waveguide are monolithically integrated. Thus, the entire on-chip configuration of CMOS-compatible

  11. Comparison of single-grain and small-aliquot OSL dose estimates in <3000 years old river sediments from South India

    International Nuclear Information System (INIS)

    Thomas, P.J.; Jain, M.; Juyal, N.; Singhvi, A.K.

    2005-01-01

    We report on OSL dose distributions derived from small-aliquot and single grains of quartz in young fluvial sediments sampled from the Penner River basin, South India. The single-grain dose distributions suggest that 13 out of 19 samples were well bleached. In many well-bleached samples, there was an underestimation in the single-aliquot dose estimates as compared to those from the single grain-the difference between average dose estimates determined by the two methods ranged from ∼1% to 31%. Such a dose underestimation was not detectable in poorly bleached samples. Various possible reasons for the discrepancy between single-grain and small-aliquot dose estimates are discussed. Although there is no satisfactory explanation for this discrepancy, we speculate that the difference in the stimulation wavelengths, 470+/-30nm in the case of single-aliquot and 532nm in the case of single grains, could perhaps be one of the reasons; this may occur because the stimulation wavelength affects the proportion of the medium and slow components in the initial signal

  12. Characterization of an endoprotease from rat small intestinal mucosal secretory granules which generates somatostatin-28 from prosomatostatin by cleavage after a single arginine residue

    NARCIS (Netherlands)

    Beinfeld, M. C.; Bourdais, J.; Kuks, P.; Morel, A.; Cohen, P.

    1989-01-01

    We have extracted, characterized, and partially purified an enzyme from secretory granules from rat small intestinal mucosa which cleaves a synthetic prosomatostatin substrate on the carboxyl side of a single arginine residue. This substrate Leu-Gln-Arg-Ser-Ala-Asn-Ser-NH2 contains the monobasic

  13. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  14. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    International Nuclear Information System (INIS)

    Chang, Yung-Ting; Liu, Shun-Wei; Yuan, Chih-Hsien; Lee, Chih-Chien; Ho, Yu-Hsuan; Wei, Pei-Kuen; Chen, Kuan-Yu; Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti; Wu, Chih-I

    2013-01-01

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts

  15. Rework of flip chip bonded radiation pixel detectors

    International Nuclear Information System (INIS)

    Vaehaenen, S.; Heikkinen, H.; Pohjonen, H.; Salonen, J.; Savolainen-Pulli, S.

    2008-01-01

    In this paper, some practical aspects of reworking flip chip hybridized pixel detectors are discussed. As flip chip technology has been advancing in terms of placement accuracy and reliability, large-area hybrid pixel detectors have been developed. The area requirements are usually fulfilled by placing several readout chips (ROCs) on single sensor chip. However, as the number of ROCs increases, the probability of failure in the hybridization process and the ROC operation also increases. Because high accuracy flip chip bonding takes time, a significant part of the price of a pixel detector comes from the flip chip assembly process itself. As large-area detector substrates are expensive, and many flip chip placements are required, the price of an assembled detector can become very high. In a typical case, there is just one bad ROC (out of several) on a faulty detector to be replaced. Considering the high price of pixel detectors and the fact that reworking faulty ROCs does not take much longer than the original placement, it is worthwhile to investigate the feasibility of a rework process

  16. Rework of flip chip bonded radiation pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vaehaenen, S. [VTT MEMS and Micropackaging, Espoo 02150 (Finland)], E-mail: sami.vahanen@vtt.fi; Heikkinen, H.; Pohjonen, H.; Salonen, J.; Savolainen-Pulli, S. [VTT MEMS and Micropackaging, Espoo 02150 (Finland)

    2008-06-11

    In this paper, some practical aspects of reworking flip chip hybridized pixel detectors are discussed. As flip chip technology has been advancing in terms of placement accuracy and reliability, large-area hybrid pixel detectors have been developed. The area requirements are usually fulfilled by placing several readout chips (ROCs) on single sensor chip. However, as the number of ROCs increases, the probability of failure in the hybridization process and the ROC operation also increases. Because high accuracy flip chip bonding takes time, a significant part of the price of a pixel detector comes from the flip chip assembly process itself. As large-area detector substrates are expensive, and many flip chip placements are required, the price of an assembled detector can become very high. In a typical case, there is just one bad ROC (out of several) on a faulty detector to be replaced. Considering the high price of pixel detectors and the fact that reworking faulty ROCs does not take much longer than the original placement, it is worthwhile to investigate the feasibility of a rework process.

  17. Thermal-Aware Scheduling for Future Chip Multiprocessors

    Directory of Open Access Journals (Sweden)

    Pedro Trancoso

    2007-04-01

    Full Text Available The increased complexity and operating frequency in current single chip microprocessors is resulting in a decrease in the performance improvements. Consequently, major manufacturers offer chip multiprocessor (CMP architectures in order to keep up with the expected performance gains. This architecture is successfully being introduced in many markets including that of the embedded systems. Nevertheless, the integration of several cores onto the same chip may lead to increased heat dissipation and consequently additional costs for cooling, higher power consumption, decrease of the reliability, and thermal-induced performance loss, among others. In this paper, we analyze the evolution of the thermal issues for the future chip multiprocessor architectures and show that as the number of on-chip cores increases, the thermal-induced problems will worsen. In addition, we present several scenarios that result in excessive thermal stress to the CMP chip or significant performance loss. In order to minimize or even eliminate these problems, we propose thermal-aware scheduler (TAS algorithms. When assigning processes to cores, TAS takes their temperature and cooling ability into account in order to avoid thermal stress and at the same time improve the performance. Experimental results have shown that a TAS algorithm that considers also the temperatures of neighboring cores is able to significantly reduce the temperature-induced performance loss while at the same time, decrease the chip's temperature across many different operation and configuration scenarios.

  18. Safety of cardiac magnetic resonance and contrast angiography for neonates and small infants: a 10-year single-institution experience

    Energy Technology Data Exchange (ETDEWEB)

    Rangamani, Sheela; Li, Ling; Harvey, Lisa; Fletcher, Scott E.; Danford, David A.; Kutty, Shelby [University of Nebraska College of Medicine/Creighton University School of Medicine, Joint Division of Pediatric Cardiology, Omaha, NE (United States); Varghese, Joby [Children' s Hospital and Medical Center, Division of Pediatric Cardiac Anesthesia, Omaha, NE (United States); Hammel, James M.; Duncan, Kim F. [Children' s Hospital and Medical Center, Division of Cardiothoracic Surgery, Omaha, NE (United States)

    2012-11-15

    With increasing applications of cardiac magnetic resonance (CMR) and magnetic resonance angiography (MRA) for evaluation of congenital heart disease (CHD), safety of this technology in the very young is of particular interest. We report our 10-year experience with CMR in neonates and small infants with particular focus on the safety profile and incidence of adverse events (AEs). We reviewed clinical, anesthesia and nursing records of all children {<=}120 days of age who underwent CMR. We recorded variables including cardiac diagnosis, study duration, anesthesia type and agents, prostaglandin E1 (PGE1) dependence and gadolinium (Gd) use. Serially recorded temperature, systemic saturation (SpO{sub 2}) and cardiac rhythm were analyzed. Primary outcome measure was any AE during or <24 h after the procedure, including minor AEs such as hypothermia (axillary temperature {<=}95 F), desaturation (SpO{sub 2} drop {>=}10% below baseline) and bradycardia (heart rate {<=}100 bpm). Secondary outcome measure was unplanned overnight hospitalization of outpatients. Children (n = 143; 74 boys, 69 girls) had a median age of 6 days (1-117), and 98 were {<=}30 days at the time of CMR. The median weight was 3.4 kg (1.4-6 kg) and body surface area 0.22 m{sup 2} (0.13-0.32 m{sup 2}). There were 118 (83%) inpatients (108 receiving intensive care) and 25 (17%) outpatients. Indications for CMR were assessment of aortic arch (n = 57), complex CHD (n = 41), pulmonary veins (n = 15), vascular ring (n = 8), intracardiac mass (n = 8), pulmonary artery (n = 7), ventricular volume (n = 4), and systemic veins (n = 3). CMR was performed using a 1.5-T scanner and a commercially available coil. CMR utilized general anesthesia (GA) in 86 children, deep sedation (DS) in 50 and comforting methods in seven. MRA was performed in 136 children. Fifty-nine children were PGE1-dependent and 39 had single-ventricle circulation. Among children on PGE1, 43 (73%) had GA and 10 (17%) had DS. Twelve children (9%) had

  19. Safety of cardiac magnetic resonance and contrast angiography for neonates and small infants: a 10-year single-institution experience

    International Nuclear Information System (INIS)

    Rangamani, Sheela; Li, Ling; Harvey, Lisa; Fletcher, Scott E.; Danford, David A.; Kutty, Shelby; Varghese, Joby; Hammel, James M.; Duncan, Kim F.

    2012-01-01

    With increasing applications of cardiac magnetic resonance (CMR) and magnetic resonance angiography (MRA) for evaluation of congenital heart disease (CHD), safety of this technology in the very young is of particular interest. We report our 10-year experience with CMR in neonates and small infants with particular focus on the safety profile and incidence of adverse events (AEs). We reviewed clinical, anesthesia and nursing records of all children ≤120 days of age who underwent CMR. We recorded variables including cardiac diagnosis, study duration, anesthesia type and agents, prostaglandin E1 (PGE1) dependence and gadolinium (Gd) use. Serially recorded temperature, systemic saturation (SpO 2 ) and cardiac rhythm were analyzed. Primary outcome measure was any AE during or 2 drop ≥10% below baseline) and bradycardia (heart rate ≤100 bpm). Secondary outcome measure was unplanned overnight hospitalization of outpatients. Children (n = 143; 74 boys, 69 girls) had a median age of 6 days (1-117), and 98 were ≤30 days at the time of CMR. The median weight was 3.4 kg (1.4-6 kg) and body surface area 0.22 m 2 (0.13-0.32 m 2 ). There were 118 (83%) inpatients (108 receiving intensive care) and 25 (17%) outpatients. Indications for CMR were assessment of aortic arch (n = 57), complex CHD (n = 41), pulmonary veins (n = 15), vascular ring (n = 8), intracardiac mass (n = 8), pulmonary artery (n = 7), ventricular volume (n = 4), and systemic veins (n = 3). CMR was performed using a 1.5-T scanner and a commercially available coil. CMR utilized general anesthesia (GA) in 86 children, deep sedation (DS) in 50 and comforting methods in seven. MRA was performed in 136 children. Fifty-nine children were PGE1-dependent and 39 had single-ventricle circulation. Among children on PGE1, 43 (73%) had GA and 10 (17%) had DS. Twelve children (9%) had adverse events (AEs) - one major and 11 minor. Of those 12, nine children had GA (10%) and three had DS (6%). The single major AE was

  20. An air-breathing single cell small proton exchange membrane fuel cell system with AB5-type metal hydride and an ultra-low voltage input boost converter

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Kazuya; Matsumoto, Satoshi; Miyasaka, Akihiro; Shodai, Takahisa [NTT Energy and Environment System Laboratories, 3-1 Morinosato-Wakamiya Atsugi-shi, Kanagawa (Japan)

    2009-01-01

    A new strategy for increasing the power density of an air-breathing small proton exchange membrane fuel cell (PEMFC) system for the main energy source of portable consumer electronics is presented. The small PEMFC system is composed of a single cell. Utilizing the output voltage of the single cell, we introduce a newly designed ultra-low voltage input boost converter. The boost converter can generate 4.1 V output from input sources with low voltage ranges, such as under 1.0 V. The cathode plate is made from a thin SUS 316L stainless steel plate and has ribs that prevent the cathode from bending. The hydrogen is supplied by a metal hydride (MH) tank cartridge. The MH tank contains highly packed AB5-type MH. The MH tank cartridge has a volume of 13.2 cm{sup 3} and can absorb 6.7 L of hydrogen. The maximum power of the small PEMFC is 4.42 W at room temperature. Using 6.7 L of hydrogen, the small PEMFC can generate 11 Wh of electricity. The power density of the small PEMFC reaches 0.51 Wh cm{sup -3}. And the power density of the whole small PEMFC system, which contains the boost converter, a small Li-ion battery for a load absorber, and a case for the system, reaches 0.14 Wh cm{sup -3}. This value matches that of external Li-ion battery chargers for cell phones. We installed the small PEMFC system in a cell phone and confirmed the operations of calling, receiving, videophone, connecting to the Internet, and watching digital TV. And also confirmed that the small PEMFC system provides approximately 8.25 h of talk time, which is about three times as long as that for the original Li-ion battery. (author)

  1. Comparison of single-grain and small-aliquot OSL dose estimates in < 3000 years old river sediments from South India

    DEFF Research Database (Denmark)

    Thomas, P.J.; Jain, M.; Juyal, N.

    2005-01-01

    We report on OSL dose distributions derived from small-aliquot and single grains of quartz in young fluvial sediments sampled from the Penner River basin, South India. The single-grain dose distributions suggest that 13 out of 19 samples were well bleached. In many well-bleached samples, there wa......We report on OSL dose distributions derived from small-aliquot and single grains of quartz in young fluvial sediments sampled from the Penner River basin, South India. The single-grain dose distributions suggest that 13 out of 19 samples were well bleached. In many well-bleached samples......, there was an underestimation in the single-aliquot dose estimates as compared to those from the single grain-the difference between average dose estimates determined by the two methods ranged from similar to 1% to 31%. Such a dose underestimation was not detectable in poorly bleached samples. Various possible reasons...... perhaps be one of the reasons; this may occur because the stimulation wavelength affects the proportion of the medium and slow components in the initial signal. (c) 2004 Elsevier Ltd. All rights reserved....

  2. Preservation of forest wood chips

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, P.D.; Thomsen, I.M.; Ohlsson, C.; Leer, E.; Ravn Schmidt, E.; Soerensen, M.; Knudsen, P.

    1999-01-01

    As part of the Danish Energy Research Programme on biomass utilisation for energy production (EFP), this project concerns problems connected to the handling and storing of wood chips. In this project, the possibility of preserving wood chips of the Norway Spruce (Picea Abies) is addressed, and the potential improvements by anaerobic storage are tested. Preservation of wood chips aims at reducing dry matter losses from extensive heating during storage and to reduce production of fungal spores. Fungal spores pose a health hazards to workers handling the chips. Further the producers of wood chips are interested in such a method since it would enable them to give a guarantee for the delivery of homogeneous wood chips also during the winter period. Three different types of wood chips were stored airtight and further one of these was stored in accordance with normal practise and use as reference. The results showed that airtight storage had a beneficial impact on the quality of the chips: no redistribution of moisture, low dry matter losses, unfavourable conditions for microbial activity of most fungi, and the promotion of yeasts instead of fungi with airborne spores. Likewise the firing tests showed that no combustion problems, and no increased risk to the environment or to the health of staff is caused by anaerobic storage of wood chips. In all, the tests of the anaerobic storage method of forest wood chips were a success and a large-scale test of the method will be carried out in 1999. (au)

  3. Origami chip-on-sensor design: progress and new developments

    International Nuclear Information System (INIS)

    Irmler, C; Bergauer, T; Frankenberger, A; Friedl, M; Gfall, I; Valentan, M; Ishikawa, A; Kato, E; Negishi, K; Kameswara, R; Mohanty, G; Onuki, Y; Shimizu, N; Tsuboyama, T

    2013-01-01

    The Belle II silicon vertex detector will consist of four layers of double-sided silicon strip detectors, arranged in ladders. Each sensor will be read out individually by utilizing the Origami chip-on-sensor concept, where the APV25 chips are placed on flexible circuits, glued on top of the sensors. Beside a best compromise between low material budget and sufficient SNR, this concept allows efficient CO 2 cooling of the readout chips by a single, thin cooling pipe per ladder. Recently, we assembled a module consisting of two consecutive 6'' double-sided silicon strip detectors, both read out by Origami flexes. Such a compound of Origami modules is required for the ladders of the outer Belle II SVD layers. Consequently, it is intended to verify the scalability of the assembly procedure, the performance of combined Origami flexes as well as the efficiency of the CO 2 cooling system for a higher number of APV25 chips.

  4. Development of a synchrotron timing system on a programmable chip

    International Nuclear Information System (INIS)

    Lin Feiyu; Qiao Weimin; Wang Yanyu; Guo Yuhui

    2009-01-01

    A synchrotron requires extremely high time constraints for timing signals, so timing system is very important for a synchrotron control system. A FPGA+ARM+Linux+DSP architecture has been mainly used in timing control of the HIRFL-CSR control system. In this paper, we report the development of the SOPC(System On a Programmable Chip) based on FPGA and uClinux.It can integrate all the functions of ARM+Linux in one single FPGA chip, hence no need of the dedicated ARM chip, and the reduced cost. The maximum operation frequency of this system is 185 MHz. The hardware consumes less than 4% of total resources of FPGA chip. And both the hardware system and the operating system of the SOPC are reconfigurable. The SOPC system has a wide prospect of applications in accelerator engineering and many fields of scientific research. (authors)

  5. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.

    Science.gov (United States)

    Mauk, Michael G; Liu, Changchun; Qiu, Xianbo; Chen, Dafeng; Song, Jinzhao; Bau, Haim H

    2017-01-01

    Microfluidic cassettes ("chips") for processing and analysis of clinical specimens and other sample types facilitate point-of-care (POC) immunoassays and nucleic acid based amplification tests. These single-use test chips can be self-contained and made amenable to autonomous operation-reducing or eliminating supporting instrumentation-by incorporating laminated, pliable "pouch" and membrane structures for fluid storage, pumping, mixing, and flow control. Materials and methods for integrating flexible pouch compartments and diaphragm valves into hard plastic (e.g., acrylic and polycarbonate) microfluidic "chips" for reagent storage, fluid actuation, and flow control are described. We review several versions of these pouch chips for immunoassay and nucleic acid amplification tests, and describe related fabrication techniques. These protocols thus offer a "toolbox" of methods for storage, pumping, and flow control functions in microfluidic devices.

  6. Amdahl 470 Chip Package

    CERN Multimedia

    1975-01-01

    In the late 70s the larger IBM computers were water cooled. Amdahl, an IBM competitor, invented an air cooling technology for it's computers. His company worked hard, developing a computer that was faster and less expensive than the IBM System/360 mainframe computer systems. This object contains an actual Amdahl series 470 computer logic chip with an air cooling device mounted on top. The package leads and cooling tower are gold-plated.

  7. Fabrication and characterization of SPR chips with the modified bovine serum albumin

    Science.gov (United States)

    Chen, Xing; Zhang, Lu-lu; Cui, Da-fu

    2016-03-01

    A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.

  8. Silicon Chip-to-Chip Mode-Division Multiplexing

    DEFF Research Database (Denmark)

    Baumann, Jan Markus; Porto da Silva, Edson; Ding, Yunhong

    2018-01-01

    A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes.......A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes....

  9. Microelectromechanical System-Based Sensing Arrays for Comparative in Vitro Nanotoxicity Assessment at Single Cell and Small Cell-Population Using Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Shah, Pratikkumar; Zhu, Xuena; Zhang, Xueji; He, Jin; Li, Chen-zhong

    2016-03-09

    The traditional in vitro nanotoxicity assessment approaches are conducted on a monolayer of cell culture. However, to study a cell response without interference from the neighbor cells, a single cell study is necessary; especially in cases of neuronal, cancerous, and stem cells, wherein an individual cell's fate is often not explained by the whole cell population. Nonetheless, a single cell does not mimic the actual in vivo environment and lacks important information regarding cell communication with its microenvironment. Both a single cell and a cell population provide important and complementary information about cells' behaviors. In this research, we explored nanotoxicity assessment on a single cell and a small cell population using electrochemical impedance spectroscopy and a microelectromechanical system (MEMS) device. We demonstrated a controlled capture of PC12 cells in different-sized microwells (to capture a different number of cells) using a combined method of surface functionalization and dielectrophoresis. The present approach provides a rapid nanotoxicity response as compared to other conventional approaches. This is the first study, to our knowledge, which demonstrates a comparative response of a single cell and small cell colonies on the same MEMS platform, when exposed to metaloxide nanoparticles. We demonstrated that the microenvironment of a cell is also accountable for cells' behaviors and their responses to nanomaterials. The results of this experimental study open up a new hypothesis to be tested for identifying the role of cell communication in spreading toxicity in a cell population.

  10. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences. The book gives an overview of the development of MC and CE technology as well as technology that now allows for the fabrication of MC-CE devices. It describes the operating principles that make integration possible and illustrates some achievements already made by the application of MC-CE devices in hospitals, clinics, food safety, and environmental research. The authors envision further applications for private and public use once the proof-of-concept stage has been passed and obstacles to increased commercialization are ad...

  11. The rewritable effects of bonded magnet for large starting torque and high efficiency in the small power single-phase written pole motor

    Science.gov (United States)

    Choi, Jae-Hak; Lee, Sung-Ho

    2009-04-01

    This paper presents a single-phase written pole motor using a bonded ring magnet for the small power home application. The motor has an exciter pole structure inside the stator and hybrid characteristics of an induction motor and permanent magnet motor. The design parameters and operating characteristics of the hybrid concept motor are investigated to increase starting torque and efficiency, which is most important for the small power home application. Larger starting torque and higher efficiency than those of the conventional induction motor could be obtained by using the rewritable characteristics of bonded magnet on the starting and running conditions.

  12. A single-center audit of the indications and clinical impact of prolonged ambulatory small intestinal manometry.

    Science.gov (United States)

    Ang, D; Pannemans, J; Vanuytsel, T; Tack, J

    2018-05-01

    Small bowel manometry is a diagnostic test available only in a few specialized referral centers. Its exact place in the management of refractory symptoms is controversial. The records of all patients who underwent 24-hour ambulatory duodenojejunal manometry over a 6-year period were retrospectively reviewed. We studied the clinical indications for small bowel manometry, and reviewed the impact of manometric findings on the clinical outcome. One hundred and forty-six studies were performed in 137 patients (46M, 91F) with a mean age of 44.9 ± 15.7 years. Mean follow-up duration was 15.1 ± 22.6 months. Appropriate endoscopic, radiological and gastric scintigraphy studies were performed in all patients prior to small bowel manometry. Criteria for abnormal motor activity were based on Bharucha's classification. The indications for small bowel manometry were chronic abdominal pain (n = 43), slow-transit constipation (n = 17), refractory gastroparesis (n = 16), chronic diarrhea (n = 7), recurrent episodes of subocclusion (n = 16), postsurgical evaluation (n = 36), suspicion of gut involvement in systemic disease (n = 9), and unexplained nausea (n = 2). The most common finding was a normal 24-hour ambulatory small bowel manometry (n = 113). Thirty-three studies yielded abnormal findings which included extrinsic neuropathy (n = 6), intrinsic neuropathy (n = 18), intestinal myopathy (n = 2), and subocclusion (n = 7). Ambulatory small bowel manometry excluded a generalized motility disorder in 77% and had a significant impact on the subsequent clinical course in 23%. Ambulatory small bowel manometry is a useful and safe diagnostic tool to complement traditional investigative modalities in patients with severe unexplained abdominal symptoms. © 2018 John Wiley & Sons Ltd.

  13. Construction of a restriction map and gene map of the lettuce chloroplast small single-copy region using Southern cross-hybridization.

    Science.gov (United States)

    Mitchelson, K R

    1996-01-01

    The small single-copy region (SSCR) of the chloroplast genome of many higher plants typically contain ndh genes encoding proteins that share homology with subunits of the respiratory-chain reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase complex of mitochondria. A map of the lettuce chloroplast SSCR has been determined by Southern cross-hybridization, taking advantage of the high degree of homology between a tobacco small single-copy fragment and a corresponding lettuce chloroplast fragment. The gene order of the SSCR of lettuce and tobacco chloroplasts is similar. The cross-hybridization method can rapidly create a primary gene map of unknown chloroplast fragments, thus providing detailed information of the localization and arrangement of genes and conserved open reading frame regions.

  14. Design, Construction, and Use of a Single Board Computer Beowulf Cluster: Application of the Small-Footprint, Low-Cost, InSignal 5420 Octa Board

    OpenAIRE

    Cusick, James J.; Miller, William; Laurita, Nicholas; Pitt, Tasha

    2014-01-01

    In recent years development in the area of Single Board Computing has been advancing rapidly. At Wolters Kluwer's Corporate Legal Services Division a prototyping effort was undertaken to establish the utility of such devices for practical and general computing needs. This paper presents the background of this work, the design and construction of a 64 core 96 GHz cluster, and their possibility of yielding approximately 400 GFLOPs from a set of small footprint InSignal boards created for just o...

  15. An FPGA bridge preserving traffing quality of service for on-chip network-based systems

    NARCIS (Netherlands)

    Nejad, A.B.; Escudero Martinez, M.; Goossens, K.G.W.

    2011-01-01

    FPGA prototyping of recent large Systems on Chip (SoCs) is very challenging due to the resource limitation of a single FPGA. Moreover, having external access to SoCs for verification and debug purposes is essential. In this paper, we suggest to partition a network-on-chip (NoC) based system into

  16. Impacts of boat paint chips on the distribution and availability of copper in an English ria

    International Nuclear Information System (INIS)

    Turner, Andrew; Fitzer, Susan; Glegg, Gillian A.

    2008-01-01

    Discarded paint chips collected from a leisure boat maintenance facility on the Kingsbridge estuary, SW England, have been fractionated to -1 ). Specifically, greatest concentrations and greatest variability among replicates were found in samples collected near boat maintenance facilities. Bioavailability of Cu in sediment averaged 7% but was also variable. We attribute Cu 'hot spots' to heterogeneous contamination of local sediment by small quantities of paint chips. Contamination may arise directly, from relatively inert particulates, or indirectly, via release of Cu from chips to interstitial waters and its subsequent adsorption to local sediment. - Discarded paint chips from boat cleaning are a potentially significant source of local Cu contamination in marine environments

  17. Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip.

    Science.gov (United States)

    Van Nostrand, Joy D; Yin, Huaqin; Wu, Liyou; Yuan, Tong; Zhou, Jizhong

    2016-01-01

    Functional gene arrays, like the GeoChip, allow for the study of tens of thousands of genes in a single assay. The GeoChip array (5.0) contains probes for genes involved in geochemical cycling (N, C, S, and P), metal homeostasis, stress response, organic contaminant degradation, antibiotic resistance, secondary metabolism, and virulence factors as well as genes specific for fungi, protists, and viruses. Here, we briefly describe GeoChip design strategies (gene selection and probe design) and discuss minimum quantity and quality requirements for nucleic acids. We then provide detailed protocols for amplification, labeling, and hybridization of samples to the GeoChip.

  18. A retrospective study comparing the outcome of horses undergoing small intestinal resection and anastomosis with a single layer (Lembert) or double layer (simple continuous and Cushing) technique.

    Science.gov (United States)

    Close, Kristyn; Epstein, Kira L; Sherlock, Ceri E

    2014-05-01

    To (1) compare postoperative complications and survival in horses after small intestinal resection and anastomosis using 2 anastomosis techniques (single layer Lembert; double layer simple continuous oversewn with Cushing), and (2) to compare outcome by anastomosis type (jejunoileostomy; jejunojejunostomy). Retrospective case series. Horses (n = 53). Medical records (July 2006-July 2010) of all horses that had small intestinal resection and anastomosis. Horses were divided into groups based on technique and type of anastomosis. Comparisons of pre- and intraoperative findings (disease severity), postoperative complications, and survival rates were made between groups. There were no differences in disease severity, postoperative complications, or survival between single layer (n = 23) or double layer (n = 31) anastomoses. There were no differences in disease severity or survival between jejunoileostomy (n = 16) or jejunojejunostomy (n = 38). There was a higher incidence of postoperative colic in hospital after jejunoileostomy (13/16) compared with jejunojejunostomy (18/38) (P = .0127). Postoperative complications and survival are comparable between horses undergoing single layer and double layer small intestinal end-to-end anastomoses. With the exception of increased postoperative colic in the hospital, postoperative complications and survival after jejunoileostomy and jejunojejunostomy are also comparable. © Copyright 2014 by The American College of Veterinary Surgeons.

  19. Modeling single-scattering properties of small cirrus particles by use of a size-shape distribution of ice spheroids and cylinders

    International Nuclear Information System (INIS)

    Liu Li; Mishchenko, Michael I.; Cairns, Brian; Carlson, Barbara E.; Travis, Larry D.

    2006-01-01

    In this study, we model single-scattering properties of small cirrus crystals using mixtures of polydisperse, randomly oriented spheroids and cylinders with varying aspect ratios and with a refractive index representative of water ice at a wavelength of 1.88 μm. The Stokes scattering matrix elements averaged over wide shape distributions of spheroids and cylinders are compared with those computed for polydisperse surface-equivalent spheres. The shape-averaged phase function for a mixture of oblate and prolate spheroids is smooth, featureless, and nearly flat at side-scattering angles and closely resembles those typically measured for cirrus. Compared with the ensemble-averaged phase function for spheroids, that for a shape distribution of cylinders shows a relatively deeper minimum at side-scattering angles. This may indicate that light scattering from realistic cirrus crystals can be better represented by a shape mixture of ice spheroids. Interestingly, the single-scattering properties of shape-averaged oblate and prolate cylinders are very similar to those of compact cylinders with a diameter-to-length ratio of unity. The differences in the optical cross sections, single-scattering albedo, and asymmetry parameter between the spherical and the nonspherical particles studied appear to be relatively small. This may suggest that for a given optical thickness, the influence of particle shape on the radiative forcing caused by a cloud composed of small ice crystals can be negligible

  20. Design and Development of a Portable Metal Chip Baler using A System Design Approach

    Directory of Open Access Journals (Sweden)

    Hassan Mohd Fahrul

    2017-01-01

    Full Text Available A large amount of metal chips at workplace will result in untidy and unsafe condition thus measurements of safety are needed in some industries, where the metal chips will be collected and put into a container until the volume is sufficient to be recycled. Due to that reason, the metal chips require a lot of spaces for storage before going to recycle. In this study, a portable metal chip baler as a device for compacting those metal chips is presented based on a system approach of engineering design. Basically, the system design evolves through four phases of development that are started from conceptual design, preliminary system design, detail design and development to system test and evaluation. The portable metal chip baler uses current technology such as pneumatic cylinder to compress the metal chips so that the system capable to operate efficiently. The output from this system is the metal chips are compacted into a block shape and a working prototype was developed to prove the concept of the system. As a summary, the conceptual design of portable metal chip baler was proven and was presented using the philosophy of the systems design approach. This tool may assists workers especially in the Small-Medium Enterprise (SME manufacturing industries, school or universities’ workshops for managing metal chips easily and systematically.

  1. Perspective: Fabrication of integrated organ-on-a-chip via bioprinting.

    Science.gov (United States)

    Yang, Qingzhen; Lian, Qin; Xu, Feng

    2017-05-01

    Organ-on-a-chip has emerged as a powerful platform with widespread applications in biomedical engineering, such as pathology studies and drug screening. However, the fabrication of organ-on-a-chip is still a challenging task due to its complexity. For an integrated organ-on-a-chip, it may contain four key elements, i.e., a microfluidic chip, live cells/microtissues that are cultured in this chip, components for stimulus loading to mature the microtissues, and sensors for results readout. Recently, bioprinting has been used for fabricating organ-on-a-chip as it enables the printing of multiple materials, including biocompatible materials and even live cells in a programmable manner with a high spatial resolution. Besides, all four elements for organ-on-a-chip could be printed in a single continuous procedure on one printer; in other words, the fabrication process is assembly free. In this paper, we discuss the recent advances of organ-on-a-chip fabrication by bioprinting. Light is shed on the printing strategies, materials, and biocompatibility. In addition, some specific bioprinted organs-on-chips are analyzed in detail. Because the bioprinted organ-on-a-chip is still in its early stage, significant efforts are still needed. Thus, the challenges presented together with possible solutions and future trends are also discussed.

  2. Addressing On-Chip Power Converstion and Dissipation Issues in Many-Core System-on-a-Chip Based on Conventional Silicon and Emerging Nanotechnologies

    Science.gov (United States)

    Ashenafi, Emeshaw

    Integrated circuits (ICs) are moving towards system-on-a-chip (SOC) designs. SOC allows various small and large electronic systems to be implemented in a single chip. This approach enables the miniaturization of design blocks that leads to high density transistor integration, faster response time, and lower fabrication costs. To reap the benefits of SOC and uphold the miniaturization of transistors, innovative power delivery and power dissipation management schemes are paramount. This dissertation focuses on on-chip integration of power delivery systems and managing power dissipation to increase the lifetime of energy storage elements. We explore this problem from two different angels: On-chip voltage regulators and power gating techniques. On-chip voltage regulators reduce parasitic effects, and allow faster and efficient power delivery for microprocessors. Power gating techniques, on the other hand, reduce the power loss incurred by circuit blocks during standby mode. Power dissipation (Ptotal = Pstatic and Pdynamic) in a complementary metal-oxide semiconductor (CMOS) circuit comes from two sources: static and dynamic. A quadratic dependency on the dynamic switching power and a more than linear dependency on static power as a form of gate leakage (subthreshold current) exist. To reduce dynamic power loss, the supply power should be reduced. A significant reduction in power dissipation occurs when portions of a microprocessor operate at a lower voltage level. This reduction in supply voltage is achieved via voltage regulators or converters. Voltage regulators are used to provide a stable power supply to the microprocessor. The conventional off-chip switching voltage regulator contains a passive floating inductor, which is difficult to be implemented inside the chip due to excessive power dissipation and parasitic effects. Additionally, the inductor takes a very large chip area while hampering the scaling process. These limitations make passive inductor based on-chip

  3. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Science.gov (United States)

    Huang, Che-Wei; Huang, Yu-Jie; Lu, Shey-Shi; Lin, Chih-Ting

    2012-01-01

    A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC) architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm) integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK) wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH) range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  4. From genes to protein mechanics on a chip.

    Science.gov (United States)

    Otten, Marcus; Ott, Wolfgang; Jobst, Markus A; Milles, Lukas F; Verdorfer, Tobias; Pippig, Diana A; Nash, Michael A; Gaub, Hermann E

    2014-11-01

    Single-molecule force spectroscopy enables mechanical testing of individual proteins, but low experimental throughput limits the ability to screen constructs in parallel. We describe a microfluidic platform for on-chip expression, covalent surface attachment and measurement of single-molecule protein mechanical properties. A dockerin tag on each protein molecule allowed us to perform thousands of pulling cycles using a single cohesin-modified cantilever. The ability to synthesize and mechanically probe protein libraries enables high-throughput mechanical phenotyping.

  5. Experiment list: SRX122496 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available || chip antibody=Rel || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip ant...ibody catalog number 1=sc-71 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc

  6. The GenoChip: A New Tool for Genetic Anthropology

    Science.gov (United States)

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G.; Greenspan, Bennett; Spencer Wells, R.

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic

  7. The GenoChip: a new tool for genetic anthropology.

    Science.gov (United States)

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G; Greenspan, Bennett; Spencer Wells, R

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project's new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic

  8. Routing algorithms in networks-on-chip

    CERN Document Server

    Daneshtalab, Masoud

    2014-01-01

    This book provides a single-source reference to routing algorithms for Networks-on-Chip (NoCs), as well as in-depth discussions of advanced solutions applied to current and next generation, many core NoC-based Systems-on-Chip (SoCs). After a basic introduction to the NoC design paradigm and architectures, routing algorithms for NoC architectures are presented and discussed at all abstraction levels, from the algorithmic level to actual implementation.  Coverage emphasizes the role played by the routing algorithm and is organized around key problems affecting current and next generation, many-core SoCs. A selection of routing algorithms is included, specifically designed to address key issues faced by designers in the ultra-deep sub-micron (UDSM) era, including performance improvement, power, energy, and thermal issues, fault tolerance and reliability.   ·         Provides a comprehensive overview of routing algorithms for Networks-on-Chip and NoC-based, manycore systems; ·         Describe...

  9. A Single Session of rTMS Enhances Small-Worldness in Writer’s Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph

    Directory of Open Access Journals (Sweden)

    Rose D. Bharath

    2017-09-01

    Full Text Available Background and Purpose: Repetitive transcranial magnetic stimulation (rTMS induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI.Method: Simultaneous EEG-fMRI was acquired in duplicate before (R1 and after (R2 a single session of rTMS in 14 patients with Writer’s Cramp (WC. Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI. Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients.Result: A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI (p < 0.05. Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe.Conclusion: Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo. Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not “noise”.

  10. Small-Signal Modeling, Stability Analysis and Design Optimization of Single-Phase Delay-Based PLLs

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Vidal, Ana

    2016-01-01

    Generally speaking, designing single-phase phaselocked loops (PLLs) is more complicated than three-phase ones, as their implementation often involves the generation of a fictitious orthogonal signal for the frame transformation. In recent years, many approaches to generate the orthogonal signal...... these issues and explore new methods to enhance their performance. The stability analysis, control design guidelines and performance comparison with the state-of-the-art PLLs are presented as well....

  11. Lateral manipulation of small clusters on the Cu and Ag(1 1 1) surfaces with the single-atom and trimer-apex tips: Reliability study

    International Nuclear Information System (INIS)

    Xie Yiqun; Liu Fen; Huang Lei

    2010-01-01

    We study the reliability of the lateral manipulation of small Cu clusters (dimer and trimer) on the flat Cu(1 1 1) surface with both the single-atom and trimer-apex tips and that for the Ag/Ag(1 1 1) system, and compare the results between the two systems as well as with the single-atom manipulation on these surfaces. Manipulations are simulated using molecular statics method with semi-empirical potentials. The dependence of the manipulation reliability on the tip height and tip orientation are investigated. Overall, the manipulation reliability increases with decreasing tip height although it depends obviously on the tip orientation. For the Cu/Cu(1 1 1) system, the manipulation of the dimmer and trimer can be successful with both tips. The manipulation reliability can be improved by the trimer-apex tip, and the tip-height range for the successful manipulation is also broader, as compared to the single-atom apex tip. Differently from the single-atom manipulation, the tip orientation has a noticeable influence on the manipulation reliability even for the single-atom tip due to the stronger tip-cluster and surface-adatom interactions in cluster manipulation. For the Ag/Ag(1 1 1) system, successful manipulations only be achieved with the trimer-apex tip, and the manipulation reliability is worse than that of the Cu/Cu(1 1 1) system, indicating the difference in mechanic properties between the two surfaces at the atomic level.

  12. Transcriptome Analysis on Single Small Yellow Follicles Reveals That Wnt4 Is Involved in Chicken Follicle Selection

    Directory of Open Access Journals (Sweden)

    Yiya Wang

    2017-11-01

    Full Text Available Ovarian follicle selection is an important process impacting the laying performance and fecundity of hens, and is regulated by follicle-stimulating hormone (FSH through binding to its receptor [follicle-stimulating hormone receptor (FSHR]. In laying hens, the small yellow follicle (6–8 mm in diameter with the highest expression of FSHR will be recruited into the preovulatory hierarchy during ovarian follicle development. The study of molecular mechanism of chicken follicle selection is helpful for the identification of genes underlying egg-laying traits in chicken and other poultry species. Herein, the transcriptomes of chicken small yellow follicles differing in the mRNA expression of FSHR were compared, and a total of 17,993 genes were identified in 3 pairs of small yellow follicles. The Wnt signaling pathway was significantly enriched in the follicles with the greatest fold change in FSHR expression. In this pathway, the expression level of Wnt4 mRNA was significantly upregulated with a log2(fold change of 2.12. We further investigated the expression, function, and regulation of Wnt4 during chicken follicle selection and found that Wnt4 mRNA reached its peak in small yellow follicles; Wnt4 stimulated the proliferation of follicular granulosa cells (GCs, increased the expression of StAR and CYP11A1 mRNA in prehierarchical and hierarchical follicles, increased the expression of FSHR mRNA, and decreased the expression of anti-Müllerian hormone and OCLN mRNA. Treatment with FSH significantly increased Wnt4 expression in GCs. Moreover, Wnt4 facilitated the effects of FSH on the production of progesterone (P4 and the mRNA expression of steroidogenic enzyme genes in the GCs of hierarchical follicles, but inhibited the effects of FSH in the GCs of prehierarchical follicles. Collectively, these data suggest that Wnt4 plays an important role in chicken follicle selection by stimulating GC proliferation and steroidogenesis. This study provides a

  13. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    Science.gov (United States)

    Lee, Dasheng

    2008-01-01

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  14. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-12-01

    Full Text Available In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV measurement. The energy harvesting wireless sensor network (WSN was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an

  15. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.

    Science.gov (United States)

    Lee, Dasheng

    2008-12-02

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  16. Characterization of Ni/SnPb-TiW/Pt Flip Chip Interconnections in Silicon Pixel Detector Modules

    CERN Document Server

    Karadzhinova, Aneliya; Härkönen, Jaakko; Luukka, Panja-riina; Mäenpää, Teppo; Tuominen, Eija; Haeggstrom, Edward; Kalliopuska, Juha; Vahanen, Sami; Kassamakov, Ivan

    2014-01-01

    In contemporary high energy physics experiments, silicon detectors are essential for recording the trajectory of new particles generated by multiple simultaneous collisions. Modern particle tracking systems may feature 100 million channels, or pixels, which need to be individually connected to read-out chains. Silicon pixel detectors are typically connected to readout chips by flip-chip bonding using solder bumps. High-quality electro-mechanical flip-chip interconnects minimizes the number of dead read-out channels in the particle tracking system. Furthermore, the detector modules must endure handling during installation and withstand heat generation and cooling during operation. Silicon pixel detector modules were constructed by flip-chip bonding 16 readout chips to a single sensor. Eutectic SnPb solder bumps were deposited on the readout chips and the sensor chips were coated with TiW/Pt thin film UBM (under bump metallization). The modules were assembled at Advacam Ltd, Finland. We studied the uniformity o...

  17. Miniature silicon electronic biological assay chip and applications for rapid battlefield diagnostics

    Science.gov (United States)

    Cunningham, Brian T.; Regan, Robert A.; Clapp, Christopher; Hildebrant, Eric; Weinberg, Marc S.; Williams, John

    1999-07-01

    Assessing the medical condition of battlefield personnel requires the development of rapid, portable biological diagnostic assays for a wide variety of antigens and enzymes. Ideally, such an assay would be inexpensive, small, and require no added reagents while maintaining the sensitivity and accuracy of laboratory-based assays. In this work, a microelectromechanical (MEMS) based biological assay sensor is presented which is expected to meet the above requirements. The sensor is a thin silicon membrane resonator (SMR) which registers a decrease in resonant frequency when mass is adsorbed onto its surface. By coating the sensor surface with a monolayer of antibody, for example, we have detected the corresponding antigen with a detection resolution of 0.25 ng/ml in phosphate buffer solution. Micromachining techniques are being used to integrate many (64 elements on the first test chip) identical SMR sensors into a single silicon chip which would be capable of simultaneously performing a wide variety of biomedical assays. The sensors require only a small printed circuit board and 8V power supply to operate and provide a readout. The presentation will describe the operation of the SMR sensor, the fabrication of the sensor array, and initial test results using commercially available animal immunoglobulins in laboratory-prepared test solutions.

  18. Oxide-confined 2D VCSEL arrays for high-density inter/intra-chip interconnects

    Science.gov (United States)

    King, Roger; Michalzik, Rainer; Jung, Christian; Grabherr, Martin; Eberhard, Franz; Jaeger, Roland; Schnitzer, Peter; Ebeling, Karl J.

    1998-04-01

    We have designed and fabricated 4 X 8 vertical-cavity surface-emitting laser (VCSEL) arrays intended to be used as transmitters in short-distance parallel optical interconnects. In order to meet the requirements of 2D, high-speed optical links, each of the 32 laser diodes is supplied with two individual top contacts. The metallization scheme allows flip-chip mounting of the array modules junction-side down on silicon complementary metal oxide semiconductor (CMOS) chips. The optical and electrical characteristics across the arrays with device pitch of 250 micrometers are quite homogeneous. Arrays with 3 micrometers , 6 micrometers and 10 micrometers active diameter lasers have been investigated. The small devices show threshold currents of 600 (mu) A, single-mode output powers as high as 3 mW and maximum wavelength deviations of only 3 nm. The driving characteristics of all arrays are fully compatible to advanced 3.3 V CMOS technology. Using these arrays, we have measured small-signal modulation bandwidths exceeding 10 GHz and transmitted pseudo random data at 8 Gbit/s channel over 500 m graded index multimode fiber. This corresponds to a data transmission rate of 256 Gbit/s per array of 1 X 2 mm2 footprint area.

  19. Integration of micro-optics and microfluidics in a glass chip by fs-laser for optofluidic applications

    Science.gov (United States)

    Osellame, Roberto; Martinez, Rebeca; Laporta, Paolo; Ramponi, Roberta; Cerullo, Giulio

    2009-02-01

    A lab-on-a-chip (LOC) is a device that incorporates in a single substrate the functionalities of a biological laboratory, i.e. a network of fluidic channels, reservoirs, valves, pumps and sensors, all with micrometer dimensions. Its main advantages are the possibility of working with small samples quantities (from nano- to picoliters), high sensitivity, speed of analysis and the possibility of measurement automation and standardization. They are becoming the most powerful tools of analytical chemistry with a broad application in life sciences, biotechnology and drug development. The next technological challenge of LOCs is direct on-chip integration of photonic functionalities for sensing of biomolecules flowing in the microchannels. Ultrafast laser processing of the bulk of a dielectric material is a very flexible and simple method to produce photonic devices inside microfluidic chips for capillary electrophoresis (CE) or chemical microreactors. By taking advantage of the unique three-dimensional capabilities of this fabrication technique, more complex functionalities, such as splitters or Mach-Zehnder interferometers, can be implemented. In this work we report on the use of femtosecond laser pulses to fabricate photonic devices (as waveguides, splitters and interferometers) inside commercial CE chips, without affecting the manufacturing procedure of the microfluidic part of the device. The fabrication of single waveguides intersecting the channels allows one to perform absorption or Laser Induced Fluorescence (LIF) sensing of the molecules separated inside the microchannels. Waveguide splitters are used for multipoint excitation of the microfluidic channel for parallel or higher sensitivity measurements. Finally, Mach-Zehnder interferometers are used for label-free sensing of the samples flowing in the microfluidic channels by means of refractive index changes detection.

  20. Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling

    Science.gov (United States)

    Das, Sulagna; Yin, Taofei; Yang, Qingfen; Zhang, Jingqiao; Wu, Yi I.; Yu, Ji

    2015-01-01

    Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction. PMID:25561548

  1. PACE3 - front-end chip for the CMS Preshower

    CERN Multimedia

    Aspel, Paul

    2003-01-01

    This is PACE3 which is the front-end chip for the CMS Preshower. In fact PACE3 is the combination of two ASICs called Delta3 and PACEAM3. Delta3 is on the left and PACEAM3 is on the right. The two ASICs are bonded together and then packaged within a single 196 pin fpBGA package.

  2. CMOS active pixel sensor type imaging system on a chip

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)

    2011-01-01

    A single chip camera which includes an .[.intergrated.]. .Iadd.integrated .Iaddend.image acquisition portion and control portion and which has double sampling/noise reduction capabilities thereon. Part of the .[.intergrated.]. .Iadd.integrated .Iaddend.structure reduces the noise that is picked up during imaging.

  3. On-chip Magnetic Separation and Cell Encapsulation in Droplets

    Science.gov (United States)

    Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.

    2012-02-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.

  4. Pelly Crossing wood chip boiler

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-11

    The Pelly wood chip project has demonstrated that wood chips are a successful fuel for space and domestic water heating in a northern climate. Pelly Crossing was chosen as a demonstration site for the following reasons: its extreme temperatures, an abundant local supply of resource material, the high cost of fuel oil heating and a lack of local employment. The major obstacle to the smooth operation of the boiler system was the poor quality of the chip supply. The production of poor quality chips has been caused by inadequate operation and maintenance of the chipper. Dull knives and faulty anvil adjustments produced chips and splinters far in excess of the one centimetre size specified for the system's design. Unanticipated complications have caused costs of the system to be higher than expected by approximately $15,000. The actual cost of the project was approximately $165,000. The first year of the system's operation was expected to accrue $11,600 in heating cost savings. This estimate was impossible to confirm given the system's irregular operation and incremental costs. Consistent operation of the system for a period of at least one year plus the installation of monitoring devices will allow the cost effectiveness to be calculated. The wood chip system's impact on the environment was estimated to be minimal. Wood chip burning was considered cleaner and safer than cordwood burning. 9 refs., 6 figs., 6 tabs.

  5. Ultra-thin chip technology and applications

    CERN Document Server

    2010-01-01

    Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.

  6. Materials for microfluidic chip fabrication.

    Science.gov (United States)

    Ren, Kangning; Zhou, Jianhua; Wu, Hongkai

    2013-11-19

    Through manipulating fluids using microfabricated channel and chamber structures, microfluidics is a powerful tool to realize high sensitive, high speed, high throughput, and low cost analysis. In addition, the method can establish a well-controlled microenivroment for manipulating fluids and particles. It also has rapid growing implementations in both sophisticated chemical/biological analysis and low-cost point-of-care assays. Some unique phenomena emerge at the micrometer scale. For example, reactions are completed in a shorter amount of time as the travel distances of mass and heat are relatively small; the flows are usually laminar; and the capillary effect becomes dominant owing to large surface-to-volume ratios. In the meantime, the surface properties of the device material are greatly amplified, which can lead to either unique functions or problems that we would not encounter at the macroscale. Also, each material inherently corresponds with specific microfabrication strategies and certain native properties of the device. Therefore, the material for making the device plays a dominating role in microfluidic technologies. In this Account, we address the evolution of materials used for fabricating microfluidic chips, and discuss the application-oriented pros and cons of different materials. This Account generally follows the order of the materials introduced to microfluidics. Glass and silicon, the first generation microfluidic device materials, are perfect for capillary electrophoresis and solvent-involved applications but expensive for microfabriaction. Elastomers enable low-cost rapid prototyping and high density integration of valves on chip, allowing complicated and parallel fluid manipulation and in-channel cell culture. Plastics, as competitive alternatives to elastomers, are also rapid and inexpensive to microfabricate. Their broad variety provides flexible choices for different needs. For example, some thermosets support in-situ fabrication of

  7. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications

    OpenAIRE

    Nordström, Maria; Zauner, Dan; Boisen, Anja; Hübner, Jörg

    2007-01-01

    Fabrication and optical characterization of singlemode polymeric embedded waveguides are performed. A specific material combination (SU-8 2005 as core and the modified SU-8 mr-L 6050XP as cladding) is chosen in order to obtain a small refractive index difference for single-mode propagation combined with the conventional fabrication method UV lithography to facilitate the integration of different types of optical detection methods on lab-on-a-chip systems. We analyze the behavior of the refrac...

  8. Clinical results of stereotactic body radiotherapy for Stage I small-cell lung cancer. A single institutional experience

    International Nuclear Information System (INIS)

    Shioyama, Yoshiyuki; Nakamura, Katsumasa; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Nonoshita, Takeshi; Asai, Kaori; Terashima, Koutarou; Matsumoto, Keiji; Hirata, Hideki; Honda, Hiroshi

    2013-01-01

    The purpose of this study was to evaluate the treatment outcomes of stereotactic body radiotherapy (SBRT) for Stage I small-cell lung cancer (SCLC). From April 2003 to September 2009, a total of eight patients with Stage I SCLC were treated with SBRT in our institution. In all patients, the lung tumors were proven as SCLC pathologically. The patients' ages were 58-84 years (median: 74). The T-stage of the primary tumor was T1a in two, T1b in two and T2a in four patients. Six of the patients were inoperable because of poor cardiac and/or pulmonary function, and two patients refused surgery. SBRT was given using 7-8 non-coplanar beams with 48 Gy in four fractions. Six of the eight patients received 3-4 cycles of chemotherapy using carboplatin (CBDCA) + etoposide (VP-16) or cisplatin (CDDP) + irinotecan (CPT-11). The follow-up period for all patients was 6-60 months (median: 32). Six patients were still alive without any recurrence. One patient died from this disease and one died from another disease. The overall and disease-specific survival rate at three years was 72% and 86%, respectively. There were no patients with local progression of the lesion targeted by SBRT. Only one patient had nodal recurrence in the mediastinum at 12 months after treatment. The progression-free survival rate was 71%. No Grade 2 or higher SBRT-related toxicities were observed. SBRT plus chemotherapy could be an alternative to surgery with chemotherapy for inoperable patients with Stage I small-cell lung cancer. However, further investigation is needed using a large series of patients. (author)

  9. Inner-shell spectroscopy and exchange interaction of Rydberg electrons bound by singly and doubly charged Kr and Xe atoms in small clusters

    International Nuclear Information System (INIS)

    Nagasaka, Masanari; Hatsui, Takaki; Setoyama, Hiroyuki; Ruehl, Eckart; Kosugi, Nobuhiro

    2011-01-01

    Surface-site resolved Kr 3d 5/2 -1 5p and 3d 5/2 -1 6p and Xe 4d 5/2 -1 6p and 4d 5/2 -1 7p Rydberg excited states in small van der Waals Kr and Xe clusters with a mean size of = 15 are investigated by X-ray absorption spectroscopy. Furthermore, surface-site resolved Kr 4s -2 5p, 4s -2 6p, and 4s -1 4p -1 5p shakeup-like Rydberg states in small Kr clusters are investigated by resonant Auger electron spectroscopy. The exchange interaction of the Rydberg electron with the surrounding atoms and the induced polarization of the surrounding atoms in the singly and doubly ionized atoms are deduced from the experimental spectra to analyze different surface-site contributions in small clusters, assuming that the corner, edge, face, and bulk sites have 3, 5-6, 8, and 12 nearest neighbor atoms. These energies are almost proportional to the number of the nearest neighbor atoms. The present analysis indicates that small Kr and Xe clusters with = 15 have an average or mixture structure between the fcc-like cubic and icosahedron-like spherical structures.

  10. Single-Fraction Carbon-Ion Radiation Therapy for Patients 80 Years of Age and Older With Stage I Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Karube, Masataka; Yamamoto, Naoyoshi; Nakajima, Mio; Yamashita, Hideomi; Nakagawa, Keiichi; Miyamoto, Tadaaki; Tsuji, Hiroshi; Fujisawa, Takehiko; Kamada, Tadashi

    2016-01-01

    Purpose: In an aging society, many senior citizens want less invasive treatment because of potential medical complications. The National Institute of Radiological Sciences has started to treat stage I lung cancer with single-fraction carbon-ion radiation therapy (CIRT) as a dose escalation prospective phase 1/2 trial. We evaluated the efficacy and safety of CIRT for patients 80 years of age and older, undergoing single-fraction CIRT. Methods and Materials: Peripheral non-small cell lung cancer patients who were treated with single-fraction CIRT were prospectively followed. We analyzed the data from among these patients 80 years of age and older. Results: There were 70 patients. Median age was 83 years (range: 80-89) and median follow-up period was 42.7 months (range: 12-128 months). Three-year local control, cause-specific survival, and overall survival rates were 88.0%, 81.6%, and 72.4%, respectively. Five-year local control, cause-specific survival, and overall survival rates were 85.8%, 64.9%, and 39.7%, respectively. There were no adverse effects higher than grade 2 either in the acute or late phase in terms of skin and lung. Analgesic agents were necessary for only 5 patients (7.1%), to relieve muscular or rib fracture pain caused by irradiation. Conclusions: Single-fraction CIRT was low-risk and effective, even for the elderly.

  11. Efficiency of early, single-dose probiotic administration methods on performance, small intestinal morphology, blood biochemistry, and immune response of Japanese quail.

    Science.gov (United States)

    Seifi, Kazem; Karimi Torshizi, Mohammad Amir; Rahimi, Shaban; Kazemifard, Mohammad

    2017-07-01

    The aim of the present study was to investigate the efficacy of early probiotics (single dose) administered in different ways, on quails' performance, small intestine morphology, blood biochemistry, and immune response. In total, 192 day-old chicks were used in one of the following experimental groups before being transferred to a raising room: 1) Control (no probiotic administered), 2) oral gavage, 3) spray, and 4) vent lip. Four replicates of 12 chicks per cage were considered for each treatment and birds were raised up to 35 d in the same conditions. Probiotic treated birds had higher d 1 to 35 feed intake than the control group (P birds had a higher body weight gain as compared to the control (P birds compared to control (P  0.01). None of the immune-related parameters were affected by the probiotic (P > 0.05). Single dose usage of probiotics exerts its beneficial effects on quails' body weight gain, feed intake and mortality in 1 to 35 d period, regardless of the route of administration. This work generally supports the efficacy of single-dose usage of probiotics and suggests the spray of probiotics as an early, single-dose administration method. © 2017 Poultry Science Association Inc.

  12. Single-Fraction Carbon-Ion Radiation Therapy for Patients 80 Years of Age and Older With Stage I Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Karube, Masataka, E-mail: mstk117@gmail.com [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Yamamoto, Naoyoshi; Nakajima, Mio [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Yamashita, Hideomi; Nakagawa, Keiichi [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Miyamoto, Tadaaki; Tsuji, Hiroshi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Fujisawa, Takehiko [Chiba Foundation for Health Promotion and Disease Prevention, Chiba (Japan); Kamada, Tadashi [Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2016-05-01

    Purpose: In an aging society, many senior citizens want less invasive treatment because of potential medical complications. The National Institute of Radiological Sciences has started to treat stage I lung cancer with single-fraction carbon-ion radiation therapy (CIRT) as a dose escalation prospective phase 1/2 trial. We evaluated the efficacy and safety of CIRT for patients 80 years of age and older, undergoing single-fraction CIRT. Methods and Materials: Peripheral non-small cell lung cancer patients who were treated with single-fraction CIRT were prospectively followed. We analyzed the data from among these patients 80 years of age and older. Results: There were 70 patients. Median age was 83 years (range: 80-89) and median follow-up period was 42.7 months (range: 12-128 months). Three-year local control, cause-specific survival, and overall survival rates were 88.0%, 81.6%, and 72.4%, respectively. Five-year local control, cause-specific survival, and overall survival rates were 85.8%, 64.9%, and 39.7%, respectively. There were no adverse effects higher than grade 2 either in the acute or late phase in terms of skin and lung. Analgesic agents were necessary for only 5 patients (7.1%), to relieve muscular or rib fracture pain caused by irradiation. Conclusions: Single-fraction CIRT was low-risk and effective, even for the elderly.

  13. Pipeline template for streaming applications on heterogeneous chips

    OpenAIRE

    Rodríguez, Andrés; Navarro, Ángeles; Asenjo-Plaza, Rafael; Corbera, Francisco; Vilches, Antonio; Garzarán, María

    2015-01-01

    We address the problem of providing support for executing single streaming applications implemented as a pipeline of stages that run on heterogeneous chips comprised of several cores and one on-chip GPU. In this paper, we mainly focus on the API that allows the user to specify the type of parallelism exploited by each pipeline stage running on the multicore CPU, the mapping of the pipeline stages to the devices (GPU or CPU), and the number of active threads. We use a rea...

  14. Single-vehicle and Multi-vehicle Accidents Involving Motorcycles in a Small City in China: Characteristics and Injury Patterns

    Directory of Open Access Journals (Sweden)

    Lili Xiong

    2015-03-01

    Full Text Available Introduction: There is a gap that involves examining differences between patients in single-vehicle (SV versus multi-vehicle (MV accidents involving motorcycles in Shantou, China, regarding the injury patterns and mortality the patients sustained. This study aims to address this gap and provide a basis and reference for motorcycle injury prevention. Method: Medical record data was collected between October 2002 and June 2012 on all motorcycle injury patients admitted to a hospital in the city of Shantou of the east Guangdong province in China. Comparative analysis was conducted between patients in SV accidents and patients in MV accidents regarding demographic and clinic characteristics, mortality, and injury patterns. Results: Approximately 48% (n = 1977 of patients were involved in SV accidents and 52% (n = 2119 were involved in MV accidents. The average age was 34 years. Collision of a motorcycle with a heavy vehicle/bus (4% was associated with a 34 times greater risk of death (RR: 34.32|95% CI: 17.43–67.57. Compared to patients involved in MV accidents, those involved in SV accidents were more likely to sustain a skull fracture (RR: 1.47|95% CI: 1.22–1.77, an open head wound (RR: 1.46|95% CI: 1.23–1.74, an intracranial injury (RR: 1.39|95% CI: 1.26–1.53, a superficial head injury (RR: 1.37|95% CI: 1.01–1.86, an injury to an organ (RR: 2.01|95% CI: 1.24–3.26, and a crushing injury (RR: 1.98|95% CI: 1.06–3.70 to the thorax or abdomen. However, they were less likely to sustain a spinal fracture (RR: 0.58|95% CI: 0.39–0.85, a pelvic fracture (RR: 0.22|95% CI: 0.11–0.46, an upper extremity fracture (RR: 0.75|95% CI: 0.59–0.96, or injuries to their lower extremities, except for a dislocation, sprain, or injury to a joint or ligament (RR: 0.82|95% CI: 0.49–1.36. Conclusion: The relative risk of death is higher for patients involved in multi-vehicle accidents than patients in single-vehicle accidents, especially when a

  15. A small single-nozzle rainfall simulator to measure erosion response on different burn severities in southern British Columbia, Canada

    Science.gov (United States)

    Covert, Ashley; Jordan, Peter

    2010-05-01

    To study the effects of wildfire burn severity on runoff generation and soil erosion from high intensity rainfall, we constructed an effective yet simple rainfall simulator that was inexpensive, portable and easily operated by two people on steep, forested slopes in southern British Columbia, Canada. The entire apparatus, including simulator, pumps, hoses, collapsible water bladders and sample bottles, was designed to fit into a single full-sized pick-up truck. The three-legged simulator extended to approximately 3.3 metres above ground on steep slopes and used a single Spraying Systems 1/2HH-30WSQ nozzle which can easily be interchanged for other sized nozzles. Rainfall characteristics were measured using a digital camera which took images of the raindrops against a grid. Median drop size and velocity 5 cm above ground were measured and found to be 3/4 of the size of natural rain drops of that diameter class, and fell 7% faster than terminal velocity. The simulator was used for experiments on runoff and erosion on sites burned in 2007 by two wildfires in southern British Columbia. Simulations were repeated one and two years after the fires. Rainfall was simulated at an average rate of 67 mm hr-1 over a 1 m2 plot for 20 minutes. This rainfall rate is similar to the 100 year return period rainfall intensity for this duration at a nearby weather station. Simulations were conducted on five replicate 1 m2 plots in each experimental unit including high burn severity, moderate burn severity, unburned, and unburned with forest floor removed. During the simulation a sample was collected for 30 seconds every minute, with two additional samples until runoff ceased, resulting in 22 samples per simulation. Runoff, overland flow coefficient, infiltration and sediment yield were compared between treatments. Additional simulations were conducted immediately after a 2009 wildfire to test different mulch treatments. Typical results showed that runoff on plots with high burn

  16. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.

  17. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. © 2011 American Institute of Physics

  18. Package-friendly piezoresistive pressure sensors with on-chip integrated packaging-stress-suppressed suspension (PS3) technology

    International Nuclear Information System (INIS)

    Wang, Jiachou; Li, Xinxin

    2013-01-01

    An on-chip integrated packaging-stress-suppressed suspension (PS 3 ) technology for a packaging-stress-free pressure sensor is proposed and developed. With a MIS (microholes interetch and sealing) micromachining process implemented only from the front-side of a single-side polished (1 1 1) silicon wafer, a compact cantilever-shaped PS 3 is on-chip integrated surrounding a piezoresistive pressure-sensing structure to provide a packaging-process/substrate-friendly method for low-cost but high-performance sensor applications. With the MIS process, the chip size of the PS 3 -enclosed pressure sensor is as small as 0.8 mm × 0.8 mm. Compared with a normal pressure sensor without PS 3 (but with an identical pressure-sensing structure), the proposed pressure sensor has the same sensitivity of 0.046 mV kPa −1 (3.3 V) −1 . However, without using the thermal compensation technique, a temperature coefficient of offset of only 0.016% °C −1 FS is noted for the sensor with PS 3 , which is about 15 times better than that for the sensor without PS 3 . Featuring effective isolation and elimination of the influence from packaging stress, the PS 3 technique is promising to be widely used for packaging-friendly mechanical sensors. (paper)

  19. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  20. Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Zeeshan Pasha

    Full Text Available The current protocols for generation of induced pluripotent stem (iPS cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs using small molecules.SMs from young male Oct3/4-GFP(+ transgenic mouse were treated with DNA methyltransferase (DNMT inhibitor, RG108. Two weeks later, GFP(+ colonies of SM derived iPS cells (SiPS expressing GFP and with morphological similarity of mouse embryonic stem (ESCs were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity, expressed SSEA1, displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs formation yielded spontaneously contracting EBs having morphological, molecular, and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group, extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group. A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed.Reprogramming of SMs by DNMT inhibitor is a simple, reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.

  1. One small step for a yeast--microevolution within macrophages renders Candida glabrata hypervirulent due to a single point mutation.

    Directory of Open Access Journals (Sweden)

    Sascha Brunke

    2014-10-01

    Full Text Available Candida glabrata is one of the most common causes of candidemia, a life-threatening, systemic fungal infection, and is surpassed in frequency only by Candida albicans. Major factors contributing to the success of this opportunistic pathogen include its ability to readily acquire resistance to antifungals and to colonize and adapt to many different niches in the human body. Here we addressed the flexibility and adaptability of C. glabrata during interaction with macrophages with a serial passage approach. Continuous co-incubation of C. glabrata with a murine macrophage cell line for over six months resulted in a striking alteration in fungal morphology: The growth form changed from typical spherical yeasts to pseudohyphae-like structures - a phenotype which was stable over several generations without any selective pressure. Transmission electron microscopy and FACS analyses showed that the filamentous-like morphology was accompanied by changes in cell wall architecture. This altered growth form permitted faster escape from macrophages and increased damage of macrophages. In addition, the evolved strain (Evo showed transiently increased virulence in a systemic mouse infection model, which correlated with increased organ-specific fungal burden and inflammatory response (TNFα and IL-6 in the brain. Similarly, the Evo mutant significantly increased TNFα production in the brain on day 2, which is mirrored in macrophages confronted with the Evo mutant, but not with the parental wild type. Whole genome sequencing of the Evo strain, genetic analyses, targeted gene disruption and a reverse microevolution experiment revealed a single nucleotide exchange in the chitin synthase-encoding CHS2 gene as the sole basis for this phenotypic alteration. A targeted CHS2 mutant with the same SNP showed similar phenotypes as the Evo strain under all experimental conditions tested. These results indicate that microevolutionary processes in host-simulative conditions

  2. An optical manometer-on-a-chip

    Science.gov (United States)

    Jin, Yuhang; Crozier, Kenneth B.

    2011-10-01

    change on the order of tens or hundreds of Pascals. Moreover, the long channels make it rather challenging to look into the detailed dynamics of pressure variations caused by inhomogeneous emulsions, since such a long section invariably contains multiple elements, for instance droplets, of the emulsion flow, and the measurements average out the behavior of one single element. Consequently, to further reveal the characteristics of flows in microfluidics, it is highly desirable for a pressure measurement device to work in the low-pressure range, and to resolve pressure changes "locally", i.e. within small spatial regions.

  3. Dry-film polymer waveguide for silicon photonics chip packaging.

    Science.gov (United States)

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  4. Spatially resolved photoionization of ultracold atoms on an atom chip

    International Nuclear Information System (INIS)

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  5. Detection and classification of ebola on microfluidic chips

    Science.gov (United States)

    Lin, Xue; Jin, Xiangyu; Fan, Yunqian; Huang, Qin; Kou, Yue; Zu, Guo; Huang, Shiguang; Liu, Xiaosheng; Huang, Guoliang

    2016-10-01

    Point-of-care testing (POCT) for an infectious diseases is the prerequisite to control of the disease and limitation of its spread. A microfluidic chip for detection and classification of four strains of Ebola virus was developed and evaluated. This assay was based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) and specific primers for Ebola Zaire virus, Ebola Sudan virus, Ebola Tai Forest virus and Ebola Bundibugyo virus were designed. The sensitivity of the microfluidic chip was under 103 copies per milliliter, as determined by ten repeated tests. This assay is unique in its ability to enable diagnosis of the Ebola infections and simultaneous typing of Ebola virus on a single chip. It offers short reaction time, ease of use and high specificity. These features should enable POCT in remote area during outbreaks of Ebola virus.

  6. Progress on TSV technology for Medipix3RX chip

    Science.gov (United States)

    Sarajlić, M.; Pennicard, D.; Smoljanin, S.; Fritzsch, T.; Zoschke, K.; Graafsma, H.

    2017-12-01

    The progress of Through Silicon Via (TSV) technology for Medipix3RX chip done at DESY is presented here. The goal of this development is to replace the wire bonds in X-ray detectors with TSVs, in order to reduce the dead area between detectors. We obtained the first working chips assembled together with Si based sensors for X-ray detection. The 3D integration technology, including TSV, Re-distribution layer deposition, bump bonding to the Si sensor and bump bonding to the carrier PCB, was done by Fraunhofer Institute IZM in Berlin. After assembly, the module was successfully tested by recording background radiation and making X-ray images of small objects. The active area of the Medipix3RX chip is 14.1 mm×14.1 mm or 256×256 pixels. During TSV processing, the Medipix3RX chip was thinned from 775 μm original thickness, to 130 μm. The diameter of the vias is 40 μm, and the pitch between the vias is 120 μm. A liner filling approach was used to contact the TSV with the RDL on the backside of the Medipix3RX readout chip.

  7. Emission of organic substances from chip-boards

    Energy Technology Data Exchange (ETDEWEB)

    Deppe, H.J.

    1982-01-01

    A relatively small number of investigations on emissions of organic substances from chip-board is available up to now. The emissions known to date are caused by glues or other additives rather than by the wood itself. As concerns aminoplast glues (urea-formaldehyde or melamine-formaldehyde resins) the most important point of public interest has been the off-gassing of formaldehyde from chip-board. Chip-board with phenol-formaldehyde glues has been known in some cases to give off phenol. The formation of diamino diphenyl methane from isocyanate glues is still a matter of discussion. A further source for possible emissions are wood and fire protectives which are added during the manufacturing process. Finally, coating of chip-board may lead to emissions of organic substances. The lack of adequate detection methods has so far delayed the treatment of questions in relation to emissions from chip-board. Even now, there are numerous problems in this field especially when investigating isocyanate glues. Problems in relation to the origin of emissions due to the kind of glue used and the manufacturing process are discussed, and proposals are made how to solve some of these problems. The question of the health risk is dealt with from the view-point of the civil engineer and in an general economic context.

  8. Description of the SAltro-16 chip for gas detector readout

    CERN Document Server

    Aspell, P; Garcia Garcia, E; de Gaspari, M; Mager, M; Musa, L; Rehman, A; Trampitsch, G

    2010-01-01

    The S-ALTRO prototype chip is a mixed-signal integrated circuit designed to be one of the building blocks of the readout electronics for gas detectors. Its architecture is based in the ALTRO (ALICE TPC Read Out) chip, being its main difference the integration of the charge shaping amplifier in the same IC. Just like ALTRO chip, the prototype architecture and programmability make it suitable for the readout of a wider class of detectors. In one single chip, 16 analogue signals from the detector are shaped, digitised, processed, compressed and stored in a multi-acquisition memory. The Analogue-to- Digital converters embedded in the chip have a 10-bit dynamic range and a maximum sampling rate up to 40MHz. After digitisation, a pipelined Data Processor is able to remove from the input signal a wide range of perturbations, related to the non- ideal behaviour of the detector, temperature variation of the electronics, environmental noise, etc. Moreover, the Data Processor is able to suppress the pulse tail within 1�...

  9. Optimizing the performance of small-scale organic Rankine cycle that utilizes a single-screw expander

    International Nuclear Information System (INIS)

    Ziviani, D.; Gusev, S.; Lecompte, S.; Groll, E.A.; Braun, J.E.; Horton, W.T.; Broek, M. van den; De Paepe, M.

    2017-01-01

    Highlights: • A total of 102 steady-state points with R245fa and SES336 have been collected. • R245fa led to 10% higher power output despite lower expander isentropic efficiency. • The ORC running with SES36 presented a better matching between expander and cycle. • The theoretical matching between expander volume ratio and cycle efficiency is determined. • Steady-state performance maps are used to build a feed-forward controller. - Abstract: This paper deals with the operation and optimization of a down-scaled industrial organic Rankine cycle (ORC) for low-grade waste heat recovery. The system is a sub-critical regenerative ORC with a nominal power output of 11 kW. The ORC unit has been assembled using off-the-shelf components including three identical plate heat exchangers, a liquid receiver, a multi-stage centrifugal pump and a single-screw compressor adapted to operate as an expander. The experimental results are used to evaluate the influence of the expander performance on the behavior of the ORC system at nominal and part-load conditions. The matching between the volumetric expander and the system operating conditions is also analyzed. Results showed that in the case of SES36, both the expander efficiency and system performance were maximized for a pressure ratio between 7 and 9. In the case of R245fa, while the system efficiency achieved values similar to SES36, but the expander maximum isentropic efficiency was 17% lower. Two analyses are carried out to optimize the operation of the ORC unit with R245fa. At first, the insights gained by analyzing the experimental data are used to evaluate the theoretical matching between volumetric expander and the system maximum efficiency in terms of the Second Law of thermodynamics. Secondly, a control-oriented steady-state cycle model based on empirical correlations calibrated on the experimental results is developed. The model is used to implement a feed-forward control strategy based on predetermined steady

  10. Radiobiological restrictions and tolerance doses of repeated single-fraction hdr-irradiation of intersecting small liver volumes for recurrent hepatic metastases

    Directory of Open Access Journals (Sweden)

    Wust Peter

    2010-05-01

    Full Text Available Abstract Background To assess radiobiological restrictions and tolerance doses as well as other toxic effects derived from repeated applications of single-fraction high dose rate irradiation of small liver volumes in clinical practice. Methods Twenty patients with liver metastases were treated repeatedly (2 - 4 times at identical or intersecting locations by CT-guided interstitial brachytherapy with varying time intervals. Magnetic resonance imaging using the hepatocyte selective contrast media Gd-BOPTA was performed before and after treatment to determine the volume of hepatocyte function loss (called pseudolesion, and the last acquired MRI data set was merged with the dose distributions of all administered brachytherapies. We calculated the BED (biologically equivalent dose for a single dose d = 2 Gy for different α/β values (2, 3, 10, 20, 100 based on the linear-quadratic model and estimated the tolerance dose for liver parenchyma D90 as the BED exposing 90% of the pseudolesion in MRI. Results The tolerance doses D90 after repeated brachytherapy sessions were found between 22 - 24 Gy and proved only slightly dependent on α/β in the clinically relevant range of α/β = 2 - 10 Gy. Variance analysis showed a significant dependency of D90 with respect to the intervals between the first irradiation and the MRI control (p 90 and the pseudolesion's volume. No symptoms of liver dysfunction or other toxic effects such as abscess formation occurred during the follow-up time, neither acute nor on the long-term. Conclusions Inactivation of liver parenchyma occurs at a BED of approx. 22 - 24 Gy corresponding to a single dose of ~10 Gy (α/β ~ 5 Gy. This tolerance dose is consistent with the large potential to treat oligotopic and/or recurrent liver metastases by CT-guided HDR brachytherapy without radiation-induced liver disease (RILD. Repeated small volume irradiation may be applied safely within the limits of this study.

  11. Design and analysis of a small-scale natural gas liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling

    International Nuclear Information System (INIS)

    Yuan, Zongming; Cui, Mengmeng; Xie, Ying; Li, Chunlin

    2014-01-01

    With the growth of energy consumption and environmental protection concerns, it is of enormous economic and environmental values for the development of stranded gas. As a means for exploitation and transportation of stranded gas to market, a novel small-scale liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling is put up with in this paper. Taking unit energy consumption as the target function, Aspen HYSYS is employed to simulate and optimize the process to achieve the liquefaction rate of 0.77 with unit energy consumption of 9.90 kW/kmol/h. Furthermore, the adaptability of this process under different pressure, temperature and compositions of feed gas is studied. Based on the optimization results, the exergy losses of main equipment in the process are evaluated and analyzed in details. With compact device, safety operation, simple capability, this liquefaction process proves to be suitable for the development of small gas reserves, satellite distribution fields of gas or coalbed methane fields. - Highlights: •A novel small-scale liquefaction process used in stranded gas is designed. •The adaptability of this process under different pressure, temperature and compositions of feed gas is studied. •The exergy analysis of main equipment in the process is analyzed

  12. Design and analysis of a small-scale natural gas liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Zongming; Cui, Mengmeng; Xie, Ying; Li, Chunlin

    2014-03-01

    With the growth of energy consumption and environmental protection concerns, it is of enormous economic and environmental values for the development of stranded gas. As a means for exploitation and transportation of stranded gas to market, a novel small-scale liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling is put up with in this paper. Taking unit energy consumption as the target function, Aspen HYSYS is employed to simulate and optimize the process to achieve the liquefaction rate of 0.77 with unit energy consumption of 9.90 kW/kmol/h. Furthermore, the adaptability of this process under different pressure, temperature and compositions of feed gas is studied. Based on the optimization results, the exergy losses of main equipment in the process are evaluated and analyzed in details. With compact device, safety operation, simple capability, this liquefaction process proves to be suitable for the development of small gas reserves, satellite distribution fields of gas or coalbed methane fields. - Highlights: •A novel small-scale liquefaction process used in stranded gas is designed. •The adaptability of this process under different pressure, temperature and compositions of feed gas is studied. •The exergy analysis of main equipment in the process is analyzed.

  13. Screening for single nucleotide variants, small indels and exon deletions with a next-generation sequencing based gene panel approach for Usher syndrome.

    Science.gov (United States)

    Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred

    2014-09-01

    Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield.

  14. Development of biofactory-on-a-chip technology

    Science.gov (United States)

    Zhou, Xiao-Feng; Burt, Julian P.; Talary, Mark S.; Goater, Andrew D.; Pethig, Ron

    2000-08-01

    The miniaturised Biofactory-on-a-Chip devices described here are integrated systems capable of the rapid analysis of small volume particulate samples and have applications in areas such as medical and biological cell diagnostics, chemical detection and water quality control. The devices use the A.C. electrokinetic phenomena of dielectrophoresis, travelling wave dielectrophoresis and electrorotation to manipulate, separate and characterise particle systems by exploiting their dielectric properties. Biofactory fabrication makes use of conventional photolithographic processes along with precision excimer laser ablation based micromachining. Using this combination of technologies, a wide range of manufacturing issues have been addressed and are discussed here. For instance, reliable interconnection of multilayer electrodes has been achieved using laser machining of via- holes between lithographically produced electrodues. Also, accurate fluidic microchannel systems with varying curved cross-sections that allow the smooth transport of a sample through the device whilst eliminating problems of particle trapping have been developed using excimer laser machining. Although the biofactory devices presented here have been applied to the fractionation of micro-organisms such as E. coli from red blood cells, the flexibility of design allows these devices to perform a wide range of complex bioprocessing function in a single, low-cost and miniaturised package.

  15. A multi-staining chip using hydrophobic valves for exfoliative cytology in cancer

    Science.gov (United States)

    Lee, Tae Hee; Bu, Jiyoon; Moon, Jung Eun; Kim, Young Jun; Kang, Yoon-Tae; Cho, Young-Ho; Kim, In Sik

    2017-07-01

    Exfoliative cytology is a highly established technique for the diagnosis of tumors. Various microfluidic devices have been developed to minimize the sample numbers by conjugating multiple antibodies in a single sample. However, the previous multi-staining devices require complex control lines and valves operated by external power sources, to deliver multiple antibodies separately for a single sample. In addition, most of these devices are composed of hydrophobic materials, causing unreliable results due to the non-specific binding of antibodies. Here, we present a multi-staining chip using hydrophobic valves, which is formed by the partial treatment of 2-hydroxyethyl methacrylate (HEMA). Our chip consists of a circular chamber, divided into six equal fan-shaped regions. Switchable injection ports are located at the center of the chamber and at the middle of the arc of each fan-shaped zone. Thus, our device is beneficial for minimizing the control lines, since pre-treatment solutions flow from the center to outer ports, while six different antibodies are introduced oppositely from the outer ports. Furthermore, hydrophobic narrow channels, connecting the central region and each of the six fan-shaped zones, are closed by capillary effect, thus preventing the fluidic mixing without external power sources. Meanwhile, HEMA treatment on the exterior region results in hydrophobic-to-hydrophilic transition and prevents the non-specific binding of antibodies. For the application, we measured the expression of six different antibodies in a single sample using our device. The expression levels of each antibody highly matched the conventional immunocytochemistry results. Our device enables cancer screening with a small number of antibodies for a single sample.

  16. A multi-staining chip using hydrophobic valves for exfoliative cytology in cancer

    International Nuclear Information System (INIS)

    Lee, Tae Hee; Bu, Jiyoon; Kim, Young Jun; Kang, Yoon-Tae; Cho, Young-Ho; Moon, Jung Eun; Kim, In Sik

    2017-01-01

    Exfoliative cytology is a highly established technique for the diagnosis of tumors. Various microfluidic devices have been developed to minimize the sample numbers by conjugating multiple antibodies in a single sample. However, the previous multi-staining devices require complex control lines and valves operated by external power sources, to deliver multiple antibodies separately for a single sample. In addition, most of these devices are composed of hydrophobic materials, causing unreliable results due to the non-specific binding of antibodies. Here, we present a multi-staining chip using hydrophobic valves, which is formed by the partial treatment of 2-hydroxyethyl methacrylate (HEMA). Our chip consists of a circular chamber, divided into six equal fan-shaped regions. Switchable injection ports are located at the center of the chamber and at the middle of the arc of each fan-shaped zone. Thus, our device is beneficial for minimizing the control lines, since pre-treatment solutions flow from the center to outer ports, while six different antibodies are introduced oppositely from the outer ports. Furthermore, hydrophobic narrow channels, connecting the central region and each of the six fan-shaped zones, are closed by capillary effect, thus preventing the fluidic mixing without external power sources. Meanwhile, HEMA treatment on the exterior region results in hydrophobic-to-hydrophilic transition and prevents the non-specific binding of antibodies. For the application, we measured the expression of six different antibodies in a single sample using our device. The expression levels of each antibody highly matched the conventional immunocytochemistry results. Our device enables cancer screening with a small number of antibodies for a single sample. (paper)

  17. ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation

    Directory of Open Access Journals (Sweden)

    Porter Christopher J

    2007-09-01

    Full Text Available Abstract Background SNP microarrays are designed to genotype Single Nucleotide Polymorphisms (SNPs. These microarrays report hybridization of DNA fragments and therefore can be used for the purpose of detecting genomic fragments. Results Here, we demonstrate that a SNP microarray can be effectively used in this way to perform chromatin immunoprecipitation (ChIP on chip as an alternative to tiling microarrays. We illustrate this novel application by mapping whole genome histone H4 hyperacetylation in human myoblasts and myotubes. We detect clusters of hyperacetylated histone H4, often spanning across up to 300 kilobases of genomic sequence. Using complementary genome-wide analyses of gene expression by DNA microarray we demonstrate that these clusters of hyperacetylated histone H4 tend to be associated with expressed genes. Conclusion The use of a SNP array for a ChIP-on-chip application (ChIP on SNP-chip will be of great value to laboratories whose interest is the determination of general rules regarding the relationship of specific chromatin modifications to transcriptional status throughout the genome and to examine the asymmetric modification of chromatin at heterozygous loci.

  18. Spectroelectrochemical Sensing Based on Multimode Selectivity simultaneously Achievable in a Single Device. 11. Design and Evaluation of a Small Portable Sensor for the Determination of Ferrocyanide in Hanford Waste Samples

    International Nuclear Information System (INIS)

    Stegemiller, Michael L.; Heineman, William R.; Seliskar, Carl J.; Ridgway, Thomas H.; Bryan, Samuel A.; Hubler, Timothy L.; Sell, Richard L.

    2003-01-01

    Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 11. Design and evaluation of a small portable sensor for the determination of ferrocyanide in Hanford waste samples

  19. WE-AB-207B-10: On Spinal Nerve Toxicity from Single-Session SAbR in Pigs and the Translation of Small Animal NTCP Models

    International Nuclear Information System (INIS)

    Hrycushko, B; Medin, P

    2016-01-01

    Purpose: The incidence of peripheral neuropathy has risen with increased utilization of SAbR. There is no consensus regarding the dose-tolerance of the peripheral nervous system. In 2015, we commenced an investigation to test the hypotheses that single-session irradiation to the pig spinal nerves exhibit a similar dose-tolerance as that of the spinal cord and that a dose-length effect exists. This work evaluates the direct application of small animal NTCP models to both large animal spinal cord and preliminary peripheral nerve data. Methods: To date, 16 of 25 Yucatan minipigs have received single-session SAbR to a 1.5cm length and 4 of 25 have received irradiation to a 0.5cm length of left-sided C6-C8 spinal nerves. Toxicity related gait change has been observed in 13 animals (9 from the long length group and 4 from the short). This preliminary data is overlaid on several dose-response models which have been fit to rodent spinal cord tolerance experiments. Model parameters define a toxicity profile between a completely serial or parallel behaving organ. Adequacy of model application, including how length effects are handled, to published minipig spinal cord dose-response data and to preliminary peripheral nerve response data was evaluated through residual analysis. Results: No rodent-derived dose-response models were directly applicable to all pig data for the different lengths irradiated. Several models fit the long-length irradiated spinal cord data well, with the more serial-like models fitting best. Preliminary data on the short-length irradiation suggests no length effect exists, disproving our hypothesis. Conclusion: Direct application of small-animal NTCP models to pig data suggests dose-length effect predictions from small animal data may not translate clinically. However, the small animal models used have not considered dose heterogeneity and it is expected that including the low-to-mid dose levels in the penumbral region will improve this match. This work

  20. WE-AB-207B-10: On Spinal Nerve Toxicity from Single-Session SAbR in Pigs and the Translation of Small Animal NTCP Models

    Energy Technology Data Exchange (ETDEWEB)

    Hrycushko, B; Medin, P [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: The incidence of peripheral neuropathy has risen with increased utilization of SAbR. There is no consensus regarding the dose-tolerance of the peripheral nervous system. In 2015, we commenced an investigation to test the hypotheses that single-session irradiation to the pig spinal nerves exhibit a similar dose-tolerance as that of the spinal cord and that a dose-length effect exists. This work evaluates the direct application of small animal NTCP models to both large animal spinal cord and preliminary peripheral nerve data. Methods: To date, 16 of 25 Yucatan minipigs have received single-session SAbR to a 1.5cm length and 4 of 25 have received irradiation to a 0.5cm length of left-sided C6-C8 spinal nerves. Toxicity related gait change has been observed in 13 animals (9 from the long length group and 4 from the short). This preliminary data is overlaid on several dose-response models which have been fit to rodent spinal cord tolerance experiments. Model parameters define a toxicity profile between a completely serial or parallel behaving organ. Adequacy of model application, including how length effects are handled, to published minipig spinal cord dose-response data and to preliminary peripheral nerve response data was evaluated through residual analysis. Results: No rodent-derived dose-response models were directly applicable to all pig data for the different lengths irradiated. Several models fit the long-length irradiated spinal cord data well, with the more serial-like models fitting best. Preliminary data on the short-length irradiation suggests no length effect exists, disproving our hypothesis. Conclusion: Direct application of small-animal NTCP models to pig data suggests dose-length effect predictions from small animal data may not translate clinically. However, the small animal models used have not considered dose heterogeneity and it is expected that including the low-to-mid dose levels in the penumbral region will improve this match. This work

  1. Internalization of subcellular-scale microfabricated chips by healthy and cancer cells

    Science.gov (United States)

    Wong, H.-S. Philip

    2018-01-01

    Continuous monitoring of physiological parameters inside a living cell will lead to major advances in our understanding of biology and complex diseases, such as cancer. It also enables the development of new medical diagnostics and therapeutics. Progress in nanofabrication and wireless communication has opened up the potential of making a wireless chip small enough that it can be wholly inserted into a living cell. To investigate how such chips could be internalized into various types of living single cells and how this process might affect cells’ physiology, we designed and fabricated a series of multilayered micron-scale tag structures with different sizes as potential RFID (Radio Frequency IDentification) cell trackers. While the present structures are test structures that do not resonate, the tags that do resonate have similar structure from device fabrication, material properties, and device size point of view. The structures are in four different sizes, the largest with the lateral dimension of 9 μm × 21 μm. The thickness for these structures is kept constant at 1.5 μm. We demonstrate successful delivery of our fabricated chips into various types of living cells, such as melanoma skin cancer, breast cancer, colon cancer and healthy/normal fibroblast skin cells. To our surprise, we observed a remarkable internalization rate difference between each cell type; the uptake rate was faster for more aggressive cancer cells than the normal/healthy cells. Cell viability before and after tag cellular internalization and persistence of the internalized tags have also been recorded over the course of five days of incubation. These results establish the foundations of the possibility of long term, wireless, intracellular physiological signal monitoring. PMID:29601607

  2. Cache-aware network-on-chip for chip multiprocessors

    Science.gov (United States)

    Tatas, Konstantinos; Kyriacou, Costas; Dekoulis, George; Demetriou, Demetris; Avraam, Costas; Christou, Anastasia

    2009-05-01

    This paper presents the hardware prototype of a Network-on-Chip (NoC) for a chip multiprocessor that provides support for cache coherence, cache prefetching and cache-aware thread scheduling. A NoC with support to these cache related mechanisms can assist in improving systems performance by reducing the cache miss ratio. The presented multi-core system employs the Data-Driven Multithreading (DDM) model of execution. In DDM thread scheduling is done according to data availability, thus the system is aware of the threads to be executed in the near future. This characteristic of the DDM model allows for cache aware thread scheduling and cache prefetching. The NoC prototype is a crossbar switch with output buffering that can support a cache-aware 4-node chip multiprocessor. The prototype is built on the Xilinx ML506 board equipped with a Xilinx Virtex-5 FPGA.

  3. Experiment list: SRX214075 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available age=Undifferentiated || treatment=Overexpress Sox17EK-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacture

  4. Experiment list: SRX122523 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Irf2 || treatment=LPS || time=60 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab65048 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-498 http://

  5. Experiment list: SRX122414 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  6. Experiment list: SRX214071 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Undifferentiated || treatment=Overexpress Sox2-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacturer 2=

  7. Experiment list: SRX214086 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available entiated || cell line=KH2 || chip antibody 1=none || chip antibody manufacturer 1=none || chip antibody 2=none || chip antibody manuf...acturer 2=none http://dbarchive.biosciencedbc.jp/kyushu-

  8. Experiment list: SRX122485 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Atf3 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip antibody ...catalog number 1=sc-188 || chip antibody manufacturer 2=Abcam || chip antibody catalog number 2=ab70005-100

  9. Experiment list: SRX122521 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Irf2 || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab65048 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-498 http://

  10. Experiment list: SRX122417 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=60 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  11. Experiment list: SRX122520 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Irf2 || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab65048 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-498 http://

  12. Experiment list: SRX122413 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Junb || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody catalo...g number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http:/

  13. Experiment list: SRX122412 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Junb || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody catalo...g number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http:/

  14. Experiment list: SRX122406 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Irf1 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Abcam || chip antibody catalog... number 1=ab52520 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-640 http:/

  15. Experiment list: SRX122415 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  16. Experiment list: SRX214074 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ge=Undifferentiated || treatment=Overexpress Sox17EK-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacture

  17. Experiment list: SRX214072 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e=Undifferentiated || treatment=Overexpress Sox2KE-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacture

  18. Experiment list: SRX214067 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available fferentiated || cell line=F9 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufacture...r 1=Santa Cruz || chip antibody 2=none || chip antibody manufacturer 2=none http://dbarchive.bioscien

  19. Experiment list: SRX122416 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=60 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  20. Experiment list: SRX122565 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Stat2 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Abcam || chip antibody catalog... number 1=ab53149 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-839 http:/

  1. Dr. Monaco Examines Lab-on a-Chip

    Science.gov (United States)

    2003-01-01

    Dr. Lisa Monaco, Marshall Space Flight Center's (MSFC's) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  2. Individualized Pixel Synthesis and Characterization of Combinatorial Materials Chips

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Xiang

    2015-06-01

    Full Text Available Conventionally, an experimentally determined phase diagram requires studies of phase formation at a range of temperatures for each composition, which takes years of effort from multiple research groups. Combinatorial materials chip technology, featuring high-throughput synthesis and characterization, is able to determine the phase diagram of an entire composition spread of a binary or ternary system at a single temperature on one materials library, which, though significantly increasing efficiency, still requires many libraries processed at a series of temperatures in order to complete a phase diagram. In this paper, we propose a “one-chip method” to construct a complete phase diagram by individually synthesizing each pixel step by step with a progressive pulse of energy to heat at different temperatures while monitoring the phase evolution on the pixel in situ in real time. Repeating this process pixel by pixel throughout the whole chip allows the entire binary or ternary phase diagram to be mapped on one chip in a single experiment. The feasibility of this methodology is demonstrated in a study of a Ge-Sb-Te ternary alloy system, on which the amorphous-crystalline phase boundary is determined.

  3. SPAD array chips with full frame readout for crystal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter; Blanco, Roberto; Sacco, Ilaria; Ritzert, Michael [Heidelberg University (Germany); Weyers, Sascha [Fraunhofer Institute for Microelectronic Circuits and Systems (Germany)

    2015-05-18

    We present single photon sensitive 2D camera chips containing 88x88 avalanche photo diodes which can be read out in full frame mode with up to 400.000 frames per second. The sensors have an imaging area of ~5mm x 5mm covered by square pixels of ~56µm x 56µm with a ~55% fill factor in the latest chip generation. The chips contain a self triggering logic with selectable (column) multiplicities of up to >=4 hits within an adjustable coincidence time window. The photon accumulation time window is programmable as well. First prototypes have demonstrated low dark count rates of <50kHz/mm2 (SPAD area) at 10 degree C for 10% masked pixels. One chip version contains an automated readout of the photon cluster position. The readout of the detailed photon distribution for single events allows the characterization of light sharing, optical crosstalk etc., in crystals or crystal arrays as they are used in PET instrumentation. This knowledge could lead to improvements in spatial or temporal resolution.

  4. Construction and test of the first Belle II SVD ladder implementing the origami chip-on-sensor design

    International Nuclear Information System (INIS)

    Irmler, C.; Bauer, A.; Bergauer, T.; Adamczyk, K.; Bacher, S.; Aihara, H.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Aziz, T.; Babu, V.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A.K.; Behera, P.K.; Bhuyan, B.; Bilka, T.

    2016-01-01

    The Belle II Silicon Vertex Detector comprises four layers of double-sided silicon strip detectors (DSSDs), consisting of ladders with two to five sensors each. All sensors are individually read out by APV25 chips with the Origami chip-on-sensor concept for the central DSSDs of the ladders. The chips sit on flexible circuits that are glued on the top of the sensors. This concept allows a low material budget and an efficient cooling of the chips by a single pipe per ladder. We present the construction of the first SVD ladders and results from precision measurements and electrical tests

  5. Microfluidic organ-on-chip technology for blood-brain barrier research.

    Science.gov (United States)

    van der Helm, Marinke W; van der Meer, Andries D; Eijkel, Jan C T; van den Berg, Albert; Segerink, Loes I

    2016-01-01

    Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and the challenges that are still ahead. The BBB is formed by specialized endothelial cells and separates blood from brain tissue. It protects the brain from harmful compounds from the blood and provides homeostasis for optimal neuronal function [corrected]. Studying BBB function and dysfunction is important for drug development and biomedical research. Microfluidic BBBs-on-chips enable real-time study of (human) cells in an engineered physiological microenvironment, for example incorporating small geometries and fluid flow as well as sensors. Examples of BBBs-on-chips in literature already show the potential of more realistic microenvironments and the study of organ-level functions. A key challenge in the field of BBB-on-chip development is the current lack of standardized quantification of parameters such as barrier permeability and shear stress. This limits the potential for direct comparison of the performance of different BBB-on-chip models to each other and existing models. We give recommendations for further standardization in model characterization and conclude that the rapidly emerging field of BBB-on-chip models holds great promise for further studies in BBB biology and drug development.

  6. Acquired TGF beta 1 sensitivity and TGF beta 1 expression in cell lines established from a single small cell lung cancer patient during clinical progression

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K

    1996-01-01

    Three small cell lung cancer cell lines established from a single patient during longitudinal follow-up were examined for in vitro expression of TGF beta and TGF beta receptors, i.e. the components of an autocrine loop. GLC 14 was established prior to treatment, GLC 16 on relapse after chemotherapy...... was found in GLC 16 and GLC 19. These cell lines were also growth inhibited by exogenously administrated TGF beta 1. TGF beta 1 mRNA and protein in its latent form was only expressed in the radiotherapy-resistant cell line, GLC 19. The results indicate that disease progression in this patient was paralleled...... II receptor gene, as examined by Southern blotting. Also, the type I receptor could not be detected by ligand binding assay in this cell line, despite expression of mRNA for this receptor. This agrees with previous findings that type I receptor cannot bind TGF beta 1 without co-expression of the type...

  7. Adsorption of CO on, and S poisoning of, a perfect Ni(111) single crystal and a Ni(111) crystal with small angle boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, G A; Freeman, G B; Chao, J L.R.

    1980-01-01

    A Ni(111) crystal with small angle boundaries was used to examine the adsorption of CO. The adsorption of CO on a perfect Ni(111) single crystal was used for reference. Auger spectra show that the boundary lines on the sample surface provide favorable sites for the adsorbed CO to dissociate at temperatures as low as 25/sup 0/C. The post-dissociation carbon appears mostly in the form of a nickel carbide on the surface. After heating the crystal to 850/sup 0/C, sulfur diffused to the surface and blocked the surface adsorption sites uniformly. The boundary-enhanced dissociation of absorbed CO is no longer observed after the diffusion of sulfur to the crystal surface. AES depth profiling of sulfur concentration at different positions on the crystal with respect to the boundary lines show no evidence that the boundary lines provide an enhanced path for sulfur diffusion. 7 figures.

  8. Steam reforming of methane over Pt/Rh based wire mesh catalyst in single channel reformer for small scale syngas production

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2012-01-01

    of a catalytic parallel plate type heat exchanger (CPHE) reformer stack, where coated Pt/Rh based wire mesh is used as a catalyst. Heat is supplied to the endothermic reaction with infrared electric heaters. All the experiments were performed under atmospheric pressure and at stable operating conditions......The purpose of this study is to investigate a small scale steam methane reformer for syngas production for a micro combined heat and power (mCPH) unit under different operational conditions. The study presents an experimental analysis of the performance of a specially built single channel...... to evaluate the effect of flow maldistribution in a CPHE reformer stack on the CH4 conversion and H2 yield....

  9. Damage to the surface of the small intestinal villus: an objective scale of assessment of the effects of single and fractionated radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Carr, K.E.; Watt, C. (Glasgow Univ. (UK). Dept. of Anatomy); Hamlet, R.; Nias, A.H.W. (Glasgow Inst. of Radiotherapeutics and Oncology (UK))

    1983-07-01

    Scanning electron microscopy has been used to compare damage to mouse small intestinal mucosa after irradiation with different doses of photons and neutrons. Various stages of the collapse of villous structure seen after radiation include the production of conical and rudimentary villi and a flattened mucosa. A scale is proposed to relate radiation to villous damage. Points from this scale are taken to produce comparative ratios for equivalent damage produced by different radiation conditions. RBE values are quoted for neutron, X and gamma radiation given as single or fractionated irradiation doses and as whole or partial body irradiation. The relationship between the stroma in intravillous pegs and that of the pericryptal compartment is explored.

  10. Damage to the surface of the small intestinal villus: an objective scale of assessment of the effects of single and fractionated radiation doses

    International Nuclear Information System (INIS)

    Carr, K.E.; Watt, C.

    1983-01-01

    Scanning electron microscopy has been used to compare damage to mouse small intestinal mucosa after irradiation with different doses of photons and neutrons. Various stages of the collapse of villous structure seen after radiation include the production of conical and rudimentary villi and a flattened mucosa. A scale is proposed to relate radiation to villous damage. Points from this scale are taken to produce comparative ratios for equivalent damage produced by different radiation conditions. RBE values are quoted for neutron, X and gamma radiation given as single or fractionated irradiation doses and as whole or partial body irradiation. The relationship between the stroma in intravillous pegs and that of the pericryptal compartment is explored. (author)

  11. The role of carbon solubility in Fe-C nano-clusters on the growth of small single-walled carbon nanotubes

    Science.gov (United States)

    Curtarolo, Stefano; Awasthy, Neha; Setyawan, Wahyu; Mora, Elena; Tokune, Toshio; Bolton, Kim; Harutyunyan, Avetik

    2008-03-01

    Various diameters of alumina-supported Fe catalysts are used to grow single-walled carbon nanotubes (SWCNTs) with chemical vapor decomposition. We find that the reduction of the catalyst size requires an increase of the minimum temperature necessary for the growth. We address this phenomenon in terms of solubility of C in Fe nanoclusters and, by using first principles calculations, we devise a simple model to predict the behavior of the phases competing for stability in Fe-C nanoclusters at low temperature. We show that, as a function particles size, there are three scenarios compatible with steady state-, limited- and no-growth of SWCNTs, corresponding to unaffected, reduced and no solubility of C in the particles. The result raises previously unknown concerns about the growth feasibility of small and very-long SWCNTs within the current Fe CVD technology, and suggests new strategies in the search of better catalysts. Research supported by Honda R.I. and NSF.

  12. Magnetic small-angle scattering of subthermal neutrons by internal stress fields in work-hardened nickel single crystals oriented for multiple glide

    International Nuclear Information System (INIS)

    Vorbrugg, W.; Schaerpf, O.

    1975-01-01

    The small-angle scattering of Ni single crystals with (111) and (100) axis orientation is measured by a photographic method in the work-hardened state after tensile deformation. Parameters are the external magnetic field H parallel to the axis (600 2 ]<=8,8), and the elastic stress tausub(el)(0<=tausub(el)<=tausub(pl)) applied to the deformed crystals during the experiments. The scattering is found to be anisotropic and characteristic for the chosen orientation. The quantitative photometric analysis shows that the parameters mentioned above only influence the intensity but not the distribution of the scattered neutrons. The scattering increases with the elastic stress and decreases with the magnetic field. In particular, in the unloaded state there is a linear relation between the scattered intensity and the plastic shear stress. (author)

  13. Moving-part-free microfluidic systems for lab-on-a-chip

    International Nuclear Information System (INIS)

    Luo, J K; Fu, Y Q; Du, X Y; Flewitt, A J; Milne, W I; Li, Y; Walton, A J

    2009-01-01

    Microfluidic systems are part of an emerging technology which deals with minute amounts of liquids (biological samples and reagents) on a small scale. They are fast, compact and can be made into a highly integrated system to deliver sample purification, separation, reaction, immobilization, labelling, as well as detection, thus are promising for applications such as lab-on-a-chip and handheld healthcare devices. Miniaturized micropumps typically consist of a moving-part component, such as a membrane structure, to deliver liquids, and are often unreliable, complicated in structure and difficult to be integrated with other control electronics circuits. The trend of new-generation micropumps is moving-part-free micropumps operated by advanced techniques, such as electrokinetic force, surface tension/energy, acoustic waves. This paper reviews the development and advances of relevant technologies, and introduces electrowetting-on-dielectrics and acoustic wave-based microfluidics. The programmable electrowetting micropump has been realized to dispense and manipulate droplets in 2D with up to 1000 addressable electrodes and electronics built underneath. The acoustic wave-based microfluidics can be used not only for pumping, mixing and droplet generation but also for biosensors, suitable for single-mechanism-based lab-on-a-chip applications

  14. Mirnovo: genome-free prediction of microRNAs from small RNA sequencing data and single-cells using decision forests.

    Science.gov (United States)

    Vitsios, Dimitrios M; Kentepozidou, Elissavet; Quintais, Leonor; Benito-Gutiérrez, Elia; van Dongen, Stijn; Davis, Matthew P; Enright, Anton J

    2017-12-01

    The discovery of microRNAs (miRNAs) remains an important problem, particularly given the growth of high-throughput sequencing, cell sorting and single cell biology. While a large number of miRNAs have already been annotated, there may well be large numbers of miRNAs that are expressed in very particular cell types and remain elusive. Sequencing allows us to quickly and accurately identify the expression of known miRNAs from small RNA-Seq data. The biogenesis of miRNAs leads to very specific characteristics observed in their sequences. In brief, miRNAs usually have a well-defined 5' end and a more flexible 3' end with the possibility of 3' tailing events, such as uridylation. Previous approaches to the prediction of novel miRNAs usually involve the analysis of structural features of miRNA precursor hairpin sequences obtained from genome sequence. We surmised that it may be possible to identify miRNAs by using these biogenesis features observed directly from sequenced reads, solely or in addition to structural analysis from genome data. To this end, we have developed mirnovo, a machine learning based algorithm, which is able to identify known and novel miRNAs in animals and plants directly from small RNA-Seq data, with or without a reference genome. This method performs comparably to existing tools, however is simpler to use with reduced run time. Its performance and accuracy has been tested on multiple datasets, including species with poorly assembled genomes, RNaseIII (Drosha and/or Dicer) deficient samples and single cells (at both embryonic and adult stage). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. arXiv Characterization and Verification Environment for the RD53A Pixel Readout Chip in 65 nm CMOS

    CERN Document Server

    Vogt, M.; Hemperek, T.; Janssen, J.; Pohl, D.L.; Daas, M.

    2018-02-02

    The RD53 collaboration is currently designing a large scale prototype pixel readout chip in 65 nm CMOS technology for the phase 2 upgrades at the HL-LHC. The RD53A chip will be available by the end of the year 2017 and will be extensively tested to confirm if the circuit and the architecture make a solid foundation for the final pixel readout chips for the experiments at the HL-LHC. A test and data acquisition system for the RD53A chip is currently under development to perform single-chip and multi-chip module measurements. In addition, the verification of the RD53A design is performed in a dedicated simulation environment. The concept and the implementation of the test and data acquisition system and the simulation environment, which are based on a modular data acquisition and system testing framework, are presented in this work.

  16. Energy, Exergy and Economic Evaluation Comparison of Small-Scale Single and Dual Pressure Organic Rankine Cycles Integrated with Low-Grade Heat Sources

    Directory of Open Access Journals (Sweden)

    Armando Fontalvo

    2017-09-01

    Full Text Available Low-grade heat sources such as solar thermal, geothermal, exhaust gases and industrial waste heat are suitable alternatives for power generation which can be exploited by means of small-scale Organic Rankine Cycle (ORC. This paper combines thermodynamic optimization and economic analysis to assess the performance of single and dual pressure ORC operating with different organic fluids and targeting small-scale applications. Maximum power output is lower than 45 KW while the temperature of the heat source varies in the range 100–200 °C. The studied working fluids, namely R1234yf, R1234ze(E and R1234ze(Z, are selected based on environmental, safety and thermal performance criteria. Levelized Cost of Electricity (LCOE and Specific Investment Cost (SIC for two operation conditions are presented: maximum power output and maximum thermal efficiency. Results showed that R1234ze(Z achieves the highest net power output (up to 44 kW when net power output is optimized. Regenerative ORC achieves the highest performance when thermal efficiency is optimized (up to 18%. Simple ORC is the most cost-effective among the studied cycle configurations, requiring a selling price of energy of 0.3 USD/kWh to obtain a payback period of 8 years. According to SIC results, the working fluid R1234ze(Z exhibits great potential for simple ORC when compared to conventional R245fa.

  17. Single-objective vs. multi-objective autocalibration in modelling total suspended solids and phosphorus in a small agricultural watershed with SWAT.

    Science.gov (United States)

    Rasolomanana, Santatriniaina Denise; Lessard, Paul; Vanrolleghem, Peter A

    2012-01-01

    To obtain greater precision in modelling small agricultural watersheds, a shorter simulation time step is beneficial. A daily time step better represents the dynamics of pollutants in the river and provides more realistic simulation results. However, with a daily evaluation performance, good fits are rarely obtained. With the Shuffled Complex Evolution (SCE) method embedded in the Soil and Water Assessment Tool (SWAT), two calibration approaches are available, single-objective or multi-objective optimization. The goal of the present study is to evaluate which approach can improve the daily performance with SWAT, in modelling flow (Q), total suspended solids (TSS) and total phosphorus (TP). The influence of weights assigned to the different variables included in the objective function has also been tested. The results showed that: (i) the model performance depends not only on the choice of calibration approach, but essentially on the influential parameters; (ii) the multi-objective calibration estimating at once all parameters related to all measured variables is the best approach to model Q, TSS and TP; (iii) changing weights does not improve model performance; and (iv) with a single-objective optimization, an excellent water quality modelling performance may hide a loss of performance of predicting flows and unbalanced internal model components.

  18. Integration of microelectronic chips in microfluidic systems on printed circuit board

    International Nuclear Information System (INIS)

    Burdallo, I; Jimenez-Jorquera, C; Fernández-Sánchez, C; Baldi, A

    2012-01-01

    A new scheme for the integration of small semiconductor transducer chips with microfluidic structures on printed circuit board (PCB) is presented. The proposed approach is based on a packaging technique that yields a large and flat area with small and shallow (∼44 µm deep) openings over the chips. The photocurable encapsulant material used, based on a diacrylate bisphenol A polymer, enables irreversible bonding of polydimethylsiloxane microfluidic structures at moderate temperatures (80 °C). This integration scheme enables the insertion of transducer chips in microfluidic systems with a lower added volume than previous schemes. Leakage tests have shown that the bonded structures withstand more than 360 kPa of pressure. A prototype microfluidic system with two detection chips, including one inter-digitated electrode (IDE) chip for conductivity and one ion selective field effect transistor (ISFET) chip for pH, has been implemented and characterized. Good electrical insulation of the chip contacts and silicon edge surfaces from the solution in the microchannels has been achieved. This integration procedure opens the door to the low-cost fabrication of complex analytical microsystems that combine the extraordinary potential of both the microfluidics and silicon microtechnology fields. (paper)

  19. Determination of small field synthetic single-crystal diamond detector correction factors for CyberKnife, Leksell Gamma Knife Perfexion and linear accelerator.

    Science.gov (United States)

    Veselsky, T; Novotny, J; Pastykova, V; Koniarova, I

    2017-12-01

    The aim of this study was to determine small field correction factors for a synthetic single-crystal diamond detector (PTW microDiamond) for routine use in clinical dosimetric measurements. Correction factors following small field Alfonso formalism were calculated by comparison of PTW microDiamond measured ratio M Qclin fclin /M Qmsr fmsr with Monte Carlo (MC) based field output factors Ω Qclin,Qmsr fclin,fmsr determined using Dosimetry Diode E or with MC simulation itself. Diode measurements were used for the CyberKnife and Varian Clinac 2100C/D linear accelerator. PTW microDiamond correction factors for Leksell Gamma Knife (LGK) were derived using MC simulated reference values from the manufacturer. PTW microDiamond correction factors for CyberKnife field sizes 25-5 mm were mostly smaller than 1% (except for 2.9% for 5 mm Iris field and 1.4% for 7.5 mm fixed cone field). The correction of 0.1% and 2.0% for 8 mm and 4 mm collimators, respectively, needed to be applied to PTW microDiamond measurements for LGK Perfexion. Finally, PTW microDiamond M Qclin fclin /M Qmsr fmsr for the linear accelerator varied from MC corrected Dosimetry Diode data by less than 0.5% (except for 1 × 1 cm 2 field size with 1.3% deviation). Regarding low resulting correction factor values, the PTW microDiamond detector may be considered an almost ideal tool for relative small field dosimetry in a large variety of stereotactic and radiosurgery treatment devices. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. STUDY OF CHIP IGNITION AND CHIP MORPHOLOGY AFTER MILLING OF MAGNESIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Ireneusz Zagórski

    2016-12-01

    Full Text Available The paper analyses the impact of specified technological parameters of milling (vc, fz, ap on time to ignition. Stages leading to chip ignition were analysed. Metallographic images of magnesium chip were presented. No significant difference was observed in time to ignition in different chip fractions. Moreover, the surface of chips was free of products of ignition and signs of strong oxidation.

  1. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.

    Science.gov (United States)

    Jaakson, K; Zernant, J; Külm, M; Hutchinson, A; Tonisson, N; Glavac, D; Ravnik-Glavac, M; Hawlina, M; Meltzer, M R; Caruso, R C; Testa, F; Maugeri, A; Hoyng, C B; Gouras, P; Simonelli, F; Lewis, R A; Lupski, J R; Cremers, F P M; Allikmets, R

    2003-11-01

    Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research. Copyright 2003 Wiley

  2. Single-Cell mRNA-Seq Using the Fluidigm C1 System and Integrated Fluidics Circuits.

    Science.gov (United States)

    Gong, Haibiao; Do, Devin; Ramakrishnan, Ramesh

    2018-01-01

    Single-cell mRNA-seq is a valuable tool to dissect expression profiles and to understand the regulatory network of genes. Microfluidics is well suited for single-cell analysis owing both to the small volume of the reaction chambers and easiness of automation. Here we describe the workflow of single-cell mRNA-seq using C1 IFC, which can isolate and process up to 96 cells. Both on-chip procedure (lysis, reverse transcription, and preamplification PCR) and off-chip sequencing library preparation protocols are described. The workflow generates full-length mRNA information, which is more valuable compared to 3' end counting method for many applications.

  3. Fully integrated optical system for lab-on-a-chip applications

    DEFF Research Database (Denmark)

    Balslev, Søren; Olsen, Brian Bilenberg; Geschke, Oliver

    2004-01-01

    We present a lab-on-a-chip device featuring a microfluidic dye laser, wave-guides, microfluidic components and photo-detectors integrated on the chip. The microsystem is designed for wavelength selective absorption measurements in the visible range on a fluidic sample, which can be prepared....../mixed on-chip. The laser structures, wave-guides and micro-fluidic handling system are defined in a single UV-lithography step on a 10 μm thick SU-8 layer on top of the substrate. The SU-8 structures are sealed by a Borofloat glass lid, using polymethylmethacrylate (PMMA) adhesive bonding....

  4. CMOS foveal image sensor chip

    Science.gov (United States)

    Bandera, Cesar (Inventor); Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Xia, Shu (Inventor)

    2002-01-01

    A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.

  5. Space division multiplexing chip-to-chip quantum key distribution

    DEFF Research Database (Denmark)

    Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld

    2017-01-01

    nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum...

  6. Influence of passivation process on chip performance

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2009-01-01

    In this work, we have studied the performance of CMOS chips before and after a low temperature post-processing step. In order to prevent damage to the IC chips by the post-processing steps, a first passivation layers is needed on top of the IC chips. Two different passivation layer deposition

  7. Symmetric and Programmable Multi-Chip Module for Low-Power Prototyping System

    OpenAIRE

    Yen, Mao-Hsu; Chen, Sao-Jie; Lan, Sanko H.

    2001-01-01

    The advantages of a Multi-Chip Module (MCM) product are its low-power and small-size. But the design of an MCM system usually requires weeks of engineering effort, thus we need a generic MCM substrate with programmable interconnections to accelerate system prototyping. In this paper, we propose a Symmetric and Programmable MCM (SPMCM) substrate for this purpose. This SPMCM substrate consists of a symmetrical array of slots for bare-chip attachment and Field Programmable Interco...

  8. Single and Serial Fetal Biometry to Detect Preterm and Term Small- and Large-for-Gestational-Age Neonates: A Longitudinal Cohort Study

    Science.gov (United States)

    Hernandez-Andrade, Edgar; Ahn, Hyunyoung; Garcia, Maynor; Xu, Zhonghui; Korzeniewski, Steven J.; Saker, Homam; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.; Yeo, Lami; Romero, Roberto

    2016-01-01

    Objectives To assess the value of single and serial fetal biometry for the prediction of small- (SGA) and large-for-gestational-age (LGA) neonates delivered preterm or at term. Methods A cohort study of 3,971 women with singleton pregnancies was conducted from the first trimester until delivery with 3,440 pregnancies (17,334 scans) meeting the following inclusion criteria: 1) delivery of a live neonate after 33 gestational weeks and 2) two or more ultrasound examinations with fetal biometry parameters obtained at ≤36 weeks. Primary outcomes were SGA (95th centile) at birth based on INTERGROWTH-21st gender-specific standards. Fetus-specific estimated fetal weight (EFW) trajectories were calculated by linear mixed-effects models using data up to a fixed gestational age (GA) cutoff (28, 32, or 36 weeks) for fetuses having two or more measurements before the GA cutoff and not already delivered. A screen test positive for single biometry was based on Z-scores of EFW at the last scan before each GA cut-off so that the false positive rate (FPR) was 10%. Similarly, a screen test positive for the longitudinal analysis was based on the projected (extrapolated) EFW at 40 weeks from all available measurements before each cutoff for each fetus. Results Fetal abdominal and head circumference measurements, as well as birth weights in the Detroit population, matched well to the INTERGROWTH-21st standards, yet this was not the case for biparietal diameter (BPD) and femur length (FL) (up to 9% and 10% discrepancy for mean and confidence intervals, respectively), mainly due to differences in the measurement technique. Single biometry based on EFW at the last scan at ≤32 weeks (GA IQR: 27.4–30.9 weeks) had a sensitivity of 50% and 53% (FPR = 10%) to detect preterm and term SGA and LGA neonates, respectively (AUC of 82% both). For the detection of LGA using data up to 32- and 36-week cutoffs, single biometry analysis had higher sensitivity than longitudinal analysis (52% vs 46

  9. Exploring performance and power properties of modern multicore chips via simple machine models

    OpenAIRE

    Hager, Georg; Treibig, Jan; Habich, Johannes; Wellein, Gerhard

    2012-01-01

    Modern multicore chips show complex behavior with respect to performance and power. Starting with the Intel Sandy Bridge processor, it has become possible to directly measure the power dissipation of a CPU chip and correlate this data with the performance properties of the running code. Going beyond a simple bottleneck analysis, we employ the recently published Execution-Cache-Memory (ECM) model to describe the single- and multi-core performance of streaming kernels. The model refines the wel...

  10. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  11. FERMI multi-chip module

    CERN Multimedia

    This FERMI multi-chip module contains five million transistors. 25 000 of these modules will handle the flood of information through parts of the ATLAS and CMS detectors at the LHC. To select interesting events for recording, crucial decisions are taken before the data leaves the detector. FERMI modules are being developed at CERN in partnership with European industry.

  12. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2015-01-01

    A chip scale tunable laser in the visible spectral band is realized by generating a periodic droplet array inside a microfluidic channel. Combined with a gain medium within the droplets, the periodic structure provides the optical feedback of the laser. By controlling the pressure applied to two...

  13. Chip & Cut Tests an Elastomeren

    OpenAIRE

    Euchler, Eric; Heinrich, Gert; Michael, Hannes; Gehde, Michael; Stocek, Radek; Kratina, Ondrej; Kipscholl, Reinhold

    2016-01-01

    Dieser Vortrag stellt einen neuartigen Prüfstand vor, mit welchem das Chip & Cut Verhalten von Elastomeren charakterisiert werden kann. Sowohl theoretischer Hintergrund als auch praktische Erkenntnisse werden diskutiert. Die Vorstellung der Praxisrelevanz dieser Untersuchungen steht im Fokus des Vortrags.

  14. Optical lattice on an atom chip

    DEFF Research Database (Denmark)

    Gallego, D.; Hofferberth, S.; Schumm, Thorsten

    2009-01-01

    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high......-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice....

  15. Comparison of Time-of-flight and Multicollector ICP Mass Spectrometers for Measuring Actinides in Small Samples using single shot Laser Ablation

    International Nuclear Information System (INIS)

    R.S. Houk; D.B. Aeschliman; S.J. Bajic; D. Baldwin

    2005-01-01

    The objective of these experiments is to evaluate the performance of two types of ICP-MS device for measurement of actinide isotopes by laser ablation (LA) ICP-MS. The key advantage of ICP-MS compared to monitoring of radioactive decay is that the element need not decay during the measurement time. Hence ICP-MS is much faster for long-lived radionuclides. The LA process yields a transient signal. When spatially resolved analysis is required for small samples, the laser ablation sample pulse lasts only ∼10 seconds. It is difficult to measure signals at several isotopes with analyzers that are scanned for such a short sample transient. In this work, a time-of-flight (TOF) ICP-MS device, the GBC Optimass 8000 (Figure 1) is one instrument used. Strictly speaking, ions at different m/z values are not measured simultaneously in TOF. However, they are measured in very rapid sequence with little or no compromise between the number of m/z values monitored and the performance. Ions can be measured throughout the m/z range in single sample transients by TOF. The other ICP-MS instrument used is a magnetic sector multicollector MS, the NU Plasma 1700 (Figure 2). Up to 8 adjacent m/z values can be monitored at one setting of the magnetic field and accelerating voltage. Three of these m/z values can be measured with an electron multiplier. This device is usually used for high precision isotope ratio measurements with the Faraday cup detectors. The electron multipliers have much higher sensitivity. In our experience with the scanning magnetic sector instrument in Ames, these devices have the highest sensitivity and lowest background of any ICP-MS device. The ability to monitor several ions simultaneously, or nearly so, should make these devices valuable for the intended application: measurement of actinide isotopes at low concentrations in very small samples for nonproliferation purposes. The primary sample analyzed was an urban dust pellet reference material, NIST 1648. The

  16. A dual-unit pressure sensor for on-chip self-compensation of zero-point temperature drift

    International Nuclear Information System (INIS)

    Wang, Jiachou; Li, Xinxin

    2014-01-01

    A novel dual-unit piezoresistive pressure sensor, consisting of a sensing unit and a dummy unit, is proposed and developed for on-chip self-compensation for zero-point temperature drift. With an MIS (microholes inter-etch and sealing) process implemented only from the front side of single (1 1 1) silicon wafers, a pressure sensitive unit and another identically structured pressure insensitive dummy unit are compactly integrated on-chip to eliminate unbalance factors induced zero-point temperature-drift by mutual compensation between the two units. Besides, both units are physically suspended from silicon substrate to further suppress packaging-stress induced temperature drift. A simultaneously processes ventilation hole-channel structure is connected with the pressure reference cavity of the dummy unit to make it insensitive to detected pressure. In spite of the additional dummy unit, the sensor chip dimensions are still as small as 1.2 mm × 1.2 mm × 0.4 mm. The proposed dual-unit sensor is fabricated and tested, with the tested sensitivity being 0.104 mV kPa −1 3.3 V −1 , nonlinearity of less than 0.08% · FSO and overall accuracy error of ± 0.18% · FSO. Without using any extra compensation method, the sensor features an ultra-low temperature coefficient of offset (TCO) of 0.002% °C −1 · FSO that is much better than the performance of conventional pressure sensors. The highly stable and small-sized sensors are promising for low cost production and applications. (paper)

  17. In vivo assessment of the gastric mucosal tolerance dose after single fraction, small volume irradiation of liver malignancies by computed tomography-guided, high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Streitparth, Florian; Pech, Maciej; Boehmig, Michael; Ruehl, Ricarda; Peters, Nils; Wieners, Gero; Steinberg, Johannes; Lopez-Haenninen, Enrique; Felix, Roland; Wust, Peter; Ricke, Jens

    2006-01-01

    Purpose: The aim of this study was to assess the tolerance dose of gastric mucosa for single-fraction computed tomography (CT)-guided, high-dose-rate (HDR) brachytherapy of liver malignancies. Methods and Materials: A total of 33 patients treated by CT-guided HDR brachytherapy of liver malignancies in segments II and/or III were included. Dose planning was performed upon a three-dimensional CT data set acquired after percutaneous applicator positioning. All patients received gastric protection post-treatment. For further analysis, the contours of the gastric wall were defined in every CT slice using Brachyvision Software. Dose-volume histograms were calculated for each treatment and correlated with clinical data derived from questionnaires assessing Common Toxicity Criteria (CTC). All patients presenting symptoms of upper GI toxicity were examined endoscopically. Results: Summarizing all patients the minimum dose applied to 1 ml of the gastric wall (D 1ml ) ranged from 6.3 to 34.2 Gy; median, 14.3 Gy. Toxicity was present in 18 patients (55%). We found nausea in 16 (69%), emesis in 9 (27%), cramping in 13 (39%), weight loss in 12 (36%), gastritis in 4 (12%), and ulceration in 5 patients (15%). We found a threshold dose D 1ml of 11 Gy for general gastric toxicity and 15.5 Gy for gastric ulceration verified by an univariate analysis (p = 0.01). Conclusions: For a single fraction, small volume irradiation we found in the upper abdomen a threshold dose D 1ml of 15.5 Gy for the clinical endpoint ulceration of the gastric mucosa. This in vivo assessment is in accordance with previously published tolerance data

  18. The N2 paradox: similar outcomes of pre- and postoperatively identified single-zone N2a positive non-small-cell lung cancer.

    Science.gov (United States)

    Tsitsias, Thomas; Boulemden, Anas; Ang, Keng; Nakas, Apostolos; Waller, David A

    2014-05-01

    Resection of N2a non-small-cell lung cancer (NSCLC) diagnosed preoperatively is controversial but there is support for resection of unexpected N2 disease discovered at surgery. Since the seventh TNM edition, we have intentionally resected clinical N2a disease. To validate this policy, we determined prognostic factors associated with all resected N2 disease. From a prospective database of 1131 consecutive patients undergoing elective resection for primary lung cancer over a period of 8 years, we identified 68 patients (35 females (51.4%), mean age 66 years, standard deviation (SD) 9 years) who had pathological N2 disease. All patients had positron emission computed tomography (CT-PET) staging and selective mediastinoscopy. A Cox-regression analysis was performed to identify prognostic factors. At a median follow-up of 38.7 months (standard error 10, 95% confidence interval (CI) 19.0-58.4), the overall median survival was 22.2 months (95% CI 14.6-29.8) with 1-, 2- and 5-year survival rates of 63.3, 46.6 and 13.2%, respectively. Survival after resection of pN2 disease is adversely affected by the need for pneumonectomy, multizone pN2b involvement and by non-compliance with adjuvant chemotherapy. Pathological involvement of the subcarinal zone but no other zone appears to be associated with an adverse prognosis (hazard ratio (HR) 1.87, P = 0.063). Importantly, long-term survival is not different between those patients who have a negative preoperative PET-CT scan and yet are found to have pN2 after resection, and those who are single-zone cN2a positive before resection on PET-CT scan (HR 1.37, P = 0.335). Our results support a policy of intentionally resecting single-zone N2a NSCLC identified preoperatively as part of a multimodality therapy.

  19. Lab-on-a-Chip Based Protein Crystallization

    Science.gov (United States)

    vanderWoerd, Mark J.; Brasseur, Michael M.; Spearing, Scott F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We are developing a novel technique with which we will grow protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. This development, which is a collaborative effort between NASA's Marshall Space Flight Center and Caliper Technologies Corporation, promises a breakthrough in the field of protein crystal growth. Our initial results obtained from two model proteins, Lysozyme and Thaumatin, show that it is feasible to dispense and adequately mix protein and precipitant solutions on a nano-liter scale. The mixtures have shown crystal growth in volumes in the range of 10 nanoliters to 5 microliters. In addition, large diffraction quality crystals were obtained by this method. X-ray data from these crystals were shown to be of excellent quality. Our future efforts will include the further development of protein crystal growth with LabChip(trademark) technology for more complex systems. We will initially address the batch growth method, followed by the vapor diffusion method and the liquid-liquid diffusion method. The culmination of these chip developments is to lead to an on orbit protein crystallization facility on the International Space Station. Structural biologists will be invited to utilize the on orbit Iterative Biological Crystallization facility to grow high quality macromolecular crystals in microgravity.

  20. On-chip microsystems in silicon: opportunities and limitations

    Science.gov (United States)

    Wolffenbuttel, R. F.

    1996-03-01

    Integrated on-chip micro-instrumentation systems in silicon are complete data acquisition systems on a single chip. This concept has appeared to be the ultimate solution in many applications, as it enables in principle the metamorphosis of a basic sensing element, affected with many shortcomings, into an on-chip data acquisition unit that provides an output digital data stream in a standard format not corrupted by sensor non-idealities. Market acceptance would be maximum, as no special knowledge about the internal operation is required, self-test and self-calibration can be included and the dimensions are not different from those of the integrated circuit. The various aspects that are relevant in estimating the constraints for successful implementation of the integrated silicon smart sensor will be outlined in comparison with the properties of more conventional sensor fabrication technologies. It will be shown that the acceptance of on-chip functional integration in an application depends primarily on the added value in terms of improved specification or functionality that the resulting device provides in that application. The economic viability is therefore decisive rather than the technological constraints. This is in contrast to the traditional technology push prevailing in sensor research over market pull mechanisms.

  1. Silicon carbide transparent chips for compact atomic sensors

    Science.gov (United States)

    Huet, L.; Ammar, M.; Morvan, E.; Sarazin, N.; Pocholle, J.-P.; Reichel, J.; Guerlin, C.; Schwartz, S.

    2017-11-01

    Atom chips [1] are an efficient tool for trapping, cooling and manipulating cold atoms, which could open the way to a new generation of compact atomic sensors addressing space applications. This is in particular due to the fact that they can achieve strong magnetic field gradients near the chip surface, hence strong atomic confinement at moderate electrical power. However, this advantage usually comes at the price of reducing the optical access to the atoms, which are confined very close to the chip surface. We will report at the conference experimental investigations showing how these limits could be pushed farther by using an atom chip made of a gold microcircuit deposited on a single-crystal Silicon Carbide (SiC) substrate [2]. With a band gap energy value of about 3.2 eV at room temperature, the latter material is transparent at 780nm, potentially restoring quasi full optical access to the atoms. Moreover, it combines a very high electrical resistivity with a very high thermal conductivity, making it a good candidate for supporting wires with large currents without the need of any additional electrical insulation layer [3].

  2. Molecular dynamics simulations to examine structure, energetics, and evaporation/condensation dynamics in small charged clusters of water or methanol containing a single monatomic ion.

    Science.gov (United States)

    Daub, Christopher D; Cann, Natalie M

    2012-11-01

    We study small clusters of water or methanol containing a single Ca(2+), Na(+), or Cl(-) ion with classical molecular dynamics simulations, using models that incorporate polarizability via the Drude oscillator framework. Evaporation and condensation of solvent from these clusters is examined in two systems, (1) for isolated clusters initially prepared at different temperatures and (2) those with a surrounding inert (Ar) gas of varying temperature. We examine these clusters over a range of sizes, from almost bare ions up to 40 solvent molecules. We report data on the evaporation and condensation of solvent from the clusters and argue that the observed temperature dependence of evaporation in the smallest clusters demonstrates that the presence of heated gas alone cannot, in most cases, solely account for bare ion production in electrospray ionization (ESI), neglecting the key contribution of the electric field. We also present our findings on the structure and energetics of the clusters as a function of size. Our data agree well with the abundant literature on hydrated ion clusters and offer some novel insight into the structure of methanol and ion clusters, especially those with a Cl(-) anion, where we observe the presence of chain-like structures of methanol molecules. Finally, we provide some data on the reparameterizations necessary to simulate ions in methanol using the separately developed Drude oscillator models for methanol and for ions in water.

  3. The long tail of molecular alterations in non-small cell lung cancer: a single-institution experience of next-generation sequencing in clinical molecular diagnostics.

    Science.gov (United States)

    Fumagalli, Caterina; Vacirca, Davide; Rappa, Alessandra; Passaro, Antonio; Guarize, Juliana; Rafaniello Raviele, Paola; de Marinis, Filippo; Spaggiari, Lorenzo; Casadio, Chiara; Viale, Giuseppe; Barberis, Massimo; Guerini-Rocco, Elena

    2018-03-13

    Molecular profiling of advanced non-small cell lung cancers (NSCLC) is essential to identify patients who may benefit from targeted treatments. In the last years, the number of potentially actionable molecular alterations has rapidly increased. Next-generation sequencing allows for the analysis of multiple genes simultaneously. To evaluate the feasibility and the throughput of next-generation sequencing in clinical molecular diagnostics of advanced NSCLC. A single-institution cohort of 535 non-squamous NSCLC was profiled using a next-generation sequencing panel targeting 22 actionable and cancer-related genes. 441 non-squamous NSCLC (82.4%) harboured at least one gene alteration, including 340 cases (63.6%) with clinically relevant molecular aberrations. Mutations have been detected in all but one gene ( FGFR1 ) of the panel. Recurrent alterations were observed in KRAS , TP53 , EGFR , STK11 and MET genes, whereas the remaining genes were mutated in <5% of the cases. Concurrent mutations were detected in 183 tumours (34.2%), mostly impairing KRAS or EGFR in association with TP53 alterations. The study highlights the feasibility of targeted next-generation sequencing in clinical setting. The majority of NSCLC harboured mutations in clinically relevant genes, thus identifying patients who might benefit from different targeted therapies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Wafer Scale Integration of CMOS Chips for Biomedical Applications via Self-Aligned Masking.

    Science.gov (United States)

    Uddin, Ashfaque; Milaninia, Kaveh; Chen, Chin-Hsuan; Theogarajan, Luke

    2011-12-01

    This paper presents a novel technique for the integration of small CMOS chips into a large area substrate. A key component of the technique is the CMOS chip based self-aligned masking. This allows for the fabrication of sockets in wafers that are at most 5 µm larger than the chip on each side. The chip and the large area substrate are bonded onto a carrier such that the top surfaces of the two components are flush. The unique features of this technique enable the integration of macroscale components, such as leads and microfluidics. Furthermore, the integration process allows for MEMS micromachining after CMOS die-wafer integration. To demonstrate the capabilities of the proposed technology, a low-power integrated potentiostat chip for biosensing implemented in the AMI 0.5 µm CMOS technology is integrated in a silicon substrate. The horizontal gap and the vertical displacement between the chip and the large area substrate measured after the integration were 4 µm and 0.5 µm, respectively. A number of 104 interconnects are patterned with high-precision alignment. Electrical measurements have shown that the functionality of the chip is not affected by the integration process.

  5. Nanoliter Centrifugal Liquid Dispenser Coupled with Superhydrophobic Microwell Array Chips for High-Throughput Cell Assays

    Directory of Open Access Journals (Sweden)

    Yuyi Wang

    2018-06-01

    Full Text Available Microfluidic systems have been regarded as a potential platform for high-throughput screening technology in drug discovery due to their low sample consumption, high integration, and easy operation. The handling of small-volume liquid is an essential operation in microfluidic systems, especially in investigating large-scale combination conditions. Here, we develop a nanoliter centrifugal liquid dispenser (NanoCLD coupled with superhydrophobic microwell array chips for high-throughput cell-based assays in the nanoliter scale. The NanoCLD consists of a plastic stock block with an array of drilled through holes, a reagent microwell array chip (reagent chip, and an alignment bottom assembled together in a fixture. A simple centrifugation at 800 rpm can dispense ~160 nL reagents into microwells in 5 min. The dispensed reagents are then delivered to cells by sandwiching the reagent chip upside down with another microwell array chip (cell chip on which cells are cultured. A gradient of doxorubicin is then dispensed to the cell chip using the NanoCLD for validating the feasibility of performing drug tests on our microchip platform. This novel nanoliter-volume liquid dispensing method is simple, easy to operate, and especially suitable for repeatedly dispensing many different reagents simultaneously to microwells.

  6. Transportable GPU (General Processor Units) chip set technology for standard computer architectures

    Science.gov (United States)

    Fosdick, R. E.; Denison, H. C.

    1982-11-01

    The USAFR-developed GPU Chip Set has been utilized by Tracor to implement both USAF and Navy Standard 16-Bit Airborne Computer Architectures. Both configurations are currently being delivered into DOD full-scale development programs. Leadless Hermetic Chip Carrier packaging has facilitated implementation of both architectures on single 41/2 x 5 substrates. The CMOS and CMOS/SOS implementations of the GPU Chip Set have allowed both CPU implementations to use less than 3 watts of power each. Recent efforts by Tracor for USAF have included the definition of a next-generation GPU Chip Set that will retain the application-proven architecture of the current chip set while offering the added cost advantages of transportability across ISO-CMOS and CMOS/SOS processes and across numerous semiconductor manufacturers using a newly-defined set of common design rules. The Enhanced GPU Chip Set will increase speed by an approximate factor of 3 while significantly reducing chip counts and costs of standard CPU implementations.

  7. From lab-on-a-chip to lab-in-a-cell

    NARCIS (Netherlands)

    Andersson, Helene; van den Berg, Albert

    2005-01-01

    There are many efforts today trying to mimic the properties of single cells in order to design chips that are as efficient as cells. However, cells are nature"s nanotechnology engineering at the scale of atoms and molecules. Therefore, it might be better to vision a microchip that utilizes a single

  8. Enabling rapid behavioral ecotoxicity studies using an integrated lab-on-a-chip systems

    Science.gov (United States)

    Huang, Yushi; Nugegoda, Dayanthi; Wlodkowic, Donald

    2015-12-01

    Behavioral ecotoxicity tests are gaining an increasing recognition in environmental toxicology. Behavior of sensitive bioindicator species can change rapidly in response to an acute exposure to contaminants and thus has a much higher sensitivity as compared to conventional LC50 mortality tests. Furthermore, behavioral endpoints seems to be very good candidates to develop early-warning biomonitoring systems needed for rapid chemical risk assessment. Behavioral tests are non-invasive, fast, do not harm indicator organisms (behavioural changes are very rapid) and are thus fully compatible with 3R (Replacement - Reduction - Refinement) principle encouraging alternatives to conventional animal testing. These characteristics are essential when designing improved ecotoxicity tests for chemical risk assessment. In this work, we present a pilot development of miniaturized Lab-on-a-Chip (LOC) devices for studying toxin avoidance behaviors of small aquatic crustaceans. As an investigative tool, LOCs represent a new direction that may miniaturize and revolutionize behavioral ecotoxicology. Specifically our innovative microfluidic prototype: (i) enables convening "caging" of specimens for real-time videomicroscopy; (ii) eliminates the evaporative water loss thus providing an opportunity for long-term behavioral studies; (iii) exploits laminar fluid flow under low Reynolds numbers to generate discrete domains and gradients enabling for the first time toxin avoidance studies on small aquatic crustaceans; (iv) integrates off-the-chip mechatronic interfaces and video analysis algorithms for single animal movement analysis. We provide evidence that by merging innovative bioelectronic and biomicrofluidic technologies we can deploy inexpensive and reliable systems for culture, electronic tracking and complex computational analysis of behavior of bioindicator organisms.

  9. Selection of aptamers specific for glycated hemoglobin and total hemoglobin using on-chip SELEX.

    Science.gov (United States)

    Lin, Hsin-I; Wu, Ching-Chu; Yang, Ching-Hsuan; Chang, Ko-Wei; Lee, Gwo-Bin; Shiesh, Shu-Chu

    2015-01-21

    Blood glycated hemoglobin (HbA1c) levels reflecting average glucose concentrations over the past three months are fundamental for the diagnosis, monitoring, and risk assessment of diabetes. It has been hypothesized that aptamers, which are single-stranded DNAs or RNAs that demonstrate high affinity to a large variety of molecules ranging from small drugs, metabolites, or proteins, could be used for the measurement of HbA1c. Aptamers are selected through an in vitro process called systematic evolution of ligands by exponential enrichment (SELEX), and they can be chemically synthesized with high reproducibility at relatively low costs. This study therefore aimed to select HbA1c- and hemoglobin (Hb)-specific single-stranded DNA aptamers using an on-chip SELEX protocol. A microfluidic SELEX chip was developed to continuously and automatically carry out multiple rounds of SELEX to screen specific aptamers for HbA1c and Hb. HbA1c and Hb were first coated onto magnetic beads. Following several rounds of selection and enrichment with a randomized 40-mer DNA library, specific oligonucleotides were selected. The binding specificity and affinity were assessed by competitive and binding assays. Using the developed microfluidic system, the incubation and partitioning times were greatly decreased, and the entire process was shortened dramatically. Both HbA1c- and Hb-specific aptamers selected by the microfluidic system showed high specificity and affinity (dissociation constant, Kd = 7.6 ± 3.0 nM and 7.3 ± 2.2 nM for HbA1c and Hb, respectively). With further refinements in the assay, these aptamers may replace the conventional antibodies for in vitro diagnostics applications in the near future.

  10. Lab on a Chip

    Science.gov (United States)

    Puget, P.

    The reliable and fast detection of chemical or biological molecules, or the measurement of their concentrations in a sample, are key problems in many fields such as environmental analysis, medical diagnosis, or the food industry. There are traditionally two approaches to this problem. The first aims to carry out a measurement in situ in the sample using chemical and biological sensors. The constraints imposed by detection limits, specificity, and in some cases stability are entirely imputed to the sensor. The second approach uses so-called total analysis systems to process the sample according to a protocol made up of different steps, such as extractions, purifications, concentrations, and a final detection stage. The latter is made in better conditions than with the first approach, which may justify the greater complexity of the process. It is this approach that is implemented in most methods for identifying pathogens, whether they be in biological samples (especially for in vitro diagnosis) or samples taken from the environment. The instrumentation traditionally used to carry out these protocols comprises a set of bulky benchtop apparatus, which needs to be plugged into the mains in order to function. However, there are many specific applications (to be discussed in this chapter) for which analysis instruments with the following characteristics are needed: Possibility of use outside the laboratory, i.e., instruments as small as possible, consuming little energy, and largely insensitive to external conditions of temperature, humidity, vibrations, and so on. Possibility of use by non-specialised agents, or even unmanned operation. Possibility of handling a large number of samples in a limited time, typically for high-throughput screening applications. Possibility of handling small samples. At the same time, a high level of performance is required, in particular in terms of (1) the detection limit, which must be as low as possible, (2) specificity, i.e., the ability

  11. Development of a high-throughput Candida albicans biofilm chip.

    Directory of Open Access Journals (Sweden)

    Anand Srinivasan

    2011-04-01

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  12. Reducing the Edge Chipping for Capillary End Face Grinding and Polishing

    Directory of Open Access Journals (Sweden)

    Hošek J.

    2013-05-01

    Full Text Available This paper presents results of glass capillary end face grinding and polishing by approach that reduces the edge chipping. Brittle materials have natural tendency for edge chipping what leads to beveling the sharp edges. Not beveled sharp edges on glass capillary are important for special applications like surface tension measurement of small liquid samples. We use common grinding and polishing process for capillary end face machining modified with gradual decreasing of grinding load based on the relation of the critical chipping load. Achieved surface roughness is measured using atomic force microscopy (AFM. Capillary inner edge quality is checked both with optical microscopes and electron microscope too. We achieved a non-chipped capillary inner edge with radius down to 100 nm.

  13. The Effects of Different Electron-Phonon Couplings on the Spectral and Transport Properties of Small Molecule Single-Crystal Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Carmine Antonio Perroni

    2014-03-01

    Full Text Available Spectral and transport properties of small molecule single-crystal organic semiconductors have been theoretically analyzed focusing on oligoacenes, in particular on the series from naphthalene to rubrene and pentacene, aiming to show that the inclusion of different electron-phonon couplings is of paramount importance to interpret accurately the properties of prototype organic semiconductors. While in the case of rubrene, the coupling between charge carriers and low frequency inter-molecular modes is sufficient for a satisfactory description of spectral and transport properties, the inclusion of electron coupling to both low-frequency inter-molecular and high-frequency intra-molecular vibrational modes is needed to account for the temperature dependence of transport properties in smaller oligoacenes. For rubrene, a very accurate analysis in the relevant experimental configuration has allowed for the clarification of the origin of the temperature-dependent mobility observed in these organic semiconductors. With increasing temperature, the chemical potential moves into the tail of the density of states corresponding to localized states, but this is not enough to drive the system into an insulating state. The mobility along different crystallographic directions has been calculated, including vertex corrections that give rise to a transport lifetime one order of magnitude smaller than the spectral lifetime of the states involved in the transport mechanism. The mobility always exhibits a power-law behavior as a function of temperature, in agreement with experiments in rubrene. In systems gated with polarizable dielectrics, the electron coupling to interface vibrational modes of the gate has to be included in addition to the intrinsic electron-phonon interaction. While the intrinsic bulk electron-phonon interaction affects the behavior of mobility in the coherent regime below room temperature, the coupling with interface modes is dominant for the

  14. Comparison of the Mechanical Characteristics of a Universal Small Biplane Plating Technique Without Compression Screw and Single Anatomic Plate With Compression Screw.

    Science.gov (United States)

    Dayton, Paul; Ferguson, Joe; Hatch, Daniel; Santrock, Robert; Scanlan, Sean; Smith, Bret

    2016-01-01

    To better understand the mechanical characteristics of biplane locked plating in small bone fixation, the present study compared the stability under cyclic cantilever loading of a 2-plate locked biplane (BPP) construct without interfragmentary compression with that of a single-plate locked construct with an additional interfragmentary screw (SPS) using surrogate bone models simulating Lapidus arthrodesis. In static ultimate plantar bending, the BPP construct failed at significantly greater load than did the SPS construct (556.2 ± 37.1 N versus 241.6 ± 6.3 N, p = .007). For cyclic failure testing in plantar bending at a 180-N starting load, the BPP construct failed at a significantly greater number of cycles (158,322 ± 50,609 versus 13,718 ± 10,471 cycles) and failure load (242.5 ± 25.0 N versus 180.0 ± 0.0 N) than the SPS construct (p = .002). For cyclic failure testing in plantar bending at a 120-N starting load, the results were not significantly different between the BPP and SPS constructs for the number of cycles (207,646 ± 45,253 versus 159,334 ± 69,430) or failure load (205.0 ± 22.4 N versus 185.0 ± 33.5 N; p = .300). For cyclic testing with 90° offset loading (i.e., medial to lateral bending) at a 120-N starting load, all 5 BPP constructs (tension side) and 2 of the 5 SPS constructs reached 250,000 cycles without failure. Overall, the present study found the BPP construct to have superior or equivalent stability in multiplanar orientations of force application in both static and fatigue testing. Thus, the concept of biplane locked plating, using 2 low profile plates and unicortical screw insertion, shows promise in small bone fixation, because it provides consistent stability in multiplanar orientations, making it universally adaptable to many clinical situations. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Error correcting code with chip kill capability and power saving enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Gara, Alan G [Mount Kisco, NY; Chen, Dong [Croton On Husdon, NY; Coteus, Paul W [Yorktown Heights, NY; Flynn, William T [Rochester, MN; Marcella, James A [Rochester, MN; Takken, Todd [Brewster, NY; Trager, Barry M [Yorktown Heights, NY; Winograd, Shmuel [Scarsdale, NY

    2011-08-30

    A method and system are disclosed for detecting memory chip failure in a computer memory system. The method comprises the steps of accessing user data from a set of user data chips, and testing the user data for errors using data from a set of system data chips. This testing is done by generating a sequence of check symbols from the user data, grouping the user data into a sequence of data symbols, and computing a specified sequence of syndromes. If all the syndromes are zero, the user data has no errors. If one of the syndromes is non-zero, then a set of discriminator expressions are computed, and used to determine whether a single or double symbol error has occurred. In the preferred embodiment, less than two full system data chips are used for testing and correcting the user data.

  16. Low-cost low-power UHF RFID tag with on-chip antenna

    Energy Technology Data Exchange (ETDEWEB)

    Xi Jingtian; Yan Na; Che Wenyi; Xu Conghui; Wang Xiao; Yang Yuqing; Jian Hongyan; Min Hao, E-mail: jtxi@fudan.edu.c [State Key Laboratory of ASIC and System, Auto-ID Laboratory, Fudan University, Shanghai 201203 (China)

    2009-07-15

    This paper presents an EPC Class 1 Generation 2 compatible tag with on-chip antenna implemented in the SMIC 0.18 {mu}m standard CMOS process. The UHF tag chip includes an RF/analog front-end, a digital baseband, and a 640-bit EEPROM memory. The on-chip antenna is optimized based on a novel parasitic-aware model. The rectifier is optimized to achieve a power conversion efficiency up to 40% by applying a self-bias feedback and threshold compensation techniques. A good match between the tag circuits and the on-chip antenna is realized by adjusting the rectifier input impedance. Measurements show that the presented tag can achieve a communication range of 1 cm with 1 W reader output power using a 1 x 1 cm{sup 2} single-turn loop reader antenna.

  17. High-performance, scalable optical network-on-chip architectures

    Science.gov (United States)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of

  18. Accurate detection of carcinoma cells by use of a cell microarray chip.

    Directory of Open Access Journals (Sweden)

    Shohei Yamamura

    Full Text Available BACKGROUND: Accurate detection and analysis of circulating tumor cells plays an important role in the diagnosis and treatment of metastatic cancer treatment. METHODS AND FINDINGS: A cell microarray chip was used to detect spiked carcinoma cells among leukocytes. The chip, with 20,944 microchambers (105 µm width and 50 µm depth, was made from polystyrene; and the formation of monolayers of leukocytes in the microchambers was observed. Cultured human T lymphoblastoid leukemia (CCRF-CEM cells were used to examine the potential of the cell microarray chip for the detection of spiked carcinoma cells. A T lymphoblastoid leukemia suspension was dispersed on the chip surface, followed by 15 min standing to allow the leukocytes to settle down into the microchambers. Approximately 29 leukocytes were found in each microchamber when about 600,000 leukocytes in total were dispersed onto a cell microarray chip. Similarly, when leukocytes isolated from human whole blood were used, approximately 89 leukocytes entered each microchamber when about 1,800,000 leukocytes in total were placed onto the cell microarray chip. After washing the chip surface, PE-labeled anti-cytokeratin monoclonal antibody and APC-labeled anti-CD326 (EpCAM monoclonal antibody solution were dispersed onto the chip surface and allowed to react for 15 min; and then a microarray scanner was employed to detect any fluorescence-positive cells within 20 min. In the experiments using spiked carcinoma cells (NCI-H1650, 0.01 to 0.0001%, accurate detection of carcinoma cells was achieved with PE-labeled anti-cytokeratin monoclonal antibody. Furthermore, verification of carcinoma cells in the microchambers was performed by double staining with the above monoclonal antibodies. CONCLUSION: The potential application of the cell microarray chip for the detection of CTCs was shown, thus demonstrating accurate detection by double staining for cytokeratin and EpCAM at the single carcinoma cell level.

  19. Development, optimisation and characterisation of a radiation hard mixed-signal readout chip for LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Loechner, S.

    2006-07-26

    The Beetle chip is a radiation hard, 128 channel pipelined readout chip for silicon strip detectors. The front-end consists of a charge-sensitive preamplifier followed by a CR-RC pulse shaper. The analogue pipeline memory is implemented as a switched capacitor array with a maximum latency of 4us. The 128 analogue channels are multiplexed and transmitted off chip in 900ns via four current output drivers. Beside the pipelined readout path, the Beetle provides a fast discrimination of the front-end pulse. Within this doctoral thesis parts of the radiation hard Beetle readout chip for the LHCb experiment have been developed. The overall chip performances like noise, power consumption, input charge rates have been optimised as well as the elimination of failures so that the Beetle fulfils the requirements of the experiment. Furthermore the characterisation of the chip was a major part of this thesis. Beside the detailed measurement of the chip performance, several irradiation tests and an Single Event Upset (SEU) test were performed. A long-time measurement with a silicon strip detector was also part of this work as well as the development and test of a first mass production test setup. The Beetle chip showed no functional failure and only slight degradation in the analogue performance under irradiation of up to 130Mrad total dose. The Beetle chip fulfils all requirements of the vertex detector (VELO), the trigger tracker (TT) and the inner tracker (IT) and is ready for the start of LHCb end of 2007. (orig.)

  20. Development, optimisation and characterisation of a radiation hard mixed-signal readout chip for LHCb

    International Nuclear Information System (INIS)

    Loechner, S.

    2006-01-01

    The Beetle chip is a radiation hard, 128 channel pipelined readout chip for silicon strip detectors. The front-end consists of a charge-sensitive preamplifier followed by a CR-RC pulse shaper. The analogue pipeline memory is implemented as a switched capacitor array with a maximum latency of 4us. The 128 analogue channels are multiplexed and transmitted off chip in 900ns via four current output drivers. Beside the pipelined readout path, the Beetle provides a fast discrimination of the front-end pulse. Within this doctoral thesis parts of the radiation hard Beetle readout chip for the LHCb experiment have been developed. The overall chip performances like noise, power consumption, input charge rates have been optimised as well as the elimination of failures so that the Beetle fulfils the requirements of the experiment. Furthermore the characterisation of the chip was a major part of this thesis. Beside the detailed measurement of the chip performance, several irradiation tests and an Single Event Upset (SEU) test were performed. A long-time measurement with a silicon strip detector was also part of this work as well as the development and test of a first mass production test setup. The Beetle chip showed no functional failure and only slight degradation in the analogue performance under irradiation of up to 130Mrad total dose. The Beetle chip fulfils all requirements of the vertex detector (VELO), the trigger tracker (TT) and the inner tracker (IT) and is ready for the start of LHCb end of 2007. (orig.)

  1. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    Science.gov (United States)

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-21

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  2. Experiment list: SRX122465 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 6 || chip antibody=Relb || treatment=LPS || time=120 min || chip antibody manufacturer 1=Bethyl || chip anti...body catalog number 1=A302-183A || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2

  3. Experiment list: SRX122555 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available chip antibody=Stat1 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip anti...body catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-7

  4. Chip-olate’ and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips

    Science.gov (United States)

    Temiz, Yuksel; Delamarche, Emmanuel

    2014-09-01

    This paper describes a technique for high-throughput fabrication and efficient singulation of chips having closed microfluidic structures and takes advantage of dry-film resists (DFRs) for efficient sealing of capillary systems. The technique is illustrated using 4-inch Si/SiO2 wafers. Wafers carrying open microfluidic structures are partially diced to about half of their thickness. Treatments such as surface cleaning are done at wafer-level, then the structures are sealed using low-temperature (45 °C) lamination of a DFR that is pre-patterned using a craft cutter, and ready-to-use chips are finally separated manually like a chocolate bar by applying a small force (≤ 4 N). We further show that some DFRs have low auto-fluorescence at wavelengths typically used for common fluorescent dyes and that mechanical properties of some DFRs allow for the lamination of 200 μm wide microfluidic structures with negligible sagging (~1 μm). The hydrophilicity (advancing contact angle of ~60°) of the DFR supports autonomous capillary-driven flow without the need for additional surface treatment of the microfluidic chips. Flow rates from 1 to 5 µL min-1 are generated using different geometries of channels and capillary pumps. In addition, the ‘chip-olate’ technique is compatible with the patterning of capture antibodies on DFR for use in immunoassays. We believe this technique to be applicable to the fabrication of a wide range of microfluidic and lab-on-a-chip devices and to offer a viable alternative to many labor-intensive processes that are currently based on wafer bonding techniques or on the molding of poly(dimethylsiloxane) (PDMS) layers.

  5. Chip-olate’ and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips

    International Nuclear Information System (INIS)

    Temiz, Yuksel; Delamarche, Emmanuel

    2014-01-01

    This paper describes a technique for high-throughput fabrication and efficient singulation of chips having closed microfluidic structures and takes advantage of dry-film resists (DFRs) for efficient sealing of capillary systems. The technique is illustrated using 4-inch Si/SiO 2 wafers. Wafers carrying open microfluidic structures are partially diced to about half of their thickness. Treatments such as surface cleaning are done at wafer-level, then the structures are sealed using low-temperature (45 °C) lamination of a DFR that is pre-patterned using a craft cutter, and ready-to-use chips are finally separated manually like a chocolate bar by applying a small force (≤ 4 N). We further show that some DFRs have low auto-fluorescence at wavelengths typically used for common fluorescent dyes and that mechanical properties of some DFRs allow for the lamination of 200 μm wide microfluidic structures with negligible sagging (∼1 μm). The hydrophilicity (advancing contact angle of ∼60°) of the DFR supports autonomous capillary-driven flow without the need for additional surface treatment of the microfluidic chips. Flow rates from 1 to 5 µL min -1 are generated using different geometries of channels and capillary pumps. In addition, the ‘chip-olate’ technique is compatible with the patterning of capture antibodies on DFR for use in immunoassays. We believe this technique to be applicable to the fabrication of a wide range of microfluidic and lab-on-a-chip devices and to offer a viable alternative to many labor-intensive processes that are currently based on wafer bonding techniques or on the molding of poly(dimethylsiloxane) (PDMS) layers. (technical note)

  6. Thermal transfer and apparent-dose distributions in poorly bleached mortar samples: results from single grains and small aliquots of quartz

    International Nuclear Information System (INIS)

    Jain, M.; Thomsen, K.J.; Boetter-Jensen, L.; Urray, A.S.

    2004-01-01

    In the assessment of doses received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using the optically stimulated luminescence (OSL) of heated materials such as bricks and tiles. quartz extracted from these artefacts was heated during manufacture; this process releases all the prior trapped charge and simultaneously sensitises he quartz. Unfortunately unheated materials such as mortar and concrete are ore common in industrial sites and particularly in nuclear installations. These materials are usually exposed to daylight during quarrying and construction, but in general this exposure is insufficient to completely empty (bleach) any geological trapped charge. This leads to a distribution of apparent doses in the sample at the time of construction with only some (if ny) grains exposed to sufficient light to be considered well bleached for SL dosimetry. The challenge in using such materials as retrospective dosemeters is in identifying these well-bleached grains when an accident dose as been superimposed on the original dose distribution. We investigate here, sing OSL, the background dose in three different mortar samples: render, whitewash and inner wall plaster from a building built in 1964. These samples re found to be both poorly bleached and weakly sensitive (only 0.3% of rains giving a detectable dose response). We study thermal transfer in ingle grains of quartz, investigate the grain-size dependence of bleaching n the size range 90-300 μm and compare the dose-distributions obtained rom small aliquots and single-grain procedures. A comparison of three different methods viz. (a) first 5%, (b) probability plot and (c) comparison f internal and external uncertainties, is made for equivalent dose estimation. The results have implications for accident dosimetry, archaeological studies and dating of poorly bleached sediments

  7. 3D stacked chips from emerging processes to heterogeneous systems

    CERN Document Server

    Fettweis, Gerhard

    2016-01-01

    This book explains for readers how 3D chip stacks promise to increase the level of on-chip integration, and to design new heterogeneous semiconductor devices that combine chips of different integration technologies (incl. sensors) in a single package of the smallest possible size.  The authors focus on heterogeneous 3D integration, addressing some of the most important challenges in this emerging technology, including contactless, optics-based, and carbon-nanotube-based 3D integration, as well as signal-integrity and thermal management issues in copper-based 3D integration. Coverage also includes the 3D heterogeneous integration of power sources, photonic devices, and non-volatile memories based on new materials systems.   •Provides single-source reference to the latest research in 3D optoelectronic integration: process, devices, and systems; •Explains the use of wireless 3D integration to improve 3D IC reliability and yield; •Describes techniques for monitoring and mitigating thermal behavior in 3D I...

  8. μOrgano: A Lego®-Like Plug & Play System for Modular Multi-Organ-Chips.

    Directory of Open Access Journals (Sweden)

    Peter Loskill

    Full Text Available Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units. We present a customizable Lego®-like plug & play system, μOrgano, which enables initial individual culture of single organ-on-a-chip systems and subsequent connection to create integrated multi-organ microphysiological systems. As a proof of concept, the μOrgano system was used to connect multiple heart chips in series with excellent cell viability and spontaneously physiological beat rates.

  9. μOrgano: A Lego®-Like Plug & Play System for Modular Multi-Organ-Chips.

    Science.gov (United States)

    Loskill, Peter; Marcus, Sivan G; Mathur, Anurag; Reese, Willie Mae; Healy, Kevin E

    2015-01-01

    Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units. We present a customizable Lego®-like plug & play system, μOrgano, which enables initial individual culture of single organ-on-a-chip systems and subsequent connection to create integrated multi-organ microphysiological systems. As a proof of concept, the μOrgano system was used to connect multiple heart chips in series with excellent cell viability and spontaneously physiological beat rates.

  10. On the integration of ultrananocrystalline diamond (UNCD with CMOS chip

    Directory of Open Access Journals (Sweden)

    Hongyi Mi

    2017-03-01

    Full Text Available A low temperature deposition of high quality ultrananocrystalline diamond (UNCD film onto a finished Si-based CMOS chip was performed to investigate the compatibility of the UNCD deposition process with CMOS devices for monolithic integration of MEMS on Si CMOS platform. DC and radio-frequency performances of the individual PMOS and NMOS devices on the CMOS chip before and after the UNCD deposition were characterized. Electrical characteristics of CMOS after deposition of the UNCD film remained within the acceptable ranges, namely showing small variations in threshold voltage Vth, transconductance gm, cut-off frequency fT and maximum oscillation frequency fmax. The results suggest that low temperature UNCD deposition is compatible with CMOS to realize monolithically integrated CMOS-driven MEMS/NEMS based on UNCD.

  11. On-chip Mach-Zehnder interferometer for OCT systems

    Science.gov (United States)

    van Leeuwen, Ton G.; Akca, Imran B.; Angelou, Nikolaos; Weiss, Nicolas; Hoekman, Marcel; Leinse, Arne; Heideman, Rene G.

    2018-04-01

    By using integrated optics, it is possible to reduce the size and cost of a bulky optical coherence tomography (OCT) system. One of the OCT components that can be implemented on-chip is the interferometer. In this work, we present the design and characterization of a Mach-Zehnder interferometer consisting of the wavelength-independent splitters and an on-chip reference arm. The Si3N4 was chosen as the material platform as it can provide low losses while keeping the device size small. The device was characterized by using a home-built swept source OCT system. A sensitivity value of 83 dB, an axial resolution of 15.2 μm (in air) and a depth range of 2.5 mm (in air) were all obtained.

  12. Digital column readout architectures for hybrid pixel detector readout chips

    International Nuclear Information System (INIS)

    Poikela, T; Plosila, J; Westerlund, T; Buytaert, J; Campbell, M; Gaspari, M De; Llopart, X; Wyllie, K; Gromov, V; Kluit, R; Beuzekom, M van; Zappon, F; Zivkovic, V; Brezina, C; Desch, K; Fu, Y; Kruth, A

    2014-01-01

    In this paper, two digital column architectures suitable for sparse readout of data from a pixel matrix in trigger-less applications are presented. Each architecture reads out a pixel matrix of 256 x 256 pixels with a pixel pitch of 55 μm. The first architecture has been implemented in the Timepix3 chip, and this is presented together with initial measurements. Simulation results and measured data are compared. The second architecture has been designed for Velopix, a readout chip planned for the LHCb VELO upgrade. Unlike Timepix3, this has to be tolerant to radiation-induced single-event effects. Results from post-layout simulations are shown with the circuit architectures

  13. Color sensor and neural processor on one chip

    Science.gov (United States)

    Fiesler, Emile; Campbell, Shannon R.; Kempem, Lother; Duong, Tuan A.

    1998-10-01

    Low-cost, compact, and robust color sensor that can operate in real-time under various environmental conditions can benefit many applications, including quality control, chemical sensing, food production, medical diagnostics, energy conservation, monitoring of hazardous waste, and recycling. Unfortunately, existing color sensor are either bulky and expensive or do not provide the required speed and accuracy. In this publication we describe the design of an accurate real-time color classification sensor, together with preprocessing and a subsequent neural network processor integrated on a single complementary metal oxide semiconductor (CMOS) integrated circuit. This one-chip sensor and information processor will be low in cost, robust, and mass-producible using standard commercial CMOS processes. The performance of the chip and the feasibility of its manufacturing is proven through computer simulations based on CMOS hardware parameters. Comparisons with competing methodologies show a significantly higher performance for our device.

  14. Towards a new generation of pixel detector readout chips

    CERN Document Server

    Campbell, M; Ballabriga, R.; Frojdh, E.; Heijne, E.; Llopart, X.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.

    2016-01-01

    The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile- ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed.

  15. Single wafer rapid thermal multiprocessing

    International Nuclear Information System (INIS)

    Saraswat, K.C.; Moslehi, M.M.; Grossman, D.D.; Wood, S.; Wright, P.; Booth, L.

    1989-01-01

    Future success in microelectronics will demand rapid innovation, rapid product introduction and ability to react to a change in technological and business climate quickly. These technological advances in integrated electronics will require development of flexible manufacturing technology for VLSI systems. However, the current approach of establishing factories for mass manufacturing of chips at a cost of more than 200 million dollars is detrimental to flexible manufacturing. The authors propose concepts of a micro factory which may be characterized by more economical small scale production, higher flexibility to accommodate many products on several processes, and faster turnaround and learning. In-situ multiprocessing equipment where several process steps can be done in sequence may be a key ingredient in this approach. For this environment to be flexible, the equipment must have ability to change processing environment, requiring extensive in-situ measurements and real time control. This paper describes the development of a novel single wafer rapid thermal multiprocessing (RTM) reactor for next generation flexible VLSI manufacturing. This reactor will combine lamp heating, remote microwave plasma and photo processing in a single cold-wall chamber, with applications for multilayer in-situ growth and deposition of dielectrics, semiconductors and metals

  16. Flip chip assembly of thinned chips for hybrid pixel detector applications

    International Nuclear Information System (INIS)

    Fritzsch, T; Zoschke, K; Rothermund, M; Oppermann, H; Woehrmann, M; Ehrmann, O; Lang, K D; Huegging, F

    2014-01-01

    There is a steady trend to ultra-thin microelectronic devices. Especially for future particle detector systems a reduced readout chip thickness is required to limit the loss of tracking precision due to scattering. The reduction of silicon thickness is performed at wafer level in a two-step thinning process. To minimize the risk of wafer breakage the thinned wafer needs to be handled by a carrier during the whole process chain of wafer bumping. Another key process is the flip chip assembly of thinned readout chips onto thin sensor tiles. Besides the prevention of silicon breakage the minimization of chip warpage is one additional task for a high yield and reliable flip chip process. A new technology using glass carrier wafer will be described in detail. The main advantage of this technology is the combination of a carrier support during wafer processing and the chip support during flip chip assembly. For that a glass wafer is glue-bonded onto the backside of the thinned readout chip wafer. After the bump deposition process the glass-readout chip stack is diced in one step. Finally the glass carrier chip is released by laser illumination after flip chip assembly of the readout chip onto sensor tile. The results of the flip chip assembly process development for the ATLAS IBL upgrade are described more in detail. The new ATLAS FEI4B chip with a size of 20 × 19 mm 2 is flip chip bonded with a thickness of only 150 μm, but the capability of this technology has been demonstrated on hybrid modules with a reduced readout chip thickness of down to 50 μm which is a major step for ultra-thin electronic systems

  17. Photonic network-on-chip design

    CERN Document Server

    Bergman, Keren; Biberman, Aleksandr; Chan, Johnnie; Hendry, Gilbert

    2013-01-01

    This book provides a comprehensive synthesis of the theory and practice of photonic devices for networks-on-chip. It outlines the issues in designing photonic network-on-chip architectures for future many-core high performance chip multiprocessors. The discussion is built from the bottom up: starting with the design and implementation of key photonic devices and building blocks, reviewing networking and network-on-chip theory and existing research, and finishing with describing various architectures, their characteristics, and the impact they will have on a computing system. After acquainting

  18. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing; Yi, Xin; Xiao, Kang; Li, Shunbo; Kodzius, Rimantas; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  19. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing

    2013-10-10

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  20. Combining Single-Molecule Optical Trapping and Small-Angle X-Ray Scattering Measurements to Compute the Persistence Length of a Protein ER/K alpha-Helix

    DEFF Research Database (Denmark)

    Sivaramakrishnan, S.; Sung, J.; Ali, M.

    2009-01-01

    as a force transducer, rigid spacer, or flexible linker in proteins. In this study, we quantity this flexibility in terms of persistence length, namely the length scale over which it is rigid. We use single-molecule optical trapping and small-angle x-ray scattering, combined with Monte Carlo simulations...